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Cumulative prenatal exposure to adversity reveals associations
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Abstract

While many studies focus on the association between early life adversity and the later risk for psychopathology, few simultaneously explore diverse forms of
environmental adversity. Moreover, those studies that examined the cumulative impact of early life adversity focus uniquely on postnatal influences. The
objective of this study was to focus on the fetal period of development to construct and validate a cumulative prenatal adversity score in relation to a wide range
of neurodevelopmental outcomes. We also examined the interaction of this adversity score with a biologically informed genetic score based on the serotonin
transporter gene. Prenatal adversities were computed in two community birth cohorts using information on health during pregnancy, birth weight, gestational
age, income, domestic violence/sexual abuse, marital strains, as well as maternal smoking, anxiety, and depression. A genetic score based on genes co-
expressed with the serotonin transporter in the amygdala, hippocampus, and prefrontal cortex during prenatal life was constructed with an emphasis on
functionally relevant single nucleotide polymorphisms, that is, expression quantitative trait loci. Prenatal adversities predicted a wide range of development and
behavioral alterations in children as young as 4 years of age in both cohorts. There were interactions between the genetic score and adversities for several
domains of the Child Behavior Checklist (CBCL), with pervasive developmental problems surviving adjustment for multiple comparisons. Scores combining
different prenatal adverse exposures predict childhood behavior and interact with the genetic background to determine psychopathology.

Multiple forms of early life adversity predict the risk for later
psychopathology (Bjorkenstam, Burstrom, Vinnerljung, &
Koshidou, 2016; Cicchetti & Banny, 2014; Green et al.,
2010; Gunnar & Quevedo, 2007; Kendler, Kuhn, & Prescott,

2004; Kessler, Davis, & Kendler, 1997; O’Donnell &
Meaney, 2017; Shonkoff, Boyce, & McEwen, 2009). The
Centers for Disease Control–Kaiser studies show that the
number of adverse childhood experiences (ACEs) predicts a
wide range of health outcomes such as drug use and abuse
(Anda et al., 1999; Dube, Anda, Felitti, Ewards, & Croft,
2002; Dube et al., 2003), depression (Chapman et al.,
2004) and other mental health diseases (Edwards, Holden,
Felitti, & Anda, 2003), ischemic heart disease (Dong, Giles,
et al., 2004), risk for violence (Ports, Ford, & Merrick, 2016),
and suicide attempts (Dube et al., 2001). The various forms of
adversity in the ACE studies are considered in an additive
manner, with the cumulative adversity index used to predict
later health outcomes. This approach has the advantage of
realistically reflecting the natural environmental conditions
in which exposure to various forms of adversity at different
periods in development are highly intercorrelated (Dong,
Anda, et al., 2004). While this approach complicates efforts
to understand how specific forms of adversity operate at var-
ious ages to contribute to health outcomes, it reflects a more
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realistic approach to defining the true association between ad-
verse environments and health outcomes, thus maximizing
the opportunities for prediction to best identify vulnerable
individuals.

The ACE studies and many others focus on extreme forms
of adversity such as abuse (physical, emotional, and sexual),
household challenges (violence, substance abuse, mental ill-
ness, and divorce) and neglect (physical and emotional; Fe-
litti et al., 1998). While such forms of adversity are more
common than initially thought, in an average community
sample, the intensity of adversity exposure across the popula-
tion may be milder, with little variation on discrete compo-
nents of these scores, and where the risk to develop a poor
outcome will likely depend on a multitude of subtle disadvan-
tages (Christakis, 2016; Copeland, Shanahan, Costello, &
Angold, 2009). Such factors include birth outcomes, socio-
economic position, parental mental health, and so on, each
of which cut across the entire population and predict the later
risk for metabolic and mental health outcomes. Although to
our knowledge the necessary comparative studies have not
been performed, we may consider such measures as “milder”
forms of adversity (or “ace’s”; Christakis, 2016) since, taken
alone, they may be somewhat less predictive of eventual
health outcomes. However, such factors do extend across
the population and thus create the opportunity to define the
relative risk for each child across the entire population. More-
over, the compelling evidence for individual differences in
sensitivity to environmental conditions (Belsky & Pluess,
2009a; Pluess, 2015) across the population suggests that there
may be a more significant impact of such “ace’s” among more
sensitive individuals. For example, children born small for
gestational age are at increased risk for psychopathology
(Breslau & Chilcoat, 2000; Costello, Worthman, Erkanli, &
Angold, 2007; Pesonen, Raikkonen, Strandberg, & Jarven-
paa, 2006; Phillips et al., 1998) and the association between
birth weight and cognitive–emotional function in childhood
is moderated by the genotype of the individual (Broekman
et al., 2011; Wazana et al., 2015).

