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Trypanocidal drugs: mechanisms,
resistance and new targets
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The protozoan parasites Trypanosoma brucei and Trypanosoma cruzi are the
causative agents of African trypanosomiasis and Chagas disease,
respectively. These are debilitating infections that exert a considerable health
burden on some of the poorest people on the planet. Treatment of
trypanosome infections is dependent on a small number of drugs that have
limited efficacy and can cause severe side effects. Here, we review the
properties of these drugs and describe new findings on their modes of action
and the mechanisms by which resistance can arise. We further outline how a
greater understanding of parasite biology is being exploited in the search for

novel chemotherapeutic agents. This effort is being facilitated by new .-

research networks that involve academic and biotechnology/pharmaceutical
organisations, supported by public—private partnerships, and are bringing a
new dynamism and purpose to the search for trypanocidal agents.

Trypanosomatids are flagellated protozoan
parasites belonging to the order Kinetoplastida.

therapies is a priority. However, drug discovery
is  high risk and expensive, and

They can infect diverse hosts, ranging from
plants through to higher mammals. In humans,
Trypanosoma brucei and Trypanosoma cruzi are
responsible for two major tropical diseases:
human African trypanosomiasis (HAT) and
Chagas disease, respectively. There are 11
million people infected and more than 150
million at risk. These diseases represent a
major public health problem in regions of the
world least able to deal with the associated
economic burden. With no immediate
prospect of wvaccines, and no satisfactory
drug treatments, the requirement for new

the development of agents designed specifically
to target trypanosomal diseases is not perceived
to be commercially attractive. Until recently,
interest from large pharmaceutical corporations
has been minimal, with most research and
development occurring in academic settings.
As a consequence, trypanosome infections are
now referred to as ‘most neglected diseases’.
This review focuses on how existing
trypanocidal therapies mediate their activity,
the problems associated with their usage and
current areas of research that offer hope of new
treatments.
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Human African trypanosomiasis

The problem

Insect-transmitted parasites of the T. brucei species
complex are the causative agents of HAT (also
known as African sleeping sickness) and nagana,
a disease common in domesticated animals in
Africa. The parasite was first identified in 1895
by David Bruce while studying cattle (Ref. 1),
and later from human blood by Forde and
Dutton (Ref. 1). HAT is considered endemic in 36
countries of sub-Saharan Africa, with over 50
million people at risk (Refs 2, 3). Localised
epidemics can arise readily following political
and socioeconomic disruption, killing tens of
thousands of people. As a result of coordinated
surveillance and treatment programmes, the
number of people dying from HAT has recently
fallen to ~70 000 annually (Ref. 4). However, in
regions of Angola, the Democratic Republic of
Congo and southern Sudan, the mortality rate
exceeds that of malaria and HIV/AIDS (human
immunodeficiency virus and acquired immune
deficiency syndrome).

HAT pathology has two distinct phases: the early
(or haemolymphatic) stage and the late (or
encephalitic) stage (Refs 2, 3). In the early stage,
parasites are found in both the blood and the
lymph systems. Symptoms begin with irregular
fevers, headaches and joint pains, but can develop
to generate other complications including
enlarged lymph glands and spleen, local oedema
and cardiac abnormalities. When parasites cross
the blood—brain barrier, the disease then enters
the late stage. Here, a series of neurologically
related symptoms are observed, including severe
headaches, alterations to the sleeping pattern,
personality change, mental function impairment
and weight loss. Without treatment, patients
eventually fall into a coma and die.

HAT is caused by two distinct subspecies of
T. brucei, each having separate geographical foci
and differing pathologies (Ref. 2). In West and
Central Africa, T. b. gambiense is prevalent, while
elsewhere in sub-Saharan Africa, T. b. rhodesiense
predominates. These subspecies are responsible
for the West and East African forms of the
disease, rtespectively. The main difference
between the two infections is the rate of
progression from the blood/lymphatic stage
to the cerebral stage. In  West African
trypanosomiasis, this takes months and hence
the infection is termed chronic. By contrast, with
East African trypanosomiasis the infection is
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more acute, with progression occurring in as
little as 1-3 weeks. In both cases, the disease is
zoonotic, although with T. b. gambiense, humans
are the main reservoir Wild and domestic
animals, especially cattle, are the major reservoirs
with T b. rhodesiense. A third closely related
subspecies, T. b. brucei, is nonpathogenic to
humans, but is responsible for many cases of
nagana in cattle. This infection is of huge
veterinary and economic importance and has had
a profound effect on agricultural development
in Africa.

T. brucei is an extracellular pathogen, with a
surface coat composed almost entirely of a single
antigen, the variant surface glycoprotein (VSG).
The parasite avoids immune destruction by a
process of antigenic variation, which involves
the periodic switching of VSG expression to
another of the antigenically distinct surface
glycoproteins encoded by the large repertoire of
VSG genes. As a result of this constant

switching, vaccine development against this

parasite is not thought to be a realistic prospect.

