
Dynamic Adaptive Video Streaming on
Heterogeneous TVWS and Wi-Fi networks

Luca Bedogni∗, Angelo Trotta∗, Marco Di Felice∗, Yue Gao‡, Xingjian Zhang‡,
Qianyun Zhang‡, Fabio Malabocchia †, Luciano Bononi∗

∗Department of Computer Science and Engineering, University of Bologna, Italy
†Telecom Italia SpA, Turin, Italy, ‡Queen Mary University, London, UK

∗Email: {lbedogni, trotta, difelice, bononi}@cs.unibo.it †, fabio.malabocchia@telecomitalia.it
‡ {yue.gao, xingjian.zhang, qianyun.zhang}@qmul.ac.uk

Abstract—Nowadays, people usually connect to the internet
through a multitude of different devices. Video streaming takes
the lion’s share of the bandwidth, and represents the real chal-
lenge for the service providers and for the research community
in general. At the same time, most of the connections come from
indoor environments, where Wi-Fi already experiences conges-
tion and coverage holes, which directly translate into a poor
experience for the user. A possible relief comes from TV White
Space (TVWS) networks, which can enhance the communication
range thanks to Sub-GHz frequencies and favorable propagation
characteristics, but offer slower datarates compared to other
802.11 protocols. In this paper, we show the benefits that a
TVWS network can bring to the end user, and we present
CABA, a Connection Aware Balancing Algorithm able to exploit
multiple radio connections in favor of a better user experience.
Our experimental results indicate that the TVWS network can
effectively provide a wider communication range, but a load
balancing middleware between the available connections on the
device must be used to achieve better performance. We conclude
our study by presenting real data coming from field trials in
which we streamed an MPEG Dynamic Adaptive Streaming over
HTTP (MPEG-DASH) video over TVWS and Wi-Fi. Practical
quantitative results on the achievable Quality of Experience for
the end user are then reported. Our results show that balancing
the load between WIFI and TVWS can provide a higher playback
quality (up to 15% of average quality index) in scenarios in which
the WIFI is received at a low strength.

I. INTRODUCTION

With the skyrocketing growth of mobile devices, which
account for a relentless increase of bandwidth, it is mandatory
to find new paradigms to support new and existing services.
Often, mobile devices connect to the Internet via a cellular
network like 2G, 3G or, more recently, Long Term Evolution
(LTE). However, when indoors, devices often switch to WiFi,
mainly because it can provide more bandwidth and costs less
to the end user [1]. However, the WiFi signal is heavily
affected by the distance to the Access Point (AP), and by
obstacles, thus making the reception hard in some areas. In
fact, a vast amount of users prefer using LTE instead of WiFi
while at home, due to the aforementioned problems [2], even
when this means a higher cost.

At the same time, the great majority of users requested
content is video [3], hence it is even more challenging to deal
with the strict timing limits it imposes. In fact it is stated
in [3] that ”Mobile video traffic exceeded 50 percent of total

mobile data traffic for the first time in 2012”. Mobile data
connections struggle to keep up with satisfying datarates, as
[3] reports an average connection speed of 1,684 kbps in 2014
against an average of 1,387 kbps in 2013, and 46 % of the total
mobile traffic was offloaded onto a fixed network through WiFi
offloading or small cells [3]. With these numbers in mind, it
is straightforward to note that mobile video traffic is expected
to grow even more in the future, and that mobile connections
are struggling to keep the same pace.

A possible solution to extend indoor coverage is to exploit
TV White Space (TVWS) networks, which thanks to Sub-GHz
communication frequencies and favorable propagation charac-
teristics can extend the communication range and eventually
cover a larger area. At the same time, they present slower
speeds per Hz compared to WiFi networks. In this work, we
will focus on TVWS as offloading technology, as it presents
more similarities at the infrastructure level compared to, for
instance, LTE.

To cope with a rapidly changing wireless environment,
recently many protocols, either standard or proprietary, have
emerged for Dynamic Video streaming, like MPEG Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) [4], Apple
HTTP Live Streaming (HLS), Microsoft Smooth Streaming,
and Adobe HTTP Dynamic Streaming (ADS). The idea is
to split a single video in multiple segments of a pre-defined
length and at different bitrates. Then, a manifest for each
multimedia content is created and published, and the clients
asking for that video have the possibility to know and choose
the possible resolutions and coding qualities. The client can
play an active role in the rate adaptation algorithm and decide
what to privilege, e.g. the video quality, by trying to download
higher quality segments, or the video flow, thus reducing
quality in favor of a smoother playback in presence of unstable
network conditions.

In this paper, we focus on the MPEG-DASH protocol,
but the proposed solution is independent on the application
protocol used. We use a standard MPEG-DASH client, and
center our analysis on the lower layers of the network stack. A
complete review on the MPEG-DASH protocol is outside the
scope of this paper, and thus we refer the interested readers
to [5]. We remark the fact that our solution is completely
transparent to any HTTP based protocol, and to any client

that implements it. Thus, it can be used without any change
to already developed clients.

We leverage on the availability of multiple wireless con-
nections on a device, and provide three novel contributions:
i) an experimental study on MPEG-DASH performance with
different Radio Access Technologies (RAT) ii) CABA, a
Connection Aware Balancing Algorithm that estimates the
networks conditions, and routes the traffic accordingly, iii)
performance evaluation of the proposed solution, along with
a testbed evaluated with real TVWS and WiFi networks. To
the best of our knowledge, this is the first work that presents
video streaming results on TVWS and WiFi networks.

Selecting the network directly at the application layer has
several advantages for video streaming, as it access crucial
information from the video streaming client. Basically, at the
application layer a number of information such as the precise
quality at which the video is streamed, the buffer level, and
an history of previous problem with the current video are
available. For instance, at the application layer we have the
possibility to choose more stable connections if the buffer is
low, hence exploiting robustness over speed. It also empowers
the rate adaptation algorithm with additional information about
the lower layers. If aggregation at the lower layer is in place,
then the rate adaptation algorithms only have the ability to
choose the quality of the connection based on the observed
throughput. However, this might vary dramatically, depending
on which connection is used. Therefore, the video client might
be dazzled by it, by seeing different datarates at the application
layer, which might be simply related to different connections
used.

The cost of doing interface switching at the application layer
is not related to the multimedia video streaming application
itself, but rather to other applications and services running
on the same host. Basically, lower layer systems such as
MULTIPATH can better balance the different network con-
nections of the host, as it has a global view of the system, and
can thus achieve also a better fairness among applications.
However, since our focus is on video streaming, which when
in play is typically the most important application running
on the host for the user, doing the interface switching at
the application layer has the advantage of better selecting
the interface for the multimedia application itself, possibly
reducing the performance of other applications.

Results on a synthetic dataset showed that CABA is able to
provide the best performance in all the 4 scenario considered,
regardless of the performance of the WiFi connection or the
TVWS.

Moreover, on a real deployment which we set up for the
purpose of this study, CABA achieved a better buffer level
in 3 out of the 6 scenario tested, and the same one in the
other 3, with the same video quality of other connections
alone, and a higher one in 1 scenario. Moreover, the TVWS
connection alone achieved a good video quality streamed in 6
tested locations in which the WiFi connection was not received
at all, therefore highlighting the benefits of a lower data rate
connection with better transmitting range.

The rest of this paper is as follows: Section II presents
related work on Dynamic Adaptive Streaming protocol and
studies; the motivation behind this work is given in Section
III-A; we then present our algorithm in Section IV, and eval-
uate it in Section V. Section VI reviews the results obtained
and concludes the paper.

