Simulations for 21 cm radiation lensing at EoR redshifts
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1 INTRODUCTION

ABSTRACT

We introduce simulations aimed at assessing how well weak gravitational lensing of 21cm
radiation from the Epoch of Reionization (z ~ 8) can be measured by an SKA-like radio
telescope. A simulation pipeline has been implemented to study the performance of lensing
reconstruction techniques. We show how well the lensing signal can be reconstructed using
the three-dimensional quadratic lensing estimator in Fourier space assuming different survey
strategies. The numerical code introduced in this work is capable of dealing with issues that
can not be treated analytically such as the discreteness of visibility measurements and the
inclusion of a realistic model for the antennae distribution. This paves the way for future
numerical studies implementing more realistic reionization models, foreground subtraction
schemes, and testing the performance of lensing estimators that take into account the non
Gaussian distribution of HI after reionization. If multiple frequency channels covering z ~
7 —11.6 are combined, Phase 1 of SKA-Low should be able to obtain good quality images of
the lensing potential with a total resolution of ~ 1.6 arcmin. The SKA-Low Phase 2 should be
capable of providing images with high-fidelity even using data from z ~ 7.7 —8.3. We perform
tests aimed at evaluating the numerical implementation of the mapping reconstruction. We
also discuss the possibility of measuring an accurate lensing power spectrum. Combining
data from z ~ 7 — 11.6 using the SKA2-Low telescope model, we find constraints comparable
to sample variance in the range L < 1000, even for survey areas as small as 25 deg”.

Key words: cosmology: theory — reionization — gravitational lensing: weak — dark matter
— dark energy — large-scale structure of Universe.

ature is lower or higher than CMB temperature. In principle, the

21 cm cosmology opens a unique observational window to previ-
ously unexplored cosmological epochs such as the Epoch of Reion-
ization (EoR), the Cosmic Dawn and the Dark Ages (Furlanetto, Oh
& Briggs 2006) using powerful radio interferometers such as the
planned Square Kilometer Array (SKA)! (Pritchard et al. 2015).
Furthermore, 21 cm radiation emitted from sources at lower, post-
reionization redshifts can be used to measure the Baryonic Acoustic
Oscillations (BAO) with the intensity mapping technique (Battye,
Davies & Weller 2004; Chang et al. 2008; Peterson et al. 2009;
Ansari et al. 2012; Battye et al. 2013; Smoot & Debono 2017). In
this paper we will concentrate on another possible application of
this radiation, measuring weak gravitational lensing.

21 cm radiation is generated by the hyperfine, spin flip, tran-
sition of neutral hydrogen. When the Cosmic Microwave Back-
ground (CMB) photons and the neutral hydrogen spin temperature
become thermally decoupled the radiation is potentially observable
in absorption or emission depending on whether the spin temper-

! http://www.skatelescope.org/

21 cm line can give us access to a huge volume of the currently
unobserved Universe covering the redshift range z ~ 6 — 200 dur-
ing which the neutral fraction of hydrogen is high, as well as more
recent, post-reionization, epochs where neutral hydrogen (HI) is
found only within galaxies. The redshifted 21 cm line allows us to
obtain a 3D map of the Universe, across the sky and along cosmic
time by observing in a range of frequencies.

Current and planned experiments like the SKA, LOFAR?
(Low Frequency Array), PAPER? (Precision Array for Probing the
Epoch of Reionization), and MWA* (Murchinson Widefield Ar-
ray) have investigations of the high-redshift Universe through HI as
their primary or one of their primary goals. Ly-« photons from the
first generation of stars and quasars efficiently raise the spin temper-
ature above the CMB temperature and make the 21 cm brightness
temperature effectively proportional to the hydrogen density and
neutral fraction. This enables these observations to potentially map

2 http://www.lofar.org/
3 http://eor.berkeley.edu/
4 http://www.haystack.mit.edu/ast/arrays/mwa/
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out the distribution of HI in three dimensions during the EoR or
obtain its power spectrum (Barkana & Loeb 2005; McQuinn et al.
2006; Mao et al. 2008).

At lower redshifts and higher frequencies, the technique of HI
intensity mapping, which treats the 21 cm temperature field as a
continuous, unresolved background and thus does not rely on de-
tecting individual galaxies, can be used to measure the Baryonic
Acoustic Oscillations (BAO), measure redshift space distortions,
perform weak lensing studies, test Einstein’s theory of general rel-
ativity and constrain primordial non-Gaussianity (see, for example,
(Santos et al. 2015b) and (Hall, Bonvin & Challinor 2013)).

The main focus of this paper is the possibility of doing weak
gravitational lensing studies using the 21 cm emission from the
EoR. Early works (Zahn & Zaldarriaga 2006; Metcalf & White
2009) showed that if the EoR is at redshift z ~ 8 or later, an SKA-
like instrument could map the distribution of matter with high fi-
delity and if a large enough fraction of the sky could be observed
a high precision measurement of the convergence power spectrum
could be obtained. Weak lensing is measurable because the 21 cm
source can be divided up into multiple, statistically independent
maps that are nearly identically lensed by the foreground mass dis-
tribution. The lensing signal can be extracted from the data using
a Fourier space quadratic lensing estimator, which was originally
developed for the CMB case by Hu & Okamoto (2002) and then
extended in 3D for the 21 cm case by Zahn & Zaldarriaga (2006).
Here we generalise this estimator to explicitly take into account the
beam of the telescope and the gridding of the visibility measure-
ments.

Observing the 21 cm signal from the EoR is challenging.
At such low frequencies foreground contamination (mainly syn-
chrotron emission) poses a particular problem. Foregrounds dom-
inate over the cosmological signal by about four orders of magni-
tude, but studies indicate that they can be successfully removed by
taking advantage of their relative coherence in frequency in com-
parison to the 21 cm signal from structure in the HI distribution (Liu
& Tegmark 2012; Chapman et al. 2012; Dillon, Liu & Tegmark
2013).

In order to assess how well gravitational lensing could actu-
ally be measured in realistic observations it is crucial to perform
numerical simulations. Previous assessments have been based on
simplifying assumptions that make predicting the noise analytically
tractable. In particular, the 21 cm emission has been treated as a
Gaussian random field and it has been assumed that foreground
subtraction is done perfectly with no residual effects that might af-
fect the lensing results. These are both important factors that cannot
be handled analytically (Furlanetto 2016). Incomplete and uneven
u-v coverage is another issue that is best treated numerically. Here
we introduce a numerical tool that can be used to perform more
realistic studies and investigate the aforementioned problems.

This numerical tool can also be used to simulate measure-
ments of gravitational lensing through the Ly« forest observed in
high redshift quasar and galaxy spectra at redshifts of z ~ 2.5
(Croft, Romeo & Metcalf 2017). As with 21cm data, the forest has
the advantage of spectral information, so that one could use inde-
pendent information taken from across a significant redshift range.
A realistic estimate of the noise in a Ly« lensing reconstruction has
been presented in (Metcalf, Croft & Romeo 2017) using the same
techniques used in this work, but with different noise characteris-
tics and taking into account the discreteness of the measured Ly«
absorption in each pixel.

Currently, the planned SKA telescopes are the only radio tele-
scopes with enough collecting area and sufficient resolution to ob-

serve 21 cm lensing. SKA will be built in two phases (SKA1 and
SKA2) and will have arrays for low frequencies (SKA-Low, 50 —
350 MHz) and medium frequencies (SKA-Mid, 350—-13800 MHz).
The primary science objective of SKA-Low is to observe the reion-
ization of the universe at high redshift through its signatures in
the 21 cm radiation (Pritchard et al. 2015). SKA-Mid will be able
to measure 21 cm emission from HI in galaxies at lower red-
shifts (z < 3). A possible HI intensity mapping survey performed
by SKA-Mid could have important science outputs for cosmol-
ogy (Bull et al. 2015; Santos et al. 2015b). It has also been sug-
gested that SKA-Mid should be able to detect weak lensing of 21cm
emission from post-reionization redshifts using the intensity map-
ping method (Pourtsidou & Metcalf 2015, 2014). In this paper, we
present simulations for the case of 21cm lensing from EoR red-
shifts (i.e. using SKA-Low) and we plan to address lensing from
lower redshift sources with SKA-Mid in a future paper. In addi-
tion to developing a simulation technique and code that can later
be used for general 21cm lensing studies, the aim of this work is to
investigate how well the lensing signal from 21 cm sources at typ-
ical EoR redshifts (z ~ 8) can be reconstructed using the quadratic
estimator technique and the current SKA design.

The paper is organised as follows: in Section 2 we describe
the formalism and present the lensing reconstruction formulae that
will be implemented in our numerical simulation; in Section 3 we
discuss the set up of the simulation, including the generation of the
21 cm source, the simulation of the lensing signal, the modeling of
the instrument, and the beaming effects; in Section 4 we present our
results by discussing their dependencies on different telescope pa-
rameters and on the assumptions we have made. We also comment
on various numerical aspects. We conclude in Section 5.

2 21 CM RADIATION LENSING BACKGROUND

In order to simulate the 21 cm temperature field and its lensing on
a discrete grid, we will employ the discrete estimator formalism
described in (Pourtsidou & Metcalf 2015), based on the work by
(Zahn & Zaldarriaga 2006). Using the weak lensing approximation
and assuming that the source field is Gaussian, an unbiased and op-
timal (i.e. minimum variance) quadratic estimator for reconstruct-
ing the lensing potential can be derived. In this Section we describe
this formalism and generalise it to include the telescope beam.

2.1 Lensing Preliminaries

The 21 cm radiation emitted from sources at a redshift z; is lensed
by the matter distribution lying between us and the emission. Grav-
itational lensing will shift the observed position of a point on the
sky without changing the surface brightness. If the lensing is weak
compared to structure in the source, the observed temperature can
be expressed as a Taylor expansion of the unlensed temperature:

TOVY=TO-a0),v)~T(@0,v)—a(B)-VoT (0,v)+... (1)

where () is the deflection caused by lensing (with 6 the true po-
sition of the source) and dots denote higher-order terms in the ex-
pansion. The approximation used in Eq. (1) is valid in the CMB
case because of the smallness of the temperature gradients on
medium scales and Silk damping on smaller scales. This expan-
sion is also valid in the 21 cm case, where temperature gradients
can be large, but the deflections (or deflection gradients) are small
compared to them on all scales of interest. The deflection field «(0)
is related to the 2D projected lensing potential via V® = —«(6),
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in the weak lensing limit. The lensing potential comes from the
integration over the redshift direction of the full 3D gravitational
potential (Bartelmann & Schneider 2001)

2 4 D@D, —2)

D= di—————¢[D () 0(2),z], 2

=, e, ¢P@0@. @
where D(z) is the comoving angular diameter distance at redshift
z. Taking the observed lensed position to be 8 and the unlensed
one to be &, the shear y,, and the convergence « are related to the
gravitational potential by the Jacobian matrix

o€ 1-k=- Y2
9 ) = — =
J(0,z,) 70 ( “y, 1= k+7)
1-0,, D)
= i ’ , 3
( ) 1—@,22) ©)

where we have neglected any rotational variable in off-diagonal el-
ements and the subscripts 1 and 2 stand for the derivative operation
with respect to the two transverse coordinates of the lensing poten-
tial.

The convergence field is related to the potential - or, equiva-
lently, the deflection field - via the Poisson equation k = —V>®/2 =
V - a/2 Using the Limber approximation (Limber 1954) for small
scales, we can define the power spectrum of the deflection (or con-
vergence) field. This will be related to the 3D density fluctuations
power spectrum through

w_ OWH (M W) (L 4
L ‘L<L+1>c3fo S PQEQ ‘5( ‘%’Z) @

(Kaiser 1992), where E(z) = H(z)/Hy and W(z) = 1 -
[D(z) /D (z5)]. Hy is the Hubble parameter today and ,, is the
density of the matter in the Universe relative to the critical density.
Throughout this work we adopt a standard ACDM cosmology with
the Planck parameters set (Ade et al. 2016).

