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ABSTRACT: This paper introduces a three-phases model based on the finite element 

method to simulate the generation and propagation of landslide-generated impulse waves, and 

this model can be employed to predict and prevent wave-induced hazards. The fluid-like 

landslide mass is treated as a non-Newtonian viscoplastic fluid. The motion of landslides, 

water and air is modelled by the incompressible Navier-Stokes equations and the interfaces 

between these three phases are captured with the n-phases improved conservative level set 

method which can preserve mass and provide precious interface parameters, including 

normals and curvatures. The conservative feature of this method is proven by the three-

phases Zalesak slotted disk test case. This method is then adopted to simulate the impulse 

wave generated by the Lituya Bay landslide and the current outputs are compared with other 

existing results. Finally, this verified model is utilized to model the impulse waves generated 

by the Halaowo landslide near the Xiangjiaba Dam in the Jinsha River and the results could 

provide references for further protective activities. 
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1 Introduction 

        Landslides are frequent and severe geological activities which can lead to disastrous 

damage. Compared with landslides which slide in an open area, those impacting into a 

reservoir could cause more catastrophic consequences because of the generated destructive 

waves. In extreme situations, waves could overtop a dam and inundate vast areas along the 

shoreline. One of the deadliest disasters is the Vajont Reservoir landslide in 1963. The 

landslide mass generated a wave with a height of 250 m and claimed around 2000 lives. It is 

worth noting that there are tremendous potential landslides in reservoirs due to the frequent 

change of water levels. The Shanshucao landslide (about 
7 34 10  m ), which is one of 3028 

landslides observed in the Three Gorges Reservoir in China, lost stability and destroyed a 

local hydropower station in 2014. Considering the large number of potential landslides 

existing in proximity of reservoirs and the severe losses, it is of great importance to carry out 

research on landslide-generated waves to predict the slide path of the unstable mass, the 

inundation area of waves and the overtopping possibility. Based on the predictive work, 

corresponding preventions should be performed, including slope reinforcements, controlled 

blasting of parts of the slide and early warnings of possible disasters. 

        Most of the existing researches about landslide-generated waves can be classified into 

four categories, analytical equations, physical experiments, numerical simulations and 

empirical estimations derived from field data, physical experiments or numerical simulations. 

In the initial stage, analytical equations [1, 2] are proposed to estimate wave parameters 

roughly. The estimations are determined by simplified assumptions of landslides, water and 

topography and the results could vary over an order of magnitude by applying different 

hypotheses. To study the general behaviour of landslides and generated waves, laboratory 

experiments [3-9] in both two-dimensions (wave flume geometry) and three-dimensions 

(wave basin geometry) are performed. However, it consumes abundant time, labour and 

money when more experiments should be carried out due to the application of different 

parameters.  Moreover, the accuracy of results could be influenced by scale effects [10] and 

results cannot be recorded in all points.  

        To lower the entire cost and study the characteristics of landslides and waves in detail, 

numerical simulation methods attract the attention of researchers around the world. Initially, 

numerical simulations of landslide-generated waves are made under different assumptions 

due to the complexity of this problem and the limitation of the computer capacity. Depending 

on the hypothetical degree adopted to describe the movement of the wave in numerical 



models, the mathematical formulations can be divided into four types, namely, shallow water 

equations (SWEs) [11-13], Boussinesq-type wave equations (BWEs) [14-16], potential flow 

equations (PFEs) [17, 18] and the Navier-Stokes equations (NSEs) [19-23]. Among these 

methods, the general SWEs methods are appropriate for the simulation of the wave 

propagation process but are weak in representing the drastic phenomena during the wave 

generation process since the vertical acceleration is ignored. This shortcoming can be 

resolved by some improved wave models, including SWASH (Simulating WAves till SHore), 

which considers the effect of the vertical acceleration by the added non-hydrostatic pressure 

gradient. BWEs and PFEs models are applied to improve the order of accuracy. However, 

most of these existing BWEs and PFEs models are used to simulate rigid landslides by 

treating the landslide mass as moving boundary and ignoring the strong coupling between 

different phases. Compared with the former three models, NSEs models behave better in 

