Micromechanical model for protein materials: From macromolecules to macroscopic fibers
Puglisi, G; De Tommasi, D; Pantano, MF; Pugno, NM; Saccomandi, G

© 2017 American Physical Society
This is the Version of Record published in Physical Review E following peer review. The version of record is available
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.042407

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/28646

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk
Micromechanical model for protein materials: From macromolecules to macroscopic fibers

G. Puglisi and D. De Tommasi
Dipartimento di Scienze dell’Ingegneria Civile e dell’Architettura, Via Re David 200, 700126, Politecnico di Bari, Italy

M. F. Pantano
Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy

N. M. Pugno
Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy

G. Saccomandi
Dipartimento di Ingegneria, Universita degli Studi di Perugia, piazza Universita, 1, 06123 Perugia and School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland

DOI: 10.1103/PhysRevE.96.042407

1. INTRODUCTION

Experimental analyses [atomic force microscopy (AFM), optical and magnetic tweezers, nanoindentation] clearly show that the outstanding elasticity, toughness, strength, and self-healing properties [1,2] of protein materials originate from their secondary structure characterized by the presence of folded (crystal-like) domains, typically in the form of α helices or β sheets, which can undergo unfolding as a consequence of an applied displacement. The efficacy of the unfolding mechanism is based on the presence of a large number of noncovalent forces [3], typically hydrogen-bonding, which act as sacrificial joints. Being much weaker than the covalent peptide bonds, these noncovalent interactions can easily break, causing unfolding phenomena ($\alpha \rightarrow \beta$ transition or β domains unfolding). Such unfolding prevents the backbone fracture conciliating the typically conflicting request for high stiffness, strength, and toughness [4]. Indeed, the cooperative strength of noncovalent bonds provides proteins with stability and stiffness before unfolding begins, whereas the increase of the end-to-end length during unfolding is responsible for toughness properties.

The analysis of the energy, stability, and time scales regulating the mechanical unfolding of hard domains represents a complex and diffusely analyzed task that cannot be solved with available molecular dynamics approaches. In fact, these were demonstrated not to be able to reproduce experimental observations [5], such as hierarchical multi-scales interactions [4], nano confinement effects [6], asymmetric energy landscapes for folding and refolding effect [7].

Here, we assume, in a phenomenological approach, to know the experimental stretch induced unfolding behavior of the single macromolecule (see Fig. 2). Then, based on an (slightly amended) affinity hypothesis [8] and the James and Guth three-chains model [9], we deduce the macroscopic behavior with damage and residual stretch of protein materials and analytical relation with few key macromolecular material parameters. Specifically, as in Refs. [10] and [11], we consider for the single molecule under assigned elongation a phenomenological Griffith-type approach assuming that the macromolecule unfolds when the energy gain (evaluated as difference of the two force-elongation curves between which the macromolecule jumps) equals a material parameter, representing the energy “dissipated” in the mechanical unfolding of the crystal. The corresponding contour length (hidden length) variations of the macromolecules, which can be also evaluated by the macromolecular stretching experiment, allows to accommodate large stretches (20-40%) with a contemporary high dissipation and toughness.

As in the case of multiscale dislocation and defect theories in metal plasticity [12], a significant advance in the comprehension of protein materials requires models relating the material properties at the macromolecular scale to the macroscopic response of fibers and tissues [2,10,13–16]. Such models are essential for both the comprehension of many biological (i.e., mechanotransduction and cell motility [17]) and biomedical phenomena (such as Alzheimers, type II Diabetes, Parkinsons [18]) and in the perspective of the design of new, high-performance bioinspired materials [2,13,19–24].
Here we focus on two different classes of structural protein materials [25] known for their outstanding performances: keratinous materials, which can be found in wool, hair, cells intermediate filaments, epithelial cells and hooves and silk, a valuable material produced by spiders and silkworms. In the first case, the secondary structure is in the form of intrachain α helices undergoing a coiled-coil transition to an almost straight polypeptide chain in the form of β sheets [13,26], whereas in the second case the protein secondary structure is in the form of interchains (alanine rich) β-sheet domains which undergo unfolding under stretching [14].