Another limitation of studies such as the ACE program is
that they have focused thus far on forms of adversity, such as
abuse and neglect, that are unique to the postnatal environ-
ment. There is now strong evidence for the importance of pre-
natal factors in determining the risk for later psychopathology
(Glover, 2014; O’Donnell & Meaney, 2017; Pearson et al.,
2013; Pluess & Belsky, 2011) even when controlling for post-
natal environmental influences. A “prenatal cross-fostering”
study in humans where pregnant mothers were related or un-
related to their child as a result of in vitro fertilization served
to distinguish maternally inherited effects from those directly
associated with the maternal phenotype and showed that ma-
ternal stress and emotional well-being were directly associ-
ated with socioemotional function in the child (Rice et al.,
2010). Despite the compelling evidence for the influence of
prenatal adversity on mental health outcomes, no comprehen-
sive approach to date has explored the long-term conse-
quences of cumulative, prenatal adversity in children. Studies

exploring the relationship between prenatal adversity and risk
for childhood psychopathology focus either exclusively on
the prenatal social environment (Slopen et al., 2015), mater-
nal mental health (O’Donnell, Gaudreau, et al., 2014; Pearson
et al., 2013), or biological risk (Lahti et al., 2014; Laursen,
Munk-Olsen, Nordentoft, & Bo Mortensen, 2007; Raikkonen
et al., 2008), but these conditions are highly intercorrelated in
the lives of children and have yet to be considered in a cumu-
lative manner. For example, socioeconomic status is associ-
ated with both antenatal maternal mood and birth outcomes
(Kramer et al., 2009; Lorant et al., 2003). In the current study,
we used data from two longitudinal, birth cohort studies to
create a cumulative prenatal adversity score based on the
number of adverse prenatal conditions. An adverse condition
was defined as one significantly associated with an increased
risk for psychopathology.

Models of differential susceptibility (Belsky & Pluess,
2009b; Boyce & Ellis, 2005) suggest that children more bio-
logically sensitive to context might be disproportionately af-
fected by such developmental factors explaining, in part, in-
terindividual differences in the degree to which individuals
respond to adversity (Luthar, Cicchetti, & Becker, 2000).
There is considerable evidence that such differential suscep-
tibility is associated with genetic variation (Bakermans-
Kranenburg & van IJzendoorn, 2011, 2015; Belsky et al.,
2009; Brody et al., 2014; Meaney, 2010; Pluess & Belsky,
2013). A final aim of the current study was to define the de-
gree to which the association between the neurodevelopmen-
tal outcomes and the prenatal adversity index were moderated
by the genotype of the child. As a proof of concept, we stud-
ied the interaction between the adversity index score and a
novel genetic score comprising genes coexpressed with the
serotonin transporter in the brain. A functional polymorphism
in the promoter region of the serotonin transporter solute car-
rier family C6, member 4 (SLC6A4) gene has been shown to
moderate the influence not only of stressful life events but
also of positive support, on the development of/resilience to
psychopathology at different ages (Bukh et al., 2009; Caspi
et al., 2003; Eley et al., 2004; Ford, Mauss, Troy, Smolen,
& Hankin, 2014; Kendler, Kuhn, Vittum, Prescott, & Riley,
2005; Li, Berk, & Lee, 2013; Ming et al., 2013; Rocha
et al., 2015; Taylor et al., 2006; Uher et al., 2011; Wilhelm
et al., 2006). Our approach was based on the assumption
that genes operate in coherent networks that are reflected in
patterns of coexpression. We used existing genomic databa-
ses and a novel bioinformatic approach to create a coexpres-
sion polygenic risk score (ePRS) that is based on functional
genetic variants (expression quantitative trait loci) in genes
that are coexpressed with the SLC6A4 gene in brain regions
implicated in mood disorders, including depression and anx-
iety (Caspi et al., 2003; Uher et al., 2011; Uher & McGuffin,
2010), as well as childhood emotional function (Bouvette-
Turcot et al., 2015; Pluess et al., 2011). We propose that
this approach could provide stronger evidence for genetic
moderation than focusing only on a single candidate poly-
morphism.
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Method

We used data from two established prospective birth cohorts,
Maternal Adversity, Vulnerability and Neurodevelopment
(MAVAN; O’Donnell, Gaudreau, et al., 2014) and Growing
Up in Singapore Towards Healthy Outcomes (GUSTO; Soh
et al., 2014).

MAVAN

The MAVAN study sample included children from two re-
cruitment/testing sites, one in Montreal (Quebec) and the
other in Hamilton (Ontario), Canada, followed from birth
up to 6 years of age and evaluated using a wide range of mea-
sures of neurodevelopment. Eligibility criteria for mothers in-
cluded age �18 years, singleton gestation, and fluency in
French or English. Severe maternal chronic illness, placenta
previa, and history of incompetent cervix, impending deliv-
ery, or a fetus/infant affected by a major anomaly or born at
a gestational age of ,37 weeks were exclusion criteria. Birth
records were obtained directly from the birthing units. Ap-
proval for the MAVAN project was obtained from obstetri-
cians performing deliveries at the study hospitals and by
the ethics committees and university affiliates (McGill Uni-
versity, Université de Montréal, Royal Victoria Hospital,
Jewish General Hospital, Centre hospitalier de l’Université
de Montréal, and Hôpital Maisonneuve-Rosemount) and
St. Joseph’s Hospital and McMaster University, Hamilton.
Informed consent was obtained from all participants.

The MAVAN sample included 443 children with data that
allowed the calculation of prenatal adversity score (T1 Table 1).
For every item with a continuous score, we used either the
15th or the 85th percentile as the cutoff to add a point to ad-
versity scale. Presence of each component (described in each
bullet of the table) yielded 1 point, and the scores represent

the summation of points. The instruments used to extract the
information and create the scores are described below.

