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Summary 102 

Considerable progress has been made in ecological and evolutionary genetics with 103 

studies demonstrating how genes underlying plant and microbial traits can influence 104 

adaptation and even ‘extend’ to influence community structure and ecosystem level 105 

processes. Progress in this area is limited to model systems with deep genetic and 106 

genomic resources that often have negligible ecological impact or interest. Thus, 107 

important linkages between genetic adaptations and their consequences at organismal and 108 

ecological scales are often lacking. Here we introduce the Sphagnome Project, which 109 

incorporates genomics into a long-running history of Sphagnum research that has 110 

documented unparalleled contributions to peatland ecology, carbon sequestration, 111 

biogeochemistry, microbiome research, niche construction, and ecosystem engineering. 112 

The Sphagnome Project encompasses a genus-level sequencing effort that represents a 113 

new type of model system driven not only by genetic tractability, but by ecologically 114 

relevant questions and hypotheses. 115 

 116 

Keywords: ecological genomics, ecosystem engineering, evolutionary genetics, 117 

genome sequencing, genomics, niche construction, peatlands, Sphagnome, Sphagnum 118 

 119 

I. Introduction 120 

The discovery, characterization, and prediction of genes associated with traits, and how 121 

those traits influence ecosystem function, are key challenges, especially in the face of 122 

changing climatic conditions (Whitham et al., 2006). Climate-driven alteration of 123 

biological processes occurs across all levels of organization, and is expected to impact a 124 

wide range of ecosystem goods and services including biodiversity, nutrient cycling, 125 

climate feed-back regulation, and productivity (Rockström et al., 2009). However, our 126 

ability to associate genes with traits of ecological interest is generally restricted to plant 127 

model systems primarily developed for crop and bioenergy feedstocks, and further 128 

limited by the sheer complexity of applying genetic and genomic approaches to multiple 129 

species or communities.  Yet the need to apply system genetic approaches in complex 130 

communities is paramount as evolution takes place within a complex web of genetic 131 

interactions among species (Whitham et al., 2006).  132 
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Here we argue that the genus Sphagnum (peat moss) represents an unparalleled - 133 

model system for ecological and evolutionary genomics, empowered by its contribution 134 

to global carbon cycling and emerging genomic resources. Sphagnum species play a 135 

major role in peatland formation, a prime example of ecosystem engineering, whereby 136 

the organism manipulates its surrounding habitat.  Sphagnum primary production 137 

influences carbon and nutrient cycling, such as methane production and soil carbon 138 

storage, in many boreal forests and peatlands (Turetsky et al., 2012). Sphagnum 139 

ecosystem engineering involves the accumulation of peat that facilitates its own growth 140 

while making the surrounding environment hostile for vascular plants (van Breemen, 141 

1995). Ultimately these multi-level processes lead to peatland formation that occupy 142 

nearly 3% of the land surface and store 25% of the world’s soil carbon as recalcitrant peat 143 

(Yu et al., 2010). The latter point has led to the assertion that Sphagnum has a greater 144 

impact on global carbon fluxes, and therefore climate, than any other single genus of 145 

plants (Clymo & Hayward, 1982; van Breemen, 1995).  146 

The Sphagnum sequencing project provides a novel non-food crop or non-147 

bioenergy feedstock example for a plant-based genome sequencing project aimed 148 

specifically at carbon cycling. The project is developing resources for within-species 149 

genetic associations with ecologically relevant functional traits, and the extension of 150 

those gene-to-trait relationships to additional species within the Sphagnum genus. We 151 

refer to this effort collectively as the Sphagnome Project. In the following sections, we 152 

provide a brief introduction to the ecology and evolution of this unique plant genus. We 153 

then outline a research roadmap that highlights scientific questions relevant to the 154 

disclosure and use of a genus-wide genomic resource for Sphagnum in two major areas of 155 

distinct but overlapping research: (a) carbon sequestration and global biogeochemistry, 156 

and (b) niche construction, ecosystem engineering, and microbial associations. We 157 

demonstrate that the Sphagnome Project is an example of a novel model system aimed at 158 

addressing ecologically relevant questions and hypotheses across levels of organizations.  159 

