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Abstract

A new signalling system in Denmark aims at ensuring fast and reliable train
operations, however imposes very strict time limits on recovery plans in the
event of failure. As a result, it is necessary to develop a new approach to the
entire maintenance scheduling process. In the largest region of Denmark, the
Jutland peninsula, there is a decentralised structure for maintenance plan-
ning, whereby the crew start their duties from their home locations rather
than starting from a single depot. In this paper, we allocate a set of mainte-
nance tasks in Jutland to a set of maintenance crew members, defining the
sub-region that each crew member is responsible for. Two key considerations
must be made when allocating tasks to crew members. Firstly a fair balance
of workload must exist between crew members and secondly, the distance
between two tasks in the same sub-region must be minimised, in order to
facilitate quick response in the case of unexpected failure. We propose a per-
turbative selection hyper-heuristic framework to improve initial solutions by
reassigning outliers, those tasks that are far away, to another crew member
at each iteration, using one of five low-level heuristics. Results of two hyper-
heuristics, using a number of different initial solution construction methods
are presented over a set of 12 benchmark problem instances.
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1. Introduction

European Railway Traffic Management System (ERTMS) [2] is the newest
signalling standard to systematise train control and communication system
within railway networks. The motivation behind ERTMS has been to en-
hance the signalling communication amongst various train systems, to im-
prove connectivity and allow for faster travel between European countries.
Although ERTMS was initially presented by the European Union for the
scope of European countries, it rapidly was discerned as a worldwide sig-
nalling standard. As ERTMS is still in the primary stages of operation,
there is very limited research pertinent to the maintenance processes and
other aspects in ERTMS [33, 28, 24, 10, 2].

Denmark will be the first country in Europe to upgrade its entire sig-
nalling system to ERTMS. Railway track and signalling systems are complex
and highly interdependent. Unlike when a failure happens on a track seg-
ment, failure of one component in the signalling system may lead to the
failure of other components or even propagate to the whole network. This
differentiation makes the partitioning of each sub-system particularly influ-
ential, affecting the levels of operability and maintainability of the entire
railway network [19].

Given the huge investment required to implement ERTMS - Denmark has
invested approximately 3 billion Euros in the system [1] - effective mainte-
nance is critical, and as the new system uses completely different hardware
to the previous system. In addition, the maintenance tasks required differ
significantly, with very strict time limits and constraints on recovery opera-
tions.

As defined by the industrial partner of the ERTMS project in Denmark,
a maintenance plan should define the sub-regions in which different mainte-
nance crew members work. In addition to the workload being fairly balanced
across sub-regions, the geography of these regions should ensure that crew
members can travel between two points quickly, when needed, in order to
handle unexpected failures and breakdowns. Once the sub-regions are de-
fined, the planner can estimate the maximum distance each crew member
must travel within their own region, in case of failure in the future. Follow-
ing this notion, the best route for each crew member can be determined and
the overall driving distance cost calculated for the entire maintenance plan.
We must emphasise here that this routing phase is considered as a separate
optimisation problem and will not be studied in this paper.
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The focus of this paper is the allocation of maintenance tasks to crew
members for the Jutland peninsula, the largest region in Denmark. The
current maintenance planning system in the country is decentralised, with
crew members starting their duties from different locations rather than from a
single depot. This structure requires an effective assignment of tasks to avoid
high total driving distance costs or, in some cases, to ensure a feasible plan
is made. Based on the allocations found, each crew member is responsible
for undertaking tasks within their own sub-region.

Considering the characteristics of the maintenance planning problem in-
troduced above, the problem can be seen as Multi-Depot Vehicle Routing
Problem (MDVRP) [18], where each vehicle operates on its own routes, start-
ing and finishing at a specific depot. According to the industrial partner of
the project, each crew member is equipped with a technical vehicle and all
the necessary equipment to undertake any task. Each crew member in our
problem can be seen as a vehicle within the MDVRP, with their home loca-
tion corresponding to a depot. Starting and ending their route at the depot
location, each crew member must complete all of the tasks that they have
been assigned. As the MDVRP is an NP-hard problem, heuristic methods
have been used widely within the literature. Among the existing heuristic
approaches, Tabu Search [6] and adaptive large neighbourhood search [26]
have been shown to be particularly successful. Montoya-Torres et al. [22]
provide a comprehensive survey on approaches to solving the MDVRP.

Due to the structure of the MDVRP, the process of determining which
customers are served by which depots has been fundamental to many pro-
posed solution approaches. Such approaches fall under the research spectrum
of cluster-first, route-second approaches [12, 25], in which the clustering phase
is usually solved by an assignment algorithm [32]. Giosa et al. [15] proposed
a number of assignment algorithms for the MDVRP, three of which, namely
Parallel Assignment, Simplified Assignment and Sweep Assignment [29], were
referred to as methods which perform assignment through urgencies. These
methods define a precedence relationship between customers, to determine
the order in which they are serviced by the depot, with high-priority or “ur-
gent” customers served first.

Hyper-heuristics represent a class of high-level search techniques em-
ployed for solving combinatorial optimisation problems [5]. Unlike traditional
search methods, which operate on a space of solutions, hyper-heuristics op-
erate on a search space of low-level heuristics or heuristic components. A
recent definition of hyper-heuristics is given by Burke et al. [5]:
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‘A hyper-heuristic is a search method or learning mechanism for
selecting or generating heuristics to solve computational search
problems’.

