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Abstract

Airports face challenges due to the increasing volume of air traffic and tighter
environmental restrictions which result in a need to actively integrate speed pro-
files into conventional routing and scheduling procedure. However, only until
very recently, the research on airport ground movement has started to take into
account such a speed profile optimisation problem actively so that not only time
efficiency but also fuel saving and decrease in airport emissions can be achieved
at the same time. It is envisioned that the realism of planning could also be
improved through speed profiles. However, due to the multi-objective nature
of the problem and complexity of the investigated models (objective functions),
the existing speed profile optimisation approach features high computational
demand and is not suitable for an on-line application. In order to make this
approach more competitive for real-world application and to meet limits im-
posed by International Civil Aviation Organization for on-line decision time,
this paper introduces a pre-computed database acting as a middleware to ef-
fectively separate the planning (routing and scheduling) module and the speed
profile generation module. Employing a database not only circumvents duplica-
tive optimisation for the same taxiway segments, but also completely avoids the
computation of speed profiles during the on-line decision support owing a great
deal to newly proposed database initialization procedures. Moreover, the added
layer of database facilitates, in the future, more complex and realistic models to
be considered in the speed profile generation module, without sacrificing on-line
decision time. The experimental results carried out using data from a major
European hub show that the proposed approach is promising in speeding up the
search process.
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1. Introduction

European airports are likely to become bottlenecks in the air transportation
system due to the forecast growth in traffic and passenger numbers (EURO-
CONTROL, 2013). As many airports operate approach maximum capacity,
the European Commission (2011) recognized the need for airport capacity to
be increased in order to mitigate the growing demand for travel. To increase
throughput, large investments in infrastructure of airports have to be made
and/or the operation of airports have to be optimised to fully utilise the avail-
able resources. From an optimisation point of view, ground movement is one
of the key airside operations at the airport as it links other airport operations
such as departure sequencing, arrival sequencing and gate/stand allocation and
its performance can affect each of these (Atkin et al., 2010b). Therefore, any
improvement in ground movement leading to time efficient operation will be of
significant importance to airport stakeholders.

Another great challenge faced not only by airports but the whole air trans-
portation sector is environmental impact. The white paper issued by Euro-
pean Commission (2011) outlines very ambitious environmental targets for air
transportation. Stricter emissions regulations together with efforts of airlines
to reduce fuel costs result in a demand to cut fuel consumption. As shown
in (Ravizza et al., 2013b), minimum time taxiing and minimum fuel burn are
conflicting objectives, as shorter times normally lead to higher rates and longer
periods of acceleration. Ideally, both time and environmental objectives should
be minimized simultaneously, in a form of a global optimum.

Previous research on ground movements mostly focus on the taxi time ob-
jective with aircraft assumed to taxi with a speed which is constant or within
some defined boundaries. Minimisation of the total taxi time is the main goal
of the genetic algorithm used by Pesic et al. (2001). A time-space network is
employed in (Maŕın, 2006; Roling and Visser, 2008) to solve the mixed integer
linear programming formulations of the problem with the same objective func-
tion of the minimum taxi time. A sequential, label-setting the Quickest Path
Problem with Time windows (QPPTW) algorithm working on a graph repre-
sentation is proposed in (Ravizza et al., 2013a). A similar graph-based approach
is utilised by Lesire (2010) who devised a modification of the A* algorithm to
route and schedule aircraft. The total taxi time is minimised in both graph-
based algorithms. In addition to the total taxi time, several researchers also
considered other time related objectives. Deviations from the scheduled time of
departure or arrival are penalized in (Balakrishnan and Jung, 2007; Smeltink
et al., 2004). A genetic algorithm employed by Gotteland et al. (2003) and Deau
et al. (2009) minimises the taxi time together with the deviation from assigned
slots. Similarly, a weighted sum of objectives including the total taxi time,
the delays for arrivals and departures, the number of arrivals and take-offs, the
worst routing time and the number of controller’s interventions is minimised in
(Maŕın and Codina, 2008). The paper by Garćıa et al. (2005) minimises an-
other time related objective: the makespan, i.e. the duration from the first to
the last aircraft movement. A mixed integer linear programming formulation by
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Clare and Richards (2011) minimises a weighted sum of taxi time and distance
related objectives with respect to runway scheduling constraints. As all the
aforementioned algorithms do not consider conformity to real-life scenarios, the
assumption that the participating aircraft can meet the given time slots without
excessive acceleration/deceleration is questionable.

Fuel consumption is only taken into account indirectly in work focusing on
the stand holding problem (Atkin et al., 2010a, 2011; Burgain et al., 2009),
where the primary aim is to maximise the time an aircraft spends at the stand,
with their engines off, rather than taxiing. The main assumption is that a
shorter taxi time will result in lower fuel burn. More recently, following a wide
adoption of the 4D trajectory concept (consisting of three spatial dimensions
and time as the fourth dimension) in other air transport research, e.g. (Ruiz
et al., 2013; Yousefi and Zadeh, 2013; Zúñiga et al., 2013), a few researchers have
started to consider a related approach during ground movement. However, for
the purpose of ground movement in this paper, not all dimensions are required
as aircraft’s movement are bounded by taxiways. In this case, it is sufficient to
completely define their position in time with routes and speed profiles. There-
fore, for consistency and clarity, speed profile is the term used throughout the
paper. While the total taxi time remained the main objective of optimisation in
previous studies, the speed profile is generated in a post-processing manner with
respect to the optimised taxi times. A surface management tool TRACC (Taxi
Routing for Aircraft: Creation and Controlling) (Schaper and Gerdes, 2013)
employs a genetic algorithm to optimize routes of aircraft. The output specifies
the route, speed profile and holding times for each aircraft. A similar system,
the Ground-Operation Situation Awareness and Flow Efficiency (GoSafe) sys-
tem (Cheng and Sweriduk, 2009) utilises dynamic programming for taxi route
optimisation. However, it is worth pointing out that none of these methods
take into account speed profiles proactively in their planning modules, leading
to suboptimal speed profiles in terms of fuel consumption.

