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ABSTRACT 

 

Mutations in ceramide biosynthesis pathways have been implicated in a few Mendelian 

disorders of keratinization although ceramides are known to have key roles in several 

biological processes in skin and other tissues. Using whole-exome sequencing in four 

unrelated probands with undiagnosed skin hyperkeratosis/ichthyosis, we identified 

compound heterozygosity for mutations in KDSR, encoding an enzyme in the de novo 

synthesis pathway of ceramides. Two individuals had hyperkeratosis confined to palms and 

soles as well as anogenital skin, whereas the other two had more severe, generalized 

Harlequin ichthyosis-like skin. Of note, thrombocytopenia was present in all cases. The 

mutations in KDSR were associated with reduced ceramide levels in skin and impaired 

platelet function. KDSR enzymatic activity was variably reduced in all cases resulting in 

defective acylceramide synthesis, more so for the Harlequin ichthyosis cases, thus providing 

a basis for genotype-phenotype correlation. This study demonstrates that biallelic 

mutations in KDSR are implicated in an extended spectrum of disorders of keratinization in 

which thrombocytopenia is also part of the phenotype. Mutations in KDSR cause defective 

ceramide biosynthesis, underscoring the importance of ceramide and sphingosine synthesis 

pathways in skin and platelet biology. 
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INTRODUCTION 

The hereditary palmoplantar keratodermas and ichthyoses comprise a 

heterogeneous collection of genodermatoses caused by mutations in >100 genes involved in 

a multitude of biologic pathways and processes (Oji et al., 2010; Sakiyama and Kubo, 2016). 

Despite major advances in discovering the underlying molecular genetic basis of many of 

these disorders, several cases remain unresolved, indicating the likely contribution of 

further gene pathology (Fischer, 2009).  

In this study, we investigated four unrelated individuals from Spain, Japan and the 

United Kingdom who presented with inherited disorders of keratinization. The two patients 

from Spain displayed a milder phenotype of palmoplantar and anogenital hyperkeratosis, 

whereas the other two cases had a more severe phenotype resembling Harlequin ichthyosis. 

An additional feature, present in all subjects, was a reduction in the number of blood 

platelets (thrombocytopenia). Using whole-exome sequencing, functional studies on skin 

and platelets, as well as in vitro analyses, we identify autosomal recessive mutations in KDSR, 

encoding 3-ketodihydrosphingosine reductase, which catalyzes the reduction of 3-

ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS), as being responsible for the skin 

and platelet abnormalities, thus expanding the clinical pathology associated with ceramide 

biosynthesis pathways. 

 

RESULTS 

Clinical features of individuals with KDSR mutations 

Patient 1 is a 15-year-old male and the only child of unrelated healthy parents 

(Family 1; see Figure 1a). His parents are originally from the same geographic area in mid-
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southeast Spain. Since the age of 12 months, he developed palmoplantar hyperkeratosis 

with extension to the dorsae of the hands and feet, wrists and ankles (Figure 2), as well as 

anogenital hyperkeratosis and erythema. Aged 2 years, a blood count was performed 

because of mucocutaneous bleeding, which revealed a severe, isolated thrombocytopenia 

(platelets < 30x10
9
/L; bone marrow biopsy showed a normal to increased number of 

megakaryocytes only). A diagnosis of primary immune thrombocytopenia was made but 

treatment with oral corticosteroids was suboptimal. Splenectomy aged 11 years led to a 

slight increase in platelets (~40x10
9
/L) although clinically he continues to suffer recurrent 

nose bleeds. Light microscopy of lesional skin revealed non-specific findings of psoriasiform 

acanthosis and focal hypergranulosis but no epidermolytic changes. 

Patient 2 is a 21-year-old male and the older of two brothers born to healthy 

unrelated parents (Family 2; Figure 1b). He is the only affected individual among his 

relatives. This family originates from the same geographic region in Spain as Family 1, but 

the pedigrees are not known to be related. Aged 15 months, he developed diffuse 

hyperkeratosis on the palms and soles, without progression to the dorsae of hands or feet 

(i.e. less severe than Patient 1). He also developed perianal erythema and hyperkeratosis. In 

addition, he suffered episodes of bruising with evidence of isolated thrombocytopenia. 

Bone marrow studies showed normal hematologic morphology. At present, he has not 

manifested clinically relevant signs of bleeding despite persistently low platelets (~20x10
9
/L).  

Patient 3 was the second child born to unrelated white Caucasian parents from the 

United Kingdom (Family 3; Figure 1c). His parents, older brother, and all other relatives were 

healthy. His mother’s pregnancy was uneventful until the last trimester when 

oligohydramnios was noted. She had spontaneous rupture of membranes at 33+5 weeks 

and underwent elective cesarean section at 35+2 weeks with an infant birth weight of 2.74 
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kg. At birth, the patient was covered in thick adherent plate-like scales with prominent 

ectropion and eclabium, and pinching of all digits, collectively consistent with Harlequin 

ichthyosis. He was treated in a humidified incubator with hourly greasy emollients and 

lubricating eye drops. Acitretin was started which led to some reduction in adherent scaling, 

although he developed pseudomonas septicemia aged 15 days and further sepsis thereafter. 

At birth, platelet count was 120x10
9
/L but within 2 weeks this dropped to 50x10

9
/L, and by 

the 3
rd

 week to ~20-30x10
9
/L and remained at this level. At day 36, he deteriorated clinically 

with tachypnea and hypotension associated with a profound metabolic acidosis. Despite 

efforts to resuscitate him, he died aged 37 days. 

Patient 4 is a 6-year-old Japanese male and is the younger of two brothers born to 

unrelated parents (Family 4; Figure 1d). His mother and brother have atopic dermatitis, but 

there is no other noteworthy family history. He was delivered at 35+3 weeks by normal 

spontaneous vaginal delivery with a birth weight of 1.9 kg. At birth, he had thick plate-like 

scales with deep fissuring overlying erythrodermic skin. Severe eclabium and ectropion were 

also observed. Skin biopsy revealed severe hyperkeratosis with parakeratosis. These 

features were consistent with Harlequin ichthyosis. He was treated in the neonatal intensive 

care unit but did not receive systemic retinoids. Over the first 2 months of life, the thick 

scales desquamated gradually, resulting in generalized erythroderma and fine scaling. 

Platelet count was normal at birth (140-150x10
9
/L) but since the age of 2 months this 

progressively decreased, and at 3 years of age he had severe thrombocytopenia (4-

11x10
9
/L).  

 

Identification of compound heterozygous mutations in KDSR in all affected individuals 
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After ethics’ committee approval and written informed consent, whole-exome 

sequencing (WES) was performed using DNA from all affected probands. Candidate gene 

mutations were prioritized by filtering for variants with a frequency of less than 0.1% in 

public databases such as the Exome Aggregation Consortium (ExAC), Exome Variant Server 

(EVS), 1000 Genomes Project and an in-house repository. Of note, WES failed to reveal any 

pathogenic mutations in genes already implicated in ichthyosis or palmoplantar 

keratoderma. Strikingly, all four affected individuals harbored rare compound heterozygous 

mutations in KDSR, encoding 3-ketodihydrosphingosine reductase (Figure 1e and Table 1). 