accuracy and application range. According to the conceptualization of landslides, some of the 

numerical models [24-26] treat the landslide mass as a rigid body and set the slide kinematics 

in the mass centre. However, this assumption is idealized as almost all actual landslides 

would deform in the sliding stage. In most cases, many physical experiments and numerical 

simulations have found that the wave height would be overestimated when treating the 

landslide as a rigid body [27-29]. However, an opposite phenomenon can be observed when 

there is no smooth transition at the toe of the slope [8]. In this situation, rigid slide may stop 

immediately whilst a granular slide runs-out further and thus transforms more energy to the 

wave. It is more accurate to take the deformability into consideration, especially when the 

landslide mass deforms drastically.  

        After the milestone study carried out by Quecedo et al. [30], the three-phases model 

gained more and more attention since it avoids the two assumptions mentioned above, 

namely the neglect of the vertical acceleration and the strong coupling between different 

phases. NSEs were applied to model the motion of landslides, water and air, which are three 

phases included in the landslides penetration stage, and the Level Set (LS) method was used 

to capture interfaces between different phases. The main advantage of this method lies in the 

fact that the strong coupling between landslides, water and air is considered, while the air 

phase is seldom taken into consideration in previous studies. Besides, they suggested that the 

non-Newtonian viscoplastic fluid model, which is a fluid-like model, can be utilized to model 

landslides when the slide mass slides down with a high speed. Considering the high moisture 

content and thick alluvium deposits of slopes in reservoirs, it is appropriate to treat this kind 

of landslides as fluid-like. Based on the three-phases model, many researchers [21, 31] 



improved the simulation accuracy of the landslide-generated waves and extended the 

calculation to subsequent stages, including wave propagation and run-up. As the study 

objects herein are waves generated by landslides in reservoirs, the three-phases model, which 

treats landslides as fluids, is adopted in this paper.  

        When the three-phases model is employed to simulate landslide-generated waves, an 

accurate and efficient technique for the description of interfaces is crucial since interfaces 

could undergo drastic changes, including breaking, overturning and merging, caused by the 

strong interaction between different phases. It remains challenging to provide a conservative 

interface representing method, which can describe interfaces accurately. Typical methods of 

describing interfaces include Smoothed Particle Hydrodynamics (SPH) [32-35], Volume of 

Fluid (VOF) method [36-38] and the LS method [39, 40]. Even though SPH method is widely 

known as a numerical technique which is able to solve the partial differential equations, it can 

also be used to represent interfaces. SPH is able to enhance the conservative property without 

advection errors within the entire calculation process. However, SPH has a high demand in 

computational cost and the modelling of boundary conditions is challenging. Besides, SPH 

method is unstable when tracking interfaces with large deformations. VOF method also 

exhibits excellent mass conservation property, but it needs complicated interfaces 

reconstruction. Meanwhile, it is challenging to calculate normals of interfaces exactly with 

VOF method because of the discontinuity of the applied color function. Compared with these 

two methods mentioned above, the LS method is simply and efficient to capture the front, 

while mass loss happens when advecting and re-initializing the indicator function. To 

improve the LS method, Olsson and Kreiss [41, 42] proposed a mass conservation method, 

which is named as the conservative Level Set (CLS) method. Even though the mass 

conservation property of the advection step can be ensured, both the normals and curvatures 

of interfaces are sensitive to small spurious oscillations because of the intrinsic shortage of 

the Heaviside function. Hence, the CLS method cannot provide precise normals and 

curvatures of interfaces, which should be used in the re-initialization process. Combining the 

advantages of the LS method and the CLS method, the improved conservation Level Set 

(ICLS) method, which can represent interfaces in a conservative way, was proposed by Zhao 

et al. [43, 44]. However, this method can only be used to capture the interface of two-phases 

flow until now.  