A recently published paper by Ravizza et al. (2013b) presents a new concept
for the ground movement problem which uses multi-objective optimisation to
simultaneously optimise routing, scheduling and speed profiles, with regard to
taxi time and fuel consumption. In their approach, the routing and scheduling
algorithm (Ravizza et al., 2013a) is combined with the Population Adaptive
based Immune Algorithm (PAIA) (Chen and Stewart, 2011; Chen and Mahfouf,
2006) in search of the trade-off between the total taxi time and fuel consumption.
However, fuel consumption is represented by a fuel index rather than actual fuel
burn, and the final decision is left to controllers’ subjective judgement without
any quantitative indicators. Based upon (Ravizza et al., 2013b), an Active
Routing (AR) framework is proposed in (Chen et al., 2015b,a), aiming at more
seamless integration of speed profiles into route and schedule optimisation. A
more detailed actual fuel burn modelling and an airport economic optimisation
framework are also introduced to facilitate controllers making a more objective
decision. The ultimate aim is to produce a more realistic, cost effective, and
greener ground movement. Although the aforementioned framework is flexible
to include more factors, such as a noise model, in a more holistic way, it suffers
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from high computational demand. The work proposed in (Weiszer et al., 2014)
attempted to speed up the search process using a heuristic procedure for speed
profile optimisation. Despite improvement, the computational time of the op-
timisation framework, as well as the realism of the assumed simplified aircraft
dynamic model and fuel consumption model, still prohibits its effective use in
a real-time airport decision support environment. Experience of high computa-
tional demand in generating speed profiles is also evident in other application
fields, such as in car (Mensing et al., 2011, 2014) or train (Li and Lo, 2014)
speed profile optimisation. With more complex models, particularly with exact
methods such as dynamic programming, speed profile optimisation is generally
computationally intensive and not suitable for on-line, real-time optimisation.

A common approach to overcome the burden of high computational demand
of complex evaluation functions during optimisation is the application of sur-
rogate models (Forrester and Keane, 2009) to replace the original expensive
objective functions by their computationally cheaper approximations to esti-
mate fitness values of solutions. However, several issues may arise when apply-
ing surrogate-based optimisation to the airport ground movement problem. As
complete speed profiles are required by aircraft to follow, 1) surrogate models
would need to estimate not only fitness of individual solutions but also variables
defining speed profiles, and 2) the exact model would need to be run on final
solutions to provide speed profiles. In the first case, the construction of such a
surrogate model may be difficult or even impossible due to the high number of
variables defining speed profiles required, and in the second case, real-time use
of optimisation is still prohibited by the associated computational overhead.

In the context of the abovementioned issues, the research presented in this
paper further extends the proposed ground movement optimisation framework
in (Ravizza et al., 2013b; Weiszer et al., 2014; Chen et al., 2015b) to make it fully
applicable in real-time airport management systems. The main idea is to use a
pre-computed database consisting of optimised speed profiles in order to avoid
duplicative optimisation for the same taxiway segments. A similar concept of
pre-computation and storage of solutions to speed up the on-line optimisation
procedure has been observed in other application domains, for example see
(Lewis et al., 2009; Wagner et al., 2013; Sanders and Schultes, 2007). The main
difference and novelty of the proposed approach in this paper compared to those
methods will be discussed in Section 2.4.

This paper presents a valid and realistic approach towards on-line decision
support for airport ground movement due to the following:

1. In contrast to previous research (Ravizza et al., 2013b; Weiszer et al.,
2014) which considered whole routes for taxiing aircraft, in this paper we
deconstruct the original problem into a set of independent subproblems
for individual taxiway segments and by doing so take advantage of using
stored speed profiles in a database instead of costly on-line optimisation,

2. a database of optimised speed profiles is initialized with a limited set of
solutions such that the combination of speed profiles retrieved from the
database can represent any possible route on the airport.

4



The addition of such a database liberates the routing and scheduling module
from speed profile generation during the on-line search. The saving in com-
putational time meets the limits imposed by the International Civil Aviation
Organization (ICAO) for on-line decision time within the Advanced Surface
Movement Guidance and Control Systems (ICAO, 2004). Since the database is
initialized before the actual route planning, the proposed AR framework can be
extended in future to incorporate a more complex and realistic aircraft dynamic
model, fuel consumption model, and other airport environmental related model,
such as noise and pollution models, without increasing on-line decision time.

The subsequent parts of this paper are organised as follows: Section 2 intro-
duces the Active Routing concept including the related routing, scheduling and
speed profile optimisation subproblems. The combined solution method and
the proposed real-time approach utilising a database is described in Section 3.
The computational experiments with the algorithm are carried out on instances
from Zürich Airport in Section 4. Finally, conclusions are drawn in Section 5.

2. Active routing (AR)

2.1. A Multi-objective and Multi-component (MOMC) Approach

The optimisation framework for the ground movement problem proposed in
(Ravizza et al., 2013b; Chen et al., 2015a) introduces a new concept, which in
the light of previous research, can be called Active Routing (AR). The name
is an acknowledgement of the fact that optimised speed profiles are seamlessly
embedded in the search of the optimal routes and schedules and multi-faceted
needs of stakeholders are proactively considered. Furthermore due to the adop-
tion of multi-objective framework, many objectives could be taken into account
at the same time in speed profile generation. In addition to multi-objective
optimisation, an economic decision making model selects the routes and speed
profiles which will be assigned for the aircraft to follow. The results from AR
will be given to the guidance function for a more realistic guidance and control.
The AR concept is illustrated in Fig. 1.

From an optimisation perspective, the aforementioned concept consists of
two interdependent optimisation problems, which are also known as multi-
component optimisation problems (Bonyadi et al., 2013):

• the routing and scheduling problem,

• the speed profile optimisation problem.

The AR concept as proposed in (Ravizza et al., 2013b; Chen et al., 2015a),
minimises two objective functions:

• g1: total taxi time (s),

• g2: fuel consumption (kg).
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Figure 1: Active Routing concept for the ground movement problem.

2.2. Routing and scheduling problem

The objective of the routing and scheduling problem is to route aircraft from
source to destination locations in a time and fuel efficient manner, respecting
routes and schedules of other aircraft while preventing conflicts between them.
The airport surface is represented as a directed graph G = (V,E), where the
edges e ∈ E represent the taxiways and the vertices n ∈ V represent the taxiway
crossings, intermediate points and sources/destinations such as gates, stands
and runway exit points. For the sake of simplicity and without the loss of
generality, all edges of the taxiway network used in this paper are bidirectional.
Aircraft are considered to occupy edges and only one aircraft can travel along
one edge at a time so that a minimum safety distance from all other aircraft
is ensured. The period when the edge is not used by any other aircraft is also
called a time window.

