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Abstract

The scattering and transmission of sound by an elastic  spherical  shell  is  considered when it  is

subject to an incoming monochromatic planar wave. It is aimed to cancel the sound scattering using

combinations of multi-pole sources located at the centre of a shell filled with compressible fluid.

Assuming linear acoustics and structural dynamics, exact solutions are derived for total elimination

of the sound scattering for three cases: a free- space, near a hard ground or near a free-surface,

where in the last two cases it is assumed that the incoming wave propagates normal to the interface

to maximize sound reflection back unto the source of the incoming wave. An elastic spherical shell

of 1 m radius embedded in water and filled with air or oil is analysed to show the dominance of

low- mode numbers for frequencies of less than 10 kHz and thus demonstrate the ability of this

approach to damp acoustic scattering by means of low-order multi-poles inside the shell. Contour

and mode distribution plots are also given and analysed.
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1. Introduction

   Sound scattering by a perfectly symmetric sphere is a fundamental topic in acoustics that has

attracted  significant  attention  since Lord Rayleigh  had presented  an analytical  solution  using a

Fourier-Legendre’ series for scattering by a rigid (hard) sphere in free- space [1]. This topic has a

wide range of applications from underwater acoustics [2] and room acoustics to particle dynamics

control [3]. Accounting for the sphere’s structural flexibility adds another level of complexity  in

terms of sound-structure interaction and sound transmission through the structure. A comprehensive

analysis for elastic plates, cylindrical and spherical shells acting as sound radiators and scatterers,

was given by Junger & Feit [4] within the framework of linear acoustics and structural dynamics,

by employing a  Fourier series based approach. 

   Sound scattering by an elastic spherical shell subject to an incoming planar wave was extended to

the case of a shell located near a free- surface or a hard ground [2]. The image method and the

collocation approach were pursued by building elements on the shell’s surface. As in the case of the

solution for a plate embedded on a free surface [5], a least-square operation had to be used in order

to overcome an ill-conditioned matrix derived to compute the amplitudes of the Fourier series of the

scattered pressure field. Acoustic scattering by an elastic spherical shell filled with air and located

near the seabed or free surface was also pursued by Sessarego el al [6] to find strong resonance

interaction between the shell and the interface which was located close to it. A similar conclusion

was drawn by Avital & Miloh [7] who presented some practical solutions for cancellation of sound

scattering using pressure singularities embedded on the shell’s wall.

   One important aim of the published studies of sound-scattering studies is to achieve reduction of

the scattered sound field or transmitted sound, in order to reduce the  acoustic signature and avoid

detection. This was usually achieved using passive means, while the new formulation of this study

seeks to do so using an active mean of a multi-pole sound-source. Passive means include coating

the body with material that will absorb some of the acoustic energy, while minimizing reflection by
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selecting  the   surface  acoustic  impedance  to  be  similar  to  that  of  the  surrounding  medium.

Viscoelastic material is commonly used for this purpose in underwater acoustic applications and

Partridge  [8] analysed the case of partly coated axisymmetric bodies to show better scattering’s

reduction at high frequencies in water (>2 kHz). A bi-layer of elastic coating was demonstrated for a

cylindrical shell to reduce scattering for a certain target frequency (or  range of frequencies)  by

using an optimization procedure [9]. An alternative coating can be achieved by a combination of

small  cavities  and  channels  acting  together  as  Helmholtz  resonators  that  damp  the  incoming

acoustic energy and reduce reflection. This approach goes back to the World War II era and has

recently re-emerged as part of the modern meta-material approach [10]. An interesting approach of

using the Janus sphere concept, where part of the sphere is hard and the other is soft was suggested

by Kim el al [11] to reduce sound scattering, where the soft/hard domain sizes could be altered

using the shape memory alloys (SMA) technology. This approach was shown to have the potential

of significantly reducing the scattered acoustic energy of the sphere when it is near a free -surface or

a hard ground, by masking the sphere as part of the reflection coming from the free- surface or  hard

interfaces. 

