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ABSTRACT 

It is widely accepted that the cell of origin of breast cancer is the adult mammary epithelial 

stem cell, however demonstrating the presence and location of tissue stem cells in the 

human breast has proved difficult. Furthermore, we do not know the clonal architecture of 

the normal and premalignant mammary epithelium or its cellular hierarchy. Here we use 

deficiency in the mitochondrial enzyme cytochrome c oxidase (CCO), typically caused by 

somatic mutations in the mitochondrial genome, as a means to perform lineage tracing in 

the human mammary epithelium. PCR sequencing of laser-capture microdissected cells in 

combination with immunohistochemistry for markers of lineage differentiation was 

performed to determine the clonal nature of the mammary epithelium.  We have shown 

that in the normal human breast, clonal expansions (defined here by areas of CCO-

deficiency) are typically uncommon and of limited size, but can occur at any site within the 

adult mammary epithelium. The presence of a stem cell population was shown by 

demonstrating multilineage differentiation within CCO-deficient areas. Interestingly, we 

observed infrequent CCO-deficiency that was restricted to luminal cells, suggesting that 

niche succession and by inference stem cell location, is located within the luminal layer.  

CCO-deficient areas appeared large within areas of ductal carcinoma in situ, suggesting 

that the rate of clonal expansion was altered in the premalignant lesion.  
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INTRODUCTION 

The stem cell hierarchy of the human mammary epithelium has been the subject of much 

debate.  Previous studies suggest that stem cells in the normal human breast are located 

within the luminal epithelial layer and also give rise to the myoepithelial cells [1,2]. 

However, in vitro studies show the possible existence of progenitor cells that may 

differentiate into luminal cells from either the myoepithelial or luminal lineages, or indeed 

from both [1-7].  There is further evidence for a subset of luminal cells that express 

cytokeratin 5 (CK5), and can give rise to both luminal and myoepithelial lineages. This 

subset may also represent a stem cell population and potentially act as cells of origin for 

breast cancer [8-10]. In addition, a recent study in human tissue combining a novel 3D 

fractal model approach with a theoretical model and with the expression of the putative 

stem cell marker high aldehyde dehydrogenase (ALDH1A1) has suggested that during 

morphogenesis of the mammary gland the intralobular branching ducts are the site of 

cellular expansion and growth. This would indicate that this site may be the location of 

stem cells within the adult breast [11].  However, a novel analysis of multicolour lineage 

tracing at saturation during during pubertal development of the mouse mammary gland 

rules out the presence and role of multipotent stem cells during adult tissue remodelling 

[12].  

 

Consequently, the location and characterisation of stem cells in the human breast is still 

unknown. The major hindrance to our understanding of the location of the human breast 

stem cell has been a lack of markers that definitively demonstrate multilineage 

differentiation and clonal expansion within tissue sections. To date no human lineage 

tracing studies have been performed to show this. To determine the location of stem cells 

within the human mammary epithelium we have used a lineage tracing technique where 

mitochondrial DNA (mtDNA) mutations act as a marker of clonal expansion [13]. Mutant 
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cells are identified by the deficiency of the mitochondrial enzyme cytochrome c oxidase 

(CCO). Serial sections subjected to immunohistochemistry for lineage-specific markers, in 

combination with sequencing of the mitochondrial genome from distinct microdissected 

mammary epithelial cells, demonstrated multilineage differentiation which is the gold 

standard for stem cell identification [14]. MtDNA mutations accumulate within normal 

tissue stem cells and increase in frequency with age, reaching homoplasmy or detectable 

levels of heteroplasmy in mid to late life [15]. We have shown previously that this method 

allows identification of the stem cell niche in the human stomach [16], small bowel [17] and 

in the normal and premalignant prostate [18]. Furthermore, somatic mtDNA mutations are 

neutral, conferring no selective advantage or disadvantage permitting analysis of steady 

state clonal competition within the normal human mammary gland [19]. 

