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Abstract

Estimating risk premia has been at the forefront of the financial

economics’ literature due to their informational content. Risk premia are

of particular interest to academics, policymakers and practitioners given

the information they disclose on expected asset returns for a given level

of risk, their contribution in asset pricing and their ability to disentangle

the different sources of risk. However, risk premia are unobserved and

their estimates strongly differ from one study to another, as they are

highly sensitive to the specification of the underlying model, sparking

hence a strong interest in their analysis. The aim of the thesis is to

estimate risk premia in a dynamic term structure model setting. The

first part of the thesis comprises of an overview of a particular class of

dynamic term structure models, namely affine term structure models.

The overview will include important concepts and definitions. The

second part of the thesis uses a risk-averse formulation of the uncovered

interest rate parity to determine exchange rates through interest rate

differentials, and ultimately extract currency risk premia. The method

proposed consists of developing an affine Arbitrage-Free class of dynamic

Nelson-Siegel term structure models (AFNS) with stochastic volatility

to obtain the domestic and foreign discount rate variations, which in

turn are used to derive a representation of exchange rate depreciations
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and risk premia. The third part of the thesis studies both the nominal

and real UK term structure of interest rates using a Gaussian dynamic

term structure model, which imposes the non-negativity of nominal short

maturity rates. Estimates of the term premia, inflation risk premia and

market-implied inflation expectations are provided.
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INTRODUCTION

1.1 Motivation

One basic issue facing economists is the appraisal of risk premia, which is the

compensation offered to investors for being exposed to a specific risk. The intricacy

of risk premia is rooted in the fact that they are unobserved, whilst their appeal is

nurtured by their informational content. The relevance of risk premia stems from

their ability to convey expected asset returns for a given level of risk, their capacity

to disentangle the different sources of risk and their contribution in asset pricing.

This thesis consists in utilizing dynamic term structure models, particularly affine

term structure models of interest rates, to monetary finance applications, with the

aim to extract risk premia estimates.

In a first instance, key definitions of notions that are recurrently used throughout

the thesis are introduced. This outline is followed by an account of term structure

models which are typically used to fit the time series and cross-sectional dynamics

of yields. The affine class of term structure models has been distinctly popular in

the literature and hence this segment of the thesis further elaborates on this specific

class. The popularity of affine models is partially justified by their flexibility and

hence their ease in developing extensions that can be used in monetary and financial

applications. This chapter of the thesis sets the scene for the remainder chapters

which extend affine term structure models to the application of currency risk premia

and inflation risk premia and expectations.

In a second instance, this thesis studies links between the term structure of

interest rates and exchange rates and extracts currency risk premia. An established

strand of the economic literature has long formed strong relations between interest

rates and exchange rates. This chapter delves into this stand of the literature,
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INTRODUCTION

particularly on the concept of the uncovered interest rate parity which stipulates

that high interest rate countries typically observe a depreciation in their currency.

However, empirical evidence has so far rejected the use of the uncovered interest rate

parity to determine exchange rates. Its failure is often accredited to the existence

of a time-varying risk premium. The third chapter uses a risk-averse formulation

of the uncovered interest rate parity to determine exchange rates through interest

rate differentials, and ultimately extract currency risk premia. The strategy, starts

by fitting domestic and foreign yields using a parsimonious arbitrage-free term

structure model. Stochastic discount factors are consequently estimated to extract

the depreciation of exchange rates. Finally, currency risk premia are endogenously

determined. One of the main contributions of the model is that it constitutes

the first Nelson-Siegel model for the determination of exchange rate depreciations

and currency risk premia. The framework built is an extension of Christensen,

Lopez, and Rudebusch (2010a)s AFNS model with stochastic volatility for the

extraction of exchange rates expected depreciations and risk premia. Additionally,

the model is theoretically robust and empirically successful and is able to alleviate

the global optimum problem encountered in canonically affine term structure models

by utilizing the Nelson-Siegel interpolation and no-arbitrage restrictions. Empirical

findings suggest that estimated currency risk premia are able to account for the

forward premium puzzle.

In the fourth chapter of my thesis, the effect of recent UK monetary policies,

that have pushed nominal yields to near zero levels, are analyzed. Monetary

policy actions in the United Kingdom, amongst other countries, have followed

unconventional strategies in recent months, in an attempt to stimulate the economy.

This segment studies the consequences of suppressing short-term interest rates near

14



INTRODUCTION

the zero lower bound on term structure modeling and quantifies the effects of the

Bank of England’s injection of money on inflation. By allowing nominal short-

term interest rates to fall to the zero lower bound, the Bank of England practically

disjoints the behavior of nominal and real rates. In particular, due to the existence

of currency, nominal yields are to remain around the zero lower bound, whilst real

yields are permitted to go below zero. These developments urge us to question the

use of standard affine Gaussian dynamic term structure models as they face the risk

of violating the inherent non-negativity assumption of nominal yields. It becomes

hence of crucial importance to refine these prominent models and equip them with

the ability to restrain nominal yields from being negative, whilst not restricting

the behavior of real yields. Acknowledging Black (1995)’s astute use of shadow

short rates and Krippner (2012)’s tractable estimation method, Christensen and

Rudebusch (2013) developed a shadow-rate Arbitrage-Free Nelson Siegel (AFNS)

term structure model which imposes the non-negativity of interest rates. An AFNS

model is hence used to jointly estimate both the nominal and real UK term structure

of interest rates, whilst imposing the now crucial non-negative property of nominal

rates. Having addressed the delicate complications these monetary policy actions

have on the modeling aspect of the paper, we now proceed to their economic

implications. After the withdrawal of the European Exchange Rate Mechanism

in 1992, inflation targeting has become one of the core objectives of the Bank

of England’s monetary policies. Thus, anchoring particularly long term inflation

expectations is of primordial importance to the credibility of the Monetary Policy

Committee. The question that now arises is how do we measure inflation? Amongst

a multitude of indices and methods available, one measure that is widespread in

central banks is the use of breakeven inflation (BEI) rates which consist of the mere
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INTRODUCTION

difference between nominal and real yields. BEI rates are often used in lieu of

surveys and forecasts, however, their use is far more intricate as a component for

the risk premium of inflation typically contaminates the BEI rates as measures of

inflation expectations. The benefits of using a no-arbitrage model come now into

play by enabling the disentanglement of inflation risk premia from BEI rates, thus

providing us with estimates of inflation expectations. This project is the outcome

of a fruitful collaboration with the Debt Management Office, HM Treasury which

kindly supplied me with the data set.

1.2 Outline

This thesis is structured as follows. Chapter 2 elaborates on the general concepts

under which term structure models are based on. It provides key definitions that

serve as a complement to the remaining chapters of the thesis. It introduces a specific

class of term structure models, known as affine models, and examines their flexibility

in being extended into macro-finance frameworks. Potential interesting applications

and extensions of affine term structure models are presented, illustrating thus their

strong pliability.

Chapter 3 builds a bilateral framework that jointly prices the term structure of

interest rates of two countries and extracts the risk premia of the exchange-rate in

question. This framework is based on a risk-averse take of the uncovered interest

rate parity. The model is applied on a specific currency pair, namely the GBP/USD,

which historically is known to fail to account for the forward premium puzzle.

Chapter 4 constructs a joint AFNS model for nominal and real yields which

16



INTRODUCTION

imposes the non-negativity assumption of nominal rates. Estimates of term

premia and breakeven inflation rates are provided and further decomposed into two

components, namely into inflation risk premia and inflation expectations. The zero

lower bound assumption is found to be necessary to reflect the countercyclicality in

the model-implied nominal term premia.

Chapter 5 concludes this thesis and discusses future projects.
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Chapter 2

Affine term structure models
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AFFINE TERM STRUCTURE MODELS

2.1 Introduction

Monetary policy, forecasting and derivative pricing are a handful of the many reasons

that have sparked an interest in bond yields. Most modern economies utilize the

term structure of interest rates to conduct monetary policy. Particularly, the short

end of the yield curve is exploited to drive changes in the medium and long end of

the curve. Focus is drawn to medium and long term yields due to their inherent

association with borrowing costs and consequently their tight link to the economy’s

aggregate demand. Current yield curves bear informational content on future curves

and economic activity, rendering them a potent tool for forecasting. Additionally,

the valuation of complex financial instruments is often determined through interest

rate models. However, despite the fact that bond prices are typically observed,

bond yields need to be extrapolated by these bond prices and as a consequence, the

estimation of term structure models of interest rates has spawned a wide literature

due to its importance to policymakers, academics and practitioners.

Bonds, unlike other financial assets and macroeconomic variables, enjoy the

peculiarity of having many observed yields associated with different maturities, at

every given point in time, thus rendering both their time series and cross-sectional

properties of interest. An analysis ignoring cross-sectional restrictions is possible,

when focusing on a particular segment of the yield curve. However, the incorporation

of cross-sectional restrictions comes with its own benefits. First and foremost,

the imposition of no-arbitrage restrictions allows the extraction of risk premia by

alleviating the difficulty that usually arises, that is, the inability to disentangle risk

premia from expectations. Accounting for no-arbitrage introduces an additional

probability measure to the physical one, known as the risk-neutral measure. By
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AFFINE TERM STRUCTURE MODELS

computing the difference between those two measures, one is capable to obtain

estimates of the risk premium. It is important to note that the assumption of

no-arbitrage is well grounded given the highly liquid nature of bond markets. In

addition, these restrictions further enhance the consistency of yields across time

and maturities and improve out-of-sample forecasts by reducing the number of

parameters to be estimated within the model.

Having addressed the importance of working on a set of yields that vary across

time and maturities, multivariate models are perceived as the appealing paradigm

to capture yield dynamics. A natural response is to consider an unrestricted vector

autoregression model. However, the latter is paired with the disadvantage of losing

degrees of freedom due to the high-dimensionality of the model. At this point,

the advantages of cross-sectional restrictions enter into play by allowing a low-

dimensional factor structure to approximate the high-dimensional system. A factor

structure appears to be sufficient to be able to replicate all possible shapes of the

yield curve. Specifically, yield curves take different forms across time, from U-

shaped curves, all the way to flat, upward or downward sloping curves. Nonetheless,

typical stylized facts of yield curves include the notion that yields ought to increase

with maturity, thus rendering upward sloping curves more characteristic. This fact

enhances the liquidity preference theory, which stipulates that a time-varying term

premium is required on long term yields to compensate for their relative lack of

liquidity. Yields are also known to be highly persistent, as indicated by their strong

autocorrelations. An additional trait of the yield curve is the fact that its short end is

typically more volatile than its long end. This last stylized fact becomes of particular

interest in today’s economy, with unconventional monetary policy strategies driving

short yields near their zero lower bound. By anchoring the short end of the curve,
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AFFINE TERM STRUCTURE MODELS

the volatility has been seen to pick up in the long end of the curve and inversely

decrease in the short end. These very stylized facts aid in imposing the restrictions

necessary to achieve the factor structure.

Reaching a consensus that a low-dimensional factor structure has the ability to

summarize a complex and high-dimensional structure, the econometrician is now

faced with a wide choice of factor structures. At this stage, it is important to note

that it is widely accepted, in the literature, that three factors are typically considered

sufficient (see Litterman and Scheinkman (1991), Ang and Piazzesi (2003)). The

choice of factor structures can be synthesized in the following list of alternative

models: principal components, interpolation methods and term structure models.

In this chapter, arguments are made in support of the latter alternative, as it not only

encompasses consistency of yield dynamics through the imposition of no-arbitrage,

but it further allows the dissociation of risk premia from expectations’ estimates.

This chapter, thus, resumes in clarifying the ties yield curve models may have with

financial and economic variables, including exchange rates, inflation and growth.

This segment builds the necessary grounds for the following chapters, which apply

affine term structure models of interest rates to monetary finance applications, with

the aim to extract risk premia estimates.

This chapter benefits from the work of Piazzesi (2010) and Diebold and

Rudebusch (2012), and is constructed as follows. In the second section, the basic

concepts surrounding bond yields and prices are tackled. In the third section, affine

term structure models are introduced. The fourth section includes a brief account

of the recent developments within this literature, known as macro-finance models.

The fifth section provides conclusive remarks.
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AFFINE TERM STRUCTURE MODELS

2.2 Bond prices and yields

This section establishes the main definitions revolving around term structure

modeling. It is important to note that term structure models focus on specific

bonds, namely zero-coupon bonds. Those pay no coupons and only pay a single

payoff at maturity, known as the face value of the bond, which for simplicity is

assumed to amount to 1 unit of currency. Zero-coupon bonds are characterized by

being purchased at discount and by the fact that they are considered as default free.

Let Pt(τ) denote the price of a bond at time t that matures in τ periods and yt(τ)

denote the yield to maturity, compounded continuously. The following relationship

holds.

Pt (τ) = exp [−τyt(τ)] (2.2.1)

Yields to maturity, also known as zero coupon yields, are thus naturally implied

by zero coupon bond prices as follows.

yt (τ) = − logPt (τ)

τ
(2.2.2)

Yields can also be expressed as an average of forward rates, which are the

increment observed in the yield for prolonging the maturity by one additional period.

The relationship of zero coupon yields and forward rates, in continuous time, is given

below.

yt (τ) =
1

τ

∫ τ

0

fudu (2.2.3)

In addition, by combining equations 2.2.2 and 2.2.3, the forward rate curve can
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AFFINE TERM STRUCTURE MODELS

be extracted by using the formula below.

ft (τ) = −P
′
t (τ)

Pt (τ)
(2.2.4)

where P ′
t (τ) designates the first derivative of the bond price Pt (τ). It is

interesting to note that out of the three variables in question, P (τ), y(τ) and f(τ),

only one of them suffices to derive the remaining two.

As previously mentioned, bond yields are not observed and need to be extracted

by transforming observed bond prices. Many approaches have been taken across

the years. One of them consists of the use of spline methods, including polynomial

splines and exponential splines, to name a few. These were deemed dated due to

their incapacity to ensure positive forward rates. Fama and Bliss (1987) elaborate

on this flaw by deriving the yield curve using forward rates. This very method is

typically used to obtain what are known as unsmoothed Fama-Bliss forward rates.

The preponderance of central banks often use interpolation methods, such as the

Nelson-Siegel or Svensson method, on those unsmoothed yields, in order to smoothen

them. Factor models have become increasingly popular in the estimation of term

structure models as they reduce the dimensionality of the problem whilst enabling

the replication of all possible shapes of the yield curve. The most widespread

factor designs in term structure modeling are broadly segregated into three families.

The first factor structure stems from a principal component analysis, which by

construction imposes factors to remain orthogonal whilst factor loadings are left

unconstrained. A second structure involves interpolation methods that fit empirical

yield curves. Unlike the previous method, factors remain unconstrained and factor

loadings are the ones that inherit a particular empirical structure. The third
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AFFINE TERM STRUCTURE MODELS

category is known as the no-arbitrage dynamic term structure model. This method

imposes restrictions on both factors and loadings. The most important trait of this

structure revolves around the imposition of no-arbitrage restrictions on the factor

loadings. Although this last class of models is very broad, the most noteworthy

subclass is known to be affine term structure models. The next section comprises of

a brief account of affine models.

2.3 Affine term structure models

The pricing of bonds necessitates an equivalent probability measure to the physical

one P, known as the risk-neutral probability measure, denoted by Q. The very

introduction of a second probability measure allows the imposition of the absence of

arbitrage opportunities, which according to Almeida and Vicente (2008), enhances

estimation and forecasting efficiency as well as solidifies the consistency of the model.

Assuming no-arbitrage, a bond, that pays a payoff Π(T ) at time T, is priced under

the physical measure P using a pricing kernel M(t). The current price Π(t) is thus

the expectation of the discounted future cash flows, as seen below, where EP
t denotes

the expectation at time t under the physical measure.

Π(t) = EP
t

[

M(T )

M(t)
Π(T )

]

(2.3.5)

Assuming the kernel dynamics given in equation 2.3.6, where Γ(t) and W(t)

represent, respectively, the price of risk and a standard Brownian motion, the two

measures, P and Q, are linked through the Radon-Nikodym derivative given in
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AFFINE TERM STRUCTURE MODELS

equation 2.3.7.

dM(t)

M(t)
= −r(t)dt− Γ(t)′dW (t) (2.3.6)

dQ

dP
= exp

[

−1

2

∫ T

t

Γ(s)′Γ(s)ds−
∫ T

t

Γ(s)dWs

]

(2.3.7)

It follows that equation 2.3.5 is transformed as shown below.

Π(t) = EQ
t

[

exp

(

−
∫ T

t

rudu Π(T )

)]

(2.3.8)

Let T denote the maturity of a zero-coupon bond that pays one unit of currency

at maturity and τ = T − t designate the time to maturity. The instantaneous rate,

denoted by rt, is given by the limit of yields yt(τ) as time t tends to T and the bond

price is given as follows.

Pt (τ) = EQ
t

[

exp

(

−
∫ T

t

rudu

)]

(2.3.9)

It is clearly reflected in equation 2.3.9 that there are two key components to

modeling the yield curve, those being the existence of an equivalent measure Q to

the physical measure P and the dynamics of the instantaneous rate rt under Q.

In affine term structure models the dynamics of the instantaneous rate rt under

Q ought to be an affine function of the state variable Xt, which itself is an affine

diffusion under the risk-neutral probability measure. The state dynamics follow an

affine diffusion process, provided below:

dXt = µ(Xt)dt+ σ(Xt)dW (t) (2.3.10)
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where the drift µ(Xt) and the variance-covariance matrix σ(Xt)σ(Xt)
′ are affine

in Xt. The drift of the state dynamics takes the following form, µ(Xt) = κ(θ−Xt),

where κ is the mean reversion matrix and θ represents the unconditional mean. As

for the diffusion of the process, it takes the following form, σ(Xt) = Σs(Xt), where

s(Xt) is equal to the identity matrix in Gaussian affine models and is a diagonal

matrix, of the form sii(Xt) =
√

s0,ii + s′1,iiXt, in the stochastic volatility class of

models. More is said on the latter models, given chapter 3 focuses on an exchange

rate application of an affine term structure model with stochastic volatility.