   Reduction of sound scattering using pressure actuators mounted on the shell’s wall and utilizing

the linear structural dynamics of the shell, was proposed by Avital & Miloh [12] for free- surface

piercing  cylinders,  a  spherical  shell  [7]  and a  circular  plate  embedded  on  a  free-  surface  [5].

Analytical  solutions  were shown to  exist  for  the  optimal  distribution  of  the pressure actuators,

yielding  total  elimination  of  the  sound  scattering,  when  assuming  linear  acoustics.  Practically

speaking, when using a finite number of pressure actuators the method was shown to have good

capability of significantly reducing sound scattering, especially for low to mid-range frequencies,

i.e. when the shell is compact or mildly non-compact  relative to the incoming wave length. The

mathematical rationale of this approach can be found in the source substitution method used to

model sound scattering, replacing the body by a distribution of simple sources within the shell [13].
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The effect of those simple sources is similar to the effect of the pressure actuators, however the

latter affect the sound field not directly as the simple source but indirectly through the structural

dynamics of the shell. 

   Alternatively, the source substitution method can be based on a series of higher-order multi-poles

located at the centre of the body [14], and in the case of a rigid sphere this method simply converges

to  Rayleigh’s  solution  for  sound scattering  [1].  This  leads  to  the  aim of  this  study to  achieve

reduction of sound scattering using active means by locating a multi-pole source at the centre of the

sphere.  Such source can be applied as a combination of simple sources located at  a very short

distance of each other while acting asymmetrically towards each other. Such approach requires the

shell to be filled with a compressible fluid and as in the case of the pressure actuators method, it

will be shown that there is an exact solution for the forcing multi-poles  to yield total cancellation of

the sound scattering,  However, for practical reasons, the order of those multi-poles can only be

finite and low. Therefore special attention will be given to examine the feasibility of using   low-

order forcing multi-poles at the shell’s centre to significantly reduce the scattered acoustic energy,

i.e., by at least  10 dB.  

   Hence the aim of this paper is to present a new formulation to reduce sound scattering using a

multi-pole source configuration and evaluate it for an elastic spherical shell in free space or near a

free or hard surface.

   The following section presents the methodology of the Fourier-Legendre series approach used in

this study for an elastic spherical shell embedded in a free- space, near a free- surface or a hard

ground that is illustrated in Fig 1. This is followed by the Results section, including verification

cases and analysis of the three scenarios of an elastic shell in free- space, near a free-surface and a

hard ground.
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2. Methodology

    The governing equations and analytical solutions are derived in this section for a spherical shell

as illustrated in Fig 1. Linear acoustics and structural dynamics are assumed. The incident wave is

considered as monochromatic and planar, hence its actual source is assumed to be located far from

the  shell  [7,  11].  First  the  free-space  case  is  considered  and  then  the  derivation  is  extended

correspondingly both to the free- surface and hard ground cases.

a. The spherical shell is in free space

   Following Kim et al. [11], the sound pressure pe outside the sphere can be expressed as

 pe (x , z ,t )=p0 ei (k e z−ω t)
+Σn=0

N bnhn
(1)

(k e r )Pn(cosθ)e−iω t . (1)

The first term on the right hand side of Eq (1) represents the incident wave pressure and the second

term represents the scattered wave pressure. As linear acoustics is assumed, the amplitude p0 can be

taken as  unity  without losing any generality. The incident wave's propagation direction is z,  x is

perpendicular to z and t is time. In addition ke is the wave number,  is the wave frequency, r is the

spherical  radius measured from the sphere's centre and   is the polar angle.  Finally,  h(1)
n is the

spherical  Hankel  function  of  the  first  kind,  Pn(cos  )  is  the  Legendre’ function  and  bn are

coefficients to be determined.