 160 

II Sphagnum ecology and evolution 161 

 162 

1. Functional traits and ecosystem function 163 
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 164 

Sphagnum has a remarkable ability to create and then uniquely thrive in nutrient-poor, 165 

acidic, and waterlogged conditions. The suite of morphological, physiological, and life 166 

history traits that affect Sphagnum fitness, herein termed functional traits, enable this 167 

‘ecosystem engineer’ (Jones et al., 1994) to gain a competitive advantage over other co-168 

occurring species and therefore flourish under relatively harsh environmental conditions. 169 

For example, the ability of Sphagnum to store and transport water is controlled largely by 170 

three distinct morphological adaptations – branching architecture, leaf size and 171 

arrangement on branches, and hyaline cells (Fig. 1a,b; Rydin & Jeglum, 2013). These 172 

traits differ considerably among species, and are associated with highly partitioned 173 

microhabitat preferences where Sphagnum species coexist within a peatland. Hummock-174 

forming species, growing ca. > 30 cm above the water table, have small close-set leaves 175 

forming numerous interconnected small capillary spaces (Fig. 1). Spreading branches 176 

allow lateral movement of water through the capillary continuum, while numerous close-177 

set pendant branches appressed to the stem form an efficient vertical water-transport 178 

system. Consequently, Sphagnum species growing on hummocks can wick moisture and 179 

maintain metabolic activity even during drought (Rice & Giles, 1996). In all species, 180 

dead hyaline cells in the leaves and the outer cortex of the stems and branches act as 181 

water-storage structures.  182 

The capitula at the top of the stem are alive, but a few (~5) cm down 99 % of the 183 

light has been absorbed and most of the Sphagnum cells die (Hayward & Clymo, 1983). 184 

From there down to the water table the carpet structure is permeable to water and gases 185 

(particularly O2) and the damp plant substrates begin to decay in this oxic zone, termed 186 

the acrotelm (Ingram, 1978; Clymo & Hayward 1982). The consequent loss of stem 187 

strength and increasing weight eventually result in collapse of the plant structure. This 188 

reduces the pore size so water can no longer flow easily through it, and from this point 189 

downwards the peat is permanently waterlogged and this is what determines the depth of 190 

the water table. In this waterlogged zone, oxygen is consumed by aerobic respiration 191 

more rapidly than it can be replenished by diffusion (which is 10,000 times slower in 192 

water than it is in air), creating the anoxic catotelm (Clymo, 1983). Hence, through 193 

distinct traits, Sphagnum generates environmental conditions that are suitable for its own 194 
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growth but hostile for the vast majority of other plants (e.g., van Breemen, 1995; Rydin 195 

& Jeglum, 2013). 196 

 The mechanisms by which Sphagnum inhibits fungal and microbial 197 

decomposition -- and hence promotes peat accumulation -- are not fully understood, but 198 

involve both the external environment engineered by the species, as well as the internal 199 

biochemistry of its plant tissue, particularly the low N:C ratio (a reflection of the 200 

unusually efficient use of N in producing new biomass) (Bragazza et al., 2006). A 201 

passive mechanism for intrinsic decay resistance in the oxic acrotelm layer is suggested 202 

by the correlation of microbial decomposition of Sphagnum litter with the relative 203 

amounts of structural versus metabolic carbohydrates (Turetsky et al., 2008). Active 204 

mechanisms of antimicrobial activity are also implicated, mainly through acid hydrolysis 205 

of cell-wall polysaccharides, fragments of which are released into the soil water as 206 

‘sphagnan’ (Hájek et al., 2011).  The precise mechanisms for the antimicrobial activity of 207 

sphagnan are still under investigation, but may involve lowering soil pH, reducing 208 

availability of nitrogen and carbon, or interfering with extracellular enzymes by 209 

immobilizing them in a polyelectrolyte complex (Hájek et al., 2011). Soluble phenolic 210 

compounds, either leached directly from Sphagnum tissue or produced during its 211 

breakdown, may play a more minor role in tissue preservation, physically protecting 212 

polysaccharides through the formation of humic substances (Hájek et al., 2011). While 213 

environmental factors such as soil oxygen profiles serve as important regulators of peat 214 

decomposition (cf Freeman et al., 2001) it is clear that a variety of mechanisms 215 

contribute to slow decomposition of Sphagnum tissue, thereby retarding the turnover of 216 

organic biomass in peatlands and sequestering carbon in the form of peat for centuries. 217 

