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Abstract

We extend the model of risk sharing with limited commitment (Kocherlakota, 1996) by
introducing both a public and a private (unobservable and/or non-contractible) storage
technology. Positive public storage relaxes future participation constraints, hence it can
improve risk sharing, contrary to the case where hidden income or effort is the deep
friction. The characteristics of constrained-efficient allocations crucially depend on the
storage technology’s return. At the steady state, if the return on storage is (i) mod-
erately high, both assets and the consumption distribution may remain time-varying;
(ii) sufficiently high, assets converge almost surely to a constant and the consumption
distribution is time-invariant; (iii) equal to agents’ discount rate, perfect risk sharing is
self-enforcing. Agents never have an incentive to use their private storage technology,
i.e., Euler inequalities are always satisfied, at the constrained-efficient allocation of our
model, while this is not the case without optimal public asset accumulation. Finally, we
find that, in contrast with the limited-commitment model without storage, past income
affects consumption growth negatively both in our model with storage and in data from
Indian villages.
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1 Introduction

The literature on incomplete markets either restricts asset trade exogenously, most promi-
nently by allowing only a risk-free bond to be traded (Huggett, 1993; Aiyagari, 1994), or
considers a deep friction which limits risk sharing endogenously. With private information
as the friction, a few papers (Allen, 1985; Cole and Kocherlakota, 2001; Ábrahám, Koehne,
and Pavoni, 2011) have integrated these two strands of literature by introducing a storage
technology. This paper considers limited commitment (Thomas and Worrall, 1988; Kocher-
lakota, 1996), LC hereafter, and makes a similar contribution by introducing both a public
and a private storage technology.

Our starting point is the two-sided lack of commitment framework of Kocherlakota (1996),
the basic model hereafter. Agents face risk in that their share of a constant aggregate income
is stochastic. Risk-sharing transfers have to be such that both agents are at least as well off
as in autarky at each time and state of the world. The storage technology we introduce allows
the planner and the agents to transfer resources from one period to the next and earn a net
return r, −1 ≤ r ≤ 1/β − 1, where β is agents’ subjective discount factor.1 Storage by agents
is hidden, i.e., unobservable and/or non-contractible, while an agent reverting to autarky is
excluded from the returns of the publicly accumulated assets, an endogenous Lucas tree.2

The model of risk sharing with LC has been successfully applied to better understand the
consumption of households in village economies (Ligon, Thomas, and Worrall, 2002; Laczó,
2015) and in the United States (Krueger and Perri, 2006), of spouses within a household
(Mazzocco, 2007; Voena, 2015), as well as international business cycles (Kehoe and Perri,
2002). In these applications, agents are likely to have a way to transfer resources intertem-
porally, both jointly and privately. However, typically neither public nor hidden storage is
considered.3

1Note that with r = −1 we are back to the Kocherlakota (1996) setting.
2Krueger and Perri (2006) make the same assumption for their exogenous Lucas tree. Publicly stored

assets may be protected by community enforcement (guards for public grain storage facilities in villages), by
contracts (divorce law for couples), or by international organisations (for countries). Alternatively, one may
think of an outside financial intermediary implementing public storage, as in our decentralisation, see Section
2.5. Note that Karaivanov and Townsend (2014) assume the presence of a financial intermediary as well, for
Thai villages.

3A few papers have considered LC economies with an intertemporal technology, either pure storage or
capital accumulation. In Marcet and Marimon (1992) and Kehoe and Perri (2002), the social planner allocates
capital to the agents, which in turn increases their outside option. In Voena (2015) the share of assets given to
each divorcee is determined by divorce laws. In contrast, in our model agents cannot expropriate the public
assets upon default. In a risk-sharing framework with LC, Ligon, Thomas, and Worrall (2000) consider
observable and contractible individual storage and no public storage. In their environment individual storage
is used in equilibrium, in contrast to our framework. Krueger and Perri (2006) introduce public assets of a
constant size and show that its presence increases the amount of risk sharing, as in our model. As opposed
to our paper, they do not endogenise the size of the asset/Lucas tree. Finally, Ábrahám and Cárceles-Poveda
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Our analysis with two agents is particularly relevant for applications where risk sharing is
studied within a household, between ‘husband’ and ‘wife.’ In a recent survey, Chiappori and
Mazzocco (2017) consider the LC model, possibly with household savings, as the most pow-
erful model both to explain the intra-household allocation of consumption and leisure, and
to study normative questions such as joint taxation of household income and assets. Papers
which consider endogenous household savings typically assume that savings do not affect the
distribution of consumption (Mazzocco, 2007; Lise and Yamada, 2015). In our analysis saving
may respond to consumption dispersion, and, in turn, consumption dispersion next period
may respond to savings. Some recent papers take into account the joint dynamics of indi-
vidual consumptions and household savings (Mazzocco, Ruiz, and Yamaguchi, 2013; Voena,
2015). However, they do not provide any analytical characterisation or discuss quantitatively
the relationship between household savings and within-household consumption dispersion.4

Another set of applications where our finite-number-of-agents assumption is especially
relevant is village economies. Some villages may have only few households, hence sizeable
idiosyncratic shocks may affect aggregate income and income inequality, which in turn may
affect savings.5 This application is also important because there is a sizeable literature,
starting from Ligon, Thomas, and Worrall (2002), to test the extent of informal risk sharing
in villages using a limited-commitment framework. In addition, there is some evidence that
public storage facilities exist and are used for risk-sharing purposes. In particular, Bliss and
Stern (1982) provide a detailed study of an Indian village, Palanpur, where an institution
called the Seed Store functions not unlike public storage in our model. It is a co-operative
with shares owned by member villagers. They use the Seed Store to borrow seeds to plant,
and then pay back after the harvest. In case of need, repayments can be postponed, hence
it contains an insurance element. The punishment for long-term inability to repay is a loss
of membership, or, access to the Seed Store.

We first add only public storage to the basic model. The characteristics of constrained-
efficient allocations, such as steady-state asset and consumption dynamics, crucially depend
on the return on storage. First, we show that public storage is used in equilibrium as long
as its return is sufficiently high and risk sharing is partial in the basic model. Further,

(2006) introduce public capital and derive the recursive form of the problem, similar to ours, but then they
focus on the decentralisation of the constrained-optimal allocation as a competitive equilibrium. None of
these papers, or any other in the LC literature, to our knowledge, considers hidden storage.

4Note that these quantitative works on couples’ decisions allow for divorce along the equilibrium path due
to ‘love’ or ‘match quality’ shocks. In this paper we limit our attention to sharing income shocks and couples
that stay together, and leave the analytical study of saving incentives coming from the possibility of divorce
to future work.

5In fact, our analysis highlights new mechanisms in all contexts where income inequality varies over time.
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if the return on storage is moderately high, assets remain stochastic and the consumption
distribution varies over time in the long run. If the return on storage is sufficiently high, assets
converge almost surely to a constant and the consumption distribution is time-invariant. Risk
sharing remains partial as long as the storage technology is inefficient, i.e., r < 1/β − 1, and
perfect risk sharing is self-enforcing at the steady state if the return on storage is equal to
agents’ discount rate.

To understand how public storage matters, note that limited commitment makes mar-
kets endogenously incomplete, i.e., individual consumptions vary across income realisations
and over time. Market incompleteness combined with idiosyncratic risk implies that some
(precautionary) savings/storage improves welfare at the individual level. A benevolent social
planner inherits these motives and stores ‘on behalf of’ the agents. At the same time, higher
public assets reduce default incentives, thereby reducing consumption dispersion and in turn
the precautionary motive for saving. Further, agents would like to front-load consumption as
long as β(1 + r) < 1. Optimal public asset accumulation is determined by these conflicting
forces. If β(1 + r) = 1, it is optimal for the planner to fully complete the market by storage at
the steady state. This is because the trade-off between imperfect insurance and an inefficient
intertemporal technology is no longer present. Note that there is no aggregate income risk
in our environment, hence storage would never be used at the first best. In other words, the
aggregate asset dynamics in our model are due to incomplete markets generated by the LC
friction.6

The introduction of public storage has new qualitative implications for the dynamics of
consumption predicted by the model when assets are stochastic at the steady state. First,
the amnesia property, i.e., that whenever an agent’s participation constraint (PC) binds the
consumption allocation depends only on his current income (Kocherlakota, 1996), does not
hold. Second, the persistence property of the basic model, i.e., that for ‘small’ income changes
consumption is constant, does not hold either. There is a common intuition behind these
results: the past history of shocks affects current consumptions through aggregate assets.

We also show that constrained-efficient allocations can be decentralised as competitive
equilibria with endogenous borrowing constraints (Alvarez and Jermann, 2000) and a com-
petitive financial intermediation sector which runs the storage technology (Ábrahám and
Cárceles-Poveda, 2006). In this environment, equilibrium asset prices take into account the

6As we discuss in Section 5, allowing for stochastic aggregate income is without conceptual difficulty and
most of our characterisation would go through. In terms of computation, it would simply add one more state
variable, as one would have to also condition on aggregate income either directly or through the second agent’s
income realisation. We assume a constant aggregate income to isolate the effects of partial risk sharing on
savings.
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externality of aggregate storage on default incentives. In this sense, our paper provides a joint
theory of endogenous borrowing constraints and an endogenously growing (and shrinking)
asset/Lucas tree in equilibrium.

We then consider hidden storage as well. We show that for a wide range of storage returns,
from possibly negative to the discount rate, agents would store privately without public
storage,7 but they no longer have an incentive to store in a hidden way at the constrained-
efficient allocation in our model with public storage.8 In other words, with optimal public
asset accumulation, the social planner preempts the agents’ private storage incentives. This is
true because the planner has more incentive to store than the agents. First, the planner stores
for the agents, because she inherits their preference for consumption smoothing. Second,
storage by the planner makes it easier to satisfy agents’ PCs in the future. In other words,
the planner internalises the positive externality generated by accumulated assets on future
risk sharing.

This result means that the characteristics of constrained-efficient allocations in a model
with both public and private storage and a model with only public storage are the same.
This result also implies that agents’ Euler inequalities are always satisfied in our model
with LC and public storage for reasonable rates of return on storage. The Euler inequality
cannot be rejected in micro data from developed economies, once labour supply decisions
and demographics are appropriately accounted for (Attanasio, 1999). Therefore, we bring
LC models in line with this third observation about consumption dynamics as well.

In a private-information environment with full commitment, Cole and Kocherlakota (2001)
show that public storage is never used and agents’ private saving incentives are binding in
equilibrium, eliminating any risk-sharing opportunity beyond self-insurance.9 When the deep
friction is LC as opposed to private information, the results are very different: first, pub-
lic storage is used in equilibrium, and second, private storage incentives do not bind. The
main difference between the two environments is that in our environment more public stor-
age helps to reduce the underlying LC friction, while with private information public asset
accumulation would make incentive provision for truthful revelation more costly.

We also study what the overall effects of access to storage are on welfare. These crucially
depend on the return on storage. The availability of private storage increases the value of

7Alvarez and Jermann (2000) show that in the basic model agents’ Euler equation holds if the interest
rate is the equilibrium return on a risk-free bond implied by the constrained-efficient allocation. Our result
holds also for any storage return above that equilibrium rate but below the discount rate.

8Note that this result does not hinge on how agents’ outside option is specified precisely: they may or
may not be allowed to store privately in autarky, and they may or may not face additional punishments for
defaulting.

9See also Allen (1985) and Ábrahám, Koehne, and Pavoni (2011).
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autarky, which reduces welfare, while accumulated public assets improve steady-state welfare,
both by decreasing consumption dispersion and increasing available resources. When the
return on storage is sufficiently high, there are welfare gains at the steady state, because the
economy gets close to perfect risk sharing, and aggregate consumption is higher than in the
basic model. When the return on storage is lower, the negative effect of a better outside
option dominates the positive effect of public assets on welfare. In the short run, public
asset accumulation also has costs in terms of foregone consumption. Obviously, compared
to private storage only, public asset accumulation always improves welfare. To see whether
access to both private and public storage improves welfare taking into account the transition
from the moment storage becomes available, we propose an algorithm to solve the model
numerically. It turns out that when initial risk sharing is low and the return on storage
is high, the steady-state welfare gains dominate the short-term losses, i.e., access to public
storage is welfare-improving even if it is accompanied by private storage opportunities.

Finally, we perform a simple regression analysis of consumption dynamics to compare
our model and the basic model to the data. We are interested in whether our model is able
to better capture how consumption reacts to current and past idiosyncratic income shocks.
That is, we study whether the failure of the amnesia and persistence properties happens in
an empirically relevant way. We compare how past incomes matter in (i) simulated data from
the basic model, (ii) simulated data from our model with both public and private storage, and
(iii) households survey data from three Indian villages collected by the International Crop
Research Institute for the Semi-Arid Tropics (ICRISAT). We find that, controlling for past
consumptions and current incomes, past incomes are insignificant in explaining consumptions
in the basic model, and they have a significant negative effect in both our model and the
data. Hence, our extension has the potential to improve the LC framework’s capacity to
explain consumption dynamics.

