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Abstract 

Background: The percentage of mammographic dense tissue (PD) is an important risk factor for 

breast cancer, and there is some evidence that texture features may further improve predictive 

ability. However, relatively little work has assessed or validated textural feature algorithms using 

raw full field digital mammograms (FFDM). 

Method: A case-control study nested within a screening cohort (age 46-73y) from Manchester UK 

was used to develop a texture feature risk score (264 cases diagnosed at the same time as 

mammogram of contralateral breast, 787 controls) using the least absolute shrinkage and selection 

operator (LASSO) method for 112 features, and validated in a second case-control study from the 

same cohort but with cases diagnosed after the index mammogram (317 cases, 931 controls).  

Predictive ability was assessed using deviance and matched concordance index (mC). The ability to 

improve risk estimation beyond percent volumetric density (Volpara) was evaluated using 

conditional logistic regression.  

Results: The strongest features identified in the training set were “Sum Average” based on the 

grey-level co-occurrence matrix at low image resolutions (original resolution 10.628 pixels per mm; 

downsized by factors of 16, 32 and 64), which had lower deviance and higher mC than volumetric 

PD. In the validation study, the risk score combining the three Sum Average features achieved a 

lower deviance than volumetric PD (Δχ2=10.55 or 6.95 if logarithm PD) as well as a similar mC to 

volumetric PD (0.58 and 0.57 respectively). The risk score added independent information to 

volumetric PD (Δχ2 = 14.38, p = 0.0008).  

Conclusion: Textural features based on digital mammograms improve risk assessment beyond 

volumetric percentage density. The features and risk score developed needs further investigation in 

other settings. 

Key words: Breast density, texture, digital mammogram, risk prediction, breast cancer 

1 Background 

Mammographic density is a term used to describe whiter regions of the images that reflect the 

amount of fibroglandular as opposed to fatty tissue in the breast. Mammographic density is a well-

established risk factor for breast cancer [1]. One well studied measure of breast density is the 

percentage of the breast area which is opaque, often referred to as percent density (PD). In 

addition to area-based PD, volumetric measures have been developed to make use of the greyscale 

pixel values, without thresholding. It has been estimated that 16% of all breast cancers and 26% of 

breast cancers in women aged 55 or less years are attributable to breast density over 50% [2]; 

women with PD over 75% have been consistently reported to be at a four to six fold higher risk of 

developing the disease than women of similar age with little or no dense tissue [3]; and PD has 

been described as a risk factor that is the most significant after age [4]. 
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While PD is an important risk factor, it is likely that characteristics of the mammogram other than 

PD may be related to breast cancer.  For example, Wolfe’s parenchymal patterns [5] indicate 

texture characteristics which are not necessarily correlated with PD [6]. Similarly, the American 

College of Radiology Breast Imaging Reporting and Data System (BI-RADS) classifies density into 

categories based on not only the amount of density but on descriptors of the distribution, such as 

“scattered” and “heterogeneously dense” [7]. This suggests that the pattern or texture of dense 

tissue should be considered while assessing mammograms. In addition, some texture features have 

been suggested to predict BRCA1/2 carrier status, in contrast with PD [8].  

A growing body of literature has considered mammographic texture features and their relationship 

with breast cancer risk.  A recent review paper identified 17 original research articles [9]. These 

included early work by Manduca, et al. [6], who identified texture features based on the grey-level 

co-occurrence matrix (GLCM) of neighbouring pixels. Kontos, et al. [10] looked at a range of texture 

features with the aim to see how they are associated with PD based on both digital mammography 

and digital breast tomosynthesis (DBT). With limited sample size, they identified GLCM features 

(homogeneity, contrast and energy) were associated with PD from DBT and, to a lesser extent, 

digital mammography. Haberle, et al. [11] considered five types of texture features, finding that 

statistical features based on GLCM were strongly predictive of breast cancer, and found that PD did 

not add information to risk once texture features had been accounted for. Li, et al. [3] found that 

textural features predict breast cancer slightly better than semi-automated percent density. Keller, 

et al. [12] compared risk prediction models using PD along with texture features based on the 

GLCM, statistical moments, and run-length [13] and reported that texture features outperformed 

PD. However, there is not a great deal of consistency in textural features identified between 

studies, so more work in this area is critically important. Nielsen, et al. [14] developed a 

mammographic texture resemblance (MTR) marker based on multi-scale Gaussian features, which 

was found to have similar prediction performance compared with PD and could further improve the 

predictive ability when PD and MTR is combined. 

While several studies have identified texture features for cancer prediction, many have been based 

on digitised film [9]. With the introduction of FFDM breast screening, there is a need to assess how 

best to assess the risk from textural features using digital mammograms. This is important partly 

because the properties of FFDM images differ from those of digitised films. For example, FFDM 

have a higher dynamic range than digitised film images [15] resulting in richer grey-level profiles; 

they also have different noise properties since the inherent granularity of screen-film 

mammography is not present in FFDM [16].  

Very few studies have looked at texture features of original raw FFDM images. An additional issue 

with digital processed images is that one has to rely on manufacturers’ proprietary processing 

algorithms before feature extraction, which may result in images from different machines less 

comparable. A recent review [9] on texture features for breast cancer risk found just two case-

control studies based on raw FFDM including those by Chen, et al. [17] and Zheng, et al. [18]. There 

were just 156 cases in these studies (combined), and the case mammograms were from the 
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contralateral (unaffected) breast at breast cancer diagnosis. Thus, overall information on the ability 

of textural features to predict risk of breast cancer in this context is limited. 

The aim of this paper is to develop a fully automated texture feature extraction system for raw 

digital mammograms, and to assess the prediction ability of textural features to stratify risk beyond 

volumetric percent density. Fully automated in the context of this paper refers to a texture feature 

extraction system, including any pre-processing procedure, which operates without any human 

intervention. 