        In this paper, a three-phases model for the simulation of landslide-generated waves is 

proposed. This model applies a proper rheological model, namely the non-Newtonian 

viscoplastic fluid model, to describe the deformable fluid-like landslide mass and employs 



NSEs to simulate the motion of the three phases in the penetration region. To model three 

phases in the generation of landslide-generated waves, the previous ICLS method needs to be 

expanded from two-phases to n-phases. All the governing equations are discretized with the 

characteristic-Galerkin procedure. Compared with previous publications, this new model can 

represent interfaces more accurately by utilizing the expanded n-phases ICLS method, which 

can provide precise interface characteristics and preserve mass conservation property.  

        This paper is organized as follows. In Section 2, the governing equations, constitutive 

equations and the implementation of the ICLS method for n-phases flows are described. In 

Section 3, the numerical schemes including the characteristic-Galerkin procedure, 

discretization of NSEs and ICLS functions are shown in detail. In Section 4, the mass 

conservation property of this proposed method is verified by a benchmark test, namely the 

three-phases Zalesak slotted disk. Then, the proposed method is validated by comparing the 

current simulation outputs of the Lituya Bay landslide waves with the existing published 

results. Subsequently, this verified method is employed to predict impulse waves generated 

by the Halaowo landslide in the Xiangjiaba Reservoir. At the end of this paper, in Section 5, 

the conclusions are given. 

2 Mathematical model 

2.1 Governing equations 

        Considering immiscibility of the three phases interacting with each other, the viscous 

incompressible NSEs are employed to govern their motion: 
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where   represents the gradient operator, u  indicates the velocity vector, t is time,   is the 

viscous stress tensor which is given in Section 2.2, p represents the pressure and bf  indicates 

the body force. Other forces not mentioned are not involved in the simulations in this paper. 

The material properties, such as density  , are determined in Section 2.3.  

2.2 Constitutive equations 

        The whole mass can be modelled with one constitutive equation when the landslide 

mass slides down with a high speed [30]. Based on this simplification, Chen and Ling [45] 

presented a model for fluid with the viscoplastic property. The constitutive equation for the 

fluid-like slide is 
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in which 
2DI  is the second invariant of D, 

0y  is the fluid yield stress,   is the internal 

friction angle, 
1 and

2 are coefficients related to viscosity and 
1  and 

2 are exponents 

associated with the flow behavior. 

        A further simplification is carried out by Quecedo et al. [30] by removing the second 

term in Eq. (3): 
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        Different rheological models, such as Newtonian, Bingham and Frictional fluid model, 

can be obtained as particular cases of Eq. (4) and their parameters are shown in Table 1. 

Rheological model 0y      

Newtonian fluid 0 0 1 

Bingham fluid arbitrary value arbitrary value 1 

Frictional fluid 0 arbitrary value 1 

Table 1 Parameters for different rheological models. 

 

2.3 Improved conservative Level set method 

        Both the LS method and the CLS method have drawbacks, non-conservation of mass 

and incorrect surface normal direction respectively. To overcome these deficiencies, the ICLS 

method is given by combining their merits together. 

        To represent the interface in the CLS method, a hyperbolic tangent function is employed 
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in which   is the signed distance function in the LS method and  is a spreading width of H. 

        For incompressible flow, the CLS function can be described as 
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where u  stands for the fluid velocity field. 

        A distortion of H can be observed when H is adverted because of numerical errors and 

velocity changes. To avoid this problem, a re-initialization step of H is needed 
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where n  presents the normal vector before doing re-initialization. 

        In the CLS method, n  is given as 
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        However, it is improper to use Eq. (8) to obtain the normal vector away from the 

interface, i.e. where H is close to 0 or 1. This can be verified by Eq. (5) and the property of 

signed distance function, =1 . The gradient modulus of H can be written as 
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        The value of H  is near 0 when the point is away from the interface, which will lead 

to the normal vector points to an arbitrary direction according to Eq. (8). To prevent this 

problem, the calculation of normal vector for points at a distance from the interface is given 

in the ICLS method. 

                              
/      

=
/       

if

H H if

   

 

  

  

n                                               (10) 

where   is a certain threshold level. 

        It is important to mention that   should be calculated (Eq. (11)) and re-initialized (Eq. 