The rest of the paper is structured as follows. Section 2 introduces and characterises
our model with public storage. Section 3 shows that agents’ private storage incentives are
eliminated under optimal public asset accumulation. Section 4 presents some computed
examples and our regression analysis of consumption dynamics. Section 5 concludes with
a summary and provides a broader perspective on our results. Appendices contain (A) our
longer proofs, (B) a description of our numerical algorithm to solve the model, (C) our
approach to verify the validity of the first-order-conditions approach in our model with both
public and private storage, and (D) a brief description of the ICRISAT data we use.
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2 The model with public storage

We consider an endowment economy with two agents, i = {1, 2}, who are infinitely lived and
risk averse. All agents are ex-ante identical in the sense that they have the same preferences
and are endowed with the same exogenous random endowment process.10 Let u() denote
the utility function. We assume that it is characterised by harmonic absolute risk aversion
(HARA), i.e., u(c) = ξ (b+ c/σ)1−σ, where c ≥ 0 is consumption, and b ≥ 0 and σ > 0.11

We set ξ = σ−σ and a = bσ−σ to have u′(c) = (a+ c)−σ. Note that HARA utility functions
satisfy prudence, i.e., u′′′() > 0. We further assume that inverse marginal, 1/u′(), is convex,
that is, σ ≥ 1. Some of our results, in particular, those relating to the long run, hold under
weaker assumptions. The common discount factor is denoted by β.

Let st denote the state of the world realised at time t and st the history of endowment
realisations, that is, st = (s1, s2, ..., st). Given st, agent 1 has income y(st) > 0, while agent 2

has income equal to Y − y (st) > 0, where Y is the aggregate endowment. Note that there
is no aggregate risk in the sense that the aggregate endowment is constant.12 However, the
distribution of income varies over time. We further assume that income has a discrete support
with J elements, that is, y(st) ∈

{
y1, . . . , yj, . . . , yJ

}
with yj < yj+1, and is independently

and identically distributed (i.i.d.) over time, that is, Pr (y(st) = yj) = Pr (yj) = πj, ∀t. The
assumptions that there are two types of agents and no aggregate risk impose some symmetry
on both the income realisations and the probabilities. In particular, yj = Y − yJ−j+1 and
πj = πJ−j+1. The i.i.d. assumption can be relaxed, we only need weak positive dependence,
i.e., that expected future income is weakly increasing in current income.13

Suppose that risk sharing is limited by two-sided lack of commitment to risk sharing
contracts, i.e., insurance transfers have to be voluntary, or, self-enforcing, as in Thomas and
Worrall (1988), Kocherlakota (1996), and others. Each agent may decide at any time and
state to default and revert to autarky. This means that only those risk-sharing contracts
are sustainable which provide a lifetime utility at least as great as autarky after any history
of endowment realisations for each agent. We assume that the punishment for deviation is
exclusion from risk-sharing arrangements in the future. This is the most severe subgame-
perfect punishment in this context. In other words, it is an optimal penal code in the sense
of Abreu (1988) (Kocherlakota, 1996). Note that so far our setting is identical to that of

10When we consider the decentralisation of our economy in Section 2.5, we will assume that each agent
represents a continuum of ex-ante and ex-post identical agents.

11Note that relative risk aversion is constant for b = 0, and we get exponential utility as σ approaches
infinity.

12In Section 5 we discuss the case with aggregate risk.
13In Section 4.3 we allow income to follow a Markov process.
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Kocherlakota (1996).
We introduce a storage technology, which makes it possible to transfer resources from

today to tomorrow. Assets stored earn a net return r, with −1 ≤ r ≤ 1/β − 1. Note that if
r = −1 we are back to the basic LC model of Kocherlakota (1996). In this section we only
allow for public storage, to which defaulting agents do not have access (as in Krueger and
Perri, 2006). In Section 3 we also allow agents to store privately both in autarky and along
the equilibrium path in a hidden (unobservable and/or non-contractible) way.

The constrained-efficient risk-sharing contract is the solution to the following optimisation
problem:

max
ci(st)

2∑
i=1

λi

∞∑
t=1

∑
st

βt Pr
(
st
)
u
(
ci
(
st
))
, (1)

where λi is the (initial) Pareto-weight of agent i, Pr (st) is the probability of history st

occurring, and ci (s
t) is consumption by agent i at time t when history st has occurred;

subject to the resource constraints,

2∑
i=1

ci
(
st
)
≤

2∑
i=1

yi (st) + (1 + r)B
(
st−1

)
−B

(
st
)
, B

(
st
)
≥ 0, ∀st, (2)

where B (st) denotes public storage when history st has occurred, with B (s0) given; and the
participation constraints (PCs),

∞∑
r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r)) ≥ Uau
i (st) , ∀st,∀i, (3)

where Pr (sr | st) is the conditional probability of history sr occurring given that history st

occurred up to time t, and Uau
i (st) is the expected lifetime utility of agent i when in autarky

if state st has occurred today. In mathematical terms,

Uau
1 (st) = u (y(st)) +

β

1− β

J∑
j=1

πju
(
yj
)

(4)

and Uau
2 (st) = u (Y − y(st)) +

β

1− β

J∑
j=1

πju
(
yj
)
.

The above definition of autarky assumes that agents cannot use the storage technology
in autarky. Note, however, that the qualitative results remain the same under different
outside options as long as the strict monotonicity of the autarky value in current income is
maintained. For example, agents could save in autarky (as in Krueger and Perri, 2006, and in
Section 3), or they might endure additional punishments from the community for defaulting
(as in Ligon, Thomas, and Worrall, 2002).
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2.1 Characterisation preliminaries

We focus on the characteristics of constrained-efficient allocations. Our characterisation is
based on the recursive-Lagrangian approach of Marcet and Marimon (1998/2017). However,
the same results can be obtained using the promised-utility approach (Abreu, Pearce, and
Stacchetti, 1990).

Let βt Pr (st)µi (s
t) denote the Lagrange multiplier on the PC, (3), and let βt Pr (st) γ (st)

be the Lagrange multiplier on the resource constraint, (2), when history st has occurred. The
Lagrangian is

L =
∞∑
t=1

∑
st

βt Pr
(
st
){ 2∑

i=1

[
λiu
(
ci
(
st
)) 1

2

+µi
(
st
)( ∞∑

r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r))− Uau
i (st)

)]

+γ
(
st
)( 2∑

i=1

(
yi (st)− ci

(
st
))

+ (1 + r)B
(
st−1

)
−B

(
st
))}

,

with B (st) ≥ 0. Note that our problem is convex, because the objective function is strictly
concave, the resource constraint is linear, and it has been shown that the PCs define a convex
set in models with LC and capital accumulation as long as autarky utility does not depend
on the capital stock, B here, see Sigouin (2003).14 Therefore, the first-order conditions we
derive below are both necessary and sufficient, and the solution is unique. Note also that
existence is guaranteed as well, because the constraint set is compact. This requires B to be
bounded, which we establish below.

Using the ideas of Marcet and Marimon (1998/2017), we can write the Lagrangian in the
form

L =
∞∑
t=1

∑
st

βt Pr
(
st
){ 2∑

i=1

[
Mi

(
st
)
u
(
ci
(
st
))
− µi

(
st
)
Uau
i (st)

]
+γ
(
st
)( 2∑

i=1

(
yi (st)− ci

(
st
))

+ (1 + r)B
(
st−1

)
−B

(
st
))}

,

where Mi (s
t) = Mi (s

t−1) + µi (s
t) and Mi (s

0) = λi. The first-order condition with respect
to agent i’s consumption when history st has occurred is

∂L

∂ci (st)
= Mi

(
st
)
u′
(
ci
(
st
))
− γ

(
st
)

= 0. (5)

14See also Thomas and Worrall (1994) and Ábrahám and Cárceles-Poveda (2006).
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Combining such first-order conditions for agent 1 and agent 2, we have

x
(
st
)
≡ M1 (st)

M2 (st)
=
u′ (c2 (st))

u′ (c1 (st))
. (6)

Here x (st) is the current Pareto weight of agent 1 relative to agent 2.15 Defining υi (st) ≡
µi(st)/Mi(st), and using the definitions of x (st) and Mi (s

t), we can obtain the law of motion

x
(
st
)

= x(st−1)
1− υ2 (st)

1− υ1 (st)
. (7)

Note that 0 ≤ υi ≤ 1, ∀i.
The planner’s Euler inequality, i.e., the optimality condition for B (st), is

γ
(
st
)
≥ β(1 + r)

∑
st+1

Pr
(
st+1|st

)
γ
(
st+1

)
.

Using (5), (6), and (7), the planner’s Euler becomes

u′
(
ci
(
st
))
≥ β(1 + r)

∑
st+1

Pr
(
st+1|st

) u′ (ci (st+1))

1− υi (st+1)
, (8)

where 0 ≤ 1− υi (st+1) ≤ 1, ∀st+1, ∀i. Given the definition of υi (st+1) and equation (7), it is
easy to see that (8) represents exactly the same mathematical relationship for both agents.

Equation (8) determines the choice of public storage, B (st). It is clear that, first, the
higher the return on storage is, the more incentive the planner has to store. Second, note
that whenever υi (st+1) = 0, ∀st+1, (8) is identical with agent i’s standard Euler equation.
This implies that whenever risk sharing is not perfect, that is, ci (st+1) varies over st+1 for a
given st, the (utilitarian) planner has a precautionary motive for storage inherited from the
agents, a typical motive for saving in models with (endogenously or exogenously) incomplete
markets. Third, the new term compared to standard models is 1/ (1− υi (st+1)) ≥ 1. This
term is strictly greater than 1 for states when agent i’s PC is binding. Hence, binding future
PCs amplify the return on storage. This is because higher public storage makes the PCs looser
in the future by reducing the relative attractiveness of default. The planner internalises this
effect when choosing the level of public storage.

Next, we introduce some useful notation and show more precisely the recursive formulation
of our problem, using the relative Pareto weight, x, as a co-state variable. This recursive
formulation is going to be the basis for both the analytical characterisation and the numerical

15To reinforce this interpretation, notice that if no PC binds in history st for either agent, i.e.,
µ1 (s

τ ) = µ2 (s
τ ) = 0 for all subhistories sτ ⊆ st, then x (st) = λ1/λ2, the initial relative Pareto weight of

agent 1.
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solution procedure. Let C() and y denote, respectively, the consumption function and current
income of agent 1, V() his value function, υi() the function determining the normalised
Lagrange multiplier on agent i’s PC, i ∈ {1, 2}, x′() the function determining the current
Pareto weight, and B′() the function determining public storage. The following system is
recursive with X = (y,B, x) as state variables:

x′(X) =
u′ (Y + (1 + r)B − B′(X)− C(X))

u′ (C(X))
(9)

x′(X) = x
1− υ2(X)

1− υ1(X)
(10)

u′ (C(X)) ≥ β(1 + r)
∑
y′

Pr
(
y′
) u′ (C(X ′))
1− υ1(X ′)

(11)

u (C(X)) + β
∑
y′

Pr
(
y′
)
V
(
X ′
)
≥ Uau (y) (12)

u
(
Y + (1 + r)B − B′(X)− C(X)

)
+ β

∑
y′

Pr
(
y′
)
V
(
Y − y′,B′(X), 1/x′(X)

)
≥ Uau (Y − y) (13)

B′(X) ≥ 0. (14)

The first equation, (9), where we have used the resource constraint to substitute for the
consumption of agent 2, says that the ratio of marginal utilities between the two agents has
to be equal to the current relative Pareto weight. Equation (10) is the law of motion of
the co-state variable. Equation (11) is the social planner’s Euler inequality, which we have
derived above. Equations (12) and (13) are the PCs of agent 1 and agent 2, respectively.
Finally, equation (14) makes sure that public storage is never negative.

Given the recursive formulation above, and noting that the outside option Uau() is mono-
tone in current income and takes a finite number of values, the solution can be characterised
by a set of state-dependent intervals on the current Pareto weight. This is analogous to the
basic model, where public storage is not considered (see Ljungqvist and Sargent, 2012, for
a textbook treatment). The key difference is that these optimal intervals on the relative
Pareto weight depend not only on current endowment realisations but also on B. The fol-
lowing lemma will be useful for specifying the optimal state-dependent intervals, and hence
for characterising the dynamics of our model.

Lemma 1. C (ỹ, B, x̃) = C (ŷ, B, x̂), B′ (ỹ, B, x̃) = B′ (ŷ, B, x̂), and V (ỹ, B, x̃) = V (ŷ, B, x̂)

for all (ỹ, x̃), (ŷ, x̂) such that x′ (ỹ, B, x̃) = x′ (ŷ, B, x̂). That is, for determining consump-
tions, public storage, and agents’ expected lifetime utilities, the current relative Pareto
weight, x′, is a sufficient statistic for the current income state, y, and the inherited rela-
tive Pareto weight, x.

11



Proof. Given x′ and B, equations (9) and (11), either as equality or implying zero public
storage, give consumption and public storage as a function of x′ and B only. Note that the
inherited relative Pareto weight, x, and the current income state, y, do not appear in these
equations separately. Then, the left-hand side of (12) gives lifetime utility, where again x

and y do not appear separately, and we have proven above that B′() and C() are functions
of x′ and B only.

Lemma 1 implies that we can express consumptions, public storage, and agents’ lifetime
utilities in terms of accumulated assets and the current relative Pareto weight. That is, we
can write consumption by agent 1, public assets, and the value function as c(B, x′), B′(B, x′),
and V (B, x′), respectively.

The following conditions define the lower and upper bounds of the optimal intervals in
state yj as a function of B:

V (B, xj(B)) = Uau
(
yj
)

and V

(
B,

1

xj(B)

)
= Uau

(
Y − yj

)
. (15)

Hence, given the inherited relative Pareto weight, x, and accumulated assets, B, the updating
rule is

x′ =


xj(B) if x > xj(B)
x if x ∈

[
xj(B), xj(B)

]
xj(B) if x < xj(B)

.

The ratio of marginal utilities is kept constant whenever this does not violate the PC of
either agent. When the PC binds for agent 1 (agent 2), the relative Pareto weight moves to
the lower (upper) limit of the optimal interval, just making sure that this agent is indifferent
between staying and defaulting. Given that the value of autarky is strictly increasing in
current income, and the value function is strictly increasing in the current Pareto weight,
xj(B) > xj−1(B) and xj(B) > xj−1(B) for all J ≥ j > 1 and B.

