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Abstract

The asymptotic bias and variance of a general class of local polynomial estimators of M-
regression functions are studied over the whole compact support of the multivariate covariate
under a minimal assumption on the support. The support assumption ensures that the vicinity
of the boundary of the support will be visited by the multivariate covariate. The results show
that like in the univariate case, multivariate local polynomial estimators have good bias and
variance properties near the boundary. For the local polynomial regression estimator, we es-
tablish its asymptotic normality near the boundary and the usual optimal uniform convergence
rate over the whole support. For local polynomial quantile regression, we establish a uniform
linearization result which allows us to obtain similar results to the local polynomial regression.
We demonstrate both theoretically and numerically that with our uniform results, the common
practice of trimming local polynomial regression or quantile estimators to avoid �the boundary
e¤ect�is not needed.
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1 Introduction

Recent work illustrate the practical relevance of correcting the boundary bias of kernel estimators.

For example, Hickman and Hubbard (2015) demonstrate that standard kernel procedures used in

the estimation of auction models may not be able to uncover important features due to boundary

bias. In the context of regression discontinuity design (RDD), estimating the parameters of interest

involves the estimation of two conditional expectations or conditional quantiles at the discontinuity

point(s), so su¤ers from the boundary e¤ect if kernel estimators are used. It is well known in the

literature that theoretically one must deal with either the small denominator problem or the bound-

ary bias for semiparametric estimators and test statistics involving averages of kernel estimators

over all sample points. One way to address boundary e¤ects is to use boundary kernels as applied

in Hickman and Hubbard (2015). This solution is simple to implement in the univariate case but

can become burdensome in the multivariate case where it may require estimation of the support or

the support is of complicated form. See for instance Müller and Stadtmüller (1999) or Bouezmarni

and Rombouts (2010) for the case of a known support.

Local polynomial estimators are known to have better boundary properties than the popular

kernel estimators� their bias order is the same for interior and boundary points. This could alleviate

the afore-mentioned technical and practical problems with kernel estimators. Work in both RDD

and semiparametric estimation and inference using local polynomial estimators have started to

appear, see e.g., Altonji, Ichimura, and Otsu (2012), Aryal, Gabrielli, and Vuong (2014), Bravo and

Jacho-Chávez (2011), Hoderlein, Su, White, and Yang (2015), Qu and Yoon (2014), Su and Ullah

(2008), and Su and White (2012) for estimation and inference in semiparametric and nonparametric

models; and Hahn, Todd, and Van der Klaauw (2001), Porter (2003), Frandsen, Frölich, and Melly

(2010), Imbens and Zajonc (2011), and Oka (2009) for the estimation in RDD. However, these

work are either limited to the univariate case or circumvent potential boundary issues by trimming

or focusing interest on an inner subset of the covariate support. Notable exceptions are Banerjee

(2007) and Kong, Linton, and Xia (2010) who average over the whole support (unit hypercube)

of a multivariate covariate to estimate, respectively, regression average derivatives and an additive

quantile speci�cation. More theoretical work in this direction are Ruppert and Wand (1994), Gu, Li,

and Yang (2015), and Chen and Wu (2013) who deal with pointwise bias and variance expressions

for local polynomial regression estimators.

Two important properties of local polynomial estimators are crucial to their successful appli-

cations in Econometrics: a precise characterization of their boundary properties including the bias

and variance and a uniform asymptotic linear representation. For univariate covariate, bound-

ary bias and variance expressions are well known, see Fan and Gijbels (1996). For multivariate

covariate, they become complicated. The only general paper that deals with boundary bias and
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variance for multivariate covariates is Ruppert and Wand (1994). Under the boundary assumption

(A4) of their paper, Ruppert and Wand (1994) establish expressions of bias and variance of local

polynomial regression estimators at the boundary points. Speci�cally, Ruppert and Wand (1994)

assumption (A4) considers a boundary point x@ belonging to a convex neighborhood C such that
infx2C f (x) > 0, where f (�) is the probability density function (p.d.f.) of the covariate. Imbens

and Zajonc (2011) apply results in Ruppert and Wand (1994) in the context of RDD with multi-

ple forcing variables. The local assumption (A4) of Ruppert and Wand (1994) seems di¢ cult to

extend to allow for uniform estimation in the neighborhood of the support boundary. The uniform

results of Kong et al. (2010) are speci�c to hypercube supports which, as the half spaces support

considered in Gu et al. (2015), may be too restrictive in practice. We propose instead a uniform

version of Chen and Wu (2013) which accounts for general boundaries.

As seen from Guerre (2000), what matters for consistent estimation is to have �enough� ob-

servations near the estimation location, a condition which involves the geometry of the support in

a more subtle way and is �exible enough to cover uniform estimation. The �rst contribution of

this paper is to provide expressions for bias and variance of a general class of multivariate local

polynomial estimators of M-regression functions, including both regression and conditional quantile

functions under weaker support assumptions than (A4) in Ruppert and Wand (1994). Speci�cally,

our support condition does not require the support of the covariate to be connected and allows it

to have holes. Under the new support condition, we show that the asymptotic order of the bias and

variance of the local polynomial estimators of M-regression functions are not a¤ected by boundary.

The weaker support condition is made possible by our novel application of the Newton-Kantorovich

Theorem1 to local polynomial estimation. The new approach is in line with White�s (1982) ap-

proach and uses a pseudo true value to center the local polynomial estimator. Because the pseudo-

true value minimizes the expectation of the objective function and satis�es a key centered score

condition, it provides a more natural centering than the partial derivatives of the function to be

estimated, as in Fan and Gijbels (1996) or Fan, Heckman, and Wand (1995) and the vast majority

of the local polynomial literature. The Newton-Kantorovich Theorem is then used to study the

bias, which is de�ned here as the di¤erence between the pseudo true value and the partial deriv-

atives. The �rst-order variance of the estimator can be de�ned using the usual sandwich formula

taken at the pseudo true value. An interesting �nding is that the bias expression may not depend

on the estimation method, being for instance identical for regression or quantile local polynomial

estimators.

Our results for the bias and variance of multivariate local polynomial estimators have immediate

applications in RDD with multiple forcing variables. First, the result for regression could be used

1We refer interested readers to Gragg and Tapia (1974) for a complete statement of the Newton-Kantorovich
Theorem and to Lemma 7.2 in Section 7 of this paper for the part used in this paper.
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to relax Assumption (A4) in Ruppert and Wand (1994) adopted in Imbens and Zajonc (2011) in the

context of RDD with multiple forcing variables. In addition, our result for the conditional quantile

could be used to extend the estimator of quantile treatment e¤ect in RDD with a univariate forcing

variable (see, e.g., Frandsen, Frölich, and Melly, 2010; Oka, 2009), to allow for multiple forcing

variables.

The second contribution of this paper is to establish asymptotic normality and uniform con-

sistency over the whole support for local polynomial estimators of both regression and conditional

quantile functions. A simple consistent estimator of the asymptotic variance is also proposed for

both models. This requires to establish a new uniform linearization result for local polynomial

quantile regression which holds over the whole support. In sharp contrast to Corollary 2, ii) in

Masry (1996) which is concerned with multivariate covariates whose support is the entire Euclid-

ean space and is uniformly valid over a compact subset of the support, our results deal directly with

multivariate covariates with compact supports and are uniformly valid over the whole supports.

Although the order of bias and variance are not a¤ected by boundary, a qualitative conclusion

of our results is that the variance may nevertheless signi�cantly increase near the boundary as well

documented in the univariate case. The intuition is that the small denominator problem of the

Kernel estimation method is not speci�c and should a¤ect any nonparametric methods. Estimating

a function in a narrow area of the support can only be based on few observations so that a high

variance should be e¤ected. Hence trimming to avoid high estimation variance may make sense in

practice. This issue is investigated through a small simulation experiment which considers testing,

additive and single index speci�cations. It suggests that although the small denominator problem

cannot be completely ruled out for a simple unit square support, the impact of trimming is mostly

negative with small potential improvements. This is especially true for testing problems where

trimming may decrease the power against some standard alternatives, as well as against more

speci�c boundary alternative which will be poorly detected.

The rest of this paper is organized as follows. The next section introduces the set-up, a general

class of local polynomial estimators, and the motivating examples. Section 3 presents our results for

the asymptotic bias and variance for the class of local polynomial estimators in Section 2. Section

4 establishes asymptotic normality and uniform convergence of the local polynomial regression over

the entire support. A uniform linearization result for the local polynomial quantile regression is

also derived in Section 4. Section 5 presents results from our simulation experiment. Section 6

o¤ers concluding remarks and Section 7 collects technical proofs.

To close this section, we introduce some notations that will be used throughout the rest of this

paper. Let bsc be the lower integer part of the real number s, that is the unique integer number
such that bsc < s � bsc + 1. In what follows, k�k stands for the Euclidean or a vector norm and

V (x; r) = fz; kz � xk � rg is the closed ball with center x and radius r. When M is a matrix,
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kMk = Tr1=2 (M 0M) is the Frobenius norm of M . For symmetric matrices A and B, A � B means
that A� B is a positive matrix. The indicator function I (X 2 A) takes value 1 when X lies in A

and 0 otherwise.

2 M-Regression, Multivariate Local Polynomial Estimation, and
Motivating Examples

This section �rst introduces a general multivariate M-regression and its local polynomial estimator.

It then reviews several examples including the RDD with multiple forcing variables in Imbens

and Zajonc (2011), consistent model speci�cation testing, additive models, and average derivative

estimation, where estimation of a M-regression either at the boundary or the entire support is

needed.

Consider a univariate dependent variable Y and a d-dimensional covariate X. We assume that

the support of X, denoted as X , is a compact set with a boundary B. Let � (�) be a loss function
and de�ne the associated M-regression of Y on X as

� (X) = argmin
�2R

E [� (Y � �) jX] : (1)

It is assumed that � (X) is the unique minimizer of E [� (Y � �) jX]. When � (t) = t2, � (X) is the
regression function E [Y jX] while when � (t) = (1� �) tI (t � 0) � �tI (t > 0) for some � 2 (0; 1),
� (X) is the �th quantile of the conditional distribution of Y given X. The �th expectile of Newey

and Powell (1987) corresponds to � (t) = (1� �) t2I (t � 0) + �t2I (t > 0).
The pth order local polynomial estimator of � (�) in (1) is de�ned as follows. Let U (x) be the

vector which groups the power x� = x�11 � � � � � x�d for all non negative integer numbers �1, . . . ,
�d with j�j = �1+ � � � + �d � p according to the lexicographic order. Let K (�) be a non negative
kernel function and h > 0 a bandwidth. The local polynomial estimator of � (x) = �0 (x) and its

partial derivatives

�(�) (x) =
@j�j� (x)

@x�11 � � � @x�d
=

j�j!
�1!� � � � � �d!

�� (x) (2)

are denoted as b� (x;h) = �b�� (x;h) ; j�j � p�0 with
b� (x;h) = argmin

�

nX
i=1

�
�
Yi � U (Xi � x)0 �

�
K

�
Xi � x
h

�
; (3)

where a suitable convention is used to break possible ties when the minimizer b� (x;h) is not unique
as in the case of local polynomial quantile regression.

M-regressions are not only of interest in their own right but also play important roles in other

contexts including estimation of average treatment e¤ect parameters, semiparametric models, and
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consistent model speci�cation testing. Throughout this paper, we use the RDD in Example 1 be-

low to illustrate the usefulness of the bias and variance expressions established in Section 3 and

Examples 2-4 below to demonstrate the usefulness of the uniform results of the type established

in this paper in the context of consistent model speci�cation testing and semiparametric estima-

tion involving (weighted) averages of multivariate local polynomial estimators by avoiding �xed

trimming of the boundary commonly adopted in existing work.