 

Here we investigate in detail the clonal architecture of the normal and premalignant 

epithelium in situ in the human mammary gland. Stem cells have been long considered the 

likely origin of cancer [20,21]: therefore, our findings may shine light not only on 

homeostasis of the normal mammary gland, but also on their contribution to the origin of 

premalignant lesions and invasive cancer. Here, we show that clonal expansions 

demonstrating multilineage differentiation from a single stem cell can occur in any area of 

the normal human breast epithelium.  

 

Ductal carcinoma in situ (DCIS) is considered unanimously to be a precursor of invasive 

ductal cancer (IDC), because several studies have found a link between genetic 

alterations which occur in the premalignant lesion and are maintained in the invasive 

lesion [22-25]. 

However, the human DCIS stem cell has not been identified, nor has the extent to which a 

stem cells progeny can expand through the breast. Here we show lineage tracing within 
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human DCIS that may provide an insight into its cell of origin, a mode of expansion within 

the human breast and a potential understanding of the neoplastic process.  

 

MATERIALS AND METHODS 

Tissue  

Fresh frozen and formalin-fixed paraffin-embedded (FFPE) clinical samples from patients 

undergoing breast surgery between 2004 and 2009 at Barts Health NHS Trust, London, 

UK were studied following patient consent and approval from the local research ethics 

committee and deposited in the Breast Cancer Now tissue bank (formerly Breast Cancer 

Campaign tissue bank, ref: 10/H0308/49). Fresh-frozen DCIS clinical samples were also 

obtained from the Erasmus Medical Center Rotterdam, The Netherlands (MEC 02.953), 

with the study adhering to the Code of Conduct of the Federation of Medical Scientific 

Societies in The Netherlands; from the Imperial College London Tissue Bank, UK, 

following patient consent and approval from the local research ethics committee (ref: 

ICHTB HTA, licence: 12275, REC Wales approval: 12/WA/0196) and from the Fondazione 

IRCSS, Istituto Nazionale Tumori, Milano, Italy (ref: INT 199/15). 

 

Enzyme histochemistry 

Frozen sections (16 μm) of breast tissue underwent sequential CCO and succinate 

dehydrogenase (SDH) enzyme histochemistry, as described previously [15]. CCO/SDH 

histochemistry permits the detection of CCO-normal cells (brown) contrasting with CCO-

deficient cells (blue due to SDH activity). In brief, sections were incubated first in 

cytochrome c medium (100 mM cytochrome c, 4 mM diaminobenzidine tetrahydrochloride 

(brown chromogen), 20 μg/ml catalase in 0.2 M phosphate buffer, pH 7.0, all from Sigma 

Aldrich, Poole, UK) for 40 min at 37 °C to allow detection of CCO activity in brown, 

followed by washes in PBS, pH 7.4, for 3 x 5 min then by incubation in SDH medium (130 
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mM sodium succinate, 200 mM phenazine methosulphate, 1 mM sodium azide, 1.5 mM 

nitroblue tetrazolium in 0.2 M phosphate buffer, pH 7.0) for 45 min at 37 °C to allow 

detection of SDH activity with nitroblue tetrazolium (blue chromogen).  Sections were 

allowed to dry in air for microdissection or dehydrated in increasing ethanol concentrations 

followed by clearing in Histoclear (Fisher Scientific, Leicestershire, UK). All images were 

captured using a Pannoramic 250 Flash III scanner and viewed using Pannoramic viewer 

software (3D Histotech, Budapest, Hungary). 

 

Immunohistochemistry 

Five-micron thick FFPE tissue sections were dewaxed and subjected to boiling in 10 mM 

sodium citrate buffer solution, pH 6.0 (Sigma, UK) for 20 min. Endogenous peroxidase 

activity was blocked with 3% hydrogen peroxide solution for 10 min, followed by a serum 

free protein block (Dako, Ely, UK) for 10 min. Sections were incubated for 1 h at room 

temperature with primary antibody mouse anti-human CCO (OxPhos Complex IV subunit I; 

Life Technologies, Paisley, Scotland, UK) at a 1:100 dilution in blocking serum, followed by 

incubation for 40 min at room temperature in biotin conjugated goat anti-mouse IgG 

(1:500, Dako). Sections were then incubated in streptavidin-conjugated HRP (1:500, Dako) 

for 30 min at room temperature. Colour was developed with a DAB Peroxidase (HRP) 

Substrate Kit (Vector laboratories, Peterborough, Cambridgeshire, UK) according to the 

manufacturers’ recommendations and counterstained with haematoxylin, before 

dehydration through alcohol, clearing in xylene and mounting. 

