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Abstract

With increasing air traffic, rising fuel costs and tighter environmental targets, efficient airport ground op-
erations are one of the key aspects towards sustainable air transportation. This complex system includes
elements such as ground movement, runway scheduling and ground services. Previously, these problems were
treated in isolation since information, such as landing time, pushback time and aircraft ground position, are
held by different stakeholders with sometimes conflicting interests and, normally, are not shared. However,
as these problems are interconnected, solutions as a result of isolated optimisation may achieve the objective
of one problem but fail in the objective of the other one, missing the global optimum eventually. Potentially
more energy and economic costs are thus required. In order to apply a more systematic and holistic view,
this paper introduces a multi-objective integrated optimisation problem incorporating the newly proposed
Active Routing concept. Built with systematic perspectives, this new model combines several elements:
scheduling and routing of aircraft, 4-Dimensional Trajectory (4DT) optimisation, runway scheduling and
airport bus scheduling. A holistic economic optimisation framework is also included to support the decision
maker to select the economically optimal solution from a Pareto front of technically optimal solution. To
solve this problem, a multi-objective genetic algorithm is adopted and tested on real data from an inter-
national hub airport. Preliminary results show that the proposed approach is able to provide a systematic
framework so that airport efficiency, environmental assessment and economic analysis could all be explicitly
optimised.
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1. Introduction1

Global air traffic is continuing to grow steadily and the 3.1 billion airline passengers carried in 2013 are2

forecasted to double to about six billion by 2030 [1]. By that time, many airports will reach their maximum3

capacity resulting in a great pressure to fully utilise the available resources and the need for efficient ground4

operations. Furthermore, the global effort to meet ambitious environmental targets such as reaching an5

emission-free airport ground movement in Europe by 2050 [2], together with rising fuel costs, push the6

airlines to cut fuel consumption as much as possible. Advances in research in the last decades have seen7

improvement in the fuel efficiency and mitigation of environmental impact for new aircraft due to innovative8

design [3] or the application of alternative fuels [4, 5, 6]. However, in addition to technological developments9

in maximising energy utilisation, there is a considerable potential to achieve the same objective by optimising10

operational procedures at airports, which is still untapped fully.11

Previously, different information (e.g. landing time, pushback time or aircraft ground position) were12

possessed by different stakeholders with limited sharing. However, with the abovementioned challenges13

imposed on airports, this approach cannot be sustained in the future. This was recognized by Eurocontrol14

with the introduction of the Airport Collaborative Decision Making (A-CDM) concept [7]. The core idea of15

A-CDM is the cooperation and real-time data sharing between airport operators, aircraft operators, ground16

handlers and air traffic control in order to reduce delays, improve the predictability of events and optimise17

the utilisation of resources. In line with A-CDM concept, optimisation of different airport ground problems18

such as ground movement, runway scheduling, gate assignment and scheduling of ground services need to be19

treated in a more integrated and coordinated manner instead of current isolated practices, to fully appreciate20

the same positive effects given by A-CDM.21

Previous research on airport ground operations mostly focused on individual sub problems. A number22

of papers have been published on runway scheduling problem. The objective is often expressed as a min-23

imisation of delay, the number of changes compared to First-come-first-served (FCFS) sequence, makespan24

or their combination. A wide range of exact and heuristic methods employed to solve this problem include25

dynamic programming [8], hybrid tabu search [9, 10], genetic algorithm [11] and heuristics [12]. A detailed26

review of recent research on runway scheduling problem can be found in [13].27

Previous papers on ground movement problem mostly focused on minimisation of the total taxi time28

or other time related objectives [14]. Minimisation of the total taxi time is the main goal of the genetic29

algorithm proposed by Pesic et al. [15], mixed integer linear programming formulation used in [16, 17] or30

a graph-based approach utilised in [18] or [19]. Deviations from the scheduled time of departure or arrival31

are penalized in [20, 21]. A combination of time related objectives is minimised in [22].32

Recently, a few researchers started to consider also fuel consumption as a objective for the ground33

movement problem. Papers focused on the stand holding problem [23, 24, 25] take the fuel consumption into34

account indirectly, maximising the time an aircraft spends at the stand, with their engines off, rather than35

taxiing. Multi-objective optimisation has been employed by Ravizza et al. [26] to simultaneously minimise36

taxi time as well as fuel consumption. Their approach combines a routing and scheduling algorithm [18] with37

the Population Adaptive based Immune Algorithm (PAIA) [27] in search of the trade-off between the total38

taxi time and fuel consumption expressed as a fuel consumption index. The following work [28] introduced39

a fast heuristic procedure for speed profile optimisation to speed up the search. Results in [26, 27, 28]40

indicated that the fastest schedule normally leads to higher fuel burn due to heavy acceleration required to41

achieve short taxi time.42

Only a few papers considered ground movement and runway scheduling as an integrated and intercon-43

nected problem. Deau et al. [29, 30] proposed a two-stage approach in which a branch and bound algorithm44

was used, in the first stage, to find the best runway sequence regarding the deviation from assigned slots and45

then, in the second stage, a genetic algorithm was applied to find a solution for the ground movement prob-46

lem minimising the difference from the target times resulting from the runway sequence found in the first47

stage. A mixed integer linear programming formulation by Clare and Richards [31] minimises a weighted48

sum of taxi time and distance related objectives with respect to runway scheduling constraints. Frankovich49

and Bertsimas [32] introduced an integer programming formulation for selecting a runway configuration,50

assigning flights to runways and determining their sequence, and after solving these and fixing them, deter-51
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mining the gate-holding duration of departures and routing of flights on the airport surface with the aim of52

minimising delays.53

Research on the optimisation of ground services includes scheduling of airport buses [33], optimisation of54

luggage handling process [34], or scheduling of other services [35] such as fuelling [36], catering [37], cleaning,55

water and sanitation processes. As pointed out in [38, 33, 35], optimisation of ground services shares similar56

characteristics. As a result, and due to the fact that the particular airport under investigation in this study57

does not have gates, only stands, in this paper we focus only on the scheduling of airport buses which is an58

example of ground service optimisation problems. Although gate assignment has a direct impact on ground59

movement through the location of gates/stands assigned to flights [39], its planning is normally carried out60

at a tactical level usually for the whole day. Since ground movement, runway scheduling and scheduling of61

ground services requires operational planning, gate assignment is not main focus of this work. It is worth62

pointing out that these optimisation problems are closely interrelated with each other, for example, a runway63

sequence determines times at which aircraft have to start/finish their taxi and subsequently the schedule of64

ground services needed at the gates.65

Recently, this kind of optimisation problems has been introduced in [40] as multi-component optimisa-66

tion problems, which are common in transportation research [41, 42, 9]. As shown in [40, 43], optimisation67

of multi-component problems in an isolated manner may not find globally optimal solutions, since solution68

for one problem can fail in the objective of the other one and thus miss the global optimum. Furthermore,69

these problems are not only difficult to solve in their own right, but even more so when combined, due to the70

interdependence among them. The proposed approach in this paper follows the same line of research. Legit-71

imately, this type of problems with different stakeholders and objective functions can be tackled more easily72

with a multi-objective optimisation approach [43], in which each objective can be addressed appropriately.73