  218 

2. Phylogeny and evolution  219 

 220 

Like all mosses, the haploid gametophyte is the dominant life cycle stage for Sphagnum 221 

(Fig. 1). Haploid spores germinate into a filamentous protonema, quickly followed by a 222 

thalloid protonemal phase, before transitioning into mature haploid gametophytes. A 223 

single spore can result in a large clonal biomass through vegetative growth. Furthermore, 224 

the ability to propagate clonally is ubiquitous in Sphagnum and typical clone sizes vary 225 
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among species (Cronberg, 1991). In S. austinii, one clone occurs throughout North 226 

America and the same dominates in Europe (Kyrkjeeide et al., 2016). A single clone of S. 227 

subnitens extends from Oregon to the westernmost Aleutian Islands (Karlin et al., 2011). 228 

Reproductive seasons are species-specific and sperm require water to access the egg cell 229 

in the archegonial venter to form the zygote. The formation of the zygote marks the 230 

beginning of the brief diploid stage of development and at maturity meiosis occurs within 231 

the capsule, producing haploid spores.  232 

Sphagnum is one of four genera in the class Sphagnopsida (phylum Bryophyta: 233 

mosses), an ancient lineage of land plants. Molecular phylogenies suggest the 234 

Sphagnopsida diverged from other mosses more than 250-350 mya (Shaw et al., 2010), 235 

and fossils of peat moss-like fragment, which are the oldest known land plant 236 

macrofossils to date, have been found in the Ordovician rocks (~500 mya, Cardona-237 

Correa et al., 2016). Fossil Sphagnum and close relatives are recognized by the unique 238 

cell pattern in leaves. Three of the genera in the Sphagnopsida contain just one or two 239 

species each, and none of them form extensive peats nor do they dominate wetlands as do 240 

species of Sphagnum. With 200-300 species, Sphagnum is by far the largest genus in the 241 

Sphagnopsida and the most important for peatlands. Sphagnum species share a common 242 

ancestor in the late Tertiary, a surprisingly recent radiation considering the great antiquity 243 

of Sphagnopsida (Shaw et al., 2010). This recent radiation, which may have occurred 244 

following the mid-Miocene climatic optimum, coincides with the rise of boreal peatlands 245 

in the northern hemisphere (Greb et al., 2006).  246 

Today, Sphagnum occurs on all continents aside from Antarctica (Crum, 1984). 247 

The genus dominates wetland habitats throughout the boreal zone of the Northern 248 

Hemisphere but is also diverse at tropical latitudes, especially in South America (as well 249 

as in tropical Africa and Asia).  At tropical latitudes, Sphagnum sometimes occurs in high 250 

altitude peatlands, but in lower altitude tropical regions they typically grow on wet soil 251 

banks, along streams, and on dripping rocks, and do not accumulate substantial amounts 252 

of peat.  Sphagnum comprises five major subgenera (Fig. 2a; Shaw et al., 2016a).  The 253 

small subgenus Rigida (ca. 2-4 species), sister to the four other subgenera, sometimes 254 

occur in peatlands, but its species are never dominant and are not major peat-formers. 255 

Most Sphagnum species belong to the remaining two clades, both of which include 256 
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important peat-forming species. The species in one clade (subgenera Cuspidata + 257 

Subsecunda) generally occupy hollows close to or at the water table, whereas those in the 258 

other clade (subgenera Sphagnum + Acutifolia) generally create lawns and raised 259 

hummocks more distant from the water table (Fig. 2b). For decades, peatland ecologists 260 

have noted that individual Sphagnum species have narrow realized niches along this 261 

hydrological gradient—from low hollow to high hummock (Vitt & Slack, 1984). 262 

Sphagnum species also exhibit narrow preferences along a chemical gradient, with some 263 

species preferring acidic ombrotrophic bogs and other species preferring fens with more 264 

neutral pH. Unlike preferences along the hydrological gradient, species preferences along 265 

the chemical gradient do not exhibit a strong phylogenetic signal (Johnson et al., 2015). 266 