Treatment of HAT

Treatment of African sleeping sickness is
dependent on the subspecies and the disease
stage. When parasites are restricted to the
blood/lymphatic system, pentamidine is used
against T. b. gambiense, and suramin against T. b.
rhodesiense (Table 1). Neither compound can
cross the blood-brain barrier effectively, and
these drugs are therefore of little use against
cerebral disease. The treatments available for
this lethal stage are restricted to melarsoprol
and eflornithine. Melarsoprol is the only drug
active against both T. brucei subspecies once the
central nervous system (CNS) has been
accessed (Table 1). However, it is a highly toxic
arsenical, and drug resistance is a major issue
(Ref. 5). Eflornithine, in contrast, is relatively
safe, but this compound is effective only against
West African trypanosomiasis and the cost of
treatment is problematic in underdeveloped
countries (Table 1). Currently, Phase III clinical
trials are evaluating the efficacy of a
combination therapy consisting of eflornithine
with nifurtimox against the cerebral stages of
West African trypanosomiasis (Refs 6, 7, 8). This
has proved very effective and has recently been
recommended by the World Health
Organization (WHO) as a front-line treatment
for infections with T. b. gambiense.
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Table 1. Problems associated with current drugs for human African trypanosomiasis
Drug Use

Suramin Effective against early stage of T. b. rhodesiense

Pentamidine Effective against early stage of T. b. gambiense

Melarsoprol Effective against late stage of both HATs

Eflomithine Effective against late stage of T. b. gambiense

Abbreviations: HAT, human African trypanosomiasis; T. b., Trypanosoma brucei.

Problem

Ineffective against early stage of T. b.
gambiense and late stage of both HATs

Ineffective against early stage of T. b.
rhodesiense and late stage of both
HATs

Toxic (kills up to 5% of patients)
Resistance observed in field

Ineffective against late stage of T. b.
rhodesiense Difficult dosing scheme,
and hospitalisation costs

Suramin

Suramin was first used against HAT in 1922
following observations that trypan dyes had
trypanocidal activity (Refs 9, 10). This
symmetrical  polysulphonated naphthalene
derivative of urea (Fig. 1) is negatively charged
at physiological pH. The drug is typically
administered to patients as an intravenous
injection with a low dose on day 1 followed by
higher amounts on days 3, 5, 11, 23 and 30
(Ref. 11) (Table 2). Its anionic charge prevents it
from freely crossing biological membranes,
hinders transport across the blood-brain
barrier and promotes binding to a variety of
other molecules. Suramin is extremely stable in
humans, shows no transformation in the liver,
and is only slowly excreted in urine. These
properties contribute to the relatively long half-
life (Ref. 12) (Table 2).

Based on size and charge, it had been assumed
that transport of suramin into trypanosomes occurs
through bulk-flow uptake. However, in the
presence of blood serum proteins, the drug
transport rate exceeds the level attainable by this
passive process alone (Ref. 13). As suramin can
readily complex with blood serum proteins, it
has been suggested that the drug enters T. brucei
through receptor-mediated endocytosis, possibly
bound to low-density lipoprotein (LDL) (Refs 14,
15). However, analysis of endocytosis components
indicates that suramin and LDL uptake are not
directly linked, with the drug entering the
parasite via an unidentified mechanism (Ref. 16).

Little is known about how suramin is active
against trypanosomes. Suramin-resistant strains

of T. brucei and Trypanosoma evansi, a blood-
borne animal parasite, have been selected in
vitro, but the mechanisms underlying this
phenotype have not been established (Refs 17,

18). By virtue of its negative charge, suramin

can hinder uptake of serum proteins, or inhibit
endocytosis and key enzymes in metabolic
pathways such as glycolysis (Refs 13, 19, 20).
Since suramin affects multiple targets this,
coupled with its low toxicity, may explain why
it has been used to treat early-stage East
African trypanosomiasis for nearly 90 years.

Pentamidine

Pentamidine belongs to the aromatic diamidine
class of antiprotozoal agents and was first used
against T. b. gambiense in 1937, following
observations that the related compound
synthalin had potent antitrypanosomal activity
(Refs 9, 10). Treatment involves daily
intramuscular injections for 7-10 days (Ref. 11)
(Table 2). It is readily metabolised by the
mammalian cytochrome P450 system (but not
by the trypanosomal system) and excreted in
urine, and therefore has a relatively short half-
life (Refs 21, 22, 23) (Table 2).

Pentamidine is positively charged. As a result,
it binds easily to blood serum proteins, does not
readily diffuse across biological membranes, and
passes into the cerebrospinal fluid very slowly
(Ref. 24). Because the drug must accumulate to
high intracellular levels before having a
trypanocidal effect (>1 mm), it is probable that
active transport mechanisms are necessary for
pentamidine activity. Uptake of diamidines by
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Figure 1. Structure of drugs used against trypanosomal diseases. The highlighted regions correspond to
motifs described in the text. For suramin, urea (blue), napthalenes {green) and sulphonates (red) are shown.
In pentamidine, the aromatic diamidine (blue) is outlined. For melarsoprol, the arsenic (red) and melamine
ring (blue) are highlighted. The blue regions in nifurtimox and benznidazole correspond to the 5-nitrofuran or
the 2-nitroimidazole group, respectively.