Bond prices thus inherit an exponentially affine representation, which is the

solution of a system of ordinary differential equations (ODE). These ODE have a

closed-form solution when the model is Gaussian and are solved numerically when

the model encompasses stochastic volatility.

It is important to note that Gaussian affine models do not preclude interest

rates from being negative. This issue is not of particular interest when interest

rates are at a safe distance of the zero lower bound. However, with recent economic

developments, interest rates have plummeted to unprecedented levels, sparking thus

the need to impose the non-negativity of interest rates. Three different classes of

models have been developed to accommodate this situation: shadow rate models,

Cox-Ingersoll-Ross models and quadratic models. Quadratic models as in Ahn,

Dittmar, and Gallant (2002) and CIR models are, nonetheless, unable to conform to

prolonged periods of zero or near zero interest rates. Conversely, shadow rate models

are able to cope with extended periods of near zero rates by rendering instantaneous

rates non-linear. Chapter 4 elaborates on the particularity of estimating rates in the

vicinity of zero and builds an inflation application of both a Gaussian affine term

structure model and a shadow model.
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It is worth noting that affine models, despite their advantages in precluding

arbitrage opportunities and obtaining known expressions for term premia, come at

the disadvantage of being hard to estimate and interpret. More specifically, common

issues that arise are the inability to interpret intuitively the latent factors and the

global optimum problem.

2.4 Macro-finance extensions

The two previous sections have established that term structure models are of

importance to model the dynamics of yields across both their cross-section and

time series and are particularly interesting tools due to their simplicity in extending

them to more complex and complete frameworks. It has long been instilled that

the state of the economy has an impact on financial variables. A clear example

of macroeconomic variables feeding financial variables is the effect of the level of

inflation on the future bank rate, which eventually translates to all yields in the

market. Nonetheless, it is becoming increasingly apparent that the health of financial

and banking institutions can have an effect on economic variables. The advent

of the recent financial crisis has thus strengthened the relation between financial

and economic variables, rendering macro-finance models of great importance. This

section analyzes the recent developments in the use of term structure models of

interest rates to macroeconomic and financial applications.

The most natural account of a macroeconomic model is the Taylor rule, which

accounts for fluctuations in short rates by using the output gap and inflation gap

which are the dispersion of actual levels of output and inflation, respectively, from

their target values. Ang, Dong, and Piazzesi (2005) estimate a Taylor rule and are
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able to draw the monetary policy shocks by imposing cross-sectional restrictions. An

interesting attempt of a macro model is made by Aruoba and Diebold (2010), who

model the yield curve using level, slope and curvature factors as well as observable

macroeconomic variables, amongst which are monetary policy tools, inflation and

real activity. Pooter, Ravazzolo, and van Dijk (2010) have a similar approach by

analyzing the effect of the inclusion of macroeconomic variables on the forecasting

of the term structure of interest rates. Reported results suggest that accounting for

macroeconomic informational content improves the forecasting of yields.

On the finance end of the spectrum, Campbell and Taksler (2003) examine the

interrelation between the expected excess returns on bonds and equity and find that

changes in these expected excess returns, real yields and risk levels bear a predictable

component. Similarly, Lettau and Wachter (2011) expand upon this idea by jointly

pricing the term structure of interest rates, the risk-return levels of stocks and the

returns on the aggregate market.

A recently popular extension of the term structure literature consists in shedding

some light on the following twofold research questions. Does the yield curve span

yields’ volatility, or is volatility unspanned? Those inquisitions have been triggered

by a very common phenomenon in the term structure literature, that is the inability

of models to jointly capture the first and second moment of yields. Andersen

and Benzoni (2007) examine whether bonds do span the yield volatility and find

arguments against this hypothesis. Their conclusion was supported by the fact

that yield volatility factors were uncorrelated to the yields’ cross-section. According

to Joslin (2013), volatility is said to be unspanned if bonds are unable to hedge

the volatility risk. On this front, it is found that current unspanned stochastic

volatility models cannot capture the cross-section of bond volatility. Moreover,
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Coroneo, Giannone, and Modugno (2012) assess whether macroeconomic content

has a predictive ability on the yield curve and on excess bond returns. The use of

macroeconomic variables is extended to both the obtention of yield curve factors and

the identification of the sources of risk which are not hedged by bonds. Therefore,

spanned and unspanned stochastic volatility is a potentially prolific strand of the

term structure literature which necessitates further investigation and requires further

advances in the years to come.

Interesting extensions to term structure models can be found in the two types of

vector autoregression (VAR) models that follow. The first consists in studying term

structure models in a global scale, in the spirit of Diebold, Li, and Yue (2008) that fits

the yield curve of multiple countries by featuring global and country-specific factors.

Similarly, Chudik and Pesaran (2014) introduce the Global VAR model (GVAR).

This paper studies the joint forecasting of financial and macroeconomic variables

at an international level. Advances in the literature are expected to be made

on the selection and number of global factors and individual factors. Additional

consideration ought to be made on the existence of regional factor structures. An

alternative is to use a Bayesian VAR (BVAR) à la Carriero (2011). This paper, with

the help of artificial data, uses a term structure model as a prior. This approach

allows the loose imposition of no-arbitrage conditions whilst further alleviating the

dimensionality problem and accounting for possible model misspecifications.

2.5 Conclusion

This chapter provides a brief and concise outline of term structure models, covering

basic concepts and introducing several advances within this literature. The general

29



AFFINE TERM STRUCTURE MODELS

idea that transcends within the chapter is the complexity involved in estimating the

term structure of interest rates as well as their potency in extracting information

regarding macroeconomic and financial variables. The two following chapters will

utilize term structure models in order to extract risk premia. Specifically, chapter 3

emphasizes on the link between term structure models and currencies whilst chapter

4 concentrates on the strong relationship between the yield curve and inflation. Both

chapters emphasize on the affine class of term structure models and more specifically

on a Nelson-Siegel affine term structure model which further imposes no-arbitrage

conditions to ensure the consistency of yield dynamics.
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AFNS: DETERMINATION OF CURRENCY RISK PREMIA

3.1 Introduction

Exchange rate fluctuations have substantial implications for the pricing and

allocation of assets. Characterized by seemingly weak links to fundamentals and

by a volatile nature, exchange rates still remain at the forefront of a multitude of

papers. These stylized facts, better known as the exchange rate determination and

excess volatility puzzles, render the modeling of exchange rate movements and the

caption of their volatility increasingly intricate.

A significant strand of the exchange rate literature has long been devoted to tying

exchange rates to interest rates through the so called covered and uncovered interest

rate parities. Under the validity of perfect asset substitutability and capital mobility,

the principle of these two parities revolves around the premise of no-arbitrage,

whereby low interest rate countries ought to be compensated by an appreciated

currency in order to maintain the indifference of the global investor. Despite the

highly intuitive nature of these theoretical equilibrium relations, severe deviations

from postulated equilibrium levels have, on multiple occasions, been recorded

through empirical tests. The observed divergences are expressed by the susceptibility

of low interest rate countries to currency depreciations and are typically known as

the forward premium puzzle.

A plethora of studies has been dedicated to justifying these deviations. What

seems to be the most convincing interpretation so far is the one proposed by

Fama (1984), advocating the presence of a time-varying risk premium. The latter

represents the compensation to the investor for being exposed to exchange rate risk.

Fama (1984) stipulates that currency risk premia ought to have a greater variance

than expected exchange rate variations and that both variables need to be negatively
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correlated in order to explain the puzzle. Following this noteworthy account, many

papers have attempted to model a currency risk premium using statistical methods

and conventional asset pricing methods, including consumption based asset pricing

theory, equilibrium models, but with arguably limited success (see, for example,

Frankel and Engel (1984), Domowitz and Hakkio (1985), Mark (1988), Bekaert

(1996) and Lustig and Verdelhan (2011)).

Though unobserved, currency risk premia have the potential to enhance asset

allocation and risk management decisions. This explains why attempts to estimate

currency risk premia are persistently found in the literature. The purpose of this

study is to examine whether a newly established framework for the term structure of

interest rates, the Arbitrage Free Nelson Siegel term structure model (AFNS) with

stochastic volatility, introduced by Christensen, Lopez, and Rudebusch (2010a), can

be further extended to jointly price both the term structure of interest rates of two

countries and exchange rate depreciations. Once the exchange rate depreciation is

estimated through the Bilateral Arbitrage-Free Nelson-Siegel model with stochastic

volatility (BAFNS), no-arbitrage conditions allow for the endogenous extraction of

the risk premium.

The above-mentioned approach of exploiting existing affine term structure

models in order to derive risk premia has previously been employed in several

different contexts. In an influential study by Backus (2001), the issue of whether

the popular affine term structure model by Duffie and Kan (1996) is capable of

capturing the forward premium anomaly is considered. Similarly, Sarno, Schneider,

and Wagner (2012) derive a multi-currency term structure model that gives rise to

the foreign exchange risk premium, the properties of which are examined. Graveline

(2006), examines the forward premium anomaly using an arbitrage-free model,
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including options prices. Similar methods and applications can be found in Brandt

and Santa-Clara (2001), where excess volatility in an incomplete market setting

is examined, in Ahn (2004), Inci and Lu (2004) and Anderson, Hammond, and

Ramezani (2010), who compare the different implications of local and global factors,

and Brennan and Xia (2006), where the volatility of pricing kernels is tied to

exchange rate volatility and risk premia. More recently, term structure models

have been used to obtain equity premia (see Brennan, Wang, and Xia (2004) and

Lettau and Wachter (2011)) and underpin inflation expectations and risk premia

(see Christensen, Lopez, and Rudebusch (2010b) and Chernov and Mueller (2012)).

Although Sarno, Schneider, and Wagner (2012)’s analysis appears to be the

most complete and well-rounded piece of work to date, it suffers from a cumbersome

Bayesian estimation procedure requiring the use of priors, which might, therefore,

impact the estimation results. Moreover, an additional step is further required

stemming from the necessity to use rotations in order to interpret the latent factors.

In this chapter, attention is drawn towards employing the AFNS model due to the

favorable properties it agglomerates. In particular, this model encompasses sound

theoretical grounds through no-arbitrage restrictions, whilst also preserving robust

estimation procedures with the imposition of the Dynamic Nelson Siegel (DNS)

structure. Specifically, the imposition of the DNS structure provides a level, slope

and curvature interpretation to the latent factors without performing any rotation.

Additionally, the flexibility of the AFNS model allows to extend its use beyond

simple estimation and makes it appealing for forecasting exercises. Furthermore,

the AFNS is found to be successful not only in the blunt determination of the

term structure of interest rates but also in more synthesized problems such as

the estimation of inflation expectations; hence motivating the use of this specific
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model to estimating currency risk premia. This chapter further shifts its focus

towards analyzing the impact of the different assumptions set on the diffusion of the

process (ie. Gaussian or with stochastic volatility) on the properties acquired by the

estimates of the model, namely, the yields, exchange rate variations and currency

risk premia.

A six-factor AFNS model with stochastic volatility is estimated to jointly

underpin the term structure of two countries, whilst exchange rate depreciations

and risk premia are derived endogenously. For robustness purposes, a Gaussian

multilateral AFNS model with twenty one factors (three factors for each country

included) is examined in appendix 3.B of this chapter. Results suggest that the

Gaussian AFNS model provides a better fit for interest rates and allows for a

joint multi-currency estimation rather than restricting the model to a bilateral

estimation. On the other hand, the volatility of exchange rate differentials is

better captured using the AFNS model with stochastic volatility rather than the

Gaussian version of the model. Additionally, the risk premium generated from

the bilateral AFNS model with stochastic volatility respects the above mentioned

Fama conditions, hence offering a legitimate explanation for the forward bias puzzle

without resorting to departures from rational expectations. The main drivers of

exchange rate depreciations and risk premia are found to be the two curvature factors

whilst currency risk premia display a countercyclical nature. Finally, Graveline

(2006) argues that the use of options helps in fitting the volatility of exchange

rates. In this regard, this chapter shows that it is possible to reasonably capture

the volatility of exchange rate depreciations and risk premia without the inclusion

of options in the model. More specifically, this result extends to first and second

conditional moments.
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The remainder of the chapter is structured as follows. The second section consists

of a selective overview of the uncovered interest rate parity, the existing AFNS model

with stochastic volatility, and pricing kernels as the connecting link of interest rates

to exchange rates. In the third section, the BAFNS model is derived with the

aim of extrapolating both exchange rate depreciations and risk premia. The fourth

section comprises of an empirical study of the performance of the BAFNS model

in determining exchange rate changes and extracting risk premia. This section also

specifies the estimation procedure followed and its substantial benefits. The fifth

section provides conclusive remarks.

3.2 Exchange rates and interest rates at a glance

This segment aims to motivate the sections that follow by building a review of the

link between interest rates and exchange rates as well as the affine term structures

model that is utilized to derive exchange rate variations.

3.2.1 The uncovered interest rate parity

Let yD(t, T ) and yF (t, T ) denote the zero coupon bond yields with maturity T at time

t, of the domestic and foreign countries, and st and ft,T denote the logarithm of the

spot and T-forward exchange rate, respectively. For the remainder of the chapter,

the United States is considered as the domestic country. The United Kingdom

represents the foreign country in the main analysis of the chapter, whilst additional

foreign countries, including Australia, Canada, Switzerland, Japan and Sweden are

examined in appendix 3.B. All exchange rates are denominated in U.S. dollars, and

hence represent the price of one unit of foreign currency in US dollars.
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The covered interest rate parity stipulates that, under rational expectations

and risk-neutrality, the expected exchange rate depreciation equals the difference

between the forward and spot exchange rates. By the same token, the uncovered

interest rate parity builds an exact relationship between the expected exchange

rate depreciation and the domestic and foreign interest rate differential. The two

relationships are shown in the equations below,

EP [∆st,T |Ft] = ft,T − st (3.2.1)

EP [∆st,T |Ft] = yD(t, T )− yF (t, T ) (3.2.2)

where EP is the expectation under the data generating probability measure, Ft is

the filtration and ∆st,T = sT − st. Drawing from equation (3.2.1), the forward

exchange rate ought to be an unbiased predictor of the future spot exchange rate.

Using the traditional Fama regressions given below, the validity of the forward rate

unbiasedness hypothesis is confirmed if αi = 0, βi = 1 and ξi;t,T displays no serial

correlation, for i = 1, 2.

∆st,T = α1 + β1(ft,T − st) + ξ1;t,T (3.2.3)

∆st,T = α2 + β2
[

yD(t, T )− yF (t, T )
)

] + ξ2;t,T (3.2.4)

The preponderance of empirical results have, however, disputed the claim of the

hypothesis, hence raising theories for the existence of a time-varying risk premium,

amongst others. Conceptually, the existence of a risk premium signifies a departure

from risk-neutrality given it represents a compensation, to the investor, for being

exposed to currency risk as well as interest rate risk. A risk-averse interpretation of
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the uncovered interest rate parity is given below,

∆st,T =
[

yD(t, T )− yF (t, T )
]

− ρt,T + ζt,T (3.2.5)

with ρt,T representing the risk premium, which varies with time t and maturity T and

ζt,T being the regression residual. The risk premium component bears a negative

sign due to the fact that exchange rates are denominated in US dollars (ie. the

domestic currency). A negative exchange rate depreciation signals an appreciated

US currency, hence implying a higher purchasing power and risk premium. Fama

(1984) stipulates that there are two necessary conditions the risk premium needs

to feature in order to ensure its ability to explain the departures from the levels

dictated by the uncovered interest rate parity. These conditions are stated below.

VP [ρt,T ] > VP
[

EP
t (∆st,T )

]

(3.2.6)

CovP
[

ρt,T ,E
P
t (∆st,T )

]

< 0 (3.2.7)

where VP and CovP represent the variance and covariance under the physical

measure, respectively.

Specifically, omitting the risk premium typically generates a negative slope

of the Fama regression in equation (3.2.4). Fama (1984) shows that if the risk

premium admits these two conditions then the negative bias of the slope is corrected,

advocating, hence, in favor of the risk premium hypothesis as a reasonable correction

to the risk neutral uncovered interest rate parity.
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3.2.2 The arbitrage-free Nelson-Siegel model with

stochastic volatility

In this segment, the model, used to fit the term structure of interest rates of the

domestic and foreign countries, is presented in its simplest, unilateral form.

One of the most prominent models, empirically, for the term structure of interest

rates is the one developed by Nelson and Siegel (1987). The popularity of this model

mainly stems from its stable estimation and its flexibility in fitting both the cross

section and time series properties of interest rates. Diebold and Li (2006) have

extended it to a dynamic factor model where latent factors bear the level, slope

and curvature interpretation, whilst, Koopman, Mallee, and Van der Wel (2010)

have allowed for time-varying parameters and a non-Gaussian setting. Although

empirically these models have been highly praised for their performance, they have

sustained an equal amount of criticism for their lack of theoretical grounding.