During the rapid radiation of modern Sphagnum, microhabitat preferences along the 267 

chemical gradient plausibly evolved simultaneously in unrelated groups, creating natural 268 

experiments with which the genetic basis of microhabitat preferences can be disentangled 269 

from phylogenetic history.  270 

 271 

III. Developing resources for a tractable Sphagnum model system with 272 

evolutionary and ecological relevance 273 

 274 

Genomic resources for Sphagnum are rapidly expanding (https://phytozome.jgi.doe.gov). 275 

The Sphagnome Project will provide two high quality reference genomes (S. 276 

magellanicum and S. fallax), sequences for 15 additional species across the Sphagnum 277 

phylogeny (Fig. 2), and shallow sequencing of ca. 200 individual members from a 278 

haploid-sib pedigree. A draft genome for S. fallax is now available on 279 

https://phytozome.jgi.doe.gov. These Sphagnome Project resources are motivated by two 280 

overarching aims: 1) identifying genetic associations with ecologically relevant 281 

functional traits within species, and 2) extending those gene-to-trait relationships to 282 

additional species within genus. 283 

 284 

1. Sphagnum pedigree sequencing and gene to trait mapping 285 

 286 

https://phytozome.jgi.doe.gov/
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The Sphagnome Project is producing high-quality reference genomes for Sphagnum 287 

magellanicum Brid. and S. fallax H. Klinggr (Shaw et al., 2016b). These two peat-288 

forming species are in different subgenera, occupy very different microhabitats in boreal 289 

peatlands, and will provide strong contrasts for investigating phylogenetic and ecological 290 

differences (Fig. 2, Johnson et al., 2015). To fulfill the first aim focusing on within-291 

species variation, the Sphagnome Project will conduct re-sequencing of ca. 200 292 

individuals from a S. fallax pedigree to generate a high quality genetic linkage map that 293 

will facilitate gene-to-trait experimental approaches (Fig. 3) and genome assembly. The 294 

pedigree was developed from single stem descent propagation using sporelings 295 

germinated from a single field collected sporophyte; all individuals are haploid sibs. 296 

Because Sphagnum fallax has separate gametophytic sexes, pedigree individuals can be 297 

maintained in clonal culture without risk of intra-gametophytic selfing. Preliminary data 298 

show vast phenotypic variation among haploid siblings in response to laboratory growth 299 

conditions, temperature and pH (Shaw et al, 2016). Sphagnum is haploid in its dominant 300 

life cycle stage, which eliminates the confounding heterozygosity which can mask allele 301 

expression. Therefore, the F1 (gametophytic) generation can be used in trait mapping, 302 

which is not possible for genetic studies in diploid non-bryophyte organisms where, at a 303 

minimum, a segregating F2 pedigree is required. Furthermore, the paternal genotype can 304 

be reconstructed by subtracting the progeny genetic markers from the maternal markers. 305 

This latter point is especially important, as controlled crosses are currently difficult to 306 

perform in Sphagnum. As recently shown in the Sphagnum moss-relative Physcomitrella 307 

patens (Stevenson et al., 2016), the simplified genetics of mosses coupled with linkage-308 

analysis can provide a powerful means of predicting phenotypes from DNA markers and 309 

their underlying causal alleles (Fig. 3).  310 

Recent advances in maintaining Sphagnum tissue cultures (Beike et al., 2015) 311 

have improved the reliability of producing axenic cultures that produce Sphagnum plants 312 

that are morphologically similar to field-collected specimens. The Sphagnome Project 313 

encompasses a developing germplasm collection that includes culture material for all 314 

species being sequenced and a S. fallax haploid-sib pedigree. The low stature of 315 

Sphagnum and ease of establishing populations in trans-well culture plates that have 316 
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relatively small ‘bench top’ space requirements enable rapid phenotyping that is 317 

necessary for gene-to-trait studies (Fig. 3). Further, this germplasm collection can be used 318 

to test responses of Sphagnum genotypes to different environmental conditions. Because 319 

the complete genomes of these genotypes will already be known as a result of re-320 

sequencing, genetic associations can be made as soon as phenotypic data are collected. 321 

Due to the small size of Sphagnum and other mosses, imaging-based phenotyping will be 322 

especially useful in this effort. Single images can capture data on hundreds of individuals, 323 

entire populations, and mixed communities, simultaneously aiding the linkage of genes to 324 

traits. The broader collection of gene to trait associations can be integrated in network 325 

models to form a systems biology view of the trait combinations and their correlations 326 

underlying phenotype expression and adaptation (Chitwood & Topp, 2015).  327 

 328 

2. A genus-wide approach 329 

 330 

Extending gene-to-trait relationships beyond a single species is necessary for 331 

understanding the evolution of ecosystem function in Sphagnum-dominated peatlands. 332 