In this paper, the k-Quickest Path Problem with Time Windows (k-QPPTW)
(Ravizza et al., 2013b) is used to solve this problem, however it is also possible
to employ other routing and scheduling heuristic methods such as (Mandow and
De La Cruz, 2010; Guan et al., 2013; Xue-Jun et al., 2013). The algorithm se-
quentially routes aircraft according to their pushback/landing time, respecting
time windows corresponding to edges. The k-QPPTW algorithm generates a set
of k-best solutions with regard to minimum taxi time, based on the maximum
allowed speed. These potential routes are passed as an input to the speed profile
optimisation problem which is described in detail in Section 2.3.

2.3. Speed profile optimisation problem

The objective of the speed profile optimisation problem is to identify a set
of Pareto optimal unimpeded speed profiles for a given route, simultaneously
minimising total taxi time given in seconds (objective g1) and related fuel con-
sumption in kilograms (objective g2). In order to keep the problem tractable,
the route of an aircraft is further divided into larger segments, each consisting
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of multiple edges. Instead of searching for speed profiles for individual edges,
a speed profile is generated over segments. This effectively restricts the search
space by allowing the linear piece-wise speed profile described later in this sec-
tion. The division into segments facilitates speed profile optimisation as, for
each segment type, a typical taxiing behaviour can be identified according to
the initial speed v0 of an aircraft, end speed v4 and the maximum permitted
speed vmax as given in Table 1. Fig. 2 illustrates the definitions of different
segment types. Considering edges of the route iteratively in the direction of
the taxiing aircraft, edge e is considered as part of a straight segment if the
angle between the edge e and its predecessor edge e− 1 is less than 30 degrees
(edges between 1–4, 6–9). Otherwise, the edge is marked as part of a turning
segment (edges between 4–5, 5–6). Consecutive edges of the same segment type
are grouped together to form one segment. If a straight segment is ended by a
runway exit/gate, it is marked as a straight holding/parking segment. Similarly,
if a straight segment begins with a runway exit/gate, it is marked as a straight
breakaway segment.

Table 1: Classification of segments according to the initial speed v0 of an aircraft, end speed
v4 and the maximum permitted speed vmax in knots.

Type v0 (kn) v4 (kn) vmax (kn)
straight breakaway 0 10 30
straight holding/parking 10 0 30
straight 10 10 30
turning 10 10 10

3

5

4

6 98

✈
Turning segment

Straight segment

 ≥30°

 ≥30°

1

gate

Straight holding/parking segment

7

2

edge e­1 edge e edge e+1

Figure 2: An example of a taxiway, consisting of edges. Multiple edges form segments of
different types (straight, turning, straight holding/parking), depending on the topology and
taxi direction.

As we are only interested in unimpeded aircraft taxiing within each segment
and leave the interaction of aircraft to the routing and scheduling function, the
speed profile optimisation problem for each segment can be solved independently
without considering other segments, thus turning the original problem of speed
profile optimisation for a given route into a set of smaller problems.
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In order to further reduce the complexity of the speed profile optimisation
problem, each straight segment of the taxiway is divided into four parts, cor-
responding to four different aircraft taxiing phases, i.e. acceleration, travelling
at constant speed, braking and rapid braking, representing a typical taxiing
behaviour as illustrated in Fig. 3. The first phase is the acceleration phase in
which an aircraft maintains a constant acceleration rate a1 over the distance d1,
thus increasing its speed from the initial speed v0 at the start of the segment
to v1. During the second phase, an aircraft will traverse at the constant speed
v1 until the end of the second phase d2 is reached. In the third and the fourth
phases, an aircraft will decelerate from the speed v1 to the speed v4 at the end
of the segment. The last two phases have different deceleration rates where, a4
is equal to the maximum deceleration rate which enables the speed to be quickly
reduced to v4. With regards to the third phase, the deceleration rate a3 will be
uniquely determined by a4 and d4, since v3 can be derived backwards given a4,
v4, d4 and the length of the third phase is equal to d3 = d− d1 − d2 − d4.

Time (s)

Speed (m·s-1)

v
0

v
1

v
3

v
4

t
1

t
4

t
3

t
2

d
1

d
4

d
3

d
2

Figure 3: An example of a speed profile with four phases.

For turning segments we assume that the aircraft will have a constant speed
vturn. The maximum speed on straight taxiways vstraight is restricted to 30
knots (15.43 m·s−1) and turning speed vturn is set to 10 knots (5.14 m·s−1).
Furthermore, the maximum acceleration and deceleration rate amax is set to
0.98 m·s−2 for passenger comfort (Chen and Stewart, 2011).

Consequently, there are four free variables a1, d1, d2, d4 which completely
define a unique speed profile over a segment. However, variables a1, d1, d2, d4
have to satisfy physical constraints in order to be feasible. The constraints are
determined in a sequential manner where once a constraint has been calculated
it serves as an input for the next computation:

1. Firstly, the upper and lower bounds for a1 are defined as follows. The up-
per bound au1 equals to the maximum acceleration amax. The lower bound
al1 corresponds to a situation where an aircraft constantly accelerates over
the segment and must ensure that at the end of the segment v4 can be
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reached:

al1 =
v24 − v20

2 · d
. (1)

2. Secondly, the bounds for the distance of the first phase d1 are determined
after a1 has been fixed. The lower bound dl1 must satisfy Eq. 2 to reach
the end speed v4 of the edge.

dl1 =
v24 − v20
2 · a1

(2)

du1 represents one of the extreme situations where aircraft can only accel-
erate within such a distance, beyond which its taxi speed may exceed the
maximum allowed speed vstraight, or the remaining distance may not be
long enough for aircraft to reduce its taxi speed to v4 even with amax.

3. Once d1 has been fixed, v1 is also fixed and can be used to determine du2
and dl2:

du2 = d− d1 −
v21 − v24
2 · amax

, (3)

dl2 = d− d1 −
v21 − v24
2 · admin

. (4)

Where admin is defined in Eq. 5 and represents the situation where there
is only one deceleration phase with a small deceleration rate admin and
consequently, aircraft have to decelerate earlier.

admin =
v21 − v24

2 · (d− d1)
(5)

The upper bound of d2 represents the situation where d3 does not exist
and aircraft have to decelerate with amax.

4. Finally, after determining d2 within its feasible bounds du4 is calculated
according to Eq. 6 which refers to the situation when d3 does not exist.The
lower bound dl4 is set to 0.

du4 =
v21 − v24
2 · amax

(6)

Once the feasible values of decision variables have been defined, a unique speed
profile of which an example is shown in Fig. 3, can be determined. Based
on the derived speed profile, taxi time (objective g1) and fuel consumption
(objective g2) are calculated. In this paper, the method based on the ICAO
database (Chen et al., 2015b) is used to model fuel consumption, which consists
of physics-based equations taking into account the acceleration force and rolling
resistance to calculate thrust. The calculated thrust and aircraft engines will
then be mapped into corresponding fuel flows according to the ICAO database.
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Algorithm 1 Heuristic for speed profile optimisation.