Furthermore, as the result of multi-objective optimisation is a set of solutions, under unprecedented events,74

the decision maker will have more readily available alternatives as backup plans without sacrificing too much75

cost or other resources. Finally, improving predictability of events by implementing A-CDM concept both76

in operation and optimisation means that previously conservative planning can now be reviewed in order to77

further improve the airport capacity, decrease excessive waiting time, avoid fuel-intensive speed profiles or78

requirement of extra resources.79

In the light of the above discussions, in this paper, we propose to use a multi-objective genetic algorithm80

framework, namely the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [44], which considers several81

elements: ground movement problem, runway scheduling and scheduling of airport buses in a more holistic82

manner. This integrated multi-objective approach incorporating the optimal 4-Dimensional Trajectory83

(4DT) [27] enables the investigation of the trade-off between different objectives and, assuming the A-CDM84

system is in place, facilitates more precise control of the taxiing aircraft in order to take full advantage of85

optimised scheduling. Furthermore, a holistic economic optimisation framework is introduced in this paper86

to support the decision maker in selecting the most cost-effective solution from a Pareto front of optimal87

solutions. The main contributions of this paper can be summarized as follows:88

• The proposed integrated multi-objective approach optimises ground movement problem, runway schedul-89

ing and scheduling of airport buses simultaneously with respect to different objectives, in particular90

fuel consumption, which was not considered in previous studies. It is worth mentioning, that runway91

scheduling and ground movement problem are in itself multi-objective problems.92

• By using the proposed integrated multi-objective approach, a comprehensive comparative study is93

conducted by choosing the representative different solution approaches found in the literature with94

respect to different objectives.95

• The introduced economic optimisation framework represents a general framework in selection of a96

sustainable solution to the airport problems in view of an economic perspective.97

The rest of the paper is organised as follows. Section 2 provides details about individual components98

of the integrated model, including runway scheduling, ground movement problem and scheduling of airport99

buses. The integrated solution method and the proposed evolutionary algorithm framework is described in100
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Section 3. A set of computational experiments are carried out using data instances from Doha International101

Airport in Section 4; results of the isolated approach and the proposed method are also compared in this102

section. Finally, conclusions are drawn in Section 5.103

2. Problem description104

In this paper, the integrated optimisation problem of airport ground operations consists of three sub-105

problems: 1) runway scheduling, 2) ground movement problem, 3) bus scheduling problem. The individual106

sub-problems are described in the next sections using nomenclature given in Table 1.107

108

2.1. Runway scheduling109

The runway scheduling problem generally consists of the Aircraft Landing Problem (ALP) and the110

Aircraft Take-off Problem (ATP) with the aim to find the optimal sequence and scheduled landing time or111

take-off time of aircraft at the given runways with respect to the given objective functions and constraints.112

In this paper, we consider only ATP, as from the practical point of view, it is easier to control taking-off113

aircraft still on the ground rather than airborne arriving aircraft.114

The minimum time interval between aircraft landing or taking-off constrains the throughput of the run-115

way. The enforced separations between aircraft are due to wake vortices and in-flight separation constraints.116

Landing or taking-off aircraft create wake vortices which have to dissipate before another aircraft can safely117

use the runway. The strength of wake vortices and thus separation depends on the type and weight of118

aircraft. A larger separation is required whenever a light aircraft follows a larger and heavier aircraft, as it119

creates stronger wake vortices. Furthermore, if aircraft use standard instrument departure routes (SIDs),120

additional separation is needed to ensure correct in-flight separation [13]. The use of SIDs is not considered121

in this paper as the Doha international airport under consideration does not have SIDs established. However,122

the SIDs related separation can be easily taken into account as described later in this section.123

The formal definitions for runway scheduling presented in this paper are as follows. Let M = (A ∪D)124

be the set of total |M | = m arriving aircraft A and departing aircraft D. The wake vortex separations125

are estimated using minimum separation distance, runway occupancy time and average velocities for ap-126

proach/climb as described in [45] and are given in Table 2. Then, we define V (vi, vj) to be the function127

to return the wake vortex separations from Table 2 for weight categories vi and vj of leading aircraft128

i and trailing aircraft j. The wake vortex separations used in this paper satisfy the triangle inequality129

V (vi, vj) + V (vj , ve) ≥ V (vi, ve) for aircraft taking off in the order of i, j, e. In case of established SIDs, the130

related separations can be considered by a similar function and a table as V (vi, vj) and Table 2 for aircraft131

departing on the same SID.132

Let ri be the actual landing time for aircraft i ∈ A and take-off time for aircraft i ∈ D. For arriving133

aircraft, ri is given, while for departing aircraft it can be calculated as follows. Let di denote the time the134

departing aircraft i ∈ D arrived at the runway holding point, then it can take-off immediately, i.e. di = ri135

if there is enough time elapsed from landing/take-off time ri−1 of the previous aircraft i− 1 to comply with136

separation given by V (vi, vi−1), otherwise, the departing aircraft i has to wait at the runway holding point137

until it is safe to take-off:138

ri =

{
di if di − ri−1 ≥ V (vi, vi−1),

di + wi otherwise.

We denote the waiting time wi of the departing aircraft i ∈ D:139

wi =

{
0 if di − ri−1 ≥ V (vi, vi−1),

V (vi, vi−1)− (di − ri−1) otherwise.

140
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Table 1: Nomenclature.

Description
g1 The total time objective τ(origin, destination) Travelling time of the bus be-

tween origin and destination
g2 The fuel consumption objective N Set of active bus trips
g3 The bus scheduling cost objec-

tive
n The number of bus trips

M Set of all aircraft G = (O,P ) Vehicle scheduling network
m The number of all aircraft O Set of nodes on the vehicle

scheduling network
A Set of arriving aircraft P Set of arcs on the vehicle schedul-

ing network
D Set of departing aircraft c Cost of arc

V (vi, vj) Function to calculate the wake
vortex separations for weight
categories vi and vj of leading
aircraft i and following aircraft j

b Variable determining if arc is
covered by a bus

v Weight category k, l Bus trip index
i, j, e Aircraft index popmax Maximum number of generations
r Actual landing time for arriving

aircraft/take-off time for depart-
ing aircraft

popnumber The current generation index

d Arrival time of the departing air-
craft at the runway holding point

ca The total strategic cost

w Waiting time at the runway cfuel Fuel cost
trwy The total runway delay Ctotal The total cost
frwy The total runway fuel R Rated output of aircraft

φvi , φ
idle
vi Calculated and idle fuel flow for

weight category vi, respectively
h Weight

δ Safety time distance between
taxiing aircraft

a, amax acceleration and maximum accel-
eration of aircraft respectively

y Integer representing the speed
profile

η Thrust level

q The shortest taxi route Thr Thrust
s Stand weight Weight of aircraft

T (qi, yi) Travel time of aircraft i taxiing
on route qi for given speed profile
yi

FR Rolling resistance

x The pushback time parr Arrival time of buses after arriv-
ing aircraft came to a stand

z The arrival time to the stand pemb Embarking/disembarking time
of passengers

F (qi, yi, vi) The amount of fuel burned for
aircraft i of weight category vi
during taxiing on the route qi fol-
lowing the speed profile yi

pdep Departure time of buses before
the pushback time of departing
aircraft

ttaxi The total taxi time pheadway Headway between buses
f taxi The total fuel burned during

ground movement
sp Average speed of buses
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Table 2: Separations in seconds between departing (D) and arriving (A) flights for weight classes: Heavy
(H), Large (L), Small (S) [45].