2.2 The dynamics of public assets and the consumption distribution

In the basic model aggregate consumption is constant, and hence it is obvious that an agent’s
consumption increases with his own Pareto weight. With public storage, aggregate consump-
tion varies as (1 + r)B−B′(x′, B) varies over time, which depends on x′. Hence, an increase
in the current relative Pareto weight, in principle, may imply a sufficiently large decrease in
aggregate consumption so that agent 1’s consumption decreases. For now we assume this
intuitive property that c increases in x′. Formally:

Property 1. If x̃′ > x̂′ then c (B, x̃′) > c (B, x̂′), ∀B. That is, consumption by agent 1 is
strictly increasing in his current relative Pareto weight.

12



Next we continue our characterisation assuming that Property 1 holds. In particular, we
prove Claim 1 and Proposition 1 using this property. However, to prove Proposition 1, we
only need Property 1 to hold in the case where r is such that assets are constant at the
steady state. Afterwards, using the results in Claim 1 and Proposition 1 and the uniqueness
of the solution established above, we prove that Property 1 indeed holds when assets converge
to a constant level in the long run, see Lemma 2. Further, we verify numerically that this
property holds also in the case when public assets are stochastic in the long run.

We can describe the dynamics of the model with similar optimal intervals and updating
rule on consumption as on the relative Pareto weight, as for the basic model, assuming that
Property 1 holds. Using (9) we can implicitly define the limits of the optimal intervals on
consumption as

cj(B) : xj(B) =
u′
(
Y + (1 + r)B −B′

(
B, xj(B)

)
− cj(B)

)
u′
(
cj(B)

)
and cj(B) : xj(B) =

u′ (Y + (1 + r)B −B′ (B, xj(B))− cj(B))

u′ (cj(B))
.

Symmetry implies that cj(B) = Y + (1 + r)B − B′
(
B, xj(B)

)
− cJ−j+1(B). Note further

that the monotonicity of xj(B) and xj(B) in income and Property 1 imply that cj(B) and
cj(B) are also monotone in income.

These consumption intervals are key to understanding the steady-state distribution of
storage as they are the key determinants of risk sharing in the long run. Given the utility
function, the income process, r, and B, the intervals for different states may or may not
overlap depending on the discount factor, β. The higher β is, the wider these intervals are.
By a standard folk theorem (Kimball, 1988), for β sufficiently high, all intervals overlap.
That is, c1(B) ≥ cJ(B), hence perfect risk sharing is implementable. At the other extreme,
when β is sufficiently low, agents stay in autarky (cj(B) = cj(B), ∀j). Similarly, given the
income process, r, and β, as public assets are accumulated (or decumulated) the optimal
intervals change. In particular, the intervals are wider when B is higher.16

When partial insurance occurs, it is useful to distinguish two possible scenarios. To fix
ideas, suppose that B is constant at B∗. For higher levels of β and/or B∗,
cj (B∗) ≥ cJ (B∗) > c1 (B∗) ≥ cj (B∗) for all 1 < j < J . In this case, it is easy to see that,

16This is easy to see from (15). Take the first equality. The right-hand side is independent of B, and the
value function on the left-hand side is increasing in both its arguments (available resources and own relative
Pareto weight), hence as B increases xj(B) and hence cj(B), the lower limit of the optimal interval in state yj ,
must decrease. Similarly, from the second inequality in (15), 1/xj(B) must decrease, hence xj(B) and cj(B),
the upper limit, must increase. Moreover, xj(B) is strictly increasing and xj(B) is strictly decreasing in B
for all j, as long as the length of the j-interval is not zero.
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in the long run, consumption will only take the values cJ (B∗) and c1 (B∗). This implies
that the consumption distribution is time-invariant in the long run in the sense that the
mass of people consuming either of these values is constant. This does not mean that in-
dividual consumption will be constant. Instead, it will fluctuate between these values, and
change whenever a PC is binding, i.e., the agent who consumed c1 (B∗) yesterday gets the
highest income, yJ , today, and hence his consumption jumps to cJ (B∗). For lower levels
of β and/or B∗, we have that cj (B∗) < cJ (B∗) and cj (B∗) > c1 (B∗) for some j. In turn,
consumption will take more than two values in the long run in this case, and consequently
the consumption distribution will also fluctuate over time. Note that this characterisation
also holds for the basic limited-commitment model, where B∗ = 0.

The next claim provides a key property of the public storage decision rule and characterises
the short-run dynamics of assets. It shows how public storage varies with the consumption
and income distribution.

Claim 1. Under Property 1, B′(B, x′) is increasing in x′ for x′ ≥ 1 and B′(B, x′) > 0. That
is, the higher cross-sectional consumption inequality is, the higher public asset accumulation
is. Further, consider yj > yk ≥ Y/2 (or yj < yk ≤ Y/2). Then, B′(yj, B, x) ≥ B′(yk, B, x),
∀(B, x). That is, aggregate asset accumulation is increasing with cross-sectional income in-
equality.

Proof. In Appendix A.

The intuition for Claim 1 is coming from two related observations. Higher inequality in
the current period implies higher expected consumption inequality/risk next period. Under
convex inverse marginal utility, the planner has a higher precautionary motive for saving
whenever she faces more risk tomorrow.17

We are now ready to characterise the steady-state behaviour of public assets and the
consumption distribution.18

Proposition 1. Assume that β is such that the consumption distribution is time-varying
without public storage.

17Note that with log utility B′ is weakly increasing in x′ ≥ 1, i.e., in cross-sectional consumption inequality,
since 1/u′ is linear in this case, while for CRRA utility functions with a coefficient of relative risk aversion
strictly greater than 1, the empirically more plausible range, 1/u′ is strictly convex, hence B′ is strictly
increasing in x′ ≥ 1.

18Note that Proposition 1 below implies that the stochasticity of the steady state crucially depends on r.
In particular, in case (i) the consumption distribution and individual consumptions, but not assets, are
stochastic; in case(ii) all these variables remain stochastic; in case (iii) only individual consumptions are
stochastic; and finally, in case (iv) all variables converge to a constant.
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(i) There exists r1 such that for all r ∈ [−1, r1], public storage is never used in the long
run.

(ii) There exists a strictly positive r2 > r1 such that for all r ∈ (r1, r2), B remains stochastic
but bounded, and the consumption distribution is time-varying in the long run.

(iii) For all r ∈ [r2, 1/β − 1), B converges almost surely to a strictly positive constant, B∗,
which is independent of the initial level of assets, and where the consumption distribu-
tion is time-invariant, but perfect risk sharing is not achieved.

(iv) Whenever r = 1/β − 1, B converges almost surely to a strictly positive constant and
perfect risk sharing is self-enforcing.

If β is such that the consumption distribution is time-invariant without public storage, then
r1 = r2, hence only (i), (iii), and (iv) occur.

Proof. In Appendix A.

The intuition behind Proposition 1 is that the social planner trades off two effects of
increasing public storage: it is costly as long as β(1 + r) < 1, but less so the higher r is, and
it is beneficial because it reduces consumption dispersion in the future. The level of public
assets chosen just balances these two opposing forces, the relative strength of which naturally
depends on the return on storage, r. When the cross-sectional consumption distribution is
time-varying (case (ii)), the relative strength of the two forces determining asset accumulation
changes over time. This implies that assets cannot settle at a constant level in this case.

When the return on storage is sufficiently high (case (iii)), assets are accumulated so that
PCs are only binding for agents with the highest income in the long run, and the consumption
distribution becomes time-invariant. In this case, there is a unique constant level of assets, B∗,
which exactly balances the trade-off between impatience and the risk-sharing gains of public
storage. Finally, in the limiting case of β(1 + r) = 1 (case (iv)), the planner does not face a
trade-off between improving risk sharing and using an inefficient intertemporal technology,
hence assets are accumulated until the level where full insurance is enforceable.19,20

We now show that Property 1 holds in the case where assets converge to a constant level
in the long run. We first show that Claim 1 and Proposition 1 imply that Property 1 holds.

19If the initial level of assets is high enough so that perfect risk sharing is self-enforcing, then assets stay
at their initial level. Therefore, unlike in case (iii), the steady-state level of assets is not unique.

20Note that similar results can be obtained in a model of one-sided LC of an open economy with a con-
tinuum of agents, competitive financial intermediaries, no punishment for default for agents, and if princi-
pals/intermediaries are at least as patient as agents. In that environment, Krueger and Uhlig (2006) show
that whenever β(1 + r) = 1 (β(1 + r) < 1 but not ‘too far’ from 1), the steady-state outcome is full (partial)
risk sharing, and the economy is accumulating assets against the intermediaries (the rest of the world). See
also Ljungqvist and Sargent (2012).
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Then, given the uniqueness of the solution, this implies that the solution is characterised by
Property 1 along the transition as well when r is such that assets are constant in the long
run.

Lemma 2. If x̃′ > x̂′ then c (B, x̃′) > c (B, x̂′), ∀B, as long as assets converge to a constant
level in the long run. That is, consumption by agent 1 is strictly increasing in his current
relative Pareto weight.

Proof. In Appendix A.

The intuition for Lemma 2 is the following. As a response to increasing inequality, it cannot
be optimal to increase public storage so much that both agents have lower consumption.
That would contradict the optimal intertemporal smoothing behaviour of the planner.21

We illustrate the dynamics of assets in the case where they are stochastic in the long
run in Figure 1.22 For simplicity, we consider three income states, indexed by the income
of agent 1, yl < ym < yh. This means that there are two types of states: two with high
income and high consumption inequality (states yh and yl) and one with low income and
low consumption inequality (state ym). The solid line represents B′

(
B, xh(B)

)
, i.e., public

storage in state yh (or yl) when the relevant PC is binding. Similarly, the dot-dashed line
represents B′ (B, xm(B)), i.e., storage in state ym when the relevant PC is binding. Starting
from B0, if state ym occurs repeatedly, assets converge to the lower limit of their stationary
distribution, denoted B. The relevant PC is always binding along this path, because assets
keep decreasing.

The dashed line represents the scenario where state yh (or state yl) occurs when assets
are at the lower limit of the stationary distribution, B, and then the same state occurs
repeatedly. This is when assets approach the upper limit of their stationary distribution,
denoted B. The relevant PC is not binding from the period after the switch to yh, therefore
public storage given assets is described by the function B′

(
B, xh(B)

)
.

Under Property 1 we can also characterise analytically the limits of the long-run stationary
distribution of assets, for any number of income states, as follows.

Claim 2. Under Property 1, the lower limit of the stationary distribution of public assets,
B, is either strictly positive and is implicitly given by

u′ (cm (B)) = β(1 + r)
J∑
j=1

πj
u′ (C (yj, B, xm (B)))

1− υ1 (yj, B, xm (B))
, (16)

21Note that the analytical proof can be extended to some values of r which imply that assets are stochastic
in the long run, in particular, values which are close to the threshold above which assets are constant in the
long run or to the threshold below which zero public storage is optimal.

22We have generated the figure numerically and verified that Property 1 holds.
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Figure 1: Asset dynamics when assets are stochastic at the steady state

B ~ BB0

B’

B

B’(B,xh(B))

B’(B,xm(B))

B

B’(B,xh(B))

or is zero and (16) holds as strict inequality. The upper limit of the stationary distribution
of public assets, B, is implicitly given by

u′
(
C
(
yJ , B, xJ (B)

))
= β(1 + r)

J∑
j=1

πju′
(
C
(
yj, B, xJ (B)

))
. (17)

Proof. In Appendix A.

Finally, assume, without loss of generality, that state y1 occurred many times while ap-
proaching B, and suppose that state yJ occurs when assets are (close to) B. In this case,
x′ = xJ

(
B
)
< xJ (B), and assets decrease. They then converge to a level B̃ from above with

the relevant PC binding along this path. The same happens whenever B > B̃ when we switch
to state yJ (or y1). B̃ is implicitly given by

u′
(
cJ
(
B̃
))

= β(1 + r)
J∑
j=1

πju′
(
C
(
yJ , B̃, xh

(
B̃
)))

.

2.3 The dynamics of individual consumptions

Having characterised assets, we now turn to the dynamics of consumption. One key property
of the basic model is that whenever either agent’s PC binds (υ1(X) > 0 or υ2(X) > 0), the
resulting allocation is independent of the preceding history. In our formulation, this implies
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that x′ is only a function of y and the identity of the agent with a binding PC. This is
often called the amnesia property (Kocherlakota, 1996). Typically data do not support this
pattern, see Broer (2013) for the United States and Kinnan (2017) for Thai villages. Allowing
for public storage helps to bring the model closer to the data in this respect.

Proposition 2. The amnesia property does not hold when public assets are stochastic at the
steady state.

Proof. x′ and hence current consumption depend on both current income and assets, B,
when a PC binds. This implies that the past history of income realisations affects current
consumptions through B.

Another property of the basic model is that whenever neither PC binds (υ1(X) = υ2(X) =

0), the consumption allocation is constant and hence exhibits an extreme form of persis-
tence.23 It is again not easy to find evidence for this pattern in the data, see Broer (2013).
In our model, even if the relative Pareto weight does not change, (9) does not imply that
individual consumptions will be the same next period as in the current period.

Proposition 3. The persistence property does not hold generically when public assets are
stochastic at the steady state.