Example 1: Regression discontinuity design. Suppose that the support X is partitioned

into X0 and X1, with boundaries B0 and B1. Let B01 = B0 \ B1 be the frontier between X0 and
X1. Suppose that individuals with X = X1 in X1 receive a treatment and let Y1 be the associated
response. Denote (X0; Y0) in X0 � R the control group variables, and

�j (x) = argmin
�2R

E [� (Yj � �) jXj = x] ; x 2 Xj for j = 0; 1. (4)

Extending the regression setup of Imbens and Zajonc (2011), we de�ne the conditional average

treatment e¤ect as

� (x) = �1 (x)� �0 (x) ; x 2 B01: (5)

When the treatment has no e¤ect on the conditional parameter � (�), � (�) = 0 and � (�) 6= 0 other-
wise. A potential di¢ culty with this multivariate setup is that the conditional average treatment

e¤ect is a function, as B01 is in general not a singleton. Let xk 2 B01 for k = 1; :::;K, where K

could be �xed or grow with the sample size. Simple summaries of the average treatment e¤ect on

the boundary B01 such as

�A =
1

K

KX
k=1

� (xk) ; �M = max
k=1;:::;K

� (xk) ; �m = min
k=1;:::;K

� (xk) ; (6)

may be of interest. It is also possible to change the discrete set fx1; : : : ; xKg to the entire frontier
B01 but �A should be rede�ned using an integral instead of a discrete sum.

Example 2: Signi�cance testing. Consider the null and alternative hypotheses:

H0 : P (� (X) = 0 ) = 1; H1 : P (� (X) = 0 ) < 1:

To avoid boundary issues, trimming is often used to construct test statistics for H0 versus H1. Let

Xc be an inner subset of the support X of X, which is for instance obtained by selecting those x in
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X at a distance c from the boundary B, where c is a trimming parameter. The null and alternative
hypotheses are

H0c : P (� (X) I [X 2 Xc] = 0 ) = 1;

H1c : P (� (X) I [X 2 Xc] = 0 ) < 1:

Note that the alternative H1;0 = H1 contains all the alternatives H1c with c > 0, so that trimming

may give a test which is not consistent against the alternatives in H1 but not in H1c. A possible

test statistic is

bt2c = 1

n

nX
i=1

b�2 (Xi) I [Xi 2 Xc] ; (7)

where b� (Xi) is a local polynomial estimator of � (�) in (1). As is well documented in the testing
literature, such test statistics can also be applied to residuals to test for more general model

speci�cation. The statistic bt2c is an average version of the integral test statistic of Härdle and
Mammen (1993) for testing speci�cation of the regression model. A study of the asymptotic

behavior of bt20 for a regression null hypothesis with a univariate covariate can be found in Li
(2005). A similar test was developed for a linear regression null hypothesis with dependent data by

Hjellvik, Yao and Tjøstheim (1998). It follows from these authors that for some �c and �2c which

depend upon the distribution of the observations,

nhd=2bt2c � h�d=2�c d! N
�
0; �2c

�
; (8)

under the null. The asymptotic mean h�d=2�c and variance �2c can be consistently estimated

provided that h�d=2 does not diverge too fast, so that (8) leads to a rejection region: nhd=2bt2c �
h�d=2 b�c � b�2c� (1� �), where � (1� �) is the standard normal (1� �)th quantile.

An alternative approach is Fan and Li (1996) who propose a test statistic which is asymptotically

centered, so that b�c is not needed. In our context, this would lead to a test statistic of the form:
bTc = nX

i=1

Yib��i (Xi) I [Xi 2 Xc] ; (9)

where b��i (Xi) is a local polynomial leave-one-out estimation of � (Xi). But bTc is asymptotically
normal under the null E [Y � (X) I [X 2 Xc]] = 0, which is equivalent to H0c in the regression case
but not necessarily for alternative choices of � (�), so that (7) should be preferred for general � (�).

Example 3: Additive speci�cation estimation. A useful dimension reduction technique to

estimate a function � (�) depending upon a high-dimensional covariate is to impose an additive
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structure on �. Suppose that X = (X 0
1; X

0
2)
0 and that the function � (�) of (1) has an additive

decomposition,

� (X) = m1 (X1) +m2 (X2) :

A popular method for estimating m1 (�) is the marginal integration method of Linton and Nielsen
(1995). Let X2c be an inner subset of the support X2 of X2. An estimator of

�1;c (x1) = m1 (x1) + E [m2 (X2) I (X2 2 X2c)]

is

b�1;c (x1) = Pn
i=1 I (X2i 2 X2c) b��i (x1; X2i)Pn

i=1 I (X2i 2 X2c)
: (10)

In a regression setup, Linton and Nielsen (1995) consider an integral version of (10) where b��i (�; �) =b� (�; �) is a standard kernel regression estimator. The role of the trimming set X2c is to avoid
boundary e¤ects. In a quantile setup and for the support X2 = [0; 1]d2 , Kong et al. (2010)

show that trimming is not needed when using local polynomial estimation. In both papers, the

convergence rate of the additive component is shown to be faster than the ones usually obtained

for the estimation of an unrestricted function � (�).

Example 4: Average derivative estimation. Another popular dimension reduction approach

is based on the single-index speci�cation

� (X) = g
�
X 0�

�
;

where � is a d dimensional vector and g (�) a real-valued function. The slope parameter � can be
identi�ed, up to a scaling coe¢ cient, using the average derivatives of � (X) since

E
�
@� (X)

@X

�
= �E

h
g(1)

�
X 0�

�i
;

where g(1) (�) is the derivative of g (�). See Härdle and Stocker (1989) or Powell, Stock, and Stocker
(1989) for the regression case and Chaudhuri, Doksum, and Samarov (1997) for quantile func-

tions. As seen from Altonji et al. (2012), average derivatives are also of independent interest in

microeconometric issues. Direct methods average an estimator of @� (X) =@X over Xc as in

cM (1)
c =

1Pn
i=1 I [Xi 2 Xc]

nX
i=1

I [Xi 2 Xc]
d@�
@X

(Xi) : (11)

Chaudhuri, Doksum and Samarov (1997) consider local polynomial estimators of @� (X) =@X in a

quantile setup while Li, Lu and Ullah (2003), Banerjee (2007), and Altonji et al (2012) implement

local polynomial for regressions. Chaudhuri et al. (1997) use a weighting function instead of

trimming and Altonji et al (2012) consider Xc = [0:5; 3:5] for a support X = [0; 4].
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3 The Bias and Variance of Multivariate Local Polynomial Esti-
mators

In this section, we establish results for the asymptotic bias and variance of multivariate local

polynomial estimators of a M-regression that are valid uniformly over X . First, we introduce the
main assumptions including our new support condition and contrast it with Assumption (A4) in

Ruppert and Wand (1994) who use it to develop pointwise results.

3.1 Main assumptions

A key issue that we have to deal with is that b� (x;h) is an estimator of the pseudo true value
� (x;h) de�ned as

� (x;h) = argmin
�
E
�
�
�
Y � U (X � x)0 �

�
K

�
X � x
h

��
(12)

and that � (x;h) may di¤er from � (x), the vector with entries

��� (x) =

�
0 if the partial derivative �(�) (x) does not exist

�� (x) de�ned in (2) otherwise
:

The �rst goal of this paper is to study the bias term
�
� (x;h)� � (x)

�
over the support X of X.

This will be done under the Assumptions introduced below.

Assumption R (Loss function � (�)). (i) For each x 2 X , � 2 R 7! E [� (Y � �) jX = x] =

R (�jx) is twice continuously di¤erentiable with respect to �. The second order derivative
R(2) (�j�) satis�es, for some � > 0,

inf
x2X

inf
�2[�(x)��;�(x)+�]

R(2) (�jx) > 0, sup
x2X

���R(2) (� (x) jx)��� <1, and���R(2) (�jx)�R(2) ��0jx���� < C ���� �0��
for all real numbers � and �0 in [� (x)� �; � (x) + �]. (ii) � (�) is continuous and there is

a �nite collection of intervals (aj ; aj+1) with
JS
j=0

(aj ; aj+1) such that � (�) is continuously

di¤erentiable with derivative �(1) (�) over each (aj ; aj+1). Moreover

sup
x2X

E
��
�(1) (Y � � (X))

�2
jX = x

�
<1.

The functions (�; x) 2 R�X 7!R(2) (�jx) and E
h�
�(1) (Y � �)

�2 jX = x
i
are continu-

ous.
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Assumption S (Smoothness of � (�)). There is a smoothness index s > 0 such that either S1
or S2 below holds:

S1: s > 1, � (�) is bsc times di¤erentiable and for some L > 0, the partial derivatives of
order � with j�j = bsc satisfy: for all x, x0 2 X ,����(�) �x0�� �(�) (x)��� � Lx0 � xs�bsc :

S2: s is an integer and � (�) is s times continuously di¤erentiable.

Assumption X (X -boundary). (i) The marginal probability density function f (�) of
the d-dimensional X is continuously di¤erentiable and bounded away from 0 on its

support X . (ii) There are some �0; �1 in (0; 1] such that for any x 2 X and all � in

(0; �0], there is a x0 2 X satisfying

V
�
x0; �1�

�
� V (x; �) \ X . (13)

(iii) X is a compact subset of Rd.

Assumption K (Kernel function). The kernel function K (�) is non negative and
Lipschitz, i.e. jK (x)�K (x0)j � L kx� x0k for any x, x0 2 Rd. The kernel function
K (�) has a compact support and is bounded away from 0 over the unit ball V (0; 1). The
bandwidth h = hn ! 0 as n!1.

A brief discussion of the assumptions is in order. Assumption R-(i) is important to ensure that

� (x) in (1) and the pseudo true value � (x;h) in (12) are unique as implied by R(2) (�jx) > 0 and
Assumption K. Indeed this implies that the Hessian matrix

@

@�@�0
E
�
�
�
Y � U (X � x)0 �

�
K

�
X � x
h

��
is strictly positive and remains so when h ! 0. The additional Lipshitz condition on R(2) (�jx)
is used to study � (x;h) when h ! 0. Assumption R-(i) clearly holds when � (t) = t2. In the

quantile case with � in (0; 1), � (t) = (1� �) tI (t � 0) � �tI (t > 0) and R(2) (�jx) = f (�jx),
where f (�jx) denotes the conditional pdf of Y given X = x, so that Assumption R-(i) holds when

infx2X f (� (x) jx) > 0 as standard in quantile estimation and if � 7! f (�jx) is di¤erentiable or
Lipschitz in the vicinity of � (x). Assumption R-(ii) is used to study the variance of the local

polynomial estimator.
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Assumption S describes some smoothness conditions for � (�). Assumption S1 is from Chaudhuri
(1991) or Masry (1996). It allows for a non integer smoothness index s as necessary when considering

some power functions like jxjs whose derivatives of order bsc can have a singular behavior in the
vicinity of the origin. Assumption S2 is slightly stronger and implies Assumption S1 when the

support X of the covariate is compact. Note that it is not assumed that p < s as it is also clear

from the de�nition of the pseudo true value ��� (x) which allows for p � s. Indeed, non existence of
the partial derivative �(�) (x) in the de�nition of ��� (x) should be understood as j�j > bsc under
Assumption S1 and as j�j > p under Assumption S2. Assumption K is rather standard in local

polynomial estimation.