(12)) before being used to calculate the normal vector. A re-initialization method proposed by 

Sussmana [46] is adopted and the equations usually undergo several steps of iteration. 
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        In the ICLS method, the update of  is limited to the points which are away from the 

interface and it can guarantee the right interface position.   for the points near the interface 

is calculated by the reverse of Eq. (5) 

                               12 tanh 2 1H                                                 (13) 



        After getting the correct normal directions, the re-initialization can be done according to 

Eq. (7), which is able to reserve the conservation property. Both the correctness of the 

interface position and the conservation of mass can be guaranteed by using the ICLS method. 

        To give the values of the material properties including density and viscosity for n-phases 

flow, the indicator matrices 
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 and 1nB  can be used to identify the domains occupied by 

different fluids. 
ija ( 1, ; 1, 1i n j n   ) and 1kb ( 1,k n ) are the matrix elements. As indicated 

in Fig. 1, the interfaces between 1 , 2 , 3  are captured by 3 2A   and 3 1B  . 12  represents 

the interface between sub-domains 1 and 2 . The meaning of 23 and 31 is similar as for 

12 . Then, the material property of each domain MPi (i=1,2,3) can be calculated as: 
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        The material properties MPi (i=1,2,…,n) can be calculated with Eq. (14).  

 

Fig. 1 Description of a three-phases flows problem using indicator matrices. 

 



3 Numerical model 

3.1 Characteristic-Galerkin procedure 

        In this section, the characteristic-Galerkin procedure [47] is described in detail. Based on 

this method, the discretized expression of a general conservative equation is obtained. 

        A general conservative equation can be written as 

0Q
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
F G                                            (15) 

where   is an unknown scalar or vector, F  represents the convective flux, G  indicates the 

diffusion flux and Q  is the source term. 

        Removing the third-order terms, the time discretization of the above equation along the 

characteristic gives 
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        The unknown variable can be discretized with the standard Galerkin procedure 

  N                                                            (17) 

where  indicates the values on nodes and N  stands for the weighting functions for the field

 . 

        The incremental quantity of the unknown variable on nodes can be calculated by making 

the weighting functions equal to the shape functions 
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3.2 Discretization of Navier-Stokes equation 

        The fractional step algorithms given by Chorin [48] are widely used in discretizing the 

NSEs because of its accuracy and efficiency. The detailed information about the 

implementation of this method is described in the following. To make the proposed method in 

this paper applicable in dealing with both explicit and implicit problems, the governing 

equations are rewritten by employing two parameters namely 1 , 2  
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where the parameters 1  and 2  can be chosen in the range [0,1]. For 
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in an explicit form. 

        Defining  F u u ,  G τ , = bQ  f , Eq. (20) can then be written in the form of 

Eq. (15). Then it can be discretized using the algorithm given in Section 3.1. 
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        The time discretization of the above equation along the characteristic gives 
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        According to the basic idea of the fractional step procedure, u  is divided into two 

parts 
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        The intermediate velocity increment 
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        The intermediate velocity increment 
*u  is calculated explicitly in the first step where 

the influence of the pressure gradient term is not involved. Once the pressure increment n
p  

is obtained according to intermediate velocity, the velocity in the next time step 1n
u can be 

calculated after the velocity correction value 
**u  is determined by n

p .The whole process 

is described in detail as follows. 

        Step 1: Intermediate velocity calculation 

        *u  can be calculated by discretizing Eq. (24) based on the standard Galerkin 

approximation. The discretization format is 
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        Step 2: Pressure calculation 



        To calculate the pressure, 1 * **
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        Eq. (27) can also be discretized with the standard Galerkin approximation because of the 

self-adjoint property of p  and the discretization format is  
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       The third term on the right hand side of Eq. (28) is integrated by parts obtaining 
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        Neglecting high order terms, Eq. (30) can be obtained according to Eq. (25). 
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
              u u u u u u                    (30) 

        As a result, the second term on the right hand side of Eq. (29) can be written as 

  2 1* 1
1 1

n nT n Tt p d d
 


             

  N u u n N u n                 (31) 

        It is observed that the determination of the term 2n
p


  is avoided on the boundary 

when the normal velocity on the boundary is known. This kind of boundary conditions 

include inflow, slip and non-slip boundary conditions.  