Trailing (vj)

Leading (vi)

A-H A-L A-S D-H D-L D-S
A-H 96 157 207 60 60 60
A-L 60 69 123 60 60 60
A-S 60 69 82 60 60 60
D-H 60 60 60 96 120 120
D-L 60 60 60 60 60 60
D-S 60 60 60 60 60 60

The objective of the runway scheduling is to minimise the total runway delay trwy and the total runway141

fuel frwy burned by aircraft while waiting to take-off which depends on the delay wi and idle fuel flow φidlevi142

specified for the weight category vi:143

trwy =

D∑
i=1

wi (1)

144

frwy =

D∑
i=1

wi · φidlevi (2)

The idle fuel flow φidlevi corresponds to fuel flow from the International Civil Aviation Organization (ICAO)145

engine database for 5 % of full power thrust of the representative aircraft, as explained in Section 2.2.146

2.2. Ground movement147

The aim of the ground movement problem is to route aircraft from source to destination locations, i.e.148

from runway to gate/stand and vice versa in a time and fuel efficient manner, respecting routes of other149

aircraft while preventing conflicts between them.150

In this paper, we follow a concept introduced in [26, 27], which in the light of previous research can151

be called Active Routing (AR) in acknowledge of the fact that the optimised 4DTs for ground movement,152

consisting of three spatial dimensions and time as the fourth dimension, are seamlessly embedded within153

the optimisation of routes and schedules. AR consists of two parts: firstly, the routing and scheduling154

problem aims to find a set of optimal routes and schedules for arriving or departing aircraft, and the 4DT155

optimisation problem focuses on finding a set of unimpeded multi-objective optimal speed profiles for the156

routes from the first part. In this paper, we use the shortest path algorithm as a route optimisation method.157

However, any routing method, such as the k-QPPTW [26], could be used instead.158

Speed profiles are used in this paper to represent 4DTs, since not all dimensions are required as aircraft’s159

movement are bounded by taxiways. In this case, it is sufficient to completely define their position in time160

with routes and speed profiles. In order to further reduce the complexity of the speed profile optimisation161

problem, the route of an aircraft is further divided into larger segments, each containing several edges as162

shown in Fig. 1. For example, several consecutive straight edges typically form one straight segment. The163

turning segment consists of consecutive edges between which have an angle of at least 30 degrees. The164

maximum speed on straight segments is restricted to maximum 30 knots (15.43 m·s−1) and turning speed165

is set to a constant speed of 10 knots (5.14 m·s−1), similarly as in [27, 26, 28]. Subsequently, each straight166

segment is divided into four parts, corresponding to four different aircraft taxiing phases (acceleration,167

travelling at constant speed, braking and rapid braking with maximum deceleration) with a typical taxiing168

behaviour as can be seen in Fig. 2). Furthermore, the maximum acceleration and deceleration rate amax is169

set to 0.98 m·s−2 for passenger comfort [46]. The resulting piece-wise linear speed profile can be described170

using four free variables (acceleration, length of acceleration phase, length of constant speed phase, length171

of rapid deceleration phase) which define a unique speed profile over a segment. By searching for values of172
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< 30° 

> 30° 

Edge
Straight segment
Turning segment

Figure 1: An example of one route of an aircraft on taxiways, represented by segments consisting of edges.

Time (s)

Speed (m·s-1)

Acceleration Constant speed Deceleration Rapid
deceleration

Figure 2: An illustration of a speed profile on a straight segment, divided into four phases.

these four variables, one can explore different speed profiles with different taxi time and fuel consumption.173

The heuristic described in [28] is employed to find optimised speed profiles.174

Fuel consumption corresponding to a speed profile is calculated as follows. As mentioned above, four175

phases are defined for a straight segment: acceleration, constant speed, braking and rapid braking. Firstly,176

thrust levels for each phase are established, which for the phase of braking and rapid braking the thrust177

levels are assumed to be 5% of full rated power whereas for turning the thrust level is set to 7% [47]. For178

other phases, the thrust levels are estimated as a ratio of calculated thrust Thr and maximum power output179

R of the engine:180

η =
Thr

R
(3)

Thrust Thr is a sum of acceleration force, calculated as product of aircraft’s weight weight and acceleration181

a, and rolling resistance force FR:182

Thr = weight · a+ FR (4)

The fuel flow φvi corresponding to the thrust level η is obtained by linear interpolation/extrapolation using183

reported fuel flows from ICAO database at 7% and 30% similarly as in [47]. Finally, the fuel consumption184

for the segment is calculated by multiplication of fuel flow for the specific phase and the time spent in this185

state. For details of this approach, interested readers are referred to [46].186
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Figure 3: A typical Pareto front of optimal speed profiles for the shortest route between the gate and the
runway with speed profiles shown (left), the most time and fuel efficient speed profiles corresponding to
solutions indicated by arrows (right).

As the shortest path between gate and runway can be generated before on-line optimisation, the optimised187

speed profiles for each route qi and weight category vi can be pre-computed as well, stored in a database (look-188

up table) as a Pareto front and then retrieved during the on-line optimisation in order to save computational189

time. As can be seen in the example of the Pareto front for the shortest route in Fig. 3, only non-dominated190

optimised speed profiles are saved in the database.191

Given the route of the aircraft and time needed to travel from origin to destination depending on the192

chosen speed profile, some delay may be added in order to prevent conflicts between taxiing aircraft. A193

conflict is prevented by maintaining a safe time distance δ = 12 s between aircraft (which corresponds to194

approximately 62 m at taxiing speed 10 knots, similarly as in [15]).195

Let yi be an integer representing the speed profile of aircraft i from the Pareto front of efficient speed196

profiles retrieved from the database for the shortest route qi from the runway to the stand si for arriving197

aircraft i ∈ A, or vice versa for departing aircraft i ∈ D. We define a function T (qi, yi) which returns travel198

time of aircraft i taxiing on route qi for given speed profile yi, including delay to prevent taxiing conflicts.199

Function F (qi, yi, vi) is defined to return the amount of fuel burned for aircraft i of weight category vi during200

taxiing on the route qi following the speed profile yi.201

Then, the objective of the ground movement problem is to minimise the total taxi time ttaxi and the202

total fuel f taxi burned during ground movement:203

ttaxi =

M∑
i=1

T (yi) (5)

204

f taxi =

M∑
i=1

F (yi) (6)