Proof. Even though x′ = x, (1 + r)B − B′(X) is generically not equal to (1 + r)B′ − B′′(X ′)
when assets are stochastic at the steady state.24

The last two propositions imply that in our model the dynamics of consumption are
richer than in the basic model in a qualitative sense. We provide reduced-form regression
evidence in Section 4.3 below that history dependence occurs in a similar way in our model
as in data from village economies. It should be clear from this discussion that the failure of
these properties is due to changes of an endogenous aggregate state variable, public assets.
However, typically when these properties are tested within households (see e.g. Lise and
Yamada, 2015), household assets are not controlled for. Similarly, when the amnesia property
is tested in village economies, the non-linear and asymmetric effects of changes in public
storage are not taken into account, partly due to a lack of data. In this sense, the above
results also provide inputs for the development of more theory-consistent empirical tests for
these key properties of LC models.

23This can be seen easily: (10) gives x′ = x, and the consumption allocation is only a function of x′ with
constant aggregate income. This implies that for ‘small’ income changes which do not trigger a PC to bind,
we do not see any change in individual consumptions.

24The only exceptions are asset levels B, B̃, and B in Figure 1 with the appropriate income states occurring.
However, the probability that assets settle at these points in the stationary distribution is zero.
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2.4 Welfare

It is clear that access to public storage cannot reduce welfare, because zero assets can always
be chosen. Along the same lines, if public storage is strictly positive for at least the most
unequal income state, then welfare strictly improves. Proposition 1 implies that this is the
case whenever the basic model does not display perfect risk sharing and the return on storage
is higher than r1 < 1/β − 1.

2.5 Decentralisation

Ábrahám and Cárceles-Poveda (2006) show how to decentralise a LC economy with capital
accumulation and production. That economy is similar to the current one in one important
aspect: agents are excluded from receiving capital income after default. They introduce com-
petitive intermediaries and show that a decentralisation with endogenous debt constraints
which are ‘not too tight’, as in Alvarez and Jermann (2000), is possible.25 Public storage can
be thought of as a form of capital, B units of which produce (1 + r)B units of output tomor-
row and which fully depreciates. Hence, the results above directly imply that a competitive
equilibrium corresponding to the constrained-efficient allocation exists.

In particular, households trade Arrow securities subject to endogenous borrowing con-
straints which prevent default, and the intermediaries also sell these Arrow securities to
build up public storage. The key intuition is that equilibrium Arrow-security prices take into
account binding future PCs, as these prices are given by the usual pricing kernel. Moreover,
agents do not hold any ‘shares’ in public storage, hence their autarky value is not affected.
Finally, no arbitrage or perfect competition guarantees that the intermediaries make zero
profits in equilibrium. As opposed to Ábrahám and Cárceles-Poveda (2006), capital accu-
mulation constraints are not necessary, because in our model public storage does not affect
agents’ outside option.

3 The model with both public and private storage

In this section, we allow agents to use the same storage technology as the social planner
in a private (unobservable and/or non-contractible) way. Access to private storage both

25Ábrahám and Cárceles-Poveda (2006) use a neoclassical production function where wages depend on
aggregate capital. This implies that there the value of autarky depends on aggregate capital as well. This
is also the case in the two-country production economy of Kehoe and Perri (2004). Ábrahám and Cárceles-
Poveda (2006) show that if the intermediaries are subject to endogenously determined capital accumulation
constraints, then this externality can be taken into account, and the constrained-efficient allocation can be
decentralised as a competitive equilibrium. Chien and Lee (2012) achieve the same objective by taxing capital
instead of using a capital accumulation constraint.
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affects agents’ autarky values and enlarges the set of possible actions and deviations. In
mathematical terms, allowing for private storage requires adding agents’ Euler inequalities
as constraints to the problem given by the objective function (1) and the constraints (2) and
(3), and modifying the PCs, (3).

The social planner’s problem becomes

max
{ci(st),B(st)}

2∑
i=1

λi

∞∑
t=1

∑
st

βt Pr
(
st
)
u
(
ci
(
st
))

s.t.
2∑
i=1

ci
(
st
)
≤

2∑
i=1

yi (st) + (1 + r)B
(
st−1

)
−B

(
st
)
, B

(
st
)
≥ 0, ∀st,

(P1 )
∞∑
r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r)) ≥ Ũau
i (st) , ∀st,∀i, (18)

u′
(
ci
(
st
))
≥ β(1 + r)

∑
st+1

Pr
(
st+1 | st

)
u′
(
ci
(
st+1

))
, ∀st, ∀i. (19)

The objective function, the resource constraint, and the non-negativity-of-public-storage re-
striction remain the same as before. The PCs change slightly, since Ũau

i (st) in (18) is the
value function of autarky when private storage is allowed, to be defined precisely below.
Agents’ Euler inequalities, equation (19), guarantee that agents have no incentive to devi-
ate from the proposed allocation by storing privately. Note that we implicitly assume that
private storage is zero at the initial period.

A few remarks are in order about this structure before we turn to the characterisation of
constrained-efficient allocations. First, agents can store privately in autarky, but they lose
access to the benefits of the public asset. This implies that if the current shock realisation
is s, corresponding to income y for agent 1 and Y − y for agent 2, then Ũau

1 (s) = V au (y, 0)

and Ũau
2 (s) = V au (Y − y, 0), where V au (z, b) is defined as

V au (z, b) = max
b′≥0

{
u(z + (1 + r)b− b′) + β

J∑
j=1

πkV au
i

(
yj, b′

)}
, (20)

where b denotes private savings. Since V au (·, 0) is increasing, it is obvious that if we replace
the autarky value in the model of Section 2 (or in the basic model) with the one defined
here, the same characterisation holds. Note that, unlike in Bulow and Rogoff (1989), state-
contingent assets are not available in autarky.26

Second, we use a version of the first-order-conditions approach (FOCA) here. That is,
these constraints only cover a subset of possible deviations. In particular, we verify that each

26Bulow and Rogoff (1989) find that access to state-contingent ‘cash-in-advance contracts’ in autarky
prevents risk sharing in equilibrium. However, “[t]his conclusion does depend on a sovereign’s ability to
reproduce any risk-sharing advantages of loan contracts by holding a portfolio of foreign assets” (p. 49).
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agent is better off staying in the risk-sharing arrangement rather than defaulting and possibly
storing in autarky (constraint (18), see also (20)), and that he has no incentive to store
privately given that he does not ever default (constraint (19), agents’ consumption-saving
optimality condition). It is not obvious whether these constraints are sufficient to guarantee
incentive compatibility, because multiple and multi-period deviations are not considered by
these constraints.27 In particular, an agent can store privately in the current period to increase
his value of autarky in future periods and default in a later period. For now, we assume
that these deviations are not profitable given the contract which solves Problem P1. We
characterise the solution under this assumption. Then, in Appendix C we provide a numerical
verification algorithm to show that agents indeed have no incentive to use these more complex
deviations, unless the return on the storage technology is in a small neighbourhood of the
efficient level.

Third, both the PCs, (18), and the Euler constraints, (19), involve future decision vari-
ables. Given these two types of forward-looking constraints, a recursive formulation using
either the promised-utility approach of Abreu, Pearce, and Stacchetti (1990) or the recursive-
Lagrangian approach of Marcet and Marimon (1998/2017) is difficult. In this paper, we follow
a different approach. In particular, we show that the solution of a simplified problem where
agents’ Euler inequalities are ignored satisfies those Euler constraints. That is, instead of
Problem P1, we consider the following simpler problem:

max
{ci(st),B(st)}

2∑
i=1

λi

∞∑
t=1

∑
st

βt Pr
(
st
)
u
(
ci
(
st
))

(P2 ) s.t.
2∑
i=1

ci
(
st
)
≤

2∑
i=1

yi (st) + (1 + r)B
(
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)
−B

(
st
)
, B

(
st
)
≥ 0, ∀st,

∞∑
r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r)) ≥ Ũau
i (st) , ∀st,∀i.

This is the problem we studied in Section 2, except that the autarky value is different. Now,
we are ready to state the main result of this section.

Proposition 4. The solution of the model with hidden storage, P1, corresponds to the solu-
tion of the simplified problem, P2.

Proof. We prove this proposition by showing that the allocation which solves P2 satisfies
agents’ Euler inequalities, (19), the only additional constraints. Note that the planner’s

27In fact, Kocherlakota (2004) shows that in an economy with private information and hidden storage the
FOCA can be invalid.
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Euler, (8), is a necessary condition for optimality for P2. It is clear that the right-hand side
of (8) is bigger than the right-hand side of (19), for i = {1, 2}, since 0 ≤ υi (s

t+1) ≤ 1, ∀st+1.
Therefore, (8) implies (19).

This result implies that the characteristics of the constrained-efficient allocations of Prob-
lem P1 are the same as those of Problem P2, which is the problem we studied in Section 2.
Proposition 4 also means that private storage does not matter as long as public asset accu-
mulation is optimal. We have to emphasise, however, that the result that no private storage
occurs hinges on the assumption of optimal public asset accumulation with the same return.

The intuition behind this result is that the planner has more incentive to store than
the agents. She stores for the agents, because she inherits their preference for consumption
smoothing. Thereby she can eliminate agents’ incentive to store in a hidden way. Fur-
ther, comparing (8) and (19) again, it is obvious that the planner has more incentive to
store than the agents in all but the most unequal states. In particular, the presence of
1/ (1− υi (st+1)) > 1 in the planner’s Euler indicates how public asset accumulation helps
the planner to relax future PCs, and thereby improve risk sharing, or, make markets more
complete. In other words, the planner internalises the positive externality of public asset
accumulation on future risk sharing.

Next, we relate the case with both private and public storage to the case with private
storage in autarky but without public storage. The following result follows from Proposi-
tion 4.

Corollary 1. The planner stores in equilibrium whenever an agent’s Euler inequality is
violated at the constrained-efficient allocation of the basic model with no public storage and
private storage only in autarky.

Corollary 1 says that whenever agents have private storage incentives in the basic model,
public storage is used in equilibrium. However, this result is only interesting if private
storage matters, i.e., agents’ Euler inequalities are violated, in the basic model under general
conditions. This is what we establish next.

3.1 Does hidden storage matter in the basic model?

In this section, we identify conditions under which agents would store privately at the
constrained-efficient solution of the basic model without public storage. We assume that
partial insurance occurs at the solution, because otherwise it is trivial that private storage is
never used. If agents’ Euler inequalities are violated, the solution of the basic model is not
robust to deviations when private storage is available.
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We first consider the benchmark case where agents have access to an efficient intertempo-
ral technology, i.e., storage earns a return r such that β(1 + r) = 1. Afterwards, we study the
general case. We only examine whether agents would use the available hidden intertemporal
technology at the constrained-efficient allocation of the basic model.

Lemma 3. Suppose that partial insurance occurs and the hidden storage technology yields a
return r such that β(1 + r) = 1. Then agents’ Euler inequalities are violated at the constrained-
efficient allocation of the basic model.

Proof. We show that the Euler inequality is violated at least when an agent receives the
highest possible income, yJ , hence his PC is binding. By the characterisation in Section 2.1,
it is clear that for all future income levels his consumption will be no greater than his
current consumption, i.e., C

(
yj, 0, xJ(0)

)
≤ cJ(0). If partial insurance occurs, then it must

be that there exists some state yk where the agent consumes C
(
yk, 0, xJ

)
< cJ(0). Then,

u′(cJ(0)) <
∑

yj π
ju′
(
C
(
yj, 0, xJ(0)

))
, that is, the Euler inequality is violated.

The following proposition shows that for all economies with partial insurance one can find
a threshold return on storage above which agents’ storage incentives bind in the basic model.

Proposition 5. There exists r̃ < 1/β − 1 such that for all r > r̃ agents’ Euler inequalities
are violated at the constrained-efficient allocation of the basic model. Further, r̃ is implicitly
defined as

u′(cJ(0)) = β(1 + r̃)
∑
yj

πju′
(
C
(
yj, 0, xJ(0)

))
. (21)

Proof. For r̃ close to −1, the right-hand side of (21) is close to zero. For r̃ = 1/β − 1,
the right-hand side is greater than the left-hand side by Lemma 3. It is obvious that the
right-hand side is continuous and increasing in r̃. Therefore, there is a unique r̃ that solves
equation (21), and agents’ Euler inequalities are violated for higher values of r.

The intuition behind this result is that whenever partial insurance occurs, the agent
enjoying high consumption in the current period faces a weakly decreasing consumption
path. Therefore, if a storage technology with sufficiently high return is available, the agent
uses it for self-insurance purposes. One can also show that the threshold r̃ in Proposition 5
can be negative.28

Note that this result does not contradict that of Alvarez and Jermann (2000) that agents’
Euler equation holds if the interest rate is the equilibrium return on a risk-free bond implied

28In particular, we have shown that agents would use a hidden storage technology with r = 0 under non-
restrictive conditions. A necessary condition is that the consumption distribution is time-varying at the
steady state. The proofs of these results are available upon request.
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by the constrained-efficient allocation when public storage is not allowed, denoted r∗. Given
that markets are endogenously incomplete, we know that the equilibrium price is such that
β(1 + r∗) < 1. This implies that public storage can only matter if the return on storage is
above r∗.

3.2 The dynamics of individual consumptions revisited

We have shown in Section 2.3 that, introducing public storage, we potentially overturn two
counterfactual properties of consumption dynamics in the basic model, the amnesia and
persistence properties. We can improve on the basic model with respect to a third aspect
of the dynamics of consumption. In particular, the Euler inequality cannot be rejected in
household survey data from developed economies, once household demographics and labour
supply are appropriately accounted for (see Attanasio, 1999, for a comprehensive review of
the literature). Empirically, as long as households have access to an intertemporal technology
with a return above r∗, our model, unlike the basic model, is in line with this third observation
as well.