        If the normal velocity on the boundary is unknown, for example, on the boundary where 

the outflow condition or rigid-lid assumption is adopted, 2n
p


 is assumed to be np . 

        Step 3: Velocity correction 

        By taking the effect of pressure into consideration, the velocity increment is modified. 

The discretization format of the velocity correction term is 

 

   

**

2

2

2

1

1

2

T T n n

T n n

d t p p d

t
p p d







      


     

 



N N u N

N u

                       (32) 



3.3 Discretization of the ICLS functions 

        The equations used to implement the ICLS method for n-phases fluids, namely Eq. (6), 

Eq. (7), Eq. (11) and Eq. (12), can be discretized by substituting the corresponding F , G  and 

Q  into Eq. (18) The relevant expressions for those three terms are as follows. 

        For Eq. (6), HF u  , 0Q G  

        For Eq. (7), (1 )H H F n , ( )H   G n n  ,  0Q   

        For Eq. (11), F u , 0Q G  

        For Eq. (12), F u , 0G , ( )nQ S     u  

4 Verification and application 

        The three-phases Zalesak slotted disk test case is simulated to prove the conservative 

feature of the proposed method. To verify the correctness of the proposed method in dealing 

with the actual engineering problems, this method is applied to model landslide-generated 

waves at the Lituya Bay. The outcomes are compared with the results of existing publications. 

In addition, this method is also applied to model the impulse waves in the Jinsha River 

caused by the Halaowo landslide and results are used to estimate the effects of the waves on 

the Xiangjiaba dam, which is a practical hydraulic project in the southwest of China. 

4.1 Three-phases Zalesak slotted disk 

        The benchmark of Zalesak slotted disk is widely applied to test the advection ability of 

interface capturing methods and to characterize how accurately sharp corners are transported. 

However, most tests are studied for two-phases problems. This test case is now expanded to 

clarify the conservation feature of the ICLS method for three-phases flows. The Zalesak 

slotted disk is defined in a calculation domain  0,1x ,  0,1y . The initial center of the 

disk is located at  0.50,0.75  with a radius 0.15R  . The width and depth of the slot is 0.05 

and 0.25 respectively. The whole domain is filled with three kinds of fluids and is discretized 

with 400 400  quadrilateral elements. To give a clear definition of the domains for these 

three-phases flows, D specifies the whole calculation domain while Dd is used to represent the 

domain of the slotted disk. As a result, the three domains at the initial time 0t   can be 

defined as 

  

     

     

1 d

2 d

3 d

D , D D

D , D 0.75

D , D 0.75

x y

x y y

x y y

  

   

   

                                          (33) 



        Moreover, two hyperbolic tangent functions are applied to represent the interfaces. 

Initially, the functions are defined as 

If   2 3, D Dx y   , then 
10 0.5H  . If   1, Dx y  , then 

10.5 1H  .  

If   3, Dx y  , then 
20 0.5H  . If   1 2, D Dx y   , then 

20.5 1H  . 

        The slotted disk is rotated according to the following equations 

   

   

, 2 0.5

, 2 0.5

u x y y

v x y x





  

 
                                                 (34) 

which represents a rigid body rotation with respect to (0.5,0.5). The disk completes one 

revolution after one unit of time. The total calculation time is 2, i.e. two revolutions. 

        The evolution of the disk in the first two revolutions is shown in Fig. 2. As expected, the 

interface after two revolutions is nearly identical to the initial shape with negligible numerical 

diffusion. The original sharp corners of the disk are slightly smoothed in this simulation 

because the interfaces are smeared in a spreading width  , which is twice as long as the grid 

length. This kind of smoothness can only be observed during the beginning period. 

Afterwards, the interfaces become stable and changeless.  



                  

Fig. 2 Two complete revolutions of the disk.  

       Even though the corners are not as sharp as in the original condition, mass is still 

conserved. To further describe the conservation feature of the current method, two parameters 

named the percentage of relative mass conservation errors  1re t  and  2re t  are employed. 