2.3. Bus scheduling205

The third objective is related to the airport bus scheduling problem. In addition to gates, an airport206

usually has a number of remote stands which are located on the apron. For each aircraft parked at the stand,207

one or several buses are needed to transfer passengers from the aircraft to the terminal or vice versa. This208

creates a scheduling problem which is similar to the vehicle scheduling problem (VSP) encountered in public209

transportation. The airport bus scheduling problem is relevant to almost all airports with remote stands210

as passengers usually cannot just walk to/from the terminal. The difficulty in solving the problem grows211

for busier airports and therefore more relevant to bigger airports. Nevertheless, as mentioned in Section 1,212
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scheduling of different ground services bears similarities, and therefore airport bus scheduling problem can213

be regarded as an example of ground service optimisation problems.214

The VSP considered in this paper is formulated as the Single-depot vehicle scheduling problem (SDVSP)215

which is a special case of VSP with a single depot and single type of vehicles. The goal of the VSP in general216

is to find a set of feasible vehicle schedules which assign trips to vehicles such that:217

• every active trip is covered by exactly one vehicle,218

• each vehicle performs a feasible sequence of compatible trips, or none at all, and219

• the overall cost of the schedules is minimised.220

A bus journey which is used to carry passengers is named active trip, otherwise it is called a deadheading221

trip. Two trips are said to be compatible if they can be carried out consecutively by the same vehicle. Each222

aircraft i parked at stand si gives rise to active trips between the stand si and the terminal (or in the223

opposite direction) as follows. Similarly, as for runway scheduling, aircraft are categorized into weight224

categories according their weight. It is assumed that small category aircraft needs one bus to transfer all225

its passengers, large category aircraft two and heavy category requires three buses. This assumption is226

based on the fact, that airports usually use a specialised bus from Cobus which has a capacity of about 100227

passengers. The way the trips are generated is in general prescribed by airport management and is different228

for arriving and departing flights [33]. Usually, if multiple buses are needed to serve an aircraft, trips do not229

start at the same time, but rather they are shifted, as passengers first embark/disembark the first bus, then230

the second, etc. Let xi be the pushback time from the stand si for departing aircraft i ∈ D and zi the arrival231

time to the stand si for arriving aircraft i ∈ A. In this paper, the following time requirements are assumed:232

for arriving flights i ∈ A, the first and the second bus (if any) are required to be present at the stand si no233

later than parr = 1 minute after the arrival time zi at the stand si of aircraft i due to the fact that usually234

two stairs are used at the same time to disembark passengers from the aircraft. The third bus has to arrive235

parr + pheadway = 4 minutes after zi, where the headway pheadway = 3 minutes. For departing flights i ∈ D,236

the first bus must finish disembarking passengers pdep = 2 minutes before the pushback time xi, the second237

bus has to leave pdep + pheadway = 5 minutes, and the third bus parr + 2 × pheadway = 8 minutes before238

xi. The time needed for the passengers to embark/disembark the bus pemb is set to 10 minutes. By adding239

travelling time of the bus specified by the function τ(origin, destination) and embarking/disembarking time240

pemb to zi for arriving aircraft or xi for departing aircraft, respectively, we can determine the time the bus241

is at the terminal. The travelling time of the bus τ(origin, destination) is calculated using the distance242

and an average speed sp = 50 km·h−1. This way, a set of active trips N = {1, 2, . . . , n} can be defined243

by considering all flights i ∈ M . In addition to these trips, each bus which is used during the day has to244

perform a pull-out trip from the depot at the beginning of the day and a pull-in trip at the end of the day.245

The SDVSP can be defined using the formulation presented in [48] as follows. Let G = (O,P ) be the246

vehicle scheduling network with set of nodes O representing start and end locations of each trip and set of247

arcs P corresponding to trips. Each arc has a cost ckl associated with it which corresponds to time needed248

for the bus to get from origin to destination. To represent costs for using a vehicle, arcs from or to a depot249

have a large fixed cost penalty set to 10,000 minutes. We introduce a decision variable bkl which is equal to250

1 if a vehicle covers trip k directly after trip l, and bkl = 0 otherwise. The goal of SDVSP is to minimise the251

objective function:252

min g3 =
∑

(k,l)∈P

cklbkl (7)

Subject to:
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∑
l:(k,l)∈P

bkl = 1 ∀k ∈ N (8)

∑
k:(k,l)∈P

bkl = 1 ∀l ∈ N (9)

bkl ∈ {0, 1} ∀(k, l) ∈ P (10)

The constraints 8 and 9 ensure that each trip is assigned to exactly one predecessor and one successor.253

Finally, the bus scheduling costs are determined by transforming the abovementioned mathematical model254

to a linear assignment problem and solving it by the algorithm of [49] with the generated trips as an input.255

2.4. Integrated optimisation problem256

The abovementioned optimisation sub-problems are combined into the integrated optimisation problem257

with the objective functions:258

• g1: the total time,259

• g2: fuel consumption,260

• g3: bus scheduling cost.261

As can be seen in Equation 11, g1 corresponds to the sum of total taxi time ttaxi and runway delay262

trwy. The second objective g2, as can be seen in Equation 12, relates to the fuel consumption during ground263

movement f taxi and waiting for the take-off frwy. The third objective g3 is equal to the bus scheduling264

costs as defined in Equation 7.265

g1 = ttaxi + trwy (11)
266

g2 = f taxi + frwy (12)

The three sub-problems are interconnected by decision variables, namely the pushback time for departing267

aircraft xi and the speed profile yi for all aircraft, from which all other input parameters can be derived268

as explained above and illustrated in Fig 4. The decision variable xi is an integer value in the range from269

-300 to 300, representing seconds before/after the baseline time given as input flight schedule. The range of270

values for decision variable yi is from 1 to 12, due to the specifications of the pre-computed database which271

stores 12 different Pareto optimal speed profiles. The value of 1 represents the most time-efficient (fastest)272

speed profile whereas 12 corresponds to the most fuel efficient one.273

3. A multi-objective integrated framework incorporating economic optimisation274

3.1. Integrated solution method275

In order to optimise the objective functions of the integrated optimisation problem stated in Section 2,276

a multi-objective evolutionary framework is proposed in this section.277

The solution framework for the integrated optimisation problem is based on the implementation of Fast278

Non-dominated Sorting Genetic Algorithm (NSGA-II) [44] which is a well-known evolutionary algorithm279

adapted for multi-objective optimization. In evolutionary algorithms, solutions to a problem are represented280

as individuals in a population. Each individual consists of a set of genes, where each gene corresponds to281

a decision variable. As stated in Section 2.4, the decision variables are the pushback time xi for departing282

aircraft i ∈ D and the speed profile yi for all aircraft i ∈M .283

The basic structure of our algorithm is outlined in Algorithm 1. Firstly, the initial population is generated284

by creating individuals with random values of the genes. The initial population is evaluated in lines 2–4. In285

the next step, individuals with the high fitness values, i.e. with low objective function values, are selected for286

reproduction. New individuals are created by applying a 2-point crossover to two parent individuals. Next,287
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Figure 4: Schematic diagram of airport ground operations showing the relationship between parameters of
the optimisation framework.

for each individual a mutation is performed according to the mutation rate. During the mutation, the value288

of one gene is randomly changed. The individual is then evaluated and objectives g1, g2, g3 are calculated.289