bloodstream T. brucei involves the P2
aminopurine permease (ThAT1), a transporter

pentamidine transporters (ThAT1 and HAPT)
have been generated in the laboratory,

that also mediates melarsoprol uptake (Refs 25,
26, 27). However, T. brucei TbAT1-null mutants
were found to retain sensitivity to pentamidine,
whereas they were resistant to other diamidines
such as berenil (Ref. 28). These results can now
be explained following the characterisation of
other uptake activities, including a high-affinity
pentamidine transporter (HAPT) and low-
affinity pentamidine transporters (LAPTs)
(Refs 26, 29). As pentamidine uptake by
T. brucei occurs by several routes, it has been
speculated that resistance by reduced drug
uptake is unlikely to arise in a clinical context.
However, parasites deficient in two of the

demonstrating that such events can occur
(Ref. 30). In addition, recombination between
resistant strains in the field is a possibility.

The mode of action for pentamidine is not fully
understood. It can interact with anionic molecules
and readily bind to DNA (Ref. 31). Analogues
of pentamidine accumulate in the nucleus and
kinetoplast, a disc-shaped structure containing
the mitochondrial genome (Ref. 32). It has
been proposed that pentamidine inhibits
mitochondrial topoisomerase II activity, leading
to the linearisation of the kinetoplast
DNA and the generation of dyskinetoplastic
trypanosomes (Ref. 33). Exposure of parasites to
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pentamidine analogues appears to confirm this
observation, as prolonged treatment leads to
breakdown of the kinetoplast and its eventual
disappearance (Refs 31, 32). However, it has
been argued that formation of dyskinetoplastic
parasites may not be sufficient to cure an
infected mammalian host, and the mechanism
of  pentamidine  fransport into  the
mitochondrion has yet to be determined
(Ref. 34). Thus, diamidines may exert their
trypanocidal ~ activities ~ through  other
mechanisms, possibly via inhibition of T. brucei
S-adenosylmethionine decarboxylase or Ca®*-
ATPase activities, by affecting mitochondrial
membrane potential, or by acting to uncouple
oxidative phosphorylation (Refs 35, 36, 37, 38).
Intriguingly, pentamidine analogues accumulate
in organelles lacking DNA, possibly
acidocalcisomes, and this possible mode of
action warrants further investigation (Ref. 32).

Melarsoprol

Melarsoprol (MelB) was introduced in 1949 and is
currently the only treatment used against the late
stage of both forms of HAT (Ref. 39). This trivalent
melaminophenyl arsenical (Fig. 1) functions as a
prodrug, with activation leading to the formation
of melarsen oxide (MelOx). MelB is highly toxic
and causes reactive encephalopathy in
approximately a fifth of patients, and has a
mortality rate of 5% (Ref. 40). Additionally, it is
responsible for other side effects including
convulsions, fever, loss of consciousness, rashes,
bloody stools, nausea and vomiting. The drug
is administered as an intravenous injection with
a number of different schedules (Ref. 41)
(Table 2). For T. b. rhodesiense infections, a
regime consists of one injection daily over 3—4
days, followed by a rest period of 7-10 days;
this is then repeated twice more. Based on
pharmacokinetic properties, an alternative
scheme is now routinely used for T. b. gambiense
infections, consisting of a daily injection for 10
days (Refs 11, 42). Although this regime can
lead to adverse skin reactions, it is as effective
as the previous schedules and significantly
cheaper: less drug is used and hospitalisation is
shorter. ~ Additional problems are also
encountered because MelB has poor solubility
in water, alcohol or ether, and the drug is
normally dissolved in propylene glycol. As a
result, MelB can only be given using glass
syringes and the injections are very painful,

expert reviews

in molecular medicine

with patients frequently reporting a burning
sensation during administration.

Accumulation of melaminophenyl arsenical
drugs by trypanosomes occurs through the P2
aminopurine permease ThAT1, and loss of this
activity has been implicated in drug resistance
in both laboratory and field isolates (Refs 5, 28,
43, 44). The transporter was identified using
competition studies, which demonstrated that
uptake of purine nucleosides occurs by two
distinct activities (Ref. 43). One transport
system (designated P1) functions as a general
purine nucleoside transporter, and a second
(TbAT1) carries adenosine and its nucleobase
adenine. MelB and MelOx hinder adenine
uptake through the latter mechanism.
Comparison of TbAT1 substrates has identified
a common amidinium-like motif (Refs 45, 46,
47, 48). This pattern has now been incorporated
into several novel chemical structures, some of
which  display considerable trypanocidal
activity (Refs 46, 49, 50, 51, 52). Intriguingly,
TbATI-null mutants are only threefold more
resistant to MelB and MelOx than controls,
significantly lower than the levels of resistance
reported in laboratory-selected cells adapted to
grow in the presence of arsenical drugs (Refs 5,
53). This has led to the proposal of alternative
uptake routes, with HAPT being a likely
candidate (Refs 28, 30, 54). The involvement of
this pentamidine transporter in arsenical uptake
stems from observations that sequential loss of
TbAT1 followed by HAPT generates parasites
with a greater resistance to MelOx than the
ThAT1-null mutant (Ref. 30).