The health and well-being questionnaire is a composite
of validated short versions of multiple measures (Kramer,
Goulet, et al., 2001):

1. the presence of chronic disease during pregnancy (current
or resolved diabetes, hypertension, or asthma) or severe
acute conditions (such as current severe vomiting, vaginal
spotting or bleeding during the past 4–6 weeks, current
anemia/constipation/blood in the stool, or current vaginal/
cervical/urinary tract infection/) is examined;

2. a subscale from the daily hassles is used to measure how
often, and to what degree, the woman has lacked money
for basic needs such as food, heating, and electricity since
the beginning of pregnancy (Kanner, Coyne, Schaefer, &
Lazarus, 1981);

3. the Marital Strain Scale of Pearlin and Schooler is used to
assess chronic stress with the romantic partner (Pearlin &
Schooler, 1978);

4. the Abuse Assessment Screen is used to assess conjugal
violence, using five items to assess the frequency, severity,
perpetrator, and body sites of injury (Newberger et al.,
1992; Parker, McFarlane, Soeken, Torres, & Campbell,
1993); and

5. questions about anxiety during pregnancy are also as-
sessed (Lobel & Dunkel-Schetter, 1990; Lobel, Dunkel-
Schetter, & Scrimshaw, 1992).

Smoking during pregnancy was simply scored as a binary
outcome. Household gross income was assessed according
to the Québec Institut de la statistique du Québec (1998). Mater-
nal depressive symptoms were evaluated using the Centre
of Epidemiological Studies Depression Scale administered

Table 1. Variables and cutoffs used to create A scores in MAVAN and GUSTOPEQ1

MAVAN GUSTO

† Presence of chronic disease during pregnancy (diabetes,
hypertension, asthma, current or resolved), current severe
vomiting, vaginal spotting or bleeding during the past 4–6
weeks, current anemia/constipation/blood in stool, current
vaginal/cervical/urinary tract infection/diarrhea

† Presence of chronic disease during pregnancy (diabetes,
hypertension, current severe vomiting, vaginal spotting or bleeding
during the past 4–6 weeks, current anemia)

† Birth size percentile below 10th percentile or above 90th
percentile

† Birth size percentile below 10th percentile or above 90th percentile

† Gestational age ≤37 weeks † Gestational age ≤37 weeks
† Household total gross income ,$30,000/year † Household total gross income ,$1999/month
† Lack of money score above 9 † Smoking during pregnancy
† Presence of domestic violence or sexual abuse during

pregnancy
† Maternal mental health at Week 26 (presence of BDI ≥ 14,

EPDS ≥ 93)
† Marital strain score .2.9
† Smoking during pregnancy
† Pregnancy anxiety .1.95
† Prenatal depression score ≥22

Note: The presence of each component (described in each bullet) yielded 1 point, and the scores represent the summation of points.
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during pregnancy. This scale assesses symptoms of depres-
sion on 20 items applying a Likert scale ranging from 0 to 3,
with a higher score indicating more severe depressive
symptoms (Radloff, 1977).

Birth weight and gestational age were assessed using birth
records obtained directly from the birthing unit. Birth weight
percentiles were calculated using the Canadian reference
(Kramer, Platt, et al., 2001).

Neurodevelopmental outcomes were assessed using the
Bayley Scales of Infant and Toddler Development II (Bayley,
1993) applied at 36 months. The Bayley evaluation was per-
formed by experienced professionals. Three major areas of
development were used in this study: Total Behavioral Rating
Scale, Motor Developmental Index (which includes fine and
gross motor subtests) and Mental Developmental Index. The
CBCL is a widely used method of identifying problematic
behaviors in children. The CBCL is a parent-report form to
screen for emotional, behavioral, and social problems. The
scoring for the CBCL is based on groupings of sets of behav-
iors into a few syndrome scale raw scores; there are two
broader scales that combine several of the syndrome scales:
internalizing problems (e.g., anxious/depressed, withdrawn/
depressed, and somatic complaints scores) and externalizing
problems (e.g., aggressive behavior). There also is a “total
problems score” and a set of “DSM-oriented” scales (Achen-
bach & Rescorla, 2000). Maternal reports were available at
the ages of 48 and 60 months. The School Readiness Battery
assesses school readiness, which may be defined as the
minimum developmental level allowing the child to respond
adequately to school demands (Lemelin et al., 2007).Q2 The
MAVAN School Readiness Battery includes a series of
well-validated diagnostic screening tests of school readiness
such as the Lollipop Test (Chew & Morris, 1984), Number
Knowledge (Okamoto & Case, 1996), and the Peabody Pic-
ture Vocabulary Test (Dunn & Dunn, 2006). The battery was
administered at 48 and 60 months.

GUSTO

Pregnant women aged 18 years and above were recruited at
the National University Hospital and KK Women’s and Chil-
dren’s Hospital, being of Chinese, Malay, or Indian ethnicity
with homogeneous parental ethnic background. Mothers re-
ceiving chemotherapy, psychotropic drugs, or who had type
I diabetes mellitus were excluded. Informed written consent
was obtained from each participant. There were 917 children
with data that allowed the calculation of prenatal adversity
score. The description of the score is provided in Table 1.
The tools applied were similar to MAVAN (see description
above), except for maternal mental health. In GUSTO, this in-
formation was a composite measure of different question-
naires applied at gestational Week 26 as explained in Table 1:
the Beck Depression Inventory, a 21-question multiple-
choice self-report inventory, one of the most widely used
psychometric tests for measuring the severity of depression
(Beck, War, Mendelson, Mock, & Erbaugh, 1961); the Edin-

burgh Postnatal Depression Scale, a 10-item self-report scale
designed to screen for pre- and postpartum depression (Cox,
Holden, & Sagovsky, 1987); and the State-Trait Anxiety In-
ventory, a self-report scaling consisting of two forms of 20
items each to measure psychic components of state and trait
anxiety (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs,
1983).