2 Methods 

2.1 Setting and study design 

Two case-control studies were designed using women recruited to the Predicting Risk Of breast 

Cancer At Screening (PROCAS) cohort, in Manchester, UK [19].  

The first case-control study was for feature selection (the training set), and cases were women with 

cancer detected at first screen on entry to PROCAS. Women were matched approximately 3:1 

(controls vs cases) by age, BMI, hormone replacement therapy (HRT) use and menopausal status. 

For feature selection the craniocaudal (CC) views of the contralateral breast for cases and the left 

breast for controls were used [20]. Unaffected breast were followed up and recorded and cases 

with bilateral cancer were excluded. The average follow-up time is 3.86 years for cases and 4.86 

years for controls. 

The second case-control study was used to validate the risk score (the validation set). Each woman 

had a normal screening mammogram (no cancer detected) on entry to PROCAS, but an interval or 

screen-detected cancer arose subsequently. The mammograms were approximately three years 

prior to diagnosis of breast cancer and were sampled independently from the same cohort as the 

training set. There is a small overlap of controls between the two datasets (n=45) representing 2.7% 

of the total number of controls in both datasets. Again women were matched approximately 3:1 

(controls vs cases) by age, BMI, HRT use, menopausal status, as well as on year of mammogram at 

entry. Since the validation was done in a double-blind fashion, case-control status was unknown 

before validation, so a pre-defined list of side of breast for each woman was provided so that the 

contralateral breast (also CC views) for cases and the same side for controls were used. As with the 

first study, women with bilateral cancer were excluded. The average follow-up time to date of 

diagnosis is 3.03 years for cases and the average follow-up time is 4.28 years for controls. 

2.2 Mammograms  

All digital raw (“for processing”) mammograms were acquired using a GE Senographe system. The 

resolution of the mammograms was 10.628 pixels per mm. Percent volumetric density was 

assessed using Volpara 1.5.0 (Volpara Health Technologies, Wellington, New Zealand). 
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2.3 Texture features 

Texture features were extracted from the whole breast as a single region after windowing. 

Specifically, the minimum pixel value (whitest area) in the breast region was used as the lower 

bound of the window, and the value at the 75th percentile of the pixel value range (darker areas) 

within the breast was taken as the upper bound. The lower and upper bounds of the window were 

then reset (lower bound to 1 and pixels on or above the upper bounds to 0, which as a result also 

inverted the image) and the rest of the pixel values were linearly rescaled between 0 and 1.  

We generally follow the literature to decide whether a feature is to be considered. Statistical 

moments of pixel values from the windowed images were calculated directly in addition to the 

following secondary features: grey-level co-occurrence matrix (GLCM), neighbourhood grey-tone 

difference matrix (NGTDM), form and shape of breast boundary, run-length, and grey-level size 

zone matrix (GLSZM) [3, 6, 10, 11, 13, 20-23]. 

Texture features were extracted from images at their original resolution. In addition, since some 

features (GLCM, NGTDM, run-length, and GLSZM) are resolution sensitive and might be associated 

with risk differently at different scales, they were extracted at reduced resolutions, by factors of 2, 

4, 6, 8, 16, 32, and 64 using bicubic interpolation [6].  

All texture features were calculated using Matlab (Mathworks, Natick, MA). The Matlab package 

developed by Vallieres, et al. [24] was employed for computing the GLCM, NGTDM, run-length, and 

GLSZM features; and for these features, pixels were grouped equally into ten grey levels in forming 

the relevant matrices before computing the texture features. A total number of 327 features were 

identified to be investigated. The full list of texture features considered and their types, downsize 

factors, univariate goodness-of-fit statistics using the training set are provided in the 

supplementary file [see Additional file 1]. 

2.4 Statistical analysis 

2.4.1 Feature selection and model building 

An initial screening was performed to remove features whose absolute Pearson correlation with 

any other feature was greater than 0.95, where the feature taken forward was randomly selected. 

This resulted in a total of 112 candidate texture features. 

Feature selection was based on the least absolute shrinkage and selection operator (LASSO) 

method, adjusted for age, BMI and volumetric PD. The tuning parameter that controls the extent of 

coefficient shrinkage was chosen by cross-validation. The final calibrated model was based on the 

one standard error rule, where the most parsimonious model whose error (deviance in this case) 

was within one standard error of the model with minimum cross-validation error (leave one out) 

was selected [25]. LASSO feature selection was performed using the implementation by Friedman, 

et al. [26] in R [27]. A single risk score based on the LASSO fit was taken forward for validation. In 

addition, Volpara Density Grade (VGD), a categorical version of estimated volumetric PD was also 

tested to see whether VGD adds information to volumetric PD or selected texture features. 
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2.4.2 Validation of risk score and components 

The composite risk score as well as individual texture features identified by LASSO were validated in 

a two-stage double-blind fashion. A statistical analysis plan was drafted detailing the procedure of 

data exchange and statistical analysis. After identification of a limited set of textural features and a 

risk score to investigate further using the training data, CW calculated these features using 

anonymised mammograms from the validation set, and blind to case-control status. EH ran the 

initial statistical analysis for these features using the validation set, and then unblinded CW. The 

predictive ability of the risk score beyond volumetric PD was tested using conditional logistic 

regression. Deviance (or likelihood-ratio χ2) and the matched concordance index (mC) [28] were 

calculated to test and measure prediction performance. Deviance is a likelihood based statistic, and 

in the context of logistic regression is equivalent to the sum of squared residuals. For model 

comparison, it is common practice to examine the change in deviance (likelihood-ratio χ2) to 

measure relative model performance. mC is a modification of the concordance index (or area under 

the receiving operator characteristic, AUC) to matched case-control studies, and gives an average 

concordance index within matched groups. Some other features that were not selected by LASSO 

but had previously been identified to be important, and were observed to be univariately significant 

in the training set (i.e. standard deviation, coarseness and contrast as shown below), were also 

assessed in the validation case-control study. Since biologic phenotypes between screen-detected 

and interval cancers are different, the effects of texture features or volumetric PD on risk may also 

differ. To explore this, a series of multivariate models have been fitted with risk factors that are 

statistically significant in the univariate models, and additional interaction term between the image 

feature and indicator for screen-detected or interval cancer. 