Assumption X is our key support condition. Assumption X-(i, iii) are standard but Assumption

X-(ii) seems to be new to the best of our knowledge. Assumption X-(ii) holds for hypercubes [a; b]d

or hyperrectangles, spheres, or supports delimited by smooth boundaries but also for more irregular

support shapes. It relaxes the usual intuition of a connected support with no hole and delimited by

a smooth boundary. In particular, the support X of the covariate X does not need to be connected

and can have holes. The latter possibility extends Assumption (A4) in Ruppert and Wand (1994)

who assume that there is a non trivial convex set C � X with non empty interior containing x. This

restricts the shape of X since there cannot be a sequence of holes with vanishing size converging
to x. In sharp contrast, under Assumption X-(ii), the boundary of X can be very irregular in the

vicinity of x with many peaks, as illustrated by an example below. In addition, Assumption X-(ii)

is suitable for uniform or global studies of local polynomial estimation, while Ruppert and Wand

(1994) only consider pointwise estimation of a regression function � (x) for a given x.

The intuition behind Assumption X-(ii) is that a local polynomial estimator performs well

provided that there are many observations close to x, say up to a distance h ! 0 given by a

bandwidth, to estimate � (x). This will hold if it is possible to �nd a sequence of balls in the

support X with a radius proportional to h which will converge to x. The key point here is that

these balls do not need to be centered at x, which would be impossible when x is on the boundary of

X , but can be centered at an interior point x0 6= x of X . This is the intuitive content of (13), where
� plays the role of a bandwidth. For � > 0 small enough, (13) means that there is a ball V (x0; �1�)
in the support X which is also in the vicinity set V (x; �) of x. The fact that the constants �0 and
�1 in (13) do not depend upon x is essential to establish the uniformity results in this paper.

To compare and contrast with Assumption (A4) in Ruppert and Wand (1994), consider the case

d = 2 for the sake of brevity. Like Assumption (A4) in Ruppert and Wand (1994), Assumption

X-(ii) also excludes the support de�ned below:

Xb =
�
x = (x1; x2) : 0 � x1 � 1; 0 � x2 � x21

	

10



due to the origin o = (0; 0)0 and the fast decrease of x2 when x1 ! 0. Indeed balls in V (o; �) \ Xb
have a radius which is of order �2 and therefore not compatible with (13). On the other hand, a

support like

Xc = fx = (x1; x2) : 0 � x1 � 1; 0 � x2 � b (x1)g ; with b (x1) � b (x1) ;

where b (x1) = C
1X
k=1

jx1j I
�
x1 2

�
1

k + 1=2
;
1

k

��
for some C > 0

will satisfy Assumption X-(ii) due to the restriction b (x1) � b (x1) with b (x1) = C jx1j onh
(k + 1=2)�1 ; k�1

i
. Indeed, it is su¢ cient to consider, for all k � 1, those x0 with x01 2

h
(k + 1=2)�1 ; k�1

i
and x02 2

�
0; Ck�1

�
and balls V (x0; �) in the rectangle

h
(k + 1=2)�1 ; k�1

i
�
�
0; Ck�1

�
to show that

(13) holds. On the other hand, when b (x1) = b (x1), Xc does not satisfy Assumption (A4) in Rup-
pert and Wand (1994), due to the irregular behavior of b (x1) when x1 ! 0. Indeed since b (x1) = 0

on all
�
(k + 1)�1 ; (k + 1=2)�1

�
, there is no non trivial convex set in Xc which contains the origin

o.

3.2 The bias

Under the assumptions introduced in Section 3.1, it is possible to obtain the orders of the bias

terms:
�
�� (x; h)� �� (x)

�
uniformly over x 2 X , including the boundary of X .

THEOREM 3.1 Suppose Assumptions K, R, S1, and X hold with p � bsc. Then for all � 2 Nd

with j�j � bsc and h small enough,

sup
x2X

���� (x; h)� �� (x)�� � CLhs�j�j:
Theorem 3.1 extends existing bias results for x in inner subsets of X . See for instance Chaudhuri

(1991) and Guerre and Sabbah (2012) for the quantile case. Theorem 3.1 therefore shows that,

thanks to Assumption X, the order of the bias of the local polynomial estimator is not a¤ected by

boundary. This contrasts with Nadaraya-Watson Kernel estimators and is a key reason for prefer-

ring local polynomial methods as argued by Fan and Gijbels (1996) for univariate local polynomial

regression. The proof of Theorem 3.1 works by checking that the tentative limit �� (x) approx-

imately satis�es the �rst-order condition of the minimization (12). Since Assumption R ensures

that the Hessian of the objective function of (12) is full-rank, the Newton-Kantorovich Theorem is

then used to show that �� (x; h)��� (x) = O
�
Lhs�j�j

�
uniformly over X as stated in the Theorem.

As far as we know, this approach is new in the context of local polynomial estimation.

Theorem 3.2 below gives a uniform expansion of
�
�� (x; h)� �� (x)

�
under the stronger smooth-

ness Assumption S2 which allows for a better description of the bias. Theorem 3.2 also completes

11



Theorem 3.1 by considering the case where p � s� 1 = bsc. De�ne


1 (x; h) =

Z
I (x+ hz 2 X )U (z)U (z)0K (z) dz; (14)

Sp
�

�11 (x; h)

�
= the largest eigenvalue of 
�11 (x; h) ,

bp+1 (x; h) =
X

�2Nd:j�j=p+1

�� (x; h)�� (x) ; and (15)

�� (x; h) =

Z
I (x+ hz 2 X ) z�U (z)K (z) dz:

Let e� be the �th element of the canonical basis, i.e. the vector with a 1 in the �th lexicographic

position and 0 elsewhere.

THEOREM 3.2 Suppose Assumptions K, R, S2, and X hold and that p satis�es p � bsc = s�1.
Then for all � 2 Nd with j�j � p,

�� (x; h) = �� (x) + h
p+1�j�je0�
1 (x; h)

�1 bp+1 (x; h) + o
�
hp+1�j�j

�
,

uniformly in x 2 X with maxx2X Sp
�

1 (x; h)

�1
�
<1 and maxx2X kbp+1 (x; h)k <1 for h small

enough.

A �rst noticeable fact is that the leading term in the bias expansion in Theorem 3.2 is indepen-

dent of the loss function � (�). The term e0�
1 (x; h)
�1 bp+1 (x; h) multiplying hp+1�j�j is identical

to the one obtained for regression local polynomial estimators which has been already studied by

Ruppert and Wand (1994) and more recently by Gu et al. (2015). Second, the bias boundary e¤ect

is captured through the matrix 
1 (x; h) and the vector �� (x; h). When x is an inner point of X , or,
more precisely, when x+ hz lies in X for all z in the support of the kernel function, 
1 (x; h) = 
1

and �� (x; h) = �� with


1 =

Z
U (z)U (z)0K (z) dz and �� =

Z
z�U (z)K (z) dz; (16)

in which case bp+1 (x; h) = bp+1 (x) with,

bp+1 (x) =
X

�2Nd:j�j=p+1

���� (x) :

An important issue is whether the term e0�
1 (x; h)
�1 bp+1 (x; h) in front of hp+1�j�j vanishes or

not. This has been recently discussed for the regression case and a symmetric kernel K (�) by Gu
et al. (2015) and, as noted above, their results can also be applied to a more general � (�). When
p+1� j�j is odd, the exact order hp+1�j�j holds over the whole support except for those unlikely x
such that bp+1 (x; h) = 0. In this case, Theorem 3.2 can be used in conjunction with Theorem 3.4

12



below to propose an optimal bandwidth for inner x. The situation di¤ers when p+ 1� j�j is even.
When K (�) is symmetric,

R
z�1z�2K (z) dz = 0 when j�1j is even and j�2j odd, so that reorganizing

the entries of U (z) gives a block-diagonal 
. As shown by Gu et al. (2015), this implies that

e0�

�1
1 b (x) = 0 when p+1�j�j is even. Because 
1 (x; h) is not similar to a block-diagonal matrix

when x lies on the boundary B, it is unlikely to have e0�
1 (x; h)
�1 b (x; h) = 0 unless the partial

derivatives �(�) (x) take some very speci�c values. Hence for inner x the bias has a smaller order

o
�
hp+1�j�j

�
while for x on the boundary the bias will be O

�
hp+1�j�j

�
. This shows that the bias

can be slightly larger near the boundary. Under some additional regularity conditions, it is possible

to show that the bias is O
�
hp+2�j�j

�
for inner x.

Let

R
(2)
f;� (x) = R

(2) (� (x) jx) f (x) ; ��;j =
Z
zjz

�U (z)K (z) dz and

bp+1 (x) =

dX
j=1

X
�2Nd:j�j=p+1

��;j
1

R
(2)
f;� (x)

@R
(2)
f;� (x)

@xj
�� (x) :

Proposition 3.3 Suppose Assumptions K, R, S2, and X hold and that p satis�es p � bsc =
s � 1. Assume in addition that K (�) is symmetric and that R(2)

f;� (x), �
(p+1) (x) are continuously

di¤erentiable over X . Then if p+ 1� j�j is even and if x is in the interior of X ,

�� (x; h) = �� (x) + h
p+2�j�je0�


�1
1 (bp+2 (x) + bp+1 (x)) + o

�
hp+2�j�j

�
:

Proposition 3.3 suggests that for an even p+1� j�j, the bias grows from O
�
hp+2�j�j

�
for those

x at a distance O (h) to the higher order O
�
hp+1�j�j

�
when x is a boundary point. As in Gu et al.

(2015), Ruppert and Wand (1994) or when d = 1, it is possible to study the bias for a sequence

xh = x + hc in the interior of X and x in B under additional simplifying assumptions on the

boundary shape. Note also that the higher-order expansion of Proposition 3.3 now depends on the

choice of � (�) through the partial derivatives of R(2)f;� (x) in the term bp+1 (x) of the expansion.

3.3 The variance

Consider now the variance of the local polynomial estimator. As is well-known, the partial derivative

estimators b�� (x;h) converge with a di¤erent rate and should be �rst standardized with the diagonal
matrix

H = Diag
�
hj�j; j�j � p

�
:

Standard arguments as in Huber (1967) then suggest that the variance of H
�b� (x; h)� � (x; h)� is

close to V (x; h) =nhd, where V (x; h) has the usual sandwich form

V (x; h) = R
(2)
(x; h)�1 S (x; h)R

(2)
(x; h)�1

13



with

R
(2)
(x; h) = h�dE

�
R(2)

�
U (X � x)0 � (x; h) jX

�
U

�
X � x
h

�
U

�
X � x
h

�0
K

�
X � x
h

��
;

S (x; h) = h�dE
��
�(1)

�
Y � U (X � x)0 � (x; h)

��2
U

�
X � x
h

�
U

�
X � x
h

�0
K2

�
X � x
h

��
;

where the superscript ��� indicates dependence on � (x; h). Since Assumptions R-(i) and X-(i)
give, for 
1 (x; h) in (14),

R
(2)
(x; h) � Ch�dE

�
U

�
X � x
h

�
U

�
X � x
h

�0
K

�
X � x
h

��
= C

Z
U (z)U (z)0K (z) f (x+ hz) dz � C
1 (x; h) ;

and because max(x;h)2X�[0;1) Sp
�

1 (x; h)

�1
�
< 1 as stated in Theorem 3.2, R

(2)
(x; h) has an

inverse for all x 2 X and h � 0, so that V (x; h) is well-de�ned.
Consider the following approximations for V (x; h),

V (x; h) =
E
h�
�(1) (Y � � (X))

�2 jX = x
i

�
R(2) (� (x) jx)

�2
f (x)


 (x; h)�1 and

V (x) =
E
h�
�(1) (Y � � (X))

�2 jX = x
i

�
R(2) (� (x) jx)

�2
f (x)


�1;

where


2 (x; h) =

Z
I (x+ hz 2 X )U (z)U (z)0K2 (z) dz;


 (x; h)�1 = 
1 (x; h)
�1
2 (x; h) 
1 (x; h)

�1 ;


2 =

Z
U (z)U (z)0K2 (z) dz; 
�1 = 
�11 
2


�1
1 ;

and 
1 (x; h) and 
1 are as in (14) and (16) respectively. The next Theorem shows that V (x; h) is

a suitable approximation for V (x; h) over X , while V (x) is a suitable approximation for V (x; h)
over interior subsets of X .