The neurodevelopmental outcomes included the follow-
ing:

1. the Bayley Scale of Infant and Toddler Development,
Third Edition, which includes five subscale scores for
cognition, expressive and receptive language and both
fine and gross motor function, applied at 24 months (Bay-
ley, 2006);

2. the CBCL (Achenbach & Rescorla, 2000) administered at
24 and 48 months of age; and

3. a School Readiness Test Battery composed of the Lollipop
Test (Chew & Morris, 1984), number knowledge (Oka-
moto & Case, 1996), and the Peabody Picture Vocabulary
Test (Dunn & Dunn, 2006) applied at 48 months.

Genotyping (only in MAVAN)

We described allele frequencies at 242,211 autosomal single
nucleotide polymorphisms (SNPs) using genome-wide plat-
forms (PsychArray/PsychChip, Illumina) according to manu-
facturers’ guidelines with 200 ng of genomic DNA derived
from buccal epithelial cells. We removed SNPs with a low
call rate (,95%) and minor allele frequency (,5%) and per-
formed imputation using the Sanger Imputation Service
(McCarthy et al., 2016) resulting in 20,790,893 SNPs with
an info score .0.80 and posterior genotype probabilities
.0.90.

ePRS

The genetic score was created using (a) Genenetwork (http://
genenetwork.org), (b) Brainspan (http://www.brainspan.org/
rnaseq/search/index.html), and (c) GTEx (https://www.gtex
portal.org/home/). These resources allowed us to identify
transcriptional coexpression profiles in specific regions of
the mouse (GeneNetwork) and human (Brainspan) brain
and to identify SNPs functionally associated with gene ex-
pression in human brain (GTEx). The ePRS was constructed
as follows: we used GeneNetwork to generate coexpression
matrix with SLC6A4 in the (a) amygdala, (b) hippocampus,
and (c) prefrontal cortex in mice (absolute value of the coex-
pression correlation r � .5); we then used Brainspan to iden-
tify transcripts from this list with a prenatal enrichment within
the human brain, consensus transcripts (i.e., transcripts coex-
pressed with SLC6A4 in two out of three coexpression matri-
ces). We selected transcripts differentially expressed in these
brain regions at r � 1.5 fold during prenatal development as
compared to adult samples (Miller et al., 2014). The final
list included 29 genes, but 4 were excluded for their location
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on chromosome X. One gene (NEUROG1) showed little evi-
dence of common variation, for example, SNPs with a MAF
.5% as such 3 SNPs were excluded in subsequent quality
control procedures from GTEx (see below), and 2 others
(SOX12 and SF3B4) had no data overlap between our sample
and GTEx, resulting in 22 genes (T2 Table 2).

Based on their functional annotation in the National
Center for Biotechnology Information, US National Library
of Medicine (https://www.ncbi.nlm.nih.gov/variation/view/)
using GRCh37.p13, we did the following:

1. we gathered all of the existing SNPs from these genes pre-
sent on our data (total ¼ 18,668);

2. we merged this list with SNPs that were available on
GTEx (see below);

3. we retained the resulting list of SNPs and subjected it to
linkage disequilibrium clumping (r2 , .25), resulting in
205 independent functional SNPs, for example, expres-
sion quantitative trait loci;

4. based on the children’s genotype data from MAVAN, we
used a count function of the number of alleles at a given
SNP weighted by the slope coefficient from a regression
model predicting gene expression by SNPs in cis; and

5. we accounted for the direction of the coexpression of
SLC6A4 with our genes of interest (Table 2).

Table 2 also depicts how many SNPs refer to each gene on the
hippocampus.

For the sake of comparison, we also analyzed the polymor-
phism of 43 base pair insertion/deletion in the serotonin trans-

Table 2. Genes selected for composing the genetic score

Symbol Ensembl Description SNPs on Hippocampus

MMP16 ENSG00000156103 Matrix metallopeptidase 16 22
RBM12B ENSG00000183808 RNA binding motif protein 12B 3
SFRP1 ENSG00000104332 Secreted frizzled-related protein 1 7
EHMT2 ENSG00000204371 Euchromatic histone-lysine N-methyltransferase 2 5
TNPO1 ENSG00000083312 Transportin 1 6
KIF15 ENSG00000163808 Kinesin family member 15 5
RYK ENSG00000163785 Receptor-like tyrosine kinase 3
DNMT3B ENSG00000088305 DNA methyltransferase 3 beta 4
BUB1 ENSG00000169679 Mitotic checkpoint serine/threonine kinase 1
NBEAL1 ENSG00000144426 Neurobeachin-like 1 6

Neural precursor cell expressed, developmentally downregulated 4-like 38
NEDD4L ENSG00000049759 E3 ubiquitin protein ligase
LOXL1 ENSG00000129038 Lysyl oxidase-like 1 8
MEX3B ENSG00000183496 Mex-3 RNA binding family member B 3
HIF1A ENSG00000100644 Hypoxia inducible factor 1 alpha subunit 3
NBEA ENSG00000172915 Neurobeachin 46
RCBTB2 ENSG00000136161 RCC1 and BTB domain containing protein 2 4
ZIC5 ENSG00000139800 Zic family member 5 3
RAD51AP1 ENSG00000111247 RAD51 associated protein 1 4
SUV39H2 ENSG00000152455 Suppressor of variegation 3–9 homolog 2 3
PLXNA2 ENSG00000076356 Plexin A2 26
SERBP1 ENSG00000142864 SERPINE1 mRNA binding protein 1 2
STRBP ENSG00000165209 Spermatid perinuclear RNA binding protein 3

Note: For further details, see the text. SNPs, single nucleotide polymorphisms.