3 Results 

3.1 Study characteristics 

The training case-control study had a total of 264 cases and 787 controls, of which 199 cases were 

invasive, 63 were ductal carcinoma in situ (DCIS), and two unknown. The validation case-control 

study had a total of 317 cases and 931 controls, of which 277 were invasive, 39 were DCIS and one 

was unknown. The demographic characteristics of the women in the two studies are summarised in 

Table 1 which shows that age, BMI, and HRT use were well matched between cases and controls in 

both studies. As expected, volumetric PD was generally higher among cases than controls in both 

studies. The median 10-year Tyrer-Cuzick score was also higher for cases than controls in both 

studies. A majority of women had never used HRT and the percentage was slightly higher in the 

training set (60% for controls and 65% for cases in training set, vs. 51% for controls and 52% for 

cases in validation set; the differences between training and validation sets are significant with p-

values of 0.0002 and 0.0019 respectively). In both studies around three quarters of women were 

postmenopausal, and the majority of women were ethnically white.  

Table 1 is about here 
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3.2 Texture feature risk score development 

Three features were selected from the training set using LASSO (the value of the LASSO tuning 

parameter=0.0402) and taken forward for validation in a combined risk score. They were all the 

GLCM feature Sum Average but calculated using images downsized by factors of 16, 32, and 64. 

Sum Average is a feature considered to capture the relation between clear and dense areas in an 

image (i.e. radiolucent and radiopaque) [29]. Table 2Table 2 shows the correlation coefficients 

between the three Sum Average features, volumetric PD, age, BMI, and other important features 

identified in the literature including standard deviation (SD), contrast (based on NGTDM), and 

coarseness calculated at the original image resolution. Coarseness measures the amount of local 

grey-level variation and contrast measures the amount of difference among all grey levels as well as 

the amount of local variation in grey level presented in the image [21]. SD is a histogram based 

feature so does not take into account spatial relationships between pixels. 

Table 2 is about here 

The Sum Average features at different resolutions were relatively highly and positively correlated 

(Spearman 0.74 to 0.88). There were weaker and negative associations between Sum Average 

features and age (-0.23 to -0.18) or BMI (-0.35 to -0.23). Volumetric PD was quite strongly and 

positively correlated with the Sum Average features (0.54 to 0.63). 

Table 3 is about here 

Table 3 (a) shows prediction performance of volumetric PD, three Sum Average features 

univariately, as well as additional texture features that have previously been identified in the 

literature and were significant in the training data, and taken forward to be assessed in the 

validation set as secondary measures. 

In the training sample, all three Sum Average features outperformed the other univariate features 

in terms of χ2, as well as achieving better mC than PD except SumAverage64. Sum Average 

downsized by a factor of 32 achieved the best result in terms of both χ2 and mC (0.61). The 

performance of PD, SD, and contrast was similar, while coarseness was the least predictive in terms 

of χ2. We have also tested Volpara Density Grade (VGD), a categorical version of estimated 

volumetric PD, finding it has a very similar predictive performance compared to volumetric PD 

(χ2=20.19, degrees of freedom=3). A series of likelihood-ratio tests have shown that VGD does not 

add further information to either volumetric PD (Δχ2=3.36, p=0.3), or LASSO selected texture 

features such as SumAverage16 (Δχ2= 3.40, p=0.3). 

The risk score taken forward for validation is a weighted linear combination of the three Sum 

Average features. The standardized weights (i.e. using z-scores where predictors were rescaled by 

their means and standard deviations before entering the model) are: 

Risk score= 0.044*SumAverage16 + 0.036 *SumAverage32 + 0.066 *SumAverage64 
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where the means of the three features were respectively 0.0555, 0.0559 and 0.0566; the standard 

deviations were respectively 0.000238, 0.000430 and 0.000775. It can be seen that SumAverage64 

contributed most to the score (0.066 / (0.066+0.036+0.044) = 45%). The risk score had a similar mC 

(0.60) to its Sum Average components. 

Figure 1 is about here 

Figure 1 shows the mC and its confidence intervals for the Sum Average features calculated at 

different resolutions, including those not selected by the LASSO algorithm. Generally mC increased 

as images were downsized up to a factor of 32, and was approximately flat at downsizing factors 

between 16 and 128.  

Figure 2Figure 2 is about here 

To better understand the feature Sum Average and risk score, and see how the feature looks 

visually, example images with low and high values of risk scores but similar volumetric PDs in the 

training study are presented in Figure 2.  

3.3 Validation of texture risk score 

The regression results using the validation dataset in Table 3 (b) confirmed the predictive power of 

the texture risk score found in the training dataset. The standardized odds ratio was 1.36 (95% CI 

1.20-1.55) with mC 0.58 (95% CI 0.54-0.62), which was broadly comparable with the development 

analysis using training set (mC=0.60). The risk score also achieved a better performance than 

volumetric PD in terms of deviance (Δχ2=10.55), indicating some evidence of preference of risk 

score relative to the PD [30] (logarithm PD Δχ2=6.95), as well as a similar mC (0.58 compared with 

0.57 for PD). A series of likelihood-ratio tests showed that the risk score also added independent 

predictive information to volumetric PD (Δχ2 = 14.38, p = 0.0008), as well as Tyrer-Cuzick risk 

(logarithm transformed, Δχ2 = 22.43, p < 0.0001) and PD and Tyrer-Cuzick combined (Δχ2 = 10.22, 

p=0.001). On the other hand, once the risk score was taken into account, PD added little 

information (Δχ2 = 0.21, p= 0.7). 