   The acoustic pressure inside the shell pi can be accordingly written as

 pi(x , z ,t )=Σn=0
N cn jn

(1)
(k ir )Pn(cosθ)e−iω t

+Σn=0
N f n hn

(1)
(k ir ) Pn(cosθ)e−iωt . (2)

The first term on the right hand side of Eq. (2) represents the wave pressure transmitted into the

shell’s inner fluid and the second  the pressure due to the multi-poles  at the centre of the shell.  The

wave number in the fluid within the shell is denoted by ki, jn is the spherical Bessel function of the

first  kind.  In this  study we will  match the external  sound pressure with the internal  one in the

Fourier-Legendre space. For this purpose the exp(ikez) function in the incident wave term of Eq. (1)

can be expanded as
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 e ike z
=Σn=0

N
(2n+1) in jn(ke r) Pn(cos θ) . (3)

Similarly the shell's deflection  w can also be expressed using a Legendre series;

 w (θ , t )=Σn=0
N W n Pn(cosθ)e−iωt . (4)

By relating the pressure discontinuity across the elastic shell to its  radial deflection, one gets

 W n=
cn jn(k i a)+ f n hn

(1)
(k i a)−[(2n+1)in jn(ke a)+bn hn

(1)
(ke a)]

iω Zn

. (5)

Where Zn is the corresponding shell acoustic impedance for mode n and its expression is given in

Appendix  A.  Closure  is  obtained  by  enforcing,  the  dynamic  boundary  conditions  relating  the

normal derivatives of the external and internal pressures with the shell's deflection [7, 12]: 

 
 pe

 r
=−ρe


2W
 t 2 , 

 pi

r
=−ρi


2 W
 t2 . ( 6)

where e and i  denote the external and internal fluid densities respectively.

   Combining Eqs. (5) & (6) leads to the following set of equations;

 A11bn+A12 cn+ A13 f n=F1 . (7)

 A21bn+A22 cn+ A23 f n=F2 . (8)

The expressions for A11, A12, A21, A22, F1 and F2 are given in Appendix B. There are three unknowns

in Eqs. (7) & (8), the scattered pressure amplitude bn, the transmitted pressure amplitude cn and the

multi-pole pressure amplitude fn. If there are no multi-poles inside the shell, i.e. fn=0, then bn and cn

can be determined uniquely. Alternatively, if the scattered amplitude is to be completely cancelled,

i.e., bn=0, then the coefficients cn and fn can also be uniquely determined.

b. The spherical shell is near a free-surface or a hard-ground interface

    The extension of the free- space derivation to the free surface case follows the methodology of

Avital & Miloh [7]. An illustration of the problem is given in Fig 1. The free surface effect can be

modelled by putting an anti-image of the shell above the  free- surface. In this derivation we will
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assume that the incident wave propagates perpendicular to the free surface as in [5, 7, 11]. This is

the case where the sound source of the incident wave and the receiver are located at the same place

and the wave is sent perpendicular to the free-surface to maximize reflections propagating back to

the receiver. Hence the acoustic pressure psct,img scattered by the anti-image sphere can be expressed

as 

 psct ,img(x , z ,t)=−Σn=0
N bnhn

(1)
(k e r img) Pn(cosθimg)e−iω t . (9)

  However, Expression (9) is not convenient as rimg and img are measured as relative to the centre of

the anti-image sphere. Therefore as in Refs [7, 11] a transformation matrix is used to express the

scattered pressure as a Legendre’ series on the original sphere's surface and relative to its centre;

 psct ,img(r=a ,θ ,t)=Σn=0
N en Pn(cosθ)e−iωt , en=Σ j=0

N Enj b j . (10)

Similarly one can express;

 
 psct ,img

 r
(r=a ,θ , t)=Σn=0

N gn Pn(cos θ)e−iω t , gn=Σ j=0
N Gnj b j . (11)

The transformation matrices Enj and Gnj can be found by calculating the spatial distribution of each

mode in Eq (9) or its radial derivative evaluated on the sphere's surface and decompose it into a

Legendre series.