Table 3. Population description for MAVAN cohortPEQ1

Variable Mean + SD n (%)

Birth weight (g) 3360.49 + 442.21
Gestational age (weeks) 39.20 + 1.13
Maternal age at birth (years) 30.93 + 4.79
Breastfeeding duration until 12 months 28.65 + 18.31

(weeks)
Montreal site 256 (57.8)
Male sex 232 (52.4)
Income below Can$80,000 279 (63)
Maternal education high school or less 99 (22.3)
Smoke during pregnancy (yes) 63 (14.2)
Prenatal adversity score 1.34 + 1.42

PEQ1
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porter linked polymorphic region (5-HTTLPR) promoter, that
produces long and short variants, which was amplified with
polymerase chain reaction techniques with primers and con-
ditions previously described (Bouvette-Turcot et al., 2015).
There is evidence for two functional variants of the long allele
(LA and LG) resulting from a single nucleotide polymor-
phism (A ! G, rs25531) in the 5-HTTLPR region (Hu
et al., 2006; Uher & McGuffin, 2008). The LA/LA genotype
is associated with higher mRNA expression in vitro (Hu et al.,
2006). We grouped the LG and short alleles because these
variants are functionally similar with respect to serotonin
transporter (5-HTT) expression, and compared LA/LA homo-
zygote infants to short/LG allele carriers.

Statistics

Statistical analysis of the baseline characteristics was per-
formed using Student t test for continuous data and a chi-
square test for categorical variables. Pearson correlations
were performed searching for associations between the prena-
tal adversity score and the different outcomes. Finally, linear
regression analysis using the genetic score (driven by biolog-
ical function; see above) and prenatal adversity score, as well
as the interaction term, adjusted by gender, were performed.
Significance levels for all measures were set at p , .05. In ad-
dition, to account for multiple testing, we applied the Bonfer-
roni–Holm method. The population structure of the MAVAN
cohort was evaluated using principal component analysis of
all autosomal SNPs that passed the quality control (Price
et al., 2006). Ethnic outliers (.6 SD) were excluded from
the analysis. Based on the inspection of the scree plot, the first
three principal components were the most informative of pop-
ulation structure in this cohort and included in all subsequent
analysis. Data were analyzed using the Statistical Package for
the Social Sciences (SPSS) 22.0 software (SPSS Inc., Chi-
cago) and R (R Core Team, 2014).

Results

Prenatal adversity predicts neurodevelopment and
behavior (MAVAN)

T3 Table 3 describes the sample from the MAVAN project for
which there was sufficient data to calculate a prenatal adver-
sity score (N ¼ 443). Figure 1 shows a heat map of signifi-
cance levels of the correlations between prenatal adversity
score and multiple neurodevelopmental outcomes, including
the Bayley Scales of Infant and Toddler Development applied
at 36 months, the CBCL applied at 48 and 60 months, as well
as the School Readiness Battery applied at 48 and 60 months
(see also online-only supplementary Table S.1 for correlation
values). The findings reveal strong associations between the
cumulative level of prenatal adversity and a wide range of
neurodevelopmental outcomes. As expected, prenatal adver-
sity scores were uniformly correlated with negative outcomes
including higher problem scores on the CBCL and lower

scales values on the Bayley and school readiness tests.
Most of these associations survived family-wise error rate
correction for multiple comparisons, which reveals the
strength of the findings.

For the sake of comparison (Figure 1), we added the sig-
nificance level of the correlations for each individual item
used to calculate the prenatal adversity score and the same
neurodevelopmental outcomes. The findings show that
prenatal socioeconomic status (family income), prenatal
symptoms of maternal depression, and anxiety were also
strong predictors of the same neurodevelopmental outcomes.
However, while the scores for individual measures of prenatal
adversity are predictors of specific domains (e.g., income cor-
relates well with cognition, but less with socioemotional de-
velopment at 48 months), the prenatal adversity score is more
broadly associated with outcomes than each one of the single
scores, showing correlations in cognitive/neurodevelopmen-
tal as well as socioemotional and psychological outcomes.
This pattern is notable when considering correlations that
pass correction for multiple comparisons. Nevertheless, it ap-
pears that family socioeconomic status and maternal mood
account for many of the findings revealed by the prenatal ad-
versity score. We saw little evidence for the association be-
tween birth outcomes and neurodevelopmental outcomes.

The GUSTO cohort replication

The GUSTO provided an opportunity to both replicate the
findings with the MAVAN cohort and extend the analysis
to include Southeast Asian ethnic groups. T4Table 4 describes
the sample from GUSTO for which there was sufficient
data to calculate the prenatal adversity score (N ¼ 917), al-
though maternal mental health score was calculated some-
what differently (see Methods section).