3.3 Welfare revisited

In Section 2.4 we have argued that access to public storage unambiguously reduces con-
sumption dispersion and improves welfare. It is clear that hidden storage counteracts these
benefits of public storage, because it increases the value of agents’ outside option, which in
itself increases consumption dispersion and reduces welfare. The overall effects of access to
both public and private storage are hence ambiguous in general, and depend on the return
to storage, r. We first compare welfare at the (possibly stochastic) steady state of our model
with both public and private storage and the basic model without storage. Afterwards, we
discuss the effects of the transition from the moment when storage becomes available.

In the following proposition we compare consumption dispersion and (equal-weighted)
social welfare at the steady state in two economies. In the first economy neither public nor
private storage is available, in the second one both are available.

Proposition 6.

(i) There exists r̃1 such that for all r ∈ [−1, r̃1] storage is not used even in autarky, therefore
access to storage leaves consumption dispersion unchanged and is welfare neutral.

(ii) There exists r̃2 > r̃1 such that for all r ∈ (r̃1, r̃2] storage is used only in autarky, there-
fore consumption dispersion increases and welfare deteriorates as a result of access to
storage, and strictly so as long as perfect risk sharing is not self-enforcing.
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(iii) There exists r̃3 > r̃2 such that for all r ∈ (r̃2, r̃3) public storage is (at least sometimes)
strictly positive, but access to storage is still welfare reducing and consumption disper-
sion is higher than in the basic model without storage. Access to storage is welfare
neutral at the steady state at the threshold r = r̃3.

(iv) There exists r̃4 > r̃3 such that for all r ∈ (r̃3, r̃4) access to storage is welfare improving
at the steady state, but consumption dispersion is still higher than in the basic model.
Consumption dispersion is the same at the threshold r = r̃4.

(v) For all r ∈ (r̃4, 1/β − 1] access to storage is welfare improving at the steady state, and
consumption dispersion is lower than in the basic model.

Proof. In Appendix A.

Even when welfare improves at the steady state, accumulating public assets has short-
run costs in terms of reduced aggregate consumption. This implies that the total gains
(losses) from gaining access to storage are lower (higher) than those we have considered in
Proposition 6. However, it is not clear whether access to both private and public storage
improves welfare. For this reason, we explore this issue using numerical examples in the next
section.

4 Numerical results

In this section we solve for the constrained-efficient allocation in economies with LC and
access to public and private storage. As in Section 3, agents are allowed to store privately in
autarky. We describe the algorithm we have applied in more detail in Appendix B.

First, we consider the simplest possible setting in order to illustrate the working of the
model, focusing on public assets, consumption, and welfare at the (possibly stochastic) steady
state. Second, we compute the overall welfare impact of access to both public and private
storage, including the transition. Third, in Section 4.3, we perform a regression analysis of
consumption dynamics in simulated data from our model and the basic model, and compare
the way the history of income shocks matters in the two models and in household survey data
from village economies. In particular, we use data from three Indian villages collected by
the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT).29 Further
details on the dataset are in Appendix D.

29It is safe to say that the ICRISAT dataset is the most widely used income-consumption survey from de-
veloping countries. In particular, it has been used by many papers studying risk sharing in village economies,
including Townsend (1994), Ligon (1998), Ogaki and Zhang (2001), Ligon et al. (2002), Mazzocco and Saini
(2012), and Laczó (2015).
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4.1 Assets, consumptions, and welfare at the steady state

In this section, we show that public storage can be significant in magnitude. We also illustrate
how consumption and welfare are affected by the availability of storage with different returns
−1 ≤ r < 1/β − 130 at the (possibly stochastic) steady state.

We assume that agents’ per-period utility function is of the CRRA form with a coefficient
of relative risk aversion equal to 1, i.e., u() = ln(). We assume that the income of both agents
is i.i.d. over time and may take three values, with equal probabilities. We normalise aggregate
income to 1. We match the coefficient of variation of agents’ income process to the median
coefficient of variation of households’ income in the data, which is 0.294. Then, the income
values are 0.353, 0.5, and 0.647.

We consider two discount factors, low (β = 0.8) and high (β = 0.9). In the former case,
risk sharing is partial without storage, however, the consumption distribution is time-varying.
In the latter case, perfect risk sharing occurs without access to storage. Note that this does
not imply that public and private storage cannot be relevant, as access to private storage
increases the autarky values, and may prevent full insurance with zero public assets. This
triggers public asset accumulation if the return on storage is sufficiently high.

We present the simulation results in a few figures. First, let us look at the behaviour
of assets at the steady state. Figure 2 shows the stationary distribution of assets, the first
panel for β = 0.8 and the second for β = 0.9. Assets at the steady state naturally increase
with r. When the discount factor is high (β = 0.9), the PCs in state ym do not bind in the
long run, and assets always converge to a constant for any return on storage (case (iii) in
Proposition 1). Public storage is strictly positive for r > 0.041. For example, with r = 0.06

the planner’s savings amount to 6.85 percent of aggregate (non-asset) income, with r = 0.08

they are 12.37 percent, and with r = 0.11 they are at least 22.59 percent.
When β = 0.8, for intermediate values of r the PCs bind in all three states, and assets

remain stochastic at the steady state (case (ii) in Proposition 1). The shaded area in Figure 2,
panel (a) indicates the values public storage can take at the steady state for each r, the
bounds of which are characterised in Claim 2. Public storage is (sometimes) strictly positive
for r > 0.01. For example, with r = 0.06 public assets vary between 2.39 and 5.20 percent of
aggregate (non-asset) income. When the interest rate is r = 0.02, assets vary between 0 and
1.91 percent. This last example shows that 0 can be part of the stationary distribution of
assets when they are stochastic in the long run (see Claim 2). With r = 0.25 public storage

30For r = 1/β−1, the FOCA might be invalid, see Appendix C, hence we focus on the case of an inefficient
storage technology.
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reaches at least 21.2 percent of aggregate income.31

Figure 2: Assets at the steady state
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Notes: The stationary distribution of public assets. The aggregate endowment is 1 in each period. Note the
difference in scales in the two panels.

Figure 3 shows the possible steady-state consumption values. Together with Figure 2, this
figure reflects the different cases described in Propositions 1 and 6. If β = 0.8 (β = 0.9) for
returns below r̃1 = −0.091 (r̃1 = −0.192) storage does not even affect the value of autarky,
and hence it is not used in equilibrium either. In this case, the allocation is not affected by
the availability of storage. Given our parameterisation, this implies that in the low-patience
case (β = 0.8) the consumption distribution has four values, while in the high-patience case
(β = 0.9) full risk sharing is enforceable. In fact, for β = 0.9, perfect risk sharing occurs at the
steady state for r ≤ −0.104, since the PCs still do not bind in the range−0.192 < r ≤ −0.104.
As long as r is below r̃2 = 0.030 (r̃2 = 0.041) for β low (high), public storage is still not used,
but private storage increases the value of autarky, so consumption dispersion increases with
the rate of return on storage.32 For r ≥ r̃2, as r and aggregate asset accumulation increases,
consumption dispersion declines.

One important difference between the two cases is that, with the lower β, without public
storage a PC binds in state ym as well. For this reason, in Panel (a) of Figure 3, we see
four consumption levels as long as public storage is not used. As the return reaches r1 =

r̃2 = 0.030, public storage is used, and assets remain stochastic at the steady state until
r2 = 0.162 (case (ii) in Proposition 1, see also Figure 2, panel (a)). This implies that in

31This is not shown in Figure 2 in order to better highlight the cases where assets are stochastic in the
long run.

32For β = 0.9, the autarky value is affected already for a lower storage return, however at these levels full
insurance is still enforceable.
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this case, even in the long run, consumptions depend not only on current income but also
on the changing level of assets, and their possible values are indicated by the shaded areas.
Panel (a) of Figure 3 also shows that the stochasticity of assets has small but non-negligible
effects on the levels and dispersion of consumption in this example. At r = 0.162 the PCs
stop binding in state ym, and hence the consumption distribution becomes time-invariant,
and assets converge to a constant level.

Figure 3: Consumption at the steady state
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Notes: The stationary distribution of consumption. For β = 0.9, assets are never stochastic at the steady
state and consumption may take two values at most for all r. Note the difference in scales in the two panels.

Figure 4 shows steady-state welfare expressed in per-period consumption. We have char-
acterised steady-state welfare in Proposition 6. When access to storage only increases the
value of autarky, it decreases welfare. However, when the return is high enough so that it
is used by the planner in equilibrium, it may increase welfare at the steady state. When
β = 0.8 the threshold return above which steady-state welfare improves is r̃3 = 0.057, when
β = 0.9 it is 0.054. Note that at these thresholds, consumption dispersion is higher than in
the case without storage. However, aggregate consumption is also higher. As the return on
storage approaches the efficient level, consumption dispersion approaches zero. Hence welfare
is always higher with than without storage at the steady state. The welfare gain for r close
to the discount rate is approximately equal to a 6.6 percent increase in consumption when
β = 0.8, and to a 2.5 percent increase when β = 0.9.
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Figure 4: Welfare at the steady state
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Notes: The solid line shows steady-state welfare in terms of per-period constant consumption with both
public and private storage. The dashed line shows steady-state welfare per period in terms of consumption
without storage for reference. Note the difference in scales in the two panels.

4.2 Welfare including the transition

Now we compute average welfare from the moment the storage technology becomes available.
We do this to take into account the cost of asset accumulation. Figure 5 shows the results.
When β = 0.9 access to both public and private storage lowers welfare for all r. If perfect
risk sharing is self-enforcing without private storage (as with β = 0.9), public storage is never
positive even when it is available. This implies that when we allow for private storage, the
feasible set shrinks, and hence welfare deteriorates. Panel (b) of Figure 5 confirms this.

Instead when β = 0.8 and the return on storage is above the threshold r = 0.210, welfare
including the transition increases, see Panel (a) of Figure 5. Here risk sharing is partial
without private storage, and the overall effect could go either way. There are welfare costs
associated with the build-up of aggregate assets, but the steady-state gains dominate when
the return on storage is sufficiently high.

4.3 Consumption dynamics – model and village data

We want to examine whether the dynamics of consumption in our model are more similar
to that of household survey data compared to the basic model. In particular, we study the
effect of past income shocks.

To derive an estimating equation, consider the usual optimality condition that the ratio
of marginal utilities between any two agents/households, i and −i, should equal the current
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Figure 5: Welfare including transition
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Notes: The solid line shows expected lifetime utility in terms of per-period constant consumption from the
moment when (both public and private) storage becomes available. The dashed line shows expected lifetime
utility per period in terms of consumption without storage for reference. Note the difference in scales in the
two panels.

relative Pareto weight. That is, with CRRA preferences, (c−i,t)
−σ / (cit)

−σ = xit. Taking logs
and rearranging, we have

ln cit − ln c−i,t =
lnxit
σ

.

Under perfect risk sharing, lnxit = lnxi,t−1. Typical tests of perfect risk sharing in the vein of
the seminal paper of Townsend (1994) use past consumptions to capture the ratio of marginal
utilities, and establish whether new information at time t, such as income realisations, affect
consumptions. Then, the estimating equation can be written as

ln cit − ln c−i,t = α0 + α1 (ln ci,t−1 − ln c−i,t−1) + α2 (ln yit − ln y−i,t) + uit, (22)

where uit is an error term. A α2 significantly different from zero suggests that perfect risk
sharing fails.

The main motivation to introduce LC in the risk-sharing literature was to explain α2

significantly positive when one estimates (22), using data from village economies, for example.
According to the basic LC model, lnxit = f (lnxi,t−1,yt), where yt is the vector of incomes
at time t and f() is some function. Controlling for lnxi,t−1, yt, and approximating the
function f() sufficiently well, past information such as past incomes should not affect current
consumptions significantly. That is, in the regression

ln cit − ln c−i,t = α0 + f (lnxi,t−1,yt) + γ (ln yi,t−1 − ln y−i,t−1) + uit, (23)
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where γ should not be significantly different from zero according to the basic model. Instead,
according to our model with public storage, γ might be different from zero, because of time-
varying public storage. We are also interested in whether the sign of γ when estimating (23)
using real data and model-simulated data is the same.

To investigate the empirical relevance of the two LC models, without and with storage,
in accounting for consumption dynamics, we estimate (23) using

(i) simulated data from the basic LC model,

(ii) simulated data from our LC model with storage, and

(iii) actual data from the ICRISAT villages.

For our simulated data i = 1 and −i = 2, while for the village data −i’s are village means in
equation (23).33

To implement the regression on simulated data, we first have to calibrate our models, and
generate data which have sufficient variation in the variables of interest for our regression.
In order to do this, we first estimate an AR(1) process for the (logarithm of) incomes of
four types of households in each of the three villages.34 We then approximate each estimated
AR(1) process by a 4-state Markov chain, following Tauchen (1986) and Kennan (2006).
Finally, we normalise total income to 1 and make both the income states and the transition
matrix symmetric.35 In addition, we allow for three household types in terms of impatience:
β can take three values, 0.8, 0.825, and 0.85. Note that time preferences are homogeneous for
a pair of agents sharing risk. This implies that we end up with 36 types of pairs (3 villages
× 4 income process types × 3 impatience types).36 We assume that the utility function is
of the CRRA form with a coefficient of relative risk aversion equal to 1.5. This means that
inverse marginal utility is strictly convex, hence public storage increases with inequality. We
use data for 50 periods for each pair, once the long-run distribution has been reached (after
100 periods in practice). For our model with storage we have to choose the return on storage
as well. We pick r = 0.1.