Conversely, affine term structure models imposing no-arbitrage restrictions, such

as the canonical model by Duffie and Kan (1996), have been found challenging in

their estimation due to the difficulty in pinning down the global optimum, (see

Joslin, Singleton, and Zhu (2011a) and Duffee and Stanton (2012)), as well as in

their empirical success (see Duffee (2002). Christensen, Diebold, and Rudebusch

(2011) develop an affine Arbitrage-Free class of dynamic Nelson-Siegel term structure

models which combine the benefits of the two strands of models above whilst

simultaneously alleviating their disadvantages. However, due to the Gaussian nature

of the model, it is highly unlikely to be able to capture the volatility displayed by

exchange rates. A stochastic version of the AFNS model is hence adopted following

Christensen, Lopez, and Rudebusch (2010a).
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The details of the three-factor AFNS model with stochastic volatility generated

by all three factors (AFNS3) are provided below. Let Xt = (Lt, St, Ct)
′ denote the

latent state variables, which can be interpreted as level, slope and curvature factors.

In addition, assume the state vector Xt follows a Cox-Ingersoll-Ross process under

the risk neutral Q measure. κQ is the mean-reversion matrix, θQ the unconditional

mean vector and WX,Q
t denotes a three dimensional Wiener process.

dXt = κQ
[

θQ −Xt

]

dt+ Σdiag[
√

Xt]dW
X,Q
t (3.2.8)

Christensen, Diebold, and Rudebusch (2011) show that with no loss of generality,

θQ can be set to zero. The system of stochastic differential equations, under the risk

neutral probability measure, is hence re-written as follows.













dLt

dSt

dCt













= −













ǫ 0 0

0 λ −λ

0 0 λ

























Lt

St

Ct













dt+













σ11 0 0

0 σ22 0

0 0 σ33

























√
Lt 0 0

0
√
St 0

0 0
√
Ct

























dWL,Q
t

dW S,Q
t

dWC,Q
t













(3.2.9)

where λ is the mean-reversion parameter and ǫ = 10−6 to have a near unit root

behavior for the level factor. In particular, the level factor typically displays a unit

root, implying that the first element of the mean-reversion matrix ought to be equal

to zero. However, the breach of Gaussianity would prevent the use of the Kalman

filter. Setting this element equal to ǫ, a very small yet non-zero number, allows to

preserve a near unit root feature whilst still allowing the use of the Kalman filter.

As demonstrated by Ang and Piazzesi (2003), nominal zero-coupon bond prices
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are exponentially affine functions of the state variables,

P (t, T ) = EQ
t

[

exp

(

−
∫ T

t

rudu

)]

= exp
(

A (t, T ) + B (t, T )′Xt

)

(3.2.10)

where rt denotes the instantaneous risk-free rate and (A (t, T )) and (B (t, T )) are,

respectively, the intercept and slope of the affine expression.

Consequently, the representation of zero-coupon yields with maturity T at time

t is given by an affine function of the state variables, as shown below,

y(t, T ) = − 1

T − t
logP (t, T ) = −A (t, T )

T − t
− B (t, T )′

T − t
Xt (3.2.11)

with A (t, T ) and B (t, T ) being the unique solutions to a system of Riccati equations.

A (t, T ) is known as the adjustment term, which is added to maintain no-arbitrage

conditions, whilst the factor loadings B (t, T ), retain the interpretation of level, slope

and curvature, although they no longer match the exact form of the Nelson-Siegel

factor loadings. The Riccati differential equations are listed below.



































B1(t,T )
dt

(t, T ) = 1 + ǫB1(t, T )− 1
2
σ2
11B

2
1(t, T )

B2(t,T )
dt

(t, T ) = 1 + λB2(t, T )− 1
2
σ2
22B

2
2(t, T )

B3(t,T )
dt

(t, T ) = −λB2(t, T ) + λB3(t, T )− 1
2
σ2
33B

2
3(t, T )

A(t,T )
dt

(t, T ) = −B(t, T )′κQθQ

(3.2.12)

The instantaneous risk-free rate is an affine function of the state variables given

by the sum of the level and slope factors, as stated in equation (3.2.13). This

representation is justified by the fact that the level factor affects yields of all

maturities, including the short rate, while the slope factor typically influences yields
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of short maturities. The curvature factor is unnecessary in the spectrum of the short

rate since it typically influences yields of medium horizons.

rt = Lt + St (3.2.13)

The AFNS model with stochastic volatility is a continuous-time model and

Girsanov’s theorem ensures the change from the data generated process measure,

also known as the physical measure, to the risk-neutral measure as such, dWQ
t =

dW P
t +Γtdt, where Γt is the market price of risk and under the extended affine risk

premium specification defined in Cheridito, Filipovic, and Kimmel (2007), it takes

the form below:

Γt =













√
Lt 0 0

0
√
St 0

0 0
√
Ct

























γ1,1

γ1,2

γ1,3













+













0 0 0

0 1√
St

0

0 0 1√
Ct

























0 0 0

γ2,21 0 γ2,23

γ2,31 γ2,32 0

























Lt

St

Ct













+













0 0 0

0 1√
St

0

0 0 1√
Ct

























0

γ3,2

γ3,3













(3.2.14)

The extended specification for the market price of risk encompasses the

essentially affine risk premium specification provided by Duffee (2002), which itself

is a generalization of the completely affine formulation of the canonical model

by Dai and Singleton (2000). Subtracting Σdiag[
√
Xt]Γtdt from the risk-neutral

dynamics and substituting the Brownian motion under the risk-neutral measure

with its physical counterpart allows the extraction of the latent state variables

Xt = (Lt, St, Ct)
′ under the physical measure. The dynamics are given by the
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following stochastic differential equation:













dLt

dSt

dCt








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

=
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
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P
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



























θL,Pt

θS,Pt

θC,P
t













−













Lt

St

Ct

























dt

+













σ11 0 0

0 σ22 0

0 0 σ33

























√
Lt 0 0

0
√
St 0

0 0
√
Ct

























dWL,P
t

dW S,P
t

dWC,P
t













(3.2.15)

It is important to note that Feller conditions need to be satisfied in order to

prevent states from hitting the zero-bound, as it would induce the states to remain

at zero. These conditions are:



































κP21θ
P
1 + κP22θ

P
2 + κP23θ

P
3 >

1
2
σ2
22

λθQ2 − λθQ3 >
1
2
σ2
22

κP31θ
P
1 + κP32θ

P
2 + κP33θ

P
3 >

1
2
σ2
33

λθQ3 >
1
2
σ2
33

(3.2.16)

There are additional admissibility restrictions that also need to be respected

in order to ensure that the Nelson-Siegel factor loadings are being as feasibly

approximated as possible, as well as for the model to remain free from arbitrage
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opportunities. These are:



































ǫθQ1 = κP11θ
P
1

ǫθQ1 > 0, κP11θ
P
1 > 0

κP21 ≤ 0, κP23 ≤ 0, κP31 ≤ 0, κP32 ≤ 0

θQ3 =
λθQ2− 1

2
σ2
22

λ
− ǫ

(3.2.17)

Further, to ensure stationarity, the eigenvalues of κP have to be strictly positive.

Finally, the latent factor Lt is interpreted as a level factor, which theoretically has

a unit root. However, a unit root in the diffusion process induces complications in

the estimation procedure. An adequate compromise is to settle for a near unit root

behavior. Hence, in order to prevent the latent factor from displaying a unit root,

additional restrictions are imposed on the relevant parameters. More specifically,

κP11 and θP1 are set to be strictly positive and κQ11 = ǫ = 10−6, thus ensuring a near

unit root behavior.

3.2.3 Stochastic discount factors

Let PD
t and P F

t denote the domestic and foreign price at time t of a future payment

PD
T and P F

T , respectively.

PD
t = EP

[

MD
T

MD
t

PD
T

]

(3.2.18)

P F
t = EP

[

MF
T

MF
t

P F
T

]

(3.2.19)

where MD and MF are the domestic and foreign stochastic discount factors.

Stochastic discount factors, also known as pricing kernels, establish the existence of

44



AFNS: DETERMINATION OF CURRENCY RISK PREMIA

a risk neutral probability measure and dictate the price of state-dependent claims.

According to Graveline (2006), there exists a unique minimum variance stochastic

discount factor with the following dynamics.

dMD
t

MD
t

= −rDt dt− ΓD′

t dW
P
t (3.2.20)

dMF
t

MF
t

= −rFt dt− ΓF ′

t dW
P
t (3.2.21)

rDt and rFt denote the instantaneous domestic and foreign risk-free rate, respectively,

and W P
t represents a Wiener process. The diffusions of the pricing kernels, ΓD

t and

ΓF
t , are the domestic and foreign prices of risk. The benefits of adopting a no-

arbitrage setting come into play by enforcing a relationship between domestic and

foreign bond prices and more importantly by setting a direct link relating interest

rates to exchange rates, as shown below.

MF
T

MF
t

≡ ST

St

MD
T

MD
t

(3.2.22)

The above relationship states that one of the three random variables can be

replicated using the remaining two variables. Hence, one of the stochastic processes

can be determined endogenously, assuming that the remaining two dynamics are

known. As in Backus (2001), the two pricing kernels are used to endogenously

extract the exchange rate dynamics. This strategy allows the preservation of

symmetry between the theoretical frameworks of the two countries. In particular,

this chapter aims to extract information from the term structures of interest rates

in order to explain exchange rate movements. Thus, the two term structures are

modeled using exactly the same theoretical model for consistency purposes.
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3.3 Theoretical framework: a dynamic bilateral

asset pricing model

This section builds a bilateral extension for the AFNS model with stochastic

volatility generated by all factors included in the model. The endogenous

representations of the exchange rate depreciation, expected exchange rate return

and currency risk premia are then derived.

3.3.1 The bilateral arbitrage-free Nelson-Siegel model with

stochastic volatility

Extrapolating from the AFNS3 to encompass two countries requires six factors.

Let XJ
t =

(

LD
t , S

D
t , C

D
t , L

F
t , S

F
t , C

F
t

)′
denote the state vector for the joint model,

including the level, slope and curvature factors for the domestic and foreign

countries. One core advantage in using an extension of the AFNS stems from the

fact that no additional rotation is necessary to interpret the latent factors. Under

the risk-neutral measure, the state variable XJ
t =

(

XD
t , X

F
t

)′
solves the following

stochastic differential equation.

dXJ
t = −







κD,Q 0

0 κF,Q













XD
t

XF
t






dt+







ΣD 0

0 ΣF













diag
√

XD
t 0

0 diag
√

XF
t













dWD,Q
t

dW F,Q
t







(3.3.23)
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where WD,Q
t and W F,Q

t are three dimensional Brownian motions and κD,Q, κF,Q, ΣD

and ΣF are defined as follows.

κD,Q =













ǫ 0 0

0 λD −λD

0 0 λD













; κF,Q =













ǫ 0 0

0 λF −λF

0 0 λF













; ΣD = diag













σD
11

σD
22

σD
33













; ΣF = diag













σF
44

σF
55

σF
66













(3.3.24)

It is important to note that the off-diagonal elements of the mean-reversion matrix,

in equation (3.3.23), are set to zero in order to preserve an independence between the

latent factors in the domestic and foreign economy. Specifically, using the pairwise

approach for the analysis of more than two countries, say n+ 1 countries including

the domestic economy, induces the domestic economy to have n sets of estimates,

one for each pair of currencies; generating hence a consistency problem. Keeping

domestic and foreign latent factors independent alleviates this issue and preserves

the consistency of the model in a bilateral setting. However, in a multilateral setting,

consistency can be achieved in two ways, either by using a joint pricing for the n+1

term structures of interest rates, or by conducting the estimation for each country

on an individual basis.

The instantaneous risk-free rates for the domestic and foreign countries are affine

functions of the state variables and are given below.

rDt = LD
t + SD

t (3.3.25)

rFt = LF
t + SF

t (3.3.26)

Additionally, let y(t, T ) be the column vector of dimension 2Nx1, composed of the

concatenation of N-maturities of domestic and foreign yields. The representations
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of domestic and foreign zero-coupon yields with maturity T at time t are given by

an affine function of the state variables, as shown below,

y(t, T ) =







yD(t, T )

yF (t, T )






= −







AD(t,T )
T−t

AF (t,T )
T−t






−







BD(t,T )′

T−t
0

0 BF (t,T )′

T−t






XJ

t (3.3.27)

where AD (t, T ), AF (t, T ), BD (t, T ) and BF (t, T ) are the unique solutions to a

system of Riccati equations which are a natural extension to the system in equation

(3.2.12). The intercept terms are the no-arbitrage adjustment terms and the factor

loadings capture the level, slope and curvature interpretations.

Suppose a diffusion process of the form dxt = µ(xt)dt + σ(xt)dWt with µP(xt)

and µQ(xt) denoting the drift terms of the state diffusion process under the physical

and risk neutral probability measures, respectively. The price of risk is defined as

follows.

Γt(xt) = (σ(xt))
−1 [µP(xt)− µQ(xt)

]

(3.3.28)

The dynamics of the state vector XJ
t , under the physical probability measure P,

are consequently drawn and given by the following stochastic differential equation,

with W J,P
t being a six dimensional Wiener process.

dXJ
t = κJ,P

[

θJ,P −XJ
t

]

dt+ ΣJdiag[
√

XJ
t ]dW

J,P
t (3.3.29)

with κJ,P being set to a diagonal matrix for simplicity and W J,P
t being a six

dimensional Brownian motion. The square matrix κJ,P and vectors θJ,P and XJ
t

are all six-dimensional.
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3.3.2 Deriving exchange rate depreciations

In order to derive the exchange rate differences, a formulation for the domestic and

foreign pricing kernels is necessary. Denote byMD andMF the domestic and foreign

stochastic discount factors with the following dynamics,

dMD
t

MD
t

= −rDt dt− ΓD
t (X

J
t )

′dW P
t (3.3.30)

dMF
t

MF
t

= −rFt dt− ΓF
t (X

J
t )

′dW P
t (3.3.31)

= −rFt dt−
(

ΓD
t (X

J
t )

′ − γ∗ΣJ
√

XJ
t

)

dW P
t (3.3.32)

with γ∗ = (0, 0, 0, 1, 1, 1) and W P
t being a six dimensional Wiener process. It is

interesting to note that the foreign stochastic discount factor has two representations

given by equations (3.3.31) and (3.3.32). The latter is the one used in the extraction

of the depreciation of exchange rates due to its ability to create correlations amongst

the domestic and foreign economies. In a more general setting, with n currency pairs,

the domestic risk factors act as global risk factors for the international economy.

Using equation (3.2.22), the dynamics of the exchange rate St are derived.

Moreover, using Ito’s lemma, the dynamics of the logarithm of the exchange rate,

denoted by st are also retrieved. It is interesting to note that the dynamics of the

exchange rate are no longer affine in the state variable.

dSt

St

=

(

rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t )

)

dt+ γ∗ΣJ
√

XJ
t dW

P
t (3.3.33)

dst =

(

rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t )−

1

2
γ∗ΣJXJ

t Σ
J ′

γ∗
′

)

dt+ γ∗ΣJ
√

XJ
t dW

P
t

(3.3.34)
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A clear parallelism is derived between the two equations above and equation (3.2.5),

keeping in mind that rDt − rFt is the short rate differential and γ∗ΣJ
√

XJ
t dW

P
t is the

disturbance term.

3.3.3 Extracting currency risk premia

Having established the endogenous relationship of the variation in the logarithm

of exchange rates implied by the model, the extraction of the risk premium is

fairly straight-forward. Using equation (3.3.33), the drift is now composed of two

components, the interest rate differentials and a second component, which englobes

the risk premium, as shown below.

rpt = −γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t ) (3.3.35)

The risk premium is hence obtained by differencing the expectations of the exchange

rate depreciation under the risk-neutral and physical probability measures. An

equivalent representation can be derived using the dynamics of the logarithm of the

exchange rate.

It is further possible to obtain a representation of the continuously compounded

expected return of exchange rates by taking the expectation, under the physical

measure, of equation (3.3.33).

EP
[

Sret
t |Ft

]

= rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t ) (3.3.36)

The expected return of exchange rates assumes rational expectations and sets the

expectations of γ∗ΣJ
√

XJ
t dW

P
t , under the data generating process measure, equal
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to zero.

3.4 Empirical analysis

This section is devoted to the empirical estimation of the bilateral AFNS with

stochastic volatility on domestic and foreign zero-coupon yields. In a first instance,

the characteristics of the data set are studied, sequentially, the estimation method

is described and finally, all empirical results are presented.

3.4.1 Data description

The data set consists of monthly nominal yields for the United Kingdom and the

United States, spanning from September 1989 to October 2008 and includes a set

of nine maturities for each country, namely 3, 6, 12, 18, 24, 30, 36, 42 and 48

months. The time period includes the abandonment of the European Exchange

Rate Mechanism in September 2002 by the UK as well as the beginning of the

recent financial crisis caused by the burst of the housing bubble in the US market.

The data set’s timespan is specifically selected to coincide with the timespan of

the data set included in Sarno, Schneider, and Wagner (2012), given it is the most

recent paper in this strand of the literature, thus facilitating comparison of results.

However, the use of short and medium term maturities is perfectly warranted as

most violations of the uncovered interest rate parity are reported to occur in the

short run, whilst empirical evidence supports claims of the parity holding in the

long run.

The data set is kindly made available by Jonathan Wright and can be found on

the following link -http://econ.jhu.edu/directory/jonathan-wright-.
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Additionally, the monthly GBP/USD spot exchange rate is obtained through

Datastream, and is denominated in US dollars; the same timespan applies,

commencing in September 1989 and ending in October 2008.

Table 3.1 displays the descriptive statistics, namely the mean, standard

deviation, skewness, kurtosis and first lag autocorrelation, of the level of interest

rates for the US and the UK as well as the level of the exchange rate and logarithm

of the exchange rate. The UK yields are characterized by a positive skew and excess

kurtosis, especially at short and medium term maturities. All variables have a high

first autocorrelation, close to unity, indicating highly persistent behaviors.