The loop in lines 3–15 is repeated until the maximum number of generations popmax is reached. The result290

of the evolutionary algorithm is then a set of individuals which form the Pareto front of optimal solutions.291

Algorithm 1: Evolutionary algorithm for airport ground operations optimisation.

generate initial population;1

for each individual in population do2

calculate g1, g2, g3;3

end4

popnumber := 1;5

while popnumber < popmax do6

select good individuals for reproduction;7

apply 2-point crossover;8

for each individual in population do9

perform mutation;10

calculate g1, g2, g3;11

end12

replace population;13

popnumber := popnumber + 1;14

end15

Result: Pareto front of optimal solutions

292

293

The procedure to calculate g1, g2, g3 in lines 3 and 11 is further explained in detail in Algorithm 2. Firstly,294

aircraft are considered sequentially according to their initial sequence specified by input flight schedule. For295

each arriving aircraft i ∈ A a shortest route qi is found between the runway and designated stand si or in the296

opposite direction for departing aircraft i ∈ D. The generated route qi and weight category vi of aircraft i is297

used to read the optimal speed profiles from the database. The speed profile specified by yi which is selected298

in line 8 is used to schedule the aircraft i along the route qi after all taxiing conflicts has been resolved in299

line 9. Then, the total taxi time ttaxi and the total fuel f taxi is computed as stated in Section 2.2. Next, for300

each departing aircraft i ∈ D, the runway holding point arrival time di is determined, given the scheduling301

of taxiing aircraft assigned during ground movement phase in lines 1–12. Subsequently, the delay wi is302
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calculated in line 15 in order to get the total runway delay trwy and the total fuel frwy in line 17. Given the303

pushback time xi from the stand si for departing aircraft i ∈ D and arrival time zi to the stand si for arriving304

aircraft i ∈ A, a set of bus trip is generated in line 19 as explained in Section 2.3. By solving the corre-305

sponding VSP, the third objective g3 can be calculated. Finally, objectives g1, g2, g3 are returned in line 21.306

Algorithm 2: Evaluation procedure.

/* Ground movement */

for aircraft i ∈M do1

if i ∈ A then2

generate the shortest route qi between runway and si;3

else4

generate the shortest route qi between si and runway;5

end6

retrieve optimal speed profiles for route qi and weight category vi;7

select speed profile yi;8

resolve taxiing conflicts;9

schedule aircraft i using route qi and speed profile yi;10

end11

calculate ttaxi, f taxi;12

/* Runway scheduling */

for aircraft i ∈ D do13

determine di;14

calculate wi;15

end16

calculate trwy, frwy;17

/* Bus scheduling */

for aircraft i ∈M do18

generate bus trips taking zi, xi, si as an input;19

end20

Solve VSP to determine g3;21

Result: g1, g2, g3

307

308

In the case of a real decision support system, the decision maker is responsible for choosing one solution309

found by the multi-objective integrated framework. The solutions on the Pareto front are optimal in the310

Pareto sense, meaning that any one of the solutions is not the best in all objectives comparing to the other311

one. As a result, other information is required for the decision makers in order to decide the best schedule.312

The next section proposes an economic framework for this purpose.313

3.2. Economical optimisation314

The conceptual framework presented in this section paves the way to a holistic (technical / environmen-315

tal / economic) optimisation of the airport ground operations performance by managing how the aircraft316

schedules are planned. As stated in Section 2.4, the integrated optimisation problem minimises 3 objectives,317

namely g1, g2, g3. From the economic point of view, the first two objectives g1, g2 are related to cost relevant318

for airline company operating the aircraft. The third objective g3 is relevant for the airport operating the319

buses and it is airport dependent since large airports are generally more technically efficient and have less320

operational wastage than small airports [50]. The proposed economic model focuses on the cost for the321

airline company and therefore economic optimisation of aircraft schedules is performed from their point of322

view. The third objective g3 is considered later in Section 4.3.323

To be consistent with Eurocontrol [51], the following categories of aircraft strategic costs (i.e. variable324

or marginal costs) are relevant for aircraft ground operations:325

• Fuel, as previously modelled and discussed in Section 2.2.326
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• Non-fuel aircraft cost, including:327

– Maintenance: they include costs of delay incurred by aircraft and related to factors such as the328

mechanical attrition of aircraft waiting at gates or taxiing.329

– Fleet: these costs refer to the full cost of fleet financing, such as depreciation or rentals of aircraft,330

etc.331

– Crew cost: is the variable cost of the crew personnel, i.e. pilot and flight attendant salaries.332

Those non-fuel aircraft costs are specific for aircraft, and an example for an Airbus A320 aircraft according333

to Eurocontrol [51] is given in Table 3.334

Table 3: Non-fuel aircraft costs according to [51] for base scenario for Airbus A320 aircraft.

e·h−1 e·s−1
Maintenance 720 0.200
Fleet 610 0.169
Crew 360 0.100
Total ca 1690 0.469

335

The fuel cost cfuel of 0.71 e·kg−1 (as on 17.1.2014 [52]) is used in the economic optimisation model.336

The key idea of the proposed economic optimisation model is to sum the aircraft cost for each schedule to337

calculate its total aircraft strategic cost Ctotal as given in Equation 13:338

Ctotal = ca · g1 + cfuel · g2 (13)

Knowing the cost for each schedule, it will be possible to determine the optimal schedule/group of schedules339

for aircraft. This is intended not to replace the human decision maker in selecting the best solution rather340

than provide extra information from the economic perspective.341

Fig. 5 provides a qualitative idea of this approach. For solutions on the Pareto front, shorter the total342

time, higher the fuel cost as fast taxiing involves heavy acceleration. Similarly, lower total time results in343

lower aircraft cost due to their time dependency. On the other hand, too long total time causes excessive344

fuel burn. For each solution, by summing up the non-fuel aircraft cost and fuel cost it is possible to obtain345

a parabolic-like total aircraft strategic cost function with a minimum. The minimum represents the optimal346

or most cost effective solution among those on the Pareto front with consideration of the consumed fuel.347

The next section presents results obtained by applying the proposed multi-objective framework incorpo-348

rating the economic optimisation model to a real-world instance.349

4. Computational results and discussion350

4.1. Experimental setup351

The algorithm was tested on a dataset of real arrival and departure flights on Doha International Airport352

(DOH) which was the largest airport in Qatar and a hub airport for Qatar Airways until the new Hamad353

International airport was completed in late April 2014. DOH airport has 55 stands and no gates. The354

considered data was recorded on 16th March 2014 and divided into two instances representing medium and355

high traffic conditions. The instance medium includes 96 flights between 17:00 and 21:00 UTC from which356

50 are arrivals and 46 departures. The instance high consists of 84 flights between 21:00 and 23:00 UTC357

from which there are 27 arrivals and 57 departures. The data provided specified landing/pushback times358

and gates/runway exits for each flight.359

The aircraft have been divided into 3 groups according their wake vortex separation requirements. For360

each category, a representative aircraft is designated and its specifications are used during the fuel consump-361

tion calculation. The specifications are summarized in Table 4.362
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Table 4: Specifications of the representative aircraft.