1: p = 0;
2: for v = vturn to vstraight step s do
3: generate speed profile with vmax = v;
4: p = p + 1;
5: end for
6: for weight w1 = 0 to 1 step 1

p do
7: w2 = 1− w1;
8: assign utility w1 · g1 + w2 · g2 to every speed profile generated in line 3;
9: select speed profile with the minimum utility;

10: assign parameters a1, d1, d2, d4 to one solution on the Pareto front;
11: end for
12: return set of p solutions approximating the Pareto front;

Therefore, by searching for the values of a1, d1, d2, d4, one can explore different
speed profiles with different taxi time and fuel consumption.

To perform the search, different search algorithms can be employed such
as PAIA (Chen and Stewart, 2011; Chen and Mahfouf, 2006). However, as
documented in (Weiszer et al., 2014; Chen et al., 2015b), PAIA required a com-
paratively large computation time. In this paper, a further simplified heuristic
(Weiszer et al., 2014) is used for the speed profile optimisation. The heuristic is
based on observations noted during experiments with PAIA and constrains the
search space by determining some of the original decision variables a1, d1, d2, d4
beforehand. Firstly, the decision variable a1 is fixed to 0.98 m·s−2. Secondly,
the distance d2 during which the aircraft travels at constant speed v1 is max-
imised, since braking will not save fuel, but will increase traversing time. With
maximised d2 the rapid braking distance d4 using deceleration amax = 0.98
m·s−2 to slow down from v1 to v4 is set to du4 and can be easily calculated using
Eq. 6. The only decision variable left undecided is the acceleration distance
d1 which affects the maximum speed v1 that can be achieved over the segment.
The maximum speed v1 affects the fuel consumption as well as the time needed
to traverse the segment. The remaining task is to search for the optimal values
of v1 and hence d1.

The search for a trade-off is performed as described by Algorithm 1. The
heuristic starts by iteratively generating speed profiles for the input segment
with the maximum speed v1 set to a value from v1= 5.14 m·s−1 (10 knots) to
v1= 15.43 m·s−1 (30 knots), with step s. In total, p solutions are generated.

In order to construct the Pareto front for the segment, the subroutine (lines
6–11) iteratively selects weights for p iterations in total. The solutions gener-
ated in line 3 are ranked according to utility obtained by linear combination
of weighted taxi time (objective g1) and fuel consumption (objective g2). The
solution with the best (i.e. minimum) utility is selected and in line 10 the
parameters a1, d1, d2, d4 are assigned to one solution on the Pareto front.
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Figure 4: Examples of duplicative segments: (a) The same segment is a part of different
routes; (b) Different routes contain a segment with the same characteristics.

2.4. Problems of the MOMC Approach

As one can see from Section 2.1 and 2.3, a number of difficulties arise when
such an approach is applied in a real-world environment:

1. Duplicative optimisation of speed profiles: as can be seen in Fig. 1 the
speed profile is optimised each time an aircraft is being scheduled which
may result in a time consuming redundant optimisation for the same
routes. On the other hand, since routes are further divided into segments
as described in Section 2.3, it may result in a duplicative speed profile
optimisation for segments with the same properties:

(a) as indicated in Fig. 4a, different routes forof different aircraft may
contain the same segments, thus making the speed profile optimisa-
tion problem duplicative for these segments,

(b) as illustrated in Fig. 4b, different segments of the taxiway may have
the same properties, i.e. type and length, therefore speed profile
optimisation for segments with the same properties is duplicated.

As shown in (Chen et al., 2015b), by using a generic optimisation algo-
rithm, such as PAIA, long computational times were observed. Moreover,
a tailored and simplified heuristic devised in (Weiszer et al., 2014), even
seeded as an initial population in PAIA, did not improve the performance
of the generic optimisation algorithm significantly. Even the heuristic
method itself used alone was still not suitable for on-line optimisation.
Therefore, further speed-up by removing redundant searches is required
in order to facilitate real-time optimisation.

2. Restrictions on complexity of included models: as computational time is
crucial for on-line application of the AR framework on the airport, the cur-
rent approach is constrained by using a simplified aircraft dynamic model
and piece-wise linear speed profile. However, a more detailed complex air-
craft dynamic model should be able to give a more realistic and accurate
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fuel estimation. How to include more detailed models while still keeping
the problem tractable is the biggest challenge facing an AR approach.

3. Restrictions on the number of objectives: at most two objectives have been
considered so far within the optimisation framework. The stakeholders
may be interested in other objectives as well, for example noise, emissions
or cost. However, an increase in the number of objectives will inevitably
lead to higher overall complexity and longer computational times.

4. Restrictions on speed profile representation: the involvement of more com-
plex aircraft dynamic and fuel consumption models will unavoidably give
rise to non-linear speed profiles; although more realistic and may produce
better solutions, similarly as above, this will result in increased complexity
of the optimisation framework.

In light of the above discussion, a method which can avoid on-line computa-
tionally expensive optimisation of speed profiles is required. Caching of segments
and associated optimal speed profiles into a database could successfully speed
up the search, since the algorithm would use only cached solutions instead of
costly on-line optimisation. However, two questions arise: a) how to determine
which segments should be pre-computed and stored? b) do we have to store all
possible routes? Ideally, if one could identify a limited number of fundamental
building blocks, each of them representing certain type and length (properties)
of a representative segment, then any route on the airport could be recreated
by combining some of these building blocks. The requirement for memorising
the resulting building blocks falls into a common and well-established memoiza-
tion technique which stores results of expensive evaluation functions for re-use
during on-line computation (Michie, 1968). In the following analysis, several
implementations of such a technique are discussed and compared with the pro-
posed implementation in this paper. The novelties of the proposed approach
are also highlighted.