 

Fluorescence immunohistochemistry 

FFPE tissue sections were dewaxed and unmasked as above. Fresh frozen sections were 

fixed in an ice-cold 1:1 acetone-methanol solution for 5 min at room temperature. Sections 

were blocked with serum free protein block (Dako) for 40 min. Sections were then 
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incubated for 1 h at room temperature with primary antibodies: αSMA (1A4, Dako), CK18 

(EPR1626, Abcam, Cambridge, UK), both at a 1:50 dilution in blocking serum and mouse 

anti-CCO (OxPhos Complex IV subunit I; 1D6-E1A8, Life Technologies) at a 1:100 dilution 

in blocking serum, followed by incubation for 40 min at room temperature in Alexa Fluor 

488 conjugated goat anti-mouse IgG or Alexa Fluor 594 conjugated goat anti-rabbit IgG 

(Life Technologies) added at a 1:1500 dilution in blocking serum. Sections were mounted 

in Prolong Gold anti-fade with DAPI (Invitrogen, Carlsbad, CA) and analysed using an 

Axioplan microscope equipped with AxioCam MRc and AxioVision software (Zeiss, 

Munich, Germany). In each analysis, positive and negative controls were available. When 

enzyme histochemistry was combined with IHC on the same section, CCO histochemistry 

was performed as described first, followed by fixation with a 1:1 acetone:methanol solution 

as above. 

 

Extraction of mtDNA from microdissected tissue 

Frozen sections (16 µm thick) were cut onto PALM membrane slides (Zeiss), and air-dried 

at room temperature for 1h then subjected to enzymatic CCO staining as described above. 

Single cells or larger areas of interest from mammary ducts and terminal duct lobular units 

(TDLUs) were then microdissected on a PALM laser capture system (Zeiss) at a uniform 

laser power and cutting width into PALM-specific 0.5 ml tubes. Stromal tissue was used as 

a control from each section. DNA was extracted using QIAamp DNA Micro kits (Qiagen, 

Hilden, Germany) according to the manufacturer’s protocol.  

 

Sanger sequencing 

A nested PCR protocol producing thirty-six, 500 bp overlapping fragments covering the 

entire mitochondrial genome (mtDNA) was followed as described previously [15]. PCR 

products were treated with ExoSaP-IT (GE Healthcare, Little Chalfont, UK) according to 
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the manufacturer’s protocol and subjected to a Sanger sequencing reaction using Big Dye 

3.1 (Life Technologies) then purified by ethanol precipitation and run on an ABI Prism 

3100 genetic analyzer (Life Technologies). Sequence traces were analyzed using 4Peaks 

software (www.mekentosj.com) together with Clustal W2 software (EMBL-EBI) and 

compared to the revised Cambridge reference sequence [26] and sequences from stromal 

controls and CCO-normal specimens to eliminate polymorphisms from the CCO-deficient 

sequences.  

 

RESULTS 

Visualization of clonal expansions within normal and pre-invasive (DCIS) human 

mammary epithelium  

To determine the presence of putative progenitor/stem cells in the human breast, we first 

performed dual enzyme histochemistry for CCO activity (brown) and succinate 

dehydrogenase (blue, to highlight CCO-deficiency) that has been shown previously to 

highlight clonally-related cells [27]. We detected areas of CCO-deficiency in 9/45 patients 

(20%) normal breast specimens and in 5/54 (9.2%) DCIS patients. CCO-deficiency in the 

normal breast was limited to small epithelial patches. These CCO-deficient patches were 

detected in terminal duct lobular units (TDLUs) (Figure 1A-D) as well as in ducts (Figure 

1E-H). CCO-deficient areas were also detected in areas of DCIS, but were not detected as 

frequently as in the normal breast. However, CCO-deficient areas in DCIS appeared to be 

larger in size, covering either part of, or the entire cross section of the lesion (Figure 1I-J).   