The α → β transition is a diffusely adopted mechanism in many protein materials, such as cytoplasmic IF proteins [27], which needs deep comprehension as it is linked to many human deceases such as Alzheimer, prion diseases, Parkinson. Both silk and keratinous materials have attracted significant attention from the scientific literature for the design of new bioinspired materials among which we recall nanopolymers [22] and block copolymers [21] in the case of spider silk and hydrogels [23] in the case of keratinous materials.

II. MICRO-MACRO MODEL

The sketch of the multiscale behavior of a hair protein fiber is schematized in Fig. 1.

(a) Additive assumption. Following a classical approach in polymer elasticity [28] [Fig. 3(b)], the energy of the protein network is the sum of the energy of ideally noninteracting unfolding chains plus a term (here modeled as simple Gaussian chains) accounting for the real network chains interactions.

(b) Wang and Guth hypothesis. All macromolecules are aligned along the principal axes [Wang and Guth scheme [9], Fig. 3(b)] and undergo the macroscopic stretches (affinity hypothesis [8]). Since protein fibers (both silk [19] and keratin [29]) are produced as highly oriented filaments densely packed in a less-ordered matrix, macromolecule unfolding occurs along the fiber direction, whereas the amorphous soft fraction is equally distributed along the principal directions.

(c) Skin-core effect. The fiber behavior is strongly influenced by its skin-core structure ([30], supercontraction [19], confinement [31], and prestretch of the inner chains [32]) here considered by imposing on the fibers a transversal pressure p.

Remark. This scheme extends the model in Ref. [33] to consider anisotropic damage: only macromolecules along the fiber direction undergo unfolding. This is fundamental for the experimental effect of permanent stretches.

A. Macromolecule energy

AFM experiments [34], reproduced in Fig. 2(b), show that a protein macromolecule experiences, as schematized in Fig. 2(a), a sequence of periodic unfolding events as a consequence of an increasing applied displacement. This results in a contemporary entropy and contour length increase (hidden length: increased number of free monomers) accompanied by an energy “dissipation” (Q in the figure) due to H-bonds disruption.

Since typically no partial unfolding occurs (either all or none of the domains unfold) following a Griffith-type total energy minimization approach [11], as in Refs. [26] and

FIG. 1. Multiscale behavior of protein materials like human hair under stretching. When a hair is stretched, the α-helix structures undergo a coiled-coil transition to an almost straight polypeptide chain in the form of β sheets.

FIG. 2. (a) Scheme of second structure unfolding during an AFM molecule stretching and (b) corresponding force-elongation curve (experimental behavior reproduced from Ref. [34]). The sawtooth shape is due to unfolding of an increasing number of domains with (c) reporting the corresponding total energy minimization approach (see Ref. [11]). (d) Continuum limit approximation with constant unfolding force plateaux.

FIG. 3. (a) Cartoon showing the deformation induced chain unfolding, where the total stretch λ is given by the product of the elastic stretch λ_e and the permanent stretch λ_p. (b) Micro-macro multiscale network.
We model a protein macromolecule as a lattice of \(n \) two-states (rigid-folded and entropic-unfolded) domains. We define the state of the \(i \)th domain through the variable \(\chi_i \) with \(\chi_i = 0 \) (\(= 1 \)) in the folded (unfolded) state. For simplicity, since we are interested in the unfolding regime, we neglect both the elastic energy and the length of the folded domains. Moreover, we neglect nonlocal interactions (weak interaction hypothesis). The total internal energy can then be expressed as \(\phi_e = \sum_{i=1}^{n} \chi_i \phi_e(\lambda_{\text{rel}}) \), where \(\phi_e \) depends on the relative deformation \(\lambda_{\text{rel}} = l_i/l_c \) of the \(i \)th unfolded domain, with end-to-end length \(l_i \), contour length (assumed constant) \(l_c \) and on the persistent length \(L_p \). We also assume the limit extensibility condition: \(\lim_{\lambda_{\text{rel}} \to 1} \phi_e(\lambda_{\text{rel}}) = +\infty \).

Equilibrium requires a constant force \(l_i \partial \phi_e(l_i/l_c) / \partial l_i = F \) and, under the hypothesis of convex \(\phi_e \), a constant \(\lambda_{\text{rel}} = l_i/l_c \) of the total end-to-end length and \(\phi_e = \sum_{i=1}^{n} \chi_i l_i \) is the total contour length of the unfolded fraction. As a result we have \(\phi_e = \phi_e(L_c \phi_e(\lambda_{\text{rel}}) = \phi_e(L_c \phi_e(L/L_c)) \).