Figure 2 shows the heat map of significance levels of the
correlations between prenatal adversity score and the out-
comes, including the Bayley Scales of Infant and Toddler De-
velopment applied at 36 months, the CBCL applied at 48
months, as well as the School Readiness Battery applied at
48 months (see also online-only supplementary Table S.2
for correlation values). As in the MAVAN data, for all
statistically significant cases the prenatal adversity scores
were correlated with negative outcomes, higher behavioral
problem scores on the CBCL and lower scale scores for the
Bayley and school readiness tests. As in the MAVAN data,
a number of the significant associations between the prenatal
adversity scores and the developmental outcomes survive
correction for multiple comparisons. The results thus confirm
the predictive value of the prenatal adversity scale scores for a
wide range of neurodevelopmental outcomes in Asian
children.

The findings from the two cohorts are, in general, very
comparable, and both suggest strong associations between
cumulative prenatal adversity and neurodevelopmental out-
comes. However, we note some striking differences. While
prenatal adversity score in GUSTO, as in MAVAN, associate
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with both CBCL and School Readiness test outcomes, there
is no evidence for associations with the Bayley Scale scores,
despite the larger sample size.

Genetic moderation of prenatal adversity

We found statistically significant interactions between the
prenatal adversity score and the SLC6A4 ePRS on several do-
mains of the CBCL at 48 months (anxious/depressed, anxiety
problems, and pervasive developmental problems) as well as
60 months (withdrawal, pervasive developmental problems,
and internalizing problems;T5 Table 5). Children with a higher
SLC6A4 ePRS score showed higher CBCL scores as prenatal
adversity scores increases (single slopes onT6 Table 6). How-
ever, after adjusting for multiple comparisons, only the inter-
action between the prenatal adversity score and the SLC6A4
ePRS score on pervasive developmental problems at 60
months remained statistically significant. The strongest ef-
fects of the SLC6A4 ePRS were in the domains related to
emotional function.

When comparing the LA/LA homozygote infants to S/LG
allele carriers, we found no significant interactions between
the genotype and prenatal adversity score in Bayley Scale,
CBCL, or School Readiness outcomes (data not shown).
This comparison suggests that the ePRS for the SLC6A4
gene was somewhat more powerful genetic moderator that
the SLC6A4 genotype alone.

Enrichment analysis for the genes composing the SLC6A4
ePRS

Enrichment analysis of the list of genes that originated the
SLC6A4 ePRS score (Table 3) using Metacorew (Thomson
Reuters) shows two statistically significant pathway maps
after false discovery rate (FDR) correction. The first is tran-
scription/epigenetic regulation of gene expression (PFDR ,

.009), and the second is transport/RAN regulation pathway
(PFDR , .03). Gene ontology processes were enriched for
several epigenetic processes, neuron differentiation, and cel-
lular transport (seeF3 Figure 3). The strongest biological pro-
cesses included dopamine neuronal differentiation as well
as a number of processes associated with the modeling of

epigenetic marks, including DNA methylation, lysine deme-
thylation, and H3-K9 methylation.

Discussion

The primary objective of this study was to examine the
strength and breadth of the associations between a cumulative
measure of prenatal adversity and neurodevelopmental out-
comes in childhood. We devised a cumulative index of prena-
tal adversity that included many of the established, individual
predictors of child health and development, including the risk
for later psychopathology. We were able to replicate this find-
ing in an Asian birth cohort study comparable to that of our
Canadian cohort. We found that the cumulative prenatal adver-
sity score was generally a more powerful statistical predictor
ofneurodevelopmental outcomes than was any single measure
of prenatal adversity. An additional merit of this analysis was
the ability to directly compare the relative effects of individual
measures of prenatal adversity with respect to a wide range of
neurodevelopmental outcomes. Maternal symptoms of de-
pression and anxiety as well as family income were almost
as strong in predicting neurodevelopmental outcomes as was
the cumulative index of prenatal adversity. The socioeco-
nomic status and maternal mood factors far outweighed the as-
sociations we observed between birth outcomes and measures
of neurodevelopment. This conclusion is consistent with the
results from both the Canadian and Singapore cohorts.

A weakness in making this comparison, and in interpreting
the findings with the cumulative index of prenatal adversity,
is that both maternal mood and income measures tend to re-
main stable over the perinatal period and thus are not unique
to the prenatal period. However, there are several lines of
evidence to suggest that these influences do operate over
the prenatal period. First, a comprehensive study of the rela-
tion between maternal depression and the risk of later depres-
sion in the offspring strongly favors the influence of prenatal
maternal mood (Pearson et al., 2013). Second, neonatal imag-
ing studies show strong associations between both prenatal
family socioeconomic status and prenatal maternal symptoms
of depression and anxiety on brain structure and organization
(Piccolo et al., 2016; Qiu et al., 2013; Rifkin-Graboi et al.,
2013, 2015; Yu et al., 2017).