Learjet 35A Airbus A320 Airbus A333
Take-off weight weight 8300 kg 78000 kg 230000 kg
Engines TFE731-2-2B CMF56-5-A1 CF6-80E1A2
Number of engines 2 2 2
Rated output R 2×15.6 kN 2×111.2 kN 2×287 kN
Rolling resistance FR 1221 N 11.48 kN 33.84 kN
Fuel flow at 7% R 0.024 kg·s−1 0.101 kg·s−1 0.228 kg·s−1
Fuel flow at 30% R 0.067 kg·s−1 0.291 kg·s−1 0.724 kg·s−1

363

The computational experiments were performed on a computer with an Intel i3-2120 processor and 3.16364

GB of RAM, running Linux. The evolutionary algorithm is implemented using the Inspyred package for365

Python [53]. Based on initial experiments, the maximum number of generations popmax was set to 150 and366

each population contained 200 individuals.367

4.2. Sensitivity analysis of bus scheduling368

Before the actual computational experiments, a sensitivity analysis of bus scheduling was performed to369

investigate the effect of different time parameters set in Section 2.3. Namely, arrival time of the buses after370

arriving aircraft came to a stand parr, embarking/disembarking time of passengers pemb, headway between371

buses pheadway, departure time of buses before the pushback time of departing aircraft pdep and average372

speed of buses sp. The parameters were varied, one at a time, from the established base case, as set in373

Section 2.3, over a reasonable range. Then, Algorithm 1 with objective g3 was run to find a solution with374

minimum bus scheduling cost under current parameters. The impact of parameters on overall bus scheduling375

cost is shown in Fig. 7. As can be seen, embarking/disembarking time of passengers pemb and average speed376

of buses sp have the most influence on bus scheduling cost with approximately linear relationship for pemb377

and inversely proportional relationship for sp. In contrast, arrival and departure time of buses parr, pdep378

or headway pheadway had only little effect on bus scheduling cost. In conclusion, setting the appropriate379

bus scheduling parameters accurately, namely embarking/disembarking time of passengers pemb and average380
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Figure 6: Layout of DOH airport with taxiways (a) and service road network (b) used by buses.

speed of buses sp, is an important task for airport management. However, as their effect is approximately381

proportional, they do not affect the generalisation of results obtained by computational experiments carried382

out in next sections.
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Figure 7: Sensitivity analysis of bus scheduling: Minimum bus scheduling cost obtained with varying
parameters (a) arrival time (parr), departure time (pdep) and headway (pheadway) of buses, (b) embark-
ing/disembarking time of passengers (pemb), and (c) average speed of buses (sp).

383

4.3. Comparison of different approaches384

As reviewed in Section 1, previous research usually treated the ground movement problem in isolation385

from other surface operations as well as focused only on one objective. Therefore, we start our results by386

comparison of our integrated approach with previous approaches and present the benefit of the proposed387

method. Section 2.4 stated that three objectives g1, g2, g3 related to total time, fuel consumption and bus388

scheduling are considered in this paper. In order to simulate different approaches previously proposed in389
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research literature, we introduce weights h1, h2, h3, h4 with possible values {0, 1} in Equation 14, which390

enable us to ”switch off” various part of the objective function. Using different combinations of weights391

as shown in Table 5, the following algorithms have been devised according to the previously proposed392

approaches as reviewed in Section 1. It is worth mentioning that the implemented approaches in Table 5 are393

all based on the optimised speed profiles to calculate their respective fuel consumption. Therefore, results394

presented in the following sections have been improved in terms of fuel compared to their counterparts in395

the original literature. Algorithms A and B correspond to approach in which only ground movement or396

runway scheduling is being optimised, taking into account only the total taxi time or total runway delay,397

respectively. Algorithm C represents the integrated ground movement and runway scheduling optimisation398

with only time objective g1 minimised. Ground movement optimisation with total taxi time and taxi fuel399

minimisation is considered in Algorithm D. Integrated runway scheduling and ground movement with time400

and fuel objective is minimised in Algorithm E. Finally, Algorithm I corresponds to approach proposed in401

this paper, with fully integrated runway scheduling, ground movement and bus scheduling optimisation and402

g1, g2, g3 objectives.403

g1 = h1 · ttaxi + h2 · trwy

g2 = h3 · (f taxi + frwy) (14)

g3 = h4 · g3

Table 5: Alternative algorithms devised by considering objective functions with different weights corre-
sponding to research approaches reviewed in Section 1.

Weight h1 h2 h3 h4
Alg. ttaxi trwy g2 g3 Description References
A 1 0 0 0 Only taxi time [15, 16, 17, 18, 19,

20, 21, 22]
B 0 1 0 0 Only runway delay [8, 9, 10, 11, 12]
C 1 1 0 0 Integrated runway scheduling

and ground movement, only time
objective

[29, 30, 31, 32]

D 1 0 1 0 Ground movement with fuel [23, 24, 25, 26, 27,
28]

E 1 1 1 0 Integrated runway scheduling
and ground movement, time and
fuel objective

This paper

I 1 1 1 1 Integrated runway scheduling,
ground movement and bus
scheduling

This paper

404

Note, that although some algorithms do not consider ground movement, the solutions generated by these405

algorithms use the optimised speed profiles as explained in Section 2.2.406

4.3.1. Visual comparison407

Algorithm 1 was run with objective functions as given in Equation 14 with weights set according to408

Table 5. The Pareto front for each Algorithm A–I was constructed by considering 30 repeated runs of the409

algorithm and leaving only non-dominated solutions. The fronts are depicted in Fig. 8. In order to provide410

a better overview of the results, the fronts are projected to 2-objective space in Fig. 9 and 10, considering411
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Figure 8: Pareto fronts obtained by different algorithms for (a) medium traffic instance and (b) and high
traffic instance.

g1, g2, g1, g3 and g2, g3, respectively. By visually examining the Pareto fronts, it can be observed that the412

proposed algorithms performed similarly for both data instances.413

With regard to the total time objective g1, it can be observed, that Algorithm A and D resulted in414

solutions with a very high value of g1. Minimisation of objective g1 was the main aim of Algorithm C. As a415

result, it obtained the best values of the total time g1.416

For the fuel consumption (objective g2), Algorithm A,C and D obtained higher values than other algo-417

rithms. The algorithm that performs the best in terms of g2 cannot be determined by visual observation.418

Considering the bus scheduling cost objective g3, it can be seen, that for the medium traffic instance419

Algorithms A–I performed similarly. In contrast, for the high traffic instance, Algorithm I obtained the420

minimum values of g3.421

From the visual observation, it can be concluded that Algorithm I and E resulted in the best trade-off422

curves compared to other algorithms. Note, that in case of high traffic instance the evolutionary algorithm423

produced the front with worse spread for Algorithm I compared to Algorithm E as can be seen in Fig. 10424

due to increased complexity of the instance. Otherwise, Algorithm I covered most of the Pareto optimal425

solutions generated by Algorithm E.426

Finally, it can be observed that inclusion of all three objectives g1, g2, g3 increased the number of non-427

dominated solution found by Algorithm I. This result can be beneficial in case of unprecedented events,428

when the decision maker needs to have more readily available alternatives as backup plans. More solutions429

then enable the decision maker to select another schedule without sacrificing too much of objective g1, g2430

or g3. In order to illustrate the effect of unprecedented situation, the following example is presented.431