 

To formally demonstrate that patches of CCO-deficient cells represent bona fide clonal 

expansions, multiple CCO-deficient (blue) cells from both normal and DCIS cases were 

non-contact laser-capture microdissected and their entire mtDNA genome sequenced to 

reveal common mutations that would indicate a common cell-of-origin. Figure 2 shows a 
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TLDU that possessed both CCO-deficient and CCO-normal cells (Fig 2A-E). All 

microdissected cells from CCO-deficient areas contained the same mtDNA mutation 

(3127G>A), that was not present in the surrounding CCO-proficient cells, demonstrating a 

clonal expansion (Figure 2F). Clonal expansions were also observed in CCO-deficient 

areas in ducts. Figure 3 shows a classical duct (Figure 2G and 2H) that contained a small 

CCO-deficient area (Figure 2I-K) and each deficient cell harboured a 1609T>C mtDNA 

mutation (Figure 2L). These data suggest that clonal expansions may arise within the 

normal human breast in both ductal and TDLU epithelium. 

 

In DCIS, CCO-deficient areas appeared much larger than in normal breast epithelium: 

entire DCIS ducts were clonal, each area containing a clonal mtDNA mutation. Figure 3A 

shows an H&E stained section of an area of DCIS and Figure 3B shows the same area 

stained for CCO activity. CCO-deficient DCIS ducts (Figure 3Bi & ii) and a CCO-proficient 

duct (Figure 3Biii) were present. Distinct areas microdissected from CCO-deficient duct 

(Figure 3Ci, areas 1 and 2) shared a common 11867_11873insC mutation (identified and 

shown as an insG mutation in the reverse strand sequence, repeated on 3 independent 

microdissected areas) that was not present in the distant CCO-proficient cells (Figures 

3Ciii, area 5). The neighbouring CCO-deficient duct (Figure 3BCi) was not related to this, 

however it was clonal for a heteroplasmic 957 G>A mutation (Figure 3Cii areas, 3 & 4), 

and this was also not present in the surrounding CCO-normal DCIS (Figures 3Ciii area, 5). 

These data suggest that the rate of clonal expansion is higher in neoplastic breast 

epithelium compared to normal breast epithelium and that multiple competing clones are 

capable of arising within the same DCIS lesion. 

 

Clonal populations in normal and neoplastic breast epithelium contain multipotent 

stem cells 
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To investigate whether the clonal CCO−deficient areas contain multipotential stem cells, 

we performed fluorescence immunohistochemistry to determine the expression pattern of 

markers for luminal and myoepithelial cells to seek evidence of multilineage differentiation: 

the gold standard for stem cell identification (14). Figure 4 (A-L) shows CCO-deficient 

epithelial cells in serial sections of normal adult breast co-localized with αSMA-positive 

myoepithelial cells and CK18-positive luminal epithelial cells. This pattern was observed 

both in normal adult breast and DCIS (Figure 4M-P’). While small clusters of fluorescent 

cells were observed close to the myoepithelial layer in all stained sections (CK18, αSMA 

and CCO), they appeared to be autofluorescent blood cells based on morphological 

features and geographical location (H&E in supplementary information, Figure S1). While 

we cannot exclude the possibility that these cells could be myoepithelial cells, the vast 

majority, if not all, myoepithelial cells were CCO-negative.  This indicates that both the 

normal and premalignant mammary epithelium contains multipotent lineages, each 

maintained by a dedicated population of stem cells.  