THEOREM 3.4 Suppose Assumptions K, R, X hold together with Assumptions S1 or S2. Then

maxx2X Sp (V (x; h)) = O (1) and

sup
x2X

V (x; h)� V (x; h) = o (1) :
Consider a subset X0 of X such that

S
x2X0

V (x; �) � X for some � > 0. Then

sup
x2X0

V (x; h)� V (x) = o (1) :
14



Theorem 3.4 shows that the asymptotic variance V (x; h) of
�
nhd

�1=2
H
�b� (x; h)� � (x; h)�

stays bounded over X so that the order of H
�b� (x; h)� � (x; h)� should be �nhd��1=2 for all

x 2 X . Combining this result with Theorem 3.1 gives that
hb�� (x; h)� �� (x)i should be of order��

nhd
��1=2

+ hs
�
=h�j�j for all � with j�j � s and for all x 2 X including the boundary, that is,

there is no boundary e¤ect for the consistency rate of b�� (x; h).
As shown as Theorem 3.4, the variance boundary e¤ect arises because the limit of 
 (x; h)�1

may di¤er from 
�1 when x is close to the boundary as when x = x@ + hc where x@ lies on the

boundary. In the univariate case, Ruppert and Wand (1994) mentioned an increase by a factor 4

when x goes to the boundary and K (�) is a uniform kernel over [�1; 1]. The situation can be much
worse in a multidimensional case since the variance increase due to boundary is not bounded and

can be made arbitrarily large by considering a support which is very narrow in the vicinity of some

estimation point x. For instance, consider a bivariate covariate x = (x1; x2)
0 and the ray of the

unit disk determined by angle � > 0, i.e.,

X� =
�
(x1; x2)

0 ;x1 = r cos �; x2 = r sin �; (r; �) 2 [0; 1]�
�
0; �
�	

and estimation at the vertex o = (0; 0). Suppose thatK (x1; x2) = K (r) with
R 1
0 K (r) rdr = 1= (2�)

and U (x) = [1; x1; x2]
0. Then for h small enough and � small, the symmetric 
j (o; h), j = 1; 2

satisfy


j (o; h) =

2664
�
2�

�
� � �

3

6

� R 1
0 rK

j (r) dr �
2

2

R 1
0 rK

j (r) dr

�
�
� � �

3

3

� R 1
0 r

2Kj (r) dr �
2

2

R 1
0 r

2Kj (r) dr

� � �
3

3

R 1
0 r

2Kj (r) dr

3775+ o��3�

which is such 
j (o; h) goes to 0 when � ! 0. Further calculations yield that all the diagonal entries

of


 (o; h) = 
1 (o; h)
�1
2 (o; h) 
1 (o; h)

�1

diverge as 1=� diverges suggesting estimation of all derivatives becomes imprecise. In other

words, although Assumption X implies that 
 (x; h)�1 stays bounded when x varies over X , this
example suggests that 
 (x; h)�1 can be large especially when the boundary takes the shape of such

small angle ray with center x. By contrast, the leading bias term 
1 (x; h)
�1 bp+1 (x; h) from

Theorem 3.2 is probably less a¤ected by such small denominator problems. Indeed,

by (14) and (15),


1 (x; h)
�1 bp+1 (x; h) =

X
�2Nd:j�j=p+1


1 (x; h)
�1 �� (x; h)�� (x) ;

15



and a large 
1 (x; h)
�1 can be compensated by a small �� (x; h). (Fan: are we sure about

this? as a large 
1 (x; h)
�1 in 
 (o; h) is not compensated by small 
2 (o; h) in variance!

I changed 
 (x; h) to 
1 (x; h))

4 Local Polynomial Regression and Quantile Regression

In this section, we focus on two speci�c M-regressions, the local polynomial regression and local

polynomial quantile regression. For each case, we establish asymptotic normality and uniform

convergence rate. For local polynomial quantile, we �rst derive a uniform Bahadur representation

valid over the whole support of the covariate X. We illustrate its usefulness via Examples 2-4.

4.1 Local polynomial regression

Consider a regression model with a heteroscedastic error term,

Yi = m (Xi) + "i; E ["ijXi] = 0; Var ("ijXi) = �2 (Xi) ; (17)

and the quadratic loss function � (t) = t2. We shall assume that

Assumption E. The variables (Yi; X 0
i)
0, i = 1; :::; n, are i.i.d. The conditional p.d.f. of

"i given Xi denoted as f (ejx) is continuous with respect to e and x. The variance func-
tion �2 (�) = Var ("ijXi = �) is bounded away from 0 and continuous over X . Moreover,
supx2X E

h
j"ij2+� jXi = x

i
<1 for some � > 0.

For a quadratic loss function � (�), the local polynomial regression estimator in (3) is

b� (x; h) =  nX
i=1

U (Xi � x)U (Xi � x)0K
�
Xi � x
h

�!�1 nX
i=1

U (Xi � x)YiK
�
Xi � x
h

�

= H�1

 
nX
i=1

U

�
Xi � x
h

�
U

�
Xi � x
h

�0
K

�
Xi � x
h

�!�1 nX
i=1

U

�
Xi � x
h

�
YiK

�
Xi � x
h

�
;

(18)

where H is the diagonal matrix with entries hj�j. The �rst entry of b� (x; h), say bmh (x), is an

estimator of the regression function m (x), whereas the other entries estimate its partial derivatives.

The pseudo-true value � (x; h) from (12) can be computed explicitly as

� (x; h) =

�
E
�
U

�
X � x
h

�
U

�
X � x
h

�0
K

�
X � x
h

����1
E
�
� (X)U

�
X � x
h

�
K

�
X � x
h

��
:
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The asymptotic variance V (x; h) is

V (x; h) =
�2 (x)

f (x)

 (x; h)�1

which can be estimated using

bV (x; h) = b�2 (x) b
1 (x; h)�1 b
2 (x; h) b
1 (x; h)�1 ;
where

b
j (x; h) = 1

nhd

nX
i=1

U

�
Xi � x
h

�
U

�
Xi � x
h

�
Kj

�
Xi � x
h

�
; j = 1; 2;

b�2 (x) = Pn
i=1

�
Yi � b�0 (x; h)�2K �Xi�xh �
Pn
i=1K

�
Xi�x
h

� ;

which is consistent but with a large O (h) boundary bias. Note that both b� (x; h) and bV (x; h)
depend upon an inverse matrix which may not exist. The next lemma shows that b� (x; h) andbV (x; h) are well de�ned with a probability tending to 1.
Lemma 4.1 Suppose that Assumptions K and X hold and that h = hn ! 0 with log n=

�
nhd

�
=

o (1). Then, for j = 1; 2,

sup
x2X

 1

nhd

nX
i=1

U

�
Xi � x
h

�
U

�
Xi � x
h

�0
Kj

�
Xi � x
h

�
�
Z
U (z)U 0 (z)Kj (z) f (x+ hz) dz


= OP

 �
log n

nhd

�1=2!
= oP (1) : (19)

Moreover, for j = 1, the limit matrix has an inverse and

max
x2X

Sp

 �Z
U (z)U 0 (z)K (z) f (x+ hz) dz

��1!
= O (1) .

The next two propositions show that standard asymptotic normality and uniform convergence

results hold over the whole support. Because, as is well-known, the process
�
nhd

�1=2
H
�b� (�;h)� � (�;h)�

is not tight so that convergence in distribution to a Gaussian process cannot hold in usual functional

sense, Proposition 4.2 considers the asymptotic normality of
�
nhd

�1=2 bV (xn; h)�1=2H �b� (xn;h)� � (xn;h)�,
where the sequence fxng � X can go to the boundary of the support X . Note that Proposition
4.2 also establishes the consistency of the variance estimator bV (xn; h) near the boundary. These
asymptotic normality and consistency results imply that each�

nhd
�1=2

hj�j
�b�� (xn;h)� �� (xn;h)�

is asymptotically normal and gives an estimate of its asymptotic variance.
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Proposition 4.2 Suppose that Assumptions E, K, X, and S1 or S2 hold, that h = hn ! 0 with

log n=
�
nhd

�
= o (1) and that fxng � X is a deterministic sequence. Then�

nhd
��1=2 bV (xn; h)�1=2H �b� (xn;h)� � (xn;h)�

converges in distribution to a standard multivariate normal with

bV (xn; h) = V (xn; h) + op (1) .
Proposition 4.3 Suppose that Assumptions E, K, X and S1 or S2 hold, that h = hn ! 0 with

h�d = O
�
n(��2)=�= log n

�
. Then

sup
x2X

H �b� (x;h)� � (x)� = Op � log n
nhd

�1=2
+ hs

!
:

Example 1 (Cont�d). In this example, the two di¤erent regression functions are estimated using

two di¤erent and independent samples of observations (Xji; Yji), j = 0; 1, with the same sample

size n and the same bandwidth for the sake of simplicity. The estimator of the average treatment

e¤ect in (5) is then

b�h (x) = b�1h (x)� b�2h (x) ; x 2 B01:

Proposition 4.3 implies that b�h (x) converges uniformly to � (x) over B01 with a rate h�log n= �nhd��1=2 + hsi
extending the pointwise result in Imbens and Zajonc (2011). Proposition 4.2 easily extends to a vec-

tor (b�h (x1) ; : : : ; b�h (xK))0 which will be asymptotically independent. It follows that the estimationb�Ah of the average treatment e¤ect mean �A as in (6) is asymptotically normal with a bias which
can be derived from Theorems 3.1 and 3.2 and an asymptotic variance of order 1=

�
nhd

�
obtained

by averaging the ones from Proposition 4.2. Approximation for the asymptotic distribution of b�Mh

and b�mh can also be easily obtained under the additional condition that the maximum and minimum
of the � (xk)�s are achieved for one xk, say xM and xm. In this case,

�
nhd

�1=2
(b�Mh � b�h (xM )) and�

nhd
�1=2

(b�mh � b�h (xm)) are both op (1) so that the asymptotic distribution of �nhd�1=2 (b�Mh � �M )
and

�
nhd

�1=2
(b�mh � �m) are the ones of �nhd�1=2 (b�h (xM )� � (xM )) and �nhd�1=2 (b�h (xm)� � (xm)).

Interestingly, under the assumption of no treatment e¤ect, the estimator b�h (x) is asymptotically
unbiased because the same bandwidth is used for the treated and control samples. This may consid-

erably simplify testing.
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Examples 2, 3 and 4 (Cont�d) Although Propositions 4.2 and 4.3 do not apply to these Ex-

amples, the proof of these results suggests that our bias and variance results are su¢ cient to extend

existing results which involve trimming to the bounded support case under Assumption X. For the

full support test statistic bt0 in (7), establishing that nhd=2bt0 converges in distribution to a centered
normal distribution can be done with minor modi�cations of the arguments of Hjellvik et al. (1998).

Studying the full support marginal integration estimator b�1;0 (x1) in (10) easily follows from Kong et
al. (2010) while the full support average derivatives estimator cM (1)

0 in (11) can be studied following

Chaudhuri et al. (1997), Li et al. (2003) or Banerjee (2007).