The definition of  1re t  is 

   1 1 11 / 100r oe t A A                                                             (35) 

in which  1 1 ,A H x y d   for the area which satifies 
10 0.5H   at arbitrary time t and 

1oA is the area at the initial time 0t  . 

        Similarly,  2re t  is defined as 

   2 2 21 / 100r oe t A A                                                         (36) 

in which  2 2 ,A H x y d   for the area which satisfies 
20 0.5H   at arbitrary time t and 

2oA  is the area at the initial time 0t  . 



 

Fig. 3 Percentage of relative mass conservation errors versus time. 

        The relative global mass conservation errors are plotted in Fig. 3. It can be observed that 

the errors increase slightly in the initial stage, from 0t   to 0.15t  , then they stay relatively 

stable and fluctuate around certain values. The initial increasement is induced by the 

instantaneous increasing thickness of the interface. The fluctuation is caused by the integral 

error as the mass is integrated in an element using the values on Gaussian points and this 

deviation is random, which can be seen in the local zoom area in Fig. 3. Both  1re t  and 

 2re t  are smaller than 0.25% after two revolutions, which is similar as the errors after one 

revolution. Most of the derivation can be avoided if an initial thickness of the interface is set 

up and the remaining error is small, random and fluctuant. This verifies that the current 

method is stable and conservative. 

 

4.2 Lituya Bay impulse wave analysis 

        The 1958 landslide-generated wave at Lituya Bay attracts the attention of many 

researchers and abundant studies have been carried out around this topic until now [30, 49-

52]. The layout of the Lituya Bay is shown in Fig. 4. 



 

Fig. 4 Photo of the T-shaped Lituya Bay (from Weiss et al. [52]). 

 

        A two-dimensional physical model built by Fritz et al. [49] is widely used in numerical 

simulations, shown in Fig. 5. This model was set up with a scale 1: 675. The landslide mass 

(with a volume per unit width of 3 337.2 10  m / m ) was modelled as an artificial granular 

material and the bulk density was set to be 1.61 t/m³ with a porosity of 39%. The effective 

internal friction angle was 43°. The mean impact velocity of the mass was 110 m/s, which 

was estimated by the free fall equation at the slide centroid (with an elevation of 610 m).  

        In our simulation, both the physical model and the parameters of landslide suggested by 

Fritz et al. [49] are adopted. The computation domain is meshed with three nodes triangular 

elements and the number of elements in the whole domain is 94758. Non-friction and 

impermeable walls are used as boundary conditions.  

  



 

Fig. 5 Cross section of the simplified inlet used in the current method (from Fritz et al. [49]). 

 

        Fig. 6 presents the density images in our simulation. The series of figures show the 

whole process namely the generation, propagation and run-up of waves, along with the 

formation and breaking of air cavity. 

        The slide begins to penetrate into the water in Fig. 6a and energy transforms from the 

slide to the water body. In the next instant, slide bulking, which can also be called the impact 

crater, is formed and the water body is separated on the shoulder of the landslide mass. The 

height of the wave keeps increasing as the size of the slide bulking expands (Fig. 6b, c) 

because the slide penetrates into the water with a high speed. The water reattaches to the 

bottom and a cavity filled with air can be observed behind the slide because the slide 

accelerates and its velocity is larger than the wave velocity (Fig. 6d, e). The landslide mass 

continues sliding along the bottom and eventually deposits. As a result, the air cavity 

collapses and a strong mixing between the water and air can be observed. Afterwards, both 

the landslide mass and the wave run up to the opposite bank (Fig. 6f, g, h). The main body of 

the wave already leaves the mixing area before the air cavity collapses, therefore, the leading 

wave is little influenced by the phase mixing. As a result, the property of the wave is almost 

not affected by energy losses due to the air entrainment.  



 

Fig. 6 Evolution of waves generated by the Lituya Bay landslide.  

 

        The current outputs are compared with the existing results, shown in Table 2. In this 

table,  , bulk , 
porn  and   represent the particle density, bulk density, porosity and internal 

friction angle of landslides, respectively. maxh  and runh  stand for the maximum water surface 

elevation at 885 m and runup height. 