Looking at individual texture features, only the three Sum Average features and contrast were 

statistically significant. Sum Average based features also achieved the best fit in terms of 

deviance/χ2 compared with other texture features and PD. Additionally, only the Sum Average 

based features added information to PD (the χ2 test statistics were 5.16, 6.46, and 12.56 for Sum 

Average using images downsized by factors of 16, 32, and 64 respectively). This confirms that Sum 

Average at low resolutions is an independent risk factor. Other texture features did not add further 

information once the risk score was taken into account. 

Modelling results showing the difference between screen-detected and interval cancers for 

statistically significant features are presented in Table 4. As Table 4 shows, with the exception of 

contrast, the difference in screen-detected and interval cancers is statistically significant; and 

texture features and volumetric PD have higher odds ratio for interval than screen-detected 

cancers. 
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Table 4 is about here 

4 Discussion 

This paper aimed to predict breast cancer risk with various texture features from raw digital 

mammograms. To achieve this, relevant features were extracted and the LASSO model was 

employed for feature selection. The risk score was validated using a separate set of cases and 

controls within the cohort. 

The original raw mammogram files were pre-processed using a windowing technique. This 

effectively means that the darkest 25% pixels within the breast (mostly the uncompressed region) 

were set to be background. This is similar to the method used by Heine, et al. [20] for computing 

standard deviation. They eroded a 25% area from the edge of the breast in scanned film images, 

since they reported that the region in question could potentially interfere with further feature 

extraction. The breast edge contains the darkest pixels. In addition to standardising pixel 

intensities, another benefit of windowing is that image contrast is enhanced, making image 

appearance similar to that of film mammograms. 

The texture features tested included many of those identified in previous studies, such as standard 

deviation of the pixel intensity values, NGTDM contrast, coarseness, and GLCM features. We also 

assessed some novel features that have been less well studied in the literature, including GLSZM 

based features that measure zonal effects and some form-based features such as diameter of a 

circle with the same area as the breast region.  

The GLCM feature Sum Average at lower image resolutions was selected by LASSO in the training 

study. Based on its mathematical formulation (see Appendix) and visual assessment of some 

mammograms, one can show that this feature tends to identify dispersed patterns of density on a 

mammogram. It was slightly surprising that PD and some previously reported texture features such 

as standard deviation, contrast and coarseness were not selected, although contrast was significant 

and negatively associated with risk in both training and validation studies, in-line with Huo, et al. 

[21]. Other texture features such as standard deviation and coarseness however were not 

significant in the validation study. While it is interesting that only 3 features were selected out of 

112 features by the LASSO algorithm, it is worth noting that the features that were not selected by 

LASSO are not necessarily unpredictive of risk. For example, the feature contrast was shown as 

predictive in both training and validation studies. Volumetric PD was not selected by LASSO either. 

This may be an indication that once some features were used, other features may no longer add 

information. This is supported by the likelihood-ratio test result that shows once risk score is taken 

into account, volumetric PD adds little information (p= 0.7). In the validation study, the three Sum 

Average based features achieved the best results among univariate predictors in terms of both 

deviance and mC. The risk score, a weighted combination of three Sum Average based features, has 

only obtained similar deviance or mC to its components univariately, suggesting Sum Average 

measured at one image resolution might be adequate. Although the Sum Average feature has been 

employed in some previous studies, it has not been identified as the strongest texture feature 
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previously. The reason for different findings might be due to differences in the methods used to 

compute textural features. Indeed, it is often difficult to determine precisely how a feature was 

computed in prior publications and so we have been careful to provide a detailed description of the 

Sum Average feature used here in the appendix. A lesser factor for differences might be different 

feature selection methods. Previous studies have often used stepwise regression for feature 

selection [6, 8, 11, 12, 21]. However, as pointed out by Hastie, et al. [25], stepwise regression often 

leads to poor results compared to a less greedy method such as LASSO. 

We explored the risk score by visual inspection of mammograms. Those in Figure 2 are deliberately 

extreme, but they were chosen to show readers a clear demonstration that mammograms with a 

high risk score have more dispersed areas of bright pixels; whilst those with a low risk score do not. 

The example shows that a higher risk score helps to identify more widely dispersed dense patterns. 

In other words, it might capture an element of dense area that is (implicitly) not necessarily taken 

into account by volumetric density. As observed in Table 2, there is fairly high correlation between 

texture features and PD, so some of the effects of PD may be captured by texture features. 

Considering texture features improve prediction beyond PD, it is possible some spatial patterns of 

dense tissue may be related to risk in addition to relative amount of density. This interpretation 

also follows the mathematical formula for the feature. Downsizing is important because it enables 

the measure of spatial relationships between pixels at a greater distance, and so better measure 

wider areas of density. In summary, this feature seems to capture the distribution of dense tissue 

and our results suggest that mammograms with greater areas of high density are associated with 

higher risk. 

Differences in prediction performance at different resolutions are due to change in patterns for 

each feature at those resolutions. Some texture features are more consistent than others when 

image were re-scaled. For example, the spearman correlation coefficient for Sum Average between 

downsize factors of 1 and 64 is -0.12, indicating weak association; while the spearman correlation 

coefficient for coarseness between downsize factors of 1 and 64 is 0.78, showing strong correlation. 