   The incident wave can be expressed as 

 pinc(x , z , t)=sin (ke (z−zs))e
−iωt

=
e−ike z s e ike z

−e ike zs e−ike z

2i
e−iω t , (12)

where the free surface is at a distance  zs above the sphere's centre. Thus one can modify the free

space derivation to include the effect of psct,img and find the amplitudes of the scattered, transmitted

and multi-pole  source  waves  for  exp(ikez)  and exp(-ikez)  separately  and then  combine  them as

follows;

 bn=
e−ik e zs bn

(1)
−eik e zs ̃bn

(2)

2i
. (13)
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   Where b(1)
n and b(2)

n are the scattered wave amplitudes for the incident waves exp(ikez) and exp(-

ikez) respectively. Similar relations can used for the transmitted wave amplitude  cn and the multi-

pole amplitude fn. The governing equations that account for the presence of the anti-image sphere

and the incident wave exp(ikez) are;

 A11bn
(1)

+Σ j=0
N

(Gnj−
ρe ω

Zn

)bn
(1 )

+ A12cn
(1)

+ A13 f n
(1)

=F1 , (14)

 A21bn
(1)

−
ρiω

Zn

Σ j=0
N Enj b j

(1 )
+ A22cn

(1)
+ A23 f n

(1)
=F2 . (15)

The expressions for A11, A12, A21, A22, F1 and F2 are the same as those for the free- space case and are

given in Appendix B. Eqs. (14) and (15) consist of a matrix equation that can be solved using an

LU-solver. In order to solve for the case of the incident wave exp(-ikez) one simply has to replace ke

with -ke in the expressions of Eqs. (14) and (15), yielding the sought equations for b(2)
n, c(2)

n and f(2)
n.

   As in the free-space case, there are two distinct scenarios of interest. The first is without a multi--

pole  at the centre of the sphere, i.e. f(1)
n= f(2)

n = 0 and the second is for a nil scattered wave i.e. c1)
n=

c(2)
n = 0. In both scenarios Eqs. (14) and (15) can be solved to determine the rest of the wave

amplitudes.  The extension for a hard ground is straightforward,  instead of an anti-image of the

sphere an image of the sphere is used, i.e. the minus sign before the summation operator on the

right-hand side of Eq. (9) disappears. The incoming wave is expressed as a standing wave with a

cosine distribution instead of the  sine distribution in Eq (12) to reflect that the pressure normal

derivative p/ z is zero on the interface and not just the pressure as in the free-surface case. Thus,

the minus sign on the right hand side of Eq (13) is replaced by a plus sign and the i disappears from

the denominator. The rest of the analysis remains the same.

3. Results and analysis

    The Fortran code used for this study is based on earlier published studies [5, 7, 11]. Nevertheless,

a verification study is presented in Fig 2 for the sound scattering by an empty flexible spherical
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shell that was analytically solved by Junger and Feit [4]. The shell has an Aluminium wall with 5

mm thickness and the sphere’s radius is 1 m. The shell is assumed to be embedded in free space of

water with ambient density and speed of sound (e, ce) = (1000 kg/m3, 1500 m/s) and the incoming

wave frequency is 1500 Hz. A fictitious fluid of a very low acoustic impedance was assumed to be

inside the shell for numerical purpose. Very good agreement is obtained between the numerical and

analytical solutions, with a mild difference at the trough of the directivity, which is normal to the

incoming propagation path. This is believed to be associated with the inner fluid that is accounted in

the  numerical  solution,  but  absent  in  the  theoretical  solution.  Further  reducing  the  acoustic

impedance of the inner fluid reduced the difference at the trough of the directivity, but also led to

numerical instabilities in calculating high modes. When doing so, one should also be careful not to

confuse between the dimensional frequency  and the non-dimensional frequency  of the shell’s

impedance (see Appendix A) to avoid over-stiffening of the shell [7]. Other verifications included

comparison with Rayleigh’s analytical solution for scattered sound by a rigid sphere in free space

[1], checking that the pressure behaved as expected at the free- surface and hard ground, i.e. zero

pressure and zero pressure gradient respectively, and the pressure distributions at arbitrary points in

the sound field fulfilled the Helmholtz equation.