33We do not know of a satisfactory treatment of the N -household case in limited commitment models, and
structural empirical studies of risk sharing in village economies follow the household vs. rest of the village
approximation, see Ligon, Thomas, and Worrall (2000), Laczó (2015), and Bold and Broer (2016). We follow
this procedure for the data.

34The four groups are created based on whether a household’s mean income and the coefficient variation
of its income is below or above the median, as in Laczó (2015), which yields 4 household types per village.
Note that we cannot estimate a household-specific income process, as we observe each household for only 6
periods.

35Note that only small adjustments are necessary, as the distribution of the logarithm of incomes is close
to symmetric in the data.

36To achieve a large simulated sample with sufficient variation, simulating one couple over many periods
does not work, as eventually one gets repeated observations on the variables of interest.
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Finally, we have to approximate the function f (lnxi,t−1,yt). We include both linear
and non-linear terms of the difference in the previous period’s consumptions and in current
incomes.37 In particular, we include the square and the cube of our control variables.38 Then
we end up with the following estimating equation:

ln cit − ln c−i,t =α0 + α1 (ln ci,t−1 − ln c−i,t−1) + α2 (ln yit − ln y−i,t) + α3 (ln ci,t−1 − ln c−i,t−1)
2

+ α4 (ln yit − ln y−i,t)
2 + α5 (ln ci,t−1 − ln c−i,t−1)

3 (24)

+ α6 (ln yit − ln y−i,t)
3 + γ (ln yi,t−1 − ln y−i,t−1) + uit.

The results are presented in Table 1. They show that introducing storage in the LC model
is a step in the right direction to account for the dependence of current consumption shares
on past income shares. Past income shares are insignificant in the basic model, confirming
the result of the literature. Instead in our model and in the data, past income shares have
a significant negative effect. Note, however, that alternative models of partial risk sharing
may also result in a negative coefficient on past incomes. Comparing the performance of our
model in terms of consumption dynamics with that of other settings with different frictions
is beyond the scope of this paper.

Table 1: Dependent variable: ln cit − ln c−i,t

Coefficient no storage r = 0.1 data
α0 0.005 (0.115) 0.005 (0.287) 0.031 (0.061)
α1 0.481 (0.000) 0.504 (0.000) 0.735 (0.000)
α2 0.197 (0.000) 0.304 (0.000) 0.211 (0.000)
α3 -0.098 (0.284) 0.019 (0.764) -0.250 (0.056)
α4 -0.005 (0.096) 0.002 (0.596) -0.002 (0.935)
α5 0.391 (0.132) 0.146 (0.617) -0.294 (0.032)
α6 -0.087 (0.000) -0.061 (0.000) 0.021 (0.163)
γ -0.001 (0.863) -0.017 (0.010) -0.071 (0.018)
R2 0.625 0.784 0.661
# of obs. 1800 1800 510

Note: p-values are in parentheses.

The negative coefficient on past incomes in our model is the consequence of history de-
pendence due to asset accumulation. In order to gain intuition, note that by controlling for
ln ci,t−1 − ln c−i,t−1 in (24), we control for xt−1. At the same time, we do not control for the

37A linear regression may be insufficient to well approximate the function f(), and as a result, past income
might be significant due to the persistence of the income process even in the basic model, where yesterday’s
ratio of marginal utilities and current incomes are all the state variables.

38We have experimented with several alternative specifications. Including only the square of the control
variables is not sufficient to capture the non-linearity of f() in the basic model.
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level of assets/storage. However, the current level of storage is a function of xt−1 and Bt−1.
This implies that by controlling for ln ci,t−1− ln c−i,t−1, we also control for the ‘part’ of assets
which is explained by xt−1. Hence, a significant coefficient on ln yi,t−1− ln y−i,t−1 comes from
the contemporaneous correlation between public assets and income inequality at time t− 1.
Because of the persistence of incomes, current income inequality and income inequality of
the previous period are positively correlated. Further, under convex inverse marginal utility,
higher income inequality implies more storage (see Claim 1). Therefore, public assets and
income inequality are positively correlated. Now, given that Bt is ceteris paribus increasing
in Bt−1, and that consumption inequality is decreasing in current public assets, we have
that consumption differences at time t are negatively correlated with income differences at
time t− 1.

5 Summary and discussion

This paper has shown that some implications of the basic LC model with no private or
public storage are not robust to hidden storage. Instead when public storage is allowed,
the incentive for private storage is eliminated in the constrained-efficient allocation. The
intertemporal technology is used in equilibrium even though the aggregate endowment is
constant and the return is lower than the discount rate. Further, when income inequality
is not the highest, the planner has more incentive to store than the agents. The reason for
additional storage by the planner is that public assets relax future PCs and hence improve
risk sharing.

The effects of the availability of both public and private storage on asset accumulation,
consumption dispersion, and welfare depend on its return. At the steady state, (i) for low
r, access to storage is welfare neutral, because it is not used, hence we are back to the basic
model of Kocherlakota (1996); (ii) for higher r, storage happens only in autarky, therefore,
consumption dispersion increases and welfare decreases, but storage does not matter other-
wise; (iii) for yet higher r, hidden storage matters in equilibrium in the basic model, public
storage is (sometimes) strictly positive, stochastic, and depends positively on consumption
inequality (as long as inverse marginal utility is convex), the consumption distribution is
time-varying, and many consumption values occur;39 (iv) for yet higher r, public storage be-
comes positive and constant at the steady state, and only two consumption levels occur, i.e.,
the consumption distribution is time-invariant; (v) for r = 1/β − 1, public storage is positive
and constant, and perfect risk sharing occurs. Steady-state welfare improves above some

39This third case only occurs for some set of parameter values.
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threshold return as a result of access to both public and private storage. For low β welfare
including the transition (i.e., taking into account the cost of accumulating assets) improves
as well above a higher threshold return, which is less than the discount rate.

The dynamics of individual consumptions are richer in our model compared to the ba-
sic model when assets are stochastic at the steady state. In particular, the amnesia and
persistence properties do not hold in general, as in the data (Kinnan, 2017; Broer, 2013).
We provide regression evidence that past incomes have a negative impact on current con-
sumptions in our model, consistent with data from village economies. This is the result of a
positive correlation between past incomes and storage when inverse marginal utility is con-
vex. Further, in our model agents’ Euler inequalities hold for a wide range of storage returns,
which is consistent with empirical evidence from developed countries (Attanasio, 1999).

Comparing our model with LC and storage to models with hidden income or effort and
storage (Cole and Kocherlakota, 2001) points to some similarities and remarkable differences.
In both models hidden storage has a welfare-reducing effect, as it impose tighter constraints
on risk sharing. In private information models, public storage cannot mitigate this effect
and hence is never used in equilibrium. In contrast, in our model public storage is used in
equilibrium. This is because with LC as the deep friction, storage by the planner relaxes
the incentive problem, by relaxing future PCs, while in the hidden income/effort context,
aggregate asset accumulation makes incentive provision for truthful revelation more costly.

Throughout the analysis, we have restricted our attention to a model without aggregate
risk. We have done this to isolate the effect of LC on asset accumulation from other motives,
such as aggregate consumption smoothing. However, we expect our key results to hold with
aggregate income risk as well. Clearly, if the return on storage is high enough, public assets
would be accumulated and would fluctuate even at the first best. It is well known from the
literature with exogenous incomplete markets (Huggett, 1993, Aiyagari, 1994) that assets are
bounded as long as β(1 + r) < 1.40 This implies that when one combines aggregate income
risk and LC, assets will be stochastic and bounded at the steady state.

The main mechanism of our paper would operate in a very similar way in the presence
of aggregate risk. In fact, the key equation determining public asset accumulation, the
planner’s Euler equation, (8), would remain the same except that the histories would include
the realisations of the aggregate shock as well. This also means that, as in our model
without aggregate risk, the introduction of public storage relaxes the market friction, unlike
in incomplete market models with asymmetric information. Further, if aggregate income
is uncorrelated with cross-sectional income inequality, this implies that, compared to the

40It would not be the case under β(1 + r) = 1, hence we would expect assets to diverge with LC as well.
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first best, the constrained-efficient allocation would exhibit more asset accumulation. This
is because it is not only helpful for aggregate consumption smoothing, but also for reducing
future consumption inequality, as without aggregate risk. If aggregate income is negatively
correlated with cross-sectional income inequality, a potentially empirically relevant case, the
two forces determining aggregate asset accumulation go in opposite directions, and we would
expect smoother asset behaviour than at the first best.

As both the private and public Euler equations remain virtually unchanged, the intro-
duction of aggregate risk would not affect another key result either: public storage preempts
private storage in equilibrium. This result is particularly useful for solving the model nu-
merically, which would therefore be without difficulty in the presence of aggregate risk in
quantitative applications. In terms of welfare, as storage has an intrinsic value even without
the LC friction with aggregate risk, we expect that the higher aggregate risk is, the more
likely the overall welfare effect of access to storage is positive.

Our model could be applied in several economic contexts. The model predicts that risk
sharing among households in villages can be improved by a public grain storage facility. Our
model also provides a rationale for marriage contracts to specify that some commonly held
assets are lost by the spouse who files for divorce. Finally, supranational organisations may
help international risk sharing by simply having a jointly held stock of assets. The European
Stability Mechanism may serve this purpose. Future work should study the quantitative
implications of storage using some of these applications.
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Appendices
A Proofs

Proof of Claim 1. We consider three income states for expositional reasons. Generalising
the proof to more income states is straightforward. Assume indirectly that B′ (B, x̃′) =

B′ (B, x̂′) ≡ B′.41 This assumption and (9) imply that u′ (c (B, x̃′)) < u′ (c (B, x̂′)).
First, consider x̃′ and x̂′ such that min

{
xh (B′) , xm (B′)

}
≥ x̃′ > x̂′ ≥ 1. Let us rewrite

(11) as

1 ≥ β(1 + r)
∑
y′

Pr (y′)
u′ (C (y′, B′, x′))

u′ (c (B, x′)) (1− υ1 (y′, B′, x′))
. (25)

We now detail what happens next period, so that we can compare the right-hand side of (25)
for x̃′ and x̂′.

• If state yh occurs, then the PC of agent 1 is binding. Given that B′ is the same for x̃′

and x̂′ under our indirect assumption, x′′ will equal xh (B′) and c′ will equal ch (B′) for
both. However, the ratio on the right-hand side of (25) differs because υ1(y′, B′, x̃′) <
υ1(y

′, B′, x̂′). For x′ = {x̂′, x̃′} we obtain

u′
(
ch(B′)

)
u′ (c (B, x′)) (1− υ1(y′, B′, x′))

=
u′
(
cl(B′)

)
u′ (c2 (B, x′))

.

where we have combined (9) and (10).

• If state ym occurs, then no PC is binding, hence the relative Pareto weight does not
change. For HARA utility functions, it can be shown using simple algebra that each
agent’s marginal utility grows at the rate ((2a+ c′ + c′2)/(2a+ c+ c2))

−σ, hence we know
that in this case

u′ (C (ym, B′, x̃′))

u′ (c (B, x̃′))
=
u′ (C (ym, B′, x̂′))

u′ (c (B, x̂′))
.

• If state yl occurs, then the PC of agent 2 is binding. Given that B′ is the same for x̃′ and
x̂′, x′′ will equal xl (B′) and c′ will equal cl (B′) for both. Thus for x′ = {x̂′, x̃′}, we have

u′
(
cl(B′)

)
u′ (c (B, x′))

.

In summary, for x′ = {x̂′, x̃′} on the right-hand side of (25) we have

β(1 + r)

[
πe

u′
(
cl(B′)

)
u′ (c2 (B, x′))

+ πm
u′ (C (ym, B′, x′))

u′ (c (B, x′))
+ πe

u′
(
cl(B′)

)
u′ (c (B, x′))

]
,

41If we assume indirectly that B′ (B, x̃′) ≤ B′ (B, x̂′) for x̃′ > x̂′ ≥ 1 and B′ (B, x̃′) ≥ B′ (B, x̂′) for
1 ≥ x̃′ > x̂, the steps of the proof are the same, but the algebra is more tedious.
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where πe = πh = πl. If this expression is greater for x̃′ than for x̂′, then our indirect
assumption is invalidated and B′ has to be greater for x̃′ than for x̂′ to satisfy (25). The
second term is the same in the two expressions. Therefore, the sign of the difference is the
sign of

∆1 (B, x̃′, x̂′) ≡ 1

u′ (c2 (B, x̃′))
+

1

u′ (c (B, x̃′))
−
(

1

u′ (c2 (B, x̂′))
+

1

u′ (c (B, x̂′))

)
.

Given that x̃′ > x̂′ ≥ 1 implies c2 (B, x̃′) < c2 (B, x̂′) ≤ c (B, x̂′) < c (B, x̃′) by Property 1,
this difference is (strictly) positive if 1/u′ is (strictly) convex. So under this condition, B′ is
(strictly) increasing in x′ in the case where min

{
xh (B′) , xm (B′)

}
≥ x′ ≥ 1.

Second, consider x̃′ and x̂′ such that x̃′ > x̂′ ≥ xm.

• If state yl occurs next period, nothing changes compared to the previous case, where
min

{
xh (B′) , xm (B′)

}
≥ x̃′ > x̂′ ≥ 1.

• For state ym the difference between the ratio on the right-hand side of (25) for x̃′ and x̂′

is
∆2 (B,B′, x̃′, x̂′) ≡ u′ (cm (B′))

u′ (c (B, x̃′))
− u′ (cm (B′))

u′ (c (B, x̂′))
> 0.

• In state yh three cases are possible.

– The PC of agent 1 is binding for both x̃′ and x̂′. Then we can use the previous case.
Note that the difference between the right-hand side of (25) for x̃′ and x̂′ is given by
∆1 (B, x̃′, x̂′) + ∆2 (B,B′, x̃′, x̂′) > 0.