Arsenical drugs lyse T. brucei rapidly, but their .

modes of action are not fully understood. MelB
inhibits a range of glycolytic and pentose
phosphate pathway enzymes (Refs 55, 56), and

can readily form stable adducts with
trypanothione, the glutathione—spermidine
conjugate that is the major thiol in

trypanosomes (Refs 57, 58). These adducts can
block activity of trypanothione reductase (TR),
the parasite-specific enzyme that maintains
trypanothione in its reduced form (Refs 58, 59).
However, in all cases the rapidity with which
the drug kills parasites cannot be explained by
the systems so far implicated in its mode of
action. For example, in the time taken for MelB-
treated cells to lyse, ATP levels have not been
sufficiently depleted to kill the parasite
(Ref. 58). In addition, only a small fraction of
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trypanothione is actually conjugated to the
arsenical, and T. brucei with reduced TR levels
are as sensitive to MelOx as controls (Ref. 60).

In some regions, the relapse rate to MelB is up to
30% (Ref. 11). The emergence of resistance is of
concern, given that the drug is the only cheap
treatment available against the late stage of
both forms of HAT. In a significant number of
cases, MelB-nonresponsive parasites retrieved
from HAT patients were found to contain
mutations in TbAT1, suggesting that resistance
correlates with reduced drug uptake (Ref. 5).
However, ThbAT1-null mutants do not display a
high level of resistance (Ref. 28), although it has
not yet been established whether other
transporters such as HAPT contribute to this
phenotype. In other organisms, multidrug
resistance is often mediated through active
efflux mechanisms involving ABC transporters.
Analysis of the T. brucei genome data suggests
that the parasite possesses 22 potential
members of this protein class (Ref. 61).
Overexpression of one of these, TOUMRPA,
results in tenfold resistance to MelB (Ref. 62).
This protein is a putative thiol-conjugate
transporter and it has been postulated that
TPMPRA functions by removing arsenical/
trypanothione moieties from the cell. However,
its role in mediating resistance in a clinical
context is open to debate (Ref. 63).

Eflornithine
Originally developed as an anticancer therapy,
eflornithine (prL-a-difluoromethylornithine) was
first used to treat late-stage West African
trypanosomiasis in the early 1980s (Ref. 64)
(Fig. 1). It quickly gained the nickname
‘resurrection drug’ for its ability to cure and
revive comatose patients. However, despite
being relatively safe, usage is restricted as a
result of the difficult dosing scheme (Ref. 65):
eflornithine is administered under medical
supervision by intravenous infusion in four
large doses daily for 7-14 days (Ref. 11)
(Table 2). One explanation for the high
concentrations of drug needed to cure the
disease is poor transport across the blood-brain
barrier (Ref. 66). Despite these problems,
eflornithine is now recommended as the front-
line treatment for late-stage West African
trypanosomiasis (Refs 65, 67, 68, 69).

In mammals, eflornithine enters cells by
passive diffusion, a mechanism that may
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operate in bloodstream T. brucei (Refs 70, 71,
72). However, as uptake by trypanosomes is
temperature sensitive and follows Michaelis—
Menten-type kinetics, it could be carrier-
mediated, possibly by amino acid transporters
(Ref. 73; M. Barrett, pers. commun.). Once in
the parasite, the drug functions as an
irreversible inhibitor of ornithine decarboxylase
(ODC), the rate-controlling enzyme in
polyamine  biosynthesis (Ref. 74). The
interaction between T brucei ODC and
eflornithine has been extensively studied and
the mechanism of drug selectivity has been
determined (Refs 75, 76). It stems from the
differential stability of the parasite ODC (half-
life ~18h) and mammalian ODC (half-life
~20min) (Refs 75, 77, 78). When eflornithine
irreversibly binds to the mammalian enzyme,
the resultant complex is rapidly degraded and
replaced with newly synthesised ODC. By
contrast, the T. brucei eflornithine-ODC
molecule is relatively stable and the enzyme
slowly replaced. Thus, the level of active ODC
is effectively decreased, leading to a cessation
of putrescine formation. Eventually, parasites
stop growing and the nondividing cells are
cleared by the immune system.

Chagas disease
The problem
Chagas Disease (or American trypanosomiasis) is
caused by T. cruzi. This is a zoonotic infection
spread by blood-feeding triatomid (or kissing)
bugs. The parasite can infect a wide range of

mammals including dogs, cats, monkeys,
rodents, ground squirrels, opossums and ..
armadillos. It is found throughout Latin