This definition covers the two main categories of hyper-heuristics: selec-
tion hyper-heuristics, which choose a heuristic to apply at each step of a
search, and generation hyper-heuristics, which generate new heuristics from
existing sets of low-level heuristics or components. A traditional selection
hyper-heuristic iteratively selects and applies low-level heuristics to a sin-
gle solution, using a move acceptance criterion to make a decision regarding
whether to keep the new solution for each step. While there has been sus-
tained research interest in hyper-heuristics in the last decade or so in partic-
ular, methods exhibiting hyper-heuristic behaviour can be traced back to as
early as 1961 [11]. Selection hyper-heuristics have been previously applied
successfully to a wide array of problem domains, including bin packing [20],
dynamic environments [17], examination timetabling [23], the multidimen-
sional knapsack problem [9], nurse rostering [4], sports scheduling [14] and
the vehicle routing problem [13]. Here we will use a selection hyper-heuristic
to define working sub-regions for maintenance crew members across the Dan-
ish rail network.

This paper is organised into five sections. In Section 2, we present the
problem definition, including a mathematical model of the railway main-
tenance crew scheduling problem and a description of the instances used.
Section 3 describes the proposed framework used to solve the problem, and
Section 4 presents experimental results and a discussion on the proposed
framework. Finally, this paper closes with a conclusion in Section 5.

2. Problem definition

2.1. Mathematical model

The mathematical model of the problem that we deal with in this paper is
as follows. Given a set of crew members C and a set of maintenance tasks M ,
with crew indices k, v ∈ C and maintenance task indices l, h ∈ M , decision
variable xk,l is set to 1 if task l is assigned to crew member k; otherwise, it is 0.
Qk,l denotes the distance between crew k and task l, while Sl,h is the distance
between task l and task h and dl is the duration of task l. The objective
function (1) is multi-criteria, whereby the first term in the objective function
minimises the total travel time from a crew member’s location to the assigned
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tasks for each crew member. The second term ψ, together with constraint
(2), aims at minimising the maximum distance among task pairs within each
sub-region. This reflects the definition of the diameter of a sub-region as the
maximum distance between any two tasks assigned to a maintenance crew
member.

In addition, fair distribution of the tasks among the crew is considered
as a third criterion (w). Workload distribution is modelled according to the
balancing constraints defined by Bredstrom and Ronnqvist [3]. Using this
formulation, constraint (3) balances mismatches across different sub-regions,
where w represents the biggest difference in the total duration of assigned
tasks between any two sub-regions. Constraint (4) ensures that each task is
assigned only to one crew member.

Minimise
∑
k∈C

∑
l∈M

xk,l ∗Qk,l + ψ + w (1)

subject to:

xk,l ∗ xk,h ∗ Sl,h ≤ ψ ∀ k ∈ C ∀ l, h ∈M (2)

∑
l∈M

xk,l ∗ dl −
∑
l∈M

xv,l ∗ dl ≤ w ∀ k ∈ C. ∀ v ∈ C \ {k} (3)

∑
l∈M

xk,l = 1 ∀ k ∈ C (4)

2.2. Dataset

As ETRMS has not yet been implemented, this is exploratory work com-
missioned by Banedanmark, the state-owned Danish company in charge of
maintenance and traffic control of most of the Danish railway network. As
such, there is currently no solution implemented in practice yet. This work
has been done prior to the implementation of ERTMS, to give some indi-
cation of the problem that they are likely to face, and ensure that they are
prepared when it comes to solving the problem in the future. In this section
we define the instances used for experimentation. The geographical points
are all located in the Danish peninsula of Jutland. Tasks should be assigned
to a number of crew members. Coordinates representing the geographical
location of the tasks were generated by utilising the Google Map API. This
was done based on three different task location generation strategies:
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1. Exact (E). Tasks are all located on the rail tracks of the Jutland region.

2. Mixed (M). Tasks are located at a mix of on- or off-track positions
within the Jutland region.

3. Random (R). Tasks are scattered randomly across the Jutland region.

(a) E500 (b) M500 (c) R500

Figure 1: Geographical Visualisation of the three types of instance

For each of these three cases, four instances were generated with a dif-
ferent total number of tasks: 100, 500, 1000 and 5000, resulting in 12
problem instances overall. These should be serviced by a team of eight
crew members. These numbers were chosen respectively according to the
numbers of maintenance tasks which need to be done on a daily, weekly,
monthly and annual basis. To standardise our test cases, we follow the file
format of the classical benchmark test sets for the Vehicle Routing Prob-
lem with Time Windows (VRPTW), introduced by Solomon1. The dataset
and documentation about how the instances were created are accessible at
http://github.com/ShahrzadMP/Dataset. Each instance is referred to by
its locationType-taskTotal pair herein, e.g. E100, R5000 etc. Figure 1

1http://w.cba.neu.edu/˜msolomon/problems.htm
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presents a geographical visualisation of the on-track, on- and off-track and
random instances with 500 tasks.

3. Proposed framework

Given an existing solution generated by an initial constructive phase,
we use a selection hyper-heuristic to improve the assignment of maintenance
tasks to crew members. As with many existing selection hyper-heuristics, the
search is performed on a single candidate solution, in an attempt to improve
a given solution at each iteration, using two phases: heuristic selection and
move acceptance [23]. By applying a selected heuristic at each iteration, a
candidate solution (Solt) at a given time (t) is modified into a new solution.
A move acceptance criterion makes the decision whether to accept or reject
the new solution.

In the proposed framework, task assignments are modified by reassigning
tasks that are far away from a maintenance crew member’s starting position
to another maintenance crew member’s sub-region. Such tasks are represen-
tative of the concept of outliers, explained in more detail in Section 3.2.
The algorithm starts with a constructive phase to generate an initial feasible
solution. Next, at each iteration, the algorithm tries to detect an outlier in a
particular sub-region. If no outlier is found for any of the sub-regions of the
current solution, the algorithm terminates and the best solution is returned
as the final solution. If an outlier is detected, the hyper-heuristic selects and
applies a low-level heuristic to reassign the outlying task, before the move
acceptance criteria decides whether to accept this new allocation. This pro-
cess continues until either no outliers remain or one of the given termination
criterion is met. The overall framework is illustrated in Figure 2.