Traits important for ecosystem function differ among species, including productivity and 333 

resource acquisition, resource allocation such as production of secondary compounds, 334 

and decomposition rates (Bengtsson et al., 2016, Limpens et al., 2017). Therefore, in 335 

addition to the intensive within-species resequencing approach described above, the 336 

Sphagnome Project includes the sequencing of 31 individuals across 15 species 337 

representing the five major clades within Sphagnum (Fig. 2). This information, combined 338 

with ongoing and existing transcriptome resources (Devos et al., 2016), will provide the 339 

basis for genus-level phylogenomics and comparative genomic analyses in Sphagnum 340 

(Fig. 3). This approach is especially useful for the majority of traits in Sphagnum where 341 

interspecific variation seems to be greater than intraspecific variation (e.g. Bengtsson et 342 

al., 2016). Genetic associations will be tested using models that incorporate phylogenetic 343 

comparative methods (e.g. Blomberg & Garland, 2002; Revell et al., 2009) to account for 344 

phylogenetic distance when identifying gene-to-trait relationships.  345 

Through this sequencing effort, gene-to-trait relationships of multiple species will 346 

be placed within a broader phylogenomic landscape thereby identifying evolutionary 347 
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patterns associated with microhabitat preferences and functional traits (Fig. 2b & Fig. 4). 348 

While a few recent studies have taken a genus-wide approach to genetic associations 349 

(e.g., Haudry et al., 2013; Pease et al. 2016; Novikova et al., 2016) the Sphagnome 350 

Project encompasses species that co-occupy and engineer the same ecosystem. We 351 

anticipate that these genus-wide sequences, phenotype data, and comparative gene-to-352 

trait relationships will enable the detection of genes under purifying or positive selection 353 

as well as gene family evolution associated with major ecological and biogeographic 354 

shifts.  355 

 356 

IV. Facilitating new ecological and evolutionary understanding 357 

 358 

1. What is the biological basis of unique Sphagnum traits or combinations of traits, 359 

and how do these trait combinations extend beyond the organism?  360 

 361 

Tissue chemistry is a noted functional trait for Sphagnum (Clymo & Hayward, 1982). 362 

Polyuronic acids (cell-wall polysaccharides that form a pectin-like polymer) comprise 10-363 

30% of Sphagnum dry mass. They have a high cation exchange capacity (CEC) initially 364 

satisfied with H+, which is rapidly exchanged for cations in rainwater, thus making the 365 

water around the plants acidic (Clymo & Hayward, 1982) and make cation nutrients 366 

unavailable to microbes and other plants (Stalheim et al., 2009). However, the question 367 

of a possible link between unique organic compounds and niche engineering by 368 

Sphagnum remains a matter of active research (Hájek, 2009; Limpens et al., 2017). It has 369 

long been speculated that living Sphagnum benefits from peat formed over time through 370 

the accumulation of dead Sphagnum biomass (van Breemen, 1995). Should this be 371 

viewed as one type of extended phenotype, where the phenotype of vertically 372 

accumulating peat (dead Sphagnum material) changes the function of living Sphagnum at 373 

the surface? Sphagnum plants clearly modify their environment in several important 374 

ways, but how this influences selection on future offspring and other recipient organisms 375 

is unknown. We believe that the Sphagnum genomic resource offers one of the best 376 

opportunities to explore these questions and ultimately identify the genetic basis for the 377 

traits responsible for ecosystem engineering in Sphagnum. For example, what is the 378 
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genetic basis of tissue chemistry traits, and do these traits impart a fitness advantage from 379 

a nutrient competition perspective? Furthermore, how do these traits extend beyond the 380 

organism? For example, do hummock formation traits covary with tissue chemistry and 381 

decomposition rates, and how will these currently adapted trait combinations influence 382 

fitness to changing environmental conditions?  In regard to niche engineering, is there 383 

evidence for an extended phenotype in Sphagnum, and if so, what is the unit of selection, 384 

and at which level does selection occur (Whitham et al., 2003)? Do neighborhood effects, 385 