Throughout the chapter, differentials of variables are used. Panel A of Table 3.2

presents the descriptive statistics for the variables’ differentials. Those are defined

as the difference between domestic and foreign rates for yields at all maturities,

and a first lag difference for exchange rates and the logarithm of exchange rates.

Both exchange rate differentials display strong excess kurtosis. The results for

the Fama regression in equation (3.2.4) are reported in Panel B of Table 3.2.

The findings confirm the empirical results found in the majority of the literature,

whereby the intercept of the regressions is statistically insignificant, while the slope

coefficient rejects the null hypothesis of unity at all conventional significance levels.

Additionally, the R squared coefficient displays a very weak goodness of fit. These

results motivate the methodology of incorporating a time-varying risk premium.

It is common practice to use three factors to fit the term structure of interest

rates of a single country. Additionally, following convention, the level factor affects

yields at all maturities, the slope factor influences short-term yields, whilst the

curvature factor is of importance for medium-term maturities. The maturities used

in this empirical section span from 3 to 48 months, hence justifying the use of three
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factors per economy. However, before proceeding to the estimation procedure, a

preliminary study is conducted to best specify the model. A principal component

analysis (PCA) is used to determine how many pricing factors are required to explain

the cross-sectional variation of domestic and foreign yields. The loadings for the six

first principal components for the entire set of maturities are reported on Table 3.3.

The PCA results validate our use of 6 latent factors given the first six components

explain 99.98% of the cross-sectional yield variation.

3.4.2 Estimation procedure: Kalman filtering

The model, so far presented, naturally adopts a state space representation,

with equations (3.4.37) and (3.4.38) below being the transition and measurement

equations, respectively. The state-space representation is given below, in its

discretized form, with XJ
t =

(

XD
t , X

F
t

)′
and y(t, T ) =

(

y(t, T )D, y(t, T )F
)′
,

XJ
T =

[

I − exp(−κP(T − t))
]

θP + exp(−κP(T − t))XJ
t + ηt (3.4.37)

y(t, T ) = −A(t, T )
T − t

− B(t, T )′

T − t
XJ

t + ǫt (3.4.38)

where the measurement errors ηt and ǫt are assumed to be orthogonal and ǫt is i.i.d.

The bilateral AFNS model with spanned volatility theoretically ought to be

estimated through an extended Kalman filter, due to the non-Gaussian nature of

the state variables. However, it is widely accepted in the literature that the state

variables can be treated as if they were Gaussian. Amongst many other references,

Fisher and Gilles (1996) and Christensen, Lopez, and Rudebusch (2010a) have

used the Kalman filter and the two first moments to approximate the probability

distribution function of the non-Gaussian state variables. The estimation procedure,

53



AFNS: DETERMINATION OF CURRENCY RISK PREMIA

hence, generates quasi-maximum likelihood estimates due to the approximation

applied.

The moments conditions are displayed below.

EP
[

XJ
T |Ft

]

=
[

I − exp(−κP(T − t))
]

θP + exp(−κP(T − t))XJ
t (3.4.39)

VP
[

XJ
T |Ft

]

=

∫ T

t

exp(−κP(T − s))Σ
√

EP [XJ
s |Ft]

√

EP [XJ
s |Ft]

′
Σ′exp(−κP′

(T − s))ds

(3.4.40)

The initial conditions for the Kalman filter are set to the unconditional mean and

covariance matrix, given in equation (3.4.41) and (3.4.42).

X̂J
0 = θP (3.4.41)

Σ̂0 =

∫ ∞

0

exp(−κPs)Σ
√
θP
√
θP

′
Σ′exp(−κP′

s)ds (3.4.42)

The conditional and unconditional covariance matrix in equation (3.4.42) are

estimated using the analytical solutions provided in Jacobs and Karoui (2009).

Finally, to estimate the logarithmic exchange depreciation implied by the model,

a discretization of equation (3.3.34) is used,

∆st+ω =

[

rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t )−

1

2
γ∗ΣJXJ

t Σ
J ′

γ∗
′

]

ω + γ∗ΣJ
√

XJ
t ∆W

P
t+ω

(3.4.43)

where ∆W P
t+ω is approximated by the following expression.

∆W P
t+ω ≈

[

ΣJ
√

XJ
t

]−1
[

∆XJ
t+ω −

(

κP
(

θP −XJ
t

))

ω
]

(3.4.44)

The above expression is derived by re-arranging a discretized version of the state
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dynamics.

3.4.3 Empirical findings

The estimates for the six factor bilateral AFNS model with stochastic volatility are

provided in Table 3.4. These results are found using solely the US and UK nominal

yields with maturities 3, 6, 12, 18, 24, 30, 36, 42 and 48 months. The specification for

the mean reversion matrix κP is set to a diagonal matrix. The results indicate that

the first and fourth factor do display near unit root behaviors. This result is clearer

when the discretized states are considered. The estimates for the unconditional mean

θP and diffusion matrix Σ are also displayed. The two mean reversion parameters,

under the risk neutral probability measure, λD and λF are comparable to the ones

found in the literature. Additionally, the log-likelihood value obtained by the quasi-

maximum likelihood estimation is reasonably high compared to the ones found in

this strand of the literature.

Table 3.5 elaborates on the fit of the six factor bilateral AFNS model. Both

the mean and root mean squared error (RMSE) are provided. It is clearly visible

that the short maturities are extremely hard to fit. The shorter the maturity of

the first yield in the sample, the higher the ability of extracting the appropriate

cross-section of the yields. The fact that the shortest maturity used is 3 months,

could explain the difficulty in fitting the short yields appropriately. Using swap

and libor rates to bootstrap short rates has the potential to improve significantly

the fit of short term yields, however, this exercise is left for future research. On

the other hand, the fit of yields is successful especially in medium term maturities.

Attention is drawn to the appendix section, specifically appendix 3.B, which contains
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a robustness check using a multilateral Gaussian AFNS model. The results for the

US, using the bilateral AFNS model with stochastic volatility, are comparable to

those found in the multilateral Gaussian AFNS, while the fit for the UK is visibly

poorer. This can be explained by the particularity of the UK term structure of

interest rates which has succumbed an inversion of the yield curve.

Table 3.6 allows to compare the findings of the model’s implied logarithmic

exchange rate depreciations with the actual variation in log exchange rates. The

means of the two variables are significantly similar, while the standard deviation

of the model implied depreciation is lower, which is a major improvement to the

findings under the Gaussian AFNS model. The mean and standard deviation of the

implied risk premium and expected exchange rate return are also reported. The risk

premium is comparable to the ones found in similar studies.

Moreover, Table 3.7 indicates that the correlation found between the actual and

estimated exchange rate depreciations is equal to 16.03%. This finding might be

misinterpreted as a poor fit, however it is important to note that comparable bilateral

studies have found correlations well below 10% and on some occasions correlations

slightly below 0%, thus indicating an improvement in the fit (see Sarno, Schneider,

and Wagner (2012)). Additionally, the implied risk premium does validate the two

Fama conditions, hence providing empirical support to Fama (1984)’s claim and

indicating that the model does offer a correction to the uncovered interest rate

parity by incorporating a time-dependent risk premium.

In addition, Figure 3.1 displays the actual and estimated exchange rate

depreciations’ time series. It is noticeable that the mean is successfully captured,

and the variance is closely matched. It is also clear that interest rate differentials

are not the only drivers of exchange rate changes. The consideration of unspanned
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volatility and a macro-finance approach to the model are two interesting extensions

of the current study which are left for future investigation.

Figure 3.2 plots the estimated expected exchange rate return and exchange rate

risk premia. In recent literature, claims increasingly stipulate that currency risk

premia are countercyclical. This graph also supports theories of countercyclicality,

the risk premium thus tracking expected returns. Assuming the foreign country

has a lower interest rate than the domestic country, the risk premium tends to be

positive given an appreciation of the domestic currency is denoted by a decrease

of the exchange rate. Vice-versa, a foreign country with historically higher interest

rates than the domestic country will mostly display a negative currency risk premium

in order to reflect the appreciation of the foreign currency which is coupled with an

increase of the exchange rate. The more the domestic country is considered risky

vis-a-vis the foreign country, the larger the magnitude of the risk premium. Hence,

the higher the liquidity constraints and economic uncertainty, the more likely the

risk premium is to increase, thus reinforcing arguments of flight-to-liquidity and

flight-to-quality. Moreover, the expected return on the pound fluctuates between

-1.07% and 8.75%; whilst its mean and standard deviation are equal to 3.06% and

2.08%, respectively. The estimation provides similar results with Graveline (2006)’s

findings using options prices. In particular, Graveline (2006) did a comparative

study between two models, with and without options. He concluded that models

that do not use option prices usually display a lot of variability. The findings in

this chapter show that option prices are not necessary to retrieve expected return

on currencies that have a low variance.

Figure 3.3 provides a graphical representation of the contribution of each of the

six risk factors to the risk premium. Interestingly, this figure corroborates Graveline
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(2006)’s results by displaying the same low variances in risk premium contributions

for risk factors that have a greater impact on exchange rates. Hence, the domestic

and foreign curvature factors appear to be the key drivers of both exchange rate

depreciations and currency risk premia, whilst they also appear to be the most

persistent factors.

Finally, Figure 3.4 plots the contribution of a carry trade risk factor to the

currency risk premium. The carry trade factor, in this case, is represented by the

short interest rate differential. Using equation (3.3.25) and (3.3.26), the carry trade

risk factor is easily derived by summing the fourth and fifth risk factors (ie. level and

slope of the foreign economy, which in this case is the UK) and subtracting the first

and second risk factors (ie. level and slope of the domestic economy, in this case the

US). The contribution of the carry trade factor to currency risk premia, on average,

is equal to -1.60%, whilst the integrity of the currency risk premium is on average

equal to -5.66%. It is clear that the carry trade factor is a driver of currency risk

premia, as demonstrated by Lustig, Roussanov, and Verdelhan (2010). However, the

carry trade factor is found not to contain all the information of currency risk premia

in its integrity, hence rendering the two curvature factors particularly important.

Moreover, the carry trade risk factor’s contribution to currency risk premia mainly

contains exchange rate risk in short maturities, whilst it is contaminated by an

additional component for interest rate risk in long maturities. A recent study by

Lustig, Stathopoulos, and Verdelhan (2013) indicates that carry trade risk premia

are indicative of temporary shocks and hence their term structure tends to be

downward sloping. This finding is confirmed by the persistence of curvature factors

which do not feature within carry trade factors. On the other hand, currency risk

premia at long horizons seem to be driven by the permanent component of stochastic
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discount factors.

3.5 Conclusion

In conclusion, in this chapter, a bilateral AFNS model with stochastic volatility

for the joint pricing of the term structure of interest rates for both the domestic

and foreign countries that is further able to derive exchange rate variations is

developed. The model proposed benefits from the Nelson-Siegel factor loadings

yielding a robust and tractable estimation procedure. The no-arbitrage restrictions

enhance the theoretical grounds whilst simultaneously allowing the extraction of

currency risk premia.

This chapter compares the effect of the different assumptions set on the diffusion

of the process (ie. Gaussian or with stochastic volatility) on the properties adopted

by the estimates of the yields, exchange rate variations and currency risk premia.

To summarize, the use of a stochastic volatility version rather than a Gaussian

take of the AFNS model comes with the detriment of having an inferior fit for the

yields. However, the very inclusion of stochastic volatility endows the model with

the capacity to capture to some extent the volatility of exchange rate depreciations

and successfully derive a risk premium that respects the two Fama conditions. The

model’s implied risk premium provides, thus, an adaptation of the uncovered interest

rate parity that alleviates the recorded puzzle in the literature whilst solely assuming

a departure from risk neutrality. On the other hand, a Gaussian AFNS model allows

a better fit for the yields, whilst the variance of exchange rate fluctuations is not

fully captured. It is interesting to note that the Gaussian AFNS is easily extended

to a multi-currency model which not only benefits from an elegant estimation
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procedure, but also takes advantage of the fact that currency portfolios tend to

be more predictable than individual exchange rates.

Finally, the extension of the stochastic volatility AFNS model to a multi-currency

framework is left for future research.
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Appendix

3.A Appendix A: Bilateral AFNS model with

stochastic volatility

Table 3.1: Descriptive statistics of the level of interest rates and exchange rates

Panel A: Domestic Country -United States-

Maturity Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

3 months 0.0405 0.0178 -0.1129 2.4204 0.9716

6 months 0.0434 0.0184 -0.1388 2.3578 0.9761

12 months 0.0449 0.0183 -0.1729 2.3694 0.9735

18 months 0.0464 0.0179 -0.1604 2.4065 0.9710

24 months 0.0476 0.0174 -0.1286 2.4320 0.9689

30 months 0.0488 0.0170 -0.0874 2.4381 0.9675

36 months 0.0498 0.0165 -0.0415 2.4270 0.9667

42 months 0.0508 0.0162 0.0061 2.4036 0.9664

48 months 0.0517 0.0158 0.0533 2.3731 0.9666

Panel B: Foreign Country -United Kingdom-

Maturity Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

3 months 0.0666 0.0289 1.7187 5.1836 0.9790

6 months 0.0632 0.0270 1.7349 5.3003 0.9759

12 months 0.0624 0.0244 1.5979 5.0414 0.9711

18 months 0.0626 0.0233 1.4388 4.5814 0.9708

24 months 0.0630 0.0226 1.2987 4.1433 0.9717

30 months 0.0634 0.0222 1.1902 3.7899 0.9730

36 months 0.0637 0.0219 1.1094 3.5196 0.9745

42 months 0.0640 0.0217 1.0496 3.3161 0.9758

48 months 0.0642 0.0216 1.0046 3.1617 0.9771

Panel C: Exchange rate and logarithm of the exchange rate

Maturity Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

St 1.6778 0.1685 0.5156 2.2601 0.9602

st 0.5126 0.0987 0.3673 2.1500 0.9608

NOTE: The descriptive statistics for the level of domestic and foreign yields at all the maturity

set and the exchange rate and logarithmic exchange rate are given. The data comprises of

monthly nominal zero coupon bond yields for the US and the UK and the GBP/USD exchange

rate denominated in US dollars, from September 1989 to October 2008.
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Table 3.2: Stylized facts of interest rates and exchange rates differentials

Panel A: Descriptive Statistics on variable differentials

Variable Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

yD3 − yF3 -0.0260 0.0214 -1.0106 3.0320 0.9747

yD6 − yF6 -0.0198 0.0194 -0.9846 3.1179 0.9796

yD12 − yF12 -0.0175 0.0165 -0.8513 2.9694 0.9726

yD18 − yF18 -0.0163 0.0148 -0.8185 3.0088 0.9695

yD24 − yF24 -0.0154 0.0135 -0.7860 3.0647 0.9668

yD30 − yF30 -0.0146 0.0126 -0.7493 3.1037 0.9644

yD36 − yF36 -0.0139 0.0118 -0.7096 3.1137 0.9623

yD42 − yF42 -0.0132 0.0113 -0.6698 3.0963 0.9606

yD48 − yF48 -0.0134 0.0113 -0.5359 2.9016 0.9627

St − St−1 0.0009 0.0466 -1.3608 8.5506 0.1267

st − st−1 0.0005 0.0270 -1.1966 7.6103 0.1219

Panel B: Fama Regression

Variable α β t[β = 1] R2

-0.0003 -0.0313 -12.2090 0.0006

(0.0028) (0.0845)

NOTE: The descriptive statistics for the differentials of domestic and foreign yields at all the

maturity set and the exchange rate and logarithmic exchange rate are given in Panel A. The results

of the Fama regression are provided in Panel B. The numbers in parenthesis are the standard errors

of the estimates. The data comprises of monthly nominal zero coupon bond yields for the US and the

UK and the GBP/USD exchange rate denominated in US dollars, from September 1989 to October

2008.
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Table 3.3: First three principal components in nominal yields

Maturity First PC Second PC Third PC Fourth PC Fifth PC Sixth PC

yD3 0.1801 0.3175 0.2843 0.4628 0.0661 0.6147

yD6 0.1862 0.3433 0.2584 0.3217 0.1315 -0.2112

yD12 0.1895 0.3340 0.1353 0.1071 0.0349 -0.3551

yD18 0.1895 0.3101 0.0381 -0.0449 -0.0320 -0.2756

yD24 0.1880 0.2817 -0.0379 -0.1512 -0.0599 -0.1437

yD30 0.1858 0.2527 -0.0979 -0.2266 -0.0584 -0.0110

yD36 0.1833 0.2249 -0.1458 -0.2810 -0.0379 0.1066

yD42 0.1806 0.1988 -0.1844 -0.3212 -0.0059 0.2053

yD48 0.1778 0.1747 -0.2159 -0.3511 0.0323 0.2860

yF3 0.3251 -0.3049 0.4696 -0.3411 0.5749 -0.1615

yF6 0.3106 -0.2494 0.3475 -0.1346 -0.1926 0.3827

yF12 0.2863 -0.1885 0.1653 0.0071 -0.4419 -0.0901

yF18 0.2760 -0.1594 0.0107 0.0729 -0.3792 -0.1258

yF24 0.2679 -0.1442 -0.1083 0.1183 -0.2355 -0.1100

yF30 0.2617 -0.1370 -0.1977 0.1507 -0.0735 -0.0743

yF36 0.2569 -0.1342 -0.2656 0.1750 0.0854 -0.0297

yF42 0.2533 -0.1339 -0.3178 0.1943 0.2339 0.0175

yF48 0.2504 -0.1350 -0.3588 0.2104 0.3702 0.0637

% explained 87.83 97.46 99.61 99.83 99.94 99.98

NOTE: The loadings of the yields of the set of maturities on the first six principal components

are given. The percentage of all bond yields’ cross-sectional variation accounted for by each

component is displayed on the final row. The data comprises of monthly zero coupon bonds from

September 1989 to October 2008 for the United States and the United Kingdom.
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Table 3.4: 6 factor BAFNS estimates for domestic and foreign rates

κP
i,i θP Σi,i

0.1000 0.0099 0.0163

(0.000032) (0.000034) (0.000120)

0.1996 0.0243 0.0583

(0.000032) (0.000058) (0.001229)

0.4997 0.0328 0.0325

(0.000032) (0.000077) (0.000216)

0.0991 0.0100 0.0319

(0.000048) (0.000068) (0.008248)

0.1985 0.0396 0.0841

(0.000077) (0.000901) (0.030020)

0.4995 0.0264 0.0442

(0.000041) (0.000625) (0.024991)

NOTE: The estimated parameters of the κP matrix, θP vector, and diagonal diffusion matrix Σi,i

are given for the six-factor bilateral AFNS model for domestic and foreign yields. The estimated

value of λD is 0.4974 with standard deviation of 0.000045 and λF is 0.4965 with standard deviation

of 0.000156. The numbers in parentheses are the standard deviations of the estimated parameters.