II. RELATED WORK

The spectrum scarcity, along with the need to allocate
new services, is the focus of several works and proposals
to enhance the spectrum utilization and eventually provide a
better quality of experience to the final users. Several works
propose the use of cognitive wireless network techniques, in
order to achieve a better spectrum utilization by leveraging on
the temporal utilization of the spectrum [6].

TVWS network foresee the usage of a remote spectrum
database, in charge of providing the list of available channels
at the device location [7]. Another possibility is to sense the
channel before transmitting data, called spectrum sensing [8].
Studies vary, but in general there is abundance of TVWS
channels, particularly in rural areas. However, also in urban
areas it is possible to find plenty of TVWS, thanks to the
transition to digital TV [9].

In particular, the authors in [10] propose a distributed
spectrum sharing mechanism based on cognitive networks
techniques, focused on video streaming. They define different
queues, in which they place the packets to be transmitted with
different probabilities, based on the packet’s importance for the
playback. If the packet is an I-Frame, it gets higher priority
compared to a P-Frame, which only carries the differences
between two subsequent images, rather than the whole image
as the I-Frame does. A similar approach is taken in [11], where
the authors still leverage on the difference between the frames
in order to maximize the number of I-Frames to be delivered,
which might freeze the video if lost.

To overcome the poor quality of real-time data streaming,
like voice-over-IP (VoIP), over a single WiFi connection in
[12] is proposed a system that replicates the data stream on
more then one connection link exploiting the diversity of
multiple WiFi links. Furthermore, the idea to use more than
one wireless technology, to possibly provide more bandwidth
and/or increase the reliability of the connection, is an active
topic and has already been investigate in literature [13].
Regarding multiple RAT technologies, it is possible to find a
plethora of different proposal, ranging from offloading to TV
White Space [14] [15] or [16], to content centric networking
[17] [18], to cooperative streaming through smartphones [19]
[20]. It is also important to note the work in [21], where the
authors study different antenna patterns regarding TV White
Space. The rationale is that most of the proposals try to
forecast the network conditions, and select either the RAT that
has the higher performance, or the one that is more reliable,
depending on the application requirements. At system level,
Multipath TCP (MPTCP) is the standard solution when using
multi homed devices [22]. Basically, multiple subflows for
every connection can be created, and the traffic is is spread

over those subflows according to the MPTCP scheduler. This
system has been studied in multi-homing scenarios with WiFi
and cellular connections [23]. In this case, only on particular
scenarios, i.e. when the two used connections have similar
characteristics, the MPTCP method gives good performance
[23]. More recently, also specialized schedulers for MPEG-
DASH have been proposed, such as the one in [24]. The
main difference between [24] and the work presented in this
paper is that CABA does not require any modification to
the remote server, as [24] does. It also targets cellular and
WiFi connections, whilst our study is more focused on in-
home, AP-like networks. Moreover, doing the switching at
the application level, directly in the video streaming client,
offers the possibility to monitor the state of the buffer and
take decisions accordingly.

In the recent years, several dynamic and adaptive video
streaming protocols have been proposed and effectively uti-
lized, ranging from Apple HLS, to Microsoft Smooth Stream-
ing, to MPEG-DASH. The basic idea is to divide the video to
be streamed into different segments at different resolutions. A
manifest file is then built to report all the available resolutions
of the video to be streamed. To play a content, clients need first
to access the manifest, and select an appropriate video quality
according to the network conditions, that can change over
time. Hence, clients can exploit a rate adaptation algorithm,
that has to monitor the network conditions and throughput
performance, and adapt the playback to the network behavior
[5]. MPEG-DASH based streaming has been evaluated also
in the context of vehicular networks [25], where network
conditions change rapidly and can disrupt the playback.

Most of the research work on MPEG-DASH relies on the
study of rate adaptation algorithms that can provide a better
Quality of Experience to the end user, by switching to the most
suitable video quality given the network conditions. These
works include [26], where the authors present a rate adaptation
algorithm that is also studied for 3D videos and [27] where
the authors propose a rate adaptation algorithm with fixed-
interval buffer. Basically, they keep the same resolution until
quality remains within a certain threshold, and switch up or
down depending on the network conditions. FDASH, a rate
adaptation algorithm based on fuzzy logic, is presented and
evaluated in [28].

In this work, we use a publicly available MPEG-DASH web
client developed by Akamai 1, and thus we do not focus on a
specific rate adaptation algorithm.

III. MOTIVATION AND SYSTEM MODEL

The motivation of this work, presented in this section,
is to show results from a preliminary study we performed
to evaluate the effects of TVWS and IEEE 802.11n WiFi
networks in the same environment, which is presented in
Section III-A. Section III-B details the proposed system model.

Fig. 1. The studied scenario.

A. Motivation

Figure 1 shows the studied scenario, in which we have a
base station (BS) with both TVWS and WiFi transmitters.
WiFi provides faster datarates, but in a smaller range, while
the TVWS network has slower maximum datarates, but on a
wider range. In Figure 1, node N1 is close to the transmitter,
and might use WiFi to communicate, since it can offer a
higher datarate compared to the TVWS network. Node N2
is instead at the edge of the WiFi transmitting range, and has
to decide which radio technology can be used. WiFi might still
provide good datarates, but could be suddenly shadowed by
obstacles particularly if the user is moving, thus breaking the
communication. Finally, node N3 is in an area in which the
communication on WiFi is not feasible, and thus should use
the TVWS network for its traffic. Clearly, when the receiver
moves, the performance of the different RATs can change
suddenly, due to shadowing and to the varying distance from
the BS.

We foresee a client device offering both TVWS and 802.11n
WiFi connectivity, which can thus connect to either network
independently.

We present a preliminary study we have performed at the
Mile End campus of the Queen Mary University London, in
which we placed an access point which offered both TVWS
and WiFi connectivity in a room, and moved around the rooms
of the campus keeping track of the offered throughput. Figure
2 shows the results of the preliminary test we performed,
measuring the offered throughput on the two technologies.
Close to the access point, it is evident how the WiFi network
can provide much higher datarates compared to the TVWS
network. However, after few meters, the throughput of the
WiFi network drops steeply, mainly due to obstacles and
clearly to the distance from the access point. The TVWS
network instead maintains a reasonable throughput (i.e. just
short of 5 Mbps) even far from the access point. In fact,
the bitrate smoothly decreases when moving farther from the
access point.

We can see from Figure 2 that below 20 m the WiFi is
certainly to be preferred, but farther than that, no connection
is possible, and thus the TVWS network should be used to

1http://mediapm.edgesuite.net/dash/public/support-
player/current/index.html

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Distance (m)

IEEE 802.11n measurements
TVWS measurements

Fig. 2. The throughput difference between the IEEE 802.11n network and
the TVWS network.

maintain connectivity. It is finally straightforward to note how
Figure 2 closely follows the Shannon Capacity [14] [29].

It is important to note that we do not report the presence of
obstacles for this preliminary study, but we will clarify it later.
Certainly, although showing only the distance in the chart,
the attenuation due to building structure severely degrades the
IEEE 802.11n signal. The same does not happen for the TVWS
network, which presents a rather stable signal regardless of
possible obstacles between the transmitter and the receiver.

B. System Model

The MPEG-DASH client is fed with a manifest file, which
contains the video description, and the segment URLs together
with their length, resolution, codecs, the segment size and
other meta information useful for the playback. The client also
encompasses a rate adaptation algorithm, which chooses the
quality depending on the network performance. For our test,
we used the publicly available MPEG-DASH client made by
Akamai2.