4.2 Local polynomial quantile regression

Consider the family of loss functions

�� (t) = t [�� I (t � 0)] ; � 2 [�; a] � (0; 1) ;

so that

�(1)� (t) = �� I (t � 0) .

For this choice of loss functions, b�0 (�jx; h) = b�0 (x; h) is an estimator of the conditional quantile
function Q (�jx) of Yi given Xi = x and b�� (�jx; h) = b�� (x; h) estimates the partial derivative
@j�jQ (�jx) =@x�. We shall use the following standard assumption.

Assumption F. The variables (Yi; X 0
i)
n
i=1 are i.i.d. The conditional p.d.f. of Y given

X = x denoted as f (yjx) is continuous and di¤erentiable with respect to y such that
f (yjx) > 0 for all (x; y) 2 X�R, sup(x;y)2X�R

���@f(yjx)@y

��� <1; and sup(x;y)2X�R ���@f(yjx)@x

��� <
1.

Under Assumption F, the minimizersQ (�jx) = � (x) and � (�jx; h) = � (x; h) of (1) and (12) are
unique. Let F (�j�) be the cumulative distribution function of Y given X. The functions R(1)� (�jx),

E
��
�
(1)
� (Y � �)

�2
jX = x

�
, E
��
�
(1)
� (Y �Q (�jx))

�2
jX = x

�
, R(2)� (�jx), V (�jx; h), and V (�jx)

are:

R(1)� (�jx) = F (�jx)� �, R(2)� (�jx) = f (�jx) ;

E
��
�(1)� (Y � �)

�2
jX = x

�
= E

h
(I (Y � �)� �)2 jX = x

i
;

E
��
�(1)� (Y �Q (�jx))

�2
jX = x

�
= � (1� �) ;

V (�jx; h) = � (1� �)
f2 (Q (�jx) jx) f (x)
 (x; h)

�1 ; and

V (�jx) = � (1� �)
f2 (Q (�jx) jx) f (x)


�1:
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Hence Assumption R follows from Assumption F. Since

1

f (Q (�jx) jx) =
@Q (�jx)
@�

;

a possible estimator of the asymptotic variance V (�jx; h) is

bV (�jx; h) = � (1� �) @ bQ (�jx)
@�

!2

 (x; h)�1 ;

where
@ bQ (�jx)
@�

=
b�0 (�+ �jx; h)� b�0 (�� �jx; h)

2�
; � = �n ! 0:

An important di¤erence between conditional regression and quantile estimation is that the local

polynomial quantile regression is neither explicit nor linear with respect to the Yi. An additional

step is needed to show that b� (�jx; h) is asymptotically linear, see e.g. Chaudhuri (1991), Su and
Xiao (2009) or Guerre and Sabbah (2012). To this aim, de�ne

bS (�jx; h) = 1

(nhd)
1=2

nX
i=1

�
I
�
Yi � U (Xi � x)0 � (�jx; h)

�
� �

�
U

�
Xi � x
h

�
K

�
Xi � x
h

�
;

bJ (�jx; h) = 1

nhd

nX
i=1

f
�
U (Xi � x)0 � (�jx; h) jXi

�
U

�
Xi � x
h

�
U 0
�
Xi � x
h

�
K

�
Xi � x
h

�
; and

J (�jx; h) = E
h bJ (�jx; h)i :

Lemma 4.1 and Assumption F ensure that bJ (�jx; h) has an inverse asymptotically. The next

linearization proposition is an extension of Guerre and Sabbah (2012, Theorem 2) which allows

for estimation location x close or on the boundary of X . Note that under Assumption F, the
smoothness index s in Assumption S can be taken greater than 1 as assumed in all the results

below.

Proposition 4.4 Suppose that Assumptions K, F, X, and S1 or S2 hold for some s � 1, that

h = hn ! 0 with log n=
�
nhd

�
= o (1). Then

sup
(�;x)2[�;�]�X

H �b� (�jx; h)� � (�jx; h)�+ bJ (�jx; h)�1 bS (�jx; h)
(nhd)

1=2

 = Op
 �

log n

nhd

� 3
4

!
and

sup
(�;x)2[�;�]�X

H �b� (�jx; h)� � (�jx; h)�+ J (�jx; h)�1 bS (�jx; h)(nhd)
1=2

 = Op
 �

log n

nhd

� 3
4

!
:

Approximating H
�b� (�jx; h)� � (�jx; h)� with bJ (�jx; h)�1 bS (�jx; h) as in the �rst equation

gives an approximation similar to that for a local polynomial regression estimator. Using the leading
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term J (�jx; h)�1 bS (�jx; h) shows that the local polynomial quantile estimator is asymptotically a
sum which can be handled with standard limit theorems. A similar result can be established for

a larger class of loss functions � (�) such as the one used in Powell and Newey (1987). However,
the rate

�
log n=

�
nhd

��3=4
is typical of the quantile check function which is not twice continuously

di¤erentiable and better rates hold for smoother � (�).
This linearization result is the key tool to establish a Central Limit Theorem and uniform

consistency for local polynomial quantile regression. The next two propositions parallel Propositions

4.2 and 4.3 for local polynomial regression. Like Theorems 3.1, 3.2, and 3.4, these results show

that the boundary e¤ect can be weak for local polynomial quantile regression estimators.

Proposition 4.5 Suppose that Assumptions K, F, X, and S1 or S2 hold with s � 1, that h = hn !
0 and � = �n ! 0 with log3 n=

�
nhd

�
= o (1), h+

�
log n=

�
nhd

��1=2
= o (�) and that fxng � X is a

deterministic sequence. Then�
nhd

��1=2 bV (�jxn; h)�1=2H �b� (�jxn;h)� � (�jxn;h)�
converges in distribution to a multivariate normal with

bV (�jxn; h) = V (�jxn; h) + op (1) .

Proposition 4.6 Suppose that Assumptions K, F, X, and S1 or S2 hold, that h = hn ! 0 with

log3 n=
�
nhd

�
= o (1). Then

sup
(�;x)2[�;�]�X

H �b� (�jx;h)� � (�jx;h)� = Op � log n
nhd

�1=2
+ hs

!
:

Example 1 (Cont�d). In the quantile setup, the estimation of the average treatment e¤ect in

(5) becomes

b�h (�jx) = bQ1h (�jx)� bm2h (�jx) ; � 2 [0; 1] ; x 2 B01:

Proposition 4.6 yields that b�h (�jx) converges uniformly to � (�jx) over [�; �] � B01 with a rate�
log n=

�
nhd

��1=2
+ hs extending Imbens and Zajonc (2011) to quantile set-up. The indicators in

(6) can be computed for each quantile levels. For a given �, they behave as in the regression

case. When � varies in [�; �], these indicators should be considered as stochastic processes whose

asymptotic distribution can be derived using the asymptotic expansion stated in Proposition 4.4.
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Example 2 (Cont�d). Proposition 4.4 is useful to obtain a suitable approximation of the test

statistic bt2c . Let e� (x) = eQ (�jx) be the leading term of the conditional quantile local polynomial

estimator b� (x) = bQ (�jx)
e� (x) = Qh (�jx)� e01J (�jx; h)�1 bS (�jx; h)

(nhd)
1=2

; (20)

where e01 = [1; 0; : : : ; 0] and Qh (�jx) = e01� (�jx;h). The �linearized�version of bt2c is
et2c = 1

n

nX
i=1

e�2 (Xi) I [Xi 2 Xc] :
Proposition 4.4 and the triangular inequality yield that

nhd=2
�bt2c � et2c� = ��nhd=2�1=2 �btc � etc��� ��nhd=2�1=2 �btc + etc��

=
�
nhd=2

�1=2
Op

 �
log n

nhd

� 3
4

!
�
 �
nhd=2

�1=2
2btc + �nhd=2�1=2Op � log n

nhd

� 3
4

!!

= Op

 �
log3 n

nh2d

� 1
4

!
�
 �
nhd=2

�1=2
2btc +Op � log3 n

nh2d

� 1
4

!!
:

Consider the null hypothesis. Solving the �rst-order condition for � (�jx;h) gives � (�jx;h) = 0

when Q (�jx) = 0 for all x in Xc. As a consequence, et2c is a quadratic form similar for the one

obtained in the regression framework, but with the centered variables I (Yi � 0) � � instead of the
regression error terms. It follows that et2c will satisfy (8) with a proper choice of standardizing
constants. This gives,

nhd=2
�bt2c � et2c� = Op

 �
log3 n

nh3d

� 1
4

!
;

which goes to 0 when
�
log3 n

�
=
�
nh3d

�
! 0, a condition which will also ensure that bt2c is asymptot-

ically normal as in (8) and that normal critical values can be used to perform the test.

Example 3 (Cont�d). De�ning a leave-one-out version of the linear e� (x1; x2) as in (20) yields
for the marginal integration estimator (10) of �1 (x1) and applying Proposition 4.4 suggests,

b�1;c (x1) = Pn
i=1 I (X2i 2 X2c) e�i (x1; X2i)Pn

i=1 I (X2i 2 X2c)
+Op

 �
log n

nhd

� 3
4

!
;

with a leading term which can be studied as in Kong et al. (2010), for any c � 0. The estimator
error

�
nhd1

�1=2
(b�1;c (x1)� �1;c (x1)) will satis�es a CLT if the contribution of the linearization

remainder term is negligible, yielding the necessary condition,�
nhd1

�1=2� log n
nhd

� 3
4

=

�
log3 n

nh3d�2d1

� 1
4

! 0:
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Example 4 (Cont�d). The case of the average derivatives estimator is similar to Example 3.

However, the contribution of the linearization remainder term must take into account an additional

1=h due to the estimation of a derivative. The n1=2 asymptotic normality of the estimator requests

a more drastic bandwidth condition,

n1=2
1

h

�
log n

nhd

� 3
4

=

�
log3 n

nh3d+4

� 1
4

! 0.

The asymptotic bias and variance of the estimator can be obtained from Chaudhuri et al. (1997)

and our bias and variance results to account for the good boundary properties of the conditional

quantile local polynomial estimator.

5 Simulation Experiments

Our theoretical results have illustrated the good bias and variance boundary properties of local

polynomial estimation for general loss functions. The boundary bias has the same order as the

minimax bias obtained for worst case speci�cations. The behavior of the variance is similar, with

an order which is not a¤ected by the boundary. However, for the variance, the constant in front of

the order may be larger for points close to the boundary than for points away from the boundary.

Preventing poor estimation induced by such areas may justify trimming in Examples 2, 3, and

4. The purpose of this section is to use a small simulation experiment.to illustrate how trimming

in�uences inference in various settings.

We will use the setup of Examples 2, 3, and 4. To avoid nonlinearity issues, we will consider

the regression model,

Yi = � (X1i; X2i) + "i; i = 1; : : : ; 1; 000;

where
�
[X1i; X2i]

0	n
i=1

are i.i.d. Uniform over [0; 1]2 and f"igni=1 are i.i.d. centered normal with
standard deviation 0:1. The choice of the regression function � (�) will vary across examples. The
number of replications is 5,000. The regression local polynomial estimators of order 1 (linear) and

order 2 (quadratic) will be considered with the kernel:

K (x) =
�
1� x2

�
I (x 2 [�1; 1]) :

Three trimming values will be investigated, see the following table, where trimming 1 corresponds

to no trimming.