2.2 21 cm Brightness Temperature Fluctuation Field

The brightness temperature for the 21 cm line is given by

- Tons \ [ k2 \[{ 0.15 \ (1 +2
T(Z)—26(1+6b)xH(1_ Ts )(o.ozz)[(ﬂmhz)(w)

12
mK,

(Furlanetto, Oh & Briggs 2006; Zahn & Zaldarriaga 2006) where
xy is the neutral hydrogen fraction, T’ is the 21 c¢cm spin transition
temperature, Tcyp = 2.73(1 + z) K is the CMB temperature at red-
shift z, 6, = (ob — Pb)/Py 1S the baryon density contrast measured
in redshift space, and Qy is the average density of baryons today
relative to the critical density. In the regimes of interest here, i.e.
z < 15, Ts > Tcuyp so that there is no dependence on the CMB
temperature. The ionization fraction and the density of HI will de-
pend on the considered epoch, the ionization history and structure
formation history.

The brightness temperature will be represented in the simula-
tion within a rectangular volume centered at a redshift z. The co-
moving, radial length of this volume is £(z, Av) with Ay the band-
width of the observation. We will make the approximation that the
angular distance to the simulation box 9(z) is very large compared
to L(z, Av) so that the angular sizes of the front and the back of
the box are the same. With this and the flat-sky approximation for
small patches of the sky, the 3D temperature field is represented
in Fourier space by defining the wave vectors k;, = 1/D(z) and
ky = 2nk,/L(z, Av), where [ is the multipole vector, the Fourier

space dual of the angle coordinate, and k), is an integer which dis-
cretises the kj direction. The frequency band is broken up into many
channels which can be interpreted as tangential slices. The Fourier
dual of the radial distance is then the discrete values of k or k,.
Homogeneity dictates that there will be no correlations between
modes with different k,,.

We will take the simulation box to be square in the angular di-
mensions with the obvious extension to rectangular geometry. The
angular area of the survey and box will be Q. The number of grid
points in each dimension on the sky will be N, so that the total
number of grid positions in each frequency channel is N, = N2.
The angular resolution is A@ and (m, n) are the pixel indices.

The conversion between radial distance and frequency is given
by
c(1+2)1?

~ dv, (6)
Va1 HoQu?

e < dz
Ho \JQ,(1+2)% + Qx(1 +2)2 + Q,

where Qg is the energy density parameter for curvature, Q, is the
one for a cosmological constant, and the approximation made in the
last step holds at high redshifts when the Universe is matter dom-
inated. Since we are interested in the Epoch of Reionization, this
approximation is valid for our purposes. The rest frame frequency
is vo; = 1420.4 MHz. With this the total depth of the box can be
calculated,

c(1+2)'?
127"

Va1 HoQy!

and the frequency of each channel, v, can be converted into radial

distances r, within the box.

The Discrete Fourier Transform (DFT) of the temperature in-
tensity field is then

Q, (1 1
Tl,k,, = W Z eXp [—271'1 {F l . (m, I’l) + z ry k],}] Tm,n,va
(®)

m,n,r
where N, is the number of channels within the band that is used.

From Eq.(8), we can derive the angular power spectrum of the
21 cm temperature field, Ciy,, defined by

L(z,Av) = @)

K oK
<Tl,k,, Tl*,’k;,> = 0,C O3k 4. ©)

Throughout this paper the averaging operation denoted as (...)
is performed over 21 cm intensity field realisations. The angular
power spectrum is related to the discrete temperature field power
spectrum Py via

_ Puk) Par [NUDY + k[ D7)y,

Vs Q0L Q-

(Zahn & Zaldarriaga 2006).

For our first set of simulations we will adopt a simple model
for the brightness temperature distribution which has been used be-
fore and can be directly compared to analytic results. We will con-
sider a time before ionization when hydrogen is completely neutral
(xg = 1 in expression (5)). The brightness temperature is then only
dependent on the density distribution of hydrogen. To model this
we will make the assumption that the baryons are not yet signifi-
cantly biased with respect to the mass so that their power spectrum
in redshift space is given by

Py

(10)

Par(k) = T*(2) (1 + fyf)z Ps(k), an

where Ps(k) is the dark matter power spectrum.
We have included the redshift space distortion term in which
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Figure 1. The 21 cm angular power spectra C¢y,, for several values of kp
at zg = 8. The thick dashed lines are the sky noise power spectra, while
the dashed-point lines are the receiver noise power spectra. The latter are
produced assuming the SKA1-Low (blue) and SKA2-Low (red) R2 settings
described in Section 3.3.

f=dInD/dIna = Q,(2)*5 with D the linear growth rate. The co-
sine of the angle formed by the parallel component of the wavevec-
tor k and the wavevector itself is denoted y; = k;/k. We will also
assume that these fluctuations can be modelled with a Gaussian
random field. In Figure 1, the power spectra (11) are shown for dif-
ferent k,, where we have assumed a bandwidth of Ay = 5 MHz
(Az = 0.286) centered around a fiducial source redshift of z, = 8.
Depending on the noise model (which will be specified in the next
sections), modes beyond some k,** are dominated by noise and
thus not useful for detecting lensing.

At the high redshifts and the resolution considered in this
study, redshift space distortions can be modelled assuming f ~ 1.
As discussed in Mao et al. (2012), redshift distortions have non neg-
ligible effects on the 21 cm power spectrum. We also assume that
no patchy reionization has occurred. The actual temperature dis-
tribution is likely to be considerably more complicated because of
non-uniform ionization and segregation between baryons and dark
matter. These are cases our code is designed to handle, but will be
investigated in future work and combined with more detailed reion-
ization simulations.

2.3 Lensing Reconstruction in Fourier Space

If the bandwidth is small and the redshift is relatively high, to a
good approximation the matter within the band does not contribute
significantly to the lensing of that band, i.e. there is no self-lensing.
In this case, the correlation between brightness temperature modes
can be derived from equation (1),

<Tl,k,,Tl*_L,k;}> = L [1Cu, + (L~ D) iy, | OIS, (12)

(for L # 0) (Hu & Okamoto 2002). We can then define a discrete
quadratic estimator for the gravitational potential of the form

q L = Z f(ls Lv kP)Tl»k[) 7~‘;:L’kl” (] 3)

Lky

in which the form of the filter f(I, L,k,) depends on the kind of
source we are analysing and its statistical properties. Lensing in-
duces correlations between different modes that would otherwise

be uncorrelated. In the case of a Gaussian temperature field, an un-
biased and optimal kernel can be derived by requiring (P(L)) =
®(L), and minimising its variance. The resulting estimator is

by N® [L AC, +L-(L-DCppy,

20 cT T T Tirs, 04

S Ty Lkp = I=Lk,

(Zahn & Zaldarriaga 2006). The variance of this estimator is
(Do) = (N + ct?). (1)
with Ni’ being the lensing reconstruction noise. For the optimal

estimator with a Gaussian source field this is
2
L-1 Cl,kp +L- (L - l) CI*L-kp:I

) 1
N = 292[ cr ¢t

5 Lkp Lkp ~ I=Lkp

, o (16)

where CJ, W = =Cy, + N, oy N} is the total observed power spec-
trum that includes the sky and receiver noises. In deriving this ex-
pression, and the optimal form of the kernel, the fourth order corre-
lations of the field are required. These are easily found for a Gaus-
sian field, but for a more complicated and realistic source field the
lensing noise will need to be found numerically with simulations
like the ones described in this paper.

Expressions for the estimator and noise, for both the deflec-
tion and convergence fields, are trivially found using the Fourier
space formulae & = iL®; and Rz, = —(L?/2)®1. Moreover,
N = (L4/4)Nf = (L*/4)N?. These results can be linked to the
continuous result by making the substitution Q, — (27)?6(0).

Note that equation (16) is of the form Ng’ =1/ 2%, [N‘Lifkﬂ]il, a
result of the different k, modes being uncorrelated. Adding more k,
modes reduces the total noise, but, as pointed out in Zahn & Zaldar-
riaga (2006), only the first ~ 20 k, modes contribute to the lensing
reconstruction. This is because of the monotonically decreasing be-
haviour of Ciy, on all scales of interest as shown in Figure 1. For
high values of k,, the signal is well below the thermal noise level so
these modes do not contribute to the estimator. Moreover, even if
we could use a bigger number of k, modes than the ones allowed
by Figure 1, the estimator noise would reach a maximum low level
because of 21 cm field intrinsic fluctuations. Hence, the estimator
noise saturates at k“:"“‘ ~ 20 for z, = 8 and Ay = 5 MHz in this
case. This effect will be clearly demonstrated in Section 4 for our
particular model.

2.3.1 Faster Lensing Estimator

Estimator (14) is computationally slow to calculate. As shown in
Anderes (2013), Lewis & Challinor (2006) and Carvalho & Mood-
ley (2010) for the analogous 2D CMB case, the estimator can be
interpreted as a convolution in Fourier space which is equivalent to
a real space product. Calculating the product in real space allows
one to take advantage of Fourier Transforms (FFTs) methods® such
as FFTW® to do the sums. Extending their derivation for k, modes,
we have:

[Z iL»eFOV(;e] :_—(zL)ZHLkpv

kp kp kp

5 This will be true in the full-sky representation too, since the azimuthal
integrals can be treated similarly.
6 http://www.fftw.org/
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where H is defined here and F and G are 2D angular space maps
of the input 21 cm intensity temperature field, defined by applying
the following high-pass filters in Fourier space

Ty, Cii,Tix,
Fiy, = = T (18)
Ly Ly

In this way every k, contribution to the estimator is computed in-
dividually, by filtering the input fields and multiplying their inverse
DFTs in real space.

As pointed out by Lewis & Challinor (2006), seen from this
point of view, the estimator measures the correlations in the prod-
uct of two Wiener filtered fields, the temperature gradient field,
V G(0), and the small-scale weighted field F(0).

2.4 Including the Beam

In order to simulate more accurately the observational effects of
a real telescope we include a beam. The beam smooths the signal
coming from scales that are small with respect to the beam resolu-
tion scale (multipoles L > L) and the estimator can be modified
to take this into account.

The observed point will have a sky noise contribution n5 and
a receiver noise contribution n¥, so that

@’

T = Z W (Tm/ + nSky) +nRe, (19)
—

with Fourier transform
~ = Sk
Tray = Wi(Trs, + ") + e, (20)

The beaming function W, could depend on frequency, but here we
will assume it does not and that it generates no spurious correlations
among k, modes. From this the discrete quadratic estimator can be
found following the procedure outlined in Section 2.3. We find

Nf LA [L ACy, +L-(L-1) C|1—L|,k],]

$r =5 T, 71
20, £ Cl Cl, Pk
2D
with C{k,, = |W]? (Cl,kp + lell;y) + N}}f:. The estimator noise will
consequently be modified into
gy -
s |1 WPWP [L1Cy, + L (L= 1)y, |
Ne=120, cr ct
5 Lkp Lkp 2 I-Llkp
(22)

This beamed discrete estimator noise is easily computable in a rea-
sonable amount of time by parallelizing the innermost sums in the
latter equation. So, if we re-define our filters Eqs.(18) as

WiCix, Tix,
, G, = ———2, (23)
Cli, ' Cli,

we can find the beamed version of Eq. (17), namely

Nci)
o (D) D Hey, 24)
S kp

b =-

where H Lk, is again the Fourier transformed vectorial field
formed by multiplying the inverse transformed Fourier %y, with
the inverse Fourier transformed gradient of Gy . A detailed deriva-
tion is presented in Appendix A.

For multipoles L > L., the estimator noise diverges because
of the dominance of thermal noise at those scales and the smoothing
of structure by the beam. Explicitly incorporating the beam allows

us to avoid aliasing and pixelization effects. The value of L, will
be specified in Section 3.4, and will depend on the observed redshift
and telescope design. A low L cutoff, L, reflecting the finite field-
of-view can also be incorporated into the beam. We choose here
to allow the boundaries of the simulated maps to implicitly impose
this cutoff at L, =~ 2mx/0™*,

3 SIMULATION DETAILS

In this Section we will describe the method used to perform the
lensing reconstruction on simulated 21 cm temperature maps, giv-
ing particular attention to the SKA instrumental configuration.
Since the reconstruction signal-to-noise is dependent on the tele-
scope’s specifications, the telescope design will be crucial for these
observations. We first describe how we generate the Gaussian ran-
dom temperature fluctuation field, the lensing potential field and
how we combine them to get the lensed temperature field. Then we
explain how to model the thermal noise components due to sky con-
tamination and instrumentation. Finally we apply an explicit model
for the beam.