We implemented our solution as a middleware which could
either lay on the client device, or can be also implemented
on the gateway router. Clearly, the latter solution might also
add delays due to the network interface. At the same time,
it does not require that the device physically have multiple
connections, but performs the offloading on the gateway router.

The client issues an HTTP GET request of the desired seg-
ment, which arrives at our middleware, in charge of selecting
the best interface through which the query has to be routed.
We note that even if all the connections use TCP, and thus
maintain a connection, different segments instantiate different
connections, since they are all different HTTP GET, hence
it is possible to manage each connection separately from the
others.

IV. ALGORITHM

In this section, we describe our proposed algorithm, named
CABA, which stands for Connection Aware Balancing Algo-
rithm, and its implementation on a Raspberry Pi. We note

2http://mediapm.edgesuite.net/dash/public/support-
player/current/index.html

that we based our analysis on the MPEG-DASH protocol, but
that our framework is completely transparent to the HTTP-
based streaming protocol used. Our algorithm is intended for
nomadic use [30], in which the user is watching videos with
occasional mobility, which however can change dramatically
the throughput and thus the video quality. In Algorithm IV is
described the pseudocode of the proposed CABA algorithm.
We present in Section IV-A how we select the interface
devoted to the segment download, while in Section IV-B we
present our prefetching mechanism, implemented in CABA.
In Table I are described all the notation used in this Section.

TABLE I
VARIABLES NOTATION

RI Number of radio interfaces
N Size of the downloaded segment history

Ωk = {ωk1 , · · · , ωkN} Size of the last N downloaded segments
∆k = {δk1 , · · · , δkN} Download time of the last N segments

µk Speed average for connection k
σk Speed standard deviation for connection k
W Size of the block windows
J Number of the block windows (J = N

W
)

Φk = {φk1 , · · · , φkJ}
Speed standard deviation for each block
window on connection k

µkj
Speed average for the block window j on
connection k

Rk Datarate index for connection k
Pk Standard deviation index for connection k
DRk Expected datarate for connection k

tk
Expected time to download a video segment
on connection k

Qk Segment queue size on connection k

Tk
Expected time to get a video segment if
requested on connection k

H Average video segment size
L Video segment duration (in seconds)
θ Next video segment index to be downloaded

M
Number of video segments composing the
requesting video

A. Interface selection
We assume that the device is equipped with RI radio

interfaces, with RI ≥ 2. Clearly, if RI = 1 there is only one
possible interface devoted to the video segment download. For
each radio interface k, with 1 ≤ k ≤ RI , we define a vector
Ωk = {ωk1 , ωk2 , · · · , ωkN} containing the size of the last N
downloaded segments over interface k, where ωk1 and ωkN refer
to the oldest and the newest segment received, respectively.
Accordingly, we also define a vector ∆k = {δk1 , δk2 , · · · , δkN},
which contains the time needed to download each segment.
Then, we compute the average connection speed µk over the
last N segments, and the standard deviation σk:

µk =

∑
ωki ∈Ωk

ωki∑
δki ∈∆k

δki
(1)

σk =

√√√√∑N
i=1

(
ωki
δki
− µk

)2

N − 1
(2)

The term µk indicates the average speed of the connection
through interface k, while σk indicates its stability over time.

Algorithm 1 CABA Algorithm
1: function CABA(θ)
2: for k = 1 to RI do
3: if DRk > 0 then
4: tk = H

DRk
5: Tk = tk ·Qk
6: else
7: Tk =∞
8: end if
9: end for

10: min = argmin1≤k≤RI(Tk)
11: Qmin ← Qmin ∪ {θ}
12: PREFETCH(θ, C \ {Imin})
13: end function
14: function PREFETCH(θ, C′)
15: for Ik in C′ do
16: if |Qk| = 0 then
17: Ek = H

DRk

18: F = θ + d dEke
L
e

19: Qk ← Qk ∪ {F}
20: end if
21: end for
22: end function
23: function UPDATEINTERFACES(ωknew, δknew,Ωk,∆k)
24: Ωk ← Ωk ∪ ωknew
25: if |Ωk| > N then
26: Ωk ← Ωk \ {ωkoldest}
27: end if
28: ∆k ← ∆k ∪ δknew
29: if |∆k| > N then
30: ∆k ← ∆k \ {δkoldest}
31: end if
32: J = N

W
33: for j = 1 to J do

34: µkj =

∑j·W
i=(j−1)·W+1

ωki∑j·W
i=(j−1)·W+1

δki

35: φkj =

√∑j·W
i=(j−1)·W+1

(
ωk
i
δk
i

−µkj

)2

W−1

36: end for

37: Rk =
∑J
i=1(iJ)·µki∑J
i=1(iJ)

38: Pk =
∑J
i=1(iJ)·φki∑J
i=1(iJ)

39: DRk = max(Rk −
√
Pk, 0)

40: end function

Each time a new segment is downloaded from the radio
interface k, with 1 ≤ k ≤ RI , the vectors Ωk and ∆k are up-
dated accordingly (function UpdateInterfaces() in Algorithm
IV, lines 23-40). We then define a parameter W ≤ N , and
create a vector Φ = {φ1, φ2, · · · , φJ} of size J = N

W for
each interface k where each item is defined as:

φkj =

√√√√∑j·W
i=(j−1)·W+1

(
ωki
δki
− µkj

)2

W − 1
j = 1..J (3)

with

µkj =

∑j·W
i=(j−1)·W+1 ω

k
i∑j·W

i=(j−1)·W+1 δ
k
i

j = 1..J (4)

which basically computes the standard deviation for each
of the J windows of size W . Clearly, we assume N multiple
of W .

We then compute the following:

Rk =

∑J
i=1

(
i
J

)
· µki∑J

i=1

(
i
J

) (5)

Pk =

∑J
i=1

(
i
J

)
· φki∑J

i=1

(
i
J

) (6)

which highlights the recent performance of interface k.
Clearly, Rk represents the datarate and Pk represents the
standard deviation of interface k. Clearly, recent windows (i.e.
i ≈ J) are considered more than the others.

The expected datarate for the given interface k is hence
forecast as:

DRk = max(Rk −
√
Pk, 0) (7)

Clearly, a large Pk means that the connection is experiencing
bad conditions, and in case Pk ≥ Rk, the connection is marked
as unreliable with expected datarate put to 0. Otherwise, the
connection is more stable, and thus the datarate DRk will not
be penalized too much.

With the method described above, the CABA algorithm
constantly update the radio interfaces status and can hence
exploit this awareness for making the best choice for the
interface to use (function CABA() in Algorithm IV, lines 1-12).

In Figure 3 is depicted the flow diagram describing the
CABA algorithm. After receiving the video request of index
θ from the video client, the CABA algorithm estimates the
expected download time Tk needed to get the video segment
θ on each connection k, with 1 ≤ k ≤ RI . Then the algorithm
chooses the connection k that minimize the download time Tk.
In more details, from the video manifest, we can get all the
different video qualities along with the average segment size
H . Thus the expected time to download a segment is defined
as tk = H

DRk
. Then, according to the size of the segment

queue Qk, we compute the expected time to deliver the next
segment as:

Tk = tk ·Qk (8)

Finally, the interface with the lowest Tk is selected to deliver
the requested segment. If all the interfaces have DRk = 0, we
break the tie by picking the one that with the highest µk, that
is the interface with the highest datarate, thus not considering
its variance (this check should be done at line 10 of Algorithm
IV, but is not inserted for space reasons).