3.1. Initial solutions

To generate initial solutions, we present a constructive deterministic heuris-
tic based on two different ordering strategies, in order to assign tasks to
maintenance crew members. The set of tasks allocated to each crew member
represents the sub-region in which the crew member operates. The construc-
tive heuristic starts with a list of maintenance tasks, sorted according to the
distance of each task from the crew member’s starting location, and in each
step a task is allocated to a crew member, depending on the ordering strat-
egy being used. We define two strategies to decide the order in which tasks
are allocated: Furthest Task First (FTF) and Closest Task First (CTF). In
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Figure 2: Proposed perturbative selection hyper-heuristic framework

FTF, tasks are ordered in descending order of distance from the closest crew
member, with the task furthest from its closest crew member allocated first.
This strategy intends to allocate “difficult to assign” tasks which are a long
distance from any crew member early on in the construction process. Con-
versely, CTF allocates tasks in a greedy manner, assigning them in ascending
order of distance away from the closest crew member.

In order to ensure that tasks are distributed fairly among all crew mem-
bers, a Tabu list is used to manage those who are able to be allocated a task
at a given point. Once a task is allocated to a crew member, the heuris-
tic is prohibited from allocating this person another task until the Tabu list
becomes empty. In this way, the number of tasks assigned to each crew
member is balanced while constructing the solution. Algorithm 1 presents
the pseudocode for the constructive heuristic. For comparison, we have also
implemented the Simplified Assignment (SA) algorithm [15] from the liter-
ature, which orders tasks by the difference in distance from a task to the
closest and second closest crew member.

3.2. Identifying outliers

In the task allocation problem described above, in order to ensure a quick
response across the network in the event of failure, the maximum distance
between the tasks should be minimised within each sub-region (cluster). This
reflects the definition of the diameter of a cluster, that is, the maximum
distance between any two points of the sub-region [27]. Explicitly calculating
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Algorithm 1: Ordering heuristic, employed to generate initial solutions

1: Order task list M according to ordering strategy (FTF or CTF)
2: Initialise tabuList as empty
3: Set tabuList size to number of crew member - 1
4: for each task l in M do
5: if Size of tabuList equals to maximum size of tabuList then
6: empty the tabuList

7: Allocate l to closest non-Tabu crew member c
8: Add c to tabuList
9: end for

the diameter of a sub-region can be costly, and requires checking all pairs of
tasks within that sub-region. In terms of time complexity this is O(n2), where
n is the number of tasks within the sub-region. To reduce the time complexity
of our approach and allow for better scalability, we use the radius of the sub-
region instead of the diameter. The radius of a sub-region is defined as the
maximum distance between all the points and the sub-region centre and can
be calculated in O(n) time. Whilst the radius and diameter of a cluster are
not associated directly, they do have a propensity for being proportional [27].

Figure 3 shows the outlier detection module in the proposed framework.
A sub-region is selected randomly from the current solution at hand. In order
to detect an outlier, the module finds the task furthest away from the sub-
region centre, defined as the starting location of a crew member. If the radius
is greater than half of the maximum allowed distance during the failures, it
is recognised as an outlier. In the Banedanmark problem, the maximum
allowed distance is 100 km which corresponds to roughly an hour and a half
travel time. For example, if the furthest task away from the sub-region centre
(radius) is 80 km, the task will be detected as the outlier, as the radius is
greater than half of the maximum allowed distance, which is 50 km in this
example.

If an outlier is detected within the current sub-region, the algorithm will
enter the improvement phase, carried out by the selection hyper-heuristic. If
not the algorithm will add the selected sub-region to a Tabu list, to avoid
re-selecting sub-regions that do not contain any outliers. After a sub-region
is added to the Tabu list, the algorithm continues to keep selecting a non-
Tabu sub-region until it finds either a sub-region with an outlier, or there
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Figure 3: Outlier handling module

are no more non-Tabu sub-regions from which to choose. Each time an
outlier is detected successfully, the Tabu list is emptied. Outlier detection
is possible until the radius (furthest task away from the centre of the sub-
region) of all sub-regions is no further than half of the maximum distance a
crew member is allowed to travel in the case of a breakdown. In the worst
case the maximum distance from a crew members current location to the
location of a failure within the sub-region should be twice the radius of the
sub-region, and therefore within the maximum distance allowed.

3.3. Choice function heuristic selection

Once an outlying task has been identified, a low-level heuristic is applied
to reassign the task to another sub-region. The impact of different low-level
heuristics on a certain solution is dependent on two factors: the nature of
the low-level heuristic and the point in the search at which they are applied.
Hence, if the state of the search can be acknowledged through some mech-
anism, a hyper-heuristic can apply an appropriate heuristic at each step, in
order to guide the solution towards better areas of the solution space. The
choice function is an intelligent heuristic selection strategy, introduced by
Cowling et al. [7] to evaluate and rank the performance of multiple low-level
heuristics. Choice function-based hyper-heuristics and variants have since
been used to solve a variety of different problems [16, 9, 21].

The choice function comprises three terms and utilises information about
the impact of each low-level heuristic individually (f1), the combined impact
of applying two heuristics successively (f2) and the amount of time elapsed
since the heuristic was last called (f3) [7]. At each decision point, the low-
level heuristic with the highest score, calculated using the choice function, is
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selected and applied to the current solution. Exploitation of the search space
is taken into account by gathering performance information on the heuristics
through f1 and f2. Exploration of other parts of the search space is achieved
by selecting low-level heuristics that have not been applied recently (f3).
The parameters α, β and γ are used to weight each of the three components
(f1, f2 and f3), giving greater weight to recent performance. The complete
formulation of these components is as follows:

f1(hj) =
∑
n

αn−1
In(hj)

Tn(hj)
(5)

f2(hk, hj) =
∑
n

βn−1
In(hk, hj)