The mutations were verified by Sanger sequencing and segregated with disease status in 

family members whose DNA was available (Figures 1a-d). Our study revealed three 

missense mutations (p.Phe138Cys; p.Gly182Ser; p.Gly271Glu), one synonymous variant 

(c.879G>A, p.Gln293Gln, but affecting the last base of an exon and therefore potentially a 

donor splice site mutation), one other splice site mutation (c.417+3G>A), and one out-of-

frame deletion (c.223_224delGA, p.Glu75Asnfs*2) (Figure 1e). Although the two Spanish 

cases (Patients 1 and 2) were not thought to be related, they were both compound 

heterozygotes for the same mutations in KDSR, and we demonstrated that the incidence of 

both pathogenic changes (p.Phe138Cys and c.417+3G>A) is likely to represent shared 

ancestral alleles within these families and potentially other individuals within this part of 

Spain (Supplementary Table S1 online). The splicing mutation (c.417+3A>C) was predicted 

to cause a reduction of 41.8% of transcripts expressing exon 5 of KDSR, based on the SPANR 

tool (Xiong et al., 2015), which was confirmed by RT-PCR using RNA extracted from skin 

(Patients 1 and 2). Sequencing of cDNA from exon 2 to exon 7 of KDSR demonstrated 

skipping of exon 5 (96-bp, Δ5) and skipping exons 5 and 6 (288-bp, Δ5Δ6) (data not shown). 

Both of these truncated transcripts restore the reading frames. The synonymous c.879G>A 
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mutation (p.Gln293Gln) was predicted to lead to loss of exon 10 with retention of 15 base 

pairs from intron 9 (Δ10+VSSA), although cDNA was not available for verification. 

 

KDSR mutations impair enzymatic activity and lead to defective acylceramide synthesis 

To assess the effect of the mutations on KDSR enzymatic activity, the six mutations 

identified in all four patients were introduced into yeast and HEK 293T cells. Two mutant 

plasmids were designed for the c.417+3A>C variant, one predicting skipping of exon 5 only 

(Δ5) and the other loss of both exons 5 and 6 (Δ5Δ6). With respect to the c.879G>A variant, 

the predicted mutant product, Δ10+VSSA, was generated (Figure 3a). 

A yeast complementation assay was performed using yeast grown on plates with or 

without phytosphingosine (PHS). Because sphingolipids are essential for cell viability, Δtsc10 

yeast cells cannot grow normally unless the addition of PHS or dihydrosphingosine (DHS) to 

the medium bypasses the requirement of de novo sphingolipid synthesis. Therefore, under 

these circumstances, yeast would not be able to grow normally if the KDSR mutants impair 

enzymatic activity. This assay revealed that the mutations (illustrated for Patients 1, 2 and 3; 

Figure 3b) diminished the ability of yeast to grow in the absence of PHS. The p.Phe138Cys 

mutant had the mildest effect. In comparison, the Δ5, Δ5Δ6, and Δ10+VSSA mutants 

(representing the c.417+3A>C and c.879G>A mutations) resulted in the most significant 

impairment of yeast growth (Figure 3b). 

To assess the enzymatic activity in vitro, all the mutant constructs were introduced 

into HEK 293T cells (Figure 3c) and the levels of DHS were quantified. Consistent with the 

yeast complementation assay, this revealed that most of the mutants led to a significant 

reduction in DHS synthesis (Figure 3d). The only exception was the p.Gly182Ser (c.544G>A) 
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variant, which showed no significant difference in DHS synthesis compared to wild-type 

(Figure 3d).        

These results offer some insight into explaining the discrepancy in phenotypic 

severity between the patients. One of the two mutations harbored by the clinically milder 

Patients 1 and 2 (c.413T>G; p.Phe138Cys) results in a mutant protein with ~70% of 

enzymatic activity compared to wild-type KDSR. In contrast, the mutations identified in the 

more severely affected Patient 3 (c.812G>A; p.Gly271Glu) and (c.879G>A; Δ10+VSSA) led to 

mutant products with only ~25% of activity compared to wild-type KDSR. These differences 

in enzymatic activity thus potentially relate to localized or generalized skin manifestations. 

For Patient 4, although the activity of the p.Glu75Asnfs*2 (c.223_224delGA) mutant was 

dramatically reduced (similar to empty vector), the activity of p.Gly182Ser (c.544G>A) was 

comparable to that of wild-type; this suggests that the latter variant has a distinct functional 

impact that was not revealed by this assay (see Discussion).  

 

KDSR expression and ceramide immunolabeling are reduced in patient skin 

Quantitative PCR (qPCR) was performed using whole skin RNA from Patient 1, 

Patient 2 and four healthy individuals. KDSR expression was found to be reduced in both 

affected individuals, but not dramatically (70-80% of control; Figure 4a). Of note, expression 

of FLG, CERS3, IVL, KRT10 and KRT14 was increased in both patients (Figure 4b-f). 

Immunofluorescence staining was performed on skin sections from Patient 1, Patient 2 and 

a control individual to examine changes in protein levels or localization. KDSR labeling was 

not visibly reduced in patient skin (Supplementary Figure S1 online). Staining with an anti-

ceramide antibody revealed reduced (but not absent) ceramide levels in patient skin, 

supporting the hypothesis that KDSR mutations lead to dysregulation of ceramide 
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biosynthesis. In keeping with the gene expression changes observed, immunoreactivity of 

CERS3, filaggrin and loricin was increased in both patients (Supplementary Figure S1 online). 

Taken together, these alterations suggest that reduction of KDSR activity leads to 

diminished levels of ceramide in patients. This in turn may lead to a feedback loop causing 

increased expression of CERS3 and terminal differentiation markers such as keratin 10, 

involucrin, filaggrin and loricrin. 

 

KDSR mutations lead to variable alterations in skin lipids  

The levels of 11 major ceramide species in the skin of the forearm, wrist and palm 

were assessed by tape stripping and liquid chromatography-mass spectrometry analysis. In 

the forearms of Patients 1 and 2 (uninvolved skin), there was no significant difference in the 

total ceramide, ceramide components or average carbon numbers between the affected 

individuals and their unaffected mothers (Supplementary Figure S2 online). In contrast, in 

the affected wrist skin, the levels of total ceramide, CER[EOS], CER[EOH], CER[NP], CER[NH] 

and CER[NS], were reduced in the patients’ samples. Additionally, the average carbon 

numbers of ceramides indicated that short-chain ceramides, CER[NDS], CER[NS] and CER[AS], 

were increased in the patients’ skin. However, due to the small number of samples, 

statistical analyses could not be performed. Likewise, in the affected palm skin samples, the 

levels of total ceramide were decreased in Patient 1 compared to his mother. In contrast, 

there was no difference in the levels of total or individual ceramides between Patient 2 and 

his mother. This discrepancy may be explained by the milder phenotype in Patient 2 

compared to Patient 1. The average carbon numbers of ceramides showed that short-chain 

ceramides, CER[NDS], CER[NS], CER[NP], CER[ADS], CER[AS] and CER[AP], were increased 

both patients’ palm. KDSR is one of the key enzymes involved in the de novo pathway of 
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sphingolipid synthesis, acting between serine palmitoyl transferase (SPT) and CERS. 