Wagner et al. Wagner et al. (2013) used a database of previously computed
and memoized solutions to speed up the optimisation of wind turbine layouts.
The database is initially empty and is gradually populated during the search.
If a newly encountered turbine layout is the same as the previously evaluated
one, the evaluation is retrieved from the database. Otherwise, the evaluation
of the previously found similar layout is used as a building block and only the
difference in the layout is calculated. Multi-objective optimisation of RFID an-
tennas presented in (Lewis et al., 2009) employs a similar approach, in which
a database of previously evaluated solutions is filled during the search. Memo-
ization for image processing (Khalvati et al., 2011) divides an image and stores
fixed-sized building blocks of pixels so that they can be reused during on-line
image processing. However, it should be noted, that each time a new block
of pixels is evaluated, the algorithm still needs to perform calculations on-line.
Approaches described above represent one type of application where a stringent
real-time decision is not required. Furthermore, the pre-computed database
does not have to be complete. Here, “complete” is defined in the sense that no
on-line calculation is needed. Any newly encountered scenarios will be calcu-
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lated on-line. In the airport ground movement application, the above mentioned
implementations would be infeasible, since if a more detailed aircraft movement
model is employed, executing such on-line calculation even once would make the
decision support system untractable for real-time decision making. If only some
dummy routes (the k-shortest routes) are examined to initialise the database
with the segments included in the dummy routes, the database will be incom-
plete even if k takes a big value. Additionally, the chance of encountering new
segments which are not stored in the database is still high. This is due to the
nature of the airport ground movement, as aircraft may take longer routes due
to the shortest routes being occupied by other aircraft, especially during higher
traffic periods. For example, in case of Zürich Airport described in Section 4,
the number of new segments which are not stored in the database initialized by
solving more than 1400 routes increased from 18 for scenario with 100 aircraft
considered to 56 for a scenario with 150 aircraft. With even more traffic, this
situation will deteriorate significantly. Although the heuristic used in this paper
to evaluate these newly encountered segments is computationally realtively fast,
it is only a simplified solution method as discussed in Section 2.3. In the case of
more complex aircraft model and nonlinear speed profiles, more general optimi-
sation methods, such as PAIA, have to be employed, which in the simplest case
(simplified aircraft model and piece-wise linear speed profiles) may take several
minutes on average to converge. Therefore, evaluation of even a single segment
on-line could compromise the on-line capability of the decision support system.
The attempt to build up a complete database by enumerating of all possible
routes between the source and destination nodes to discover all segments has
proved intractable. For a graph with n nodes, in theory, there can be up to n!
routes.

Another application of storing previously computed results to speed up the
on-line search, is the pre-processing of the input graph for finding the shortest
path routes (Sanders and Schultes, 2007). Shortest path methods utilising pre-
computation include highway hierarchies (Sanders and Schultes, 2005), contrac-
tion hierarchies (Geisberger et al., 2008) or landmarks (Goldberg and Harrelson,
2005). In these methods, nodes are selected based on certain criteria (e.g. in
case of highway hierarchies higher level nodes typically lying on a highway) for
which a shortcut is pre-computed and stored as illustrated in Fig. 5. Storing the
results of those pre-computations then accelerates on-line queries when search-
ing for the shortest path route. Shortcuts for the multi-objective shortest path
problem were generated in (Delling and Wagner, 2009). However, it is worth
pointing out that in case of multiple objectives, how to work out a reasonable
number of shortcuts and guarantee that all shortcuts are explored at the same
time remain unclear.

In order to address the abovementioned issues, we propose a new approach
in this paper, which is guaranteed to build up a complete database. Further-
more, the creation of such a complete database does not require ther search of
all possible routes, and can be solved in a tractable time frame. The idea is to
identify a complete set of building blocks. Then, speed profile optimisation is
run for this limited number of building blocks. These building blocks together
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Figure 5: Contraction hierarchies preprocess the original graph (a) by removing certain nodes
and introducing pre-computed shortcuts (dashed line). The final graph (b) is more sparse and
therefore easier to search. (Adapted from (Sturtevant and Geisberger, 2010).)

with their corresponding optimal speed profiles are memoized into the database,
from which any route on the airport can be recreated. The proposed method
will be very appealing to the air transportation industry since the database is
complete. This will facilitate the promotion of trajectory-based airport ground
operations (SESAR, 2012; Joint Planning and Development Office, 2010; Cheng
and Sweriduk, 2009; Schaper and Gerdes, 2013) as costly on-line speed optimi-
sation can be completely avoided. In the following, details of the AR approach
and how the pre-computed database is generated and used in the AR framework
to enhance its on-line decision capability are described.

3. Pre-computed Database Approach for Real Time Active Routing

3.1. Real-time Active Routing procedure

This section provides a detailed description of the proposed approach for
real-time AR based on a pre-computed database. As illustrated in Fig. 6, the
original concept of AR is extended to incorporate a database consisting of speed
profiles.

In effect, this database functions as a middleware to effectively separate the
planning module and the speed profile generation module. The database is
filled off-line a-priori, with optimised speed profiles for a complete set of build-
ing blocks as described later in Section 3.3. During on-line decision making,
speed profiles for building blocks are retrieved from the database, combined
into a complete route and transferred to the planning module. This way, many
duplicative search processes can be prevented. Furthermore, the fact that the
database is initialized off-line rather than on-line enables the implementation of
complex and computationally expensive models, with increased number of ob-
jectives, and/or adoption of more realistic speed profile representation without
increasing the computational time during the on-line decision making process.

Algorithm 2 details the integrated procedure for the AR approach, while
more discussion about database formation can be found in the following section.
Similarly as the approach introduced in (Ravizza et al., 2013b), Algorithm 2
approximates the global Pareto front by generating l points on the Pareto front.
In each iteration (lines 4–13) the whole set of aircraft is scheduled using the
k-QPPTW algorithm and one point of the Pareto front is generated. Note, that
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Figure 6: A real time Active Routing approach based on an integrated procedure using a
pre-computed database.

all aircraft in one iteration follow speed profiles with the same ratio between
objectives g1, g2, generated for the k-shortest routes. As the parameter i is
incrementally increased (line 3), the algorithm finds points on the Pareto front
gradually changing from the most time-efficient solution to the most fuel-efficient
solution.

Algorithm 2 Integrated procedure combining routing and scheduling, speed
profile optimisation employing a database.