3.1 Discrete Modeling of 21 cm Field

For testing, the 21 cm brightness temperature field is taken to be a
Gaussian random field. We generate, at each k,, l mode, a real and
imaginary parts from

Cig, Cix
R(Tix,) < G4 T] I(Tyy,) < Ga o > -, (25)

where G, are two random normally distributed numbers with null
mean and unitary standard deviation. The full intensity temperature
3D field reality condition requires that Ty s, = T} i but because
of FFTW storage convention only half a cube (the positive k, spec-
trum) is really needed to efficiently perform FFTs. By doing this
we can take into account the correlations between maps simulated
at different z.

As discussed in Section 2.2, we use Eq. (11) for the bright-
ness temperature fluctuations power spectrum. We approximate the
non-linear matter power spectrum for structure formation using the
Peacock & Dodds (1996) method although the lensing signal and
noise are relatively insensitive to non-linear scales. The tests per-
formed within this work justify this assumption.

In Figure 2.1 we show a sample of our simulation boxes,
where we can see the unlensed 21 cm brightness temperature fluc-
tuation field produced for several k,. Modes with larger values of
k, have less power and the signal quickly decays below the thermal
noise level with increasing k,, as shown in Figure 1. Because of
this, we do not need to simulate a large number of k, maps, allow-
ing the code to make maps more quickly.

3.2 Lensing Maps

As we will show, we do not expect highly non-linear objects in
the deflection potential to be detectable so we model the deflection
field as a Gaussian random field in much the same way as we did
the brightness temperature fluctuations. The potential field is gen-
erated analogously to what has been done in Section 3.1, but using
the power spectrum (4) and C7® = C9°/L? in Eq. (25). Then we
produce the components of the deflection field in Fourier space,
namely &y, = iL®y. Lensed 21 cm temperature brightness maps
are produced applying, for each redshift map, a realisation of our
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Figure 2. Top: Sample realisations of the simulated box centred around z, = 8 for every simulated component. The angular area is Qg = 5°x5° and Ngjge = 650.

Bottom: The k;, = 3 map extracted from the cubes are shown in the bottom panels.
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3.1 Unlensed-Lensed Difference Map
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3.2 Potential Field
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Figure 3. Left panel: The map showing the difference between Figure 2.5 and Figure 2.4. Central panel: A sample realisation of the gaussian random potential
field generating the deflection of 21 cm intensity points in Figure 2.5. The potential values have been scaled by a factor 10° in order to improve the readability of
the colour bar. Right panel: The corresponding convergence field. The convergence values have been scaled by a factor 10° in order to improve the readability
of the colour bar. These maps have been computed using Ngjge = 650 and Q; = 5° X 5°.

randomly generated x— and y—deflection field maps through bicu-
bic interpolation of the values at the undeflected positions. When
light rays are deflected outside the simulated source boundaries,
periodic boundary conditions are applied by mirroring the source
plane. Consider that the simulated rays will not intersect the source
at the grid points on which the source itself was simulated. As a
result some interpolation is required. Bicubic interpolation of the
source also removes visible pixelization artifacts in the lensed map.

Another issue that has to be considered is the importance of struc-
tures in the source that are below the simulated resolution. In fact,
lensed interpolation introduces scales below the ones allowed by
map’s dimensions. As pointed out by Lewis (2005) for CMB lens-
ing, the importance of such scales can be addressed by downsam-
pling a temperature field produced at a higher resolution (usually 3
or 4 times the desired resolution). We find that after beam smooth-
ing, section 3.4, the bicubic interpolation on a map of the same res-
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olution as the image reconstruction is sufficient to produce accurate
results. This was tested using downsampled intensity temperature
maps.

A sample box image (lensed) is shown in Figure 2.2. It is hard,
but not impossible, to see differences by eye between the unlensed
and the lensed image, as one can notice by comparing Figures 2.4
and 2.5. The difference between the unlensed and the lensed image
can be seen in detail in Figure 3.1. The potential and the corre-
sponding convergence field realisation used to deflect the tempera-
ture points are shown in Figure 3 for Ng¢e = 650 and Q; = 5° x 5°.

3.3 Thermal Noise Component

The lensing estimator and noise, given respectively by Equa-
tions (14) and (16), include a total power spectrum contribution
C[T_kp which depends on the thermal noise power spectrum as well
as the intrinsic 21 cm fluctuations. The noise in this estimator is
sensitive to the particular telescope model that is used. Here we
will take into account the current model for the SKA-Low thermal
noise which includes a realistic description of the array density dis-
tribution in visibility space.

3.3.1 The Thermal Noise Angular Power Spectrum

A pair of elements in an interferometer separated by a baseline of
length D will measure a visibility V(U,v), where U is the vector
in visibility space and U = |U| = D/A. The resolution in visibil-
ity space defines the Field of View (FoV) of the telescope, namely
Unin = U = 1/Q, ~ D?, /A%, with Dy, the interferometer ele-
ment diameter which in the case of SKA-Low is a station contain-
ing a certain number N, of antennae. The visibility space is inter-
pretable as a Fourier dual space, and its relation to the multipole
space is U = 1/(2n), so that (2)*d*U = d*/ = L2, . The maximum
observable visibility is hence set by the baseline maximum length
Unmax = Lmax/(27) = Dinax /A(2).

We can define the noise power spectrum in visibility space
for an interferometer in the Rayleigh-Jeans limit by averaging all
visibilities falling in one visibility space resolution, for a bandwidth
Av centered around the redshift z + 1 = v,;/v. That is

N [/IZ(Z)Tsys

v Aeﬁ

du

NpolAV tu ’

(Zaldarriaga, Furlanetto & Hernquist 2004), where A(z) = A,;(1+z)
and A.q is the effective area of one station. A.q is usually defined
as Aeg = Sﬂsznm /4, with ¢ the antenna efficiency, usually a number
0.7 < & < 1. Ny is the number of polarisation channels which can
be added incoherently (Morales 2005). 7y is the observation time

per visibility pixel,

(26)

t t,Np,Q
tv = PUU, )ty = EUU,v)~L = U (U, v) 2222
Np Sarea
@27

Here we have included the possibility to observe several sky
patches, using different pointings N, = S .../, to scan a given
sky area S ,,, and using a certain number N, of beams per station
with FoV ~ Qg ~ A/Dgquion observed within a time #, per point-
ing. This allows for increasing the number of independent mea-
surements in a given total observational time 7, = Npt,, since the
number of observed modes is increased by a factor S yre./(NpQ2y).
Note that S .. > NpQ,. For EoR observations we will consider
N, = 1, and so the observing time per pointing will coincide with
the total observation time.

The averaged baseline number density (over a 24 hrs period)
is denoted as n(U, v), and it is usually a function of (U, v) due to
rotational invariance in visibility space given by a circularly sym-
metric baseline distribution (Villaescusa-Navarro et al. 2014). Its
normalization will be frequency dependent, since f n(U,v)d*U =
Nyat(Ngar — 1)/2, with Ny, the number of stations forming the con-
sidered baseline within a diameter D,,,. Hence, considering that
the integral is constant and the maximum and minimum visibilities
are frequency dependent, the number density needs to be scaled
from a fiducial curve if it has to be computed at different frequen-
cies. More details about this will be given in Section 4.3.

For an aperture array, the effective area of the station will be
constant below a critical frequency v., i.e. when the array is dense,
while above v, it scales with frequency as

(ve/v)?

forv > v,
Aeﬁ(v>=Aeﬁ(vc>{ Lot

forv < v,. (28)

Moreover the FoV scales at any frequency as Qu(v) =
Q,(ve) (ve/v)*. Hence, using definitions (28) and (27) we can write
Eq. (26) as

2@ (vV[ 75
N _ | A (v y:
Cl,Av = [Aeﬁ'(yc) (Vc) ] NoolAvi, n[U = 1/(2r), v 29)

In the case of a uniform antenna density distribution, n(U, v) ~
N2, A2(2)/ (27rD,2nax) and neglecting the frequency dependence of

the effective area and the FoV, (29) reduces to the widely used flat
angular power spectrum

@n)’T2,
N _ sys
Cl,Av - l‘oAsz 12 (30)

cov'—~max

(Furlanetto, Oh & Briggs 2006). Within this approximation the
channel polarisation contribution and the frequency scaling of the
station area have been neglected. f.., is the total collecting area of
the telescope divided by (D /2)?, the aperture covering fraction,
while the highest multipole that the array is able to probe at the ob-
served wavelength Aops(2) 18 Linax(2) = 2Dimax / Aobs(2) = 21U ax -

Finally, the noise consists of one component coming from the
sky and another one coming from the instrumentation, whose com-
bined impact is taken into account by Ty,. At such low frequencies
the most important source of astrophysical noise is galactic syn-
chrotron emission which produces a representative sky temperature
of

Vops 25
300 MHZ)

(Dewdney 2013). The receiver noise power spectrum is computed
analogously by following Eq. (30) and setting Tgy, the receiver
temperature, in the place of Tsy. This contribution is added after
the inclusion of the beam; however, it only becomes important at
low redshifts. It is assumed that this contribution is uncorrelated
with the signal and sky noise terms. In Figure 2.3 we show a sky
noise component cube, where a different noise realisation is pro-
duced for each channel.

Tse > 1.1 ><60( 31)

3.3.2 SKAI and SKA2-Low Specifications

The design of SKA-Low is not yet finalized. The most complete of-
ficial design document is Dewdney (2013), but the recent rebaselin-
ing modified these specifications (McPherson 2015). De-scoping
halved the number of receiving stations, but the frequency sensi-
tivity is relatively unaffected with respect to the original design
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Av [MHz] ¢, [hrs]

RO 8 1000
R1 5 1000
R2 5 2000

Table 1. The considered SKA simulation settings for this study at z = 8.
For every case we considered a telescope baseline diameter of D = 4 km,
while the single station element has a diameter of 35 m. For every case we
assume a total frequency range of 50 — 350 MHz and the critical frequency
is ve = 110 MHz.

plan, because of the dense core array. We will take this into ac-
count by reducing the baseline density function by a factor of four,
Ndescop(U, v) = n(U, v) /4, and so increasing the thermal noise power
spectrum level by the same factor.

In this work we consider a SKA1-Low design with Dy, = 35
m diameter stations, and Ny, = 433 within a maximum baseline
of Dy.x = 4 km. Generally, baselines larger than 4 — 5 km do not
contribute much to the total sensitivity for our purposes although
large baselines are used for calibration and foreground source re-
moval. The critical frequency is 110 MHz, and the values for the
effective area and field-of-view (FoV) at v, are A.z(v.) = 925 m?
and Q,(v.) = 27 deg’ respectively. The receiver temperature is set
to be T,y = 40 K. SKA-Low is also assumed to have two polariza-
tion channels, and we will consider a single-pointing observation
(N, = 1) performed at EoR redshifts. The fiducial baseline density
function has been provided at z = 8 (corresponding to a central
frequency of 157.82 MHz) (J. Pritchard, private communication).

Observational times and bandwidths are given in Table 1,
where we define the hypothetical RO, R1, and R2 survey strategies
The total frequency range explored by SKA-Low is 50 — 350 MHz,
but these bandwidths are the one used in the lensing estimator so
that there can be multiple lensing maps centered on different source
redshifts.

For the R1 and R2 strategies we have used Av = 5 MHz. This
bandwidth Av is sufficiently thin to have good resolution over a
certain redshift range, which is good for exploring EoR epoch, but
thick enough so that correlations between bands can be ignored.
As discussed in Section 2.2, we will assume that the lensing, angu-
lar size distance and the statistical properties of the source do not
change within Avy. The single channel resolution for SKA-Low is
6v = 100 kHz. There is a maximum number of detectable k, modes
which will depend on the ratio between the bandwidth and the fre-
quency resolution in a single channel (Parsons et al. 2012). Note
that Pritchard et al. (2015) have assumed B = 8 MHz and 7, = 1000
hours, which corresponds to our RO survey strategy. The R2 survey
strategy has been introduced to keep a comparable thermal noise
level to RO and have the possibility to stack more frequency bands
within a given redshift range.