B. Prefetching

In this section we detail our prefetching algorithm (line 14-
22 of Algorithm IV), capable to leverage the multiple RAT
installed on the device to offload part of the content and
download it in advance. In the second part of Figure 3 is
depicted the flow diagram of the prefetching method. After
choosing the connection on which request the video segment
θ, the CABA algorithm calls the Prefetch method. This method
consists in requesting future video segments in advance of

Begin

Request of
video segment θ

Update T
k
, k=1..RI

Enqueue the θ request

on connection min

Calculate min as the
connection k that minimize T

k

Prefetch

Does exists k,
k=1..RI, k≠min,

such that |Q
k
| = 0?

Calculate the video index F
to request on connection k

Enqueue the F request

on connection k

 Yes

No

End

Fig. 3. Flow diagram describing the CABA algorithm

Fig. 4. The prefetching mechanism. IF1 offers a higher datarate, while IF2
is used to prefetch future segments to be played by the client.

the client requests and it is executed only on free connections
having no pending requests. We picture this behavior in Figure
4. The IF1 can provide faster datarate compared to IF2, and
thus it is selected as preferred interface to download DASH
segments according to the client’s requests. IF2 is slower, and
thus it is used to prefetch segments the clients will ask for
in the future. Selecting the segment size to download on the
second interface is not trivial: downloading a too early segment
might result in the client querying for it too soon, and thus
having to download it on IF1 wasting the downloaded data on
IF2. On the opposite, asking for a too late segment delays the
time in which it will be asked by the client, thus reducing the

benefits of the prefetching.
Let C = {I1, · · · , IRI} be the set of connections available

on the device. From previous measurements, we also have
defined DR = {DR1, DR2, · · · , DRRI} as the set of average
datarates for each connection. From the manifest, we know the
average segment size H and the segment duration in seconds
L, and we can also define a set Θ = {1, 2, · · · ,M} containing
the IDs of all the segments of the video.

We assume that the client requests the segment of index
θ at time T (1 ≤ θ ≤M), and as we already stated we select
the best available connection to download the segment, more
precisely i = argmini(Ti). Thus, the prefetching mechanism
has to choose between the set C ′ = C − Ii the candidate
interface to download a future segment.

Hence
∀Ik ∈ C ′ : Ek =

(
H

DRk

)
(9)

We note that we prefetch the segment with the same quality of
the last requested segment. As before, should any ties between
the remaining interfaces happen, we will pick the one with
the highest datarate. We can then compute the segment to be
downloaded F so that its download would finish before the
client could request it as

F = θ +

⌈
dEke
L

⌉
(10)

We then proceed to effectively start the prefetch of the
segment F on each free interface Ik.

V. PERFORMANCE EVALUATION

A. Analytic Study

In this section we analyze the performance of CABA against
other interface selection proposal. More in detail, we have
implemented a simulator able to evaluate different interface
selection algorithms, basing our analysis on the Big Buck
Bunny video from [31]. We compare our proposal against 3
other interface selection algorithms, defined as follows:
• BEST THROUGHPUT: in this algorithm, each time a

new packet has to be downloaded, we select the interface
with the highest throughput.

• BEST VARIANCE: this algorithm selects the most sta-
ble interface.

• RANDOM: with this algorithm, at each step we ran-
domly select one of the available interfaces

To perform a fair analysis, for this study we deactivate
the prefetching algorithm explained in Section IV-B. The
BEST THROUGHPUT and BEST VARIANCE algorithms
only exploits in turn one of the features of CABA, since the
BEST THROUGHPUT does not consider the stability of the
connection, and the BEST VARIANCE does not exploit higher
throughput connections, if unstable.

All the tests are performed assuming two different inter-
faces. The throughput of each interface i is computed assuming
a Normal distribution with mean µi and standard deviation σi.

Figure 5(a) shows the performance of the four algorithms
we studied by setting interface 1 with µ1 = 3.5Mbps and

0

5

10

15

20

1 2 3 4 5 6
Data Rate (Mbps)

A
ve

ra
ge

 Q
ua

lit
y

In
de

x

BEST THR RANDOM BEST VAR CABA

(a)

0

5

10

15

20

0 25 50 75 100
σ

A
ve

ra
ge

 Q
ua

lit
y

In
de

x

BEST THR RANDOM BEST VAR CABA

(b)
Throughput (M

bps)

1

2

3

4

5

6

paste(sigma ~ "p
ercentage")

0

10

20

30

40

50

Q
uality Index

10

12

14

16

18

σ percentage

13

14

15

16

17

18

(c)

Fig. 5. Results of the analytic study.

σ1 = 1.8Mbps, thus representing an unstable connection
with fair datarate. Interface 2 is instead set as more stable,
with σ2 = 0.15Mbps and varying throughput. The figure
clearly shows the benefits of CABA, which achieves the
best performance regardless of the performance of interface
2. The RANDOM algorithm performs the worst, as it is
straightforward to imagine, due to inefficiencies and too high
variations in the throughputs, which also make difficult for the
rate adaptation algorithm to understand the preferable quality
of the video to be streamed.

Figure 5(b) details a similar analysis, in which we set
µ2 = 4Mbps, and we vary σ2. As µ2 > µ1, the BEST
THROUGHPUT algorithm prefers to chose interface 2 when it
is stable (i.e. low σ2). However, as σ2 increases, the choice of
the best interface is more difficult, and both the rate adaptation
algorithm as well as the interface selection algorithm struggle,
delivering poor performance. The BEST VARIANCE solution
leverages the stability of the connection, thus selecting the
most stable connection among the two available, although not
exploiting the higher throughput of interface 2 when σ2 is low.
CABA instead exploits this behavior by preferring interface 2
when it is stable (i.e. the left part of Figure 5(b)), and selecting
the most stable one when interface 2 varies too much.

Figure 5(c) shows a 3D analysis keeping interface 2 with
µ2 = 2Mbps and σ2 = 0.4Mbps, and varying both µ1 and
σ1, where σ1 is plotted as the percentage with respect to
µ1. Clearly, the analysis is performed only for the CABA
algorithm. The chart confirms that both the throughput and
its stability play a dominant role in the quality of the video in
play.

B. Multipath comparison

Multipath TCP (MPTCP) is the de-facto standard solution
when exploiting multi-homed devices, as it offers a low
layer load balance solution which can span among different
applications and services. In literature, it is possible to find
many studies on MPTCP [23] [32], also related to video
streaming [24]. Clearly, results vary, but in general MPTCP
offers good performance when the connections employed show
similar characteristics, and lower when the two connections
differ too much.

0

5

10

15

20

1 2 3 4 5 6
Data Rate (Mbps)

A
ve

ra
ge

 Q
ua

lit
y

In
de

x

CABA MULTIPATH

Fig. 6. Results from the MPTCP comparison.

Figure 6 shows a comparison between CABA and MPTCP.
To do that, we set up a testing environment in which we
installed MPTCP both on a server, containing all the video
segments of Big Buck Bunny, and on the client, running
MPTCP version 0.91.3 with fullmesh as path manager and
default as scheduler. We compare it with CABA, for which
we disabled MPTCP. The throughput of the two networks is
configured the same way as for the tests of Figure 5(a).

At first, we can see that although CABA follows a similar
trend as in Figure 5(a), the average value is a bit lower, since
in this test we dealt with real networks, which thus can carry
latency and throughput variance, which we did not had for the
tests of Figure 5(a).