This means some factors such as coarseness are more consistent than others when image were re-

scaled. Texture features such as those based on GLCM, typically measure spatial relationships 

between a pixel and its neighbouring pixels. As images were downsized, the neighbouring pixels 

become more distant, thus result in changes in feature patterns. Some features, such as 

coarseness, are relatively robust to such change in neighbourhood definition, while some features 

changed dramatically. This suggests that it is important to consider the impact of image resolution 

while analysing a certain texture feature. The implication is that a feature that predicts well at a 

given resolution may not perform well at another resolution. It is thus important to indicate the 

image resolution when exploring the prediction performance of a feature. This finding has also 

been observed elsewhere. For example, Haberle, et al. [11] reported that a GLCM feature based on 

the same set of mammograms but at different resolutions have either different (opposite) 

associations with PD or different associations with cancer risk. Manduca, et al. [6] also found 

texture features tended to predict risk better when they were extracted at reduced image 
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resolutions. For instance, the area under the receiver operating characteristic curve (AUC) of a 

feature increases from 0.50 to 0.60 when the images were downsized by factors of 2, 4, 8, and 16. 

One contribution of our paper is that it shows how to extract a useful textural feature in a fully 

automated way from digital raw mammograms. Traditionally studies utilising image texture 

features for cancer prediction were based on scanned films e.g. [6, 21]. Also, there is concern that 

results from processed (i.e. for presentation) mammograms may not be generalizable since 

different manufacturers have their own proprietary processing algorithms, making the resulting 

images and their features potentially not fully comparable between different manufacturers and 

machines. This paper addresses the above concerns by using the raw FFDM, and has shown which 

texture features might be important for predicting breast cancer risk, and how the risk model can 

be improved by downsizing the images. It is anticipated that the method proposed in the paper 

would better facilitate breast cancer risk prediction by using digital mammograms. 

There are several possible ways to expand our study. For example, our image pre-processing 

method did not consider acquisition parameters, such as compression force, and thickness of the 

compressed breast and breast edge. It is possible that employing these acquisition parameters may 

lead to better image pre-processing and ultimately risk prediction. Another direction is to externally 

validate the method on a different population with different characteristics such as ethnicity and 

parity. In particular, we note that more than 92% of our study population were white, and more 

than 88% were parous. The use of larger and diverse datasets would allow for additional breast 

cancer risk factors to be adjusted in the model. Also, the mammograms used in our analysis were 

all acquired from a GE system. It would be interesting to test our method on mammograms 

produced by other brands of machines. For transferability of our method, digital mammograms 

from other machines may be re-scaled to the same resolution as in this paper before feature 

extraction. There is also potential that our method can be adapted for digitised films. It would also 

be interesting to compare our method to recent advancement in deep learning [31], which employs 

unsupervised machine learning to detect useful image features. Finally, this study focuses on the CC 

view of mammograms. It is possible that texture features that are predictive for cancer risk may be 

different for mediolateral oblique (MLO) view mammograms. The issue with using the MLO view of 

mammograms is how to treat the pectoral muscle. One possible approach is to remove the pectoral 

muscle before feature extraction. This requires an automated pectoral muscle removal algorithm 

(e.g. [17]) since our ultimate aim is to develop a fully automated risk prediction system. The 

additional information from MLO views may assist to better predict breast cancer risk than using CC 

views alone. 

5 Conclusion 

This paper has shown that texture features are useful for predicting breast cancer risk using raw 

digital mammograms. Important texture features previously identified in the literature as well as 

some novel features were tested. The feature selection method LASSO was adopted to finalise the 

feature set taken forward for validation.  
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Among various features tested including standard deviation, coarseness, contrast and volumetric 

PD, we found the GLCM feature Sum Average at low image resolution was the strongest predictor 

of breast cancer risk, and added independent information to volumetric PD. An image 

standardisation method was adopted to pre-process the digital raw mammograms before feature 

extraction, making it likely that our approach would have merit on other mammogram machines. 

However, while the selected features and calibrated model were internally validated in a separate 

case-control study with consistent results, our findings and risk algorithm would benefit from 

further studies to externally validate them. 

6 List of abbreviations 

 AUC: area under the receiver operating characteristic curve 

 BI-RADS: Breast Imaging Reporting and Data System 

 BMI: body mass index 

 CC: craniocaudal 

 CI: confidence interval 

 DBT: digital breast tomosynthesis 

 DCIS: ductal carcinoma in situ 

 GLCM: grey-level co-occurrence matrix 

 GLSZM: grey-level size zone matrix 

 HRT: hormone replacement therapy 

 LASSO: least absolute shrinkage and selection operator 

 mC: matched concordance index 

 MLO: mediolateral oblique 

 MTR: Mammographic texture resemblance 

 NGTDM: neighbourhood grey-tone difference matrix 

 OR: odds ratio 

 PD: percent density 

 PROCAS: Predicting Risk Of breast Cancer At Screening 

 SD: standard deviation 

 VGD: Volpara Density Grade 
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8 Appendix 

Sum Average is a statistical texture feature computed from grey-level co-occurrence matrix (GLCM) 

constructed by considering how often pairs of pixels with specific values and in a specified spatial 

relationship occur in an image. Sum Average is defined as [32]: 

[∑ (𝑖 + 𝑗) ∙ 𝑝(𝑖, 𝑗)𝑖,𝑗 ]/(2𝐼2). 

where I is the total number of grey levels, and 𝑝(𝑖, 𝑗) denotes the probability occurrence of a pixel 

at grey level i is in a defined spatial relationship to a pixel at grey level j in an image. Such 

probability can be created by firstly counting the frequencies of pairs of pixels at different grey 

levels with a defined spatial relationship (in this study, all eight directions surrounding a pixel were 

counted), and then normalized so that the sum of the elements of the GLCM is equal to 1. 𝐼2 is 

included in the formula so as to make this feature comparable between different sizes of GLCMs. 
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Also in this study, the number of grey levels of 10 was adopted (i.e. I=10), and the pixels within the 

breast region was divided into 10 levels in such a way that each level has equal probability. We 

tested using number of grey levels other than 10 and the feature pattern changed only marginally – 

for instance we tested using 5 grey levels and the correlation coefficient with Sum Average using 10 

grey levels was 0.97. 