 

Clones restricted to the luminal layer of normal mammary ducts 

Several studies have argued that mammary stem cells are located in either or both of the 

luminal or myoepithelial layers. A thorough investigation of all CCO-deficient areas within 

our cohort of patients revealed a small subset of normal breast samples (2/45; 4.5%), 

where CCO-deficient patches were restricted to the luminal cell layer (Figure 5), without 

involvement of the underlying CCO-positive myoepithelial layers. We never detected a 

sample in which CCO-deficiency was restricted to the myoepithelial layer, therefore 

suggesting that each clone is derived from a dedicated progenitor cell located within the 

luminal epithelial layer.  

 

DISCUSSION 
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Lineage tracing in murine models and in vitro studies have offered significant insight into 

the dynamics of stem cells in the mammary gland [1,28], but the translation of these 

findings to the normal human breast is uncertain. In this study, using a combination of 

histological and mitochondrial genetic analysis in human tissues, we obtained evidence 

that the human adult mammary epithelium is maintained by a population of multipotent 

stem cells. Areas containing CCO-deficient cells, which were clonal for mtDNA mutations, 

were found in the normal adult human mammary epithelium and were shown to contain 

cells of both luminal and myoepithelial lineages, thus demonstrating that both mammary 

lineages derive from a long-lived and multipotent progenitor cell. It has been shown 

previously that the accrual of a sufficient burden of somatic mutations which result in CCO-

deficiency may take a considerable period of time (almost 40 years in the human colon) 

[29]. We propose that CCO-deficiency originates in the stem cell population, since these 

are the only long-lived cells within the epithelium. Consequently, the presence of clonal 

CCO-deficient areas in the mammary epithelium that spans both luminal and myoepithelial 

lineages strongly indicates that a pool of multipotential stem cells maintains the adult 

human mammary gland.  

 

Areas containing CCO-deficient cells clonal for mtDNA mutations were also found within 

TDLUs and along lactiferous ducts, suggesting that a dedicated stem cell population may 

not be restricted to a specific compartment of the ductal-lobular system. Previous studies, 

using a variety of putative markers and theoretical models, have proposed that mammary 

gland stem cells are found at the branch points of side-ducts [30], in the ducts [10], or in 

TDLUs, in particular at the edge of growing ductules [11,31]. A more recent study in the 

mouse mammary gland excluded the presence of multipotent progenitor cells, but 

localised unipotent progenitors sporadically in branching ducts or alveoli [32].  
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Our data does not suggest such a restriction between the regions of the ductal-lobular 

system, but indicates that multipotent, dividing stem cells are localized along the whole 

adult mammary epithelium.  Furthermore, the presence of multiple CCO-deficient areas of 

various sizes within the same duct provides an insight into clonal dynamics and clonal 

competition in the normal epithelium. Smaller CCO-deficient areas may represent a new 

clonal expansion or a clone headed towards extinction, whereas larger CCO-deficient 

areas may represent a dominant clone that could eventually lead to a monoclonal 

conversion of the duct, similarly to the process of crypt purification in the human normal 

colon [33]. We observed mainly areas of CCO-deficiency that extended through both 

layers of the mammary duct: however, in two samples we could detect the presence of 

CCO-deficient cells restricted to the luminal layer. This could indicate a differentiation 

hierarchy relating the two ductal lineages, where the progenitor cells are located in the 

luminal layer, expand horizontally within this and only successively derive the 

myoepithelial layer. We could not detect any case where CCO-deficiency was associated 

uniquely to the myoepithelial layer, supporting previous findings which conclude that the 

luminal layer is the location of mammary epithelial progenitor cells [2]. 

 

CCO-deficient clonal areas were also detected in ductal carcinoma in situ (DCIS), 

encompassing partial or entire cross sections. Although we have no data to show directly 

the cell of origin of DCIS, we can propose that DCIS originates from stem cells in the 

luminal layer as it is likely that this is the cell of origin of clonal expansions within the 

breast. We observed larger areas of CCO deficiency in DCIS compared to normal breast: 

if we assume that CCO-deficient cells represent a snapshot in time of the dynamics of the 

stem cells populations within the tissue, our findings would indicate an increase in stem 

cell number in the premalignant lesion.  
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In summary, we have shown that the adult human breast contains a population of stem 

cells localized in the whole ductal-lobular system, which maintain the normal epithelium by 

differentiating into both luminal and myoepithelial cells. This architecture is preserved in 

DCIS but clonal dynamics are altered, and an increase in the size of expanded clones was 

observed within the premalignant lesions compared to the normal breast. 