MPTCP always offers lower performance than CABA,
except around 2.5 Mbps in which the two algorithms perform
similarly. This is because the two connections perform simi-
larly, hence MPTCP can better distribute the traffic between
the two. This also confirms previous studies such as [23] [32],
which highlighted the benefits of MPTCP exploiting similar
connections, but also showed its limits with heterogeneous
connections. In fact, when one of the connections offer low
throughput (i.e. leftmost part of Figure 6), still MPTCP tries

to download some bytes through it, thus penalizing the stream.
Also, when the throughput of such connection increases (i.e.
rightmost part of Figure 6), again MPTCP tries to download
some bytes through the other connection. However, the average
QI is much more, as the total throughput is higher.

C. Emulation Analysis

In this section we describe a preliminary analysis we
performed, based on real data gathered through an official
Ofcom testbed.

In 2014, several partners conducted a measurement cam-
paign to test the effectiveness and the differences between
IEEE 802.11af and IEEE 802.11n networks for in-home video
streaming [33]. The report consists of measurements obtained
in 4 different houses in the city of Glasgow, Scotland. The
focus of the test was on video streaming, and the report shows
the performance of both networks in different locations for
each house. The full report is available at [33]. The rationale
is that the IEEE 802.11n network offered higher throughput
when close to the access point, delivering slightly more than
30 Mbps of TCP throughput, while the IEEE 802.11af network
achieved a maximum of 10 Mbps. Clearly, UDP throughput
is higher, reaching around 40 Mbps for the 802.11n network
and 15 Mbps for the 802.11af network. The conclusion of the
report states that the throughput of the 802.11af network is
expected to increase in the future, as the driver of the devices
is still being optimized. Moreover, the 802.11n network was
configured to work at 20 MHz both for the 2.4 GHz and for
the 5 GHz band, while the 802.11af network worked at 8 MHz,
although in the future it is expected to be able to bond different
channels together to increase the bandwidth.

To emulate the two networks behavior, we use the well
known Traffic Control (TC) utility available in GNU/Linux
distributions, which allows to set the connection speed of any
interface. We used two of the available interfaces of our test
computer, one WiFi and an Ethernet connection. Both are
connected through two different high speed networks to the
Internet.

For this evaluation, the video player is run on the Raspberry
Pi, which also runs the algorithm presented in Section IV. We
played the video Big Buck Bunny from the dataset presented
in [34].

For each of the four houses, we select a location and test
the effectiveness of our proposal. Finally, we also evaluate a
dynamic scenario in house 1, in which a client virtually moves
around the house, thus experiencing different throughputs. We
note that these test are obtained with a single run, and thus
might present throughput variations due to the real network
congestion. Thus, they should be only considered as qualitative
and not quantitative results.

The summary of the throughputs experienced in the different
locations is shown in Table II. It is possible to see how the
802.11n network is not connected in one of the location,
and in another one presents low performance. In contrast,
the TVWS network is always connected and presents a more
stable throughput.

TABLE II
THROUGHPUTS

House Location Throughput 802.11af
(Mbps)

Throughput 802.11n
(Mbps)

1 3 8.93 11
2 1 10 33
3 1 4.83 0.6
4 3 6.6 -

The first test was performed in location 3 in house number
1. Both throughputs are similar, and as it is possible to be
seen in the video, both networks perform roughly the same.
To better evaluate the benefits of the different proposals, we
study the Quality Index (QI) instead of the video bitrate. We
do this in order to be consistent with effective quality played,
as the bitrate of a specific video segments may vary from
the previous one even if the resolution and frame rates are
the same, due to video compression techniques. Figure 7(a)
shows the throughput and the quality index, which is always
at top since the throughput is enough for both networks to
play it at the maximum quality. Figure 7(b) shows instead the
pause times, while Figure 7(c) shows the buffer size. Pause
is never experienced, and the buffer level is always near the
maximum. In this scenario, our proposed algorithm tops the
others in terms of throughput, as it account for small variations
on the throughputs of the two connections, and routes traffic
accordingly.

The test performed on throughputs of house 2 are similar,
as both throughputs are high and thus Figures 8(a)-8(c) clearly
shows that both throughputs are basically the same, as well as
the other investigated metrics.

House 3 presented different throughputs, as the 802.11n
connection offer a low throughput in location 1. Figures 9(a)-
9(c) report the results of the test, which clearly shows that the
802.11n is not able to support a high quality streaming. The
802.11af network delivers a good quality video, in line with
our algorithm which clearly selects it to stream the content,
as the plotted lines are quite similar. The buffer level present
a chart in which the 802.11n network have a bigger buffer
at the end of the test. It is worth to note that this happens
since the much lower quality played translates into smaller
packets, which are downloaded by the client to fill the buffer.
The 802.11af network and our algorithm instead, although
playing a high quality video, have a low buffer level, since the
maximum throughput is more or less the same of the higher
quality of the played video.

The last static test was performed in location 3 of house 4.
Here, no 802.11n throughput is reported. Therefore, this test
is just to show the ability for our algorithm to work even if
one of the available connections does not work or could not
be used to establish a connection. Still, the performance of
the played video are quite good, and the quality is near the
maximum one available. The results of this test are shown in
Figures 10(a)-10(c).

The last test was performed using the throughputs experi-
enced in house 1, but with the client virtually moving from

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

M
b
p
s

Q
u
al

it
y
 I

n
d
ex

Time (sec)

Quality Indexboth
Throughputboth

Quality Indexwifi
Throughputwifi

Quality Indexaf
Throughputaf

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120 140

B
u
ff

e
r

ti
m

e
 (

se
c
)

Time (sec)

Bufferboth Bufferwifi Bufferaf

(b)

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120 140

W
ai

ti
n
g
 t

im
e

(s
ec

)

Time (sec)

Pauseboth Pausewifi Pauseaf

(c)

Fig. 7. Test in location 3 in house number 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

M
b
p
s

Q
u
al

it
y
 I

n
d
ex

Time (sec)

Quality Indexboth
Throughputboth

Quality Indexwifi
Throughputwifi

Quality Indexaf
Throughputaf

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120 140

B
u
ff

e
r

ti
m

e
 (

se
c
)

Time (sec)

Bufferboth Bufferwifi Bufferaf

(b)

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120 140

W
ai

ti
n
g
 t

im
e

(s
ec

)

Time (sec)

Pauseboth Pausewifi Pauseaf

(c)

Fig. 8. Test in location 1 in house number 2.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

M
b
p
s

Q
u
al

it
y
 I

n
d
ex

Time (sec)

Quality Indexboth
Throughputboth

Quality Indexwifi
Throughputwifi

Quality Indexaf
Throughputaf

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

B
u
ff

e
r

ti
m

e
 (

se
c
)

Time (sec)

Bufferboth Bufferwifi Bufferaf

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140

W
ai

ti
n
g
 t

im
e

(s
ec

)

Time (sec)

Pauseboth Pausewifi Pauseaf

Fig. 9. Test in location 1 in house number 3.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

M
b
p
s

Q
u
al

it
y
 I

n
d
ex

Time (sec)

Quality Indexboth Throughputboth

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140

B
u
ff

e
r

ti
m

e
 (

se
c
)

Time (sec)

Bufferboth

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

W
ai

ti
n
g
 t

im
e

(s
ec

)

Time (sec)

Pauseboth

(c)

Fig. 10. Test in location 3 in house number 4.

one point to another. The test starts in location 2, where we
experience 10.1 Mbps for the 802.11af network and 24 Mbps
for the 802.11n network. We then move after 50 seconds to
location 3 (for which the throughputs have been presented in
Table II) and finally after 50 seconds we eventually move to
location 4, where the throughput of the 802.11af network is
reported as 5 Mbps, while the 802.11n network as 1.46 Mbps,
thus changing the network which achieves the best throughput.
After 50 seconds we move back to location 3, and after further
50 seconds we finally move to location 2, where we keep
running the test for 50 more seconds.