Trimming 1 (c = 0) Trimming 2 (c = 0:1) Trimming 3 (c = 0:2)

(X1i; X2i) 2 [0; 1]2 (X1i; X2i) 2 [0:1; 0:9]2 (X1i; X2i) 2 [0:2; 0:8]2

Table 1: Trimming values used in the experiment
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5.1 Example 2: signi�cance testing

Instead of (7), the more popular test statistic bTc of (9) is used. This test statistic can be written
as a quadratic form Y 0nWYn, where the symmetric matrix W depends on the local polynomial

estimator, the bandwidth h, and the trimming parameter c. Its variance can be estimated using

b�2c = 2 X
i�i6=j�n

W 2
ijb"2i b"2j ;

where the residuals b"i are computed from the local polynomial estimation. The considered band-

widths are

h2 2 f0:01; 0:04; 0:07; 0:10; 0:13; 0:16; 0:19g :

We estimated the 90%, 95% and 99% critical values by computing the test statistic bTc=b�c for each
level of trimming and each bandwidth over 5; 000 replications of the null model: � (�) = 0. This

did not show speci�c impact of trimming with simulated critical values reasonably close to their

norminal counterparts.

The simulated 90% critical values were used to study the power of the tests using 1; 000 repli-

cations of the model for the two regression functions below:

m1 (x1; x2) = 0:1K
� x1
0:1

�
� 0:1K

�
1� x2
0:1

�
and

m2 (x1; x2) = �0:05 cos (6�x1) + 0:05 cos (6�x2) :

The alternative m1 (�) consists of two bumps along the boundaries x1 = 0 and x2 = 1 which are

di¢ cult to detect with the trimming tests. On the contrary, the alternative m2 (�) violates the null
for most x in the support [0; 1]2. Figure 1 reports the results of the simulation experiment. As

expected the power of the tests against alternativem1 (�) deteriorates with the level of trimming and
the test without trimming clearly dominates. The evidence is less clear for alternative m2 (�) which
periodicity induces an irregular bandwidth behavior. However, only the test without trimming

achieves a power close to 1. Considering a quadratic local polynomial estimator gives a much less

powerful test for the considered bandwidths. This surprising �nding is however in line with the

theoretical results of Guerre and Lavergne (2002) which shows that lower order methods can have

good power properties in a minimax framework.

5.2 Example 3: additive speci�cation estimation

In this experiment, the regression function is set to m (x1) +m (x2) with m (x1) = sin (2�x1). The

local linear smoother b�1;c (x1) from (10) is an estimator of

�1;c (x1) = m (x1) + E [m (X2) I (X2 2 [c; 1� c])]
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Figure 1: Power of the three trimming 90% tests as a function of h2. Left: Alternative m1 (�).
Right: Alternative m2 (�). Blue: No trimming. Green: Trimming 2. Red: Trimming 3

which includes an expectation term. This term can be removed by imposing an identi�cation

restriction such as m (1=2) = 0. The proposed estimator of m (x1) is therefore2

bmc (x1) = b�1;c (x1)� b�1;c (1=2) :
The local linear estimator performs poorly and the reported results are for the local quadratic

estimator. The considered bandwidths are smaller than the ones used in Example 1. They are:

h2 2 f0:02; 0:03; : : : ; 0:06g :

The performance of the estimator is evaluated using the square root average mean squared error

(RAMSE):

RAMSE =

24 1
11

10X
j=0

�bmc

�
j

10

�
�mc

�
j

10

��235 1
2

:

The next Figure shows that the estimator without trimming clearly dominates. RAMSE is around

0:40 at best, which is quite big but not surprising since the best bandwidth is h2 = 0:04 implying

that only 40 observations are used to estimate each �1;c (j=10).

2When m (x1) = sin (2�x1), E [m (X2) I (X2 2 [c; 1� c])] = 0 so that b�1;c (x1) could also be used. However
identifying restrictions such as m (1=2) = 0 seems to be more popular and does not involve the trimming parameter.
Unreported simulation results suggests however that b�1;c (�) may have better performances than bmc (�).
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Figure 2: Square root average mean squared error of bmc (�) as a function of h2. Blue: No trimming.
Green: Trimming 2. Red: Trimming 3.

5.3 Example 4: average derivative estimation

For this example, a single-index speci�cation is used and the regression function is

� (x) = sin3
��
2

�
x0 � [1=2; 1=2]

�
�0

�
; �00 = [1; 1=2] :

The parameter of interest is �0 = �02=�01 = 1=2 which is estimated using a ratio of average

derivatives

b�c = Pn
i=1

\@�i=@x2 (Xi) I [Xi 2 Xc]Pn
i=1

\@�i=@x1 (Xi) I [Xi 2 Xc]
:

The performance of b�c is measured using the square root mean squared error (RMSE). Because
estimation of derivatives yields a bigger variance of order 1=

�
nh3

�
compared to estimation of a

regression for which the variance order is 1=
�
nh2

�
, the RMSE of b�c could be more sensitive than

the RAMSE of Example 3 to an increase of the variance near the boundary. The local linear

and quadratic regression estimators perform similarly and both are reported here. The considered

bandwidths are

h2 2 f0:015; 0:035; : : : ; 0:135g for linear local estimation and

h2 2 f0:02; 0:07; : : : ; 0:32g for local quadratic estimation.

The highest trimming estimator is dominated by lower trimming ones, for both local linear and

quadratic estimation. The trimming 1 and 2 estimators behave similarly but trimming 2 seems

slightly better than no trimming when looking at the optimal performance. This holds for both

local linear and quadratic estimators. Since the bias of the local quadratic estimator is smaller, this
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Figure 3: Square root mean squared error for the three trimming estimators as a function of h2.
Left: Linear local polynomial. Right: Quadratic local polynomial. Blue: No trimming. Green:
Trimming 2. Red: Trimming 3.

behavior suggests that there is an optimal level of trimming possibly due to an increase of variance

near the boundary. However the potential gain seems very small in this experiment.

6 Conclusion

In this paper, we have investigated the boundary and uniform asymptotic properties of multivari-

ate local polynomial estimators of M-regression functions under a weak condition on the compact

support of the multivariate covariate. This is made possible by a pseudo true value approach based

on a novel application of the Newton-Kantorovich Theorem in our context. Compared with As-

sumption (A4) in Ruppert and Wand (1994) who use it to establish pointwise boundary properties

of local polynomial regression estimators, our support condition allows for more general support

shapes, in particular, it allows the support of the covariate to be non-connected and have holes.

Compared with the uniform result in Corollary 2, ii) in Masry (1996), our results deal directly with

multivariate covariates with compact support and are uniformly valid over the entire support. As

such they should be useful in contexts where estimation or testing require (weighted) averages of

multivariate nonparametric estimators with compactly supported covariate as in Examples 2-4.
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7 Proof section

Note that Assumption X ensures that for any h > 0 small enough, any x 2 X , there is a xh 2 X
such that V (xh; �1h) � V (x; h)\X . We will use this equivalent statement of (13) throughout this
section. Also we will use C to denote a generic positive constant whose value may di¤er in di¤erent

places.

We start with Lemma 7.1 which will be used in many proofs below.

Lemma 7.1 Under Assumptions K and X, there is a C > 1 such that the eigenvalues ofR
U (z)U 0 (z)Kj (z) f (x+ hz) dz and 
j (x; h), j = 1; 2, are in [1=C;C] for all x 2 X and h � 0

small enough.

Proof of Lemma 7.1. It is su¢ cient to consider j = 1. SinceZ
U (z)U 0 (z)K (z) f (x+ hz) dz � C
j (x; h) � C

Z
U (z)U 0 (z)K (z) dz;

the eigenvalues are in [0; C] for all x 2 X and h � 0. We now show that the eigenvalues can be

bounded from below by 1=C. Assumptions K and X-(i) give, uniformly in x 2 X ,Z
U (z)U 0 (z)K (z) f (x+ hz) dz � C
 (x; h)

� C
Z
U (z)U (z)0 I (x+ hz 2 X ; z 2 V (0; 1)) dz:

Assume that h is small enough. Assumption X-(ii) gives, with (t� x) =h = z,Z
U (z)U (z)0 I (x+ hz 2 X ; z 2 V (0; 1)) dz

=

Z
U

�
t� x
h

�
U

�
t� x
h

�0
I (t 2 V (x; h) \ X ) dt

hd

�
Z
U

�
t� x
h

�
U

�
t� x
h

�0
I (t 2 V (xh; �1h))

dt

hd

�
Z
U (z)U (z)0 I

�
z 2 V

�
xh � x
h

; �1

��
dz;

where k(xh � x) =hk � 1. Hence the eigenvalues of
R
U (z)U 0 (z)K (z) f (x+ hz) dz and 
j (x; h)

are larger than

inf
y2V(0;1)

min
b:b0b=1

b0
�Z

U (z)U (z)0 I (z 2 V (y; �1)) dz
�
b:

Suppose now that this lower bound is equal to 0. This implies that there is a sequence yn 2 V (0; 1)
and bn with b0nbn = 1 such thatZ �

U (z)0 bn
�2 I (z 2 V (yn; �1)) dz ! 0:
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By compacity and continuity of (b; y) 7!
R �
U (z)0 b

�2 I (z 2 V (y; �1)) dz, this implies that there is
a y 2 V (0; 1) and b with b0b = 1 such thatZ �

U (z)0 b
�2 I (z 2 V (y; �1)) dz = 0:

Hence U (z)0 b = 0, but this is impossible since b 6= 0. Hence the eigenvalues of
R
U (z)U 0 (z)K (z) f (x+ hz) dz

are in [1=C;C] for all x 2 X and h small enough. �

7.1 Theorems 3.1, 3.2, and Proposition 3.3

A technical challenge comes from the fact that � (x; h) is not explicit but de�ned through (12).

The next lemma is the key tool to study the bias term
�
� (x; h)� � (x)

�
when using the �rst-order

condition which characterizes � (x; h). In this lemma, D is an integer number and k�k stands for
the Euclidean norm over RD or for the associated operator norm.

Lemma 7.2 (Newton-Kantorovich) Let F (�) : RD ! R be a twice continuously di¤erentiable
convex function with a unique minimizer b. Suppose that

1. There is b�2RD such that
F (1) (b�) � � and �F (2) (b�)��1 � C0;

2.
F (2) (b)�F (2) (b0) � C1 kb� b0k for all b; b0 2 RD;

3. C20C1� � 1=4.

Then
b��b � 2C0�.

Proof of Lemma 7.2. This follows from conclusion 3 in the Newton-Kantorovich Theorem

stated in Gragg and Tapia (1974). �

It is convenient to rescale � with H�1 and to set b = H�1�, where H is a diagonal matrix with

entries hj�j. This gives in particular

U (Xi � x)0 � = U
�
Xi � x
h

�0
H� = U

�
Xi � x
h

�0
b:

Lemma 7.2 will be applied for b = H� (x;h) = b (x;h), where � (x;h) is as in (12) and we now

de�ne a candidate b�. De�ne

sp =

�
s for the proof of Theorem 3.1
p for the proof of Theorem 3.2

;

and b� (x; h) = (b�� (x; h) ; j�j � p)
0 with

b�� (x; h) =

(
hj�j�1!����d!�(�)(x)

j�j! for j�j � bspc ;
0 for bspc < j�j � p

:
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In other words, when proving Theorem 3.1, b� (x; h) completes the entries hj�j�(�) (x) = (�1! � � ��d!),
j�j � bsc, with entries equal to 0 whereas in the proof of Theorem 3.2 the entries of b� (x; h) are

all the hj�j�(�) (x) = (�1! � � ��d!), j�j � p. The Taylor formula implies, under Assumptions S and X
which implies that X has no isolated points,

max
(x;z)2X�SuppK;x+hz2X

��� (x+ hz)� U (z)0 b� (x; h)�� � Chsp , (21)

with C = C 0L under Assumption S1.