Here, for the energy of the unfolded fraction we adopt the Worm Like Chain (WLC) type entropic energy density proposed in Ref. [11] (this choice allows for analytic computations and keeps the same asymptotic behavior as \(\phi_e \) posed in Ref. [11] (this choice allows for analytic computations).

\(= -n \sum_{i=1}^{n} Q(1-\chi_i) + J n_b_f \),

where \(n_{b_f} \) is the number of contiguous folded blocks in the folded and unfolded configuration, \(Q \) is the unfolding energy of the folded domains (considered constant), and \(J \) is a penalizing “interfacial” energy term. By introducing the probability function \(\hat{p}(L, n_u, n_{b_f}) \) of a state of the macromolecule with end-to-end length \(L \), \(n_u \) unfolded domains, and \(n_{b_f} \) continuous folded blocks, the total energy can be expressed as

\(\phi_{\text{tot}} = -k_B T \ln[\hat{p}(L, n_u, n_{b_f})] \)

\(= k_B T \Omega(n_u, n_{b_f}) \exp\left(-\frac{\phi_e(L, n_u)}{k_B T}\right) \exp\left(-\frac{\phi_e(n_{b_f})}{k_B T}\right) \)

\(= \phi_e(L, n_u) + \phi_e(n_{b_f}) - TS(n_u, n_{b_f}) \),

where \(\Omega(n_u, n_{b_f}) \) is the number of sequences with assigned \(n_u \) and \(n_{b_f} \) and \(S(n_u, n_{b_f}) = -k_B \ln \Omega(n_u, n_{b_f}) \) represents a mixing entropy component. By the diblock approximation, assuming always a single connected internal unfolded domain inside two boundary-folded domains (\(n_{b_f} = 1 \) as supported by the MD simulations in Ref. [41]), we neglect the mixing entropy term and the total (entropic plus unfolding) energy is simply

\(\phi_{\text{tot}} = \phi_e(L, n_u) + n_u Q + \text{const} \),

where \(\phi_e \) is given in Eq. (2).

In Figs. 2(b) and 2(c) we show the scheme of our minimization procedure, considering the global minimizer of \(\phi_{\text{tot}} \) determining the lengths transition \(L_u \) with an increasing number \(n_u \) of unfolded domains: the system undergoes an unfolding transition as soon as the entropic energy gain equals the (enthalpic) unfolding energy \(Q \) (colored area in the figure). The efficacy of this approach for the single chain has been evidenced in Ref. [11].

B. Continuum macromolecular approximation

To derive the macroscopic energy of a material consisting of a number of macromolecules, following Ref. [33] we begin by considering the continuum approximation of the macromolecular discrete lattice. To this end we fix the total unfolded length \(L^1_u = n_l \) and consider the (thermodynamic) limit when both \(l_c \to 0 \) and \(n \to \infty \) (see Ref. [36] for a similar approach in the case of biological adhesion and Refs. [37] and [38] for a rigorous thermodynamical justification). After introducing the continuous variable \(x \in (0, L_c) \) such that the \(i \)th link corresponds to \(x \in (i l_c,(i+1)l_c) \), \(i = 1,2,\ldots,n \) and the dissipation density \(g = Q/l_c \), the total energy for the continuum limit chain is

\(\phi_{\text{tot}} = \phi_{\text{tot}}(L, L_c) = \kappa \frac{L^2}{L_c} + q L_c \).

The equilibrium force is given by

\(f = \frac{\partial \phi_{\text{tot}}(L, L_c)}{\partial L} = \kappa \left(\frac{2L_c L - L^2}{(L_c - L)^2} \right) \),

whereas the driving force \(g \) conjugated to the variation of the contour length \(L_c \) (i.e. with the percentage of untravelled domains) is given by

\(g = -\frac{\partial \phi_{\text{tot}}(L, L_c)}{\partial L_c} = \kappa \left(\frac{L^2}{(L_c - L)^2} \right) \).

The Griffith approach fixes the dissipation rate \(g = \hat{g} \), where \(\hat{g} \) is a given material parameter here assumed null (global energy minimization). This provides for the length \(L_u \) of the unfolding length

\(L_u \equiv L_{\text{max}} = \frac{L_c}{\sqrt{k_B T/q} + 1} \),

and a constant unfolding force [path OABCD in Fig. 2(d)],

\(f_{\text{un}} = (2\sqrt{k_B T/q} + 1)q \).