such as the genetic effect of an individual on trait values of neighboring individuals 386 

influence how Sphagnum traits interact with the environment?  How important is 387 

clonality to the extended Sphagnum phenotype? These important questions extend into 388 

much broader spheres of the Sphagnome Project (Fig. 4) and general ecological and 389 

evolutionary theory. 390 

 391 

2. Did adaptation to spatially or temporally varying climate variation spark 392 

Sphagnum species radiations?  393 

 394 

Genus-wide phylogenetic analyses of geographic ranges support the view that the two 395 

major peat-forming, crown clades within Sphagnum (Acutifolia+Sphagnum; 396 

Cuspidata+Subsecunda) (Fig. 2a,b) originated and first diversified in the Northern 397 

Hemisphere (Shaw et al., unpublished). In contrast, phylogenetic analyses of large seed 398 

plant clades that span tropical and Northern Hemisphere ranges usually reveal tropical 399 

origins and rare expansions into cold northern climates (Jansson et al., 2013).  Sphagnum 400 

represents one of a small minority of groups that appear to have initially diversified at 401 

northern latitudes and subsequently extended their ranges into the tropics. Phylogenetic 402 

patterns indicate that southward range expansions were followed by evolutionary 403 

radiations that gave rise to groups of tropical species nested within larger boreal clades.  404 

Moreover, non-boreal radiations occurred in each of the four large subgenera of 405 

Sphagnum, providing phylogenetic patterns that can be used as replicated natural 406 

experiments to account for shared ancestry when investigating the genetic basis of 407 

adaptation and the evolution of functional traits associated with range expansions. In 408 

addition to these radiations, a few individual boreal Sphagnum species have extended 409 
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their ranges into tropical habitats, presumably more recently. Inter- and intraspecific 410 

comparative analyses can be harnessed to address several questions. What genes, gene 411 

families, and genomic regions underwent changes associated with range expansions from 412 

boreal to tropical climate zones? Are the same genomic features associated with intra- 413 

and with interspecific range changes across climate zones? Are the same or similar 414 

genomic changes associated with climate adaptation in different Sphagnum subgenera, 415 

associated with independent range changes? Clarifying functional trait and genomic 416 

changes associated with migrations into warmer climates can provide informative 417 

analogies to how Sphagnum mosses and, perhaps, other plants may respond to current 418 

climate warming.  419 

 420 

3. What are the factors that limit or facilitate local-scale adaptive evolution?  421 

 422 

There has been much interest regarding the importance of phenotypic plasticity relative to 423 

local adaptation in response to environmental heterogeneity, and how such responses can 424 

ultimately extend to influence ecosystem function (Miner et al., 2005). The sequenced 425 

haploid-sib pedigree, coupled with phenotype screening will provide the resources 426 

necessary for quantitative genetics to determine the extent to which a phenotypic change 427 

has a quantitative genetic basis (Section III). Plasticity is inferred as the proportion of 428 

phenotypic variance not explained by genetics (Merilä et al., 2014). The use of common 429 

gardens, especially when established among multiple environments with appropriate 430 

replication and controls, provides a powerful approach to disentangle genetic from plastic 431 

contributions to phenotype. The sequenced Sphagnum haploid-sib pedigree and emerging 432 

research community surrounding the Sphagnome Project make the establishment of 433 

common gardens with characterized genotypes a reality. Finally, the demonstration that 434 

allele frequency shifts occur confirms that evolution has occurred, with the challenge 435 

being the need to determine if changes in specific allele frequencies are relevant to the 436 

traits and phenomena being investigated. The sequencing of 15 Sphagnum species and 437 

nearly 200 progeny individuals provides an ideal system to determine shared and species-438 

specific components of the collective genome and relationships that co-occur with 439 

phylogenetic signals. For example, does a gene family expansion coincide with the 440 
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lineage diversification to novel environments? Together with common garden 441 

experiments we will begin to address questions centering on the relative importance of 442 

local adaptation versus phenotypic plasticity in Sphagnum responses to environmental 443 

heterogeneity. 444 

 445 

4. What is the role of Sphagnum and its interacting microbiome in ecosystem carbon 446 

and nitrogen cycling?  447 

 448 

Hyaline cells not only play a vital function as water storage organs, but also create 449 

a novel and safe habitat for a diverse microflora spanning all domains of life (Fig. 1b; 450 