 

ACKNOWLEDGEMENTS 

This study was funded by the Barts and the London Charity (Ref: MGU0190) and Breast 

Cancer Now (formerly Breast Cancer Campaign, Ref: 2012MaySP027). This work was 

also supported by a Cancer Research UK Centre grant (Ref: C16420/A18066). We would 

like to acknowledge the support of the Breast Cancer Now Tissue Bank for identification 

and supply of appropriate tissue specimens.  

 

AUTHOR CONTRIBUTIONS 

BC and SACM, conception and design of the study, experimental work and collection of 

data, data analysis, interpretation and manuscript writing; MJ and NAW, conducted 

analysis and interpretation; EA, GE, experimental work; TM, CHMvD, AMS, MGD, PJT 

and LJ, provision of study material/patients and manuscript preparation. All authors 

contributed to critical revision of the manuscript and approval of the final version. 

 

 
  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
REFERENCES  

1. Rios AC, Fu NY, Lindeman GJ, et al. In situ identification of bipotent stem cells in 

the mammary gland. Nature 2014; 506: 322-327. 

2. Pechoux C, Gudjonsson T, Ronnov-Jessen L, et al. Human mammary luminal 

epithelial cells contain progenitors to myoepithelial cells. Dev Biol 1999; 206:  88-

99. 

3. Clarke RB, Spence K, Anderson E, et al. A putative human breast stem cell 

population is enriched for steroid receptor-positive cells. Dev Biol 2005; 277: 443-

456. 

4. Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells 

derived from the human mammary gland. Exp Cell Res 2004; 297:  444-460. 

5. Stingl J. Detection and analysis of mammary gland stem cells. J Pathol 2009; 217:  

229-241. 

6. Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current 

status and perspectives. Genes Dev 2014: 1143-1158. 

7. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary 

epithelial stem cells. Nature 2006; 439: 993-997. 

8. Nagle RB, Bocker W, Davis JR, et al. Characterization of breast carcinomas by two 

monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J 

Histochem Cytochem1986; 34: 869-881. 

9. Bocker W, Moll R, Poremba C, et al. Common adult stem cells in the human breast 

give rise to glandular and myoepithelial cell lineages: a new cell biological concept. 

Lab Invest 2002; 82: 737-746. 

10. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, et al. Evidence for a stem cell 

hierarchy in the adult human breast. J Cell Biol 2007; 177: 87-101. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
11. Honeth G, Schiavinotto T, Vaggi F, et al. Models of breast morphogenesis based on 

localization of stem cells in the developing mammary lobule. Stem Cell Rep 2015; 

4: 699-711. 

12. Wuidart A, Ousset M, Rulands S, et al. Quantitative lineage tracing strategies to 

resolve multipotency in tissue-specific stem cells. Genes Dev 2016; 30: 1261-1277. 

13. Greaves LC, Preston SL, Tadrous PJ, et al. Mitochondrial DNA mutations are 

established in human colonic stem cells, and mutated clones expand by crypt 

fission. Proc Natl Acad Sci USA 2006; 103: 714-719. 

14. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001; 

414: 98-104. 

15. Taylor RW, Barron MJ, Borthwick GM, et al. Mitochondrial DNA mutations in human 

colonic crypt stem cells. J Clin Invest 2003; 112: 1351-1360. 

16. McDonald SA, Greaves LC, Gutierrez-Gonzalez L, et al. Mechanisms of field 

cancerization in the human stomach: the expansion and spread of mutated gastric 

stem cells. Gastroenterology 2008; 134: 500-510. 

17. Gutierrez-Gonzalez L, Deheragoda M, Elia G, et al. Analysis of the clonal 

architecture of the human small intestinal epithelium establishes a common stem 

cell for all lineages and reveals a mechanism for the fixation and spread of 

mutations. J Pathol 2009; 217: 489-496. 