The log likelihood is equal to 10290.1208.
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Table 3.5: Measures of fit for the bilateral AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

yD3 17.1459 36.9274

yD6 -1.9856 16.1301

yD12 -0.7299 5.5918

yD18 -0.2130 1.6230

yD24 0.0060 0.0382

yD30 -0.0479 1.0435

yD36 -0.4106 2.3444

yD42 -1.0902 3.9866

yD48 -2.0643 5.8888

yF3 -14.7128 47.0974

yF6 9.6541 18.0715

yF12 6.5452 8.6486

yF18 0.6465 4.6115

yF24 -1.1010 1.3787

yF30 0.9950 3.3367

yF36 6.0909 6.8855

yF42 13.3451 9.7477

yF48 22.0650 16.1391

NOTE: The mean and RMSE of fitted errors of the six-factor bilateral AFNS model with stochastic

volatility for domestic and foreign yields are given. All values are measured in basis points. The

nominal yields span from September 1989 to October 2008.
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Table 3.6: Model implied findings

Variable ∆st+1
ˆ∆st+1 ˆrpt EP

[

ˆSret
t |Ft

]

Mean 0.0005 0.0006 -0.0566 0.0306

Standard deviation 0.0270 0.0172 0.0224 0.0203

NOTE: The mean and standard deviation of the implied exchange rate depreciation, risk premium

and exchange rate expected return are provided. The actual depreciation exchange rate mean and

standard deviation are also included to facilitate the comparison with the estimates. The exchange

rates span from September 1989 to October 2008.
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Table 3.7: Analysis of the model implied exchange rate depreciation and risk
premium

Panel A: model implied exchange rate depreciation

corr(∆st+1, ˆ∆st+1) 0.1603

Panel B: Fama conditions

V R = ˆrpt
∆ ˆst+1

1.7017

corr(∆ ˆst+1, ˆrpt) -0.0718

NOTE: Panel A displays the correlation between the actual and model implied exchange rate

depreciations. In panel B, the variance ratio of the implied risk premium and actual exchange

rate depreciations are provided. The correlation of the implied risk premium and actual exchange

rate depreciations are also displayed. If the variance ratio figure is above 1 and the correlation

is below 0 then the Fama conditions are verified. The exchange rates span from September 1989 to

October 2008.
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Figure 3.1: Actual and model implied log exchange rate depreciations
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NOTE: Comparison of the actual and model implied log GBP/USD exchange

depreciations across time. The exchange rates span from September 1989 to

October 2008.
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Figure 3.2: Expected exchange rate return and exchange rate risk premium
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NOTE: Comparison of the expected exchange rate return and exchange rate

risk premium across time, with exchange rates spanning from September 1989 to

October 2008.
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Figure 3.3: Contribution of risk factors to risk premium
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NOTE: Comparison of the contribution of each risk factor to the risk premium.

The six risk factors considered are namely the domestic and foreign level, slope

and curvature factors.
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Figure 3.4: Contribution of the carry trade factor to risk premium
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NOTE: Contribution of a carry trade risk factor to the risk premium. The carry

trade factor is computed by summing the foreign-UK level and slope factors and

deducting the domestic-US level and slope factors.
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3.B Appendix B: Multilateral Gaussian AFNS

model

This appendix segment is dedicated to conducting a robustness check with a different

specification for the model. The empirical exercise, for this section, consists of

an analysis of the Gaussian AFNS model extended to a multi-currency setting.

Specifically, the United States is preserved as the domestic country and six more

countries, including the United Kingdom, are treated as foreign countries. The

model investigated includes twenty one latent factors; three factors for each country

in the sample.

The data set consists of monthly nominal yields for the United States, the

United Kingdom, Australia, Canada, Switzerland, Japan and Sweden spanning from

January 1995 to May 2009 and includes a set of six maturities for each country,

namely 3, 6, 12, 24, 36 and 48 months. The yields are available in Jonathan Wright’s

homepage.

Moreover, the monthly GBP/USD, AUD/USD, CAD/USD, CHF/USD,

JPY/USD and SEK/USD spot exchange rates are obtained through Datastream,

using a denomination in US dollars. The same timespan applies, commencing in

January 1995 and ending in May 2009. The data set is comprised of a balanced panel

and is truncated vis a vis to the empirical analysis’ data set due to unavailability of

data.

It is important to note that the model is Gaussian, which allows the uncontested

use of the Kalman filter to obtain the maximum likelihood estimates.

Table 3.8 reports the fit of the yields for all seven countries across the entire set

of maturities. The mean and Root Mean Squared Error (RMSE) indicate that with
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the exception of the three month yield for the US and the UK, all remaining yields

are strikingly well captured.

Figures 3.5 to 3.10 display the comparison between the actual and the model

implied logarithmic exchange rate depreciations for all the six pairs of currencies.

The mean of the exchange rate depreciations seems to be appropriately captured,

however their variance is clearly underestimated. The correlation between the two

time series above mentioned tend to be significantly lower than in the setting of the

bilateral AFNS model.

As a final note, the fit of the yields is superior under the Gaussian multilateral

AFNS rather than the bilateral AFNS with stochastic volatility. However, there

seems to be an obvious trade-off between fitting yields and capturing the exchange

rate depreciation properties. As Sarno, Schneider, and Wagner (2012) suggest,

selecting between two extensions of a given model, in this case between the bilateral

AFNS with stochastic volatility and the multilateral Gaussian AFNS model, will

depend entirely on the purpose of the exercise, hence by whether the objective of

the analysis is to fit yields or exchange rates.

73



AFNS: DETERMINATION OF CURRENCY RISK PREMIA

Table 3.8: Measures of fit for the multilateral AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

Panel A: Fit for domestic yields - US

yD3 23.2560 35.2626

yD6 0.5516 7.3573

yD12 -0.0003 0.0086

yD24 -0.3060 1.1311

yD36 0.0000 0.0000

yD48 -0.9072 2.1180

Panel B: Fit for foreign yields - UK

yF3 -30.9604 46.0448

yF6 -3.2131 8.6486

yF12 0.1757 0.6775

yF24 0.0587 0.3522

yF36 -0.0001 0.0003

yF48 0.3937 0.9682

Panel C: Fit for foreign yields - Australia

yF3 -0.1564 5.3435

yF6 0.0000 0.0000

yF12 -0.0984 2.2626

yF24 0.0000 0.0000

yF36 0.0000 0.0000

yF48 -0.5561 2.2206

Panel D: Fit for foreign yields - Canada

yF3 -1.2376 7.6264

yF6 0.0000 0.0000

yF12 0.0033 3.1487

yF24 -0.0643 0.1456

yF36 0.5218 0.8229

yF48 -1.2093 2.1356

NOTE: The mean and RMSE of fitted errors of the multilateral Gaussian AFNS model for domestic

and foreign yields are given. Panel A displays the fit for the US (domestic) yields, panel B for

the UK (foreign), panel C for Australia (foreign), panel D for Canada (foreign), panel E for

Switzerland (foreign), panel F for Japan (foreign) and panel G for Sweden (foreign). All values

are measured in basis points. The nominal yields span from from September 1989 to October 2008.
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Table 3.8 Continued: Measures of fit for the multilateral AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

Panel E: Fit for foreign yields - Switzerland

yF3 6.6244 13.1451

yF6 0.0531 0.6131

yF12 -2.8266 5.4623

yF24 -0.7319 2.5425

yF36 0.1603 0.2882

yF48 -0.8433 1.9154

Panel F: Fit for foreign yields - Japan

yF3 0.2589 0.5446

yF6 0.0000 0.0000

yF12 0.0000 0.0001

yF24 0.4940 0.8120

yF36 0.0000 0.0000

yF48 -2.1471 3.0299

Panel G: Fit for foreign yields - Sweden

yF3 -0.9590 5.9960

yF6 0.0003 0.0006

yF12 -0.4138 2.1575

yF24 -0.0026 0.0082

yF36 0.2150 0.4063

yF48 -0.9196 1.8548

NOTE: The mean and RMSE of fitted errors of the multilateral Gaussian AFNS model for domestic

and foreign yields are given. Panel A displays the fit for the US (domestic) yields, panel B for

the UK (foreign), panel C for Australia (foreign), panel D for Canada (foreign), panel E for

Switzerland (foreign), panel F for Japan (foreign) and panel G for Sweden (foreign). All values

are measured in basis points. The nominal yields span from from September 1989 to October 2008.
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Figure 3.5: Actual and model implied log exchange rate depreciations for the
GBP/USD
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NOTE: Comparison of the actual and model implied log GBP/USD exchange

depreciations across time.
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Figure 3.6: Actual and model implied log exchange rate depreciations for the
AUD/USD
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NOTE: Comparison of the actual and model implied log AUD/USD exchange

depreciations across time.
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Figure 3.7: Actual and model implied log exchange rate depreciations for the
CAD/USD
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NOTE: Comparison of the actual and model implied log CAD/USD exchange

depreciations across time.
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Figure 3.8: Actual and model implied log exchange rate depreciations for the
CHF/USD
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NOTE: Comparison of the actual and model implied log CHF/USD exchange

depreciations across time.

79



AFNS: DETERMINATION OF CURRENCY RISK PREMIA

Figure 3.9: Actual and model implied log exchange rate depreciations for the
JPY/USD
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NOTE: Comparison of the actual and model implied log JPY/USD exchange

depreciations across time.
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Figure 3.10: Actual and model implied log exchange rate depreciations for the
SEK/USD

1995 1995.5 1996 1996.5 1997 1997.5 1998 1998.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 

actual
model

NOTE: Comparison of the actual and model implied log SEK/USD exchange

depreciations across time.
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THE UK TERM STRUCTURE AT THE ZLB

4.1 Introduction

In March 2009, the Monetary Policy Committee announced a cut of the policy rate

to 0.5%, from a level of 4.5% six months earlier. As a response to the recent financial

crisis, that not only involved the UK but further extended to a global phenomenon,

this decision was accompanied by an economic stimulus amounting to a running

total of £375bn. Other countries, including the US and more recently Japan, also

followed unconventional monetary policy strategies. Since 2009 short nominal yields

in the UK gilt and Treasury bill markets reached historically low levels. Negative

nominal yields remain a possibility in periods of crisis, when bondholders require

an insurance to safe-guard their investments, although these measures ought to be

temporary.

In this chapter, we study the consequences that pushing the short term interest

rates near the zero lower bound have on agents expectations, and therefore on term

premia and inflation premia. With short nominal interest rates close to zero, the

yield curve is anchored at the short end, agents expectations reflect the belief that

the policy rate would not be further reduced, and the volatility of short term rates

falls.

These considerations lead to question the use of standard affine Gaussian

dynamic term structure models as the expectations implied by these models might

be violating the inherent non-negativity assumption of nominal yields. As a result,

these models can generate, on the one hand, implausible nominal risk premia at

short maturities (as seen in Kim and Singleton (2012)), and on the other hand,

imprecise future long term expected inflation projections. Thus, it becomes of

crucial importance to refine these models and equip them with the ability to restrain
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nominal yields from being negative, whilst also reflecting a clear relationship between

the level and volatility of yields. The model should not restrict the behavior of real

yields, which remain free to take any sign.

In this chapter we address this issue by using the model recently proposed by

Christensen and Rudebusch (2013), which builds on Black (1995)’s and Krippner

(2012)’s shadow rate framework. The model is a shadow-rate Arbitrage-Free Nelson

Siegel (AFNS) term structure model which imposes the non-negativity of interest

rates. Unlike Kim and Singleton (2012)’s model, this particular representation has

the benefit of being capable of encompassing more than two factors, concurrently

preserving the simplicity of standard Gaussian models. Additionally, the factor

loadings, borrowed from Nelson and Siegel (1987)’s model, facilitate the tractability

of the no-arbitrage model and offer a reasonable interpretation of level, slope and

curvature to the factors. As far as future inflation projections are concerned,

the benefits of using a no-arbitrage model come into play by enabling the

disentanglement of inflation risk premia from Break-Even Inflation (BEI) rates, thus

providing estimates of pure inflation expectations.

In recent years, there have been a considerable number of papers examining

inflation expectations and risk premia using affine models. Amongst them, Chernov

and Mueller (2012) develop a no-arbitrage affine model that uses survey based

forecasts in addition to US nominal Treasury yields. Papers that similarly utilize

survey expectations and the use of macroeconomic variables include Chun (2011)

and Grishchenko and Huang (2012). D’Amico, Kim, and Wei (2010) use a no-

arbitrage affine model on a combination of US nominal and real rates combined

with survey based inflation data and forecasts. Additional studies on BEI rates are

Chen, Liu, and Cheng (2005) and Hordahl and Tristani (2010). However, limited
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literature is available for UK yields, despite the fact that the UK linker market is

one of the most liquid ones and the UK Debt Management Office - an Executive

Agency of HM Treasury - is committed to maintain this liquidity with regular

issuance of inflation-linked bonds. Joyce, Lildholdt, and Sorensen (2010) study

UK inflation using affine models. Specifically, they obtain inflation projections up

to 2009, thus before unconventional monetary policies were put in place. The paper

most affiliated with our study, is the study by Christensen, Lopez, and Rudebusch

(2010b). They use a joint AFNS model for nominal and real yields to extract US

inflation expectations. Our study mainly differs in our use of the property of the

zero lower bound in the fitting of nominal yields as well as our choice in the use

of UK data. Unlike the four-factor model by Christensen, Lopez, and Rudebusch

(2010b), we use a five-factor model to jointly fit the term structure of nominal and

real yields, due to the peculiarity of the shape of the UK yield curve.

Inflation can be measured through indices. Since 2004, the UK’s main inflation

index is the CPI (Consumer Price Index) and its target is set at 2%. Before 2004,

the main reference index for monetary policy objectives was the RPIX (Retail Price

Index excluding mortgage interest), introduced in 1992, for the first time. At

the time, the targeting was expected to anchor long term inflation expectations

and further promote financial stability. UK inflation-linked government bonds

(‘gilts’)1 have always been indexed to the Retail Price Index (RPI). These bonds

set a pre-agreed coupon which adjusts through time, co-moving with the RPI.

Furthermore, the principal payment is also aligned with changes in the RPI. Hence

these instruments combined with conventional bonds, can be used as a means to

gain insight into inflation expectations, defined as BEI. BEI rates are often used in

1Refer to http://www.dmo.gov.uk/index.aspx?page=Research/research.
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lieu of surveys and forecasts, however, their use is far more intricate as they contain

risk premia for inflation uncertainty2 that contaminate the BEI rates as measures

of pure inflation expectations.

From a debt management policy perspective, risk premia are crucial as they

determine the debt servicing cost (interest) of an issuer. Inflation risk premia, in

particular, determine the relative cost effectiveness of issuing a conventional bond as

opposed to an inflation-linked bond. For a given bond maturity, the risk premium

represents the additional expected cost to the issuer over that bond’s life relative

to a short maturity (6 months) issuance strategy that rolls over. As premia tend to

grow with maturity, it can also be perceived as the cost of buying protection against

refinancing risk.

Proceeding to the structure of the chapter, in the second section we estimate

individual models, particularly, an AFNS model enforcing non-negativity for

nominal yields and a standard AFNS model for real yields. In the third section

we estimate a joint term structure model of nominal and real curves using an

AFNS model that restricts solely nominal yields in a positive domain. No-arbitrage

conditions allow us to further decompose BEI rates into two components, inflation

risk premia and expectations, which can be found in section four. We provide

concluding remarks in the fifth and final section.

2Assuming a good liquidity in both conventional and inflation-linked markets.
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4.2 Empirical affine models for nominal and real

yields

The two individual estimations of the Gaussian affine models on nominal and

real yields that follow, are essential in the construction of the joint model. More

particularly, the choice of the number and selection of the factors highly relies on

their results.

4.2.1 Shadow-rate AFNS model for nominal yields

We devote this section to the estimation of a shadow-rate AFNS model on nominal

zero-coupon UK yields. The data set consists of continuously-compounded monthly

nominal yields spanning from October 1986 to December 2011 and includes a set of

seven maturities, namely 6, 12, 24, 36, 60, 84 and 120 months3. Interestingly, the

time period incorporates two main changes in monetary policy practices in the UK,

the introduction of inflation targeting in 1992 and the introduction of ‘Quantitative

Easing’ in March 2009.