Tn(hk, hj)
(6)

f3(hj) = τ(hj) (7)

where In(hj) and Tn(hj) are changes in the objective function and CPU
time taken the nth last time the heuristic hj was called. In(hk, hj) and
Tn(hk, hj) indicate the change in the evaluation function and the amount
of CPU time taken, the nth last time the heuristic hj was called directly after
heuristic hk. Finally, τ(hj) is the time elapsed since the heuristic hj was last
called. The choice function, F , for a given heuristic is calculated as:

F (hk, hj) = αf1(hj) + βf2(hk, hj) + γf3(hj) (8)

To enhance the generality and robustness of our hyper-heuristic, a self-
adaptive version is preferable. Accordingly, we use the parameter-free choice
function introduced by Cowling et al. [8] which tunes the parameters of
the choice function at each decision point based on the state of the search
space, rather than using constant values for α, β and γ during the search.
The parameters α, β and γ are rewarded or punished if the resulting so-
lution following the application of a low-level heuristic is better or worse
than the previous solution, respectively. This adaptivity allows for regu-
lar interplay between the parameters of the choice function, modifying the
weighting assigned to each parameter according to the performance of each
low-level heuristic application. Various approaches can be implemented as

11



a reward/punishment strategy to control α, β and γ. Examples include a
linear scheme (e.g. α = α(1 + ε)) or non-linear (e.g. α = α(1+ε)) scheme,
where ε can be either a negative or positive constant, or a function of the rel-
ative improvement obtained from the change in the evaluation function after
employment of the last selected heuristic [30]. Here we employ the adap-
tive choice function hyper-heuristic taken from the schematic view given by
Soubeiga [30], using a linear scheme with a constant value of 0.1 with the
positive or negative sign for the reward and punishment scheme, respectively.
Initially, α, β, and γ are set to 1.

This adaptive variant of the choice function will be referred to as CFHH
in the remaining sections of the paper. In addition, our experiments will also
use a simple random hyper-heuristic (SRHH) for comparison, which makes
a uniform random selection of low-level heuristic to apply at each step.

3.4. Low-level heuristics

We introduce five low-level heuristics the hyper-heuristics to select from.
A low-level heuristic defines a strategy to reallocate a task identified as an
outlier in one sub-region to another maintenance crew member. The five low-
level heuristics are illustrated in Figure 4, in which a circle represents a single
maintenance crew member’s sub-region, with each point denoting a task
allocated within that particular sub-region. Red points are tasks identified
as outliers, while black points could be either an outlier or a non-outlying
task. All of the proposed low-level heuristics, except for Balancing, have been
defined as hill-climbing methods. This means that when they are applied to
a solution, if the solution is not improved, the new solution is discarded
and the original solution retained. The balancing low-level heuristic does
not consider the change in objective function value, and only attempts to
balance the number of tasks allocated to each crew member in the current
solution.

Domino: the Domino heuristic first moves the identified outlying task to
the sub-region of the closest other maintenance crew member. Subsequently,
the sub-region which has received the outlier does the same and reassigns its
furthest task to the sub-region of the closest crew member’s starting location,
thereby having a “domino effect” on the overall solution.

Pair: this heuristic removes two outliers sequentially from the selected
sub-region and assigns them to the best possible sub-region in terms of the
distance of the outlier to the other sub-regions’ centres. The destination
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Figure 4: Proposed low-level heuristics

sub-region for the two outliers could be the same or different. This heuristic
changes the balance of the sub-regions.

Interchange: this heuristic tries to allocate an outlying task to the clos-
est other crew member in exchange for another task, which is closer to the
first crew member than the original outlier. The task received from the sec-
ond crew member could either be an outlier or another task which is closer
to the first crew member’s starting position.

Balancing: in order to try to balance the number of tasks between crew
members, the Balancing heuristic moves an outlying task to another crew
member, who is currently allocated fewer tasks in total.

Join: this low-level heuristic looks for two tasks which are close to each
other in terms of distance, but belong to different sub-regions. It then tries
to place the two tasks in the same sub-region. Out of the two possible moves,
the assignment which yields the lowest average distance of the two tasks away
from the centre of the sub-regions is kept.

3.5. Pseudocode for the proposed framework

The framework that we present in this paper is composed of three phases:
generating an initial solution, detecting the outlier and improving the solu-
tion using a selection hyper-heuristic. In each run of the algorithm, one initial
solution is generated and then the solution is improved through collaboration
between the outlier detection and improvement hyper-heuristic phases.

Algorithm 2 presents the pseudocode for the proposed choice function
hyper-heuristic approach to the problem (CFHH). The search space of the
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high-level heuristic consists of all possible permutations of the low-level heuris-
tics defined in Section 3.4. The algorithm starts by generating an initial
solution using one of the constructive heuristics introduced in Section 3.1.
Once a solution is constructed, the algorithm enters the main loop to find an
outlier of one of the sub-regions and improve the solution iteratively, until
the stopping condition is met. Outlier detection (line 5) has been explained
in detail in Section 3.2. If an outlier is found, the algorithm will attempt to
improve the solution using the choice function hyper-heuristic introduced in
3.3 operating over the low-level heuristics described in Section 3.4.

As discussed earlier, in order to enhance the robustness of the presented
framework in this paper, we employ the adaptive choice function [30], which
automatically changes its parameters according to the search space in which
it is operating. The rest of the algorithm from line 7 refers to the schematic
flow chart of the adaptive choice function introduced by Soubeiga [30]. At the
beginning of the search, the variable nonImprovement is declared, to keep
track of the number of consecutive iterations no changes to the objective
function are made. The choice function value is then computed for each
heuristic, and the heuristic hj with the highest F value is selected (lines
7 and 8). H2 is another heuristic, with the highest value for f3, used to
provide an appropriate level of exploration of the heuristic search space (line
9). In order to determine whether the hyper-heuristic needs to exploit or
explore the solution space at each iteration, G, the biggest contributor to
the F value of the selected heuristic, is identified. This prescribes the way in
which the chosen heuristic is applied (line 13). In the case of N consecutive
non-improving iterations, H2 is applied to the solution (line 12).