    The contours of the scattered and transmitted pressure-amplitude fields are plotted in Fig 3 for

the Aluminium spherical shell of 1 m radius and wall thickness of 5 mm embedded in a free-space

surrounded by water. No multi-pole forcing is applied at the centre of the shell to damp the sound

scattering.  The  incoming  planar  wave propagates  at  the  positive  direction  of  z  as  in  Fig  1  at

frequency of 6000 Hz, i.e. the incoming wave length is 0.25 m. The shell is filled with air in Fig 3a

and oil (octane) in Fig 3b, where the ambient density and speed of sound are (i, ci) = (1.225 kg/m3,

343 m/s) for air and (703 kg/m3, 1171 m/s) for octane. The amplitude of the incoming planar wave

p0 was  taken  as  1Pa  as  in  all  following  figures,  thus  the  amplitude  contours  can  be  seen  as

normalised by the amplitude of the incoming wave.
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   The scattered field creates a wake behind the sphere, which is clearer for the shell filled with air in

Fig 3a. On the other hand, the levels of the transmitted pressure inside the shell are very low as

compared to the scattered pressure for the shell filled with air. This is better illustrated in Fig 4,

focusing  on  the  pressure  field  inside  the  shell  filled  by  air.  Such  low  pressure  levels  can  be

explained by the low acoustic impedance of the air as compared to the water and thus the air’s

interface with shell behaves similarly to a free- surface, reflecting most of the transmitted sound

back into the shell  and the water.  Standing waves  inside the shells  of Fig 4 are  revealed  with

patterns close to spherical  and with higher amplitude level on the side that faces the incoming

planar wave, i.e. z ~ -1m.

   Changing the inner fluid from air to oil significantly increases the pressure levels, particularly

inside the shell as seen in Fig 3b. This is caused by the better match between the inner and outer

fluid acoustic impedances, thus more energy enters the the shell and is contained there. A similar

finding was made for cylindrical shells  filled with a liquid similar to the outer liquid [12]. It can

lead to a shorter scattered wake as more energy is captured by the internal fluid, but on the other

hand it can cause resonance effects at certain frequencies, making the shell act more as a radiator

than a scatterer [12].

   The pressure fields caused  by the forcing multi-poles when they totally eliminate the externally

scattered sound field are plotted in Fig 5 for the air-filled shell of Figs 3. It is clearly seen that the

pressure fields are dominated by low-order multi-poles, as a source of a few rays of troughs in Fig

5a, leading to skewed field of an octopole that can be generated by a combination of a dipole and

quadrupole. Similar behaviour was observed for the oil-filled shell and thus the following results

focus on the air-filled shell. The transmitted pressure contours for the case with forcing multi-poles

cancelling the scattered sound are shown in Fig 6. They are also dominated by low order modes,

showing a pattern as of a strong horizontal dipole (n=1) at the centre of the shell surrounded by
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almost perfect spherical standing waves resembling a monopole-generated (n=0) pressure field in

Fig 6.  

   The  distributions  of  the  modes  of  the  scattered,  transmitted  and  forcing  multi-pole  source

pressures  are  shown in Fig 7 for the air-filled  shell.  Dominance  of the low modes is  revealed

whether the forcing multi-poles are present or not. Auxiliary computations showed that increasing

the  frequency  also  increased  the  order  of  the  dominant  modes.  The  main  conclusion  from all

scattered  and forced  mode distributions  is  that  they  are  dominated  by  low modes  which  is  of

importance if we want to achieve a substantial damping of the scattered wave field using low-order

multi-poles, a point that will be further discussed  at the end of this section.