America, where as many as 8—11 million people
are infected, resulting in over 15 000 deaths per
year (Refs 2, 3, 79). Normally, the disease occurs
in rural areas where triatomid bugs transmit
parasites from animals to humans. Recently, as
a result of human migration, the disease has
also been found in urban areas. This, in
combination with secondary routes of infection,
such as through blood and organ
transplantation, has resulted in Chagas disease
becoming a problem in the USA, which has an
estimated 100 000 infected people (Ref. 80).
Chagas disease has three distinct phases: acute,
indeterminate and chronic (Refs 2, 3). The acute
stage commonly affects children, with up to 5%
of diagnosed cases resulting in death. During
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this phase, parasites multiply as intracellular
amastigotes in macrophages and tissue cells at
the site of the insect bite. Although generally
asymptomatic, the acute stage can present
clinical signs in the form of fever, skin lesions
(chagoma), oedema, enlarged lymph nodes and
conjunctivitis (Romana’s sign). These can
appear 1-6 weeks after infection. In the
indeterminate stage, patients are asymptomatic
and parasites largely disappear from the
bloodstream, although they can be detected in
cardiac and smooth muscle. In this phase,
patients remain a reservoir of infection. In most
cases, the disease does not advance further.
However, 30% of individuals eventually
progress to the chronic stage, often 10-20 years
after the initial infection. The long-lasting,
symptomatic chronic phase frequently presents
with extensive cardiac and digestive tract
pathologies and in these instances prognosis is
poor. Reactivation of latent Chagas disease in
HIV/AIDS patients has also been observed,
sometimes with unusual clinical
manifestations, including CNS involvement
(Ref. 81).

In Latin America, the economic impact of
Chagas disease outweighs the combined effects
of other parasitic diseases, including malaria
and leishmaniasis. Although there is no
effective cure for the chronic disease, it is
possible to halt transmission through the
elimination of the insect vector. In 1991,
governments of the six Southern Cone countries
launched an initiative to control Chagas
disease, which has had remarkable success,
with transmission halted in previously endemic
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regions (Ref. 82). New programmes, aimed at
repeating this accomplishment in other areas of
Latin America, are now under way (Ref. 79).
However, even if all transmission could be
blocked, Chagas disease would remain a public
health problem for many years.

Chagas disease chemotherapy

Treatment of Chagas disease is controversial
because the two available drugs, nifurtimox and
benznidazole, are toxic, may be carcinogenic,
and have poor efficacy against the chronic stage
(Refs 83, 84, 85). Additionally, the proposition
that antiparasitic drugs are appropriate for
treating the chronic stage has been questioned,
given the belief that there is a large autoimmune
component associated with this phase of the
disease (Ref. 86). Recently, a series of reports
using murine models has shown that parasite
persistence is both necessary and essential for
development of Chagasic heart disease, that
drugs prevent development of chronic
cardiomyopathy, and that
pathogen clearance results in a stable protective
T cell memory (Refs 87, 88, 89, 90, 91). These
studies demonstrate that chemotherapeutic
intervention against any stage of Chagas disease
is an appropriate course of action.

Nifurtimox and benznidazole have been used
to treat the acute phase of Chagas disease for
more than 40 years. Both compounds are orally
administered, and because they are metabolised
by the cytochrome P450 system (Refs 92, 93, 94),
multiple doses have to be given daily (Refs 2,
95) (Table 3). A course of treatment lasts 1-4
months for nifurtimox and 1-2 months for

Table 3. Pharmacokinetic properties of drugs against Chagas disease

days
penetration

Abbreviation: Gl, gastrointestinal.

Drug Absorption Distribution Metabolism Excretion Refs

Nifurtimox 8-10 mg/kg/ Rapidly absorbed Metabolised in No 2,95,
day in three oral from the Gl tract liver; half-life3 h significant 253
doses for 30- elimination
120 days

Benznidazole 5-10 mg/kg/ Rapidly absorbed Metabolised in Urine and 2, 95,
day in two oral from the Gl tract; liver; half-life faeces 254
doses for 30-60 44% binds to 12h

protein; good tissue
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Figure 2. Reduction of nitrofurans by nitroreductases. Type | nitroreductases (NTRs) (blue background)
mediate a two-electron reduction of the conserved nitro group on the nitrofuran drug to generate the
unstable nitroso derivative. This then undergoes further reduction to the amine form via a hydroxylamine
intermediate. The hydroxylamine can also react to form a nitrenium ion, which then promotes DNA damage.
Type Il NTRs (lilac background) mediate a one-electron reduction of the conserved nitro group, leading to
the formation of an unstable nitro radical. In the presence of oxygen, this can react to form superoxide
anions (O3). This process, known as futile cycling, also results in the regeneration of the drug.

benznidazole. In many cases the recommended
drug schedules are not completed, often as a
result of side effects, resulting in considerable
scope for the development of resistance.

Both nifurtimox and benznidazole are
nitroheterocyclic compounds. They contain a
nitro group linked to a furan or imidazole ring,
respectively (Fig. 1). These agents function as
prodrugs and must undergo enzyme-mediated
activation to have cytotoxic effects, reactions
catalysed by nitroreductases (NTRs). The
precise mode of action of nitroheterocyclic
drugs in trypanosomes was originally unclear,
with two hypotheses proposed.