Method  Source   (t/m
3
) bulk  (t/m

3
) porn  (%)   (°) 

maxh  (m) runh  (m) 

Field data [50] 2.7 - - - 150 524 

Physical 

experiment 
[49] 2.64 1.61 39 43 152 526 

Numerical 

simulation 
[30] 

- 1.6 39 0 266 - 

- 1.6 39 15 226 - 

Numerical 

simulation 
current - 1.61 39 43 173 569 

Table 2 Parameters and results of different methods. 

 



        With the application of the present method, both the maximum wave height in a certain 

gauge point and the runup are larger than the results of the physical experiment. The same 

phenomenon can also be observed in [30]. Compared with the experimental results, the 

current results are exaggerated because of the different constitutive models of the landslide 

and the scale effect. The landslide is treated as a fluid-like material in the current simulation, 

while it was modelled as a granular flow in the experiment. Actually, the property of the 

landslide may be between these two conditions. Considering the high moisture content and 

thick alluvium deposits of slopes in reservoirs, it is appropriate to treat this kind of landslides 

as fluid-like when they slide with a high speed, but the difference in material could contribute 

to the overprediction. It should be noticed that the results provided by the current method are 

closer to the outputs of both the field data and physical experiment, compared with the results 

in [30]. Hence this proposed method can be used to capture the whole process of landslide 

waves, including generation, propagation and run-up. 

4.3 Application to the Xiangjiaba Dam impulse wave 

        The Xiangjiaba hydropower station is located on the lower reaches of the Jinsha River, 

which is on the Yunnan province boundary with Sichuan province. This hydropower station 

is the last step of the power stations construction on the Jinsha River and plays a vital role in 

the west to east electricity transmission project. 

        Various factors including heavy rainfall, freeze-thaw cycles and pore water pressure 

changes, may attribute to the instability of existing slopes. Once these large landslides slip 

into the Jinsha River, the generated impulse waves will impose a threat to the residents along 

the shoreline and the Xiangjiaba hydropower station. One of the most dangerous instable 

slopes named Halaowo (around 67.26 10  m
3
) is located upstream of the Xiangjiaba Dam 

(with an elevation of 384 m) with a horizontal distance of 18 km. The topographic map of the 

river channel is given in Fig. 7 based on a digital elevation model (DEM) with a resolution of 

2.5 m. The still water level of the Jinsha River is 380 m. 

  



 

Fig. 7 DEM of the Halaowo landslide and the Xiangjiaba Dam: on the left side the Halaowo 

landslide is shown, on the right side the Xiangjiaba Dam, the solid lines are cross sections, 

and points on the solid lines specify the gauge locations. 

 

        To simulate the generation and propagation of waves, the following parameters are used. 

The bulk density of the Halaowo landslide is 2200 kg/m
3
, which is within the range expected 

in the field situation. The Bingham model is used with the yield stress 
0 =1 kPay  and the 

internal friction angle =25 . Non-slip and impermeable walls are adopted as the boundary 

conditions.  

        According to the DEM, the three dimensional model of the Halaowo landslide is 

established, shown in Fig. 8. In this figure, the Y direction points toward north. The landslide 

mass is partly submerged and the center of sliding mass is above the water surface. The 

computation domain is meshed with 207081 four nodes tetrahedral elements. 

 

 

Fig. 8 Three dimensional model of the Halaowo landslide. 

 



        To clarify the three-phases domain which includes the typical section, a two-

dimensional plan is shown in Fig. 9. This cross section is also indicated in Fig. 8.  

 

Fig. 9 Plan including the typical section of the landslide. The unit of the coordinates is m. 

 

        The density contours on the typical section at 0 st  , 3 st  , 9 st  , 13 st  , 16 st   

and 17 st   have been plotted in Fig. 10. The water surface height of the impulse wave 

reaches the maximum value 44.27 m at 16 st  . After reaching the maximum value, the 

wave runs up on the opposite bank and reflection can be observed. At that moment, almost 

the entire landslide mass has entered the water body. 

 

Fig. 10 Evolution of waves generated by the Halaowo landslide at cross-section 1. 