Lets assume, that the decision maker selected a solution for the high traffic instance with [g1, g2, g3] =432

[21411, 5030, 620914] in which departing aircraft #127 has a scheduled pushback time 21:56:47. Then, if433

a delay of 3 minutes occurs, schedule has to be modified. There is another solution in the Pareto front434

with [g1, g2, g3] = [21441, 5025, 620906] in which aircraft preceding #127 have the same values of decision435

variables as in the original solution, but #127 has pushback time 22:00:58. The schedule can be modified by436

implementing the rest of the new solution, resulting in [g1, g2, g3] = [21445, 5025, 620906]. As can be seen,437

the new solution is similar in terms of g1, g2, g3 to the originally selected solution. Note, that the presence438

of an alternative solution is not guaranteed by the algorithm and the ability to provide robust solutions will439

be investigated in future work.440

As intuitive results shown above, it seems that the introduced multi-objective optimisation framework so441
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Figure 9: Pareto fronts obtained by different algorithms for medium traffic instance projected to (a) g1, g2,
(b) g1, g3 and (c) g2, g3.

far opens a door for decision makers to make a more reasonable planning, and also provides more evidence442

and information to back such decisions. However, it is still the case that without additional information,443

the decision process is still very subjective based as multiple Pareto optimal solutions are available. This444

situation will be even more severe due to visualisation difficulty as the number of the investigated objectives445

increases. Furthermore, in terms of the performances of different algorithms, without a single measure, it446

is hard to be convinced which algorithm performs the best. Therefore, in the next section, the proposed447

economic optimisation in Section 3.2 is applied once the Pareto solutions from the multi-objective framework448

are obtained.449

4.3.2. Economic results450

This section gives an account of the economic results. By applying the economic optimisation model as451

explained in Section 3.2, it is possible to determine the monetary value of the total time g1 and the fuel452

burned g2 and obtain a single optimal solution (or, more broadly speaking an optimal region of the Pareto453

front) from the economic point of view. For this purpose, the costs stated in Table 3 for Airbus A320 and454
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Figure 10: Pareto fronts obtained by different algorithms for high traffic instance projected to (a) g1, g2 in
a global view, (b) g1, g2 in a zoomed view, (c) g1, g3 and (d) g2, g3.

the fuel price are used as an example. Firstly, the value of the corresponding objective is multiplied by the455

total non-fuel aircraft cost and fuel price according to Equation 13. Fig. 11 and 12 depict the Pareto front456

after the modification. Then, the solution with the minimum costs can be selected for each algorithm. In457

order to consider statistical inference, the solution with minimum costs was selected from the Pareto front458

of each of 30 runs of the algorithm. Table 6 summarises the average values of optimal solutions of different459

algorithms for each data instance.460

461

The comparison of algorithm performance supports the observations described in Section 4.3.1. The462

best values of the total time objective g1 are obtained by Algorithm C in both data instances by adding up463

low values of both total taxi time ttaxi and runway delay trwy. However, the best values of the total time464

g1, are only possible at the expense of fuel intensive speed profiles, causing a high value of g2. Algorithm465

A resulted in the worst solutions related to the total time (objective g1). Since Algorithm A minimised466

only the total taxi time ttaxi, it did not consider the runway delay. The additional waiting at the runway467
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Figure 11: Economic analysis of Pareto fronts for medium traffic instance: (a) a global view, (b) a zoomed
in view. Circles indicate the economic solution for the given algorithm.
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Figure 12: Economic analysis of Pareto fronts for high traffic instance: (a) a global view, (b) a zoomed in
view. Circles indicate the economic solution for the given algorithm.

(runway delay trwy) then increased the total time g1. Compared to the solution with the minimum cost,468

Algorithm A required 25% and 46% more fuel for medium and high traffic instances, respectively. For469

the fuel consumption objective g2, the best solutions selected by economic optimisation are those obtained470

by Algorithm B for the both traffic instances. In general, algorithms that included runway scheduling, or471

runway scheduling and fuel consumption, i.e. Algorithm B, E and I, found solutions with the best values of472

g2. In the case of Algorithm B, the low value of frwy is caused by optimised trwy and the low value of f taxi473

is a result of high total taxi time ttaxi. As explained in Section 2.2, there is a trade-off between ttaxi and474

f taxi, which means that the value of one cannot be decreased without increasing the value of another. All475

other algorithms (Algorithm A,C,D) which do not considered runway scheduling, have their g2 increased by476

additional fuel burn at the runway (Algorithm A,D) or very short taxi times requiring fuel intensive speed477
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Table 6: The average values of optimal solutions obtained by economic optimisation for each instance with
the overall best value highlighted in bold face.

Algorithm ttaxi (s) f taxi (kg) trwy (s) frwy (kg) g1 (s) g2 (kg) g3 (min.) Ctotal (e)
medium traffic instance

A 16138 4768 5612 748 21750 5516 346460 14117
B 17584 4208 825 124 18409 4332 343728 11709
C 16180 4717 1031 152 17211 4869 341745 11529
D 16528 4316 3221 445 19749 4762 344084 12643
E 16639 4284 982 145 17621 4429 344407 11408
I 16677 4329 907 133 17584 4463 336402 11415

high traffic instance
A 15884 4935 16737 2610 32621 7545 680548 20656
B 17259 4388 4296 729 21554 5116 665068 13742
C 16211 4733 4798 810 21008 5543 670756 13789
D 16537 4425 12050 1914 28586 6339 673511 17908
E 16856 4392 4562 761 21419 5153 665751 13704
I 16957 4400 4659 773 21616 5174 630981 13811

profiles (Algorithm C). The best solutions in terms of the third objective g3 are those obtained by Algorithm478

I, which included bus scheduling costs in its objective function.479

The overall results for medium and high traffic instances, as given in Table 6, show that trwy and480

subsequently frwy have much higher values in the high traffic instance compared to the medium traffic481

instance. This increase is due to high traffic level, causing a congestion on the runway. Similarly, higher bus482

scheduling costs g3 are the result of high number of flights arriving/departing within a short time period.483

In terms of costs Ctotal, Algorithm E found solutions with minimum average cost for both instances. The484

statistical significance of differences was further analysed by performing Student’s t-test with significance485

level 0.05. The results of Algorithm E are not significantly better than results of Algorithm I for both486

instances. Algorithm E is significantly better than Algorithms A–D for the medium traffic instance and487

Algorithms A,C,D for high traffic instance.488

Regarding the computational time, Algorithms A–E run about 8 to 10 minutes on average for the medium489

and high traffic instances, whereas the running time of Algorithm I was 3 times longer.490