Remark. Dashed lines in Fig. 2(d) are unloading and reloading paths. The introduction of partial refolding upon unloading would let us describe also internal hysteric effects. Similarly, the different behavior for macromolecular high rate of loading [7] could introduce rate loading effects [39].

[Ref. 35]
C. Affinity hypothesis

As classical in polymer elasticity [8], the main hypothesis for the deduction of the macroscopic behavior is the affinity hypothesis, which assumes that the macroscopic stretches coincide with the macromolecular ones. We have given an interpretation of the permanent deformations observed in protein materials as a macroscopic counterpart of the variation of the macromolecule natural configuration associated with the unfolding of crystal domains and the availability of new monomers (hidden length). We then extend the affinity hypothesis by identifying both permanent and elastic components of the macromolecular stretch with the macroscopic ones. In such a way we are also able to describe the important permanent stretch effect.

To analytically describe this phenomenon we begin by observing that for a given contour length L_c the natural length (zero force) L_n of the entropic chain can be expressed, according to a known result of statistical mechanics (see, e.g., Ref. [8]), as

$$L_n = \sqrt{\bar{n}} b = \sqrt{\frac{L_c}{b}} b = \sqrt{L_c b},$$

where b is the length of the Kuhn segments and \bar{n} is the number of Kuhn segments of the unfolded chain fraction. Thus, if we denote by L_i^n the initial contour length of the initial natural end-to-end length is $L_{o_i} = \sqrt{L_i^n b}$. Then we may define the following stretch measures:

$$\lambda = \frac{L}{L_o}, \text{ total stretch},$$
$$\lambda_e = \frac{L_e}{L_o}, \text{ elastic stretch},$$
$$\lambda_n = \frac{L_n}{L_o}, \text{ permanent stretch},$$
$$\lambda_c = \frac{L_c}{L_o}, \text{ limit extensibility stretch}. \quad (8)$$

The continuum limit behavior with permanent stretches is illustrated in Fig. 2(d). Under assigned growing end-to-end length ($\lambda_{max} \equiv \lambda$ and $\lambda > 0$) the macromolecule stretches elastically until the threshold $f = f_{un}$ is attained and the macromolecule unfolds along a stress plateau (path O-A-E). If the system is unloaded ($\lambda < \lambda_{max}$ and $\lambda_{max} = 0$), then the system follows different paths (paths Bb, Cc, Dd), with permanent stretches growing with λ_{max}.

We then obtain, using Eq. (5), the force-stretch relation

$$f = \kappa \left[\frac{2 \lambda}{\lambda_{max}} \right] = \left[\frac{2 \lambda}{\lambda_{max}} \right]^2,$$ \quad (9)

where λ_{max} is the previously maximum attained strain and, by using Eq. (7),

$$\lambda_e = \frac{\lambda}{\lambda_{max}} = \left(\frac{\kappa}{q} + 1 \right) \lambda_{max}, \quad (10)$$

is the (history-dependent) value of the limit stretch corresponding to the attainment on the contour length deductible analytically by the present value of λ_{max}.

D. Macroscopic material behavior

Structural proteins are composite materials of hard segments immersed in an amorphous soft fraction of unfolded macromolecules. To describe the complex interchains interactions and self-avoiding effects, according to the additivity hypothesis in polymer elasticity [28], we determine the energy of the real network as the sum of the energy of ideally isolated fibrils [folded molecules in Fig. 3(b), whose behavior is schematized in Fig. 2(d)] plus a network energy term measuring the chains interactions: red springs in Fig. 3(b). Moreover, according to the classical James and Guth three-chains model, we assume that all chains are aligned along the three principal macroscopic stretch directions. In particular, we suppose that the unfolding protein macromolecules are oriented along the fiber direction, whereas the amorphous soft fraction is supposed to be equally distributed along the three principal directions. For the unfolding chains we assume the continuous limit energy Eq. (4), force Eq. (5), unfolding force Eq. (7), and stretches Eq. (8) deduced above. The network effect is instead modeled by simple Gaussian chains.