   The effects of  hard ground and free- surface, are illustrated in the pressure contour plots of Figs 8

when subject to an incoming wave frequency of 6000 Hz. No forcing multi-pole was applied to

cancel the sound scattering. The distance of 2.1 m between the shell’s centre and the interface was

chosen to avoid strong resonant standing waves between the shell and the interface. Nevertheless,

strong interaction between the shell and the interface is revealed through substantial standing waves

as was already discussed in other studies [6, 7, 11]. The free- surface enhances the scattered field

more than the hard ground  as can be seen by comparing Figs 8a with 8b.  Nevertheless,  both

interfaces cause a significant increase in the level of the pressure inside the shell, resulting in an

almost uniform distribution of the transmitted pressure. Similar behaviour was also found with the

shell having oil inside.

   The corresponding pressure fields  induced by the forcing multi-poles which are required to

eliminate or partially reduce the sound scattering, are shown for the hard interface case in Fig 9.

They show a pattern similar to that seen for the shell in free space of Figs 5, which is the dominance

of  low-order multi-poles . The hard ground causes the few radial rays of trough seen in Fig 5a to

disappear. 
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   The mode distributions corresponding to the shell of Figs 8 & 9 are shown in Figs 10. The

distributions are similar to the free space distributions shown in Fig 7a; (i) the low modes dominate

all forms of the sound, i.e. scattered, transmitted and forced, (ii) the amplitude levels are the same as

of the free- space and (iii) the forcing multi-poles cause a significant increase in the amplitudes of

the transmitted sound.  Interestingly, although the modes’ amplitude levels of the transmitted sound

are at the same level of the free- space case when no forcing is applied , the level of the transmitted

pressure inside the shell is much higher than in the free- space as can be seen by comparing Figs 8

with Figs 4 or 3. This means that the modes of the transmitted pressure are more in phase with

others when there is an interface as hard ground or free surface near by, than when there is none.

   To investigate the effect of using a finite number of low-order forcing multipoles to damp the

sound scattering, the damping of the scattered acoustic energy in dB as relative to the non-damped

energy was calculated as a function of the wave frequency including the highest mode that was

cancelled in the scattered noise. This is plotted in Figs 11 for the air-filled shell in free space and

near hard ground. A behaviour close to a linear dependence between the wave frequency and the

highest mode of the cancelled scattered sound, is found  when gaining a specific damping, say of 10

dB. This is clearer for the free space plot of Fig 11a, but it is also evident in Fig 11b for the case of a

nearby hard  ground.  Hence,  for  10 dB damping in  the  scattered  acoustic  energy  one  needs  to

eliminate less than the first five modes of the scattered sound for the wave frequency of 6000 Hz

and less than the first fifteen modes for  wave frequency of 20 kHz. One should note that in free

space there is no dependence between the modes by Eqs (7) & (8) and thus a clear cut between the

damped modes and the non-damped is straightforward. On the other hand, there is an interaction

between the  modes  when an  interface  is  nearby as  seen by the  matrix  equations  (14)  & (15).

Nevertheless, using an optimisation procedure as of Powell,  concentration on the low modes is

achievable [5,7,12], which is helped by the dominance of the low modes that was seen in the plots

of the mode distributions in Figs 7 & 10. 
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 4. Concluding remarks

    Sound scattering by an elastic spherical shell subject to an incoming monochromatic planar wave

was analysed using linear acoustics and structural dynamics. The shell’s wall was taken  as isotropic

and homogeneous material.  The shell was assumed to be filed with fluid and embedded in free

space  or  near  a  hard  ground  or  a  free-surface.  The  incoming  wave  was  taken  as  propagating

perpendicular to the interface of hard ground or free surface as to maximize the reflection back to

the source of the incoming wave.

   The solutions were derived in the Fourier-Legendre space where the method of images was used

to account for the effect of an interface as hard ground or free surface. This led to scalar equations

for the Fourier-Legendre’ modes of the free-space case and matrix equations for the cases of nearby

interfaces of hard-ground or free-surface, showing complete independence between the modes for

the free-space case and some dependence between the modes for the interface cases.