SKA-Low Phase 2 has still to be formally defined, but we will
assume a total collecting area that is four times the one expected
for SKA1-Low. This will cause the thermal noise level to be a fac-
tor 16 lower. We do not include multiple beams, although it could
have as many as N, ~ 10 beams simultaneously. Following Santos
et al. (2015b), we increase the sensitivity of this instrument also by
decreasing the receiver noise to 15 K, although this does not cause
a big change in the total system noise due to sky noise domination
at these frequencies.

Sky and receiver noise power spectra for the R2 configuration

T(6,.8,) (1K)

Figure 4. Top: A sample realisation of the simulated beamed box centred
around z; = 8, for different redshift channels within one frequency band-
width. The angular area is Q; = 5° X 5° and Niige = 650. Bottom: One map
extracted from the above cube. The beam smoothing is 2.5 times the basic
map resolution, namely Ab = 1.15 arcmin.

are shown in Figure 1, where they are compared with the brightness
temperature angular power spectrum for different k, modes.

3.4 Modeling The Beam

In Section 2.4 we described the effect of the beaming function,
which is to smooth the Fourier frequencies near the characteristic
beam frequency L, corresponding to a beam resolution o~. We will
make the approximation that this is constant within Ay although this
can be easily relaxed. We use a simple Gaussian beam

W, = e—1(1+1)02/2’ (32)

with o = bA6/ V81n2; the b parameter quantifies the beam res-
olution with respect to the pixelization of the simulated map A6,
namely b = Lnyq/Lcw- The top panel of Figure 4 is a realisation
of our beamed simulation box, whose k,, = 3 slice is shown in the
bottom panel. The suppression of the smallest scale modes with
respect to Figure 2.5 is hard to notice. Assuming the SKA-Low
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instrument modelled in Section 3.3.2, the typical beam resolution
is Ab = bA@ = 1.15 arcmin. This value is set by Ab = 27/ Ly for
a square grid’, where L.y = Ly, the maximum multipole which
is observed by the interferometer baseline.

3.4.1 Aliasing and the Beam

When using the fast lensing estimator, (24), we find that when the
beam cut off, o, is close to the resolution of the image or when
no beam is taken into account, spurious aliasing effects occur that
cause the lensing signal and noise to disagree with the input signal
and the analytically calculated noise. The quadratic estimator is a
convolution of filtered fields and there will be a visible aliasing ef-
fect if the beam resolution is too close to the Nyquist frequency, re-
sulting in a contamination due to already existing frequencies mir-
rored around the Nyquist frequency. Incorporating a beam solves
this problem for our estimator because it acts as a low-pass filter
that reduces the aliased contamination coming from high frequency
modes®. This problem is much less prominent for CMB lensing be-
cause in that case there is relatively little power in the high fre-
quency modes. To reduce memory usage and computational time
it is advantageous to keep Lyyq as small as possible while avoiding
this aliasing problem. We found that the beam resolution has to be
bigger than 2.5A6: this means that Lyyq > 2.5Ly to eliminate this
effect. Tests of this limit are discussed in Section 4.2.2.

4 RESULTS

In this Section we investigate the possibility of reconstructing high-
quality images of the weak lensing potential field and present our
results. We then discuss how the telescope and survey parameters
influence these results as well as various tests of the performance
of the estimator derived in Section 2.4.

4.1 Single-Band Reconstruction

We will first consider a single-band measurement made with a fre-
quency bandwidth Av, whose values are specified in Table 1, cen-
tered around the observational redshift z = 8, corresponding to an
observed central frequency of 157.82 MHz. The FoV at this fre-
quency is determined by the size of the telescope’s smallest ele-
ment and is Q, = 13 deg?, hence the angular size per map side is
Osqe = 3.6°. This survey area corresponds to an observed fraction
of the sky fi, = 3.15 x 107*. The maximum probed multipole at
such a redshift is Ly,x = Loy =~ 13230. Because of the aliasing
effect explained in Section 3.4.1 we need to generate the 21 cm in-
tensity source field with a Lyyq that is at least 2.5 times the beam
cut off, L. This is Lyyq = 33092.6, which corresponds to an an-
gular resolution of 27.7 arcsec. The number of pixels per map side

7 The V2 factor comes from considering a square grid, in which the

Nyquist mode is Lnyq = /L2 + L} = VZALN, /2, with AL = 271/6ay
the resolution in Fourier space. The extension for a rectangular grid is ob-
vious.

8 Another way to solve this problem is by padding the temperature field
in Fourier space with a sufficient number of null arrays. This may be com-
putationally expensive, especially for multi-dimensional arrays. Alternative
FFTW efficient methods that do not involve padding in Fourier space have
been developed. Interested readers can consult Bowman & Roberts (2010).
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Figure 5. The discrete estimator noise for SKA1-Low (blue), SKA2-Low
(red), SKAI1-Low with k;“i" = 3 (black), and SKA2-Low with k;‘i" =3
(gold), with choices for observation time and bandwidth listed in Table 1
and for the non-flat thermal noise power spectrum introduced in Section 3.3.
The simulated sky area is Qg = 3.6° X 3.6° and the beam has a resolution of
1.15 arcmin at z = 8. The RO survey strategy results are not plotted because
they produce an estimator reconstruction noise level close to the R2 one.
The R1 configuration is denoted by dashed lines while the R2 by dashed-
dot lines.

iS Ngide = \/ELNyq /Al = 468, with Al = Ly, = 27/6g4. = 100 the
resolution in Fourier space.

We generate our 21 cm temperature brightness maps and lens
using a single realisation of the lensing potential field, following the
simulation method described in Sections 3.1 and 3.2. Then we add
the thermal noise component modelled in Section 3.3 to the lensed
temperature map and smooth the field with the beam function in-
troduced in Section 3.4. In the final step we add a different real-
isation of the receiver noise contribution for each k, mode which
is valid under the assumption that the noise level is constant within
the band. Using the estimator described in Section 2.4 with the sum
over a given number of k, modes we obtain maps of the estimated
lensing potential. The maximum number of combined frequency
channels per frequency band is taken to be k;** = 20 throughout
the paper, unless otherwise stated.

The signal-to-noise of the lensing reconstruction depends on
several parameters of the telescope configuration and survey strat-
egy. For a fixed source redshift like z; = 8, the behavior is mainly
driven by the thermal noise, shown in Figure 1, which can be con-
siderably different if the collecting area, observational time, or ob-
servation bandwidth is changed®. To have a preliminary idea of the
reconstruction quality, we compute the discrete estimator recon-
struction noise for the survey strategies introduced in Table 1. The
results are shown in Figure 5, where we have omitted the RO results
as they are similar to the R2 results.

In figure 5, we also show the results obtained considering
k;“" = 3, in order to take into account the possible removal of the
first k, modes caused by foreground cleaning techniques. The exact
number of k, modes to be removed will depend on the specific fore-
ground removal technique (McQuinn et al. 2006; Liu & Tegmark

9 Varying Lmax also has an influence on the estimator noise level, but this
effect is important only if we vary the source redshift (as we will see in the
next section) or the telescope’s maximum baseline length (which is consid-
ered fixed in this work).
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Figure 6. Left panel: the input potential field used to deflect the input 21 cm maps. Central panel: the recovered estimator noise image obtained by computing
the estimator with the unlensed temperature map. Right panel: the recovered estimator image obtained by computing the estimator using the lensed 21 cm
temperature map. The images are computed for Ngjqe = 468, Qg = 3.6° X 3.6°, z = 8, Ab = 1.15 arcmin, k;‘““ = 3, and the SKA2-Low R2 configuration. The

potential values in these maps have been scaled by a factor 10° in order to improve the readability of the colour bars.

2012). The noise is increased by omitting these modes, but not dras-
tically. In general, the more serious the foreground contamination
is, the higher is the number of k,-modes to remove. This is an issue
that needs to be investigated more deeply in the future and that our
simulation pipeline is designed to handle.

High fidelity maps are possible from a single frequency band
when the noise in figure 5 is below the expected signal power spec-
trum, so when typical fluctuations are detected with high signal-to-
noise. For every SKA1-Low case the noise is well above the signal.
This means that for a single frequency band detection made with
the SKA1-Low instrument it is not possible to get high-fidelity
images of the reconstructed lensing mass distribution. The situa-
tion will be different if multiple frequency bands are stacked as
will be considered in Section 4.3. On the other hand, the results
for SKA2-Low configurations are considerably more optimistic. A
high fidelity imaging of the underlying mass distribution should be
possible for the SKA2-Low experiment even in our worst case R1
with k;‘i“ = 3, whose noise level crosses the signal power spec-
trum at L ~ 200. Comparing the R1 and R2 survey strategies, it
can be noted how using more observational time does not substan-
tially improve the overall signal-to-noise. For such a single-band
measurement, we expect to recover images which are heavily con-
taminated by small-scale noise due to the small number of large
lensing modes that are below the noise level. This is confirmed by
looking at Figure 6, where we show the input potential, the esti-
mator noise image, and the recovered image for the SKA2-Low R2
model with lei“ =3.

In Figure 6, the small-scale noise overwhelms the signal, mak-
ing it nearly indistinguishable from the noise image. The recon-
struction noise image is obtained by using the non-lensed 21 cm
temperature map in the estimator. Figure 7 is shown to underline
that the recovered square amplitude of the modes in Fourier space
follows the theoretical profile, but the high small-scale noise ap-
pearing in the recovered image is due to the estimator reconstruc-
tion noise feature at high multipoles.

4.1.1 De-noising the Reconstructed Image

The findings of the previous Section suggest that the image of the
recovered potential can be visualised if a proper de-noising pro-
cedure is applied to remove the small-scale noise contaminated
map. For this purpose a Wiener filter has been used to unveil the
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Figure 7. The recovered estimator square amplitude in Fourier space from
the reconstructed potential image Figure 6.3.

reconstructed potential image. The Wiener filtering is an optimal
method, i.e. it minimizes the estimated image variance, and is often
used for deconvolutions or images degraded by additive noise and
blurring caused by a Point Spread Function (PSF). This approach
requires the second-order stationarity and the statistical indepen-
dence of signal and noise processes which are satisfied in our test
case. Moreover there must not be correlations between signal and
noise, i.e. the noise has to be additive. This means that the input im-
age is S (i, j) = s(i, j) + N(, j), where s(i, j) is the uncontaminated
image and N(i, j) is the additive noise.

Thus, if we have the Fourier transform of a pixeled image,
namely S (/, m), the estimated image is S, m) = W(,m)S (I, m), in
which the Wiener filter is defined as

WL = ;A, (33)

1+ N

c¥
where we can substitute Eqs. (4) and (22) for signal and noise
respectively. We can see that when SNR = Cf'p / Nf > 1, the filter
is one, while for SNR <« 1 we have W, — 0. If we apply this
filter to our reconstructed potential image Figure 6.3, we obtain
Figure 8.1, which looks like a high-fidelity smoothed version of

Downl oaded from https://academ c. oup. com rmr as/ advance-articl e-abstract/doi/10. 1093/ mras/ st x2733/ 4563619
by Queen Mary University of London user
on 20 Novenber 2017



107 T T T 10.0 T
Theoretical Deflection ' . Estimator noisy image ---------
< [ --------- Discrete Estimator Noise Estimator De-noised image ---------
%p * Recovered Estimator Variance
IS
%, 10 £ El
s,
g
2 I N
7 5
3 100 E < 10
I w
B
g
z 107 4
a e
+ .
= ke
- *
o 1 > 3 107 . e . 0.1 . o
0,(deg) 10 10 10° 10 10° 100 1000 10000
& L L

8.1 De-noised estimated potential

8.2 De-noised Fourier square amplitude

8.3 Fidelities for estimated images

Figure 8. Left panel: the de-noised potential field estimator obtained by applying a Wiener filter to image 6.3. The recovered potential values have been scaled
by a factor 10° in order to improve the readability of the colour bar. Central panel: the recovered de-noised estimator squared amplitude in Fourier space (red
star points) compared to the input deflection field power spectrum (black solid line) and to the discrete estimator noise (blue dashed line). Right panel: the
fidelity of the Wiener de-noised estimated potential (blue dashed line) compared to the noisy one (red dashed line). The straight line with Fg(L) = 1 helps to

distinguish modes with good fidelity from the ones with bad fidelity.

the input image 6.1. This is more quantified in Figure 8.2, which
illustrates the recovered Fourier square amplitude of the image. We
can see that much of the noise have been filtered out and that the
image has been smoothed on small scales.