Figure 11 reports the results, where it is evident the drop in
throughput after the first two locations (at 100 seconds). Here,
the 802.11af network still delivers good performance, as well
as our algorithm. The 802.11n network instead offers lower
throughput, and the video quality is affected as it is played to
a lower quality. The throughput increases at 150 seconds and
so does the quality, but the WiFi continues to struggle due
to the instability of the connection, which makes the client
to lower the quality of the playback in order not to introduce
pauses in the streaming.

The tests just presented confirm the increased benefits of
offloading part of the video streaming data to the secondary
TVWS network, which can still deliver good performance
when the primary network fail.

D. Testbed

In this section we describe the testbed configuration we used
in our experiments.

Figure 12 shows our testbed setup, with a Raspberry Pi
on the right, in which we implemented our algorithm, and the
Carlson Wireless TVWS device on the left, connected through
an Ethernet cable. The Raspberry Pi has two IEEE 802.11n
interfaces installed, tuned to channel 6 and 11. The interface
on channel 6 is used as an AP to which clients can connect,
while the interface on channel 11 is used to connect to the AP
placed next to the TVWS receiver device, which offers internet
connectivity. We specifically choose these two channels as they
were the least interfered in the scenario in which we ran the
tests.

E. Testbed Results

In this section we present the results obtained in the test
we performed at the Mile End campus of the Queen Mary
University of London.

We placed our combined AP at the third floor of the EECS
building of the QMUL Mile End Campus, in room 358. We
then moved through the campus, in the same building and in
others nearby, playing the Big Buck Bunny video from [34].
The client runs in a laptop, connected through WiFi to the
Raspberry Pi, which could choose the interface through which
getting the video segments between TVWS and WiFi.

For our tests, we present results about 12 different rooms,
and averaged over all the tests. Over all the locations tested,
in 6 of them we received both WiFi as well as TVWS signals.
For those rooms, we present results about raw measurements

TABLE III
RAW DATARATES OBTAINED IN THE TESTED LOCATIONS

Testing Location WiFi Datarate
(Mbps)

TVWS Datarate
(Mbps)

353 1.35 2.6
358 21 3.7
251 6.05 4.48
254 5.82 4.24
354 25 1.5
250 5.30 4.74

br3.1 0 2.66
ppground 0 2.67

ppgroundcorridor 0 2.39
ITL meeting room 0 6.08

cshub 0 2.79
firstqueens 0 1.33

and using CABA. In other 6 rooms, we only received TVWS
signal, and thus we only show results for this technology. The
rooms 353, 358 and 354 are at the same floor of the AP (i.e.
the third), while rooms 250, 251 and 254 are one floor below it
(i.e. at the second floor). Rooms in which we did not receive
any WiFi signal are located farther, in other buildings, and
present distances between 40 meters and 100 meters.

In Table III we present the maximum datarate achieved in
all the locations tested. As it is straightforward to note, WiFi
offers the best datarate in 5 out of the 6 locations in which
we received it. On the inverse, TVWS brings a more reliable
connection, but at the cost of a slower speed. It is worth to
note a couple of issues: at first, the device we used for TVWS
is quite new, compared to a heavily tested standard installed
on the WiFi access point we used during the test. Thus, it
is expected that future improvements on the TVWS device
and chip manufacturing would also improve its performance.
At second, IEEE 802.11af offers to bond together up to 4
channels, thus increasing the bandwidth and eventually the
datarate. For our tests, we only used a single channel to
transmit.

Starting from around 25 meters away from the access point,
we only received TVWS signal. Thus, for the remaining 6
rooms we only report measurements for this technology.

To summarize this data, it is worth to mention the fact
that during the test, once we achieved TVWS connectivity,
the communication link was very stable, without any drop in
datarate and channel quality. On the inverse, WiFi suffered
from more interference and its channel quality variance had a
strong impact on the results we are going to show.

F. Playback Quality

The playback quality tells the resolution and frame rate at
which the video is played. Clearly, a higher playback quality
eventually means for the user a better Quality of Experience.
We present these results for 3 minutes of playback of the Big
Buck Bunny video [34], after an initial transient of 50 seconds
to account for connection establishment which would deviate
the data if included.

Figures 13(a)-13(f) present the average playback quality
achieved in the 6 locations where we both had TVWS and

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18
M

b
p
s

Q
u
al

it
y
 I

n
d
ex

Time (sec)

Quality Indexboth
Throughputboth

Quality Indexwifi
Throughputwifi

Quality Indexaf
Throughputaf

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

B
u
ff

e
r

ti
m

e
 (

se
c
)

Time (sec)

Bufferboth Bufferwifi Bufferaf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200
 0

 0.5

 1

 1.5

 2

 2.5

 3

W
ai

ti
n
g
 t

im
e

(s
ec

)

Time (sec)

Pauseboth Pausewifi Pauseaf

Fig. 11. Test result for the simulated dynamic scenario.

802.22

WIFI WIFI

ETH

Fig. 12. The device configuration we used in our experiments.

WiFi connectivity. In all but room 353, the WiFi network
offered the best performance. In fact, it was the room where
we received the worse WiFi performance, even if it is not
far from the AP location. The reason falls probably into a
huge shadowing by obstacles. Regardless of the room, CABA
always shows top performance. Clearly, it cannot be higher
than the WiFi network if it already offers the best possible
video quality achievable, which is around 4.7 Mbit/s for a
1920x1080 Full HD video with 24 as framerate [34].

In Figure 14 we show instead the playback quality in the
6 locations in which we only received the TVWS link. In 3
out of 6 rooms the quality is below 1.5 Mbps, but the video is
still playable. In the other 3 rooms the quality almost exceeds
3 Mbps, which confirms how TVWS are able to fill possible
coverage holes thanks to a wider communication range and a
better obstacle resilience.

Figure 15 present the usage ratio of each interface in the 6
locations where we had both TVWS and WiFi connectivity.
Clearly, we don’t show results for TVWS or WiFi alone, as
there is only one interface to use and thus there cannot be
any offloading to the secondary interface. CABA balances the
load, and offloads some of the content to the worst connection
to prefetch segment to be played at a later time. In all the
charts, after an initial setup phase, in which the algorithm has
to understand the performance of the available connections, it
stabilizes depending on the performance of the connections.

Finally, Figure 16 presents the average playback quality in
all the locations. We note that we only averaged the WiFi

playback qualities for the 6 locations in which we received
it. CABA is instead averaged over all the 12 locations, as
well as TVWS. ONLY-TVWS is instead the average of the
6 locations where we had no 802.11n connectivity but only
TVWS. Regardless of the position, room or network condition,
CABA is able to deliver the best results. WiFi still offers
similar results, but we remark that in 6 out of 12 locations we
could not get any signal, and thus we were not able to play
the video. TVWS enhance the range, and still offers decent
performance. As we already noted, we are comparing a well
tested IEEE 802.11n AP against a prototype, which presents
big margins of improvements and will certainly offer better
results in the future.

G. Buffer Time

In this section we analyze the buffer time in the 6 different
locations in which we received both TVWS signal as well
as 802.11n. The buffer time tells how much the playback is
considered stable by the client, which uses this information to
decide the playback quality.

By looking at Figures 17(a)-17(f), we can find a similar
pattern compared to Figures 13(a)-13(f). This is because a
higher buffer time allows the client to increase the playback
quality, while a lower buffer times forces it to be prudent and
favor lower quality fragments, since they are smaller and can
thus be downloaded in less time. We note that we only show
this for the 6 locations in which we received both TVWS and
802.11n signal, because in the other rooms we cannot compare
to anything since we only receive TVWS.