– The PC of agent 1 is not binding for either x′. Then the growth rate of marginal
utility is the same for x̃′ and x̂′. In this case, the difference between the right-hand
side of (25) for x̃′ and x̂′ is given by

πeu′
(
cl (B′)

)( 1

u′ (c (B, x̃′))
− 1

u′ (c (B, x̂′))

)
+ ∆2 (B,B′, x̃′, x̂′) > 0.

– The PC of agent 1 is binding for x̂′, but not for x̃′. Then c2 (B′, x̃′) < cl(B′). Therefore,
the difference between the right-hand sides of (25) for x̃′ and x̂′ is given by

∆1 (B, x̃′, x̂′) + ∆2 (B,B′, x̃′, x̂′) +
u′ (c2 (B′, x̃′))− u′

(
cl(B′)

)
u′ (c2 (B, x̃′))

> 0.

Finally, consider x̃′ and x̂′ such that x̃′ ≥ xm (B′) > x̂′. The only difference compared to
the previous case is in state ym. We have c (B′, x̂′) < cm (B′). This implies that

∆3 (B,B′, x̃′, x̂′) =
u′ (cm (B′))

u′ (c (B, x̃′))
− u′ (c (B′, x̂′))

u′ (c(B, x̂′))
> 0.

Hence the same argument as in the previous case follows replacing ∆2 (B,B′, x̃′, x̂′) with
∆3 (B,B′, x̃′, x̂′).
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Since the problem is symmetric, to establish the relationship between B′ and x′ ≤ 1, we
can consider 1/x′ ≥ 1. This means that B′ increases as x′ ≤ 1 decreases, i.e., as cross-sectional
consumption inequality increases.

If j > k, and the optimal intervals for these two states do not overlap given B, then x′

must be higher in state yj than in state yk, and we have already shown that assets depend
positively on cross-sectional consumption inequality. If the optimal intervals overlap given B,
then there exists x for which x′ = x in both states yj and yk. Aggregate savings are identical
in the two states in this case.

Proof of Proposition 1. Part (i). It is easy to see that r1 is implicitly defined by the
planner’s Euler, (11), as equality when agent 1 has the highest possible income. That is, r1
is implicitly given by

u′
(
C
(
yJ , 0, xJ(0)

))
= β(1 + r1)

∑
j

πj
u′
(
C
(
yj, 0, xJ(0)

))
1− υ1 (yj, 0, xJ(0))

.

If r > r1 public assets will be positive at least when income inequality is highest, while if
r ≤ r1 public assets will be zero in the long run, and will always be zero if their initial level
is zero.

Next, we show that assets are bounded, which we need for parts (ii)-(iv). They are trivially
bounded below by 0. It is easy to see that there exists a high level of assets, denoted B̂,
such that perfect risk sharing is at least temporarily enforceable, that is, x1

(
B̂
)
≥ xJ

(
B̂
)
.

Therefore, if r < 1/β − 1, B′ (B, x′) < B for all B ≥ B̂ and x1 (B) ≥ x′ ≥ xJ (B), i.e., assets
optimally decrease; and assets stay constant if r = 1/β − 1. This implies that assets are
bounded above.

We now turn to parts (ii) and (iii). We first show that if the consumption distribution
is time-invariant, then there exists a unique constant level of assets, B∗, such that all the
conditions of constrained-efficiency are satisfied. Afterwards, we show that assets converge
almost surely to B∗ starting from any initial level B0. Then, we establish that assets remain
stochastic when the consumption distribution is time-varying (case (ii)). Finally, we show
that case (iii) occurs when the return on storage is high but less than the discount rate, while
assets remain stochastic when the return is below some threshold, denoted r2.

Recall that if aggregate assets are constant, the optimal intervals for the relative Pareto
weight are time-invariant. Given that each agent’s PC binds only for the highest income level
in the long run, the optimality condition (9) and xJ(B∗) (x1(B∗)) uniquely determine cJ (B∗)

(c1 (B∗)), the time-invariant high (low) consumption level. Then, using the planner’s Euler,
we can determine the unique level of B∗ such that all optimality conditions are satisfied. The
planner’s Euler is

u′
(
cJ (B∗)

)
= β(1 + r)

[
(1− πe)u′

(
cJ (B∗)

)
+ πeu′

(
c1 (B∗)

)]
,
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where πe = πJ = π1. Dividing both sides by u′
(
cJ (B∗)

)
, we obtain

1 = β(1 + r)

[
(1− πe) + πe

u′ (c1 (B∗))

u′ (cJ (B∗))

]
= β(1 + r)

[
(1− πe) + πexJ (B∗)

]
, (26)

where we have used (9). Note that xJ (B∗) is monotone and continuous in B∗. Further, at
B∗ = 0 the right-hand side of equation (26) is larger than 1 by assumption, and at B∗ = B̂

the right-hand side of (26) is smaller than 1, because xJ(B̂) = 1 and B∗ < B̂. Therefore, we
know that there exists a unique B∗ where the planner’s Euler holds as equality by setting
B′ = B = B∗.

Next, we show that assets converge almost surely to B∗ starting from any initial level, B0.
We already know that B′(B0, x

′) < B0 for the ergodic range of x′ when B0 ≥ B̂, i.e., when
perfect risk sharing is (temporarily) self-enforcing, and B′(0, x′) > 0 for some x′ in the
ergodic range of x′, since r > r1 by assumption. Consider B∗ < B0 < B̂ first, and as-
sume that state yJ occurs and agent 1’s PC is binding. This is without loss of general-
ity, because this happens with probability 1 in the long run, and the problem is symmetric
across the two agents. We know that the right-hand side of (26) is smaller than 1, be-
cause xJ (B0) < xJ (B∗). Therefore, marginal utility tomorrow has to increase relative to
marginal utility today to satisfy the planner’s Euler, hence B′

(
B0, x

J (B0)
)
< B0. What

happens next period? The PC will bind again even if the same state occurs.42 This is
because B′

(
B0, x

J (B0)
)
< B0 implies xJ

(
B′
(
B0, x

J (B0)
))
> xJ (B0). Then assets will de-

crease again. What if some state yj with 2 ≤ j ≤ N − 1 occurs? We know that the PCs in
these states are not binding for any B ≥ B∗, because they are not binding for B∗. This means
that now x′ = x = xJ (B0) < xJ

(
B′
(
B0, x

J
))
. Then, by Claim 1, storage is lower than when

the PC is binding. Note that if states
{
y2, ..., yJ−1

}
occur repeatedly, assets converge to a

level below B∗. Then we are in the case where B0 < B∗, which we now turn to.
Consider 0 ≤ B0 < B∗, and suppose again that state yJ occurs and agent 1’s PC is bind-

ing. Then we know that xJ (B0) > xJ (B∗). Using (26) again, it follows thatB′
(
B0, x

J (B0)
)
> B0.

Now, if the same state occurs next period (in fact, any state yj with j ≥ 2), then the PC
is slack. This means that now x′ = x = xJ (B0) > xJ

(
B′
(
B0, x

J (B0)
))
. Then, by Claim 1,

storage is higher than when the PC is binding. This also implies that if state y1 does not
occur for many periods, assets converge to a level above B∗. Then once y1 occurs, which
happens with probability 1 in the long run, we are back to the case B0 > B∗, and assets start
decreasing.43

So far we have shown that when B0 < B∗, assets increase at least in the most unequal
states. Unless we are on a path where agents get the highest income shock exactly in turns,

42Note that this never happens in the basic model.
43PCs in more states may be binding when B is low, even if they only bind in states y1 and yJ for B∗.

However, with probability 1 assets will reach a level where the PCs of the other states are no longer binding.
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assets converge toward a level higher than B∗. We have also shown that whenever B0 > B∗

and an agent’s PC binds, assets decrease. Again, unless one of the agents always receives the
highest shock, assets converge to a value lower than B∗. This implies that assets oscillate
around B∗. Almost sure convergence is guaranteed because these oscillations shrink whenever
a PC binds in the increasing and/or decreasing part, which happens with probability one.
To see this, note that from Claim 1 we know that B′(B, xJ (B1)) is highest when xJ (B1) is
highest. In turn, xJ (B1) is highest when B1 is lowest. That is, the economy might get close
to the highest possible B during the transition if starting with zero public assets state y1 (or
yJ) keeps occurring. Similarly, once we are above B∗, the lowest possible level of B can be
reached with a most equal state occurring infinitely many times, if that state starts occurring
when assets are at there highest possible level. Note that the upper bound and the lower
bound are reached with probability zero. Whenever there is a switch to y1 or yJ , we get
closer to B∗. Then the new possible highest asset level is lower and the lowest asset level is
higher (and again the bounds are reached with probability zero). Then, again, the ‘circle’
shrinks when there is a switch to y1 or yJ .

Part (ii). Consider the case where at the steady state there is a third state in which a
PC binds. In this case, each agent’s consumption takes at least four different values at the
steady state. These have to satisfy an additional PC, an additional resource constraint, and
an additional Euler, which is generically impossible for constant B.

Finally, we have to show that case (ii) occurs if r1 < r ≤ r2, while case (iii) occurs if
r2 < r < 1/β − 1. It is easy to see that B∗ is lower if r is lower, where B∗ can be computed
for any r ignoring the PCs of states yj with 2 ≤ j ≤ N − 1. However, as assets decrease,
the optimal intervals become narrower, and eventually c2(B) < cJ(B) and c1(B) < cJ−1(B).
Hence, r2 is implicitly given by (26) such that B∗ is such that x2 (B∗) = xJ (B∗) (and
x1 (B∗) = xJ−1 (B∗)).

Part (iv). If risk sharing were imperfect in the next period, then it would be that
cJ (B′) > c1 (B′). Then, from the planner’s Euler, (8), with β(1 + r) = 1 we have that
cJ (B′) > cJ (B), which implies that B′ > B. That is, public assets are increasing. This
means that as long as a PC binds given B, the planner has an incentive to store more.
Hence, at the steady state B is constant as in case (iii), and risk sharing is perfect.

Proof of Lemma 2. We first show that if c′ is weakly increasing in x′′ next period, then
c is strictly increasing in x′ in the current period using Claim 1. Given x̃′ > x̂′, six cases
are possible in terms of the pattern of binding PCs next period in a given income state.
Depending on the number of income states, the width of the optimal intervals, and x̃′ and
x̂′, not all these types of states necessarily exist.
(i) The PC of agent 1 is binding for both x̃′ and x̂′ in state y′ next period.44 Let

x̃′′ (y′) ≡ x′′ (y′, B′ (B, x̃′) , x̃′), and similarly for x̂′′ (y′), x̃′′ (Y − y′), and x̂′′ (Y − y′).
44Clearly, if x̃′ and x̂′ are sufficiently high, there will be no such y′.
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Given B′ (B, x̃′) > B′ (B, x̂′), we know that 1 < x̃′ < x̃′′ (y′) = xy
′
(B′ (B, x̃′)) <

xy
′
(B′ (B, x̂′)) = x̂′′ (y′), which implies y′ > Y/2. Then, x̃′ > x̂′ and (10) imply that

1

1− υ1 (y′, B′ (B, x̃′) , x̃′)
<

1

1− υ1 (y′, B′ (B, x̂′) , x̂′)
,

because x has to increase more from x̂′ to x̂′′ than from x̃′ to x̃′′. Now, by symmetry,
there is also a state Y − y′ < Y/2 next period, which occurs with the same probability
as state y′. We will show that the consumption allocation next period for this pair of
states under current Pareto weight x̃′ has a lower spread and a higher mean than the
allocation under current Pareto weight x̂′. For this we have to consider whether PCs
bind in state Y − y′ next period.

– First, assume that x̃′ > xY−y
′
(B′ (B, x̃′)) and x̂′ > xY−y

′
(B′ (B, x̂′)), i.e., the PC

of agent 2 is binding in state Y − y′ for both x̃′ and x̂′. Then, by symmetry,
x̃′′ (Y − y′) = 1/x̃′′ (y′) > 1/x̂′′ (y′) = x̂′′ (Y − y′).

– Second, assume that x̃′ ≤ xY−y
′
(B′ (B, x̃′)) and x̂′ ≤ xY−y

′
(B′ (B, x̂′)), i.e., no PC is

binding in state Y −y′ for either x̃′ or x̂′. Then, x̃′′ (Y − y′) = x̃′ > x̂′ = x̂′′ (Y − y′).
– Third, assume that x̃′ > xY−y

′
(B′ (B, x̃′)) and x̂′ ≤ xY−y

′
(B′ (B, x̂′)), i.e, the PC

of agent 2 is binding for x̃′ but not for x̂′. It follows that x̃′′ (Y − y′) = x̃′ >

xY−y
′
(B′ (B, x̃′)) > xY−y

′
(B′ (B, x̂′)) = x̂′′ (Y − y′), where the second inequality

holds because B′ (B, x̃′) > B′ (B, x̂′) and the optimal intervals are wider when assets
are greater.

– Fourth, assume that x̃′ ≤ xY−y
′
(B′ (B, x̃′)) and x̂′ > xY−y

′
(B′ (B, x̂′)), i.e., the

PC of agent 2 is binding for x̂′ but not for x̃′. It follows that x̃′′ (Y − y′) =

xY−y
′
(B′ (B, x̃′)) ≥ x̃′ > x̂′ = x̂′′ (Y − y′).