Thus, let ($\lambda_1, \lambda_2, \lambda_3$) be the macroscopic principal stretches, where λ_1 is the stretch in the fiber direction. According to previous hypotheses, the macroscopic energy density can be calculated as

$$\Phi(\lambda_i) = N_{fib} \Phi_{fib}(\lambda_1) + \sum_{i=1}^{3} N_{net} \Phi_{net}(\lambda_i). \quad (11)$$

Here N_{fib} is the number of macromolecules with unfolding domain per unit area of fiber section in the reference configuration and N_{net} is the number of chains, per unit volume, reproducing the real chains network effect. The network energy is modeled as Gaussian $\Phi_{net}(\lambda_i) = \frac{\mu L}{2} (\lambda_i^2 - 1)$ leading (see, e.g., Ref. [8]) to a neo-Hookean network energy $\Phi_{net} = \frac{\mu}{2} (I - 3)$, where $L = \sum_{i=1}^{3} \lambda_i^2$ is the first invariant of the left Cauchy-Green deformation tensor and $\mu = k_B T N_{net}/3$ represents the shear elastic modulus. On the other hand, the energy of the unfolding chains gives a history dependent term depending only on λ_1 stretch. In such a way we describe a fundamental effect with the damage localized along the (maximum elongation) fiber direction. It is worth noticing that this damage anisotropy is crucial for an effective derivation of the macroscopic permanent stretch.

Suppose now that the fiber (assumed incompressible) undergoes uniaxial extension $\lambda_1 = \lambda$ and $\lambda_2 = \lambda_3 = 1/\sqrt{\lambda}$. To take into account the confinement effect, we introduce a constant pressure $p < 0$ perpendicular to the fiber skin. Thus, if $\sigma = \sigma_1$ is the (Piola or engineering) principal stress in the fiber direction, by using Eqs. (5) and (8) and by imposing the boundary conditions $\sigma_2 = \sigma_3 = p$, we get the stress-stretch relation,

$$\sigma = N_{fib} \kappa \left[\frac{2 \lambda}{\lambda_{max}} \right]^2 \left(\frac{2 \lambda}{\lambda_{max}} \right) \left(1 - \frac{\lambda}{\lambda_{max}} \right)^2 + \mu \left(\lambda - \frac{1}{\lambda^2} \right) + \frac{p}{\lambda^{1/2} \lambda}, \quad (12)$$

where λ_{max} is the previously maximum attained strain with $\lambda_{max} = \lambda$ if $\lambda_{max} > 0$ (primary loading) and $\lambda_{max} = \lambda$ if $\lambda_{max} < 0$. Other contributions are added to account for the confinement effect.
reproduced the only path with a previous stretch larger than of about 1 frame, resulting in a fiber with 1 cm length and a diameter dragline silk, which we collected and glued on a paper toward the ground and during its falling it produced its For sample preparation the spider was forced to fall down fiber produced by a cellar spider (Pholcus phalangioides). The macromolecular parameters are coherent with the ones known in the literature. The values of the persistent length match those reported in Ref. [13], where $l_p = 0.4\, \text{nm}$. The values of the rate of dissipation $q = 45\, k_BT/\text{nm}$ are coherent with the value in Ref. [27] from which one deduces that the energy for the unfolding of a single amino acid is about 100 kcal/mol, which corresponds to $q = 59.6\, k_BT/\text{nm}$, by assuming an amino acid length of about 1 nm. A higher value $q = 180\, k_BT/\text{nm}$ is adopted for the rabbit hair and this is due to the much higher experimental unfolding stress (about 600 MPa) that we here interpret as a particularly high rate of dissipation q corresponding to higher energy barrier regulating the transition between the folded and unfolded configuration. The number $N = 10^{18}$ of macromolecules per unit area corresponds to a coiled-coil cross section of 1 nm as suggested in Ref. [13]. It is important to point out that the only “arbitrary” parameters of the model are the pressure p of the hair cuticula accounting for the protein macromolecules cortex interactions [40] and the shear modulus μ. To the knowledge of the authors, no value for the confinement pressure p is available.

Despite the simplification of the model it quantitatively well reproduces the stiffnesses, the residual stretches, the damage softening, and the sudden softening corresponding to the reconnection to the primary loading curve (return point memory).