Therefore, KDSR deficiency may affect this cascade and lead to a reduction in the levels of 

synthesis of total and downstream products.  

 

KDSR mutations reduce platelet number and function 

Detailed analysis of platelets was performed in Patients 1 and 2, their respective 

mothers and healthy controls. No morphologic abnormalities in platelets were noted 

(Supplementary Figure S3 online) although flow cytometry evaluation of platelet volume 

was slightly increased in the patients (Supplementary Table S2 online). The patients’ 

platelets expressed normal levels of adhesive surface glycoproteins, but a lower level of 

phophatedylserine exposure in terms of basal annexin V binding positive percentages and 

also reduced thromboplastin expression in unstimulated washed platelets (Supplementary 

Table S2 online). Next, we performed platelet function analysis by evaluating granule 

release and the conformational change of αIIbβ3 integrin (CD62P and PAC-1, respectively) 

upon stimulation with different platelet agonists. The increment in double-positive (CD62P 

and PAC-1) platelets was lower in patients than in heterozygotes and controls, specifically 

with agonists that are known to activate pathways that are highly dependent on Src family 

kinases, such as thrombin (PAR1p and PAR4p), collagen (convulxin and collagen related 

peptide [CRP]), and ADP, but not as evident following arachidonic acid stimulation 

(Supplementary Figure S4 online). 

The plasma S1P concentration in Patient 1, who presented with more severe clinical 

bleeding, was decreased by 61% compared to control, while the equivalent measure in 

Patient 2 was reduced by 45% (Figure 5a). The observation that serum S1P levels compared 

to controls were diminished in both patients by only 45% and 36%, respectively, suggests 
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that erythrocytes contribute to most of the S1P being released in patient samples during 

blood clotting (Figure 5a). Surface-exposed ceramide in human platelets were investigated 

with an antibody recognizing C24:0 ceramide levels, the predominant form of ceramide 

present in human platelets (Chen et al., 2013). This antibody detected an obvious increase 

in ceramide levels in the plasma membrane of controls and carriers of the c.417+3A>C 

mutation following platelet activation, whereas the intensity of immunostaining was not 

changed significantly in affected patients (Figure 5b). 

 

DISCUSSION 

 

In this study, we identified biallelic mutations in KDSR in patients with defective 

keratinization and thrombocytopenia, implicating KDSR as a further candidate gene for 

hereditary palmoplantar keratodermas and ichthyosis but also demonstrating that KDSR has 

an important function in platelet biology. Our data suggest that mutations in KDSR impair 

ceramide biosynthesis pathways and function in skin and platelets.  

Previously, data linking KDSR to disease have been very limited, aside from a 

missense variant in the bovine ortholog of KDSR that was proposed to cause spinal muscular 

atrophy (Krebs et al., 2007). Intriguingly, however, a de novo deletion of human 

chromosome 18q has been reported previously in an infant with lethal Harlequin ichthyosis 

(Stewart et al., 2001): this child’s karyotype was 46,XY,del(18)(q21.3). The authors 

hypothesized that the causative gene may be located at or distal to 18q21.3, and that this 

deletion may have unveiled this autosomal recessive disorder. Indeed, KDSR is located at 

18q21.33, and thus we speculate that loss of KDSR may have been responsible for this 

individual’s phenotype. The vast majority of cases of Harlequin ichthyosis have bialleleic 

mutations in the lipid transporter gene, ABCA12 (Akiyama, 2014) but this previous report 
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(Stewart et al., 2001), and our current findings in two further subjects with Harlequin 

ichthyosis, identify KDSR as a possible additional candidate gene for non-ABCA12 Harlequin 

ichthyosis. 

The mutations we identified in KDSR are predominantly loss-of-function, the one 

possible exception being p.Gly182Ser (c.544G>A) which did not appear to alter enzyme 

activity. We speculate that this variant may instead confer a gain-of-function effect, 

producing deleterious “mock sphingolipids”, similar to what has been observed for missense 

mutations in SPTLC1, encoding a subunit of serine palmitoyl transferase (SPT), in hereditary 

sensory neuropathy type 1 (Bejaoui et al., 2001; Dawkins et al., 2001; Penno et al., 2010).  

Sphingolipids are a family of lipids present in eukaryotes, which are involved in a 

variety of key physiologic functions in the skin, brain, immune system, and blood vessels 

(Wegner et al., 2016). Ceramides, one of the classes of sphingoid bases, are vital not only for 

membrane structure integrity but are also essential for critical signaling processes such as 

cell cycle arrest, migration, chemotaxis, adhesion, and differentiation (Wegner et al., 2016). 

Additionally, ceramides are relevant to proliferation, inflammation, apoptosis, and 

autophagy in the context of stress (Uchida, 2014). There are more than 1,000 ceramide 

species, of which the majority is present in skin stratum corneum (Kihara, 2016). The major 

route of ceramide formation is the salvage pathway, which delivers 50-90 % of the ceramide, 

and uses hydrolysis of sphingomyelin by sphingomyelinase (Linn et al., 2001). Ceramide can 

be also synthesized de novo in the endoplasmic reticulum (Linn et al., 2001). The first step in 

the de novo pathway of ceramide synthesis is catalyzed by serine palmitoyltransferase (SPT), 

condensing L-serine and a fatty acid (FA) to generate 3-ketodihydrosphingosine (KDS). 

Subsequently, reduction of 3-KDS by KDSR produces dihydrosphingosine (DHS). DHS is the 

substrate of ceramide synthases, a group of six enzymes, which bind FAs of varying lengths 
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to the amide group of DHS, thus giving rise to a variety of dihydroceramides (Levy and 

Futerman, 2010). Finally, dihydroceramide desaturase creates a double bond between 

positions 4 and 5, generating ceramide. 

A number of inherited skin diseases which involve aberrations in genes important in 

ceramide synthesis and processing have been described. Among these, mutations in CERS3 

are one cause of autosomal recessive congenital ichthyosis (ARCI), associated with a 

pronounced reduction in VLC ceramides in the skin (Radner et al., 2013). Similarly, 

mutations in ELOVL4, encoding an enzyme necessary for the production of ULC ceramides in 

the skin, brain and retina, lead to a recessive disorder characterized by ichthyosis, 

intellectual disability and spastic quadriplegia (Aldahmesh et al., 2011). 