The first stemmed from observations that
activation of either drug can lead to the
formation of reactive oxygen species (ROS)
(Refs 96, 97, 98) (Fig. 2), a process that involves
a one-electron reduction of the drug by a type II
NTR activity. In the presence of oxygen, this
promotes superoxide anion production and
drug regeneration, a process known as futile
cycling (Fig. 2). To date, several trypanosomal
flavin adenine dinucleotide (FAD)-containing
enzymes, including TR, lipoamide
dehydrogenase and cytochrome P450 reductase

have been implicated in nifurtimox reduction
(Refs 98, 99, 100). This mode of action was
considered attractive because trypanosomes
were thought to lack many of the ‘classical’

eukaryotic enzymes responsible for ROS
detoxification (Refs 101, 102). However, far from
being deficient in such activities,

trypanosomatids actually possess a series of
novel oxidative defence pathways (Refs 103,
104, 105, 106). The only direct link between
drug-induced ROS formation and trypanocidal
activity stems from gene deletion experiments
on T. brucei SODBI, which encodes a
superoxide dismutase. Parasites lacking SODB1
are  hypersensitive to nifurtimox and
benznidazole (Ref. 107). Functional analysis of
other oxidative defence pathways has failed to
find a link with the trypanocidal activity of
nitroheterocyclic drugs (Refs 104, 108, 109, 110,
111, 112, 113).

The second hypothetical mechanism was based
on the demonstrated antimicrobial activity of
nitrofurans (Refs 114, 115). Here, flavin
mononucleotide (FMN)-containing, oxygen-
insensitive type I NTRs mediate a series of
two-electron reductions of the conserved nitro
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group, through nitroso, to a hydroxylamine
derivative, using reduced nicotinamide adenine
dinucleotide  (phosphate) [NAD(P)H] as
the source of reducing equivalents. The
hydroxylamine can react to generate nitrenium
| cations [that| promote DNA breakage (Refs 116,
117) (Fig. 2). In addition to this, the highly
electrophilic intermediaries may affect other
molecules in the cell. The decrease in free thiol
content observed in nifurtimox- and
benznidazole-treated T. cruzi could be due to
conjugation of the thiol with the nitroso form of
the drugs, thus affecting the redox status of the
cell (Ref. 118). Two trypanosomal enzymes with
this type I activity have been reported. The first
is a prostaglandin F2a synthase (PGFS),
although this can only mediate two-electron
reduction of nifurtimox under anaerobic
conditions (Ref. 119). The second, for which
there is now strong experimental evidence, is a
type I NTR (Ref. 120). This class of enzyme had
been regarded as specific to bacteria, and absent
from eukaryotes; trypanosomes are now a
major exception.

T. cruzi resistance to nifurimox and
benznidazole is encountered throughout Latin
America and can be readily mimicked through
continuous culturing of the parasite in the
presence of drug (Refs 120, 121, 122). Until
recently though, the molecular basis for
resistance had not been elucidated and appeared
complex. Parasites selected for nitroheterocyclic
drug resistance often displayed significant
karyotypic alterations (Refs 120, 121), with the
resulting effects on global gene expression
masking the precise mechanism(s) (Refs 123, 124,
125, 126, 127, 128, 129). A link between the
activity of a trypanosome type I NTR and cross-
resistance to nifurtimox and benznidazole has
now been established in T. cruzi and T. brucei. In
both cases, deletion of the corresponding gene
generates parasites resistant to nitroaromatic

compounds, while overexpression confers
hypersensitivity ~ (Ref.  120).  Furthermore,
laboratory selection of nifurtimox-resistant

T. cruzi gives rise to parasites that lack one of the
chromosomes containing the NTR gene. This
phenotype can be complemented by
reintroduction of the gene. These experiments
clearly implicate NTR as a key player in the
activation of both drugs and demonstrate the
potential for resistance by a simple mechanism
(Ref. 25). The extent to which this occurs in the
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field remains to be established. Another possible
resistance mechanism involving drug
detoxification has also been proposed (Ref. 120).
Overexpression of a trypanosomal cytochrome
P450 reductase (CPR) confers resistance to
benznidazole. However, given that
nitroheterocyclic drugs are readily metabolised by
hepatic CPRs to generate toxic products, it is
unclear how this mechanism would mediate
resistance within the parasite. This warrants
further attention to dissect the precise details
underlying the pathway.

Future perspectives in chemotherapy

The research landscape

As outlined, new treatments for HAT and Chagas
disease are urgently needed in the respective
regions. This will require a major international
effort since important specifications must be
fulfilled by any new drugs targeted at these
diseases. In the case of HAT, the priority is a safe,
oral, short-course therapy for late-stage T. b.
gambiense CNS infection. The requirement for
active compound to reach parasites within the
brain is a major issue in drug design, since the
blood -brain barrier impedes the passage of most
small molecules. For Chagas disease, a drug able
to arrest or alleviate the symptoms of the chronic
stage of the infection is the challenging goal.
Progress in both areas has been limited, in part,
by the lack of good animal models that
accurately mirror the course of disease in
humans. However, the outlook for research is
improving with schemes such as the Drugs for
Neglected Diseases Initiative (DNDi) and the
Consortium for Parasitic Drug Development
(CPDD), as well as the engagement of
organisations such as the Bill & Melinda Gates
Foundation and the Wellcome Trust. In addition,
academic and biotechnology/pharmaceutical
organisations, facilitated by public-private
partnerships, are building portfolios of projects
based on validated targets and high-throughput
screening of chemical libraries. These approaches
build on significant advances that have been
made in our understanding of trypanosome
biology and genetics, including the completion of
the T. brucei and T. cruzi genome projects in 2005
(Refs 131, 132). The development of sophisticated
and flexible genetic manipulation systems,
particularly for T. brucei (Refs 133, 134), has also
been an important factor, in that it facilitates rapid
analysis of gene function and target validation.
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New targets for chemotherapy
There are now a large number of trypanosomatid
enzymes and/or biochemical pathways that have
been identified as targets for drug development.
Below are listed some examples that are currently
under investigation in this context.