Sum Average can be seen as the weighted (by grey levels) sum of GLCM elements. Thus this texture 

is likely to have higher value if many high grey level pixels are clustered in a blob. 

In addition to Sum Average, the following GLCM features were tested: 

 Contrast: ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑖,𝑗  

 Correlation: ∑
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗 , where 𝜇, 𝜎 are means and standard deviations of 

corresponding rows and columns of GLCM. 

 Dissimilarity: ∑ |𝑖 − 𝑗|𝑝(𝑖, 𝑗)𝑖,𝑗  

 Energy: ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗  

 Entropy: ∑ −𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))𝑖,𝑗  

 Homogeneity: ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗  

 Variance: [∑ ((𝑖 − 𝜇𝑖)2 + (𝑗 − 𝜇𝑗)
2

) ∙ 𝑝(𝑖, 𝑗)𝑖,𝑗 ] /(2𝐼2) 

Similar to GLCM, a neighbourhood grey-tone difference matrix (NGTDM) could be constructed, and 

relevant texture features could be extracted by computing the summary statistics of NGTDM. The 

NGTDM is a vector (column matrix) constructed by firstly calculating the average grey-tone over a 

neighbourhood centred at, but excluding (k,l): 

𝐴𝑖̅ = 𝐴̅(𝑘, 𝑙) =
1

𝑊 − 1
[ ∑ ∑ 𝑓(𝑘 + 𝑚, 𝑙 + 𝑛)

𝑑

𝑛=−𝑑

𝑑

𝑚=−𝑑

] 

where (𝑚, 𝑛) ≠ (0,0) (i.e. excluding the (k,l)); f(k,l) is the grey tone of any pixel at (k,l) having grey 

tone value i; d specifies the neighbourhood size (d=1 in this case); and 𝑊 = (2𝑑 + 1)2. Then the ith 

element of the NGTDM is: 

𝑠(𝑖) = {
∑|𝑖 − 𝐴𝑖̅| ,         𝑓𝑜𝑟 𝑖 ∈ 𝑁𝑖, 𝑖𝑓 𝑁𝑖 ≠ 0

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑁𝑖 is the set of all pixels having grey tone i (exluding the peripheral regions of width d). 

Coarseness is defined as [𝜖 + ∑ 𝑝𝑖𝑠(𝑖)𝑖 ]−1 , where ε is a small number (2-52 in this case) to prevent 

it becoming infinite; p is the probability of occurrence of the corresponding intensity value. 

Contrast is defined as [
1

𝑁𝑔(𝑁𝑔−1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 − 𝑗)2

𝑗𝑖 ] [
1

𝑛2
∑ 𝑠(𝑖)𝑖 ], where 𝑁𝑔 is the total number of 

different grey levels in the image; n=N-2d. 
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Coarseness and contrast have been successfully applied for classification of cancer or BRCA1/2 

status in the literature, such as Huo, et al. [21] and Kontos, et al. [10] where these features were 

described. As with GLCM, the pixels within the breast region were equally divided into 10 levels. In 

addition to coarseness and contrast, the following NGTDM features were tested: 

 Busyness: [∑ 𝑝𝑖𝑠(𝑖)𝑖 ]/[∑ 𝑖𝑝𝑖 − 𝑗𝑝𝑗𝑖,𝑗 ], 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

 Complexity: ∑ {|𝑖 − 𝑗|/ (𝑛2(𝑝𝑖 + 𝑝𝑗))}𝑖,𝑗 {𝑝𝑖𝑠(𝑖) + 𝑝𝑗𝑠(𝑗)}, 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

 Strength: [∑ (𝑝𝑖 + 𝑝𝑗)(𝑖 − 𝑗)2
𝑖,𝑗 ]/[𝜖 + ∑ 𝑠(𝑖)𝑖 ], 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

Similar to GLCM and NGTDM, run-length features were extracted from the run-length matrix. Let 

𝑝(𝑖, 𝑗) be the number of runs with pixels of grey level i and run-length j, 𝑛𝑟 be the total number of 

runs, and 𝑛𝑝 be the number of pixels in the region of interest: 

 Short run emphasis (SRE): 
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)

𝑗2𝑗𝑖  

 Long run emphasis (LRE): 
1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗) ∙ 𝑗2

𝑗𝑖  

 Grey-Level Nonuniformity (GLN): 
1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)𝑗 )2

𝑖  

 Run Length Nonuniformity (RLN): 
1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)𝑖 )2

𝑗  

 Run Percentage (RP): 𝑛𝑟/𝑛𝑝 

 Low Grey-Level Run Emphasis (LGRE): 
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)

𝑖2𝑗𝑖  

 High Grey-Level Run Emphasis (HGRE): 
1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗) ∙ 𝑖2

𝑗𝑖  

 Short Run Low Grey-Level Emphasis (SRLGE): 
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)

𝑖2∙𝑗2𝑗𝑖  

 Short Run High Grey-Level Emphasis (SRHGE): 
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)∙𝑖2

𝑗2𝑗𝑖  

 Long Run Low Grey-Level Emphasis (LRLGE): 
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)∙𝑗2

𝑖2𝑗𝑖  

 Long Run High Grey-Level Emphasis (LRHGE): 
1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗) ∙ 𝑖2

𝑗𝑖 ∙ 𝑗2 

 Grey-Level Variance (GLV): √
1

𝐼∙𝐽
∑ ∑ [𝑝(𝑖, 𝑗) ∙ 𝑖 − 𝜇]2

𝑗𝑖 , where 𝜇 =
1

𝐼∙𝐽
∑ ∑ 𝑝(𝑖, 𝑗) ∙ 𝑖𝑗𝑖 . 