 

        A Kelvin-Helmholtz type instability can be observed in Fig. 10. This instability 

phenomenon has also been found and reported in the study of Rzadkiewicz et al. [53] who 

carried out an experiment about the sliding process of coarse gravel. When the Halaowo 

landslide slides down with a relatively high velocity, the velocity gradient at the interface is 

large. Hence, the large gradient of velocity leads to a strong shearing effect on the waterbody, 

which causes Kelvin-Helmholtz instabilities. 



        After the impulse wave is generated, it propagates to both upstream and downstream 

sides. To present the generation and propagation of the landslide wave, twelve gauging points 

are selected on four sections, as shown in Fig. 7. The water levels are plotted in Fig. 11 over 

time. 

 

 



 

 

Fig. 11 Water levels versus time at twelve gauging points (a) value of water level on section 1. 

(b) value of water level on section 2. (c) value of water level on section 3. (d) value of water 

level on section 4.  

 

        Since section 1 is close to the position of the Halaowo landslide, the water level-time 

variation curves of three measure points are not similar with each other in the initial stage. 

The maximum water level, 387.2 m, can be found at point A at 30 st  , while the initial 

water levels at point B and point C are significantly smaller. This phenomenon can be 

attributed to different positions of these three points. It can be observed from Fig. 7 that point 

A is on the opposite shore of the landslide, while point B and point C are at the river centre 

and on the same side with the slide, respectively. Wave run-up occurs at point A leading to a 

higher water level. As time goes on, water levels of different points in section 1 converge 



toward uniformity. The physical parameters at the three points in section 2 are similar with 

each other and this phenomenon can also be observed at section 3. At 270 st  , the 

maximum wave crest propagates to section 2 and at 500 st  , it arrives at section 3. The 

maximum water level is 382.5 m and 381.5 m, respectively. The wave height attenuation is 

obvious during the propagation process because of the dissipation of energy. At 700 st  , 

the wave reaches section 4 and the maximum water level in the second period is 382.7 m, 

which is larger than that in section 3 due to reflections from the dam. Even though the dam is 

not reproduced in this simulation, a non-slip and impermeable boundary condition is 

employed at the position of the dam. As a result, reflections can still be observed. The whole 

propagation process can be observed from Fig. 10a- Fig. 10d which represent the water level 

at selected moments in time 30 st  , 270 st  , 500 st  , 700 st   respectively.  

 

 



 

 

Fig. 12 Water level (m) at selected time in the whole domain (a) 30 st  ; (b) 270 st  ; (c) 

500 st  ; (d) 700 st  . Y points towards north. 

 

        The maximum incident primary wave amplitude in section 4 is 1.7 m and the free board 

is 4 m. It is reasonable to believe that the Xiangjiaba Dam will not be overtopped by the wave 

caused by the Halaowo landslide with the selected parameters. Note that the secondary 

incident wave is likely to be smaller than the primary wave and the observed amplitude of 2.7 

m is the superposition of the secondary incident and primary reflected wave from the dam. 

        Even though there is no experimental data about the Halaowo landslide to verify the 

outcome of the numerical results, the key point is to apply the proposed method to model the 

generation and propagation of the landslide and to predict the potential hazard. It is clear that 

this numerical method is able to simulate the whole process effectively. 

5 Conclusions 

        A three-phases model has been proposed to simulate the generation and propagation of 

landslide-generated waves. Navier–Stokes equations coupled with a non-Newtonian 



viscoplastic fluid model for landslides were applied to model the strong interaction between 

three phases and the improved conservative level set method was expanded to n-phases to 

describe the interface characteristics accurately. All the equations were discretized with the 

characteristic-Garlerkin procedure. To verify the conservative feature for this method, the test 

case three-phases Zalesak slotted disk was used. Then, the simulation of the Lituya Bay 

waves was carried out and the current numerical results were compared with the existing 

published results. This method was finally used to model another practical project, namely, 

impulse waves generated by the Halaowo landslide near the Xiangjiaba Dam in the Jinsha 

River, including wave generation, propagation and run-up. It has been demonstrated that the 

proposed method is robust in modelling the characteristics of landslide-generated waves and 

it can be used to predict the potential hazard due to landslides. 
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