De�ne now

Rh (bjx) =
Z
R
�
U (z)0 bjx+ hz

�
f (x+ hz)K (z) dz;

where x+ hz stands for X. The Lebesgue Dominated Convergence Theorem gives under Assump-

tions R, X and K that b 7! Rh (bjx) is twice continuously di¤erentiable with �rst and second
derivatives

R
(1)
h (bjx) =

Z
R(1)

�
U (z)0 bjx+ hz

�
U (z) f (x+ hz)K (z) dz and

R
(2)
h (bjx) =

Z
R(2)

�
U (z)0 bjx+ hz

�
U (z)U (z)0 f (x+ hz)K (z) dz:

The next lemma shows that the matrix R(2)
h (bjx) satis�es some of the conditions of Lemma 7.2.

Lemma 7.3 Under Assumptions K, R, and X and for h � �0=�1, there is a C > 1 such that the
eigenvalues of R(2)

h (bjx) are in [1=C;1) for all b and all x 2 X and, for all b, b0 and all x 2 X ,R(2)
h (bjx)�R(2)

h (b0jx)
 � C kb� b0k.

Proof of Lemma 7.3. The bound for
R(2)

h (bjx)�R(2)
h (b0jx)

 follows from Assumption R:R(2)
h (bjx)�R(2)

h

�
b0jx
�

�
Z ���R(2) �U (z)0 bjx+ hz��R(2) �U (z)0 b0jx+ hz���� U (z)U (z)0 f (x+ hz)K (z) dz

� C
Z ��U (z)0 �b� b0��� kU (z)k2 f (x+ hz)K (z) dz � C Z b� b0 kU (z)k3 f (x+ hz)K (z) dz

� C
b� b0 ;

since the support of K (�) is compact and f (�) is bounded. For the lower bound of the eigenvalues
of R(2)

h (bjx), observe

R
(2)
h (bjx) � C

Z
U (z)U (z)0K (z) f (x+ hz) dz;

so that the result follows from Lemma 7.1. �
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Let us now return to the proof of Theorems 3.1 and 3.2. (12) gives � (x;h) = argmin�Rh

�
H�1�jx

�
so that b (x;h) satis�es the �rst order condition:

R
(1)
h

�
b (x;h) jx

�
= 0 for all x 2 X . (22)

We now study R(1)
h (b� (x;h) jx) which satis�es:

R
(1)
h (b� (x;h) jx) =

Z
U (z)R(1)

�
U (z)0 b� (x;h) jx+ hz

�
f (x+ hz)K (z) dz

=

Z
U (z)R(1)

�
� (x+ hz) + U (z)0 b� (x;h)� � (x+ hz) jx+ hz

�
f (x+ hz)K (z) dz:

Hence (21), Assumption R and (1) give, uniformly in x 2 XR(1)
h (b� (x;h) jx)

 � Z U (z)R(1) (� (x+ hz) jx+ hz) f (x+ hz)K (z) dz


+ C max
(x;x+hz;z)2X 2�SuppK

��� (x+ hz)� U (z)0 b� (x; h)��
� Chsp :

Then Lemma 7.2 shows that Theorem 3.1 is proved.

For Theorem 3.2, recall that sp = p. A Taylor expansion of order p+ 1 gives that uniformly in

x 2 X

� (x+ hz)� U (z)0 b� (x; h) = hp+1
X

j�j=p+1

�1! � � ��d!
(p+ 1)!

z��(�) (x) + o
�
hp+1

�
:

Recall that R(2)
f;� (x) = R

(2) (� (x) jx) f (x) is bounded away from 0. Hence (22), (1) and standard

uniform expansions give, for IX (x+ hz) = I (x+ hz 2 X ),

0 =

Z
U (z)R(1)

�
� (x+ hz) + U (z)0 b (x;h)� � (x+ hz) jx+ hz

�
f (x+ hz)K (z) dz

=

Z
U (z)R(1) (� (x+ hz) jx+ hz) f (x+ hz)K (z) dz| {z }

=0

+

Z �
R
(2)
f;� (x+ hz) + o (1)

�
U (z)

�
U (z)0 b (x;h)� � (x+ hz)

�
IX (x+ hz)K (z) dz

=
�
R
(2)
f;� (x) + o (1)

�Z
U (z)U (z)0

�
b (x;h)� b� (x;h)

�
IX (x+ hz)K (z) dz

+
�
R
(2)
f;� (x) + o (1)

�Z
U (z)

8<:hp+1 X
j�j=p+1

�1! � � ��d!
(p+ 1)!

z��(�) (x)

9=; IX (x+ hz)K (z) dz
+ o

�
hp+1

�
:
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Rearranging gives,

b (x;h)� b� (x;h) = hp+1
�Z

U (z)U (z)0K (z) IX (x+ hz) dz
��1

�
Z
U (z)

8<: X
j�j=p+1

�1! � � ��d!
(p+ 1)!

z��(�) (x)

9=; IX (x+ hz)K (z) dz
+ o

�
hp+1

�
;

showing that Theorem 3.2 is proved.

For Proposition 3.3, performing a Taylor expansion of order p+ 2 and arguing as above gives,

for inner x,

b (x;h)� b� (x;h) = (1 + o (1))

R
(2)
f;� (x)


�1B (x;h) + o
�
hp+2

�
;

where

B (x;h) =

Z
U (z)

8<:hp+1R(2)
f;� (x+ hz)

X
j�j=p+1

�1! � � ��d!
(p+ 1)!

z��(�) (x)

9=;K (z) dz
+

Z
U (z)

8<:hp+2R(2)
f;� (x)

X
j�j=p+2

�1! � � ��d!
(p+ 1)!

z��(�) (x)

9=;K (z) dz
= hp+1R

(2)
f;� (x) bp+1 (x) + h

p+2
dX
j=1

@R
(2)
f;� (x)

@xj
�(�) (x)

Z
zjz

�U (z)K (z) dz + o
�
hp+2

�
+ hp+2R

(2)
f;� (x) bp+2 (x) ;

This gives the expansion of the Proposition since e0�

�1
1 bp+1 (x) = 0 by Gu et al. (2015). �

7.2 Theorem 3.4

Let

R(2) (x; h) = h�dE
�
R(2) (� (x) jX)U

�
X � x
h

�
U

�
X � x
h

�0
K

�
X � x
h

��
;

S (x; h) = h�dE
��
�(1) (Y � � (X))

�2
U

�
X � x
h

�
U

�
X � x
h

�0
K2

�
X � x
h

��
;

Theorems 3.1 and 3.2, (21), give that

max
(x;z)2X�SuppK;x+hz2X

��U (hz)0 � (x; h)� � (x+ hz)�� = o (1) :
Therefore maxx;h Sp

�
h�dE

h
U
�
X�x
h

�
U
�
X�x
h

�0
Kj
�
X�x
h

�i�
<1, j = 1; 2, Assumption R-(ii), and

uniform continuity of � (�) over X give when h! 0,

max
x2X

R(2)
(x; h)�R(2) (x; h)

 = o (1) ; max
x2X

S (x; h)� S (x; h) = o (1) :
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A standard change of variable gives

R(2) (x; h) =

Z
R(2) (� (x) jx+ hz)U (z)U (z)0K (z) f (x+ hz) dx

= R(2) (� (x) jx) f (x) 
1 (x; h) + o (1) ;

S (x; h) =

Z
E
��
�(1) (Y � � (X))

�2
jX = x+ hz

�
U (z)U (z)0K2 (z) f (x+ hz) dx

= E
��
�(1) (Y � � (X))

�2
jX = x

�
f (x) 
2 (x; h) + o (1) ;

uniformly over X by Assumption R-(ii) and X-(i). Hence Lemma 7.1 yields that V (x; h) is equal

to �
R(2) (� (x) jx) f (x) 
1 (x; h)

��1
E
��
�(1) (Y � � (X))

�2
jX = x

�
� f (x) 
2 (x; h)

�
R(2) (� (x) jx) f (x) 
1 (x; h)

��1
+ o (1)

=
E
h�
�(1) (Y � � (X))

�2 jX = x
i

�
R(2) (� (x) jx)

�2
f (x)


 (x; h)�1 + o (1) ;

uniformly over X , that is the �rst approximation in the Theorem. The second approximation follows
since 
 (x; h) = 
 for all x in subset X0 of X as in the theorem provided h is small enough. �

7.3 Lemma 4.1, Propositions 4.2 and 4.3

The proof of these results makes use of the Bernstein inequality, which states that for independent

centered real random variables Zi with jZij �M ,

P

 ����� 1pn
nX
i=1

Zi

����� � t
!
� 2 exp

 
� t2=2
1
n

Pn
i=1Var (Zi) +

1
3
Mtp
n

!
for any t � 0: (23)

Proof of Lemma 4.1. It is su¢ cient to consider j = 1. To prove (19), it is su¢ cient to show

that for any � > 0 large enough, all � with j�j � 2p, K� (z) = z�K (z) and rn =
�
log n=

�
nhd

��1=2
,

P

 
sup
x2X

����� 1nhd
nX
i=1

K�

�
Xi � x
h

�
�
Z
K� (z) f (x+ hz) dz

����� � rn�
!
! 0: (24)

By Assumptions K, X and 1=hd = O (n= log n), there is a � = �n = n�a such that

1. There is an integer number Jn = O
�
nb
�
, b > 0, and some xj 2 X such that X =

JnS
j=1

VX (xj ; �n),

where VX (xj ; �n) = V (xj ; �n) \ X ;

2. For all x, x0 with kx� x0k � �n and all i and n,
���K� �Xi�xh �

�K�
�
Xi�x0
h

���� � hdrn�=3;
3. For all x, x0 2 X with kx� x0k � �n and all n,

��R K� (z) f (x+ hz) dz � R K� (z) f (x0 + hz) dz�� �
rn�=3.
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This gives

sup
x2X

����� 1nhd
nX
i=1

K�

�
Xi � x
h

�
�
Z
K� (z) f (x+ hz) dz

�����
� max
j=1;:::;Jn

����� 1nhd
nX
i=1

K�

�
Xi � xj
h

�
�
Z
K� (z) f (xj + hz) dz

�����
+ max
j=1;:::;Jn

sup
x2VX(xj ;�n)

����� 1nhd
nX
i=1

�
K�

�
Xi � x
h

�
�K�

�
Xi � xj
h

�������
+ max
j=1;:::;Jn

sup
x2VX(xj ;�n)

����Z K� (z) (f (x)� f (xj + hz)) dz
����

� max
j=1;:::;Jn

����� 1nhd
nX
i=1

K�

�
Xi � xj
h

�
�
Z
K� (z) f (xj + hz) dz

�����+ 23rn�:
Hence (24) holds if

P

 
max

j=1;:::;Jn

����� 1nh
nX
i=1

K�

�
Xi � xj
h

�
�
Z
K� (z) f (xj + hz) dz

����� � rn �3
!
! 0:

Since an elementary change of variables gives

E
�
1

hd
K�

�
Xi � xj
h

��
=

Z
K� (z) f (xj + hz) dz and

Var

�
1

hd=2
K�

�
Xi � xj
h

��
� E

�
1

hd
K2
�

�
Xi � xj
h

��
� C

hd
;

(24) follows from the Bonferoni inequality and (23) which give

P

 
max

j=1;:::;Jn

����� 1nhd
nX
i=1

K�

�
Xi � xj
h

�
�
Z
K� (z) f (xj + hz) dz

����� � rn �3
!

�
JnX
j=1

P

 ����� 1pn
nX
i=1

h�
d
2K�

�
Xi � xj
h

�
�
Z
K� (z) f (xj + hz) dz

����� � log1=2 n �3
!