1: Initialize database;
2: Sort aircraft by their pushback/landing time;
3: for i = 1 to l do
4: for all aircraft a do
5: Generate the shortest k routes using the k-QPPTW algorithm;
6: for k of aircraft a do
7: Divide route k into segments, for each segment retrieve m speed

profiles from the database;
8: Combine optimal speed profiles for each segment to cover the whole

route k;
9: end for

10: Generate the combined Pareto-front for the source-destination pair of
aircraft a;

11: Discretise this Pareto front into l roughly equally spaced solutions;
12: Select the i-th solution and reserve the relevant route for aircraft a;
13: end for
14: Save the accumulated values for all aircraft for both objective functions

for the global Pareto front;
15: end for
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The aircraft are considered sequentially according to their pushback/landing
time (line 2). Previously assigned routes and speed profiles do not change when-
ever a new aircraft is taken into consideration. For each aircraft a, the k-best
routes are generated based on their taxi times assuming constant speed vstraight
and vturn for straight and turning edges, respectively (line 5). Individual edges
of each route are assigned time windows which represent periods when the edge
is not occupied by any other aircraft. Then, for each aircraft a the following
loop is executed in lines 6–9. Each route k is divided into segments as ex-
plained in Section 2.3. For each segment, m speed profiles complying with time
window constraints for aircraft a are retrieved from the database consisting of
pre-configured speed profiles in line 7.

The optimal speed profiles for individual segments are combined together,
i.e. the most time efficient speed profiles are selected for all segments, gradually
changing to the most fuel efficient speed profiles, to form speed profiles for the
whole route k in line 8.

The subroutine in line 10 combines the different Pareto fronts for k routes,
each consisting of m solutions, and by selecting non-dominated solutions it pro-
duces the global Pareto front for the given source-destination pair of aircraft r.
The resulting Pareto front is discretised into l roughly equally spaced solutions
in line 11. The discretisation is based on Euclidean distance between solutions
in the objective space. Eq. 7 defines the distance s between solutions x, y for
each q of h objectives:

s(x, y) =

√√√√ h∑
q=1

(xq − yq)2 (7)

The distance s is computed for every neighbouring pair of points P (p), P (p+ 1)
on the Pareto front P , with |P | representing the total number of solutions on
the Pareto front. In order to have more representative discretised solutions, only
those solutions with a distance D to their neighbouring solutions are chosen,
where D is defined in Eq. 8.

D =

∑|P |−1
p=1 s(P (p + 1), P (p))

l
(8)

Fig. 7 illustrates this procedure and finally the i-th discretised solution is
chosen in line 12. The route, together with the corresponding speed profile, is
used to schedule aircraft a. Note, that although in one iteration the value of i is
the same for all aircraft, each aircraft a has a different speed profile depending
on its route and underlying segments.

The inner loop (lines 4–13) is repeated until all aircraft from the dataset have
been routed. The total taxi time and the total fuel consumption is accumulated
to generate a single solution on the global Pareto front (line 14). As can be seen
from Algorithm 2, the most time consuming part, i.e. speed profile generation is
now replaced by a pre-configured database. The database formation and speed
profile retrieval executed in Algorithm 2, line 7 is described in the next section.

16



 

Fu
el

 c
on

su
m

pt
io

n 
(k

g)

60

70

80

90

100

110

120

 

60

70

80

90

100

110

120

Taxi time (s)
220 240 260 280 300 320 340

220 240 260 280 300 320 340

2
2
2
2
2

 Route 1
 Route 2
 Route 3
 Combined Pareto front
 Discretised points

Figure 7: Combined Pareto front from 3 different routes for one aircraft and l = 5 discretised
points.

3.2. Database formation and speed profile retrieval

As can be seen in Line 7, Algorithm 2, m Pareto-optimal solutions are re-
quired for the speed profile optimisation problem for a given route of aircraft a.
The decision variables a1, d1, d2, d4 determining the speed profiles are retrieved
from the database. The data within the database is indexed in a B-tree struc-
ture (Comer, 1979). In this tree-like structure, data is sorted into hierarchical
levels using the following keys: weight class, segment type, segment length, dis-
cretisation, as illustrated in Fig. 8. This structure facilitates an efficient search,
as only the relevant branch has to be traversed to read the data.

Firstly, as each aircraft has a unique fuel consumption which results in differ-
ent optimal speed profiles, in order to keep the problem tractable, aircraft have
been classified into 3 weight class groups: light, medium and heavy, according
to their wake vortex separation requirements (ICAO, 2007). Next, the segments
are characterised by their type (refer to Table 1) and length. For aircraft travers-
ing turning segments, a constant speed is assumed and their taxi time and fuel
consumption (objectives g1, g2) are always constant. As a result, the turning
segments are not included in the database. Other segments (straight, straight
holding and straight breakaway) are included in the database and characterised
by their length. In order to keep the database size tractable, the length of
segments is rounded to the nearest metre thus limiting the number of possible
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entries in the database. A single database entry contains m discretised solutions
from the Pareto front for the given segment ranging from the most fuel efficient
solution to the most time efficient one. Finally, each Pareto optimal solution is
described by a set of corresponding decision variables a1, d1, d2, d4.

The complete solution for the whole route is constructed as a set of decision
variables a1, d1, d2, d4 for each segment of the whole route. The solution is
checked for potential violations of time windows of already routed aircraft. The
infeasibility of solutions is discussed in more detail in Section 3.4. Once the
complete database is constructed according to the abovementioned structure, it
will be used any time when optimal speed profiles for a given route are queried
by Algorithm 2. Details about database initialization are discussed in the next
section.

3.3. Database Initialization

In the light of discussion in Section 2.4, a database initialization method
is proposed to identify all distinctive building blocks from which any route on
the airport can be recreated. Firstly, preprocessing of the graph G representing
the taxiways is performed and segments between certain nodes are generated.
Then, optimal speed profiles are found for these segments, and memoized in the
database for retrieval during on-line search.

To initialize the database, Algorithm 3 is executed on the graph G. As
described in Section 2.3, any of two adjacent edges e and e + 1 with an angle
greater or equal to 30 degrees can become a turning segment depending on the
direction in which edges are traversed. These ”knee edges” are identified and
together with gate/runway edges (edges with a node being a gate or runway
exit) are put into set K in line 1. Edges in K are the potential ends of the
segments, where a straight segment can change to a turning segment, or in case
of gate/runway edges terminate. Then, shortcuts, i.e. possible straight segments
are generated in line 2 – 17. It should be noted, that although shortcuts are
created in the proposed approach, the intermediate nodes are not necessarily
removed, in contrast to other graph-preprocessing techniques such as contraction
hierarchies (Geisberger et al., 2008). This will depend on whether the nodes
belong to knee edges, whereas in the contraction hierarchy, as shown in Fig. 5,
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Algorithm 3 Initialization procedure for building a complete database.