The patients with mutations in KDSR also exhibit progressive thrombocytopenia and 

a moderate functional platelet defect that develops early in life. The most likely explanation 

for the reduction in platelet count is the diminished S1P synthesis. In thrombopoiesis, both 

extracellular and intracellular normal levels of this lipid mediator are essential in pro-

platelet shedding from megakaryocytes in genetically deficient mice (Zhang et al., 2012; 

Zhang et al., 2013). Therefore, defects in platelet formation and release in the final stage of 

thrombopoiesis may contribute to the pathogenesis of thrombocytopenia in the KDSR 

patients. Moreover, the functional defects associated with mutations in KDSR could be 

related not only to the reduced synthesis of S1P, but also ceramide.  Previous studies in 

knockout mice have shown that platelets defective in S1P or ceramide fail to activate 

normally, and that exogenous ceramide or S1P is able to rescue the phenotype of defective 

platelet secretion and aggregation (Munzer et al., 2014; Urtz et al., 2015).  

The platelet abnormalities in the patients proved difficult to treat with conventional 

approaches but an alternative strategy might be to use drugs such as fingolimod and related 
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S1P receptor targeting drugs that act as agonists upon initial binding to S1P receptor. 

Fingolimod administration causes a rapid increase in platelet numbers in mice (Zhang et al., 

2012) suggesting that acute agonistic action of the drug on megakaryocyte S1P receptor-

induced platelet release. Thus, it could be possible, in patients with reduced but not absent 

KDSR enzymatic activity, to therapeutically regulate platelet deficiencies by targeting the 

S1P receptor. Regarding treatment of the skin, systemic retinoid was only given to one 

subject (Patient 3). Although there was a reduction in skin scaling thereafter, the onset of 

sepsis and early demise limited therapeutic evaluation of retinoid therapy.  

In conclusion, our data reveal defective ceramide biosynthesis due to loss-of-

function mutations in KDSR to be responsible for some previously uncharacterized scaly skin 

disorders (localized or generalized) with accompanying thrombocytopenia. This discovery 

not only offers new insights into the role of ceramides in skin and platelet biology, but also 

has implications for patient diagnostics, prognostics and therapeutics.  

 

MATERIALS & METHODS 

The full description of all materials and methods used in this study for venous blood 

sampling for DNA, platelet, plasma and serum studies, as well as methodology for WES, cell 

culture and transfection, immunofluorescence microscopy, qPCR, and platelet microscopy 

and flow cytometry are provided in the Supplementary Materials online. 

 

Yeast strain and medium 

The yeast Saccharomyces cerevisiae strain KHY625 (MATa ura3 his3 trp1 leu2 Δtsc10::LEU2; 

Kihara and Igarashi, 2004) harboring a URA3 marker-containing plasmid was grown on 

synthetic complete minus uracil (SC-URA; 0.67% yeast nitrogen base, 2% D-glucose, 0.5% 
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casamino acids, 20 mg/L adenine, and 20 mg/L tryptophan) plates with or without 5 μM 

phytosphingosine (PHS) and 0.0015% Nonidet P-400 (dispersant) at 30 °C. 

 

Plasmid generation 

Human FVT-1/KDSR cDNA was digested from the pAK591 plasmid (Kihara and Igarashi, 2004) 

and cloned into pCE-puro 3xFLAG-1, the mammalian expression vector designed for N-

terminal 3xFLAG-tagged protein production. Four of the identified mutations (F138C, Δ5, 

Δ5Δ6, and Q271E) were created using the QuikChange Site-Directed Mutagenesis Kit 

(Agilent Technologies, Santa Clara, CA) and the primers listed in Supplementary Table S5 

online. The Δ10+VSSA and E75Nfs*2 mutants were produced by amplifying the mutated 

KDSR gene using the primers KDSR-F and KDSR Δ10+VSSA-R, and the primers KDSR-F and 

KDSR E75Nfs*2, respectively (Supplementary Table S5 online), followed by cloning into the 

pCE-puro 3xFLAG-1 vector. For expression in yeast, wild type and mutant KDSR plasmids 

were transferred into pAKNF316 (CEN, URA3 marker), the yeast expression vector designed 

to produce N-terminally 3xFLAG-tagged protein under the control of a glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) promoter. 

 

Immunoblotting 

Immunoblotting was performed as described previously (Kitamura et al., 2015) using anti-

FLAG M2 antibody (1.85 μg/mL; Sigma, St. Louis, MO) as the primary antibody and an HRP-

conjugated anti-mouse IgG F(ab′)2 fragment (diluted 1:7500; GE Healthcare Life Sciences, 

Piscataway, NJ) as the secondary antibody. 

 

In vitro 3-ketodihyrosphingosine (KDS) reductase assay 
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Cells were suspended in buffer A [50 mM Tris-HCl (pH 7.5), 10% glycerol, 150 mM NaCl, 1 

mM EDTA, 1× protease inhibitor mixture (Complete
TM

 EDTA free; Roche Diagnostics, Basel, 

Switzerland), 1 mM PMSF, and 1 mM DTT] and lysed by sonication. After ultracentrifugation 

(100,000 × g, 30 min, 4 °C), the pellet was suspended in buffer A and was used as the total 

membrane fraction. Protein amounts were quantified using the Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific, Waltham, MA). In vitro KDS reductase assay was performed by 

incubating the total membrane fraction (1 μg) with 1 mM NADPH and 10 μM KDS at 37 °C 

for 1 h. Lipids were extracted by mixing with successive additions of 3.75 volume of 

chloroform/methanol/HCl (100:200:1, vol/vol/vol), 1.25 volume of chloroform, and 1.25 

volume of water. Phases were separated by centrifugation (20,000 × g, room temperature, 3 

min). The resulting organic (lower) phase was recovered, dried, and dissolved in methanol. 

The reaction product dihydrosphingosine (DHS) was detected by ultra performance liquid 

chromatography (UPLC) coupled with electrospray ionization (ESI) tandem triple quadrupole 

MS (Xevo TQ-S; Waters, Milford, MA). The UPLC solvent systems and ESI condition were 

described previously (Yamamoto et al., 2016). DHS was detected by multiple reaction 

monitoring by selecting the m/z value of 302.2 at Q1 and the m/z value of 266.0 at Q3 with 

the collision energy setting at 20 V in positive ion mode. DHS levels were quantified using a 

standard curve plotted from serial dilutions of DHS (Avanti Polar Lipids, Alabaster, AL) 

standard. Data were analyzed using MassLynx software (Waters). 