   Three main conclusions can be drawn: 

(i) The multi-pole sources located at the centre of the shell can totally eliminate the scattered sound

field within the limits of linear theory.

(ii) The sound scattered by the shell  and to less extent  the sound transmitted into the shell  are

dominated by low modes. Thus several multi-pole sources located at the centre of the shell can be

effective in significantly damping low frequency scattered acoustic energy.

(iii) For higher frequencies when the shell is highly non-compact as relative to the incoming wave

length, the high number of modes needed to be damped, makes this approach less attractive as

similar to the approach of using pressure actuators mounted on the shell’s wall [12]. Hence the

current  approach should be combined with a  passive approach such as  viscoelasic  coating  that

excels better at high frequencies in order to provide a wide frequency range solution. 
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List of figures:

Figure 1: Schematic description of the problem when the spherical shell is near an interface.

Figure 2: Far-field pressure directivity verification study, that was calculated for an incoming wave

frequency of 1500 Hz and a flexible shell surrounded by water in free space. Theoretically the shell

is assumed to be empty and numerically is filled with a fluid of a very low acoustic impedance. 

Figure 3: Scattered near-field pressure-amplitude contours that are plotted for the spherical shell

when it is placed in free space of water subject to an incoming wave of 6000 Hz propagating at the

z direction. The sphere is (a) filled with air and (b) filled with oil (octane). No sound forcing is

applied at the shell’s centre for cancellation of the scattering.

Figure 4: Transmitted pressure-amplitude contours inside the spherical shell that are plotted for the

condition of Figs 3a. 

Figure 5: Pressure-amplitude contours that are due to the forcing multi-poles acting at the centre of

the air-filled spherical shell to cancel the external scattered sound field. The rest of the conditions

are as in Fig 3a. 

Figure  6:  Transmitted  pressure-amplitude  contours  inside  the  air-filled  spherical  shell  that  are

plotted when the multi-poles are acting at the centre of the shell in order to cancel the external

scattered sound field. The rest of the conditions are as in Fig 3a. 

Figure 7: Sound pressure amplitude modes variation with the mode number that is plotted for the

air-filled shell of Fig 3a in free space and without or with multi-pole sound-source forcing. 

Figure 8: Scattered near-field pressure-amplitude contours that are plotted for the air-filled spherical

surrounded by water and near (a) hard ground, and (b) free surface at z=2.1 m. The incoming wave

frequency is 6000 Hz and there is no forcing at the centre of the shell.

Figure 9: Pressure-amplitude contours that are due just to the forcing multi--poles acting at  the

centre of the spherical shell to cancel the external scattered sound field shown in Fig 8a.
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Figure 10: Sound pressure amplitude modes variation with the mode number that is plotted for the

air-filled shell of Fig 8 near hard ground and without or with multi-pole sound-source forcing. 

Figure  11:  The  variation  of  the  damped  scattered  energy  with  the  highest  mode  of  sound

cancellation for the air-filled shell in (a) free space and (b) near the hard ground of Fig 8a.
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Figure 1: Schematic description of the problem when the spherical shell is near an interface
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Figure 2: Far-field pressure directivity verification study, that was calculated for an incoming wave

frequency of 1500 Hz and a flexible shell surrounded by water in free space. Theoretically the shell

is assumed to be empty and numerically is filled with a fluid of a very low acoustic impedance. 
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(a)

(b)

Figure 3: Scattered near-field pressure-amplitude contours that are plotted for the spherical shell

when it is placed in free space of water subject to an incoming wave of 6000 Hz propagating at the

z direction. The sphere is (a) filled with air and (b) filled with oil (octane). No sound forcing is

applied at the shell’s centre for cancellation of the scattering.
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Figure 4: Transmitted pressure-amplitude contours inside the spherical shell that are plotted for the

condition of Figs 3a. 