Table 4. Population description for GUSTOPEQ1

Variable Mean + SD n (%)

Birth weight (g) 3113.36 + 422.04
Gestational age (weeks) 38.87 + 1.20
Maternal age at birth (years) 30.45 + 5.05
Male sex 482 (52.6)
Income below $6000 652 (71.1)
Maternal education high school or less 281 (30.6)
Smoke during pregnancy (yes) 23 (2.5)
Prenatal adversity score 1.13 + 0.992
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Previous efforts to analyze the long-term effects of prena-
tal adversity have focused exclusively on specific aspects of
the prenatal environment, such as birth weight (Lahti et al.,
2014) or maternal mental health (O’Donnell, Glover, Barker,
& O’Connor, 2014). Latent class analysis has been used to
characterize the environment in a comprehensive way, but
these studies focus on the postnatal life (Copeland et al.,
2009; Oliver, Kretschmer, & Maughan, 2014). Our prenatal
adversity score is an ecologically valid, predictor of altered

child behavior and neurodevelopment. In addition, rather
than focusing on end-state outcomes (“disease” vs. “no dis-
ease”), our study focuses on a broad range of neurodevelop-
mental outcomes, including those that reflect the risk for psy-
chopathology. For example, we found a highly significant
association between the cumulative prenatal adversity score
and measures of school readiness in both cohorts (Figures 1
and 2). In terms of primary prevention, it may be more clini-
cally relevant to understand the extent by which adversity
alters normal neurodevelopment and behavior before the
establishment of morbid conditions (Dougherty et al., 2013;
Enoch et al., 2016).

The cumulative prenatal adversity score was a better pre-
dictor of cognitive and socioemotional outcomes than was
any single measure. Income was a good predictor of neurode-
velopment and cognitive abilities, in agreement with a large
amount of evidence (reviewed in Bradley & Corwyn,
2002), but less so for socioemotional outcomes at 48 months.
Other items such as marital strains and violence, health and
smoking during pregnancy, birth weight, and gestational
age showed surprisingly few associations with neurodevelop-
mental outcomes, and most did not survive the adjustment for
multiple comparison. In sum, the cumulative prenatal adver-
sity score appears to be a comprehensive picture of the
prenatal environment, highly associated with child behavior,
neurodevelopment, and risk for psychopathology. These
findings, of course, also underscore the broad impact of
prenatal adversity on neurodevelopmental outcomes.

The cumulative prenatal adversity score is an interesting
metric for studies of genetic moderation of environmental

Table 5. Interactions between the prenatal adversity score and ePRS/SLC6A4PEQ1

Outcome A. Beta A. p Outcome A. Beta A. p

Bayley SR 48 months
Total behavior 21.076 .127 Number knowledge 0.005 .988
Orientation behavior 20.435 .286 Lollipop Test 0.564 .743
Emotional behavior 20.453 .246 PPVT 0.286 .764
Motor quality 20.025 .705 CBCL 60 months
MDI 21.375 .254 Emotionally reactive 0.317 .210
PDI 21.835 .229 Anxious/depressed 0.385 .094

CBCL 48 months Somatic complaints 0.271 .236
Emotionally reactive 0.353 .196 Withdrawn 0.419 .022
Anxious/depressed 0.523 .036 Sleep problems 0.086 .730
Somatic complaints 0.149 .580 Attention problems 0.092 .660
Withdrawn 0.240 .285 Aggressive behavior 0.227 .727
Sleep problems 0.321 .356 Depressive problems 0.141 .534
Attention problems 20.235 .283 Anxiety problems 0.322 .247
Aggressive behavior 20.417 .559 Pervasive developmental problems 0.955 .000
Depressive problems 0.109 .697 ADHD problems 0.179 .544
Anxiety problems 0.880 .003 Oppositional/defiant problems 0.058 .838
Pervasive developmental problems 0.934 .005 Internalizing problems 1.393 .040
ADHD problems 20.146 .631 Externalizing problems 0.320 .683
Oppositional/defiant problems 20.224 .486 Total problems 3.007 .116
Internalizing problems 1.265 .086 SR 60 months
Externalizing problems 20.652 .442 Number knowledge 20.405 .218
Total problems 1.439 .505 Lollipop Test 0.935 .510

PPVT 0.436 .616

Table 6. Single slopes for the interactions between the
prenatal adversity score and ePRS/SLC6A4

Adversity Estimated Simple Slopes

Lower Score High Score

Hippocampus Beta p Beta p

CBCL 48 months
Anxious/depressed 20.200 .296 0.395 .012*
Sleep problems
Anxiety problems 20.098 .657 0.809 ,.001*
Pervasive developmental

problems 20.354 .164 0.656 .002*
CBCL 60 months

Withdrawn 20.111 .382 0.306 .014*
Pervasive developmental

problems 20.286 .132 0.699 ,.001*
Internalizing problems 20.412 .387 1.014 .03*

*p , .05.

PEQ1
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conditions since it is not dependent upon any singular environ-
mental conditions, but rather it captures a global level of prena-
tal adversity. We explored this possibility using a novel geno-
mic approach. Genome-wide association studies (GWAS)
have established statistically reliable associations between spe-
cific genetic variants and mental health outcomes (Hyde et al.,
2016; Robinson et al., 2016; Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014), particularly in
schizophrenia and autism. However, such variants account for
very small percentages of the variation in the specific outcome
under study.

Moreover, the variants that emerge as “hits” in GWAS are
limited for gene–environment interaction analyses, as the sig-
nificant variants in a GWAS are identified only after washing
out the several nuances of the environment (Dalle Molle
et al., 2017). The alternative approach of individual, bio-
logically informed single candidate genetic variants studies
is likewise compromised by weaknesses (Duncan & Keller,
2011). Moreover, gene products operate in networks. Altera-
tions in systems that regulate neurodevelopment derive from
genomic variants at multiple sites that may converge to influ-
ence common biological pathways. This idea led to the use of
methods of genomic risk profiling to examine the influence of
genetic burden as reflected by a set of “risk” alleles for spe-
cific psychiatric disorders (Wray & Goddard, 2010).