 

Tape stripping for ceramide analysis 

To examine the ceramide species present in the stratum corneum, tape stripping was 

performed by pressing an acryl film tape (456#40, Teraoka Seisakusho, Tokyo, Japan) to the 

skin of the forearm, wrist and palm. Five strips measuring 25 mm x 50 mm each were 
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obtained from a single individual. The samples were then subjected to liquid 

chromatography-mass spectrometry (LC-MS) analysis to assess the levels of 11 major 

ceramide species (Ishikawa et al., 2013). Samples were taken from two unaffected mothers 

(Families 1 and 2) as a control. 
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FIGURE LEGENDS 

Figure 1. Pedigrees and mutations identified in KDSR. (a-d) Family pedigrees of the four 

patients with compound heterozygous mutations in KDSR. ‘+’ denotes the wild-type allele. 

(e) Schematic of KDSR to show the six compound heterozygous mutations identified in this 

study. 

 

Figure 2. Clinical features of Patient 1. (a) Diffuse palmar keratoderma. (b) Perianal 

hyperkeratosis. (c) Bilateral diffuse plantar keratoderma. 

 

Figure 3. Mutations in KDSR impair enzymatic activity in vitro. (a) Total lysates prepared 

from KHY625 (Δtsc10) cells harboring an empty vector or the plasmid encoding wild-type 

(WT) or mutant 3xFLAG-KDSR were separated by SDS-PAGE and subjected to 

immunoblotting using anti-FLAG M2 antibody. (b) KHY625 cells bearing the indicated 

plasmid were grown serially diluted at 1:10, spotted on SC-URA plates with or without 5 μM 

PHS, and grown at 30°C for 3 days. (c and d) HEK 293T cells were transfected with an empty 

vector or the plasmid encoding WT or mutant 3xFLAG-KDSR. Twenty-four hours after 

transfection, total membrane fractions were prepared. (c) Total membrane fractions (5 μg 

protein) were separated by SDS-PAGE and subjected to immunoblotting using anti-FLAG M2 

antibody. (d) Total membrane fractions were incubated with 10 μM KDS and 1 mM NADPH 

at 37 °C for 1 h. Lipids were extracted and subjected to LC-MS/MS analysis. DHS was 

detected in the MRM mode and quantified using MassLynx software. Values represent the 

mean ± SDs of three independent experiments. Statistically significant differences compared 

to control are indicated. *P<0.05, **P<0.01; t-test.  
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Figure 4. KDSR mutations slightly reduce KDSR expression but upregulate expression of 

skin differentiation markers. The mRNA levels of (a) KDSR, (b) FLG, (c) KRT10, (d) KRT14, (e) 

CERS3, and (f) IVL were evaluated by q-PCR in skin from Patients 1 and 2 and four healthy 

controls. 18S was used to normalize gene expression levels. 

 

Figure 5. KDSR mutations reduce sphingosine 1 phosphate (S1P) and ceramide expression 

in plasma, serum and activated platelets. (a) S1P concentration in blood plasma and serum 

samples obtained from Patients 1 and 2, and normal subjects. Red bars represent the 

affected individuals, and green bars two parallel controls. (b) Ceramide expression in 

stimulated platelets in response to 250 mM PAR1p. Bars colored in lighter shades of red, 

blue, and green represent unstimulated cells and the bars in darker shades of each 

respective color indicate activated platelets. The values shown are the means of (a) S1P 

concentration and (b) median fluorescence intensity (MFI). The error bars indicate the SEM. 

 

TABLES 

Patient Country 

of origin 

Dermatologic 

phenotype 

Thrombocytopenia Mutations in KDSR & 

amino acid change 

1000 

Genomes 

Project 

frequency 

ExAC 

frequency 

SIFT 

(score) 

PolyPhen-

2 (score) 

Mutation 

Taster 

1 Spain Palmoplantar 

and perianal 

keratoderma 

+ c.413T>G: p.Phe138Cys 

 

0 8.3 x 10
-5

 Damaging Probably 

damaging 

Disease-

causing 

c.417+3A>C 0 0 N/A N/A Disease-

causing 

2 Spain Palmoplantar 

and perianal 

keratoderma 

+ c.413T>G: p.Phe138Cys 

 

0 8.3 x 10
-5

 Damaging Probably 

damaging 

Disease-

causing 

c.417+3A>C 0 0 N/A N/A Disease-

causing 

3 United 

Kingdom 

Harlequin 

ichthyosis 

+ c.812G>A: p.Gly271Glu 

 

0 0 Damaging Probably 

damaging 

Disease-

causing 

c.879G>A: p.Gln293Gln 0 3.3 x 10
-5

 N/A N/A Disease-

causing 

4 Japan Harlequin 

ichthyosis 

+ c.223_224delGA: 

p.Glu75Asnfs*2 

 

0 0 N/A N/A Disease-

causing 

c.544G>A: p.Gly182Ser 0 8.2 x 10
-6

 Damaging Probably 

damaging 

Disease-

causing 

 

Table 1. Summary of clinical and mutation details of all four affected individuals. 
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Figure 2. Clinical features of Patient 1. (a) Diffuse palmar keratoderma. (b) Perianal hyperkeratosis. (c) 
Bilateral diffuse plantar keratoderma.  
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Figure 3. Mutations in KDSR impair enzymatic activity in vitro. (a) Total lysates prepared from KHY625 
(∆tsc10) cells harboring an empty vector or the plasmid encoding wild-type (WT) or mutant 3xFLAG-KDSR 
were separated by SDS-PAGE and subjected to immunoblotting using anti-FLAG M2 antibody. (b) KHY625 
cells bearing the indicated plasmid were grown serially diluted at 1:10, spotted on SC-URA plates with or 

without 5 µM PHS, and grown at 30°C for 3 days. (c and d) HEK 293T cells were transfected with an empty 
vector or the plasmid encoding WT or mutant 3xFLAG-KDSR. Twenty-four hours after transfection, total 

membrane fractions were prepared. (c) Total membrane fractions (5 µg protein) were separated by SDS-
PAGE and subjected to immunoblotting using anti-FLAG M2 antibody. (d) Total membrane fractions were 

incubated with 10 µM KDS and 1 mM NADPH at 37 °C for 1 h. Lipids were extracted and subjected to LC-
MS/MS analysis. DHS was detected in the MRM mode and quantified using MassLynx software. Values 

represent the mean ± SDs of three independent experiments. Statistically significant differences compared 
to control are indicated. *P<0.05, **P<0.01; t-test.  