In Fig. 5 we reported the cyclic behavior of a spider silk fiber produced by a cellar spider (Pholcus phalangioides). For sample preparation the spider was forced to fall down toward the ground and during its falling it produced its dragline silk, which we collected and glued on a paper frame, resulting in a fiber with 1 cm length and a diameter of about 1 μm. The large toughness and healing properties observed in the macroscopic material behavior is the result of a complex multiscale structure and energy exchange phenomena (prestretch, chains alignment, chain-to-chain, and chains-matrix interactions), here modeled through our additivity assumption.

We point out that the behavior at small stretches is typically regulated by both the amorphous fraction and the tertiary structure [34,44], not considered in our model, so that we reproduced the only path with a previous stretch larger than

$$\lambda_c = \lambda_c(\lambda_{\text{max}}) = \left(\frac{\lambda_{\text{max}}}{q} + 1\right)\lambda_{\text{max}}$$

is the (limit) value of the stretch corresponding to the present value of the contour length (unloading and reloading).

III. EXPERIMENTAL VALIDATION

To prove the efficacy of our model, we performed cyclic tensile tests on two different types of material: keratin hair materials and dragline silk.

We first consider keratinous materials, such as human, cow, and rabbit hairs. The tests and the possibility of reproducing the macroscopic behavior of these keratin fibers are shown in Fig. 4.

The macromolecular parameters are coherent with the ones known in the literature. The values of the persistent length match those reported in Ref. [13], where $l_p = 0.4\, \text{nm}$. The values of the rate of dissipation $q = 45\, k_BT/\text{nm}$ are coherent with the value in Ref. [27] from which one deduces that the energy for the unfolding of a single amino acid is about 100 kcal/mol, which corresponds to $q = 59.6\, k_BT/\text{nm}$, by assuming an amino acid length of about 1 nm. A higher value $q = 180\, k_BT/\text{nm}$ is adopted for the rabbit hair and this is due to the much higher experimental unfolding stress (about 600 MPa) that we here interpret as a particularly high rate of dissipation q corresponding to higher energy barrier regulating the transition between the folded and unfolded configuration. The number $N = 10^{18}$ of macromolecules per unit area corresponds to a coiled-coil cross section of 1 nm as suggested in Ref. [13]. It is important to point out that the only “arbitrary” parameters of the model are the pressure p of the hair cuticula accounting for the protein macromolecules cortex interactions [40] and the shear modulus μ. To the knowledge of the authors, no value for the confinement pressure p is available.

Despite the simplification of the model it quantitatively well reproduces the stiffnesses, the residual stretches, the damage softening, and the sudden softening corresponding to the reconnection to the primary loading curve (return point memory).

In Fig. 5 we reported the cyclic behavior of a spider silk fiber produced by a cellar spider (Pholcus phalangioides). For sample preparation the spider was forced to fall down toward the ground and during its falling it produced its dragline silk, which we collected and glued on a paper frame, resulting in a fiber with 1 cm length and a diameter of about 1 μm. The large toughness and healing properties observed in the macroscopic material behavior is the result of a complex multiscale structure and energy exchange phenomena (prestretch, chains alignment, chain-to-chain, and chains-matrix interactions), here modeled through our additivity assumption.

We point out that the behavior at small stretches is typically regulated by both the amorphous fraction and the tertiary structure [34,44], not considered in our model, so that we reproduced the only path with a previous stretch larger than

$$\lambda_c = \lambda_c(\lambda_{\text{max}}) = \left(\frac{\lambda_{\text{max}}}{q} + 1\right)\lambda_{\text{max}}$$

is the (limit) value of the stretch corresponding to the present value of the contour length (unloading and reloading).
It is crucial to point out that for the spider fibril response the behavior—continuous lines, theoretical model—dashed lines). Here we assumed \(l_0 = 0.78 \text{ nm}, l_c = 25 \text{ nm}, N^{ib} = 4.75 \times 10^{18} \text{ m}^{-2}, Q = 550 k_BT \), \(T = 300 \text{ K}, \mu = 670 \text{ MPa}, p = -400 \text{ MPa} \), in accordance with the experimental evidences in Refs. [32,45].

ACKNOWLEDGMENTS

N.M.P. is supported by the European Research Council PoC 2015 “Silkene” No. 693670, by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 “Polymer Composites”), and FET Proactive “Neurofibre” Grant No. 732344.