 Run-Length Variance (RLV): √
1

𝐼∙𝐽
∑ ∑ [𝑝(𝑖, 𝑗) ∙ 𝑗 − 𝜇]2

𝑗𝑖 , where 𝜇 =
1

𝐼∙𝐽
∑ ∑ 𝑝(𝑖, 𝑗) ∙ 𝑗𝑗𝑖 . 

The GLSZM features are similar to run-length features but with focus on sizes of zones instead of 

collinear pixels (i.e. runs). In GLSZM, 𝑝(𝑖, 𝑗) is defined as the number of zones with pixels of grey 

level i and area j, and the same formulas for run-length features can be used to compute GLSZM 

features. 

As for shape-based features, convex area measures the number of pixels in the smallest convex 

polygon that contains the breast; equivalent diameter measures the diameter of a circle with the 

same area as the breast; extent measures the ratio of pixels in the breast to pixels in the total 

bounding box; major axis length is the length of the longest diameter of an ellipse that has the 
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same normalized second central moments as the breast region; similarly minor axis length is the 

length of the minor axis of an ellipse that has the same normalized second central moments as the 

breast; and solidity is the ratio of breast area and its convex area. 

A software implementing the method in this paper has been made available for Windows operating 

system (https://doi.org/10.6084/m9.figshare.4994429.v2). Upon launching the software, a dialog 

box would prompt asking users which mammogram file(s) to examine and where the results to be 

saved. The software would then compute the texture features without further user input and saved 

the results in a spreadsheet at the location the user specified. 

Differences from density assessment case-control studies: 

The number of cases and controls differs from a report (submitted elsewhere) that compared 

density methods using the same women. The reasons are as follows. 

Firstly, the training case-control study was a subset of one with 317 cases and 952 controls.  Three 

women were excluded due to linkage errors between mammograms and questionnaire data 

(although they could be subsequently incorporated we decided to present the training data as it 

was undertaken before validation). We also excluded women with unknown BMI and volumetric PD 

at the time of analysis (79 and 37 women with missing BMI and PD respectively). An additional 100 

controls were removed during conditional logistic regressions because they did not have matched 

cases as a result of the above exclusions.  

The validation case-control study originally had 338 cases and 1014 controls. 23 women were 

excluded because of unavailability of mammograms at the time of validation (either no 

mammograms provided for some women at the given side; or only MLO views were available but 

no CCs). 64 women were further removed because the side of cancer (left or right) was unknown; 

and two women were further excluded due to lack of volumetric PD data at the time of validation. 

A further 15 controls were removed during conditional logistic regressions because they had no 

matched cases as a result of the above exclusions.  
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10 Figures 

Figure 1 Matched concordance index (mC) for Sum Average at different image downsize factors, 

with bootstrap 95% confidence intervals (CI) 

Figure 2 Comparison of mammograms (for presentation purpose processed images were shown) 

with two of the lowest (a) and highest (b) standardized risk scores. All mammograms have similar 

Volumetric PDs around 10% 

Figure 2(a) Mammograms with low risk scores (-1.7 and -1.3 respectively). Volumetric PDs are 

10.1% and 10.2 respectively. 

Figure 2(b) Mammograms with high risk scores (3.2 and 2.0 respectively). Volumetric PDs are 9.9% 

and 10.0% respectively. 

11 Additional files 

File name: Additional file 1 

 Word document format (.docx) 

 Title: Univariate modelling results from training dataset 

 This table shows the univariate modelling results of all candidate texture features 

considered using training dataset 
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Table 1 Demographics of training set (cancers detected at first screen on entry to the PROCAS study) and validation set 
(cancers detected at a subsequent screen or between screening rounds) 

 

Training set  Validation set   

Controls Cases p- Controls Cases p- 

N (%) N (%) value N (%) N (%) value 

Age at consent (y) 

44 (6) 16 (6) 

0.9994 

46 (5) 16 (5) 

0.9997 

<50 
  

50-54 200 (25) 65 (25)  193 (21) 64 (20)  

55-59 150 (19) 51 (19)  164 (18) 58 (18)  

60-64 172 (22) 57 (22)  286 (31) 96 (30)  

65-69 166 (21) 57 (22)  195 (21) 67 (21)  

70+ 55 (7) 18 (7)  47 (5) 16 (5)  

HRT use 

11 (1) 7 (3) 

0.2234 

22 (2) 6 (2) 

0.9646 

Unknown 
  

Never 473 (60) 171 (65)  475 (51) 165 (52)  

Previous 262 (33) 72 (27)  329 (35) 110 (35)  

Current 41 (5) 14 (5)  105 (11) 36 (11)  

BMI (kg/m2) 

-  -  

0.9797 

-  1 (0) 

0.9408 

Unknown 
  

<25 241 (31) 80 (30)  335 (36) 117 (37)  

25-29 289 (37) 96 (36)  341 (37) 113 (36)  

≥30 257 (33) 88 (33)  255 (27) 86 (27)  

Menopausal status 

16 (2) 7 (3) 

0.9914 

32 (3) 12 (4) 

0.9887 

Unknown 
  

Perimenopausal 94 (12) 32 (12)  134 (14) 46 (15)  

Postmenopausal 591 (75) 196 (74)  698 (75) 237 (75)  

Premenopausal 86 (11) 29 (11)  67 (7) 22 (7)  

Ethnic origin 

38 (5) 22 (8) 

0.0411 

81 (9) 35 (11) 

0.2229 

Other/unknown 
  

White 749 (95) 242 (92)  850 (91) 282 (89)  

Parity 

-  -  

0.8143 

1 (0) 4 (1) 

0.0351 

Unknown 
  

Nulliparous 97 (12) 34 (13)  90 (10) 44 (14)  

Parous 690 (88) 230 (87)  840 (90) 269 (85)  
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Training set  Validation set   

Controls Cases p- Controls Cases p- 

N (%) N (%) value N (%) N (%) value 

Tyrer-Cuzick (10y 

risk-%): (median, 

Q1-Q3) 2.73 
(2.19 - 

3.60) 2.82 
(2.29 - 

3.88) 