As explained in Section 3.2, the selection of a single solution from the Pareto front made by the economic491

optimisation is affected by costs ca and cfuel. If costs ca and cfuel put more focus on the fuel objective g2,492

the selected solutions will tend to have lower fuel consumption. However, only algorithms that are multi-493

objective, particularly Algorithms E and I, are able to produce a diverse set of trade-off solutions. Therefore,494

although Algorithm B obtained the lowest value of g2 for the medium traffic instance, the difference in total495

cost Ctotal between Algorithm B and Algorithms E,I failed to prove significant for the high traffic instance,496

which implies, with different costs ca and cfuel, it may not be able to provide solution with lower fuel497

consumption (and subsequently Ctotal) than solutions generated by other multi-objective algorithms. For498

example, with ca = 0.1 e·s−1 and cfuel = 1 e·kg−1, the economic optimisation selects solutions given in499

Table 7. In this case, analysis using Student’s t-test with the same significance level 0.05 revealed that the500

best algorithm in terms of costs (Algorithms E and I) is significantly better than other algorithms. More501

importantly, results of Algorithm B in terms of fuel consumption (objective g2) are significantly worse than502

those of Algorithm E and I.503

504

The analysis of results from the economic point of view showed a similar pattern (supporting the reliability505

of the algorithms involved), and several results can be generalised. The most relevant are as follows:506

• There is a real economic merit in selecting the best schedules considering the aircraft costs.507
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Table 7: The average values of optimal solutions obtained by economic optimisation with ca = 0.1 e·s−1
and cfuel = 1 e·kg−1 for each instance with the overall best solution highlighted in bold face.

Algorithm g1 (s) g2 (kg) g3 (min.) Ctotal (e)
medium traffic instance

A 21750 5516 346460 7691
B 18409 4332 343728 6172
C 17211 4869 341745 6590
D 20862 4486 345412 6572
E 18765 4131 346747 6007
I 18867 4120 339047 6007

high traffic instance
A 32621 7545 680548 10807
B 21554 5116 665068 7272
C 21008 5543 670756 7644
D 29151 6202 676516 9117
E 21970 5008 664748 7205
I 22150 5042 633313 7257

• The algorithms allowing to reach the minimum total aircraft cost are those with an holistic perspec-508

tive considering both ground movement and runway scheduling minimising time and fuel objectives509

simultaneously.510

• The inclusion of bus scheduling has not a significant impact on the performance in terms of economic511

optimisation regarding aircraft cost. From an airline only perspective, Algorithm E and I are equivalent512

without significant differences in costs.513

• The difference between the most cost efficient solution for Algorithm E and I in Table 6 is up to around514

5% in bus scheduling cost. This is a saving relevant from the airport operator’s point of view.515

• Economical optimisation can be used for different scenarios (high or low non-fuel and fuel cost) as516

shown in Table 6 and 7. As fuel price is taken into account, it always takes environmental benefit into517

consideration.518

In conclusion, Algorithm I can be considered as the best one since it allows an optimisation from both the519

perspectives of the airline and the airport operator.520

5. Conclusions and Future development521

This paper introduced an integrated optimisation approach to airport ground operations. A multi-522

objective genetic algorithm which considers several elements: ground movement problem, runway scheduling523

and scheduling of airport buses was proposed to find aircraft schedules in a more holistic manner through524

actively incorporating multi-objective 4DTs and economic optimisation. The integrated systems approach525

facilitates more detailed investigation of the trade-off between different objectives and furthermore, the526

most cost-effective solution, taking into account fuel saving, from a Pareto front of optimal solutions can527

be obtained through the economic optimisation framework which assigns a monetary value to the given528

schedule. The computational experiments conducted on real-world data from a major Asian airport showed529

that the proposed approach is able to provide a systematic optimisation framework suitable for decision530

support at the airport. Such decision support serves to achieve the aim of A-CDM concept to optimise531

airport-related decisions in collaboration with both airline and airport operator, considering their preferences532

and constraints utilising shared information. A detailed comparison of algorithms with different objective533

functions, corresponding to previously applied approaches reviewed in Section 1 and categorized in Table 5,534
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showed that the integrated approach results in solutions with the lowest costs. Furthermore, the integrated535

approach obtained better results in terms of fuel consumption (19% and 31% less fuel burned for the536

economical solution compared to the worst solution). Bear in mind, algorithms mentioned in this paper537

used optimised 4DTs already. Therefore, the proposed approach not only saves fuel by using 4DTs, but also538

a further reduction is achieved by integrated multi-objective optimisation framework. Only the approach539

which considered bus scheduling (Algorithm I) could find a schedule with low bus scheduling cost, particularly540

in the high traffic period. To conclude, previously proposed approaches (represented by Algorithms A,B,D)541

that considered ground movement problem, runway scheduling and ground services scheduling as isolated542

problems, or optimised only time objective (Algorithm C), performed worse than the integrated approaches543

(Algorithms E and I). The result indicates that there are strong interdependencies between airport ground544

operations and respective time, fuel, and cost related objectives which were not fully taken into account in545

previously proposed approaches. As the proposed optimisation approach which actively promotes integrated546

and coordinated airport ground operations is better in terms of performance, economic and environmental547

criteria, it can contribute to sustainability of air transportation. Furthermore, only the integrated approach548

can take into account objectives of the airline and the airport at the same time.549

The generality of the proposed integrated optimisation approach is supported by the fact that it is not550

dependent on the layout of a particular airport, nor cost values, making it an approach applicable to other551

airports as well. However, the most benefit yielded by its application can be obtained on large and busy552

airports, where runway needs to be used as efficiently as possible, with high traffic on airport surface and553

high requirement of ground services for the aircraft, such as Doha International airport used as a case study554

in this paper. Furthermore, airports that face strict environmental regulations, putting more focus on fuel555

consumption, may find the proposed approach beneficial.556

Nevertheless, a number of limitations of the proposed approach need to be mentioned and further adressed557

in the future research. First, uncertainty inherent in airport operations has to be considered in order to558

make the approach realistic. Delayed arrivals due to weather conditions, aircraft taxiing slower/faster than559

prescribed by 4DTs or baggage being loaded late into the hold are only some examples of uncertainty that560

can compromise otherwise optimal planning. Furthermore, ever changing situation at an airport calls for a561

real-time scheduling which together with uncertainty could be tackled by dynamic and robust optimisation562

techniques in the future. Other limitations open for further investigation include the application of a more563

sophisticated routing algorithm for ground movement such as k-QPPTW [26], or more precise setting of bus564

scheduling related parameters such as embarking/disembarking time based on real number of passengers in565

each flight.566

Finally, a number of further developments are possible from the economic point of view. Along with567

the aircraft cost there are other costs that are possible to include, namely airport cost and externalities.568

Every minute during which the airport infrastructure is used in an inefficient way is a cost for the airport,569

particularly during the peak traffic period. Since different periods during the day have different demand570

(peak vs. off-peak), airport cost may change over the day. Moreover this cost depends on the airport:571

some airports are very busy, other underused. Therefore, time objective can be priced to reflect cost for the572

airport as well.573

Furthermore, further works should be devoted to the quantification and inclusion of the externalities.574

Externalities are costs or benefits that affect a party who did not choose to incur those costs or benefits.575

In the case considered, the key externalities are air emissions (in particular CO2 and NOx) and noise. It is576

possible to assign to them a monetary value and include them in the analysis.577
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