Sterol biosynthesis

Analysis of T. cruzi sterol composition revealed that
the parasite contains ergosterol, a molecule
previously identified as a component of fungal
cell membranes (Ref. 135). Candidate genes
encoding enzymes in the ergosterol biosynthetic
pathway have been identified in T. cruzi, with
many of these having now been characterised
and chemically validated as drug targets
(Refs 136, 137, 138, 139, 140, 141, 142). The
pathway is present in T. brucei, but this parasite
can also scavenge cholesterol from the host
bloodstream (Ref. 143). Several inhibitors of the
fungal sterol biosynthetic pathway have been
found to have activity against T. cruzi. These
include compounds that block sterol 14«-
demethylase (CYP51), such as triazoles (Refs 144,
145, 146), imidazoles (Refs 136, 140, 147, 148,
149), indomethacin amides (Ref. 142) and a
novel structure (C155-0123) based on the
moiety N-[4-pyridyl]-formamide (Refs 141, 150).
A number of these are reported to display
curative  activity ~ against  acute/chronic
Chagas disease, with some able to eradicate
nifurtimox- and benznidazole-resistant T. cruzi
from mice, even in immunosuppressed hosts
(Refs 146, 151, 152).

The allylamine derivative terbinafin, and
heteroallyl 5-nitrofuranes, which are both
inhibitors of squalene epoxidase, are also active
against T. cruzi (Refs 153, 154). Terbinafin is of
particular interest, as it potentiates the activity
of the triazole CYP51 inhibitors (Refs 153, 155).
Inhibitors of lanosterol synthase (oxidosqualene
cyclase) have been reported to have good in
vitro activity against T. cruzi, but in vivo effects
have yet to be identified (Refs 138, 156). Some
azasterols have been shown to target sterol
methyltransferase activity, whereas others do
not (Refs 157, 158, 159, 160, 161, 162). These
latter molecules do however still display
trypanocidal  activity, even against T. b
thodesiense, an organism able to scavenge sterols
from its surrounding environment, indicating
that these compounds may target other essential
parasitic enzymes (Refs 160, 161, 162, 163).
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Cysteine proteases

Several trypanosomal cysteine proteases (CPs)
have been identified and biochemically
characterised, including the cathepsin L-like
enzymes TcCATL (cruzipain) and TbhCATL
(rhodesain or brucipain) (Refs 164, 165, 166,
167), and the cathepsin B-like CPs TcCATB and
TbCATB (Refs 168, 169, 170, 171) (nomenclature
in accordance with Ref. 172). Validation of these
enzymes as drug targets is under way.
Chemical validation of both cathepsin L-like
CPs and TbCATB has resulted in the
identification of inhibitors that block enzymatic
function, with several compounds displaying
trypanocidal activity in vivo and parasitological
cure in animal models (Refs 150, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183). For
TcCATL and THCATL, structural data have
informed the molecular mechanisms underlying
some of these enzyme-inhibitor interactions
(Refs 184, 185, 186, 187, 188). Genetic validation
of the T cruzi CPs has not been reported,
presumably because of their essential nature,
although overexpression of TcCATL does
enhance metacyclogenesis (Ref. 189). Intriguingly,
RNA interference (RNAi) experiments in T. brucei
have demonstrated that THCATB, but not
ThCATL, is essential for parasite viability
(Refs 171, 190). However, in murine models,
trypanosomes with reduced TbCATL are less
efficient at crossing the blood-brain barrier and
parasitaemia is suppressed, leading to the
suggestion that anti-TPCATL inhibitors may
function by preventing the onset of late-stage
HAT (Ref. 190).

Thiol metabolism

Trypanothione is a low molecular weight thiol
unique to trypanosomes (Refs 57, 102, 191).
Therefore, enzymes involved in its metabolism,
especially TR and trypanothione synthetase, are
good candidates for drug design (Refs 102, 192,
193). Many of these systems have been
genetically validated as drug targets (Refs 60,
106, 111, 191, 194, 195, 196, 197), whereas
chemical inhibitors studies have focused
primarily on TR (Refs 99, 198, 199, 200, 201, 202,
203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219); several compounds
blocking TR activity have been identified, with
some displaying trypanocidal activity. A
significant aid to such TR inhibitor studies is the
availability of a three-dimensional structure
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(Refs 201, 220, 221, 222, 223). This has facilitated
high-throughput virtual enzyme-ligand screens
that then guide the synthesis of candidate
compounds (Refs 224, 225, 226). The structures of
several other enzymes involved in trypanothione
metabolism have now been elucidated and it is
envisaged that this resource should assist in the
identification of inhibitors (Refs 227, 228, 229).
However, despite considerable efforts, no
inhibitor targeting trypanothione metabolism has
yet entered clinical trials.