Note that it is possible to use fewer L-modes to reconstruct the
lensing potential instead of using a de-noising filter. The Weiner
filter just provides a systematic way of down weighting modes that
are dominated by noise. At z; = 8 it can be seen that the estimator
noise crosses the deflection field power spectrum at L < 300, so the
image effective resolution will be A@ > 51 arcmin.

4.1.2  Fidelity of the Reconstruction

In order to quantify the accuracy of the reconstructed images we
define the “Fidelity” F,(L) as

Fy(L) =

R -1
|¢L - ¢L|:| , (34)

||

the local fractional difference between the estimated ¢, and the true
potential ¢, at every mode L. Bigger fidelities correspond to better
reconstruction of the lensing potential. The resulting fidelities for
the estimated potential image Figure 6.3 and its de-noised version
Figure 8.1 are shown in Figure 8.3, in red and blue dashed lines
respectively. The straight line with F(L) = 1 helps to distinguish
modes with good fidelity from the ones with bad fidelity. Note how
the Wiener filter tends to reach the limit of S/N — 1 at L > 3000
or so. This happens because for modes that are dominated by noise,
(33) the signal power spectrum is too small, leading to F4(L) = 1.

The image fidelity improves in the intermediate range 300 <
L < 2000 because of the absence of reconstruction noise, while in
the noisy image the fidelity gets worse and worse as L increases.
Thus, the overall fidelity of the de-noised reconstructed potential is
bigger than 1 for almost all the modes involved in the reconstruc-
tion.

It is worth to remember that the forecasts presented here de-
pend on our rather simple model for reionization and the distri-
bution of HI at high redshifts, Section 2.2. If the true reionization
history varies a great deal from what we have assumed, for example

reionization is extended over a large redshift range'® or ends well
before z=8, then these forecasts will not be valid, since the estima-
tor will not be optimal. We will extend this work to more compli-
cated reionization scenarios in the future, and, for simplicity, we
keep assuming that EoR has been a uniform process for redshifts
around z; = 8.

4.2 Testing the Estimator

All the tests performed on the estimator will be described in this
section. For simplicity, we use the thermal noise power spectrum
with uniform density array distribution Eq. (30) in these tests and
use the SKA2-Low R2 survey strategy, with covering fraction
feov = 0.095. Using the more realistic thermal noise spectrum has
very little effect on the lensing reconstruction noise in this case so it
is sufficient for testing the estimator and gauging its dependencies
on important parameters.

4.2.1 Testing Dependency on the Surveyed FoV

In this section we study the dependency of the reconstruction’s per-
formance on the observed sky area. The FoV will affect the Fourier
space resolution A/, see Table 2. Nyq. changes in order to keep the
same Ly and Lyyq set in Section 3.3.2. Thus, the temperature and
potential images always have the same angular resolution as at the
beginning of Section 4.1.

The results for the three cases listed in Table 2 are presented in
Figure 9, where for each row, the input potential field, the recovered
pure estimator noise image and the recovered potential field are
shown. For case (a) we are able to recover a noisy version of the
input map shape; in this case a large number of available modes are
under the noise level. As we increase the map dimensions in cases
(b) and (c), more large scale modes become available and a better
image is recovered.

We measure the Fourier space modes square amplitude from
these recovered potential maps, as seen in Figure 10. The low-L
modes are the ones mostly involved in signal reconstruction. De-
spite the high signal-to-noise, there are few of them so the sample

10" Observations suggest that the EoR ended at least at redshifts z > 6
(Zaroubi 2013).
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Figure 9. Reconstructed potential images from a realisation of the input 21 cm source box with beam cut off L, = 13237 at z; = 8. Each one of the three rows
corresponds to the cases listed in Table 2. On the left panel we see the input potential field we wish to reconstruct. On the middle panel we see the estimator
noise image produced by our estimator without any input lensing signal. On the right panel we show the reconstructed potential using the contribution of 20
kp modes. For every case we used a SKA2-Low configuration with choices for observational time and bandwidth denoted as R2 in Table 1. The considered
thermal noise power spectrum models a uniform density array distribution. The potential values in these maps have been scaled by a factor 10 in order to
improve the readability of the colour bars.

variance is high in the power spectrum. We will see in Section 4.2.3

. . Qy Niige Al fsky
that the correct average is recovered over a large number of realiza-
tions. We see that the total reconstruction signal-to-noise does not (a) 5% %x5° 650 72 6.06x107*
change too much from case (a) to case (c) and thus is not strongly ®  10°x10° 1300 36 24210
dependent on the FoV.

o . (© 20°x20° 2600 18 9.7x107°
The last statement can be further tested considering the fideli-

ties of the three cases listed in Table 2 which are shown in Fig- Table 2. The three considered simulation settings for this study on FoV
ure 11. As we increase the map’s dimensions, going from case (a) dependency. For every case we have Loy = 13237, Lnyg = 2.5 X Leuts
(red dashed line) to case (c) (black dashed line), the fidelity of the zs = 8 and a SKA2-Low R2 survey strategy.

images does not considerably change. We get better images only

because bigger large scale modes are more available from case (a)

to case (c). To give a more quantitative idea about this, we report first three columns of Table 3. These are computed for the ranges
the number of modes n; that have Fidelity bigger than one in the L <200, 200 < L < 500, and 500 < L < 1000, and considering
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Figure 10. Recovered estimator Fourier space squared amplitudes for the considered settings listed in Table 2, corresponding to images Figures 9.3, 9.6, and
9.9 respectively. The potential values in these maps have been scaled by a factor 10 in order to improve the readability of the colour bars.
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Figure 11. The fidelity of the reconstructed lensing potential images as a
function of the multipole mode L. Red, blue, and black dashed lines are for
Table 2 cases (a), (b), and (c) cases, respectively. The telescope model is
SKA2-Low R2 and a noise power spectrum having a uniform array distri-
bution is assumed. The straight line with F4(L) = 1 helps to distinguish
modes with good fidelity from the ones with bad fidelity.

for each row the cases listed in Table 2. Then we report the total
number n, of simulated mode and the fractional number of modes
fi = ni/n for the L-ranges considered before. It is clearly seen
how the number of well reconstructed modes increases as larger
scale modes become available from case (a) to case (c) for the sin-
gle L-range. On the other hand, the fraction of modes in the con-
sidered ranges is always more or less constant, because the number
of modes in a range JL is weighted by the total number of modes,
which increases from case (a) to case (c), leading to almost constant
fidelities in all three cases.

If a sky mosaicking is performed to increase the number of
available modes over the ones allowed by the FoV the reconstructed
images will look more similar to the input potential field, but the
overall reconstruction quality is not really improved. We can get a
better image only because we are using bigger large-scale modes
which are over the noise level. This technique can especially be
used at lower redshifts, using SKA-Mid. We plan to explore this
case in future work.
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Figure 12. The recovered estimator variance (star points) in absence of
lensing signal compared to the discrete estimator noise (solid lines), since
(aLaz)/Qj = N} . Produced maps have Q; = 10° X 10°, Leye = 13237 and
the estimator is recovered with k)®* = 20 for z; = 8. We vary the distance
between our fixed Ly and the Nyquist frequency Lnyq by changing the ra-
tio b between the beam resolution and the resolution of the simulation. We
used a SKA2-Low R2 configuration and we assumed a noise power spec-
trum having a uniform array distribution.

4.2.2 Testing Aliasing Contamination

As discussed in Section 3.4.1, an important concern is the alias-
ing effect coming from the convolution performed in the real space
estimator (24). The aliasing of the slow estimator (21) is negligi-
ble so a comparison between the two estimators is a good tool for
determining how strong the aliasing effect is. We can visualise the
aliasing using the variance of the estimator. In absence of lensing,
we know that, because of Eq. (15), the relation (%) = QN7
has to be satisfied. We can see from Figure 12 that below a certain
ratio b between cut and Nyquist frequency, aliasing causes spuri-
ous power to be distributed over the simulated frequency range. In
order to avoid aliasing in our reconstruction simulation, we need to
have a Nyquist frequency that is at least 2.5X L. This is the reason
for Ab > 2.5A0. It can be seen how, for smaller values of this ratio,
the aliasing effect becomes more important.

The validity of the rule Lynyq > 2.5Lc can be investigated
for different redshifts. Setting z; = 7, even though the Universe is
unlikely to have been completely neutral at this time, the estima-
tor noise level is lower and we have L., =~ 14885. The signal-to-
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NL<200  M200<L<500  1500<L<1000 Rtot Jr<200 Sa00<L<500  f500<L<1000
(a) 10 31 53 211900  472x107°  146x10™* 25x10™
(b) 37 115 194 846300  4.37x107°  1.36x10™*  23x107*
(c) 133 464 731 3382600 3.93x 1075  137x10™* 2.16x107*

Table 3. The columns are the number of modes that have Fidelity bigger than 1 for L < 200, 200 < L < 500, and 500 < L < 1000, the total number of
available modes, and the equivalent fractional number of modes with Fidelity bigger than one for each of the considered L-ranges. Each row corresponds to

the three cases listed in Table 2.

noise is slightly higher than the z; = 8 case. The beam’s resolution
is higher, namely A ~ 1.03 arcmin. This means that we might
need larger grids to avoid aliasing, with Lxyq ~ 37165.56 and with
Nsige = 730, 1460, and 2920 pixels for field-of-views of the cases
(a), (b), and (c), respectively. If higher redshifts are considered, L.,
will be lower: for example at z; = 10, L., ~ 10855. More details on
behavior of the estimator’s noise at various redshifts will be given
in Section 4.3.

For the moment we limit this discussion to test aliasing for
simulated high redshifts. Thus, instead of keeping the same grid
dimension and change Ab, we have considered to fix the value for
the ratio b to b = 2.5 and used a smaller square grid with Ngg. =
450, considering z = 12 and L., = 9160. We have seen that the
resulting estimator power spectrum in absence of lensing signal is
weakly aliased with respect to the discrete estimator noise level. So
a value of Lyyq = 2.5L is not enough to ensure the estimator to
be aliasing-free, but b needs to be slightly higher. This is due to
the approaching of the characteristic beam scale L., to the one in
which the power spectrum begins to bend (see Figure 1 for clarity),
causing the presence of more power at scales closer to the Nyquist
frequency. Consequently for a smaller redshift like z ~ 6, a smaller
b is enough to avoid aliasing in reconstructed images.

4.2.3  Multi-Realisation Reconstruction

The estimator Eq. (24) must be unbiased after a large number of
realisations, i.e. the estimated potential field is equal to the true one
(¢ = (¢r)) while keeping the same realisation of the input lens-
ing field. Thus we tested the validity of this property by generating
N realisations of the input 21 cm source field. The estimator has
then been produced for each realisation as described in Section 4.1,
being careful of generating always different random realisations for
the thermal noises within every single source realisation. We are al-
ways using a power spectrum for the SKA2-Low R2 model assum-
ing a uniform array distribution. Then we summed these estimators
to produce the total one 3y é Lsim shown in Figure 13, for each
of the three cases listed in Table 2 and for Ny, = 1000. The re-
covered potential converges quite quickly towards the input one for
all of the considered FoVs. The reader can compare these images
with the input ones presented in Figures 9.1, 9.4, and 9.7. Case (c)
provides a better result using less realisations than case (a) because
of the higher number of available large-scale modes.