 
401x200mm (300 x 300 DPI)  

 

 

Page 28 of 45Journal of Investigative Dermatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 4. KDSR mutations slightly reduce KDSR expression but upregulate expression of skin differentiation 
markers. The mRNA levels of (a) KDSR, (b) FLG, (c) KRT10, (d) KRT14, (e) CERS3, and (f) IVL were 

evaluated by q-PCR in skin from Patients 1 and 2 and four healthy controls. 18S was used to normalize the 

gene expression levels.  
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Figure 5. KDSR mutations reduce sphingosine 1 phosphate (S1P) and ceramide expression in plasma, 
serum, and activated platelets. (a) S1P concentration in blood plasma and serum samples obtained from 
Patients 1 and 2, and normal subjects. Red bars represent the affected individuals, and green bars two 

parallel controls. (b) Ceramide expression in stimulated platelets in response to 250 mM PAR1p. Bars 
colored in lighter shades of red, blue, and green represent unstimulated cells and the bars in darker shades 

of each respective color indicate activated platelets. The values shown are the means of (a) S1P 
concentration and (b) median fluorescence intensity (MFI). The error bars indicate the SEM.  
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Supplementary Materials and Methods 

Ethics statement 

This study was conducted in compliance with the Declaration of Helsinki and all participants 

provided informed consent. This study was also approved by the relevant institutional 

authorities, namely the St Thomas’ Hospital Ethics Committee, UK (“Molecular basis of 

inherited skin diseases” 07/H0802/104), the Bioethics Committee of the Nagoya University 

Graduate School of Medicine, Japan, and the Ethics Committee of Hospital Universitario 

Reina Sofía, Murcia, Spain. 

 

Blood sampling 

Venous blood was drawn from affected individuals, their mothers, and two parallel healthy 

controls into 7.5% K3 EDTA tubes (for blood counts and DNA isolation), buffered 0.105 M 

sodium citrate (for platelet function studies), or in empty tubes (for preparation of serum) 

using a 20-gauge needle. Samples were maintained at room temperature until processing.  

Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were separated from blood 

samples by stepwise centrifugations at 140 x g for 10 min and then 1200 x g for 20 min at 

room temperature (RT).  Serum was obtained from non-anticoagulated blood by incubation 

at 37°C for 30 min followed by centrifugation (1200 x g, 20 min). PPP and serum aliquots 

were stored frozen at -80°C until used in the human sphingosine 1 phosphate enzyme-linked 

immunosorbent assay (Shanghai Crystal Day Biotech Co., LTD, Shanghai, China). For some 

studies, washed platelets resuspended in Tyrode´s buffer (Guerrero et al., 2005) were used. 
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Whole-exome sequencing 

Genomic DNA was extracted and whole-exome capture was performed by in-solution 

hybridization (Agilent All Exon V4 kit, Agilent Technologies, Santa Clara, CA, USA). Massively 

parallel sequencing was performed with the Illumina HiSeq 2000 platform with 100-bp 

paired-end reads (San Diego, CA). The reads produced were aligned to the reference human 

genome using the NovoAlign software package (Novocraft Technologies Sdn Bhd, 

Selangor, Malaysia). Reads mapping to multiple regions and duplicate reads (arising from 

PCR clonality or optical duplicates) were excluded from downstream analyses. 

 

Cell culture and transfection 

HEK 293T cells were grown in Dulbecco’s Modified Eagle’s Medium (D6429; Sigma, St. Louis, 

MO) supplemented with 10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin in a 5% 

CO2 incubator at 37 °C. Dishes were pre-coated with 0.1 mg/mL collagen (Cellmatrix type I-

P, Nitta Gelatin, Osaka, Japan). Transfections were conducted using Lipofectamine Plus
TM

 

Reagent (Thermo Fisher Scientific, Waltham, MA), according to the manufacturer’s 

instructions. 

 

Immunofluorescence microscopy 

Following informed consent, skin samples were taken from patients and healthy controls 

under local anesthetic. Samples were placed in Michel’s medium at room temperature 

during transportation. Skin samples were washed in 0.1 M Dulbecco’s Phosphate Buffered 
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Saline (PBS) for 1 hour at 4 °C, mounted in Optimal Cutting Temperature compound (Agar 

Scientific, Stansted, UK) and immediately frozen in liquid nitrogen cooled n-heptane. 

Cryostat sections of 5 μm were cut and transferred onto Superfrost
TM

 Plus slides (Thermo 

Scientific, UK). The samples were air dried and stored in a -20 °C freezer until required. Prior 

to staining, slides were air dried for 10 minutes, immersed in PBS for 5 minutes and 

incubated with goat/rabbit serum (Sigma-Aldrich) for 2 minutes at room temperature. 

Primary antibodies were diluted in 1% bovine serum albumin (BSA) (Sigma-Aldrich, 

Gillingham, Dorset, UK) in PBS at the desired concentration (see Supplementary Table S3 for 

the list of primary antibodies used). A negative control was prepared with serum without 

adding any primary antibody. The slides were then incubated with the primary antibody or 

negative control solution for 1 hour at 37 °C or overnight at 4 °C in a humidified chamber. 

They were then washed twice in PBS for 10 minutes and incubated with the relevant 

fluorescein-conjugated secondary antibodies (Vector Labs, CA) diluted 1:500 in 1% BSA/PBS 

for 1 hour at room temperature in a dark humidified air chamber. The samples were washed 

twice in PBS for 10 minutes and then twice in distilled water for 10 minutes before being 

mounted in glycerol/PBS-containing vector shield with DAPI (Vector Labs). Images of the 

slides were captured with a Nikon Eclipse E600 epifluorescence microscope fitted with a 

Jenoptik CF Cool digital camera (Jenoptik, Jena, Germany). 

 

Quantitative reverse transcription polymerase chain reaction (qPCR) 

A 20 μL reaction mixture was made up of 2 μL of cDNA template, 10 μL of Taqman® 

Mastermix (Thermo Fisher Scientific, UK), 1 μL of gene expression assay (Thermo Fisher 

Scientific, Paisley, UK) and 7 μL of diethyl pyrocarbonate (DEPC)-treated water (see 
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Supplementary Table S4 for the list of probes used). Each reaction was performed in 

triplicate to correct for pipetting errors. The mixture was then pipetted into a MicroAmp 

Optical 96-well plate (Applied Biosystems) and placed into the ABI 7900HT Fast Real-Time 

PCR System (Applied Biosystems, Carlsbad, CA). The samples were heated to 50 °C and then 

95 °C for 10 minutes for AmpliTaq Gold DNA polymerase activation, followed by 40 cycles at 

95 °C for 15 seconds and 60 °C for 1 minute for denaturation, annealing, and elongation. A 

water sample was included as a no template control to exclude contamination. The mean CT 

value for each assay was determined and all experiments were repeated on three 

independent occasions to enable statistical analyses and correct for experimental viability. 

 

Population genetic analysis 

Blood samples were obtained from 43 healthy blood donors from the same region in Spain 

as Patients 1 and 2, as well as from 49 patients attending the local health center for routine 

blood sampling due to unrelated conditions. All subjects gave written informed consent to 

participate in this study, which complied with the Helsinki Declaration and was formally 

approved by the Ethics Committee of Hospital Universitario Reina Sofía, Murcia, Spain. 