In all four cases x̂′′ (y′) ≥ x̃′′ (y′) > x̃′′ (Y − y′) ≥ x̂′′ (Y − y′), hence the consumption
allocation given x̃′ has a smaller spread across the states y′ and Y − y′. It also has a
higher mean, because of the higher level of assets and a lower x′′, which implies less
storage next period by Claim 1 as long as x̂′′ (y′) ≥ x̃′′ (y′) ≥ 1, which must be the case
here. As the mean decreases, expected marginal utility increases. What happens to
expected marginal utility as a result of a higher spread? Under prudence, the marginal
utility function is decreasing and convex, therefore, expected marginal utility is higher
for the more risky process. Finally, the term 1/ (1− υ1()) further increases the right-
hand side of (11) given x̂′ relative to x̃′, which implies that c is strictly increasing in x′

even if c′ is only weakly increasing in x′′.

(ii) The PC of agent 1 is binding for x̂′ but not for x̃′ in state y′ next period. In this case,
either x̃′′ (y′) ≥ x̂′′ (y′) or x̃′′ (y′) < x̂′′ (y′). If x̃′′ (y′) ≥ x̂′′ (y′) consumption next period
is higher for x̃′, because of a higher current Pareto weight and more resources than
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for x̂′. This implies a lower marginal utility tomorrow for x̃′. In addition, once again
the term 1/ (1− υ1()) further increases the right-hand side of (11) given x̂′ relative
to x̃′. If x̃′′ (y′) < x̂′′ (y′), then we can use the same argument as in case (i). Since
x̃′′ (y′) = x̃′ > xy

′
(B′ (B, x̃′)), expected marginal utility next period is yet lower given

x̃′ for this reason.

(iii) No PC is binding for x̃′ or x̂′ next period. In this case, consumption next period is
strictly higher for x̃′ than for x̂′ because of a higher B′, so marginal utility next period
is strictly lower for x̃′ than for x̂′, and both 1/ (1− υ1())s are 1.

(iv)-(vi) The PC of agent 2 is binding for x̃′, or for x̂′, or for both next period. In these
cases, we can use similar arguments as above to show that x̃′′ (y′) > x̂′′ (y′), and hence
consumption next period is strictly higher for x̃′ than for x̂′.

In all six types of states (or pairs of states), the right-hand side of (11) is strictly lower for
x̃′ than for x̂′, therefore the left-hand side must be strictly lower as well. This means that c
must be strictly higher when x′ is higher, given that c′ depends positively on x′′.

Proposition 1 shows that assets converge to a constant level at the steady state almost
surely if r is higher than some threshold r2. That is, at the steady state the characteristics
of allocations are the same as in the basic model (while aggregate consumption is Y + rB∗

rather than Y ), in particular, c strictly increases with x′. Then, moving backwards in time,
c must strictly increase with x′ in all periods.

Finally, we know that the solution is unique, therefore we can conclude that it is charac-
terised by the consumption of agent 1 increasing in x′ for all r such that assets are constant
at the steady state.

Proof of Claim 2. From Claim 1 it is clear that B is approached if a least unequal income
state, denoted ym, happens repeatedly, while B is approached with state yJ (or y1) happening
many times in a row.

If B is part of the stationary distribution, then it must be that B ≥ B. This means
that there are less and less resources available over time while assets approach B, hence the
relevant PC always binds along this path. The planner’s Euler

u′ (cm (B))) ≥ β(1 + r)
[
πeu′

(
C
(
yl, B, xm(B)

))
+ (1− 2πe)u′ (cm (B))

+πeu′
(
C
(
yh, B, xm(B)

))]
as equality defines B if B > 0. If at B = 0 this Euler is satisfied as a strict inequality, then
the lower bound is 0.

The upper limit of the stationary distribution, B, is approached from below, hence, along
that path, the highest shock (state yJ or y1) happens repeatedly and no PC binds. Let B1

denote the level of assets when we switch to state yJ (or y1), and let B̃ denote the level of
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assets to where B converges. Note that along this path the relative Pareto weight is constant
at xJ (B1). Given B1, B̃ is the solution to the following system:

u′
(
C2
(
yJ , B̃, xJ (B1)

))
u′
(
C
(
yJ , B̃, xJ (B1)

)) = xJ (B1)

C
(
yJ , B̃, xJ (B1)

)
+ C2

(
yJ , B̃, xJ (B1)

)
= Y + rB̃

u′
(
C
(
yJ , B̃, xJ (B1)

))
= β(1 + r)

J∑
j=1

πju′
(
C
(
yj, B̃, xJ (B1)

))
. (27)

We have to find B1 such that B̃ is equal to B, the upper limit of the stationary distribution.
Using Claim 1, we know that B′(B, xJ (B1)) is highest when xJ (B1) is highest. In turn,
xJ (B1) is highest when B1 is lowest, i.e., when B1 is equal to the lower limit of the stationary
distribution of assets, B. Then, replacing xJ (B1) with xJ (B) and B̃ with B in (27) gives (17).

Proof of Proposition 6. (i) It is easy to see that storage is never used when its return is
close to −1, i.e., as long as it is below some threshold r̃1. (ii) It is similarly easy to see that
storage in equilibrium implies storage in autarky. This follows from the fact that the planner’s
and the agents’ saving incentives are the same when income inequality is highest, i.e., when
the incentive to store is highest, and agents’ Euler inequality is more stringent in autarky
than in equilibrium with some risk sharing. Then, if storage only takes place in autarky, the
only effect of storage is that the value of agents’ outside option increases, which reduces risk
sharing and welfare. However, the value of autarky does not matter as long as perfect risk
sharing is self-enforcing, hence, as long as that is the case, access to storage is welfare neutral.
(iii) As r further increases to above the threshold r̃2, according to Proposition 1 the planner
finds public storage optimal. However, by continuity, at this point the negative effect of the
increase in the value of autarky dominates the positive effect of the (small) stock of public
assets on risk sharing. Therefore, welfare still goes down as a result of access to storage.
(iv)-(v) If r = 1/β − 1, perfect risk sharing occurs and aggregate consumption is Y + rB∗

rather than Y , therefore welfare is strictly higher at the steady state. Further, consumption
dispersion is zero. Then, for any r in a small neighbourhood of 1/β − 1, the positive effect
of the increase in aggregate consumption dominates the negative effect of the increase in the
value of autarky, hence welfare improves. For such r, consumption dispersion is small. By
continuity there exists r̃3 ∈ (r̃2, 1/β − 1), where the two welfare levels are equalised. At this
level of storage return, aggregate consumption has to be higher than in the basic model (at
least after some histories). Hence, welfare can be the same only if consumption dispersion is
higher than in the basic model. By continuity this should hold above r̃3 as well until some
threshold r̃4 ≤ 1/β − 1.
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B Computation

We use the recursive system given by equations (9)-(14) to solve the model numerically. We
discretise x and B (y is assumed to take a finite number of values). We have to determine x′

and B′ on a 3-dimensional grid on X = (y,B, x). The initial values for V (X ′), C (X ′), and
υ1 (X ′) are from the solution of a model where the PCs are ignored. We iterate until the
value and policy functions converge.

As we proceed, we use the characteristics of the solution. In particular, we know that if
agent 1’s PC binds at x̃, it also binds at all x < x̃. Similarly, if agent 2’s PC binds at x̂, it
also binds at all x > x̂. At each iteration, at each income state, and for each B, we solve
directly for the limits x̃ and x̂ using (12) and (13) as equality, respectively, first assuming that
B′ = 0. Afterwards, we check whether the planner’s Euler is satisfied at the limits. If not,
we solve a 2-equation system of (11) and (12) (or (13)), with unknowns B′ and x′. Finally,
we solve for a new B′ at points on the x grid where neither PC binds, i.e., at the interior of
the optimal interval for (y,B) of the current iteration. We linearly interpolate future policy
and value functions.

C Validity of the first-order-conditions approach

In Section 3 we have assumed that by introducing agents’ PCs and Euler inequalities (equa-
tions (18) and (19), respectively) in Problem P1, we guarantee incentive compatibility. In
other words, we have assumed that the constrained-optimal allocation can be obtained by
checking that agents have no incentive to default given that they do not have private assets,
and that they have no incentive to store in a hidden way given that they never default. In
principle, they may still find it optimal to use more complicated ‘double’ deviations involving
both storage and default, potentially in different time periods, given some history of income
shocks. In this appendix we discuss how to verify that such double deviations are not ben-
eficial, i.e., that the first-order-conditions approach is valid. Our approach is similar to that
of Werning (2002) and Ábrahám and Pavoni (2008).

First, note that we have already considered contemporaneous joint deviations, i.e., when
the agent defaults and saves at the same time.45 In the PC (18) we use Ũau

i (st), the value of
autarky when the agent can store privately (see equation (20)). Further, note that in autarky
the agent is allowed to store privately whenever this makes him better off. Therefore, the
‘default today and store later’-type of double deviations are already taken care of as well.
This implies that the only potentially profitable double deviations we still need to consider

45In the literature with private information, a similar joint deviation, shirking (or misreporting income) and
saving, is the relevant deviation. Detailed discussion of these joint deviations can be found for the hidden
income case in Cole and Kocherlakota (2001), and for the hidden action (dynamic moral hazard) case in
Kocherlakota (2004) and Ábrahám, Koehne, and Pavoni (2011).
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are those which involve private asset accumulation in the current period and default in a
later period.

We can show analytically that as long as the constrained-efficient consumption values do
not exceed the autarky consumption values when the agent holds no private assets, ‘default
today and store later’-type of double deviations are never profitable for the agents.46 However,
for high values of r, the highest possible consumption value in equilibrium is higher than the
autarky consumption value in that state.47 In fact, Nozawa (2016) shows, in a one-sided
LC framework, that there exists a profitable deviation in the case where β(1 + r) = 1,
and this deviation involves saving in one period and defaulting in the next. Note that the
deviation happens when the economy has reached its long-run equilibrium and perfect risk
sharing occurs, and that the agent’s PC holds as equality when he gets the highest possible
income. In our model these conditions are satisfied only when public assets converge to
their lowest possible steady-state value given an efficient storage technology, denoted B∗, a
zero-probability event. However, given that the double deviation is strictly beneficial for the
agent, in a small joint neighbourhood of (B, r) = (B∗, 1/β − 1) the double deviation is still
beneficial by continuity.

We provide a numerical algorithm to verify whether ‘store first and default later’-type of
double deviations are welfare-improving. We find that agents have no incentive to use ‘store
first and default later’-type of double deviations outside this small neighbourhood. In par-
ticular, we show numerically that given any level of public assets, incomes, and the inherited
relative Pareto weight, agents are better off receiving as endowment the consumptions as-
signed by the constrained-efficient risk-sharing contract rather than their own incomes today
or in the future. In order to see this, along with the autarky consumption-saving problem,
we solve the consumption-saving problem of an agent who receives the constrained-efficient
consumption process as ‘income.’ We take into account that if an agent has accumulated
savings b̃ at the end of a period, which he has saved out of his constrained-efficient con-
sumption process, his outside option next period when his income is z is V au

(
z, b̃
)
, which is

defined in (20). Having computed the constrained-efficient policy functions as described in
Appendix B, this is without conceptual difficulty, however, the computational cost is rather
high, given that there are four state variables, three of which are continuous. We again ex-
ploit the characteristics of the solution, namely that the current Pareto weight takes values
within an optimal state-dependent interval, in order to shorten computation time.

In examples we have studied, where (B, r) is not in a small neighbourhood of (B∗, 1/β − 1),
we find that agents are always better off receiving the constrained-efficient consumptions,
given any level of public assets, rather than the autarky incomes. Hence, they will never

46The proof is available upon request.
47In the long run, this only happens for returns ‘close’ to the efficient level, but during the transition this

may happen for returns below the threshold r2 in Proposition 1 as well. This is easy to verify in computed
examples.
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revert to autarky and will never store in a hidden fashion, as long as the first-order conditions
are satisfied.

D Data

We use data from the Village Level Studies conducted by the International Crop Research
Institute for the Semi-Arid Tropics (ICRISAT) in India from 1975 to 1984.48 We focus on
three villages, Aurepalle, Kanzara, and Shirapur, and the years 1976 to 1981, because of
concern over the accuracy of measured consumption in the other years (Townsend, 1994;
Ligon, Thomas, and Worrall, 2002). Our non-durable consumption measure includes food
consumption, clothing, services, utilities, and narcotics. Income includes net income from
crop production, labour, livestock, and transfers from outside the village. Both consumption
and income used in the analysis are yearly and per adult equivalent. To compute the adult-
equivalent size of each household, we use the same age-gender weights as Townsend (1994).49

Table 2 presents descriptive statics for the three villages. On average, daily non-durable
consumption per adult equivalent is 0.83, 1.10, and 1.18 1975 Indian rupees in Aurepalle,
Kandara, and Shirapur, respectively, which is about 0.42, 0.55, and 0.59 2016 US dollars,
respectively.

Table 2: Descriptive statistics
Aurepalle Kanzara Shirapur

Variable Mean Sd Mean Sd Mean Sd
Aeq. non-dur. cons.a 303.47 127.86 400.84 161.42 430.37 170.71
Aeq. incomea 629.58 429.78 984.42 742.54 792.16 577.57
# of observations 204 222 186
# of households 34 37 31
aMeasured in 1975 Indian rupees per year. In 1975, approximately 8 Indian rupees
were worth 1 US dollar, which is about 4 dollars in 2016.

48We thank ICRISAT for making the data available, Reena Badiani and Ethan Ligon for making their
constructed aggregates available, and Maurizio Mazzocco and Shiv Saini for sharing data construction codes.

49These weights are: 1 for adult males, 0.9 for adult females, 0.94 and 0.83 for males and females aged
13-18, respectively, 0.67 for children aged 7-12, 0.52 for children aged 4-6, 0.32 for children aged 1-3, and 0.05
for infants below 1 year of age.
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