Figure 5: Pressure-amplitude contours that are due to the forcing multi-poles acting at the centre of

the air-filled spherical shell to cancel the external scattered sound field. The rest of the conditions

are as in Fig 3a. 
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Figure  6:  Transmitted  pressure-amplitude  contours  inside  the  air-filled  spherical  shell  that  are

plotted when the multi-poles are acting at the centre of the shell in order to cancel the external

scattered sound field. The rest of the conditions are as in Fig 3a. 

Figure 7: Sound pressure amplitude modes variation with the mode number that is plotted for the

air-filled shell of Fig 3a in free space and without or with multi-pole sound-source forcing. 
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(a)

(b)

Figure 8: Scattered near-field pressure-amplitude contours that are plotted for the air-filled spherical

surrounded by water and near (a) hard ground, and (b) free surface at z=2.1 m. The incoming wave

frequency is 6000 Hz and there is no forcing at the centre of the shell.
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Figure 9: Pressure-amplitude contours that are due just to the forcing multi--poles acting at  the

centre of the spherical shell to cancel the external scattered sound field shown in Fig 8a.

Figure 10: Sound pressure amplitude modes variation with the mode number that is plotted for the

air-filled shell of Fig 8 near hard ground and without or with multi-pole sound-source forcing. 
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(a)

(b)

Figure  11:  The  variation  of  the  damped  scattered  energy  with  the  highest  mode  of  sound

cancellation for the air-filled shell in (a) free space and (b) near the hard ground of Fig 8a.
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Appendix A

   The acoustic impedance  Zn of a spherical shell in the Fourier-Legendre space was derived by

Junger & Feit [4] assuming linear acoustics and structural dynamics, and the shell’s material being

isotropic and homogeneous. This led to the follow expression; 

Zn=−
i ρs c p h[Ω

2
−(Ωn

(1 )
)

2
][Ω

2
−(Ωn

(2)
)

2
]

Ω a [Ω
2
−(1−β

2
)(ν+ λn−1)]

, (A1)

where s, h and a are the shell's density, thickness and radius respectively. We also define 2  = h2 /

(12 a2), c2
p=E/(s(1 – 2)) with E representing Young's modulus and  the Poisson ratio. Using n  to

denote the mode's number as in Section 2 and defining n = n(n+1),  =  a/ cp,  where  (1)
n and

(2)
n are  the  normalized  resonance  frequencies.  The  latter   are  also  the  positive   roots  of  the

following quartic equation;

Ω
4
−[1+ 3ν+ λn−β

2
(1−ν−λn

2
−νλn)]Ω

2
−(λn−2)(1−ν

2
)

+ β
2
[λn

3
−4 λn

2
+ λn(5−ν

2
)−2(1−ν

2
)]=0

. (A2)

The resonant frequencies are defined such that  (2)
n>(1)

n for  n>0, and for  n=0 only one resonant

frequency exists which is here denoted as (2)
0.
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Appendix B

   Below we provide the explicit expressions for the coefficients A11, A12, A21, A22, F1 and F2 used in

Eqs. (7-8) and (14-15) ;

 A11=k e h 'n
(1 )

(ke a)−
i ρeω

Zn

hn
(1)

(k e a) , (B1)

A12=
iρeω

Zn

jn(k i a) , (B2)

 A13=
iρeω

Zn

hn
(1)

(k i a) . (B3)

 A21=−
iρi ω

Zn

hn
(1)

(ke a) , (B4)

 A22=k i j ' n(k i a)+
iρi ω

Zn

jn(k i a) , (B5)

A23=k ih ' n
(1)

(k ia)+
iρiω

Zn

hn
(1 )

(k i a) . (B6)

 F1=−(2n+1)in ke j 'n(k e a)+
iρeω

Zn

(2n+1) in jn(ke a) , (B7)

 F2=
iρi ω

Zn

(2n+1) in jn(ke a) . (B8)
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