Bragina et al., 2012; 2014; Kostka et al., 2016). The Sphagnum-associated microbiome 451 

seems to be divided into two broad categories. Those that are host species specific, with 452 

specificity maintained across both the sporophyte and gametophyte generations (Bragina 453 

et al., 2012), and those that are host species agnostic with environmental factors such as 454 

pH and nutrient availability explaining much of the community structure (Larmola et al., 455 

2014). With a raised pH, hyaline cells may serve as ‘oases’ for microbes in acidic 456 

peatland pore waters. The ecological function of Sphagnum symbionts is just beginning 457 

to be explored, with evidence pointing to strong linkages with the cycling of both carbon 458 

(i.e., methane oxidation) and nitrogen (i.e., nitrogen fixation). For example, diazotrophic 459 

cyanobacteria were shown to contribute up to 35% of cellular N to the Sphagnum host 460 

(Berg et al., 2013; Lindo et al., 2013) while methanotrophic bacteria can provide 5–20% 461 

of Sphagnum’s CO2 demand through CH4 oxidation (Raghoebarsing et al., 2005; Kip et 462 

al., 2010). Together, methanotrophy and N2 fixation are tightly linked and was estimated 463 

to provide over one-third of the new N input in a coastal peatland (Larmola et al. 2014), 464 

although see Ho & Bodelier (2015). Therefore, a number of critical questions concerning 465 

the Sphagnum microbiome remain, for example what are the signaling and 466 

communication pathways between Sphagnum and its microbiome, and do these 467 

interactions represent true beneficial symbioses. How do protists and miroeukayotes 468 

influence peatland C and N cycles (Jassey et al., 2015)? More questions than answers 469 

remain, and achieving a comprehensive understanding of the Sphagnum microbiome will 470 

benefit greatly from the application of comparative and functional genomics to evaluate 471 
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microbial community profiles across Sphagnum lineages and environments, and meta-472 

transcriptomics to evaluate symbiotic pathways and metabolism.  473 

 474 

5. How do we model Sphagnum genotype-by-environment interactions?  475 

 476 

The understanding of Sphagnum trait characteristics and the population genetics 477 

underlying trait distributions may have important implications for modeling 478 

biogeochemistry and vegetation dynamics, both within an ecosystem and across regions 479 

up to a global scale. However, the Sphagnum trait characterization needed to inform these 480 

models is lacking for many high-latitude process-based models (Turetsky et al., 2012). 481 

Many ecosystem and regional models have adopted the concept of plant functional types 482 

(PFTs), where PFTs are defined as groupings of plant species that share similar 483 

characteristics and roles in ecosystem function. However, recent work suggests that 484 

parameterization of PFTs with current trait values may not be valid under future 485 

environmental conditions because trait values and trait-trait relationships may change 486 

under future environmental conditions (Scheiter et al., 2013, van Bodegom et al., 2012). 487 

In this regard, we will benefit from population genomics programs – like the Sphagnome 488 

Project – where population genetics, genomics and phenotype analysis can be used to 489 

statistically model genome features (such as single nucleotide polymorphism (SNP) 490 

distributions) to trait value predictions. The ‘trait values’ are then entered as parameter 491 

values in physiological models. An elegant example of this approach was presented by 492 

Reuning et al. (2014), where QTL analysis was used to genetically parameterize a 493 

physiological model to predict transpiration of specific Arabidopsis genotypes. An 494 

intriguing question is whether such ‘genome informed’ ecophysiological models can be 495 

used to decipher the mechanisms of local adaptation, which provides deeper insights into 496 

heritable variation and trait covariances (and trade-offs) responsible for evolutionary 497 

dynamics (Weinig et al., 2014). 498 

 499 

V.  Conclusions 500 

The Sphagnome Project seeks to resolve important and general issues in ecology and 501 

evolution including (1) the niche differentiation and co-occurrence of many closely 502 
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related Sphagnum species within the same wetland habitat, (2) the genetic regulation of 503 

the unique chemical traits that define the central role of Sphagnum species in engineering 504 

those habitats, 3) the importance of Sphagnum in determining biodiversity patterns of 505 

other organisms, including microbes, and (4) The role of Sphagnum genetics and 506 

physiology on biogeochemistry and hydrology at ecosystem to global scales. With new 507 

genomic resources already available, and growing rapidly, we are poised to utilize the 508 