In general, when the algorithm is in an exploitation phase (G = f1 or G =
f2), the chosen heuristic is applied in steepest descent fashion (line 14). If the
solution requires exploration (G= f3), the heuristic with the smallest f3 value
is applied in steepest descent fashion (line 18). If this yields an improvement
γ is punished (line 20), otherwise hj is applied using steepest descent (line
22). If this still doesn’t lead to an improvement, the solution is returned
to the previous solution and hj applied once (line 24). If no component of
the choice function dominates the others in terms of contribution to F , hj
is applied in steepest descent fashion (line 26). Following the application of
a low-level heuristic to the solution, nonImprovement is incremented if no
improvement has been found and set to 0 in the case of improvement (line
27). After more than N consecutive non-improving iterations, the algorithm
rewards γ and H2 is applied to the solution (line 29 to 33).
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Algorithm 2: Pseudocode of the choice function selection hyper-
heuristic framework (CFHH)

1: Generate initial Solution
2: Initialise heuristic list h = h1, h2, h3, h4, h5
3: N = Num of low-level heuristics, iteration = 0, nonImprovement = 0
4: while termination criteria not met do
5: Outlier detection
6: if any outlier is found then
7: Compute choice function F for each heuristic
8: Select heuristic hj for which F is max
9: Select heuristic H2 where f3 is max, and H2 6= hj

10: if nonImprovement is ≤ N then
11: if nonImprovement = N then
12: Apply heuristic H2 to Solution

13: G = biggest contributor to F , either f1, f2 or f3
14: if G = f1 or f2 then
15: Apply hj in steepest decent
16: Reward or punish α or β, based on solution improvement/deterioration
17: else if G = f3 then
18: Select hi for which F − f3 is max and apply in steepest descent
19: if there is any relative improvement and hi 6= hj then
20: Punish γ
21: else
22: Apply hj in steepest decent
23: if there is no relative improvement then
24: Undo steepest descent and apply hj once

25: else
26: Apply hj in steepest decent

27: Calculate absolute improvement and update nonImprovement
28: else
29: Reward γ
30: Apply H2 in steepest decent
31: nonImprovement = 0
32: if there is no relative improvement then
33: Undo steepest decent and apply H2 once

34: iteration = iteration + 1
35: end while
36: return Solution
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The algorithm terminates under three different criteria. The first occurs
when no outlier is found in any of the sub-regions within the solution. If
no outliers are detected, the low-level heuristics have no task to reassign to
another sub-region. The second criterion is met when an outlier is detected,
but the hyper-heuristic cannot improve the solution after a certain number of
iterations. This threshold is set to 0.1 * the number of tasks in the problem
instance. Finally, if the algorithm does not fail under the previous conditions,
the framework will stop after a set number of iterations (2 * number of tasks
in the instance).

4. Results and discussion

This section presents a number of experiments to analyse various aspects
of the proposed framework. Firstly, the results of the initial solutions ob-
tained using the CTF, FTF and SA assignment algorithms introduced in
Section 3.1 are compared. Following this, the results of the proposed choice
function selection hyper-heuristic (CFHH) applied to the three different ini-
tial solutions generated for each instance are presented. Next, we compare
CFHH to a baseline simple random hyper-heuristic (SRHH) using the solu-
tions generated by FTF. Detailed analysis of the performance of low-level
heuristics is then performed, using the three largest instances. Finally, de-
tailed performance of the choice function hyper-heuristic (CFHH) during a
single run is presented, using one of the largest instances as an example. All
experiments were run using an Intel Core (TM) i7-4600U CPU 2.10 GHz
processor, with 8.00 GB RAM.

4.1. Quality of the initial solutions generated using different constructive
heuristics

Table 1 summarises the results of using three different constructive heuris-
tics to generate solutions for the 12 instances introduced in Section 2.2. This
table shows five different measurements related to each solution. Total D is
the total distance cost, calculated as the sum of the distances between each
task and the crew member to which it is assigned. MDD gives the maximum
distance between two tasks allocated to a single crew member within the
whole solution. This gives an indication of the worst case scenario in terms
of travel time in the case of unexpected failures or breakdowns. Similarly,
AVG MDD calculates the average maximum distance travelled by each crew
member, to give an “average worst case” across the entire solution. w is
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the imbalance in workload distribution across different sub-regions on the
railway network. The CPU time taken to generate the solution in seconds
is also given (CPU T). The best value for each metric between the three
constructive heuristics is highlighted in bold.

From Table 1, we can see that SA generates many of the best results in
terms of Total D and MDD. In other measurements, FTF generates marginally
better results in the majority of cases for AVG MDD and CPU T(s), and
CTF generates slightly better results in terms of Total D for the ‘R’ in-
stances. The only exceptional cases are as follows: FTF generates results
much more quickly (256.48, 201.76, 360.94) for large instances compared to
SA (575.89, 416.75, 412.36) on E5000, M5000 and R5000, respectively. CTF
also generates significantly better results in terms of Total D (7283.62) for
instance R100 compared to SA (7413.68). Regarding workload imbalance
(w), SA results in a better distribution of tasks overall, however there is not
a big difference compared to CTF and FTF.

It is evident that the results achieved by FTF are close to the results
of SA, while CTF generates the worst results. Using FTF ordering, tasks
are assigned to the crew members, starting with the most difficult tasks
through to the easiest. Using FTF the algorithm penalises the solution in
the early steps of solution construction, however this protects the solution
from receiving high penalties for assigning the remaining faraway tasks to
the crew in the final steps of solution construction. Distant tasks which are
difficult to place are assigned to a better possible choice in the early stages
of constructing a solution, unlike CTF which effectively assigns tasks in a
greedy manner. Similarly, the difference measure used by SA prevents bigger
penalties later on in the construction of a solution by assigning tasks which
are close to a single crew member early on. In the remaining sections of
the paper, we will use the solutions obtained by the CTF, FTF and SA
construction heuristics as input for hyper-heuristics attempting to improve
the initial task allocations.