The total reconstruction noise decreases as N, increases.
Hence this simple test could also give us a preliminary idea about
the potential of what in this work we called multi-band detection.
By this we mean an estimated lensing potential measurement made
with a certain number of bandwidths each centered around several
source redshifts. These data collected in different redshift chan-
nels, can be stacked together in order to produce a low-noise re-
constructed image. To support this idea, let us explain what has

been displayed in the bottom row of Figure 13, where we show the
recovered Fourier space modes square amplitude of the total esti-
mator after Ny, realisations (@ ){@;)/€, (purple circles) and the
one resulting from the sum of every individual recovered variance
(a7 )/ (purple stars). The former converges to the input power
spectrum Eq. (4), because the estimator noise is averaged out when
several realisations are added and it is hence decreased by a factor
Ngm- The second quantity is instead converging to the sum of the
lensing signal plus the estimator noise, as expected from Eq. (15):
in this case only the sample variance error within every considered
L-bin decreases with respect to the one displayed in Figure 10.

In order to better appreciate the behavior pictured by the pur-
ple circles shown in the bottom row of Figure 13, we plot the re-
covered power spectrum of the total estimator for several realisa-
tions up to Ngyn = 100 in Figure 14. Here the noise statistically
decreases by a factor N,. Regarding multi-band detection, this
means that with only 10 bands we should be able to have a larger
number of modes above the noise signal in the intermediate range
100 < L < 1000. Therefore the same behavior could be expected
when multiple 5 MHz bands are stacked together to fit a given red-
shift range, as anticipated by the analytic estimates made in (Pourt-
sidou & Metcalf 2015) for their SKA-Low flat thermal noise model.
We note that the multi-realisation approach explored in this section
relies on a few crude approximations: the estimator noise will be
slightly different from band to band, being higher for high redshifts,
because noises, sources and L., depend on z. Moreover, the single
estimators need to be renormalised by the estimator reconstruction
noise in that band and weighted by the total-band estimator. This
topic will be discussed in Section 4.3, when a proper treatment for
this case will be performed.

4.2.4  Tests with Strong Lensing Toy Models

We have performed further tests in order to verify the validity of
our code; for example by computing the recovered 21 cm and noise
power spectra or the effective Gaussianity of the sources. In par-
ticular, we have checked our lensing simulation routines by apply-
ing various lensing models to our source field (in particular lensing
toy models like the Singular Isothermal Sphere (SIS) potentials or
Point Mass Potential) obtaining artifacts-free images and plausible
strong lensing effects in the lensed temperature map. Then, we used
these lensed maps to recover the input lensing potential. The esti-
mator in this strong regime gives interesting results, allowing us to
have further insights about the estimator itself and the weak lensing
assumption Eq. (1). In fact, the slope of the potential is recovered
correctly up to a certain scale, until the approximation of Eq. (1)
breaks down, and contributions from higher order terms are needed
to recover the input potential. At these scales the lensing gradient is
not small anymore, and such higher-order terms become more and
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Figure 13. Top: reconstructed images from Ns;j, = 1000 realisations of the input 21 cm source box for the three cases listed in Table 2. The potential values
in these maps have been scaled by a factor 10° in order to improve the readability of the colour bars. Botfom: the power spectrum of the overall estimator
image is displayed for every case, together with the averaged power spectrum over Ngim. We have used a SKA2-Low R2 configuration with a uniform array

distribution for the thermal noise power spectrum.
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Figure 14. The recovered Estimator power spectrum as the number of
source and noise realisations increases up to Ngm, = 100. This plot is pro-
duced for the small map cases, with Qg = 5°x5° and using a SKA2-Low R2
configuration with a uniform array distribution for the thermal noise power
spectrum.

more important, irrespectively of the magnitude of the temperature
gradient.

4.3 Multi-Band Reconstruction

Encouraged by the results obtained in Section 4.2.3 and consider-
ing the multi-band estimator described in (Metcalf & White 2009),

we performed a simulation involving several estimators computed
at different frequency (redshift) bands stacked togheter using the
channels available from the next generation 21 cm radio telescopes.
As shown in the last Section, the combination of multiple frequency
bands can aid the reconstruction of the underlying lensing potential,
by statistically lowering the estimator reconstruction noise level.
Here we will adopt the same SKA1 and SKA2-Low configurations
modelled with the non-uniform array distribution noise power spec-
trum Eq. (29) described in Section 3.3.2 and used to get the single-
band results obtained in Section 4.1. The investigated range of ob-
served redshifts is z. = 7—11.6, corresponding to a frequency range
of v, = 177.55 - 112.55 MHz.

4.3.1 Noise Weighted Total-Band Estimator

In this section we will introduce a combined multi-band noise
weighted estimator that can be applied to our simulated maps. Each
bandwidth Av is centered around a given source redshift z. within
the range Az. Pourtsidou & Metcalf (2015) calculated the lensing
reconstruction noise stacking 10 frequency bins of 8 MHz band-
width spanning the redshift range z. ~ 6.5 — 11 using SKA1-Low
and SKA2-Low parameters. This noise is lower than the one ob-
tained using a single band and shown in Figure 5, because the total
estimator noise is
| -1
NP = — 35
p Z v} (35)
This behaviour can be understood from the multi-realisation study
performed in Section 4.2.3: as we stack frequency bands, the 21 cm
source signal will be averaged out together with the thermal noises,

Downl oaded from https://academ c. oup. com rmr as/ advance-articl e-abstract/doi/10. 1093/ mras/ st x2733/ 4563619
by Queen Mary University of London user
on 20 Novenber 2017



107° R RARE RS N
——— Deflection Field .
777777777 Discrete Estimator Noise oo

i

,
107 Doy

1077

10°®

L(L+1)C*=,/(21), LIL+1)N°/(2m)

T

N NN
I
=00~
o

10°° M|
10 100

10000

M|
1000
L
Figure 15. The deflection field and the discrete estimator noise (dashed
lines) are shown for several redshifts, from z. = 7 to z. = 11.6, for a 5° x 5°
survey with Inin = 72. The adopted telescope model is a SKA2-Low R2, as
listed in Table 2, with k;‘i" =3and k;““ =20.

and the estimator noise will go down by a factor N,, the number of
stacked frequency bands. This is shown in Figure 14. The combined
discrete quadratic estimator is hence noise-weighted, namely

= NS R (36)
v NLv

where each single-band estimator Eq. (24) contributes for every fre-
quency band and multipole to the total-band map.

4.3.2 Frequency Dependencies

The redshift (frequency) dependence of L, and thermal noise
needs to be taken into account, when multiple frequency/redshift
bands are stacked. The higher the redshift, the higher the thermal
noise and the lower L, will be. This is shown in Figure 15, where
the discrete estimator noise is substantially varying in the redshift
range from z, = 7 to z. = 11.6, for a 5° X 5° survey with /,;;, = 72.
The adopted telescope model in this case is SKA2-Low R2 with
thermal noise power spectrum Eq. (29), kg‘i“ =3 and k™ = 20.

When the thermal noise is computed at different central fre-
quencies, apart from the explicit frequency-dependent terms, we
need to scale the baseline density n(U, v) for different frequencies,
as explained in Section 3.3, because its integral over visibilities has
to be constant, while minimum and maximum visibilities change.
Given a fiducial baseline density ns(U, v¢) at a fiducial frequency
Vs, We can write, up to first order, the scaling relation to any other
frequency as

_ Y vy
n(U,V) = 71’1/ U7,Vf s (37)

where U = D/A = Dv/c.

It is assumed in this work that the lensing signal is not sub-
stantially varying between the first source redshift and the last one.
Considering the deflection field power spectrum computed at dif-
ferent redshifts in Figure 15, we see that this approximation is valid
across a substantial redshift range. In this range it is also assumed
that Eq. (11) is valid and that our optimal estimator can be derived
for a Gaussian field, considering the entire hydrogen budget to be
fully un-ionised.

For our results here we will assume a redshift range z. =

7-11.6, corresponding to a frequency range of v. = 177.55-112.55
MHz. We have increased z,;, with respect to Pourtsidou & Metcalf
(2015) in order to be more conservative about the EoR ending pe-
riod (we will discuss this further in Section 4.3.5). In order to avoid
aliasing, the Nyquist frequency is set to 2.5L.y(z. = 7) = 37267
corresponding to a resolution of ~ 24.5 arcsec for a 25 deg” map.
For higher redshifts we keep this maximum frequency and we will
vary Ab = bA#6, so that the simulation resolution for all the bands
is set by the lowest redshift considered in the range. The range
Ze = 7 — 11.6 then corresponds to beams with resolutions going
from 1.02 arcmin to 1.62 arcmin.

Note that because of Equation (35), the upper limit of this red-
shift range will not influence the total estimator noise level, since
the estimator noise for z. > 11 turns to be considerably high. The
discussion over the adopted lower limit will be postponed to Sec-
tion 4.3.5.

As seen in Section 3.3, the FoV is frequency dependent. A
more complete description of the beam would indeed include a cut-
off at large scales induced by the PSF of the telescope as already
mentioned in Section 2.4. A real telescope PSF needs to be han-
dled numerically, since it can be a very complicated function for
radio telescopes like the SKA (Santos et al. 2015a). This means
that the estimator in Fourier space will have a different grid di-
mension at each band!!. While the lowest frequency band sets the
resolution of the reconstructed image, the highest frequency band
sets the total-band resolution in Fourier space through the FoV. The
range z. = 7—11.6 corresponds to different FoVs going from 10.24
to 25 deg?, which means Al = 112.5 — 72, respectively.

On the other hand the estimator noise level does not greatly
depend on the FoV (which sets the resolution in Fourier space), as
shown from comparing the estimator noise levels in Figures 16 and
15. As seen in Section 4.2, the quality of the lensing reconstruction
is almost unaffected by adding or leaving large scale-modes in the
considered redshift range, since having different FoV would only
add or subtract a few number of modes over the signal-to-noise
level (see Figure 11). However, a more complete beam expression
would cut any contribution coming from a FoV bigger than the one
set at zp'**. Thus, the general properties of the reconstruction do not
change too much if we use a fixed instead of a varying FoV through
the considered redshift range.

To get the multi-band results we therefore consider that the
FoV is set to be Q; = 5° x 5° across each band, and we will keep
assuming that the properties of the lensing and the telescope do not
change within a single band.

4.3.3 Stacking Bands

The number of stacked bands depends on the adopted bandwidth
which, for a given central redshift z., corresponds to a redshift
interval Az = (1 + z.)>Av/va;. Starting from the first band cen-
tered at z™", the lower central redshift limit, the following band
is found by decreasing the central frequency according to v.(z.) =
ve(2)) = ve(z.) — Av, where v(z) = v,;/(1 + z). The new central fre-
quency is thus extended between the limits Vipaxmin = V.. £ (Av/2).
These correspond to a new redshift interval Az = zpax — Zmin With
Zmaxmin = (V21/Vminmax) — 1. Hence the new central redshift is
2. = (Zmin + Zmax) /2. For example, considering Av = 5 MHz and

! In reality this would be true also within each frequency band, for each
k, mode.
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Figure 16. The multi-band discrete estimator noise for SKA1-Low (blue),
SKA2-Low (red), SKA1-Low with k;,“i“ = 3 (black), and SKA2-Low with
k,Ti“ = 3 (gold), with choices for observation time and bandwidth listed in
Table 1 and using the thermal noise power spectrum with non-uniform array
distribution. The explored redshift range goes from z = 7 to z = 11.6. The
simulated sky area is Q; = 5° x 5° and k,;** = 20. The RO survey strat-
egy results are not plotted because they produce an estimator reconstruction
noise level close to R2 one. The R1 configuration is on dashed lines while
the R2 is on dashed-dot lines.

7 < z. < 11.6, we can stack 14 bands in the frequency range
ve = 177.55 - 112.55 MHz.

Consider that for a RO survey strategy Av = 8 MHz 9 bands
can be stacked within the range z = 7 — 11.6. If we use a thinner
bandwidth, like Av = 3 MHz, this number increases to 22, reaching
66 stacked bands for Av = 1 MHz. The frequency band can be
chosen as thin as possible until effects due to correlations between
different Fourier modes show up. In Metcalf & White (2009) it was
found that the correlation between estimators at different frequency
bands is not significant if Av ~ 1 MHz or higher. This means that
the statistical properties of the 21 c¢m radiation field and noise can
be assumed as constant within a band. On the other hand, a very
thin band increases the thermal and estimator noises. Moreover,
the band choice poses limits on the maximum number of k, modes
we can detect within a given band as well, since k;“" = Av/dv,
where v is the frequency resolution of one channel. The values of
the adopted bandwidths in the considered survey strategies for this
work are listed in Table 1.