H. Pause Time

The last analysis we perform is about the pause times.
When playing a video, users would allow for a change in
the playback quality, but cannot bear to have any pause in the
video playback. Hence, the pause time represent how many
seconds the video stopped during our test. Again, we note that
we only show this for the 6 locations in which we received
both TVWS as well as 802.11n.

Figures 18(a)-18(f) show the results, and the most important
thing to note is that again, regardless of the room, CABA offers
the best performance, by achieving an average of 0 seconds of
pause. That means that the video would never stop, and thus
the QoE for the users would only depend on the playback

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u
a
lit

y
 (

M
b
p
s
)

Time (s)

CABA TVWS WIFI

(a) 358

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u
a
lit

y
 (

M
b
p
s
)

Time (s)

CABA TVWS WIFI

(b) 353

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u
a
lit

y
 (

M
b
p
s
)

Time (s)

CABA TVWS WIFI

(c) 354

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u
a
lit

y
 (

M
b
p
s
)

Time (s)

CABA TVWS WIFI

(d) 251

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u
a
lit

y
 (

M
b
p
s
)

Time (s)

CABA TVWS WIFI

(e) 254

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u
a
lit

y
 (

M
b
p
s
)

Time (s)

CABA TVWS WIFI

(f) 250

Fig. 13. Figures 13(a)-13(f) present the average playback quality in the 6 tested locations in which we received both TVWS and 802.11n WiFi.

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220

Q
u

a
lit

y
 (

M
b

p
s
)

Time (s)

br 3.1
ITL meeting room

ppgroundcorridor
ppground

cshub
firstqueens

Fig. 14. Average playback quality in the 6 locations where we received only
TVWS.

quality, which we already showed it is the best one among
the tested connections. In room 354 all the considered Radio
Interfaces proceed without interruption, since we achieved 0
seconds of pause also for TVWS and for WiFi. In the other
5 rooms, we obtain a small amount of pause for both TVWS
and for IEEE 802.11n. While for TVWS this is certainly due
to the lower datarate offered, for WiFi again it is because of
the shadowing and possible congestion on the channel.

I. CABA Efficiency

Table IV shows the ratio of prefetched packets played by
the client. The rationale is that if the algorithms prefetches
a too early segment, that segment might be requested by the
client before the algorithm finished to prefetch it. Thus, the

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140 160 180 200 220
802.11n

TVWS

Time (s)

353 354 358 254 251 250

Fig. 15. Load balance between TVWS and WiFi in the 6 locations where we
received both TVWS and 802.11n WiFi

segment is downloaded also on the primary interface, wasting
the time in which the other interface has been used to prefetch
the data. In this table we show the ratio Pl/Pr, in which Pl is
the number of prefetched segments played by the client, versus
Pr which is instead the total of prefetched segments. Clearly, 0
means that all the packets prefetched were not actually played
by the client, while 1 means that all of them were used to play
the video. Therefore, the remaining percentage is bandwidth
wasted to download segments which are not used by the client,
but downloaded again over the primary interface.

CABA achieves an efficiency of more than 80 % in all the 6
locations where we received both TVWS as well as 802.11n.
When computing the expected time of download, clearly we

0

1

2

3

4

5

CABA ONLY TVWS TVWS WIFI

A
ve

ra
ge

 P
la

yb
ac

k
Q

ua
lit

y
(M

bp
s)

Fig. 16. Average playback quality regardless of the location.

TABLE IV
CABA EFFICIENCY

Testing Location Efficiency (%)
353 91.14
358 85.28
251 82.33
254 86.56
354 85.28
250 85.49

do not know a priori the size of the segment to be downloaded.
Thus, the expected time might be smaller than the actual time
needed to download it. We leave the study on an adaptive
method to raise the efficiency of CABA as future work.

VI. CONCLUSION

In this paper we presented CABA, a Connection Aware
Balancing Algorithm focused on Dynamic Adaptive Video
Streaming, able to balance the load and route the traffic
through the best possible interface given the network con-
ditions. We have given both the technical details as well as
performance evaluation of the proposal. We based our analysis
on adaptive video streaming with the well known MPEG-
DASH protocol, but we remark that our proposal is general and
compliant with other HTTP-based adaptive dynamic streaming
protocols.

We presented the results of field tests performed at the
QMUL Mile End campus, in which we ran a multi interface
AP with TVWS and IEEE 802.11n. The performance evalu-
ation shows how CABA can effectively improve the Quality
of Experience of the user watching the video, by distributing
the segment downloads through the available RATs. Moreover,
TVWS provide a larger communication range, thanks to the
lower frequency used and thanks to a better obstacle penetra-
tion.

Future work on this topic include the evaluation of a
dynamic scenario, with a user moving while playing the video.
We also plan to analyze the best segment size based on
the network conditions, as well as increasing the number of
scenario in which we run our tests.

REFERENCES

[1] M. Bennis, M. Simsek, A. Czylwik, W. Saad, S. Valentin, and
M. Debbah, “When cellular meets WiFi in wireless small cell
networks,” IEEE Communications Magazine, vol. 51, no. 6, pp. 44–50,
jun 2013.

[2] GWS, “Report on Mobile Broadband at home,” Tech. Rep., 2015.
[3] T. Cisco, “Cisco Visual Networking Index : Global Mobile Data Traffic

Forecast Update , 2014 - 2019,” Growth Lakeland, vol. 2011, no. 4,
pp. 2010–2015, 2011.

[4] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proceedings of the Second Annual ACM
Conference on Multimedia Systems, 2011, pp. 133–144.

[5] I. Sodagar, “The MPEG-DASH Standard for Multimedia Streaming
Over the Internet,” IEEE Multimedia, vol. 18, no. 4, pp. 62–67, apr
2011.

[6] Y. Liang, K. Chen, G. Li, and P. Mähönen, “Cognitive Radio
Networking and Communications: An Overview,” IEEE Transactions
on Vehicular Technology, vol. 60, no. 7, pp. 3386–3407, sep 2011.

[7] J. van de Beek, J. Riihijärvi, A. Achtzehn, and P. Mähönen, “TV White
Space in Europe,” IEEE Transactions on Mobile Computing, vol. 11,
no. 2, pp. 178–188, feb 2012.

[8] Z. Qin, Y. Gao, and C. G. Parini, “Data-Assisted Low Complexity
Compressive Spectrum Sensing on Real-Time Signals Under Sub-
Nyquist Rate,” IEEE Transactions on Wireless Communications, vol. 15,
no. 2, pp. 1174–1185, feb 2016.

[9] L. Bedogni, A. Achtzehn, M. Petrova, and P. Mähönen, “Smart meters
with TV gray spaces connectivity: A feasibility study for two reference
network topologies,” in 2014 Eleventh Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON).
IEEE, jun 2014, pp. 537–545.

[10] L. Ding, S. Pudlewski, T. Melodia, S. Batalama, J. D. Matyjas, and
M. J. Medley, “Distributed Spectrum Sharing for Video Streaming in
Cognitive Radio Ad Hoc Networks,” in Spectrum, 2010, vol. 28, pp.
855–867.

[11] L. Bononi, M. Di Felice, A. Molinaro, and S. Pizzi, “A Cross-Layer Ar-
chitecture for Robust Video Streaming over Multi-Radio Multi-Channel
Wireless Mesh Networks,” Mobiwac09: Proceedings of the Seventh Acm
International Symposium on Mobility Management and Wireless Access,
pp. 75–82, 2009.