4.2. Results of CFHH using different initial solutions

Here we will analyse the impact of different initial solutions with different
qualities on the performance of CFHH. For this purpose, we performed 10
CFHH runs, starting from the same initial solution for the solutions gen-
erated by CTF, FTF and SA for each instance. Table 2 shows the average
performance obtained by CFHH, using different initial solutions based on the
five measurements introduced in Section 4.1. Each of these measurements
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Table 1: Results of initial solutions obtained by CTF, FTF and SA on all instances

Closest Task First (CTF)

Instance Total D MDD AVG MDD w CPU T(s)
E100 5935.83 297.65 170.01 4 0.29
E500 28334.50 303.68 236.99 3 1.92
E1000 57073.51 323.33 241.69 0 7.02
E5000 287313.42 328.52 253.34 0 282.13
M100 5419.80 300.79 134.78 4 0.11
M500 31825.80 327.17 233.27 3 1.89
M1000 58566.95 322.90 237.94 0 9.31
M5000 292217.82 331.62 247.80 0 528.53
R100 7283.62 301.75 170.06 4 0.09
R500 33667.66 318.43 224.48 4 1.21
R1000 64439.48 317.52 231.03 0 5.64
R5000 333296.85 330.25 248.54 0 326.87

Farthest Task First (FTF)

Instance Total D MDD AVG MDD w CPU T(s)
E100 5546.58 255.10 143.05 3 0.23
E500 25568.83 189.41 138.48 4 1.44
E1000 51971.83 189.95 142.48 0 4.77
E5000 260716.26 265.46 208.25 0 256.48
M100 5401.86 248.63 131.49 4 0.11
M500 31378.27 254.40 192.15 4 1.88
M1000 55425.78 258.17 197.51 0 6.31
M5000 280743.54 259.59 198.23 0 201.76
R100 7526.52 255.07 164.50 3 0.12
R500 33290.34 259.71 184.85 3 1.57
R1000 64619.51 264.88 197.39 0 5.50
R5000 333592.20 266.09 195.79 0 360.94

Simplified Assignment (SA)

Instance Total D MDD AVG MDD w CPU T(s)
E100 5233.94 255.07 143.78 3 0.22
E500 25460.18 189.40 138.19 3 0.75
E1000 51901.78 190.00 142.47 0 5.90
E5000 260694.49 265.03 208.30 0 575.89
M100 5154.75 248.63 143.31 3 0.11
M500 31302.68 254.40 193.42 4 1.16
M1000 55317.69 258.02 197.56 0 6.42
M5000 280666.80 257.41 197.96 0 416.75
R100 7413.68 245.83 166.05 3 0.09
R500 33214.83 259.71 184.87 3 1.58
R1000 64545.90 264.88 197.26 0 6.90
R5000 333471.23 265.10 195.81 0 412.36
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is followed by a column indicating the relative ranking of that measurement
compared to the other two methods for generating initial solutions.

At a glance, the results indicate that CFHH using solutions constructed
on an FTF basis, performs better in the majority of measurements for all
instances, ranked mainly first and second, with SA also performing well.
This is despite the fact that the quality of the initial solutions generated
by FTF were often of poorer quality than those generated by SA in the
previous subsection, especially in terms of Total D. Notably, CTF generates
the worst results in all instances under the Mixed (M) and Random (R)
categories in terms of Total D, MDD and AVG MDD. This demonstrates
that starting with a solution which makes decisions on a greedy basis makes
any improvement to the solution more difficult when applying CFHH. In
other words, a good balance between the greediness of the initial solution
and the adaptiveness of the hyper-heuristic is not found. It is notable that
the results obtained using these distance-based measurements seem to be
correlated, with the best solutions in terms of Total D often also performing
best in MDD and AVG MDD.

4.3. Comparison between CFHH and simple random hyper-heuristic (SRHH)

Here we will make a direct comparison between a simple random hyper-
heuristic (SRHH), which makes a uniform random choice of low-level heuristic
at each step, and the adaptive choice-function-based hyper-heuristic (CFHH).
Both SRHH and CFHH start with a solution produced with FTF following
the results presented in the previous subsection. Results (best and average
over 10 runs) are given in Table 3 for all 12 instances. This table shows the
three distance-based measures as before (Total D, MDD and AVG MDD).
Each of these measurements is followed by a column showing the percentage
of the improvement to the corresponding measurement compared to the ini-
tial solution constructed by FTF, shown earlier in Table 1. In the case that
this percentage value is negative, the solution quality by this metric is worse
than the initial solution. The last row of each set of results represents the
average percentage of the improvement achieved by SRHH and CFHH for
each measurement over all instances.

From Table 3 we can see that both SRHH and CFHH improved the ini-
tial starting solution in terms of Total D for all instances. CFHH improves
in all three measures on average over the 12 instances. This is likely to
be due to the rationale behind the proposed low-level heuristics, Domino,
Pair and Join, which minimise the maximum distance between two tasks
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Table 2: Average performance over 10 runs of the choice function hyper-heuristic (CFHH)
on all instances, starting from initial solutions obtained by FTF, CTF and SA

CFHH starting from solutions generated by CTF

Instance Total D MDD AVG MDD W CPU T(s)
E100 4809.50 1 212.50 3 117.47 2 1.84 3 0.35 1
E500 23887.20 2 192.47 2 143.94 3 10.47 2 5.07 2
E1000 47549.37 1 258.91 3 156.04 2 21.11 2 11.49 1
E5000 240049.59 2 220.66 2 160.39 2 106.37 3 394.79 1
M100 4957.29 3 297.46 3 114.59 2 2.16 1 0.44 2
M500 29059.77 3 314.63 3 213.63 3 9.32 1 6.26 1
M1000 49094.02 3 254.92 3 173.27 3 21.16 2 25.45 3
M5000 252617.38 3 272.07 3 183.79 3 106.79 1 314.46 2
R100 6853.28 3 267.31 3 162.55 2 1.47 1 0.37 3
R500 31191.02 3 295.42 3 216.17 3 9.21 2 2.60 1
R1000 59758.42 3 302.45 3 219.07 3 19.58 1 9.26 2
R5000 313062.13 3 330.25 3 237.76 3 105.26 2 269.51 2