Before proceeding to the estimation, we need to go through two preliminary

stages to best specify our model. In the first instance, we conduct a principal

component analysis (PCA) to determine how many pricing factors are required to

explain the cross-sectional variation of nominal yields. In the second instance, we

use a general-to-specific method in order to impose the relevant restrictions to our

model. It is important to note that we apply this method on a standard AFNS

model that does not enforce the zero lower bound due to the fact that the shadow-

3The UK DMO issues bonds that have maturities of up to around 55 years. The aim of this
study is to only analyze rate dynamics from short to medium horizons.
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rate AFNS model is computationally more involved rendering it unfeasible for such

a strategy.

Table 4.1 displays the loadings from the principal component analysis for the set

of maturities and the percentage of variation of yields that is being captured by each

component. We notice that the first component is characteristic of a level factor

due to its homogeneity, the second component incorporates a sign switch between

shorter and longer maturities hence displaying a slope feature and finally the third

component, being parabolic, has the behavior of a curvature factor. Additionally,

the first three components explain 99.99% of the cross-sectional yield variation. The

PCA results validate our use of three factors bearing the interpretation of level, slope

and curvature. These models have been used extensively in the literature, (refer to

Diebold and Li (2006) and Koopman, Mallee, and Van der Wel (2010)).

We now proceed in adopting a three factor AFNS model, following Christensen,

Diebold, and Rudebusch (2011). The latent state variables given by XN
t =

(

LN
t , S

N
t , C

N
t

)′
solve the following system of stochastic differential equations under

the risk-neutral Q measure, where λN is the mean reversion parameter, WQ
t denotes

a three dimensional Wiener process and the diffusion is diagonal.













dLN
t

dSN
t

dCN
t













= −













0 0 0

0 λN −λN

0 0 λN

























LN
t

SN
t

CN
t













dt+













σ11,N 0 0

0 σ22,N 0

0 0 σ33,N

























dWLN ,Q
t

dW SN ,Q
t

dWCN ,Q
t













(4.2.1)

The instantaneous risk-free rate is an affine function of the state variables and

is specifically defined as the sum of the level and slope factors:

rNt = LN
t + SN

t (4.2.2)
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As demonstrated by Ang and Piazzesi (2003), nominal zero-coupon bond

prices are exponentially affine functions of the state variables. As an immediate

consequence, the representation of nominal zero-coupon yields with maturity T

at time t is given by an affine function of the state variables, as shown below.

AN (t, T ) and BN (t, T ) are the unique solutions to a system of Riccati equations,

where AN (t, T ) is known as the adjustment term (see Christensen, Diebold, and

Rudebusch (2011) for the derivation) and BN (t, T ) matches the Nelson-Siegel factor

loadings.

yN(t, T ) = −A
N (t, T )

T − t
− BN (t, T )′

T − t
XN

t

= LN
t +

(

1− e−λN (T−t)

λN(T − t)

)

SN
t +

(

1− e−λN (T−t)

λN(T − t)
− e−λN (T−t)

)

CN
t − AN (t, T )

T − t

(4.2.3)

The AFNS model is formulated in continuous time and Girsanov’s theorem

ensures the change from the physical to the risk-neutral measure, as such, dWQ
t =

dW P
t + ΓN

t dt, where ΓN
t is the market price of risk and under essentially affine risk

premium specifications (see Duffee (2002) and Cheridito, Filipovic, and Kimmel

(2007)), it takes the form below, with γN0 being a three-dimensional vector and γN1

a 3x3 matrix:

ΓN
t = γN0 + γN1 X

N
t (4.2.4)

Having all the tools necessary, we can now extract the latent state variables

XN
t =

(

LN
t , S

N
t , C

N
t

)′
under the physical measure. The key parameters are κN,P and

θN,P which are unrestricted and σN which has a diagonal structure. The dynamics
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are given by the following stochastic differential equation:

dXN
t = κN,P (t)

[

θN,P (t)−XN
t

]

dt+ σNdWXN ,P
t (4.2.5)

It is at this point that the general-to-specific strategy comes into play, as we

implement it to find the best specification for the κN,P matrix. The procedure goes

as follows, we estimate an unrestricted AFNS and set the least significant element

of κN,P to zero. We repeat this process until we are left with a diagonal κN,P. Two

criteria, the Akaike Information Criterion (AIC) and Bayes Information Criterion

(BIC), are provided on Table 4.2, and we will rule our decision by minimizing the

AIC. The preferred specification is thus given by specification (6) which is consistent

with Christensen and Rudebusch (2012)’s findings.

Having found the preferred specification, we move on to the implementation

of the shadow-rate AFNS which restricts nominal yields in the positive domain.

The most striking difference will stem from the introduction of a shadow-rate

which will have the same dynamics as the instantaneous risk-free rate under the

standard AFNS, whilst the new dynamics for the instantaneous rate will consist

of the maximum between the shadow-rate and zero. The latent shadow-rates and

instantaneous rates are respectively defined as:

sNt = LN
t + SN

t (4.2.6)

rNt = max
{

0, sNt
}

(4.2.7)

As in the standard AFNS, the state dynamics under the risk-neutral Q measure

and the DGP P measure are given by equation (4.2.1) and (4.2.5), respectively.
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We will now use a few important concepts borrowed from the bond option price

literature. There has been a considerable amount of bond option pricing papers

over the years (see Jamshidian (1989), Chen and Scott (1995) and Singleton

and Umantsev (2002)). More recently, Krippner (2012) developed a shadow-rate

framework in which a representation for the Zero Lower Bound (ZLB) instantaneous

forward rate is provided. This representation is valid for all Gaussian models,

including the AFNS, and depends on the instantaneous forward shadow-rates as

well as an additional component which is a function of the conditional variance of

a European call. In the case of the shadow-rate AFNS, analytical solutions for the

instantaneous forward shadow-rates and the conditional variance are provided by

Christensen and Rudebusch (2013). Their results can be found in appendix 4.B.

Let us now denote by yN(t, T ), the Zero Lower Bound (ZLB) zero-coupon bond

yields. We use appendix 4.B to derive yN(t, T ), by setting the vector (X1, X2, X3)
′

equal to (LN
t , S

N
t , C

N
t )′ and the variables (σ11, σ22, σ33) equal to (σ11,N , σ22,N , σ33,N ).

yN(t, T ) =
1

T − t

∫ T

t

[

f(t, s)Φ

(

f(t, s)

ω(t, s)

)

+ ω(t, s)
1√
2π
exp

(

−1

2

[

f(t, s)

ω(t, s)

]2
)]

ds

(4.2.8)

It is important to note at this stage that y(t, T ) is no longer a linear function

of the state variables, unlike in the standard AFNS model. This non-linearity

is translated in the estimation procedure, whereby a conventional Kalman Filter

cannot be used and should be replaced by an Extended Kalman Filter (see appendix

4.C).

As in the standard AFNS case, the change of measure dWQ
t = dW P

t + ΓN
t dt

combined with the essentially affine specification of risk ΓN
t = γN0 + γN1 X

N
t allow us

to have the preferred specification’s representation of the state dynamics under the
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physical measure:












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t

dSN
t
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t


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
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
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t
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N ,P

t


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







−










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t


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

















dt

+













σ11,N 0 0

0 σ22,N 0

0 0 σ33,N








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


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dWLN ,P
t

dW SN ,P
t
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







(4.2.9)

The results of the estimated parameters can be found in Table 4.3, whilst the

in-sample fit results, in Table 4.4, report a good fit for all maturities, particularly

for medium-term tenors.

Following Campbell and Shiller (1991), bond risk premia have been at the

forefront of many studies, including Dai and Singleton (2002), Duffee (2002)

and Cochrane and Piazzesi (2005). We provide estimates of the term premia

across maturities, with and without the ZLB assumption, in Figures 4.1 and 4.2

respectively. The most striking difference is that term premia change sign after 2008,

coinciding with the start of the crisis. With the ZLB specification, term premia now

display a countercyclical nature, after 2009, hence providing a better representation

than under the previous setting that does not impose the non-negativity assumption.

Figure 4.3 plots the one year tenor forward and expected forward rates, in December

2011, along with the shadow rate. It is clear that the omission of the ZLB assumption

can generate negative nominal short yields. As noted earlier, market demand can

drive short maturity yields to negative territories, especially if bonds are perceived

by investors as a ‘safe haven’. However, a prolonged period of negative short nominal
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rates, or equivalently, a negative policy rate, might not be reasonable for monetary

policy objectives and would result in price tensions in market dynamics. Here, we

note that shadow rates can turn significantly negative when modeled using the

standard linear Gaussian AFNS mapping. What is observed in reality is that

short rates are rather anchored at zero, hence capping the theoretical price of a

zero coupon bond at 100 (see Krippner (2012)). If short rates were to go negative

(Gaussian assumption), the price of a theoretical zero coupon bond (‘shadow bond’)

would float anywhere above par. In essence, with the use of the properties of bond

option pricing, it is now possible to uncover the non-linear relationship between

prices, yields, and volatilities, and to price convexity effects in short maturity rates.

This relationship becomes evident when rates are at the zero lower bound and the

option is in/at the money 4. The new shadow path is considerably more negative at

shorter maturities suggesting term premia were previously estimated unreasonably

low, especially at short maturities. Noteworthy is the fact that we identify three

distinct sub-periods within our sample (1985-1998, 1998-2008 and 2008-2011) which

correspond to different cycles of the economy. Figure 4.4 includes a decomposition

of nominal yields into two components: the so called risk-neutral yields and the

term premia. The term premia are given by:

TPN(t, T ) = yN(t, T )− 1

T − t

∫ T

t

EP
t

[

rNs
]

ds (4.2.10)

4Moneyness is the difference between strike price and future expected price. If the option is
significantly in the money, the shadow bond price is well above par.
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4.2.2 Empirical AFNS model for real yields

We now proceed to the estimation of a standard AFNS model for real zero-coupon

UK bond yields. The data set consists of continuously-compounded monthly yields

spanning from October 1986 to December 2011 and includes a set of seven fixed

maturities: 60, 72, 84, 90, 96, 108 and 120 months. It is important to note that

we have chosen longer maturities for real yields, in comparison to nominal yields,

although we reserve to review this assumption in future work.

Table 4.5 displays the results of a principal component analysis on the set of real

yields. It is clear that the first principal component that bears attributes of a level

factor, explains a greater cross-sectional variation in real yields, in contrast to the

case of nominal yields. One could argue that 2 factors suffice in the modeling of this

set of real yields given they explain 99.99% of the variation. However, we take a

closer look at the third component and notice that the typical U-shaped behaviour of

a curvature factor persists. Moreover, our ultimate goal lies in estimating long term

inflation expectations and it is common knowledge that the curvature factor is of

high importance to longer maturity yields. Hence these two arguments fully justify

our choice of using a three-factor AFNS model to fit real yields. More importantly,

it is crucial to identify that the second component bears a positive sign for shorter

maturities and a negative sign for longer maturities, indicating the UK real yield

curve has been inverted.

We denote by XR
t =

(

LR
t , S

R
t , C

R
t

)′
, the latent state variables. Under the risk-

neutral measure Q, where λR is the mean reversion parameter, WQ
t denotes a three

dimensional Wiener process and the diffusion is diagonal, the state dynamics are
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given by the following system of stochastic differential equations:


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(4.2.11)

The instantaneous risk-free real rate is an affine function of the state variables

and is defined as the sum of the level and slope factors:

rRt = LR
t + SR

t (4.2.12)

Real zero-coupon bond yields have the following structure, where AR (t, T ) is the

adjustment term and BR (t, T ) are the Nelson Siegel loadings:

yR(t, T ) = −A
R (t, T )

T − t
− BR (t, T )′

T − t
XR

t

= LR
t +

(

1− e−λR(T−t)

λR(T − t)

)

SR
t +

(

1− e−λR(T−t)

λR(T − t)
− e−λR(T−t)

)

CR
t − AR (t, T )

T − t

(4.2.13)

Exactly as in the nominal case, the market price of risk takes an essentially affine

specification seen below:

dWQ
t = dW P

t + ΓR
t dt (4.2.14)

ΓR
t = γR0 + γR1 X

R
t (4.2.15)

We can now apply the change of measure to obtain the latent state variables

XR
t =

(

LR
t , S

R
t , C

R
t

)′
under the physical measure. The key parameters are κR,P and
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θR,P which are unrestricted and σR which has a diagonal structure.

dXR
t = κR,P (t)

[

θR,P (t)−XR
t

]

dt+ σRdWXR,P
t (4.2.16)

Given we use a three-factor AFNS model to fit real yields which, at first glance,

do not seem to necessitate so many factors, it is very likely that some parameters may

not be statistically significant. To accommodate for this possibility, we use a general-

to-specific method, as before, to find the optimal specification of the κR,P matrix.

The results reported on Table 4.6, indicate that the diagonal specification (7) is the

one that minimizes both information criteria, and consequently is our preferred

specification. The dynamics are given by the following stochastic differential

equation:
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(4.2.17)

The parameter estimates and in-sample fit can be found on Tables 4.7 and 4.8,

respectively. We notice that the Root Mean Squared Error (RMSE), for maturities

84, 90 and 96 months, is negligible, confirming the findings of Chen and Scott (1995),

supporting that some yields are measured without error.
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4.3 Empirical joint shadow-rate AFNS model for

nominal and real yields

In this section, we estimate a joint AFNS model for nominal and real yields. We

impose the non-negativity assumption solely on nominal yields without restricting

real yields. Nonetheless, before proceeding to our joint partial shadow-rate AFNS

model, we need to establish the number of factors to be considered, as well as

the interpretation we wish to give to these factors, in other words, level, slope or

curvature. To do so, we first perform a principal component analysis displayed in

Table 4.9. We consider a data set combining exactly the two panels studied in the

previous section. Therefore, the data consists of continuously-compounded monthly

nominal and real yields spanning from October 1986 to December 2011 and includes

a set of seven maturities for nominal yields, namely, 6, 12, 24, 36, 60, 84 and 120

months, and an additional set of seven maturities for real yields: 60, 72, 84, 90, 96,

108 and 120 months. At first glance, we can see that the use of six factors would be

somewhat of a stretch. By the same token, the use of three factors seems, a priori,

far too restrictive to be able to fit the term structure of nominal and real yields

appropriately. We now face the dilemma between using four or five factors. On

the one hand, our nominal yields’ data set includes short, medium and long term

maturities, which implies the need for a level, slope and curvature factor. On the

other hand, real yields comprise solely of medium and long term maturities, which

ultimately give a greater weight to the level and curvature factors. One could hence

argue that an appropriate model could have a level, slope and curvature for nominal

yields, a curvature for real yields and finally a common level and slope factor, as

it is the case in Christensen, Lopez, and Rudebusch (2010b). However, this model
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would be unfeasible as it would violate the no-arbitrage assumption imposed on the

AFNS model in order to retrieve the Nelson-Siegel factor loadings (see Christensen,

Diebold, and Rudebusch (2009)). The assumption of no-arbitrage is of primordial

significance given we require both the risk-neutral and physical measure in order to

retrieve inflation risk premia. In addition, we find that, empirically, the correlation

between long nominal and real yields, representing the level, has been historically

very stable over time and that nominal yields moved very much in line with real

yields, thus supporting the specification of using one single level factor to explain

both nominal and real rates. We find that nominal and real rates’ slopes, especially

at 5 and 10-year maturities, also display a historically stable correlation, however,

this pattern changes after 2008. This coincides with the timing of the sudden

decrease in nominal rates and the significant increase in the steepness of the nominal

curve, resulting in the sharp increase in BEI at 5 and 10-year maturities. In practice,

if we were to use a single slope factor, we would misestimate the short real rate

consequently also affecting inflation expectations after 2008. We therefore choose

to use a five factor model which consists of an extension of the Svensson model.

This model has the capacity to capture the inversion of real yields, by allowing

their slope to vary independently from the slope of nominal yields. The five first

principal components explain 99.99% of the cross-sectional variation of nominal

and real yields, therefore the choice of five factors is pefectly reasonable. We are

hence left with a single interpretation for our factors, whereby the first three factors

represent the level, slope and curvature of nominal yields, whilst the fourth and fifth

factors represent the slope and curvature of real yields, respectively. By deduction,

the level factor will be common across the two sets of yields. We denote by αR the

weight of real yields on the level of nominal yields.
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As in the nominal case, before enforcing the zero lower-bound on nominal

yields, we need to first find the preferred specification of our mean reversion matrix

κJ,P. Using the so-called preferred specification is of great importance due to the

sensitivity of results to different specifications (see Joslin, Priebsch, and Singleton

(2013), Joslin, Singleton, and Zhu (2011b) and Christensen and Rudebusch (2013)).

The issue of sensitivity is of greater importance when considering the estimation of

risk premia, given they rely heavily on the estimation of κJ,P. Once again, however,

it is unfeasible to conduct a general-to-specific strategy on a shadow-rate AFNS

due to the computational burden of the model. We hence proceed in conducting

such a strategy on a standard joint AFNS model, and its preferred specification is

subsequently used in a joint partial shadow-rate AFNS.