Polyamine biosynthesis

The use of eflornithine against HAT has prompted
the characterisation of other components of
polyamine biosynthesis (Ref. 64). In T. brucei,
several of these enzymes have been
biochemically characterised (Refs 35, 230, 231,
232, 233) and shown to be essential for parasite
viability (Refs 74, 233, 234, 235). Compounds
targeting these activities have been identified
(Refs 35, 236, 237, 238, 239, 240), some of
which cure T. brucei-infected mice (Refs 241,
242, 243). Of these, the S-adenosylmethionine
decarboxylase irreversible inhibitor MDL 73811
is the most potent, although it is rapidly cleared
in rodent models (Refs 241, 244). Recently, a
stable derivative, Genz-644131, has been
developed that overcomes these problems and
shows considerable promise in the treatment of
East African trypanosomiasis (Refs 245, 246).

Bridging the gap until the development

of novel drugs

There are currently no novel classes of
chemotherapeutic agents undergoing trials
against late-stage HAT or chronic Chagas disease.
As noted by Bernard Pécoul, Executive Director
of DNDi, ‘No new drugs for stage 2 [late]
sleeping sickness are expected in the next five
years, so there is an urgent need to develop new
treatments based on currently available drugs,
especially through combinations’ (http://www.
msfaccess.org/media-room/press-releases). Given
this scenario, the evaluation of combinatorial
therapies is important, especially in the short
term. Evaluation of cotherapies using existing
drugs has several other advantages: it could
delay emergence of drug resistance to the
parental compounds, it may allow a reduction in
drug dosage (thereby minimising toxicity while
maintaining efficacy), and it could streamline
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three  trypanocidal  agents  (melarsoprol,
eflornithine and nifurtimox) have recently been
trialled against West African trypanosomiasis,
with one cotherapy (nifurtimox-eflornithine)
showing particular promise in terms of safety and
efficacy (Refs 6, 7, 8, 247). Follow-up studies at
different geographical locations have confirmed
the potential of this combination, resulting in
NECT (nifurtimox—eflornithine  combination
therapy) being added to the Essential Medicines
List of the WHO (Refs 6, 7, 8, 247).

Another well-tried approach to improving
chemotherapy is to investigate derivatives
related to drugs already in use. An example of
this is parfuramide, an orally available prodrug
based on furamidine, a diamidine with
trypanocidal activity (Refs 248, 249, 250). This
compound did reach Phase III clinical trials
against early-stage HAT and was shown to have
good efficacy. However, a retrospective Phase 1
trial in South Africa required by the US Food

and Drug Administration revealed
nephrotoxicity in a small number of the
volunteers.  Currently, these unexpected

findings are being investigated. In other studies,
several nitroheterocyclic derivatives have been
shown to have considerable trypanocidal
activity (Refs 49, 50, 51, 52). Notable among
these is fexinidazole, an orally administered 5-
nitroimidazole that displays trypanocidal
activity against both HAT subspecies, has little
toxicity in animal studies and can cross the
blood-brain barrier. This has resulted in
fexinidazole entering clinical development with
the ultimate goal of using it to target both
stages of HAT. The precise mode of action of
nitroaromatic =~ compounds is  currently
unknown, but they may undergo activation
involving a type I NTR (Ref. 120). Further
dissection of this activity in terms of substrate
specificity will provide a valuable resource for
designing the next generation of NTR-
activatable nitroheterocyclic drugs.

Conclusion
Although several drugs are available for use
against HAT and Chagas disease, none is
satisfactory. Each has limited efficacy, resistance
is an increasing problem, dosage regimes can be
complex and drug administration requires
medical supervision. There has been significant
progress in resolving the mechanisms by which

these frypanocidal drugs operate and in
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identifying how resistance might arise. In addition,
advances in our understanding of basic parasite
biochemistry and genetics have led to
identification of a large number of potential drug
targets. New funding initiatives, prompted by
the recognition that research on these debilitating
neglected diseases has long been under
resourced, now provide an opportunity to exploit
these findings and improve the range of treatments.
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Further reading, resources and contacts

The World Health Organization and The Centres for Disease Control and Prevention websites provide up-to-
date information relating to trypanosomal diseases:

http://www.who.int/
http://www.cdc.gov/

Trypanosomal genome sequence data can be accessed at:

http://www.sanger.ac.uk/Projects/T_brucei/
http://www.genedb.org/genedb/tcruzi/

http://tritrypdb.org/tritrypdb/
{continued on next page)
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Further reading, resources and contacts {continued)

Not-for-profit organisations involved in helping combat trypanosomal infections include Drugs for Neglected
Diseases Initiative, Bill & Melinda Gates Foundation and the Wellcome Trust:

http://www.dndi.org/
http://www.gatesfoundation.org/Pages/home.aspx
http://www.wellcome.ac.uk/
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