18. Gaisa NT, Graham TA, McDonald SA, et al. Clonal architecture of human prostatic 

epithelium in benign and malignant conditions. J Pathol 2011; 225: 172-180. 

19. Baker AM, Cereser B, Melton S, et al. Quantification of crypt and stem cell evolution 

in the normal and neoplastic human colon. Cell Rep 2014; 8: 940-947. 

20. Sell S. On the stem cell origin of cancer. Am J Pathol 2010; 176: 2584-2494. 

21. Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of 

intestinal cancer. Nature 2009; 457: 608-611. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
22. Nik-Zainal S, Alexandrov LB, Wedge DC, et al. Mutational processes molding the 

genomes of 21 breast cancers. Cell 2012; 149: 979-993. 

23. Kim SY, Jung SH, Kim MS, et al. Genomic differences between pure ductal 

carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast 

cancer. Oncotarget 2015; 6: 7597-7607. 

24. Banerji S, Cibulskis K, Rangel-Escareno C, et al. Sequence analysis of mutations 

and translocations across breast cancer subtypes. Nature 2012; 486: 405-409. 

25. Nik-Zainal S, Van Loo P, Wedge DC, et al. The life history of 21 breast cancers. 

Cell 2012; 149: 994-1007. 

26. Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the 

Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23: 

147-147. 

27. Fellous TG, McDonald SA, Burkert J, et al. A methodological approach to tracing 

cell lineage in human epithelial tissues. Stem Cells 2009; 27: 1410-1420. 

28. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary 

gland from a single stem cell. Nature 2006; 439: 84-88. 

29. Elson JL, Samuels DC, Turnbull DM, et al. Random intracellular drift explains the 

clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 2001; 

68: 802-806. 

30. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and 

malignant human mammary stem cells and a predictor of poor clinical outcome. Cell 

Stem Cell 2007; 1: 555-567. 

31. Paine I, Chauviere A, Landua J, et al. A geometrically-constrained mathematical 

model of mammary gland ductal elongation reveals novel cellular dynamics within 

the terminal end bud. PLoS Comput Biol 2016; 12: e1004839. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
32. Davis FM, Lloyd-Lewis B, Harris OB, et al. Single-cell lineage tracing in the 

mammary gland reveals stochastic clonal dispersion of stem/progenitor cell 

progeny. Nat Commun 2016; 7: 13053. 

33. Kim KM, Shibata D. Methylation reveals a niche: stem cell succession in human 

colon crypts. Oncogene 2002; 21: 5441-5449. 

 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
FIGURE LEGENDS 

Figure 1. CCO-deficient patches of cells are found through the normal and premalignant 

human breast. (A) H&E staining showing a TDLU in the normal adult breast; (B) CCO 

enzyme histochemistry identifies a subset of cells within the TDLU containing blue, 

CCO−deficient cells. High power images are shown in C and D respectively; CCO-

deficiency is indicated by arrows. CCO-deficient ducts are also found in the ducts of 

normal human breast. (E) H&E staining showing a normal duct from adult human breast; 

(F) CCO enzyme histochemistry identifies three similarly distinct clusters of cells within the 

normal duct containing blue, CCO−deficient cells. High power images are shown in G and 

H respectively.  Scale bar = 150 μm; insert scale bar = 75 μm. (I) and outlined area in (J) 

CCO enzyme histochemistry of a sample of invasive breast cancer with adjacent areas of 

DCIS identifies a large area of CCO-deficient blue cells within the premalignant lesion. 

CCO-deficient cells are interspersed with wild-type CCO-positive brown cells, indicating 

dynamic mixing of clones in DCIS. Scale bar (I) = 2000 μm; insert scale bar (J) = 250 μm. 