Genomic DNA from EDTA blood samples was isolated using a DNeasy blood and tissue kit, 

following the manufacturer’s protocol (Qiagen, Hilden, Germany). DNA concentration was 

measured using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA). Exons 4 and 5 of 

KDSR (NG_028249.1; ENSG00000119537) were screened for mutations using genomic DNA. 

A 458-bp PCR product was amplified using a primer pair (sense: 5’-

GCATATCAGTTGATGTATCTCAAG-3’; antisense: 5’-CCATGGACATCTGAATGCAT-3’) that 

included the c.413T>G and c.417+3A>C mutations, along with two SNPs (rs1809319 and 
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rs72946535). DNA samples of the 10 individuals carrying the c.413T>G or c.417+3A>C 

mutations were tested by allele-specific PCR for linkage analysis with the specific SNPs. PCR 

products were sequenced using the ABI 3130xl Genetic Analyzer (Applied Biosystems). 

 

Electron microscopy of platelets  

Platelet-rich plasma samples were fixed in 1.25% glutaraldehyde, washed and post fixed in 

1% osmic acid containing 1.5% potassium ferrocyanide, dehydrated using graded alcohols 

and propylene oxide and embedded in Epon as described previously (Navarro-Nunez et al., 

2011). Embedded samples were sectioned, stained, and visualized using a Philips Tecnai 12 

transmission electron microscope and a Megaview III camera (FEI, Hillsboro, OR). 

 

Flow cytometry for platelets 

Platelet expression of major platelet membrane glycoproteins (GP) (GPIa [CD49b], GPIbα 

[CD42b], CD42a [GPIX], integrin β3 [CD61]), was assessed by flow cytometry in PRP through 

a direct standard technique with appropriate labeled monoclonal antibodies (Becton 

Dickinson, San Jose, CA). For analysis of surface-expressed P-selectin (marker of alpha 

granule release) and binding of PAC-1 (marker for activated αIIbβ3), diluted PRP (~30x10
9
/L 

platelets) was stimulated under static conditions (30 min at room temperature) with the 

desired agonist concentration in the presence of both anti-CD62-PE and PAC1-FITC 

antibodies (Becton Dickinson). Tissue factor expression (binding of anti-CD142 antibody, 

Becton Dickinson) and detection of phosphatidylserine using fluorescein labelled Annexin V 

(Becton Dickinson) was analyzed in unstimulated, washed platelets. To analyze for ceramide 
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expression in washed platelets, cells were incubated with or without 100 μM PAR1 peptide 

[PAR1p] and an antibody recognizing C-16 and C-24 ceramide (LifeSpan BioScience,  Seattle 

City, WA). Platelets were washed and incubated with a FITC-conjugated anti-mouse IgM 

(LifeSpan BioScience). Samples were then run in the FACSCalibur flow cytometer (Becton 

Dickinson) and the percentage or median fluorescence intensity (MFI) or percentage of 

positively stained cells was analyzed using the CellQuest software (Becton Dickinson). 

 

References for Supplementary Methods 

Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera J. Flavonoids 

inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb 

Haemost 2005;3(2):369-76. 

Navarro-Nunez L, Teruel R, Anton AI, Nurden P, Martinez-Martinez I, Lozano ML, et al. Rare 

homozygous status of P43 beta1-tubulin polymorphism causes alterations in platelet 

ultrastructure. Thromb Haemost 2011;105(5):855-63. 

 

  

Page 36 of 45Journal of Investigative Dermatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Supplementary Figures 

 

Figure S1. Immunofluorescence analysis in skin from affected patients and control. 

Immunofluorescence staining reveals reduced ceramide labeling with precocious staining 

for markers of epidermal differentiation compared to control skin. 
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Figure S2. Liquid chromatography-mass spectrometry analysis of total ceramides (CERs) and 

11 CER subclasses in the (a-c) forearms, (d-f) wrists, and (g-i) palms of Patients 1 and 2 and 

their respective mothers. 

Accompanying discussion for Figure S2 

Ceramides in the skin are integral to skin barrier function. On the one hand, during the 

process of cornification, the lipid bilayer of the plasma membrane is replaced by a 

monolayer of acylceramides known as the corneocyte lipid envelope (CLE). These 

acylceramides bind to proteins of the cornified envelope (Candi et al., 2005; Elias et al., 

2014). On the other hand, ceramides account for the 50 % of the lipid lamellae components 

in the stratum corneum (Breiden and Sandhoff, 2014). Ceramide synthases (CerS) use acyl-

CoAs as FA donors, but different CerS have affinities for different length FAs and different 

tissue distributions (Kihara, 2016). Of these, Cers3 is mainly found in the skin (keratinocytes) 

and testis, and has a broad specificity for substrate, with affinity toward C18-CoAs (C18 
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ceramide) and longer (Mizutani et al., 2006; Sassa et al., 2016). This enables CerS3 to 

produce a wide range of ceramides, especially the very long chain (VLC) FA ceramides (C22 

ceramides and longer) and the ultra long chain (ULC) FA ceramides (C26 ceramides and 

longer) (Kihara, 2016). The ULCFA ceramides are prominent in the epidermis, and are often 

ω-hydroxylated and esterified with linoleic acid, to generate acylceramides, which are most 

important for the skin barrier function in the stratum corneum (Kihara, 2016). The 

generation of very long chain FAs in ceramides can also be accomplished by the action of 

elongation cycles, with the involvement of highly conserved enzymes named elongases 

(Kihara, 2012). Elongases 1 and 4 (ELOVL1, ELOVL4) are present in the skin, and ELOVL1 is 

regulated by CerS3 in the stratum granulosum, enabling ELOVL1 to produce C26-CoAs from 

C24-CoAs (Sassa et al., 2013), which are then elongated to ≥C28-CoAs by ELOVL4 (Okuda et 

al., 2010). 

References 
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Figure S3. Electron microscopy evaluation of platelets from patients with KDSR mutations 

reveals no major ultrastructural differences compared to control platelets.  Platelets were 

processed for analysis by electron microscopy, as described in the Supplementary Methods. 

All images are magnified 5800x. 

 

 

Figure S4. Analysis of platelet function in Patients 1 and 2, their mothers, and normal 

controls. (a and b) Platelets from compound heterozygotes of the mutations c.413T>G and 

c.417+3A>C in KDSR, their heterozygous mothers (carrying the c.417+3A>C mutation), and 

healthy unrelated controls (combined data from two subjects), were stimulated under static 

conditions (30 min at RT) with agonist (1.6 mM Arachidonic acid, 10 μM ADP, 25 μM PAR1 

peptide [PAR1p], 100 μM PAR4 peptide [PAR4p], 2 μg/mL convulxin [Cvx], and 2 μg/mL 

collagen-related-peptide [CRP] in the presence of both PAC-1-FITC and anti-CD62P-PE 

monoclonal antibodies. The samples were evaluated by flow cytometry and the median 

fluorescence intensity [MFI]) for alpha granule release (anti-CD62P-PE, panel A) and αIIbβ3 

integrin activation (anti PAC-1-FITC, panel B) is shown. Values presented are the mean of 

median fluorescence intensity (MFI) ± standard error of mean (SEM) from the two 
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compound heterozygote patients (black bars), their mothers (white bars) and two parallel 

controls (gray bars).  