4.3.4 SKAI-Low and SKA2-Low Results

Resuming our considerations made in Sections 4.3.2 and 4.3.3, we
will consider a Q; = 5° X 5° survey area, which implies Al = 72.
Given the explored redshift range z = 7 —11.6, the smallest observ-
able redshift fixes the Nyquist mode to L ~ 37267, since Lyyq 2
2.5L¢y, with Lgy, = 14884.7, corresponding to Ab = bA6 = 1.02 ar-
cmin. Considering that at z,,x = 11.6, Ly, = 9430.89, we will vary
b from band to band, reaching the final beam resolution at z,,x of
Ab = 1.62 arcmin. For each band we used k™ = 20 modes and
Nside = 732

The computed multi-band estimator noise Eq. (35) is pre-
sented in Figure 16, for SKA1 and SKA2-Low R1 and R2 tele-
scope models including the power spectrum with non-uniform ar-
ray distribution for both detector and sky noise. The RO models is
again not displayed to enhance the cleanliness of the plot, since it

produces a result similar to the smaller bandwidth models. As in
Section 4.1, the effect of foreground contamination has been in-
cluded considering the estimator noise computed with k';i“ = 3.
SKA2-Low configurations already give good results in the single-
band case, as seen in Section 4.1, and for the multi-band the fore-
casts are improved by more than an order of magnitude (a factor
similar to the number of stacked bands). But the most interest-
ing result comes from SKA1-Low detections, whose reconstruc-
tion noise level allows for high-quality imaging of the reconstructed
lensing potential, with fidelity comparable to the one obtained for
a SKA2-Low single-band experiment. Increasing the observational
time from model R1 to model R2 causes the noise level to be de-
creased by nearly a factor 2.

Following the procedure described in Section 4.1 we pro-
ceeded to compute the estimated potential images excluding the
first 3 k, modes from the total-band estimator for each survey strat-
egy and frequency band, being careful to keep the realisation for the
21 cm source fixed. So, with the discrete estimator in one band @y, ,,
given by Eq. (24), we applied Eq. (36) to get the total multiband dis-
crete estimator for the potential field. As for the single-band results,
the resulting images are maps dominated by small-scale noise. Fig-
ure 17 shows the denoised maps computed following the Wiener
filtering procedure described in Section 4.1.1, which can be com-
pared to the input potential map in Figure 17.1. Here we have con-
sidered the SKA1-Low R1/R2 and SKA2-Low R1 models for our
discussion. The differences between the SKA1-Low images can be
barely noticed, mainly due to Wiener filter smoothing. On the other
hand, the SKA2-Low model seems to reproduce the input structures
with more accuracy than the two SKA1-Low models. The final res-
olution of the recovered images is set by the beam of the highest
redshift band, because the modes L > L, (z7**) belonging to other
bands are smoothed and not used for the total-band reconstruction.

The recovered square amplitude of Fourier modes is recovered
in Figure 17.5, where the star points follow the multi-band analo-
gous of Eq. (15) including the beam, namely

(5 (02)") = (cpr + N1) (38)

confirming the behavior studied in Section 4.2.3.

The fidelities for the examined SKA-Low models are dis-
played in Figure 17.6. Because of the Wiener filtering procedure,
we see that the fidelity is generally above 1, and obviously the
SKA2-Low model map has a better quality, explaining the accu-
racy with which the structures are reproduced in Figure 17.4. The
two SKA1-Low reconstructed potentials seem to have similar fi-
delities, but the R2 model produces a slightly better image than R1
one and reconstructs with more fidelity all the modes L < 1000, as
expected from Figure 16.

4.3.5 Limits on Lower Central Redshift

As stated in Section 4.3.2, the upper bound on the considered red-
shift range does not considerably affect the signal-to-noise because
the single reconstruction noises for z > 11 are very high, lead-
ing to negligible contributions in the v-sum performed in Eq. (35).
The estimator reconstruction noise level of the multi-band approach
mainly depends on the first central redshift that is chosen to de-
fine our total band. If EoR ended at earlier redshifts than our lower
limit or if EoR is so patchy to make hydrogen not uniformly ion-
ized at that lower redshift, a higher low-redshift range has to be
considered (unless we use a non-optimal estimator for reconstruc-
tion in this case). If z™" = 8 we should exclude 4 frequency bands
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Figure 17. From top to bottom and left to right: the input potential field, the de-noised estimators for SKA1-Low R1, SKA1-Low R2, and SKA2-Low R1
models, the recovered Fourier space square amplitudes for non-de-noised SKA1-Low R1 image, and the fidelities for the Wiener filtered images above. The
recovered estimators are computed for Ngge = 732, Q; = 5° x 5°, k;“i“ = 3, thermal noise model with non-uniform array distribution, and by combining
14 maps from the redshift range z = 7 — 11.5. Denoising is performed using the Wiener filter described in Section 4.1.1. The input potential values and the
estimated potential values have been scaled, in the images, by a factor 10 in order to improve the readability of the colour bars.

from the ones considered in Section 4.3.3 for R1 and R2 strate-
gies, while we should exclude 3 bands for RO case. If we consider
the SKA1-Low R1 case, this would lead to a 2.5 factor increase of
the reconstruction noise. These values would compromise the high-
fidelity reconstruction for SKA1-Low if foreground contamination
is serious and too many k, modes need to be discarded because of
spurious frequency correlations left from a given foreground clean-
ing technique. This point clearly proves the crucial importance of
investigating more realistic models of foreground removal and EoR
physics for the observations simulated in this work.

4.4 Lensing Power Spectrum Measurement

Giving analytic estimates of the recovered power spectrum or pro-
viding forecasts on cosmological parameters is beyond the scope
of this work, but it would be interesting to understand how accu-
rately the power spectrum can be measured with a Q; = 5° X 5°
survey like the one considered for a multi-band detection simulated
in Section 4.3 or with a Q; = 3.6° X 3.6° survey for a single-band
detection simulated in Section 4.1.

A 21 cm lensing survey covering a large enough fraction of
the sky would be able to measure the two-point statistics of the
underlying lensing field. The statistical error in the deflection field
power spectrum given by Eq. (4) is

2 .
A o — (0703 (03 3
cy \/—m+ DAL (Cio+ A7), (39)

where AL is the multipole binning, fuy, = Q[sr]/4n[sr] =
Q,[deg]?/41253[deg]” is the observed fraction of the sky, and N
is the discrete estimator reconstruction noise related to Eq. (22)
via N¥ = L*N}’. When multi-band measurements are considered,
the total band estimator reconstruction noise Eq. (35) is used in
Eq. (39). From Eq. (39) it can be noted that if the sky fraction fy,
is too low, the errors will be sample variance dominated. Moreover,
a high reconstruction noise would increase these errors at all scales
(especially at smallest ones), compromising the measurement of the
lensing power spectrum. As stated also by Pourtsidou & Metcalf
(2014), the larger observed fraction of the sky planned for SKA-
Mid will greatly improve these measurements, since the error is
o ;(1/ % and the signal is detected with a much higher signal-to-
noise with respect to SKA1 and SKA2-Low phases. This will al-
low for a competitive estimate of cosmological parameters from

such high-fidelity images.

4.4.1 Single-Band Constraints

Let us first discuss the single-band results shown in Figure 18.1, in
which the deflection power spectrum measurement errors are plot-
ted for the SKA2-Low R2 model with a 5 MHz bandwidth centered
around a redshift of z = 8. The SKA1-Low cases are not consid-
ered because the noise is well above the signal, as seen from Fig-
ure 5. In this case fu, = 3.14 X 10~* and the multipole resolution is
AL = 100. We assume that the foreground cleaning makes the first
3 k, modes unusable. The result is obtained by applying Eq. (39),
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Figure 18. First row panels: on the left the deflection field power spectrum and measurement error bars for a SKA2-Low R2 model, considering a single band
detection at z = 8, with fyy = 3.14 X 1074, AL = 100, and k;,“i“ = 3. On the center we see the fractional error for the same experiment (blue), compared to the
sample variance limit (red). On the right the deflection field power spectrum and measurement error bars for a SKA1-Low (red) and a SKA2-Low R2 (blue)
models, considering a multiple frequency band detection in the range z = 7 — 11.6, with fiy = 6 X 1074, AL = 72, and k;}ﬂ“ = 3. Second row panels: on the
left we see the fractional error for the same experiments, compared to the sample variance limit (orange). On the center the deflection field power spectrum
and measurement error bars for a SKA1-Low R1 (red) R2 (blue) models. On the right the same thing for SKA2-Low R1 (red) R2 (blue) models. The cosmic

variance limit result is everywhere represented by the orange bars and lines.

and this is compared to the errors given by the sample variance
limit for N& — 0.

To understand how accurate the power spectrum measurement
is, we can consider the fractional error from Eq. (39), namely

ce 2L+ 1 N
~ | faAL[1+ 2L 40
ACY” 2w ( o @0

where the ratio of the power spectra is the inverse of the signal-to-
noise ratio. For negligible estimator reconstruction noise we obtain
the sample variance fractional error limit

co 20 +1
~ A £ AL 41
ACZ“ 2 fky ( )

These are displayed in Figure 18.2, where we show the fractional
error ratio Eq. (40) compared to the sample variance fractional er-
ror Eq. (41). It can be noticed that a good fidelity image does not
correspond to an accurate measurement of the power spectrum even
in the region where the reconstruction noise is small compared to
the deflection field signal, being quite far from the sample variance
limit.

4.4.2  Multi-Band Constraints

For a multi-band measurement the results are quite different. In
Section 4.3 we have seen that a lower level for the estimator re-
construction noise can be achieved when multiple frequency bands
are stacked up and used simultaneously, even excluding some k,
modes because of foreground subtraction. Figure 18.3 shows the

measurement error bars obtained for our most conservative survey
strategy R1, for both SKA1-Low (red) and SKA2-Low (blue) tele-
scope models. As described in Section 4.3.4, we used 14 bands in
the redshift range z = 7 — 11.6, with fy, = 6 X 104, AL = 72,
and k‘,f‘i“ = 3. We can notice that even if in Figure 17.6 the images
fidelities were more or less comparable, here SKA2-Low shows far
better results with respect to the SKA1-Low model in measuring
the power spectrum. This can be better appreciated in Figure 18.4,
that shows the fractional error ratio of the above mentioned models,
compared to the sample variance limit result (orange). We can see
that a SKA2-Low survey could measure the power spectrum with
an accuracy comparable to the sample variance one for L < 1000.
Phase 2 of SKA-Low considerably improves the accuracy with re-
spect to Phase 1 also in the estimator reconstruction noise limited
regime at high L.

Changing the survey strategy by doubling the observational
time from model R1 to model R2 we do not see significant bene-
fits. In fact, from Figure 18.5 for the SKA1-Low model and from
Figure 18.6 for the SKA2-Low model we see that the improvement
is minimal. SKA1-Low is still far away from the sample variance
limit, while SKA2-Low gets a bit closer to it, but the total accuracy
is only slightly improved.

As already stated at the beginning of this section, the situation
can be improved by considering larger surveyed areas of the sky
(like the ones explored by SKA-Mid) in order to have a larger fi,.
Other possibilities consist in mosaicking different patches of the
sky in order to increase the FoV, or detecting the signal for different
patches in the sky. This latter observation method can increase the
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statistics of a given mode range by lowering the sample variance
error, especially in the intermediate L-range 200 < L < 1000. Such
a measurement can be done in a reasonable amount of time even
with the SKA1-Low aperture array, and we plan to compute the
constraints coming from this survey strategy in a future work.

Finally, further improvements in measuring the lensing power
spectrum can be achieved by considering the detected convergence
field in cross-correlation with CMB measurements, or, if lower red-
shifts are observed with the HI or galaxy density fields. Pourtsi-
dou et al. (2016) found that this last case considerably improves
the 21 cm lensing detection prospects and excellent results can be
achieved within frequencies observed by SKA-Mid and MeerKAT.
In general, cross-correlating the galaxy and HI densities at post-
EoR redshifts can be particularly useful for constraining HI and
cosmological parameters and alleviate issues arising from system-
atic effects that are relevant for one type of survey but not the other
(Masui et al. 2013; Wolz et al. 2016, 2017; Pourtsidou, Bacon &
Crittenden 2017).