1: K = {e, e + 1: e ∈ E ∧ angle(e, e + 1) ≥ 30} ∪ {e : e ∈ E ∧
e is gate/runway edge };

2: for all e ∈ K do
3: Find all straight routes r from e to f ∈ K;
4: for all routes r do
5: if e is a knee edge then
6: length = sum(e + 1, e + 2, . . . , f);
7: else
8: length = sum(e, e + 1, . . . , f)
9: end if

10: if segment with length not in database(weight class, type, length)
then

11: for all weight class do
12: search for variables a1, d1, d2, d4 and objectives g1, g2 using the

speed profile generation algorithm;
13: save g1, g2 and variables a1, d1, d2, d4 to

database(weight class, type, length);
14: end for
15: end if
16: end for
17: end for

the contracted node will be inevitably removed regardless of being a part of a
knee edge. As this would result in an incomplete set of building blocks, in our
approach the shortcuts are generated as follows: Starting with the edge e, a
depth-first search finds all straight routes r from e to f , i.e. successive edges
which have an angle less than 30 degrees between them until another edge f ∈ K
is reached in line 3. It is worth mentioning that multiple edges f ∈ K may be
reached from e, and multiple straight routes r between e and f may exist, and
all are considered in lines 4 – 16. The length of a possible straight segment is a
sum of lengths of edges e+1 to f if e is a knee edge (line 6). If e is a gate/runway
edge, then the length of a possible straight segment is a sum of lengths of edges
e to f (line 8). If the segment with this length is not in the database, it is solved
by the speed profile generation algorithm for all weight class categories in line
12 and saved into the database. Iterating through all edges e ∈ K in lines 2 –
17 therefore guarantees that all possible segments are generated.

Fig. 9 illustrates this approach. For an aircraft taxiing from node 1 to 9 in
Fig. 9a, edge e constitutes a turning segment. Edges e + 1 to f then form a
straight segment. In the next iteration, illustrated in Fig. 9b, we suppose an
aircraft taxiing in the opposite direction, from node 9 to 1, and a similar situa-
tion is solved. Therefore, all possible divisions of edges between nodes 2–8 into
straight and turning segments are considered. In the case of the gate/runway
edge shown in Fig. 9c, edge e will be included in the straight segment.

This method is exhaustive in its nature, however the requirement of a straight
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Figure 9: Calculated distances between edges represent possible straight segments; arrow on
the segment indicates the direction in which the segment will be traversed by aircraft.

segment between edges e, f ∈ K provides an effective pruning condition and for
reasonable sized graphs the search is fast, as later demonstrated in Section 4.3.

3.4. Resolution of Infeasibility

The database contains only Pareto optimal solutions for unimpeded aircraft
which does not consider any time window constraints. Therefore, during the
routing and scheduling, some or even all solutions retrieved from the database
may be infeasible due to current time window violations. If only some solutions
are infeasible, the remaining feasible solutions are used. However, if all solutions
retrieved from the database are discarded, the only feasible solutions may be
the previously suboptimal solutions which are not in the database.

Fig. 10 shows an example of Pareto front for an aircraft which is subject
to a time constraint for a specific turning segment as indicated in Fig. 11.
The solutions initially retrieved from the database are all infeasible due to time
window violation. In order to generate feasible solutions: 1) an extra holding
(buffer) time can be added to departure time of the aircraft to “shift” the
solutions out of the infeasible region as shown in Fig. 10, or 2) a speed profile
optimisation which actively takes constraints into account (e.g. PAIA (Chen
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et al., 2015b)) can be performed as shown in Fig. 11b. In our algorithm, the
first method is applied and the smallest possible holding time i.e. time by which
the time window is violated is added to obtain a feasible solution in Algorithm
2, line 7.
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from database violating the time constraint; (b) Feasible speed profile generated by PAIA.
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4. Experimental results and discussions

4.1. Dataset description

The algorithm was tested on a dataset of real arrival and departure flights on
Zürich Airport (ZRH) which is the largest airport in Switzerland. The airport
has 3 runways, 8 runway exits used in daily operation and there are 88 gates or
stands in total. The layout of ZRH is depicted in Fig. 12.

Figure 12: Layout of ZRH with taxiways.

Table 2 summarises data including flights recorded on 14th October 2014,
which have been divided into 3 instances representing high, medium and low
traffic conditions. Each instance consists of flights departing or landing in the
corresponding hour (i.e. for ZRH 6, between 6:00 and 7:00, for ZRH 8, between
8:00 and 9:00, etc.). The dataset was constructed from data published on the
airport website including arrival and departure times and gates whereas runway
exits for each flight were determined by Flightradar24 AB (2014). Data with
anonymised flights used in this work are published with this paper. For inter-
ested readers, we recommend (Brownlee et al., 2014) for more information about
generating and processing freely-available datasets, including airport layout, for
the ground movement problem. In order to study the scale-up performance
of the proposed algorithm when it is facing more traffic and under pressure,
instances with randomly generated flights named T75, T100, T125, T150, in-
dicating the number of flights were created. Each such instance consists of
flights departing or landing within one hour with randomly assigned times and
gates/runways. As the focus of this paper is on the ground movement problem,
it has to be noted that neither runway capacity nor overlaps of gate allocations
were considered.
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Table 2: Summary of data instances utilised in computational experiments.

Instance
ZRH 6 ZRH 8 ZRH 10 T75 T100 T125 T150

Number of aircraft 26 48 37 75 100 125 150
Arrivals 12 33 20 43 46 64 74
Departures 14 15 17 32 54 61 76

As discussed in Section 3.2, aircraft have been divided into 3 categories
according to their wake vortex separation requirements. For each category, a
representative aircraft is designated and its specifications are used during the
calculation. The specifications are summarized in Table 3. The real instances
ZRH 6–ZRH 10 used in this paper consist of mostly medium category aircraft
and a few heavy aircraft used in long-haul flights, whereas for instances T75–
T150 the distribution of weight categories is random.

Table 3: Specifications of the representative aircraft.

Learjet 35A Airbus A320 Airbus A333
Take-off weight 8300 kg 78000 kg 230000 kg
Engines TFE731-2-2B CMF56-5-A1 CF6-80E1A2
Number of engines 2 2 2
Rated output Fo 2×15.6 kN 2×111.2 kN 2×287 kN
Rolling resistance 1221 N 11.48 kN 33.84 kN
Fuel flow at 7% Fo 0.024 kg·s−1 0.101 kg·s−1 0.228 kg·s−1
Fuel flow at 30% Fo 0.067 kg·s−1 0.291 kg·s−1 0.724 kg·s−1

4.2. Experimental settings

The routing and scheduling part of the algorithm has been programmed in
Java and the speed optimisation part is written in the MATLAB programming
language. The computational experiments have been performed on a computer
with an Intel i3-2120 processor and 8 GiB of RAM, running Windows 7.