[12] R. Kateja, N. Baranasuriya, V. Navda, and V. N. Padmanabhan,
“DiversiFi: Robust Multi-Link Interactive Streaming,” in Proceedings
of the 11th ACM Conference on Emerging Networking Experiments
and Technologies - CoNEXT ’15. New York, New York, USA: ACM
Press, 2015, pp. 1–13.

[13] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3G using WiFi,” Proceedings of the 8th international conference
on Mobile systems, applications, and services (MobiSys), p. 209, 2010.

[14] L. Bedogni, M. Di Felice, F. Malabocchia, and L. Bononi, “Cognitive
Modulation and Coding scheme Adaptation for 802.11n and 802.11af
networks,” in Globecom 2014 Workshop - Telecommunications Stan-
dards - From Research to Standards (GC14 WS - TCS), 2014.

[15] L. Bedogni, A. Trotta, and M. Di Felice, “On 3-dimensional spectrum
sharing for TV white and Gray Space networks,” in 2015 IEEE
16th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM). IEEE, jun 2015, pp. 1–8.

[16] S. Dimatteo, P. Hui, B. Han, and V. O. K. Li, “Cellular traffic offloading
through WiFi networks,” in Proceedings - 8th IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, MASS 2011, 2011,
pp. 192–201.

[17] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, and A. Bra-
gagnini, “Offloading cellular networks with information-centric net-
working: The case of video streaming,” in 2012 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
WoWMoM 2012 - Digital Proceedings, 2012.

 5

 10

 15

 20

 25

 30

 35

 60 80 100 120 140 160 180 200 220

B
u
ff
e
r

T
im

e
 (

s
)

Time (s)

CABA TVWS WIFI

(a) 358

 6

 8

 10

 12

 14

 16

 18

 20

 22

 60 80 100 120 140 160 180 200 220

B
u
ff
e
r

T
im

e
 (

s
)

Time (s)

CABA TVWS WIFI

(b) 353

 5

 10

 15

 20

 25

 30

 35

 60 80 100 120 140 160 180 200 220

B
u
ff
e
r

T
im

e
 (

s
)

Time (s)

CABA TVWS WIFI

(c) 354

 5

 10

 15

 20

 25

 30

 35

 60 80 100 120 140 160 180 200 220

B
u
ff
e
r

T
im

e
 (

s
)

Time (s)

CABA TVWS WIFI

(d) 251

 5

 10

 15

 20

 25

 30

 35

 60 80 100 120 140 160 180 200 220

B
u
ff
e
r

T
im

e
 (

s
)

Time (s)

CABA TVWS WIFI

(e) 254

 5

 10

 15

 20

 25

 30

 35

 60 80 100 120 140 160 180 200 220

B
u
ff
e
r

T
im

e
 (

s
)

Time (s)

CABA TVWS WIFI

(f) 250

Fig. 17. Buffer times for the 6 tested locations in which we received both TVWS as well as IEEE 802.11n.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 60 80 100 120 140 160 180 200 220

P
a
u
s
e
 T

im
e
 (

s
)

Time (s)

CABA TVWS WIFI

(a) 358

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 60 80 100 120 140 160 180 200 220

P
a
u
s
e
 T

im
e
 (

s
)

Time (s)

CABA TVWS WIFI

(b) 353

-1

-0.5

 0

 0.5

 1

 60 80 100 120 140 160 180 200 220

P
a
u
s
e
 T

im
e
 (

s
)

Time (s)

CABA TVWS WIFI

(c) 354

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 60 80 100 120 140 160 180 200 220

P
a
u
s
e
 T

im
e
 (

s
)

Time (s)

CABA TVWS WIFI

(d) 251

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 60 80 100 120 140 160 180 200 220

P
a
u
s
e
 T

im
e
 (

s
)

Time (s)

CABA TVWS WIFI

(e) 254

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 60 80 100 120 140 160 180 200 220

P
a
u
s
e
 T

im
e
 (

s
)

Time (s)

CABA TVWS WIFI

(f) 250

Fig. 18. Pause times for the 6 tested locations in which we received both TVWS as well as IEEE 802.11n.

[18] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate
adaptation for dynamic adaptive streaming over HTTP in content
distribution network,” Signal Processing: Image Communication,
vol. 27, no. 4, pp. 288–311, apr 2012.

[19] L. Keller, C. Fragouli, and U. C. Irvine, “MicroCast : Cooperative
Video Streaming on Smartphones Categories and Subject Descriptors,”
MobiSys 2012, pp. 57–69, 2012.

[20] F. Malabocchia, R. Corgiolu, M. Martina, A. Detti, B. Ricci, and
N. Blefari-Melazzi, “Using Information Centric Networking for Mobile
Devices Cooperation at the Network Edge,” in 2015 IEEE 81st
Vehicular Technology Conference (VTC Spring). IEEE, may 2015, pp.
1–6.

[21] Q. Zhang, X. Zhang, Y. Gao, O. Holland, M. Dohler, and J. M. Chareau,
“TV White Space Network Provisioning with Directional and Omni-
directional Terminal Antennas,” in Proc. of IEEE VTC-Spring, 2016.

[22] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51–57, 2014.

[23] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “WiFi , LTE
, or Both ? Measuring Multi-Homed Wireless Internet Performance,”
Imc, pp. 181–194, 2014.

[24] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “MP-DASH,” in
Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies - CoNEXT ’16. New York,
New York, USA: ACM Press, 2016, pp. 129–143.

[25] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic
adaptive streaming over HTTP in vehicular environments,” Proceedings
of the 4th Workshop on Mobile Video - MoVid ’12, p. 37, 2012.

[26] B. Oztas, M. T. Pourazad, P. Nasiopoulos, I. Sodagar, and V. C. M.
Leung, “A rate adaptation approach for streaming multiview plus depth
content,” in 2014 International Conference on Computing, Networking
and Communications (ICNC). IEEE, feb 2014, pp. 1006–1010.

[27] Y. Cao, X. You, J. Wang, and L. Song, “A QoE friendly rate
adaptation method for DASH,” in 2014 IEEE International Symposium
on Broadband Multimedia Systems and Broadcasting. IEEE, jun 2014,
pp. 1–6.

[28] D. J. Vergados, A. Michalas, A. Sgora, and D. D. Vergados, “A fuzzy
controller for rate adaptation in MPEG-DASH clients,” in 2014 IEEE
25th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communication (PIMRC). IEEE, sep 2014, pp. 2008–2012.

[29] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Prentice Hall PTR, 2001.

[30] ITU-R, “F.1399 : Vocabulary of terms for wireless access,” Tech. Rep.,
2001.

[31] S. Lederer, C. Mueller, C. Timmerer, C. Concolato, J. Le Feuvre, and
K. Fliegel, “Distributed DASH dataset,” in Proceedings of the 4th ACM
Multimedia Systems Conference on - MMSys ’13. New York, New
York, USA: ACM Press, 2013, pp. 131–135.

[32] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over het-
erogeneous wireless networks: Does it really pay off?” pp. 4807–4813,
2014.

[33] C. f. W. S. Communications, “In-Home TVWS Measurements Using
IEEE 802.11af - http://www.wirelesswhitespace.org/projects/in-home-
tvws-measurements-using-ieee-802-11af/,” Tech. Rep., 2014.

[34] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming
over HTTP dataset,” in Proceedings of the 3rd Multimedia Systems
Conference on - MMSys ’12. New York, New York, USA: ACM
Press, 2012, p. 89.