We first consider the structure of our standard joint AFNS. The joint latent state

vector is given by XJ
t =

(

Lt, S
N
t , C

N
t , S

R
t , C

R
t

)′
and solves the following stochastic

99



THE UK TERM STRUCTURE AT THE ZLB

differential equations under the risk-neutral measure Q:
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(4.3.18)

where λNand λR are scalars that represent the speed of mean-reversion for

nominal and real yields respectively, dWQ
t is a five-dimensional Wiener process and

the diffusion matrix is diagonal. We assume the nominal and real instantaneous

risk-free rates are defined respectively as follows

rNt = Lt + SN
t (4.3.19)

rRt = αRLt + SR
t (4.3.20)

Nominal and real yields are respectively given by the two following equations,

containing the typical adjustment term of AFNS models and the Nelson-Siegel factor

loadings. We note that real yields have a weighted Nelson-Siegel loading for the level
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factor, given this factor is common to nominal and real yields.

yN (t, T ) = Lt +
1− e−λN τ

λNτ
SN
t +

(

1− e−λN τ

λNτ
− e−λN τ

)

CN
t − AN(τ)

τ
(4.3.21)

yR (t, T ) = αRLt +

(

1− e−λRτ

λRτ

)

SR
t +

(

1− e−λRτ

λRτ
− e−λRτ

)

CR
t − AR(τ)

τ

(4.3.22)

Γt is the market price of risk and under essentially affine risk premium

specifications it takes the following affine form:

Γt = γJ0 + γJ1X
J
t (4.3.23)

By applying the change of measure, we extract the latent state variable vector

XJ
t =

(

Lt, S
N
t , C

N
t , S

R
t , C

R
t

)′
which solves the stochastic differential equations below

under the physical measure:

dXJ
t = κJ,P (t)

[

θJ,P (t)−XJ
t

]

dt+ σJdWXJ ,P
t (4.3.24)

We can now implement a general-to-specific method to find the best specification

for the κJ,P matrix. We first start by estimating an unrestricted AFNS model and

continue by setting the least significant element of κJ,P to zero. This process is

repeated until we are left with a diagonal κJ,P. For each step, the log-likelihood, AIC

and BIC are reported on Table 4.10. We aim to minimize the information criteria,

in this case the decision rule of the AIC and BIC does not coincide. For the sake of

consistency, we will minimize the AIC, as we previously did in the nominal yields’

section. We therefore designate specification (17) as our preferred specification.
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Having found our preferred specification, we proceed to the implementation of

the partial shadow-rate AFNS model which restricts nominal yields in the positive

domain whilst simultaneously keeping real yields unrestricted. The instantaneous

risk-free nominal and real rates are given respectively by:

rNt = max
{

0, Lt + SN
t

}

(4.3.25)

rRt = αRLt + SR
t (4.3.26)

We note that the nominal instantaneous risk-free rate is the maximum between

zero and the nominal shadow-rate, whilst the real instantaneous risk-free rate

coincides with the real shadow-rate. Let us now denote by yN(t, T ) and yR (t, T ), the

ZLB nominal zero-coupon bond yields and the real zero coupon yields, respectively.

We use appendix 4.B to derive yN(t, T ), by setting the vector (X1, X2, X3)
′ equal

to (Lt, S
N
t , C

N
t )′ and the variables (σ11, σ22, σ33) equal to (σ11,J , σ22,J , σ33,J). Their

representations are given below:

yN(t, T ) =
1

T − t

∫ T

t

[

fN(t, s)Φ

(

fN(t, s)

ωN(t, s)

)

+ ωN(t, s)
1√
2π
exp

(

−1

2

[

fN(t, s)

ωN(t, s)

]2
)]

ds

(4.3.27)

yR (t, T ) = αRLt +

(

1− e−λRτ

λRτ

)

SR
t +

(

1− e−λRτ

λRτ
− e−λRτ

)

CR
t − AR(τ)

τ

(4.3.28)

Our model naturally takes a state-space representation. It is crucial to observe

that nominal yields are non-linear functions of the state vector and real yields are

affine function of the latent state variables. As a consequence, to accommodate for

102



THE UK TERM STRUCTURE AT THE ZLB

the non-linearity, the estimation procedure requires the use of an extended Kalman

Filter (see appendix 4.C).

The market price of risk under the essentially affine risk premium specifications

takes the form:

dWQ
t = dW P

t + ΓJ
t dt (4.3.29)

ΓJ
t = γJ0 + γJ1X

J
t (4.3.30)

The latent state variable XJ
t =

(

Lt, S
N
t , C

N
t , S

R
t , C

R
t

)′
solves the following

stochastic differential equation under the physical measure, for our preferred

specification:
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(4.3.31)

The estimated parameters comprising the equation above are reported in Table

4.11 and the in-sample fit is displayed in Table 4.12. The findings under the joint
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model are consistent with the individual models’ results. The fit of both nominal

and real yields is very satisfactory and further allows us to explore, in the next

section, inflation expectations and risk premia.

The ZLB term premia of nominal yields is given by:

TPN(t, T ) = yN(t, T )− 1

T − t

∫ T

t

EP
t

[

rNs
]

ds (4.3.32)

Figures 4.5 and 4.6 provide plots of the nominal term premia by maturity,

and the decomposed nominal yields, respectively. The shape of the term premia

is comparable to our findings in the individual nominal models. However the

magnitude strongly differs due to the sensitivity risk premia have to the structure

and composition of the mean reversion matrix κJ,P. Specifically, term premia up

to 1992 appear to be very different, leaving room for further investigation. In

addition, the decomposition of nominal yields is relatively similar under both joint

and individual nominal models. We remark clearly that the risk premia are on

average fluctuating around zero in both cases, and even more so in the individual

nominal model.

4.4 Inflation expectations and risk premia

We now pursue our analysis by decomposing BEI rates into inflation risk premia and

expectations. The no-arbitrage condition so far imposed on all AFNS models gains

further importance in this section as it is precisely the existence of a risk-neutral and

physical measure that eventually allows us to proceed in this decomposition. We

denote by
dMN

t

MN
t

and
dMR

t

MR
t

, the nominal and real pricing kernel dynamics, respectively,
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and provide their expressions below:

dMN
t

MN
t

= −rNs dt− ΓJ ′

t dW
J,P
t (4.4.33)

dMR
t

MR
t

= −rRt dt− ΓJ ′

t dW
J,P
t (4.4.34)

By manipulating the two stochastic discount factors above, (see Christensen,

Lopez, and Rudebusch (2010b) for further details), one can extract the following

system of equations:

BEI(t, T ) ≡ yN
t
(t, T )− yRt (t, T ) (4.4.35)

= πe
t (t, T ) + φt(t, T ) (4.4.36)

πe
t (t, T ) = − 1

T − t
ln

{

EP
t

[

exp

(

−
∫ T

t

(rNu − rRu )du

)]}

(4.4.37)

where πe
t (t, T ) and φt(t, T ) denote respectively the inflation expectations and

inflation risk premia for maturity T, estimated at time t. Moreover, the solution to

the expression is obtained through numerical procedures.

In Figure 4.7, we display the inflation expectations for maturities of 5 and 10

years. We note that since 1992, inflation expectations have decreased, possibly as

a result of investors’ confidence in the new monetary policy framework that was

reinforced in 1998. There is a tendency for 5-year spot inflation projections to be

above the current inflation target5, while at a 10-year horizon, inflation projections

systematically undershoot target inflation after 1994. In 2008, inflation expectations

decreased significantly, perhaps overly so, relatively to the magnitude of deflationary

shock observed in CPI inflation thereafter. Historically, this occurred in conjunction

5We took into account that inflation expectations are RPI based.
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with large volatility in the inflation-linked bond market, which witnessed reduced

liquidity. At that time, inflation-linked gilt asset swap spreads sharply widened

to historical highs. As a result, it is possible our estimation has been affected by

this event and that inflation expectations and risk premia require an adjustment

for liquidity premia, especially at longer horizons6. Linkers are typically less liquid

than conventional bonds of similar maturity. We tested the drop in 2008 against

alternative data sources, including inflation survey forecast data7. Our results

confirm the fall in 2008 is likely to be the product of a distortion in market prices.

Subsequently to the sharp drop, expectations have picked up and have reached,

once again, post-1990 average levels. In Figure 4.8, we plot the inflation premia at 5

and 10- year maturities. Inflation risk premia dropped following the introduction of

inflation targeting, conveying a period of lower uncertainty. In March 2009, inflation

risk premia strongly increased8. Since then, inflation premia have decreased, as

investors might be placing less weight on future inflation uncertainty. In Figure

4.9, we display actual and model-implied BEI rates. Finally, in Figure 4.10, we

decompose BEI rates into pure inflation expectations and inflation risk premia.

6If future inflation expectations are underestimated, inflation risk premia tend to be
overestimated in our model.

7From Consensus Economics.
8As previously noted, this is likely to be due to a pricing distortion in the linker market.
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4.5 Conclusion

In conclusion, we estimate a joint shadow-rate AFNS model that is able to impose

the zero lower bound restriction on nominal yields whilst allowing real yields to fall

below zero. The model proposed benefits from the Nelson Siegel factor loadings

which induce a robust estimation procedure and tractability. The no-arbitrage

restrictions enhance the theoretical grounds whilst simultaneously allowing the

decomposition of BEI rates into inflation expectations and risk premia. Our model

successfully fits both nominal and real yields as well as BEI rates.

We find that imposing the zero lower bound has corrected the risk premia

projections of nominal rates that would otherwise appear too low after 2009.

Inflation premia are larger in longer maturity nominal yields. Our results show that

the bond market has on average priced long term inflation in line with its target

after the early 1990s, which suggests monetary policy credibility. The shadow rate

projections show the ‘standard reaction function of the central bank’, independently

of the vicinity of rates to the zero lower bound. Under this scenario, current

monetary policy looks restrictive.

Finally, countercyclicality of risk premia paired with the fact that they increase

with maturity suggest that in times of a recession - below trend growth -, issuing

more short maturity bonds and rolling them over is likely to be more cost effective

over the long horizon than issuing long maturity bonds. On the other hand, when

the economy is in expansion, it could become more favorable to issue longer maturity

bonds, as the premium paid to investors, relative to short maturity bonds, is lower,

and the hedging of refinancing risk is cheaper on a relative scale.
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Appendix

4.A Appendix A: Tables and Figures

Table 4.1: First three principal components in nominal yields

Maturity First PC Second PC Third PC

6 months 0.4254 -0.4838 0.5294

12 months 0.4134 -0.3685 0.0913

24 months 0.3952 -0.1724 -0.3401

36 months 0.3806 -0.0042 -0.4878

60 months 0.3591 0.2580 -0.3268

84 months 0.3423 0.4339 0.0465

120 months 0.3177 0.5879 0.4988

% explained 97.28 2.55 0.17

NOTE: We provide the loadings of the yields of the set of maturities on the first three principal

components. The percentage of all nominal bond yields’ cross-sectional variation accounted for by

each component is displayed on the final row. The data comprises of monthly nominal zero coupon

bonds from October 1986 to December 2011.
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Table 4.2: Evaluation of alternative specifications of the 3 factor AFNS model -
Nominal -

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 12620.8009 23 -25195.6019 -25109.0747

(2) κP
32 = 0 12620.6907 22 0.6386 -25197.3813 -25114.6162

(3) κP
32 = κP

31 = 0 12620.6858 21 0.9952 -25199.3716 -25120.3685

(4) κP
32 = κP

31 = κP
12 = 0 12620.3134 20 0.8626 -25200.6268 -25125.3858

(5) κP
32 = ... = κP

21 = 0 12620.2646 19 0.9988 -25202.5292 -25131.0503

(6) κP
32 = ... = κP

13 = 0 12620.2040 18 0.9997 -25204.4080 -25136.6910

(7) κP
32 = ... = κP

23 = 0 12618.3373 17 0.7127 -25202.6745 -25138.7197

NOTE: We estimate and evaluate seven alternative specifications of the individual standard AFNS

model on nominal yields. For each specification, we record its log-likelihood (LogL), number of

parameters (k) and the p-value of a likelihood ratio test of the hypothesis that a specification

with (k-i) parameters is different from the one with (k-i+1) parameters. The information criteria

(AIC and BIC) are reported and we display their minimum in bold.
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Table 4.3: 3 factor Shadow-rate AFNS estimates for nominal rates

κP
t κP

.,1 κP
.,2 κP

.,3 θP σN
i,i

κP
1,. 0.0455 0.0000 0.0000 0.0594 0.0155

(0.0350) (0.0203) (0.0005)

κP
2,. 0.0000 0.2691 -0.1893 -0.0111 0.0193

(0.0353) (0.0506) (0.0230) (0.0008)

κP
3,. 0.0000 0.0000 0.3644 -0.0130 0.0313

(0.0324) (0.0237) (0.0016)

NOTE: The estimated parameters of the κN,P matrix, θN,P vector, and diagonal diffusion matrix σN
i,i

are given for our preferred individual three-factor shadow-rate AFNS model for nominal yields.

The estimated value of λN is 0.4760 with standard deviation of 0.0154. The numbers in parentheses

are the standard deviations of the estimated parameters.
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Table 4.4: Measures of fit for the 3 factor Shadow-rate AFNS model for nominal
yields

Maturity in months Mean(in bp) RMSE(in bp)

6 -0.4162 6.3991

12 0.1495 0.8540

24 0.1356 1.8846

36 0.2227 1.1613

60 0.3416 2.8460

84 0.3176 2.3382

120 -0.0822 9.7383

NOTE: The mean and RMSE of fitted errors of the preferred individual three-factor shadow-rate

AFNS model for nominal yields are given. All values are measured in basis points. The nominal

yields span from October 1986 to December 2011.
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Table 4.5: First three principal components in real yields

Maturity First PC Second PC Third PC

60 months 0.3853 0.6832 0.5069

72 months 0.3799 0.3391 -0.1831

84 months 0.3770 0.0557 -0.3971

90 months 0.3763 -0.0653 -0.3644

96 months 0.3758 -0.1738 -0.2597

108 months 0.3755 -0.3574 0.1048

120 months 0.3757 -0.5030 0.5836

% explained 98.46 1.52 0.01

NOTE: We provide the loadings of the yields of the set of maturities on the first three principal

components. The percentage of all real bond yields’ cross-sectional variation accounted for by

each component is displayed on the final row. The data comprises of monthly real zero coupon

bonds from October 1986 to December 2011.
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Table 4.6: Evaluation of alternative specifications of the 3 factor AFNS model - Real
-

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 15784.2651 23 -31522.5303 -31437.1144

(2) κP
32 = 0 15784.2650 22 0.9877 -31524.5300 -31442.8279

(3) κP
32 = κP

31 = 0 15784.2649 21 0.9999 -31526.5298 -31448.5414

(4) κP
32 = κP

31 = κP
21 = 0 15784.2641 20 1.0000 -31528.5283 -31454.2536

(5) κP
32 = ... = κP

23 = 0 15784.2630 19 1.0000 -31530.5259 -31459.9650

(6) κP
32 = ... = κP

13 = 0 15784.2288 18 0.9999 -31532.4576 -31465.6104

(7) κP
32 = ... = κP

12 = 0 15740.6851 17 0.0000 -31447.3702 -31384.2367

NOTE: We estimate and evaluate seven alternative specifications of the individual standard AFNS

model on real yields. For each specification, we record its log-likelihood (LogL), number of

parameters (k) and the p-value of a likelihood ratio test of the hypothesis that a specification

with k-i parameters is different from the one with k-i+1 parameters. The information criteria (AIC

and BIC) are reported and we display their minimum in bold.
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Table 4.7: 3 factor AFNS estimates for real rates

κP
t κP

.,1 κP
.,2 κP

.,3 θP σR
i,i

κP
1,. 0.0979 0.0027 0.0000 0.0054 0.0053

(0.0316) (0.0317) (0.0315) (0.0002)

κP
2,. 0.0000 0.1001 0.0000 0.0000 0.0458

(0.0316) (0.0316) (0.0282)

κP
3,. 0.0000 0.0000 0.1001 -0.0001 0.0578

(0.0316) (0.0316) (0.0292)

NOTE: The estimated parameters of the κR,P matrix, θR,P vector, and diagonal diffusion matrix σR
i,i

are given for our preferred individual three-factor standard AFNS model for real yields. The

estimated value of λR is 0.7108 with standard deviation of 0.0303. The numbers in parentheses are

the standard deviations of the estimated parameters.
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Table 4.8: Measures of fit for the 3 factor AFNS model for real yields

Maturity in months Mean (in bp) RMSE (in bp)

60 0.4839 1.8435

72 -0.0190 0.3016

84 -0.0001 0.0002

90 0.0174 0.0620

96 -0.0001 0.0004

108 -0.1589 0.5680

120 -0.4290 1.6344

NOTE: The mean and RMSE of fitted errors of the preferred individual three-factor standard

AFNS model for real yields are given. All values are measured in basis points. The real yields span

from October 1986 to December 2011.
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Table 4.9: First six principal components in nominal and real yields

Maturity First PC Second PC Third PC Fourth PC Fifth PC Sixth PC

Nominal yields

6 months 0.3945 0.4250 -0.2763 0.4725 0.2821 -0.3863

12 months 0.3841 0.3304 -0.2186 0.1014 -0.0294 0.3039

24 months 0.3681 0.1868 -0.1008 -0.2689 -0.2551 0.4024

36 months 0.3551 0.0791 0.0176 -0.4072 -0.2765 0.0541

60 months 0.3355 -0.0524 0.2419 -0.3228 -0.1074 -0.4768

84 months 0.3198 -0.1148 0.4212 -0.0675 0.1188 -0.3572

120 months 0.2968 -0.1675 0.5828 0.2762 0.3816 0.4820

Real yields

60 months 0.1354 -0.3054 -0.3665 -0.3340 0.5170 0.0098

72 months 0.1355 -0.3049 -0.2701 -0.1194 0.2453 0.0285

84 months 0.1364 -0.3023 -0.1905 0.0467 0.0220 0.0254

90 months 0.1370 -0.3004 -0.1562 0.1135 -0.0726 0.0170

96 months 0.1378 -0.2981 -0.1253 0.1708 -0.1568 0.0053

108 months 0.1393 -0.2929 -0.0722 0.2607 -0.2961 -0.0256

120 months 0.1409 -0.2873 -0.0293 0.3246 -0.4016 -0.0613

% explained 94.76 3.08 1.97 0.14 0.03 0.01

NOTE: We provide the loadings of the yields of the set of maturities on the first three principal

components. The percentage of all nominal and real bond yields’ cross-sectional variation

accounted for by each component is displayed on the final row. The data comprises of monthly

nominal and real zero coupon bonds from October 1986 to December 2011.