 

Supplementary Tables 

 rs1809319 A/G rs72946535 

G/A 

c.413 

T>G 

c.417+3 

A>C 

Family 1     

• Patient AG GA TG AC 

• Mother AG GA TT AC 

• Father AG GG TG AA 

• Brother AA GA TT AC 

Family 2     

• Patient AG GA TG AC 

• Mother AA GA TT AC 

• Father AG GG TG AA 

Controls     

• Control 1 AG AA TG AA 

• Control 2 AA GA TT AC 

• Control 3 AG GA TT AC 

Controls (n=92)     

Allele frequencies 0.337 0.071   

Table S1. Population genetic analysis of the KDSR mutations identified in Patients 1 and 2. 

Polymorphisms and mutations in KDSR in the two patients, their relatives, and in three 

control individuals who harbor the disease-causing mutations, as well as the minor allele 

frequencies of the two polymorphisms in the cohort of controls. 

Accompanying text for Table S1 

Mutation analysis was performed on samples from the two patients from Spain, their 

relatives, and controls from the same geographical region for the presence of the identified 

disease-causing mutations in KDSR (c.413T>G and c.417+3A>C). In addition, these samples 

were tested for the presence of two polymorphisms located within intron 4 of KDSR, in an 
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attempt to elucidate the presence of a potential founder effect, which could explain the 

identification of identical compound heterozygous mutations in families 1 and 2.  

The frequencies of these disease-causing mutations and of the two polymorphisms 

in 92 control subjects are shown in Table S1 above. One control individual was heterozygous 

for the c.413T>G mutation, and two control individuals were heterozygous for the 

c.417+3A>C variant. The overall carrier frequency of these two mutations in this 

geographical area was therefore estimated as 1:92 and 1:46, respectively. These figures 

would therefore lead to a disease incidence of approximately 1 in 17,000 live births. The 

control cohort also exhibited a lower frequency of the common rs1809319 (A allele 0.337 vs. 

reported MAF of 0.42), while the rare rs72946535 was overrepresented in the control group 

(A allele 0.071 vs. reported MAF of 0.01). Allele-specific PCR revealed that in patients, 

relatives, and controls, the c.413T>G mutation was found only with the G variant of 

rs1809319, while the c.417+3A>C mutation was present only in association with the A 

variant of rs72946535 inferring that these variants are tightly linked, and that individuals 

carrying each of these mutations share a common ancestor.  

 

 P1 P2 Mother of 

P1 

Mother of 

P2 

Control 

1 

Control 2 

WBC (x10
9
/L) 16.1 8.2 5.2 8.6 7.2 7.8 

Hb (g/dL) 13.9 12.7 12.4 13.5 12.8 14.3 

Ht (%) 40.2 37.9 36.6 39.9 37.7 42.6 

Platelets (x10
9
/L) 24 7 213 226 207 206 

FSC (MFI) 32.9 32.9 26.8 27.9 25.7 25.6 

CD42b (MFI) 127.2 122.8 152.7 186.2 161.3 199.5 

CD42a (MFI) 187.2 189.2 188.1 207.7 180.6 212.8 

CD61 (MFI) 209.8 215.3 194.5 237.8 216.7 226.4 

CD49b (MFI) 29.5 28.5 33.6 41.1 39.5 31.6 
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For Review
 O

nly

Annexin V (% 

positive) 

2.5 1.7 5.9 4.2 4.7 3.6 

Tissue factor (% 

positive) 

4.2 4.4 7.8 5.9 7.5 6.2 

Table S2. Blood parameters, platelet size, glycoprotein expression, and annexin V and 

tissue factor binding in Patients 1 and 2, their mothers, and normal controls. WBC: white 

blood cells; RBC: red blood cells; Hb: hemoglobin; Ht: hematocrit; FSC: Forward side scatter. 

P1: Patient 1; P2: Patient 2. 

 

Antigen Product ID Source 

KDSR bs-13233R Bioss Inc, Woburn, MA 

CERS3 HPA006092 Sigma-Aldrich, St Louis, MO 

FLG SPM181 Abcam, Cambridge, UK 

LOR ab24722 Abcam, Cambridge, UK 

Ceramide MAB_0011 Glycobiotech, Kukels, Germany 

DAPI H-1200 Vector Labs, Burlingame, CA 

Table S3. List of primary antibodies used in skin immunofluorescence studies. 

 

Gene Assay ID 

KDSR Hs00179997_m1 

FLG Hs00856927_g1 

CERS3 Hs00698859_m1 

IVL Hs00846307_s1 
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For Review
 O

nly

KRT10 Hs00166289_m1 

KRT14 Hs00265033_m1 

18S Hs03003631_g1 

Table S4. List of qPCR probes used in this study. All probes were purchased from Thermo 

Fisher Scientific, Paisley, UK. 

 

Primer DNA sequence 

KDSR F138C-F 5’-CTTGAAGTTAGTACCTGTGAAAGGTTAATGAG-3’ 

KDSR F138C-R 5’-CTCATTAACCTTTCACAGGTACTAACTTCAAG-3’ 

KDSR Δ5-F 5’-GTAGAGAATGTCATAAAACAAAGGTTAATGAGCATCAATTAC-3’ 

KDSR Δ5-R 5’-GTAATTGATGCTCATTAACCTTTGTTTTATGACATTCTCTAC-3’ 

KDSR Δ5Δ6-F 5’-GTAGAGAATGTCATAAAACAAGTGAAGCCATATAATGTCTAC-3’ 

KDSR Δ5Δ6-R 5’-GTAGACATTATATGGCTTCACTTGTTTTATGACATTCTCTAC-3’ 

KDSR G271E-F 5’-CCCTTGGCTCAGATGAGTACATGCTCTCGGC-3’ 

KDSR G271E-R 5’-GCCGAGAGCATGTACTCATCTGAGCCAAGGG-3’ 

KDSR-F 5’-GGATCCATGCTGCTGCTGGCTGCCGCCTTCC-3’ 

KDSR Δ10+VSSA-R 5’-CTAGGCAGAGCTTACTTGCTGGAGCCCCTCAGTAATAGAAG-3’ 

KDSR E75Nfs*2-R 5’-TCAATTTTTCTTTGCCTGCAGCAGC-3’ 

KDSR G182S-F 5’-CAGTTGGGATTATTCAGTTTCACAGCCTAC-3’ 

KDSR G182S-R 5’-GTAGGCTGTGAAACTGAATAATCCCAACTG-3’ 

Table S5. Primer sequences used to generate KDSR mutant plasmids for in vitro 

experiments. 
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