A setting l = 5 (line 3 in Algorithm 2) has been used to generate five
roughly equally spaced solutions. The parameter defining the number of routes
generated by k-QPPTW (line 5 in Algorithm 2) is set to k = 3. The values of
parameters l, k have been chosen according to initial experiments which showed
a good ability to approximate the global Pareto front and are the same as in
work by Ravizza et al. (2013b).

4.3. Database initialization

The complete database is created by enumerating all possible straight seg-
ments as explained in Section 3.3. The graph for ZRH airport consists of 399
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knee nodes and the enumeration lasted around 4 seconds. The results in Table
4 show that despite the relatively large number of nodes the number of found
segments (building blocks) is reasonable.

Table 4: Summary of the complete database initialization process.

Segment Database
Straight 734
Straight breakaway 79
Straight holding 54∑

867

The complete database was initialized by directly solving 867 segments,
without any overhead from routing, which lasted 673 seconds. The size of
the complete database is around 1 MiB for 3 weight class categories. Addi-
tional categories or aircraft types would proportionally increase the size of the
database.

4.4. Computational results

After the database has been initialized as described in Section 3.3, Algorithm
2 has been run. During the experiments, as expected, many aircraft routes
overlapped as illustrated in Fig. 13. Table 5 compares the computation of one
solution on the global Pareto front without and with the database. In the first
case, the number of segments which have to undergo speed profile optimisation
is much higher than the number of segments retrieved from the database in
the second case. Furthermore, retrieved segments from the database were pre-
computed offline.

In order to show the effect of the proposed approach on computational time,
the algorithm has been tested with and without the database in the speed
optimisation. In cases without the database, the heuristic for speed profile
optimisation and PAIA has been used as a solution method in line 7 of Algorithm
2 with the same settings as in (Ravizza et al., 2013b). The running time of
algorithms to generate global Pareto front for each instance (for example see
Fig. 15) is given in Fig. 14. As can be seen from the results, employing the
database of pre-computed solutions reduced the computational time compared
to other approaches including the simplified heuristic.

In real-time application of airport management systems, it is likely that air-
craft will be considered sequentially, therefore the computational time per single
aircraft is an important factor. ICAO specifies that the on-line decision time
within the Advanced Surface Movement Guidance and Control Systems should
not exceed 10 seconds (ICAO, 2004). As shown in Table 6, the computational
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Table 5: The number of segments under investigation during computation of one solution on
the global Pareto front without and with the database.

Computed without DB
Segments ZRH 6 ZRH 8 ZRH 10 T75 T100 T125 T150
Straight 312 651 500 875 1123 1345 1757
Straight
breakaway

42 48 51 96 162 183 228

Straight
holding

78 144 111 225 300 375 450∑
432 843 662 1196 1585 1903 2435

Retrieved from complete DB
ZRH 6 ZRH 8 ZRH 10 T75 T100 T125 T150

Straight 48 51 60 148 168 178 201
Straight
breakaway

9 8 12 17 17 22 20

Straight
holding

12 16 14 29 33 34 38∑
69 65 86 194 218 234 259
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Figure 13: The number of aircraft movements on individual edges for combined flights from
instances ZRH 6, 8, 10. The high number of aircraft movements on edges enables the o take
advantageous use of the pre-computed database of speed profiles to circumvent repetitive
search.

time per single aircraft increased with more traffic, particularly for instances
T75–T150. The increase in computational time is linked to the number of
infeasibilities, as reported later in this section, due to the fact that the algo-
rithm is restarted every time no feasible solutions exist in line 7 of Algorithm
2. However, the results indicate that the proposed approach is applicable in an
on-line decision support system even under high traffic conditions represented
by instances T75–T150.
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Table 6: Computational time per single aircraft using the proposed approach (s).

Instance
ZRH 6 ZRH 8 ZRH 10 T75 T100 T125 T150

Time per aircraft (s) 1.03 0.88 1.03 1.09 1.63 1.56 1.95

As mentioned in Section 3.4, in some cases all solution on the Pareto front
can be infeasible due to the time window constraints. The results in Table 7
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suggest that infeasibilities occurred only during higher traffic in instances and
on average from around 20 seconds to 45 seconds of buffer time per infeasible
taxi schedule was needed to be added to the original departure time. The total
buffer time increased notably with test instances with high traffic levels and
follows similar observations in other studies (Ravizza et al., 2013a).

Table 7: Number of infeasibilities which are resolved by adding buffer time.

Instance
ZRH 6 ZRH 8 ZRH 10 T75 T100 T125 T150

Occurrences 0 8 14 66 139 148 290
Total buffer time (s) 0 165 569 2227 4737 5921 13181

5. Conclusions

This paper focuses on the real-time application of AR for the ground move-
ment problem to simultaneously minimise taxi time and fuel consumption of
taxiing aircraft. A new procedure based on a database consisting of efficient
speed profiles was introduced. The database contains previously computed
speed profiles for individual segments of the taxiway which circumvents the
repetitive optimisation of these profiles, resulting in a faster algorithm. More-
over, this approach effectively separates the speed profile optimisation from the
routing and scheduling phase of the algorithm. As a result, the pre-computed
database can incorporate more realistic speed profiles created through a complex
and more precise optimisation procedure without compromising computational
time during the real-time application of the algorithm. The computational ex-
periments conducted on real-world data from a major European hub indicate
that the proposed approach can be fully applicable in real-time airport manage-
ment systems.

Future research in this area could exploit the advantage of the proposed ap-
proach to replace the speed optimisation procedure by a more detailed model,
thus removing the simplifications of the discretised speed profile or constant
speed during turns. Indeed, this is an essential requirement, as speed profiles
have to consider characteristics of the jet engine such as time to spool up/down
and passenger comfort related to rate of change of acceleration known as jerk.
The introduction of the database in this paper makes such consideration feasible
in future research. Also, more environmentally related objectives can be added
e.g. considering exhaust emissions or engine noise. The current implementa-
tion of integrated procedure combining routing, scheduling and speed profile
optimisation does not enable the investigation of different combination of speed
profiles, e.g. one aircraft follows the most time efficient speed profile while an-
other aircraft uses the most fuel efficient one. Such combination could produce
a more detailed global Pareto front or solutions with less buffer time. Finally, in
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the current implementation, the routes and speed profiles of already scheduled
aircraft does not change when a new aircraft enters, which under unprecedented
events may compromise the throughput of an airport. Therefore, an approach
able to react dynamically may be needed and requires further investigation.
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