Sphagnum system for linking genomes and phenotypic traits to community assembly, 509 

ecosystem function, and evolutionary processes. Moreover, the Sphagnum system can 510 

provide unique insights into the phylogenetic history of genome and trait evolution, and 511 

allow predictions about how these organismal features are likely to respond to future 512 

environmental change.  513 
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 712 

Figures Legends 713 

 714 

Figure 1: Morphological traits of Sphagnum.  Left, four representative species (modified 715 

from Crum, 1984), A. Plant habit showing differences in branch density.  B. Branch leaf 716 

cross sections showing arrangements of larger hyaline cells. As in most mosses, 717 

Sphagnum leaves consist of a single layer of cells, but unlike in other mosses, the leaf 718 
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cells are dimorphic, comprising large hyaline cells, dead and empty at maturity, 719 

alternating with narrow photosynthetic chlorophyllose cells. In some species (e.g., top), 720 

those chlorophyllose cells are not exposed at the leaf surface and in other species they are 721 

exposed at the inner or outer surface. C. Surface view of branch leaf cells, showing 722 

variously arranged pores on hyaline cells.  The chlorphyllose cells are very narrow, 723 

forming a network around each hyaline cell. D. Branch fascicles, each including so-called 724 

spreading and pendent branches.  E. Branch leaf.  F. Stem cross section showing 725 

variously developed, sometimes enlarged outer cortex cells.  Right, one (haploid) 726 

gametophyte plant with stalked capsules releasing spores (modified from Weston et al., 727 

2015). Far right, detail of branch leaf cells showing differentiation of chlorophyllose and 728 

hyaline cells. 729 

 730 

Figure 2: Distribution, phylogeny and habitat preference of species within the 731 

Sphagnome Project. A recent phylogeny based on Shaw et al. 2016a with colored 732 

branches representing subgenus designations (brown = Rigida, yellow = Subsecunda, 733 

green = Cuspidata, blue = Sphagnum, purple = Acutifolia) and colored circles next to 734 

species being sequenced with the Sphagnome Project (2A); generalized habitat 735 

preferences for Sphagnum species typical of boreal peatlands, in relation to pore water 736 

pH and height above water table (2B); global distribution of S. fallax (green) and S. 737 

magellanicum (blue) (2C). Note that S. affine (Sphagnum), S. cribrosum (Subsecunda), S. 738 

fimbriatum (Acutifolia), and S. molle (Acutifolia) are not in the figure because they are 739 

not boreal peatland species, but have been sequenced as part of the Sphagnome Project.  740 

 741 

Figure 3: Schematic of the proposed depth and breadth genetic approaches. In gene-to-742 

trait studies, linkage-based and association mapping are main approaches used to 743 

discover (or map) the genetic basis of quantitative phenotypic variation. Both assume that 744 

there is variation for the traits of interest within the population being studied. The 745 

linkage-based method relies on individuals with known relationships to each other and 746 

DNA variants (termed genetic markers) that segregate through the population. The 747 

genetic marker is ‘linked’ through proximity to the causal loci and they therefore 748 

segregate together. Association mapping does not require known relationships among 749 
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individuals within the population, but instead relies on historical recombination from 750 

many generations of random mating. Together these methods constitute the ‘genetic 751 

depth’ approach discussed in text aimed at identifying candidate genes (bottom) that are 752 

then included in phylogenomic and comparative genome analyses (top). These analyses 753 

are simplified by the fact that Sphagnum gametophytes are typically haploid.  Two 754 

allopolyploid species (S. palustre, S. papillosum) are included to address subsidiary 755 

issues related to the evolution of polyploid genomes. 756 

 757 

 758 

Figure 4: An integrated approach for Sphagnum as a model system linking genetic 759 

information on genes underlying functional traits (depth) with phylogenomic analyses 760 

(breadth) to large-scale, emergent properties at the level of the ecosystem.  Increases in 761 

the availability of genomic resources and recent developments of germplasm resources 762 

can facilitate collaborative research across multiple disciplines. Understanding the 763 

genetic basis of integrated traits will facilitate our understanding of trait-trade-offs, 764 

fitness and selection, and response to environmental change. 765 
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