CFHH starting from solutions generated by FTF

Instance Total D MDD AVG MDD W CPU T(s)
E100 5044.48 3 187.67 2 121.19 3 1.42 1 0.44 2
E500 23013.49 1 182.23 1 122.92 2 10.00 1 3.28 1
E1000 49083.62 2 208.07 1 152.60 1 21.05 1 19.39 2
E5000 237120.77 1 217.40 1 159.01 1 105.84 2 442.64 2
M100 4822.05 2 242.25 2 106.56 1 2.21 2 0.38 1
M500 27242.56 2 286.88 2 160.33 2 10.68 2 7.15 2
M1000 48578.86 1 238.22 1 160.90 2 21.05 1 23.63 2
M5000 243729.68 1 235.46 1 159.69 1 108.68 2 325.99 3
R100 6757.66 2 262.07 2 170.29 3 2.00 2 0.27 1
R500 29919.34 1 291.16 1 189.61 1 10.11 3 4.69 3
R1000 55105.87 1 269.81 2 173.19 2 21.05 2 7.64 1
R5000 294064.31 1 290.10 1 191.08 1 123.32 3 276.32 3

CFHH starting from solutions generated by SA

Instance Total D MDD AVG MDD W CPU T(s)
E100 5009.45 2 167.15 1 108.24 1 1.58 2 0.48 3
E500 23919.98 3 204.53 3 116.29 1 10.89 3 5.76 3
E1000 49564.08 3 209.48 2 157.58 3 21.05 1 19.52 3
E5000 240576.10 3 265.03 3 160.55 3 105.42 1 561.33 3
M100 4365.29 1 211.81 1 115.35 3 3.32 3 0.55 3
M500 26985.56 1 254.40 1 139.92 1 12.32 3 7.63 3
M1000 48660.98 2 240.00 2 155.91 1 21.05 1 16.17 1
M5000 247793.86 2 255.36 2 163.76 2 106.79 1 286.68 1
R100 6611.53 1 254.33 1 158.43 1 2.11 3 0.34 2
R500 30058.69 2 295.34 2 192.67 2 9.11 1 4.56 2
R1000 55526.61 2 279.44 1 172.54 1 24.58 3 9.80 3
R5000 297663.38 2 323.19 2 206.62 2 104.00 1 239.04 1
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Table 3: Best and average results over 10 runs of SRHH and CFHH on FTF initial solutions

Total D
Instance SRHHbest % SRHHavg % CFHHbest % CFHHavg %

E100 5283.08 4.75 5377.82 3.04 4869.63 12.20 5044.48 9.05
E500 24366.58 4.70 25032.68 2.10 23025.33 9.95 23013.49 9.99
E1000 50741.68 2.37 51466.77 0.97 48433.95 6.81 49083.62 5.56
E5000 256778.70 1.51 257254.64 1.33 235211.66 9.78 237120.77 9.05
M100 4867.30 9.90 4954.91 8.27 4431.50 17.96 4822.05 10.73
M500 29441.70 6.17 30054.39 4.22 26648.68 15.07 27242.56 13.18
M1000 52683.04 4.95 53544.37 3.39 48118.26 13.18 48578.86 12.35
M5000 274068.83 2.38 274306.10 2.29 242640.78 13.57 243729.68 13.18
R100 6587.40 12.48 7312.07 2.85 6497.85 13.67 6757.66 10.22
R500 30903.55 7.17 32140.56 3.45 29476.04 11.46 29919.34 10.13
R1000 61396.75 4.99 62152.78 3.82 53910.16 16.57 55105.87 14.72
R5000 325434.58 2.45 325263.00 2.50 290807.64 12.83 294064.31 11.85
Avg 5.32 3.19 12.75 10.83

MDD
Instance SRHHbest % SRHHavg % CFHHbest % CFHHavg %

E100 186.98 26.70 195.82 23.24 182.47 28.47 187.67 26.43
E500 205.37 -8.43 205.26 -8.37 195.18 -3.05 182.23 3.79
E1000 207.94 -9.47 207.73 -9.36 203.23 -6.99 208.07 -9.54
E5000 219.87 17.17 220.12 17.08 216.93 18.28 217.40 18.10
M100 224.37 9.76 253.31 -1.88 232.69 6.41 242.25 2.56
M500 324.19 -27.43 297.57 -16.97 327.17 -28.60 286.88 -12.77
M1000 232.33 10.01 246.65 4.46 238.48 7.63 238.22 7.73
M5000 250.78 3.39 251.18 3.24 251.59 3.08 235.46 9.30
R100 248.38 2.62 279.96 -9.76 255.07 0.00 262.07 -2.74
R500 270.99 -4.34 301.08 -15.93 304.24 -17.15 291.16 -12.11
R1000 311.81 -17.72 311.84 -17.73 203.54 23.16 269.81 -1.86
R5000 327.75 -23.17 297.30 -11.73 284.09 -6.76 290.10 -9.02
Avg -1.74 -3.64 2.04 1.66