I’ and J’ represent globally saturated images (saturation set to 60) to highlight the CCO-

deficient areas in I and J respectively. 
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Figure 2. Clonal expansions occur in both TDLUs and ducts. (A) H&E staining showing a 

TDLU in a normal adult breast and (B) at higher power magnification. (C) CCO enzyme 

histochemistry identifies a discrete TDLU containing blue, CCO−deficient cells and (D) at 

higher magnification. E) Post laser capture microdissection of single cells from multiple 

CCO-deficient blue areas (arrowed in green) together with adjacent CCO-normal brown 

(arrowed in purple, and one cell at greater distance in the section, not shown). Those cells 

without arrows failed to PCR amplify. (F) All CCO-deficient cells shared a common, clonal 

point mutation (3127G>A) that was not present in the control CCO-normal cells. This 

demonstrated clonal expansion within a TDLU. CCO-deficient ducts also show clonal 

expansions. (G) H&E staining showing a normal duct in proximity to DCIS and (H) in 

higher magnification). (I) CCO enzyme histochemistry identifies clusters of blue, 

CCO−deficient cells seen at higher power magnification (J) pre- and (K) post-laser 
This article is protected by copyright. All rights reserved.
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microdissection.  (L) MtDNA sequencing of single cells from multiple blue cells (arrowed in 

K) versus brown wild type cells from a distant area (not shown) demonstrated that two blue 

cells from the larger blue cluster (arrowed in green in K) shared a common, heteroplasmic 

1609T>C mutation that was also present in the single cell laser-captured from a similarly 

distinct area (arrowed in green at the top of the image) but was not present in adjacent 

brown cells or in the other cells laser-captured from distinct blue areas (arrowed in purple). 

These findings showed that normal ducts are clonal and multiple clones compete for the 

monoclonal conversion of the entire duct. Scale bar = 150 μm; insert scale bar = 75 μm. 
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Figure 3. DCIS ducts show multiple, large clonal expansions. (A) H&E staining showing 

adult breast with DCIS ducts. (B) and (Ci-iii) CCO-histochemistry on the serial section 

showing both CCO-deficient (Ci and Cii) and CCO-proficient (Ciii) DCIS ducts.  Areas 1 

and 2 from (Ci) showed a shared 11867_118673insG mutation (shown in the reverse 

sequence strand) that was not detected in area 5 (Ciii). The adjacent CCO-deficient duct 

(Cii areas 3 and 4) did not share the same mutation but was clonal for a heteroplasmic 

957G>A mutation that was also not detected in area 5 (Ciii). Representative Sanger 

sequencing traces are shown below Ci-iii. Scale bar = 600 μm; insert scale bar = 300 μm. 
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Figure 4. Multipotent stem cells reside within clonal CCO-negative normal and DCIS ducts. 

Immunofluorescence staining of serial sections from a normal adult breast (A-D and E-H) 

showed that CCO-negative areas (lacking green CCO expression, F,G) contained cells 

positive for markers of luminal cells (CK18, red) and myoepithelial cells (αSMA, green) (H), 

indicating that multipotential stem cells were present within the CCO-deficient area and 

gave rise to the two differentiated cell types. Similarly, immunofluorescence staining of 

serial sections from a DCIS sample (I-L ; M-P and in higher power magnification, M’-P’) 

showed that CCO-negative areas (N, O and zoomed areas in N’, O’) contained cells 

positive for CK18 and αSMA, green (P and high power P’), that indicated the presence of 

multipotent stem cells within the DCIS duct. Scale bar = 75μm. 
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Figure 5. Normal breast contains CCO-deficient patches of cells restricted to the ductal 

luminal layer. (A and C) H&E staining showing two ducts in the normal adult breast; high 

power images in A’ and C’ respectively. (B and D) CCO enzyme histochemistry identified a 

subset of cells within the luminal layer of the ducts containing blue (CCO−deficient) cells. 

High power images in B’ and D’ respectively. Scale bars: A, B = 150 μm; inset scale bar: 

A’, B’ = 75μm. Scale bar of C, D= 300μm; insert scale bar of C’, D’ = 75μm. 
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SUPPLEMENTARY MATERIAL ONLINE 
 
Supplementary materials and methods  NO 
 
Supplementary figure legend  Yes  
 
 
Figure S1. Exclusion of autofluorescent erythrocytes from assessment of lineage tracing 
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