4.5 Cluster Detection

Another application of our code for 21-cm lensing concerns the
possible detection of a galaxy cluster signal. To investigate this we
generated a deflection field using the GLAMER!? library (Petkova,
Metcalf & Giocoli 2014; Metcalf & Petkova 2014). This is a C++
library for performing gravitational lensing simulations using the
output of cosmological simulations or analytic lens models or com-
binations of them. We generated a NFW halo profile with density

Ps

P rlry(L+r/r)? 2
(Navarro, Frenk & White 1997), where the scale density p; is the
normalisation of this profile and 7, is a scale radius. These quan-
tities are often described in terms of the concentration parameter
¢ = rao/rs, With 1y being the radius of the sphere in which the
average density is 200 times the critical density and the enclosed
mass is M. Its value is

M200 )I/3[ QO -1/3

1+2)7'h! Kpe. (43
h—] M@ Q(Z) ( Z) PC ( )
The mass of the cluster is linked to the concentration parameter via
M = 47rr§p,r [In(1 + ¢) — ¢/(1 + ¢)]. The lensing potential produced
by the NFW profile is

Dyrw(0) = 4p,1,Z;, 8(6/6), (44)

where X, is the critical surface density, 8 = r/D(z) and 0, =
rs/D(z). The function g(x = 6/6;) is defined as

2arctan’ /&, (x> 1)

—2arctanh® /1=, (x< 1)

0, (x=1)

7200 = 1.63 X 1072(

1 X
g0 =3 In’ 3+ (45)

Following previous works like Giocoli et al. (2014) and
Sereno et al. (2015), we have simulated the deflection field pro-
duced by a plausible galaxy cluster placed in the centre of our
lensed 21 cm radiation map with mass M = 10 M, and concen-
tration ¢ = 7. This cluster is placed at z = 0.5, while the source is
atz; = 8.

This lensing source has been used to deflect our simulated

12" http://glenco.github.io/glamer/

21 cm intensity maps, as discussed in Section 3.2. Following the
procedure described in Section 4.1 and modeling a SKA2-Low R2
experiment, we applied these deflected maps to the estimator Eq.
(24). We find that the NFW cluster under consideration (with a few
arcseconds Einstein radius) is basically undetectable because the
recovered signal is totally consistent with the estimator reconstruc-
tion noise. Analysing the input deflection field power spectrum, we
found that, even for a multi-band detection constructed by stacking
bands from z. = 6.5 to z. = 12, this is well below the estimator
reconstruction noise level by four orders of magnitude. This result
agrees with the one obtained by Kovetz & Kamionkowski (2013)
for a lower redshift (z = 7). Perhaps observations beyond SKA
at lower frequency and/or higher resolution might make detecting
clusters possible.

It would be interesting to study this detection at a lower red-
shift such as z ~ 1 — 3, where x5 # 1 and point source signal rep-
resents an important contribution to 21 c¢cm source. For this reason
we will need to take into account non-negligible Poissonian source
terms in our estimator. We could indeed place in random positions
more realistic clusters in our simulated map, in order to detect the
total signal coming from them, but big improvements are not ex-
pected, since at those redshifts the reconstruction signal-to-noise is
lower for each mode. This case will be studied in future work.

5 CONCLUSIONS AND FUTURE OUTLOOK

In this work we have seen how 21 cm lensing can be a leading
cosmological probe during the next decade. Using the forthcom-
ing observations from the SKA and other radio telescopes, a huge
amount of cosmological information can potentially be extracted
over a wide range of redshifts, in order to constrain the standard
ACDM paradigm, and help us understand the nature of the dark
sector of our Universe. The innovative technique of Intensity Map-
ping treats the 21 cm brightness temperature fluctuations as a con-
tinuous three-dimensional field, opening up the possibility of using
alternative analysis methods similar to those successfully applied
to the CMB, and, given the narrow channel frequency resolution,
measuring redshifts with excellent precision.

We investigated the potential offered by the weak gravitational
lensing of the 21 cm brightness temperature fluctuation field, fo-
cusing at a typical EoR redshift (z = 8) in which the modelled
HI is fully ionized. For this purpose, we implemented a simula-
tion pipeline capable of dealing with issues that can not be treated
analytically, like the simulation of a full telescope beam, the non-
uniform visibility space coverage, the non-linearity of the lensing
source field, and the discreteness of visibility measurements.

With the simulation code built in this work it will be possible
to simulate the weak gravitational lensing of 21 cm field at post-
EoR redshifts, by taking into account the discreteness of the point
sources and including it as an additive discrete Poisson noise to
a clustering Gaussian three-dimensional signal. This allows for an
improvement of the reconstruction signal-to-noise.

Moreover, in the theoretical and numerical framework estab-
lished in this work, it is possible to include and investigate other
complicated issues regarding our ignorance about the reionization
process history, like the non Gaussianity of the 21 cm source in
the considered EoR redshift range. In fact, it is very likely that EoR
was a non-homogeneous process expanded over a considerable red-
shift range, and the detected signal strongly depends on the num-
ber density of ionized regions which are causing inhomogeneities
in 21 cm temperature signal that is not possible to investigate an-
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alytically. Another important non-analytic issue our code is de-
signed to handle concerns foreground subtraction techniques. With
the pipeline developed in this work we can implement foreground
contamination and study how foreground removal techniques can
affect the accuracy of our results. These methods would indeed pro-
duce residual noises and cause cross-correlations among different
frequencies, and their influence can be treated only numerically.

By taking advantage of the 21 cm source signal division into
multiple statistically independent maps along the frequency direc-
tion, we have demonstrated how the lensing mass distribution can
be reconstructed with high fidelity using a three dimensional opti-
mal quadratic lensing estimator in Fourier space. This would pro-
vide a great opportunity to correlate mass with visible objects and
test the dark matter paradigm.

Considering the current SKA plans, we studied the perfor-
mance of the quadratic estimator for detections aimed to observe
EoR redshifts, for different observational strategies and using a
thermal noise model which takes into account a realistic SKA-Low
density distribution of the stations. These noise models have been
added to simulated lensed 21 cm brightness temperature fluctuation
maps, produced by interpolating on the grid the lensed positions
of the temperature maps. To accomplish this task we followed the
weak lensing assumption widely used in the CMB case, which is
valid for the 21 cm field as well at the scales considered in this
study.

We successfully implemented the 3D Fourier space quadratic
estimator in our simulation code, taking into account the smoothing
effect caused by the beam of the telescope (set by the baseline max-
imum dimensions) and the discreteness of visibility measurements,
paving the way for future numerical studies aimed to investigate
more realistic issues. We showed that the discrete 21 cm estimator
can be employed by using a single frequency band or by combining
multiple frequency band measurements as well.

We found that Phase 1 of the SKA-Low interferometer could
obtain high-fidelity images of the underlying mass distribution only
if several bands are stacked together, covering a redshift range from
z="Tto z = 11.6 and with a total resolution of 1.6 arcmin. We also
implemented a simple de-noising procedure in order to filter out
the small-scale noise which is likely to strongly contaminate the
estimated signal. Phase 2 of SKA-Low, modelled in order to im-
prove the sensitivity of the instrument by at least an order of mag-
nitude, should be capable of providing reconstructed images with
good quality even when the signal is detected within a single fre-
quency band. In this case the reconstructed image has a resolution
of 1.15 arcmin at z = 8, within a field of view of 13 deg?.

Considering the serious effect that foregrounds could have
on these detections (by making the first few k, modes unusable),
we discussed the limits of these results as well as the possibil-
ity of measuring an accurate lensing power spectrum. In the case
of multi-band detection of the lensed 21 cm signal made with an
SKA2-Low telescope model we found constraints close to the sam-
ple variance ones in the range L < 1000, even for a small field of
view such as a 25 deg? survey area. Good constraints have also been
found for SKA1-Low in multi-band detection, and for SKA2-Low
in single band detection.

We finally explored the possibility to detect a cluster lensing
signal coming from redshift z = 0.5 with a mass of M = 103 M,
but we found its signal to be overwhelmed by the estimator recon-
struction noise by several orders of magnitude, going well below
the saturation limit of the noise imposed by sample variance also
for multi-band analysis. These results could be improved if differ-
ent patches of the sky are observed to decrease the sample vari-

ance of the larger-scale modes, or if the data coming from the lens-
ing power spectrum measurements are cross-correlated with the
ones coming from CMB. If lower redshifts are observed, the cross-
correlation with galaxy surveys data can be used to better constrain
the power spectrum accuracy.
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APPENDIX A: FAST QUADRATIC ESTIMATOR DERIVATION

In this appendix we will provide an explicit derivation'? for Eq.(24), found by applying to beamed 3D 21 cm case what can be found on other
works already cited on this paper. Our starting point is the quadratic estimator expression, namely

— NL¢ WWr, [L L Cu, + L (L~ b CliL’k’y] T, T (A
kp 1-L k,

e T T
s Lkp Cl.kpCl—L,kp

oL

with C,Tkp = [W)]? (C Iy T lekl; f) + Nf,f; and the estimator reconstruction noise NZ’ given in Eq.(22). In order to recover a beamed expression
for the faster estimator of Section 2.3.1, we can rewrite Eq.(A1) in a smarter way:

p N? iy AW Cry, Tray Wi T ny, 10— DLW Crog T p, W,ﬁ,kp} ")
L= ~55" : - .
2Q; kp 1 CZk,, Cl];L,kp CIT—L,k,, CIT,k,,
Now, if we define the following small-scale filtered fields
WiT 1 WiCr, T
Fiay = —L,  Grgy = ——2, (A3)
Cl,k,, Cz,kp

our estimator will be

. N , ) _ .

b =~ L)+ Y Y G, T 1y + 10~ D Grora, | T, | (Ad)

N kp 1

Let us consider the first I-sum for a given k, mode. We can see that it is equivalent to a convolution in Fourier space and, for the convolution
theorem this can be written as a product of two dual-complex space functions when the non-hermitian filtered fields are transformed into the
dual complex space:

Z iAG11, T 1.1, = Z ilGiy, [Z e"’“‘”'m?m,kp] = Z TR Z TG, = Z M i (VimGm, ) (AS)
l

l m m l m

Analogously proceeding, one can show that the second sum in A4 can be analogously treated:

i@-DGirs,| Fir, = D Fuu, [Z ei<tL>~mvmgm,k1,} = D (VonGmg,) D € sy = Y e E T o, (VinGims, ) -
l

m m l m

(A6)
So in the end, we find for every independent k, mode
. N? . N? _
b= g (L) ; ; T s, (VmGrms,) + oty (VG )| = e L) ; ; T (H o, + H )
P P
= - N (L)- Z Z LR (Hom,) (A7)
= ZQS 1 aya e mkp )
P

where the subscript k, means that every complex-space Fast Fourier Transform involving these filtered fields has to be computed for a fixed
k, contribution. These FFTs hence produce a real vectorial field (]_{mA,k,, = ‘He,k,,, so we recover our final form for the beamed quadratic
estimator presented on Eq.(24):

NE
Q,

GL)- ) Hey,. (A8)

X

b= -

Hence, this Fourier space estimator is basically the sum of the FFTs performed over k, modes of the multiplication between the small-scale
filtered field F,y, 1, and the gradient of the other filtered field G.m «, added to its conjugate. The estimator appears to be real by construction,
since one can easily see that (?52 = ¢_r. Thus, the optimal estimator ¢, is the divergence of the Hermitian vectorial field 1., summed for
all the k, modes and normalized by its Fourier space variance, as one can notice from the presence of the operator iL in Eq.(24). This result
may depend on the way the derivatives are implemented in the code. Generally spectral derivative are accurate enough, but fourth-order finite
differences methods can provide slightly different results. Moreover one needs to include a V2 constant factor in order to take into account
the different normalization between FFTs and classic DFTs.

13 Interested readers are advised to consult (Anderes 2013) if they want to see how this procedure can be demonstrated for generic estimators in 2D case, like
polarization-polarization or polarization-temperature estimators.
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