The risk alleles and effect sizes of SNPs are established
from existing GWASs using relevant “discovery” samples
based on their p values below a specific threshold. A genomic
profile risk score is calculated for each individual in the target
sample as the sum of the count of risk alleles weighted by the
effect size in the discovery sample. However, while this ap-
proach has shown some positive findings, it is limited by
the fact that the genetic profile risk score is defined by the
identity and weightings of variants identified in GWAS
studies. Our aim was to build on the strength of a biologically
informed candidate gene, SLC6A4, as well as that of the

multiple loci, network-based approach. We assumed that
genes that operate in networks are co- expressed and focused
on brain regions that are known to associate with cognitive–
emotional function. We used a series of filters to identify a hip-
pocampal-specific SLC6A4 gene network, which we termed
an ePRS. The SLC6A4 ePRS showed a significant interaction
with cumulative prenatal adversity score on measures of
childhood cognitive–emotional problems. We note that the
SLC6A4 ePRS revealed significant interaction effects that
were not apparent with the commonly used SLC6A4 poly-
morphism, the 5-HTTPLR variant, alone. In agreement to
this literature, our genetic score could discern a subgroup of
children who were more vulnerable to prenatal adversity,
apparently in a more efficient way than the candidate-gene
approach.

The strength of the ePRS approach is also apparent in the
results of the informatics analyses that included a gene-
ontology enrichment (Figure 3). This analysis identified
multiple, highly significant (i.e., p , 10–4), biological
processes on the basis of the genes included in the SLC6A4
ePRS. A number of these processes refer to epigenetic remod-
eling, including DNA methylation, lysine demethylation, and
histone H3-K9 methylation. DNA methylation and histone
modifications such as H3K9 methylation are epigenetic marks
that are closely associated with gene expression (Meaney,
2010), and are candidate mechanisms for the effects of environ-
mental regulation of gene expression (Dias, Maddox, Klengel,
& Ressler, 2015; Meaney & Ferguson-Smith, 2010; Zhang,
Labonte, Wen, Turecki, & Meaney, 2013). Both in vivo and
in vitro studies show that serotonin signaling directly alters
DNA methylation and histone modifications in the rodent hip-
pocampus (Hellstrom, Dhir, Diorio, & Meaney, 2012; Weaver
et al., 2004).

The most statistically significant biological process iden-
tified by the informatics analysis was that dopaminergic neu-
ron differentiation is also involved, which is not surprising
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Figure 3. (Color online) Gene ontology processes related to the genes included in the expression polygenic risk score.
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considering the way that the score was built and the common
source for monoaminergic progenitors (Abeliovich & Ham-
mond, 2007; Cheng et al., 2010). Genetic variation in genes
that code for proteins implicated in dopamine pathways
have been suggested to be highly responsive to environmental
variation (Nikolova, Ferrell, Manuck, & Hariri, 2011; Stice,
Yokum, Burer, Epstein, & Smolen, 2012), and classically
linked to “differential susceptibility” effects, rendering
individuals more sensitive to adversity as well as positive
environmental influences (Bakermans-Kranenburg & van
IJzendoorn, 2015; Belsky et al., 2009; Boyce & Ellis, 2005;
Brody et al., 2014). An extensive meta-analysis identified
dopamine-related genes as significant markers of differential
susceptibility (Bakermans-Kranenburg & van IJzendoorn,
2015). The evidence is particularly strong for the DRD4
seven-repeat allele (e.g., (Bakermans-Kranenburg & van
IJzendoorn, 2006). This variant as well as others in
dopamine-related genes moderates the impact of prenatal
adversity on mental health outcomes (Pluess, Belsky,
& Neuman, 2009) as well as cortical thickness (Qiu et al.,
2015).

The findings presented here also bear on the differential
susceptibility hypothesis, which suggests that functional
variants in specific genes render individuals more or less
sensitive to environmental conditions (Bakermans-Kranen-
burg & van IJzendoorn, 2007; Belsky et al., 2009, 2015).
The implicit assumption is that such effects should occur

across a wide range of neurodevelopmental outcomes. There
is impressive evidence for effects on measures of cognitive,
emotional, and social outcomes (Bakermans-Kranenburg &
van IJzendoorn, 2015).

However, to our knowledge, few if any studies were con-
structed to directly test this feature of the hypothesis by com-
paring the effects of a common measure of environmental
conditions and a range of outcome measures. We acknowl-
edge that the present study is likely underpowered to convin-
cingly assess this issue. However, our measure of the SLC6A4
ePRS revealed moderating effects that were specific to certain
outcomes, most notably in measures of socioemotional func-
tion (see Figure 3). This issue needs further analysis in studies
with multiple outcome measures and larger sample sizes.

In summary, we propose approaches to characterize (a) the
environment, considering different environmental character-
istics at the same time in a simple and very predictive score;
and (b) the genetic component, using a biologically informed
score that can focus on specific pathways but is more compre-
hensive that the candidate-gene approach. This study opens a
venue of possibilities to explore how different brain networks
interact with the environment to influence health risks.

Supplementary Material

To view the supplementary material for this article, please
visit https://doi.org/10.1017/S0954579417001262.
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