116



THE UK TERM STRUCTURE AT THE ZLB

Table 4.10: Evalutation of alternative specifications of the 5 factor joint AFNS model

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 26534.3876 52 -52964.7753 -52771.6611

(2) κP
32 = 0 26534.3876 51 1.0000 -52966.7753 -52777.3749

(3) κP
32 = κP

53 = 0 26534.3868 50 0.9992 -52968.7736 -52783.0870

(4) κP
32 = κP

53 = κP
41 = 0 26534.3825 49 0.9998 -52970.7650 -52788.7921

(5) κP
32 = ... = κP

45 = 0 26534.3798 48 1.0000 -52972.7596 -52794.5004

(6) κP
32 = ... = κP

21 = 0 26534.3787 47 1.0000 -52974.7574 -52800.2120

(7) κP
32 = ... = κP

12 = 0 26534.3729 46 1.0000 -52976.7459 -52805.9142

(8) κP
32 = ... = κP

15 = 0 26534.3083 45 1.0000 -52978.6166 -52811.4986

(9) κP
32 = ... = κP

31 = 0 26534.3079 44 1.0000 -52980.6158 -52817.2115

(10) κP
32 = ... = κP

51 = 0 26534.2901 43 1.0000 -52982.5802 -52822.8897

(11) κP
32 = ... = κP

23 = 0 26534.2888 42 1.0000 -52984.5777 -52828.6009

(12) κP
32 = ... = κP

24 = 0 26534.2784 41 1.0000 -52986.5569 -52834.2938

(13) κP
32 = ... = κP

43 = 0 26534.2271 40 1.0000 -52988.4543 -52839.9050

(14) κP
32 = ... = κP

52 = 0 26534.1479 39 1.0000 -52990.2957 -52845.4601

(15) κP
32 = ... = κP

13 = 0 26534.1478 38 1.0000 -52992.2957 -52851.1738

(16) κP
32 = ... = κP

14 = 0 26534.1476 37 1.0000 -52994.2953 -52856.8872

(17) κP
32 = ... = κP

42 = 0 26534.1475 36 1.0000 -52996.2951 -52862.6007

(18) κP
32 = ... = κP

54 = 0 26528.5899 35 0.8505 -52987.1798 -52857.1992

(19) κP
32 = ... = κP

25 = 0 26528.5811 34 1.0000 -52989.1623 -52862.8953

(20) κP
32 = ... = κP

35 = 0 26528.5326 33 1.0000 -52991.0653 -52868.5121

(21) κP
32 = ... = κP

34 = 0 26490.6458 32 0.0000 -52917.2917 -52798.4522

NOTE: We estimate and evaluate thirteen alternative specifications of the joint standard AFNS

model on nominal and real yields. For each specification, we record its log-likelihood (LogL),

number of parameters (k) and the p-value of a likelihood ratio test of the hypothesis that

a specification with (k-i) parameters is different from the one with (k-i+1) parameters. The

information criteria (AIC and BIC) are reported and we display their minimum in bold.

117



THE UK TERM STRUCTURE AT THE ZLB

Table 4.11: 5 factor joint Shadow-rate AFNS estimates

κP
t κP

.,1 κP
.,2 κP

.,3 κP
.,4 κP

.,5 θP σJ
i,i

κP
1,. 0.0120 0.0000 0.0000 0.0000 0.0000 0.0265 0.0149

(0.0314) (0.0022) (0.0005)

κP
2,. 0.0000 0.1011 0.0000 0.0000 0.0823 -0.0047 0.0297

(0.0316) (0.0127) (0.0014) (0.0010)

κP
3,. 0.0000 0.0000 0.0898 0.1442 -0.1847 0.0196 0.0278

(0.0314) (0.0283) (0.0256) (0.0033) (0.0011)

κP
4,. 0.0000 0.0000 0.0000 0.0158 0.0000 -0.0002 -0.0162

(0.0277) (0.0307) (0.0012)

κP
5,. 0.0000 0.0000 0.0000 -0.0534 0.1561 0.0130 0.0210

(0.0263) (0.0215) (0.0298) (0.0007)

NOTE: The estimated parameters of the κJ,P matrix, θJ,P vector, and diagonal diffusion matrix σJ
i,i

are given for our preferred joint five-factor shadow-rate AFNS model for nominal and real yields.

The estimated value of λN is 0.5311 with standard deviation of 0.0187 and the estimated value of λR is

0.1765 with standard deviation of 0.0095. The estimated value of αR is 0.5538 with standard deviation

of 0.0355. The numbers in parentheses are the standard deviations of the estimated parameters.
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Table 4.12: Measures of fit for the 5 factor joint Shadow-rate AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

Nominal yield

6 -0.0545 7.5306

12 0.3977 3.9062

24 0.4343 5.3254

36 0.5764 6.6117

60 0.7707 9.0720

84 0.8617 10.1789

120 0.8483 15.1684

Real yield

60 -1.8197 6.6548

72 -0.5877 2.0162

84 -0.0040 0.0133

90 0.0655 0.2045

96 0.0000 0.0001

108 -0.4821 1.3792

120 -1.3252 3.6122

NOTE: The mean and RMSE of fitted errors of the preferred joint shadow-rate AFNS model for

nominal and real yields are given. All values are measured in basis points. The nominal and real

yields span from October 1986 to December 2011.
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Figure 4.1: Nominal risk premia by maturity - AFNS - (in bp)
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NOTE: Term premia of nominal yields at all maturities, measured in basis points,

estimated with the preferred individual three-factor AFNS.

120



THE UK TERM STRUCTURE AT THE ZLB

Figure 4.2: Nominal risk premia by maturity - Shadow-rate AFNS - (in bp)
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NOTE: Term premia of nominal yields at all maturities, measured in basis points,

estimated with the preferred individual three-factor shadow-rate AFNS.
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Figure 4.3: Forward and expected forward curves (in bp)
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NOTE: The one-year forward curve of nominal yields, the expected one-year

forward curves of nominal yields stemming from the two models (namely, the

preferred individual three-factor AFNS and shadow-rate AFNS), as well as the

shadow rate. All curves are extracted for December 2011 and are measured in

basis points.
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Figure 4.4: Model-implied nominal yield decomposition
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NOTE: Nominal yields (yhat), estimated with the preferred individual three-

factor shadow-rate AFNS, decomposed into risk-neutral (ystar) and term premia

(RP) components, by maturity.
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Figure 4.5: Nominal risk premia by maturity (in bp)
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NOTE: Term premia of nominal yields at all maturities, measured in basis points,

estimated with the preferred joint shadow-rate AFNS.
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Figure 4.6: Model-implied nominal yield decomposition
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NOTE: Nominal yields (yhat), estimated with the preferred joint shadow-rate

AFNS, decomposed into risk-neutral (ystar) and term premia (RP) components,

by maturity
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Figure 4.7: Inflation expectations by maturity and RPI
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NOTE: The 5- and 10- year expected inflation rates, implied from the preferred

joint shadow-rate AFNS model, and historical RPI and CPI inflation target.
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Figure 4.8: Inflation premia by maturity
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NOTE: The 5- and 10- year inflation risk premia, implied from the preferred joint

shadow-rate AFNS model.
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Figure 4.9: BEI rates: actual vs. model-implied
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NOTE: The 5- and 10- year BEI rates, implied from the preferred joint AFNS

model.
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Figure 4.10: Model-implied decomposed BEI rates
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NOTE: The 5- and 10- year BEI rates, implied from the preferred joint AFNS

model, decomposed into inflation expectation (IEX) and risk premia (IRP)

components.
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4.B Appendix B: Shadow-rate AFNS model à la

Krippner

The instantaneous shadow forward rates are obtained by deriving the logarithmic

bond prices P(t,T) with respect to the maturity T, as follows:

f(t, T ) = − ∂

∂T
lnP (t, T )

= X1 + e−λ(T−t)X2 + λ(T − t)e−λ(T−t)X3 + Af (t, T )

(4.B.38)

where Af (t, T ) is obtained below:

Af (t, T ) = −∂A(t, T )
∂T

= −1

2
σ2
11(T − t)2 − 1

2
σ2
22

(

1− e−λ(T−t)

λ

)2

− 1

2
σ2
33

(

(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

)2

(4.B.39)

Let us now denote by f(t, T ), the Zero Lower Bound (ZLB) instantaneous

forward rate. Setting Φ(.) to be the standard normal cumulative probability, we

obtain a representation for f(t, T ):

f(t, T ) = f(t, T )Φ

(

f(t, T )

ω(t, T )

)

+ ω(t, T )
1√
2π
exp

(

−1

2

[

f(t, T )

ω(t, T )

]2
)

(4.B.40)

where ω(t, T ) is defined below as a transformation of the conditional variance of

a European call option.

We denote by v(t, T, T + ǫ) the conditional variance of a European call option
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maturing at time T, contingent on the zero-coupon bond with maturity T + ǫ.

v(t,T, T + ǫ) = σ2
11ǫ

2(T − t) + σ2
22

(

1− e−λǫ

λ

)2
1− e−2λ(T−t)

2λ

+ σ2
33

[

(

1− e−λǫ

λ

)2
1− e−2λ(T−t)

2λ

+ e−2λǫ

[

ǫ2 − (T − t+ ǫ)2e−2λ(T−t)

2λ
+
ǫ− (T − t+ ǫ)e−2λ(T−t)

2λ2
+

1− e−2λ(T−t)

4λ3

]

− 1

2λ
(T − t)2e−2λ(T−t) − 1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ3

−
(

1− e−λǫ
)

e−λǫ

λ2

[

ǫ− (T − t+ ǫ)e−2λ(T−t) +
1− e−2λ(T−t)

2λ

]

+

(

1− e−λǫ
)

λ2

[

1− e−2λ(T−t)

2λ
− (T − t)e−2λ(T−t)

]

+
ǫe−λǫ

λ

[

(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ

]

+
ǫe−λǫ

λ

[

(T − t)2e−2λ(T−t) +
1

λ
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ2

]

]

(4.B.41)

The conditional variance is further transformed to obtain a representation of

ω(t, T )2:

ω(t, T )2 =
1

2
lim
ǫ→0

∂2v(t, T, T + ǫ)

∂ǫ2

= σ2
11(T − t) + σ2

22

(

1− e−2λ(T−t)

2λ

)

+ σ2
33

[

1− e−2λ(T−t)

4λ
− 1

2
(T − t)e−2λ(T−t) − 1

2
λ(T − t)2e−2λ(T−t)

]

(4.B.42)
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4.C Appendix C: Extended Kalman filter

The estimation of a shadow rate term structure model resembles the one of a

Gaussian model in many ways. Specifically, the state equation of the state-space

representation remains intact and the sole change in the algorithm stems from the

non-linearity in the space equation. Therefore, rather than using a Kalman filter

routine, an Extended Kalman filter is used, whereby the algorithm remains identical

in all the steps that relate to the state equation, and the only change that occurs

is to perform a Taylor expansion in order to approximate the space equation and

linearize it.

First, let us disclose the details pertaining to the state equation, which are

identical to the standard Kalman filter. Below is the transition equation in its

discretized form.

XT =
[

I − exp(−κP(T − t))
]

θP + exp(−κP(T − t))Xt + ηt (4.C.43)

The standard moments conditions are displayed below.

EP [XT |Ft] =
[

I − exp(−κP(T − t))
]

θP + exp(−κP(T − t))Xt (4.C.44)

VP [XT |Ft] =

∫ T

t

exp(−κP(T − s))ΣΣ′exp(−κP′

(T − s))ds (4.C.45)

The initial conditions for the Extended Kalman filter are set to the unconditional

mean and covariance matrix, given in equation (4.C.46) and (4.C.47), as in the
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standard case.

X̂0 = θP (4.C.46)

Σ̂0 =

∫ ∞

0

exp(−κPs)ΣΣ′exp(−κP′

s)ds (4.C.47)

Now, proceeding to the differences that stem from the non-linearity of the

measurement equation. Denote by ψ the parameters of the model and assume

the error terms ηt and ǫt are orthogonal and ǫt is i.i.d. The space equation can be

written as follows, where the function k is non-linear.

yt = k(Xt;ψ) + ǫt (4.C.48)

This equation is now linearized using a first-order Taylor expansion as shown

below. The approximation is performed around the optimal guess of Xt within the

prediction step of the algorithm, given by Xt|t−1.

k(Xt;ψ) ≈ k(Xt|t−1;ψ) +
∂k(Xt;ψ)

∂Xt

|Xt=Xt|t−1
(Xt −Xt|t−1) (4.C.49)

The space equation takes the following form.

yt = At(ψ) + Bt(ψ)Xt + ǫt (4.C.50)
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where At(ψ) and Bt(ψ) are provided below.

At(ψ) = k(Xt|t−1;ψ)−
∂k(Xt;ψ)

∂Xt

|Xt=Xt|t−1
Xt|t−1 (4.C.51)

Bt(ψ) =
∂k(Xt;ψ)

∂Xt

|Xt=Xt|t−1
(4.C.52)
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Throughout this thesis, an outline of affine term structure models is provided.

This particular class of term structure models has been made very popular in recent

years due to its ability to capture the dynamics of yields both across their time series

and cross-section and its ease in imposing the absence of arbitrage, allowing in turn

the obtention of adaptable risk premia specifications. Affine term structure models

have the advantage of allowing various extensions, in a wide range, to their basic

primary setup, asserting their importance in the literature. However, difficulties

do arise in their estimation and in the interpretation of the latent factors used.

This thesis addresses both problems by utilizing a specific structure to the factor

loadings, known as the Nelson-Siegel method. The estimation of this term structure

model not only circumvents the global optimum issues but further provides some

interpretation to the factors, given the level, slope and curvature factors of the

Nelson-Siegel interpolation are not only intuitive in their nature, but also have

reliable macroeconomic links.

The present thesis introduces and employs dynamic term structure models

to macroeconomic and financial research questions. More precisely, this study

initially pertains to financial markets by establishing a tie between interest rates

and exchange rates. The study follows by concerning itself with macroeconomic

objectives, by exploiting the relationship between yields and inflation.

In a first instance, this study exploits a theoretical relationship between interest

rates and exchange rates, namely the uncovered interest rate parity, with the aim

to extract currency risk premia through a bilateral affine term structure model

with stochastic volatility. The method proposed consists of developing an affine

Arbitrage-Free class of dynamic Nelson-Siegel term structure models (AFNS) with

stochastic volatility to obtain the domestic and foreign discount rate variations,
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which in turn are used to derive a representation of exchange rate depreciations. The

manipulation of no-arbitrage restrictions allows to endogenously capture currency

risk premia. The estimation exercise comprises of a state-space analysis using the

Kalman filter. The imposition of the Dynamic Nelson-Siegel (DNS) structure allows

for a tractable and robust estimation, offering significant computational benefits,

whilst no-arbitrage restrictions enforce the model with theoretically appealing

properties. Empirical findings suggest that estimated currency risk premia are able

to account for the forward premium puzzle.

In a second instance, inflation expectations and inflation risk premia are derived

using a shadow rate class of term structure models. In response to the recent

financial crisis, the Bank of England reduced short term interest rates to 0.5%.

With such low short term rates, traditional term structure models are likely to

be inappropriate for estimating inflation expectations and risk premia, because

expectations based on such models might implicitly violate the zero lower bound

condition. In this segment both the nominal and real UK term structure of

interest rates are studied, using the dynamic term structure model introduced by

Christensen and Rudebusch (2013), which imposes the non-negativity of nominal

short maturity rates. Estimates of the term premia, inflation risk premia and

market-implied inflation expectations are provided. Findings indicate that the zero

lower bound specification is necessary to reflect countercyclicality in nominal term

premia projections and that medium and long term inflation expectations have been

contained within narrower bounds since the early 1990s, suggesting monetary policy

credibility after the introduction of inflation targeting.

For my future research projects, I wish to draw from the analysis and discussion

of this thesis and elaborate further on this strand of the literature, this time
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emphasizing on the joint effect of monetary economics and finance on asset prices,

financial markets and monetary policy. Two main perspectives emerge within my

research agenda. A potential project, that inclines more towards macroeconomic

concepts, consists in building an extension of the two above-mentioned models by

constructing a Taylor rule type of model which would further extend to include

growth. Furthermore, an alternative suggests to further exploit the interaction

between macroeconomic and financial data to explore a gap in the literature.

Specifically, the study includes providing an economic interpretation to the latent

factors, used in the state-space representation, by venturing towards macro-finance

models and high frequency data. This analysis is built on the prior belief that

assets are affected by macroeconomic conditions but simultaneously suffer from

microstructure phenomena.

Notwithstanding the extensions listed above, it is crucial to note that the most

important message to draw from this thesis is that the literature on risk premia

is still at its infancy due to the striking complexity involved in estimating an

unobservable variable which nonetheless contains a very rich informational content.

In turn, in future research, I wish to investigate the sensitivity of the price of risk,

and consequently of risk premia, to different specifications in the mean reversion

matrix of the states’ dynamics. The aim is to determine a preferred specification for

dynamic term structure models using a Bayesian shrinkage estimation approach.

To conclude, this thesis builds a spherical account of the versatility of affine

models by implementing them to distinct monetary finance applications. Several

of the pending issues in the literature are addressed and the grounds for future

interesting questions are paved.
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