� 2Jn exp
 
� �2 log n

C + C= (nhd)
1=2

!
� 2 exp

�
��

2 log n� b log n
C

�
! 0;

for �2 > b. Hence (19) is proved. The existence of the inverse matrix stated in the Lemma and the

uniform bound for its spectral radius follow from Lemma 7.1. �

Proof of Proposition 4.2. Let

cMn (x; h) =
1

nhd

nX
i=1

U

�
Xi � x
h

�
U 0
�
Xi � x
h

�
K

�
Xi � x
h

�
and

M (x; h) = h�dE
�
U

�
Xi � x
h

�
U 0
�
Xi � x
h

�
K

�
Xi � x
h

��
:

34



We �rst show that
�
nhd

�1=2
V (xn; h)

�1=2H
�b� (xn;h)� � (xn;h)� is asymptotically a standard

normal. Observe that�
nhd

�1=2
V (xn; h)

�1=2H
�b� (xn;h)� � (xn;h)�

= V (xn; h)
�1=2 cMn (xn; h)

�1

Pn
i=1 U

�
Xi�xn
h

�
�i (xn;h)K

�
Xi�xn
h

�
(nhd)

1=2

+ V (xn; h)
�1=2 cMn (xn; h)

�1

Pn
i=1 U

�
Xi�xn
h

�
"iK

�
Xi�xn
h

�
(nhd)

1=2
;

where

�i (x;h) = m (Xi)� U (Xi � x)0 � (x;h) :

Since, for all x 2 X , � (x;h) satis�es the �rst-order condition

E
�
U (Xi � x)

�
m (Xi)� U (Xi � x)0 � (x;h)

�
K

�
Xi � x
h

��
= 0; (25)

the variables U
�
Xi�xn
h

�
�i (xn;h)K

�
Xi�xn
h

�
are centered. Moreover, Theorems 3.1 and 3.2 to-

gether with (21), Assumptions X-(iii) and K and Lemma 4.1 give that

Var

�
h�d=2U (Xi � x)

�
m (Xi)� U (Xi � x)0 � (x;h)

�
K

�
Xi � x
h

��
= O

�
h2s
� Z

U (z)U (z)0K2 (z) f (x+ hz) dz = o (1) ;

uniformly in x 2 X . Hence

V (xn; h)
�1=2 cMn (xn; h)

�1

Pn
i=1 U

�
Xi�xn
h

�
�i (xn;h)K

�
Xi�xn
h

�
(nhd)

1=2
= op (1) ;

and it is su¢ cient to show that

V (xn; h)
�1=2 cMn (xn; h)

�1

Pn
i=1 U

�
Xi�xn
h

�
"iK

�
Xi�xn
h

�
(nhd)

1=2

d! N (0; Id) :

This follows from Theorem 3.4, Assumption E and the Lindeberg Central Limit Theorem for

triangular arrays. To complete the proof of the Proposition, it is now su¢ cient to show thatbV (xn; h) = V (xn; h) + op (1). This follows from Lemma 4.1 and b�2 (xn) = �2 (xn) + op (1) as

established now. Let

e�2 (x) = Pn
i=1 (Yi � � (x))

2K
�
Xi�x
h

�
Pn
i=1K

�
Xi�x
h

� and �2 (x) =

Pn
i=1 �

2 (Xi)K
�
Xi�x
h

�
Pn
i=1K

�
Xi�x
h

� :
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The asymptotic normality above, Theorems 3.1 and 3.2, yield that

jb� (xn)� e� (xn)j �
0B@
Pn
i=1

�b�0 (xn; h)� � (xn)�2K �Xi�xnh

�
Pn
i=1K

�
Xi�xn
h

�
1CA
1=2

=
���b�0 (xn; h)� � (xn)��� = Op 1

(nhd)
1=2

+ hs

!
= op (1) :

Let �i = "2i � �2 (Xi). Observe that

e�2 (xn) = �2 (xn) +Op
0@Pn

i=1 (� (Xi)� � (xn))
2K

�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
1A+Op

0@Pn
i=1 �iK

�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
1A ;

with, by uniform continuity of � (�) over the compact X and since h! 0,Pn
i=1 (� (Xi)� � (xn))

2K
�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

� = o (1) :

Let En [�] be the conditional expectation given X1; : : : ; Xn and i =
p
�1. Then, under Assumption

E and assuming w.l.o.g. that � � 2, Assumptions X-(i) and K, and by standard manipulations

involving uniform O (�) terms, we have for any t,������En
24exp

0@itPn
i=1 �iK

�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
1A35������ =

������
nY
i=1

En

24exp
0@it �iK

�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
1A35������

=

�������
nY
i=1

exp

8><>:ln
0B@1� itEn

24 �iK
�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
35+ jtj1+�=2O

0B@En
264
������
�iK

�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
������
1+�=2

375
1CA
1CA
9>=>;
�������

� exp

0B@�C jtj1+�=2 nX
i=1

0@ K
�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

�
1A1+�=2

1CA = exp
�
Op

�
(nh)��=2

��
p! 1.

This implies thatPn
i=1 �iK

�
Xi�xn
h

�
Pn
i=1K

�
Xi�xn
h

� d! 0 and then
p! 0,

so that b�2 (xn) = �2 (xn)+op (1), with �2 (xn) = �2 (xn)+op (1) by uniform continuity of � (�) over
the compact X . Hence b�2 (xn) = �2 (xn) + op (1). �

Proof of Proposition 4.3. Let K� (z) = z�K (z),

Sn (x;h) =
1

(nhd)
1=2

nX
i=1

(�i (x;h) + "i)K�

�
Xi � x
h

�
; �i (x;h) = m (Xi)�U

�
Xi � x
h

�0
H� (x;h) :
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Lemma 4.1 implies that it is su¢ cient to show that

sup
x2X

jSn (x;h)j = Op
�
log1=2 n

�
: (26)

De�ne, for �i = "iI (j"ij < �n)� E ["iI (j"ij < �n) jXi],

sn (x;h) =
1

(nhd)
1=2

nX
i=1

(�i (x;h) + �i)K�

�
Xi � x
h

�
:

The Chebychev inequality gives, for �n = C�n1=� ,

P
�
max
i=1;:::;n

j"ij � �n
�
�

nX
i=1

P (j"ij � �n) �
E [j"ij� ]
C��

;

which can be made arbitrarily small by increasing C� . Arguing as in the proof of Lemma 4.1 gives,

when maxi=1;:::;n j"ij � �n and since �E ["iI (j"ij < �n) jXi] = E ["iI (j"ij � �n) jXi],

sup
x2X

jSn (x;h)� sn (x;h)j = sup
x2X

����� 1

(nhd)
1=2

nX
i=1

E ["iI (j"ij � �n) jXi]K�
�
Xi � x
h

������
� sup
x2X

1

(nhd)
1=2

nX
i=1

E
�
j"ij� I (j"ij � �n)

���1n
jXi
� ����K� �Xi � xh

�����
= Op

 �
nhd

�1=2
n1�1=�

!
= op

�
1

n1=2�1=�

�
= op (1) ;

since � > 2 by Assumption E. Therefore it is su¢ cient to show that

sup
x2X

jsn (x;h)j = Op
�
log1=2 n

�
(27)

to prove (26). Observe that the expectation of the summands in sn (x;h) is 0 by (25) and the

de�nition of �i. (25) also gives

H� (x;h) =

�
E
�
U

�
Xi � x
h

�
U

�
Xi � x
h

�0
K

�
Xi � x
h

����1
� E

�
U

�
Xi � x
h

�
m (Xi)K

�
Xi � x
h

��
so that Assumption K gives that

H �� (x;h)� � (x0;h)� � Ch�1 kx� x0k for all x, x0 2 X . This
also gives, by (21) which ensures that maxx2X j�i (x;h)j � C,(�i (x;h) + �i)K� �Xi � xh

�
�
�
�i
�
x0;h

�
+ �i

�
K�

�
Xi � x0
h

� � C �nh x� x0 ;
for all i = 1; : : : ; n and all n, all x, x0 2 X ,��sn (x;h)� sn �x0;h��� � Cn1=2�n

hd=2+1

x� x0 :
This together Assumptions K, X and 1=hd = O (n= log n), there is a � = �n = n�a such that
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1. There is an integer number Jn = O
�
nb
�
, b > 0, and some xj 2 X such that X =

JnS
j=1

VX (xj ; �n),

where VX (xj ; �n) = V (xj ; �n) \ X ;

2. For all x, x0 with kx� x0k � �n and all i and n, jsn (x;h)� sn (x0;h)j � 1.

Hence

sup
x2X

jsn (x;h)j � max
j=1;:::;Jn

jsn (xj ;h)j+ max
j=1;:::;Jn

sup
x2VX(xj ;�n)

jsn (x;h)� sn (xj ;h)j

� max
j=1;:::;Jn

jsn (xj ;h)j+ 1.

As a consequence (27) holds if maxj=1;:::;Jn jsn (xj ;h)j = Op

�
log1=2 n

�
. The Bonferoni inequality

and (23) give, using maxx2X j�i (x;h)j � C and h�d = O
�
n1�2=� log n

�
,

P
�
max

j=1;:::;Jn
jsn (xj ;h)j � t log1=2 n

�
�

nX
j=1

P
�
jsn (xj ;h)j � t log1=2 n

�

� 2Jn exp

0B@� t log n

C +
�
h�d�2n logn

n

�1=2
t

1CA = exp

�
�(t� C) log n

C 0

�
! 0

for t > C. This ends the proof of Proposition 4.3. �

7.4 Propositions 4.4, 4.5 and 4.6

Proof of Proposition 4.4. Lemma 4.1, Theorems 3.1 and 3.2 which give (21), imply that the

conclusions of Lemmas A.1, A.2 and A.3 in Guerre and Sabbah (2012) are true when x 2 X . Hence
the �rst equation in Proposition 4.4 follows from minor modi�cations of the proof of Theorem 2 in

Guerre and Sabbah (2012). The second equation follows frommax(�;x)2[�;�]�X
 bJ (�jx; h)� J (�jx; h) =

OP

��
log n=(nhd)

�1=2�
and max(�;x)2[�;�]�X

bS (�jx; h) = Op �log1=2 n� as established below. �

Proof of Proposition 4.6. Theorems 3.1 and 3.2 which give (21) are su¢ cient to show that

the conclusion of Lemma A.3 in Guerre and Sabbah (2012) holds for x 2 X , that is

max
(�;x)2[�;�]�X

bS (�jx; h) = Op �log1=2 n� :
Hence Proposition 4.4 and Lemma 4.1 give

sup
(�;x)2[�;�]�X

�nhd�1=2H �b� (�jx; h)� � (�jx; h)�
= Op

 
max

(�;x)2[�;�]�X

 bS (�jx; h)(nhd)
1=2


!
+Op

 �
log n

nhd

�3=4!
= Op

 �
log n

nhd

�1=2!
:
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Hence Theorems 3.1 and 3.2 show that the Proposition is proved. �

Proof of Proposition 4.5. As in the proof of Proposition 4.2, the key issue here is to

show that bV (�jxn; h) = V (�jxn; h) + op (1), and Lemma 4.1 shows that is su¢ cient to show that
@ bQ (�jxn) =@� is consistent. This follows from Proposition 4.6, the fact that s � 1 and the choice
of � which gives under Assumption F which ensures that (�; x) 7! @Q (�jx) =@� is continuous,

@ bQ (�jxn)
@�

=
bQ (�+ �jxn)� bQ (�+ �jxn)

2�

=
Q (�+ �jxn)�Q (�+ �jxn)

2�
+Op

 
1

�

 
h+

�
log n

nhd

�1=2!!

=
@Q (�jxn)

@�
+ op (1) : �
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