0.0028 

 

2.68 
(2.09 - 

3.55) 2.91 
(2.24 - 

4.03) 

<.0001 

Volumetric PD: 

(median, Q1-Q3) 5.34 
(4.06 - 

7.35) 5.88 
(4.62 - 

8.55) 

0.0003 

4.73 
(3.50 - 

6.92) 5.31 
(3.79 - 

7.57) 

0.0041 

HRT: hormone replacement therapy; Q1: 25th percentile; Q3: 75th percentile; p-values, from likelihood-ratio chi-

square tests, indicate whether there are significant difference between cases and controls. 
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Table 2 Spearman correlation coefficients between age, BMI, PD and texture features 

 
Age BMI Volumetric 

PD 
Sum 

Average 
16 

Sum 
Average 

32 

Sum 
Average 

64 

SD Coarseness Contrast 

Age 1         
BMI 0.03 1        
Volumetric PD -0.14 -0.57 1       
Sum Average 16 -0.19 -0.35 0.63 1      
Sum Average 32 -0.23 -0.33 0.63 0.81 1     
Sum Average 64 -0.18 -0.23 0.54 0.74 0.88 1    
SD -0.16 -0.19 0.46 0.27 0.32 0.31 1   
Coarseness -0.12 -0.62 0.79 0.49 0.58 0.51 0.53 1  
Contrast 0.15 0.34 -0.74 -0.45 -0.52 -0.52 -0.64 -0.80 1 

PD: percent density; BMI: body mass index; SD: standard deviation; Sum Average 16, 32, 64: texture feature 

Sum Average using images downsized by a factor of 16, 32, and 64. 
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Table 3 Univariate modelling results from training and validation datasets 

Table 3 (a) Univariate modelling results from training dataset 

Parameter 
Standardized 

Odds Ratio 

95% CI for Odds 

Ratio χ2 p-value mC 95% CI for mC 

Coarseness 1.22 (1.06 - 1.41) 7.28 6.98E-03 0.58 (0.53 - 0.62) 

Contrast 0.73 (0.62 - 0.85) 16.75 4.27E-05 0.40 (0.36 - 0.45) 

SD 1.32 (1.13 - 1.54) 13.11 2.94E-04 0.57 (0.52 - 0.61) 

SumAverage16 1.52 (1.31 - 1.77) 31.26 2.25E-08 0.61 (0.56 - 0.65) 

SumAverage32 1.52 (1.31 - 1.77) 31.75 1.75E-08 0.61 (0.56 - 0.66) 

SumAverage64 1.48 (1.28 - 1.71) 29.07 6.98E-08 0.58 (0.53 - 0.63) 

Volumetric PD 1.36 (1.18 - 1.57) 18.05 2.16E-05 0.59 (0.55 - 0.64) 

Total number of observations (N) = 1051, including 264 cases and 787 controls. 

Table 3 (b) Univariate modelling results using validation dataset 

Parameter 
Standardized 

Odds Ratio 

95% CI for Odds 

Ratio χ2 p-value mC 95% CI for mC 

Risk score 1.36 (1.20 - 1.55) 22.39 2.22E-06 0.58 (0.54 - 0.62) 

Coarseness 1.06 (0.92 - 1.22) 0.61 4.34E-01 0.50 (0.46 - 0.54) 

Contrast 0.87 (0.76 - 0.99) 4.33 3.75E-02 0.46 (0.42 - 0.50) 

SD 1.01 (0.89 - 1.15) 0.03 8.55E-01 0.50 (0.45 - 0.54) 

SumAverage16 1.29 (1.14 - 1.47) 15.37 8.85E-05 0.58 (0.54 - 0.62) 

SumAverage32 1.32 (1.16 - 1.50) 17.55 2.80E-05 0.58 (0.53 - 0.62) 

SumAverage64 1.38 (1.21 - 1.57) 23.81 1.06E-06 0.59 (0.55 - 0.63) 

Volumetric PD 1.27 (1.11 - 1.46) 11.84 5.80E-04 0.57 (0.53 - 0.61) 

Total number of observations (N) = 1248, including 317 cases and 931 controls. 

Standardized odds ratio: change in odds for a standard deviation (in controls) increase in predictors, adjusted for 

age and BMI; CI: confidence interval; mC: matched concordance index; SD: standard deviation; SumAverage 16, 

32, 64: texture feature Sum Average using images downsized by a factor of 16, 32, and 64. PD: percent density. 
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Table 4 Modelling results for screen-detected and interval cancer  

 
Risk score Contrast SumAverage16 SumAverage32 SumAverage64 Volumetric 

PD 

Standardized OR 

for screen-

detected cancer 

1.15 0.88 1.09 1.11 1.20 1.13 

(0.99,1.35) (0.75,1.04) (0.93,1.26) (0.95,1.30) (1.02,1.40) (0.94,1.35) 

       

Standardized OR 

for interval 

cancer 

2.09 0.84 2.12 2.15 1.91 1.53 

(1.59 - 2.74) (0.66 - 1.06) (1.59 - 2.81) (1.62 - 2.86) (1.48 - 2.47) (1.21 - 1.92) 

Δχ2 15.27 0.15 18.53 17.84 9.80 4.38 

p-value 0.0001 0.70 <0.0001 <0.0001 0.002 0.036 

Standardized OR (odds ratio): change in odds for a standard deviation (in controls) increase in image features; their 

95% confidence intervals in brackets; SumAverage 16, 32, 64: texture feature Sum Average using images 

downsized by a factor of 16, 32, and 64. PD: percent density. Δχ2 and p-values refer to likelihood-ratio tests on 

whether there is significant difference between screen-detected and interval cancers (i.e. significance of interaction 

terms). 

 