AVG MDD
Instance SRHHbest % SRHHavg % CFHHbest % CFHHavg %

E100 137.36 3.98 139.41 2.55 101.22 29.24 121.19 15.28
E500 135.12 2.43 141.14 -1.92 124.85 9.84 122.92 11.23
E1000 148.83 -4.46 151.53 -6.35 145.82 -2.34 152.60 -7.10
E5000 159.15 23.58 158.06 24.10 153.76 26.17 159.01 23.65
M100 115.03 12.52 132.80 -1.00 94.67 28.00 106.56 18.96
M500 171.66 10.66 181.87 5.35 158.05 17.75 160.33 16.56
M1000 171.88 12.98 171.26 13.29 158.42 19.79 160.90 18.54
M5000 178.46 9.97 179.61 9.40 164.98 16.77 159.69 19.44
R100 150.96 8.23 178.06 -8.24 156.91 4.61 170.29 -3.52
R500 184.48 0.20 194.63 -5.29 190.44 -3.02 189.61 -2.57
R1000 179.68 8.97 193.69 1.87 151.06 23.47 173.19 12.26
R5000 193.20 1.32 188.43 3.76 192.11 1.88 191.08 2.40
Avg 7.53 3.13 14.35 10.43
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in a sub-region, subsequently minimising the overall distance of a solution
by reassigning outlying tasks to a better sub-region. These heuristics help
intensify the search space by focusing only on minimising total distance, in
order to provide a better solution. The Interchange heuristic, which tends
to both minimise the total distance and maintain the balance of the alloca-
tion of tasks, attempts to intensify the search space in the same way as the
previous three, despite the fact that it does not affect the balancing state of
the solution. The Balancing heuristic only takes the balancing of sub-regions
into account. The effect of this heuristic is to diversify the search space, in
order to avoid getting trapped in a local optimum; however, there is also the
possibility of exploiting the search space if it leads to a solution with less
total cost compared to the previous solution. The obtained results indicate
that although the effects of these methods are very dependent on when and
how long they are applied to a solution in the framework, they have still been
designed to be able to explore different areas of the search space effectively.

The only exception is that SRHH could not improve the MDD mea-
surement across the average of all instances (−1.74 and −3.64 for the best
and average results). This is likely due to the lack of learning mechanism
to guide this hyper-heuristic, leading to an imbalance between intensification
and diversification when traversing the search space. Despite this, the overall
improvement yielded on all instances on Total D and the AVG MDD mea-
surement of the corresponding instances is an indicator of an improvement
in the solution compared to the quality of the initial solution.

Comparing the best values obtained over all 12 instances, CFHH yielded
approximately 12.75%, 14.35% and 2.04% improvement for Total D, MDD,
and AVG MDD respectively, while SRHH improved by 5.32% and 7.53% but
only on Total D and AVG MDD, a deterioration in quality is observed on
average in terms of MDD. In the case of the average values obtained, CFHH
achieved roughly 10.50 on both Total D and AVG MDD and 2% in MDD,
while SRHH improved the initial solutions by approximately 3.1% on Total D
and AVG MDD out of the three measurements.

Since we use the same low-level heuristics in both frameworks, the differ-
ence in performance of CFHH compared to SRHH is likely due to the self-
adaptive nature of the hyper-heuristic, appropriatly controlling the amount
of exploitation/exploration by adjusting parameters α, β and γ in every iter-
ation. Meanwhile, in SRHH, choosing the low-level heuristic randomly may
lead the solution to the area of the search space where it is difficult to move
quickly to another area. For instance, applying the low-level heuristics which
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only pay attention to minimising distance and not workload balancing, such
as Domino, Pair or even Join, might lead the space to an area with very high
quality in terms of overall total distance and maximum distance but very
low quality in relation to balancing. In this situation, moving the solution
space back to a space resulting in a balanced solution might cause a penalty
in terms of the objective function value.

4.3.1. Compactness validation

As mentioned earlier, the framework presented in this paper is used to
partition the maintenance tasks within the Danish railway system, allocating
a set of maintenance tasks to a set of maintenance crew members. This phase
takes place before maintenance planning in the ERTMS signalling system.
In this way, the system attempts to ensure that no distant tasks are assigned
to any crew member in the scheduling phase. In any scheduling problem,
the main objective is to minimise total cost (i.e. a weighted function of the
number of routes and their length) and to ensure that all tasks are completed.
Therefore, the density of the tasks in each sub-region can affect the length
of routes and subsequently the total cost in the scheduling phase.

To calculate the cohesion of the sub-regions, in addition to results found
in other problem-specific measurements, we calculate the validity factor of
compactness, which is a well-known measurement in the literature [31]. Com-
pactness is a validation factor employed to measure the cohesion of objects
in a cluster by mean normalised variance and indicates how well data points
are clustered in terms of object homogeneity. In other words, this index
is formulated to decide whether or not a given subset is internally dense.
Essentially, the higher this value, the lower average cohesion of the cluster:

C =
K∑
k=1

N∑
i=1

Pk,i ‖Xi − µk‖2 (9)

where C is the compactness value for the clusters that need to be min-
imised, K is the number of the clusters, N is the number of tasks, P is the
partition matrix and Pi,k specifies if task Xi is in cluster k. µk is the centre
of cluster k.

Figure 5 presents the comparative results of the compactness measure-
ment of the initial solution obtained using FTF, and after applying CFHH
and SRHH as above. The compactness of the solutions obtained by SRHH
and CFHH is shown as a ratio of their compactness measurement to the
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Figure 5: Compactness of solutions generated by FTF, and following improvement by
CFHH and SRHH

compactness measurement of the initial clustering result (FTF). As a lower
compactness measurement indicates more dense clusters, it is evident that
CFHH generates sub-regions that are much more compact than SRHH and
the initial solution generated using FTF. It is also notable that CFHH im-
proves approximately 31% on the compactness of the initial solution, while
SRHH improves 9.30% of the measurement, respectively, on average across
all instances.

One anomaly is the performance of SRHH on the R100 instance, where it
cannot improve the compactness of the initial solution, obtaining a compact-
ness factor roughly 2% worse. However, this outcome is not unanticipated, as
SRHH generated the worst result for R100 in terms of the average maximum
distance (−8.24%) in Table 3, as exemplified earlier.

4.4. Detailed low-level heuristic performance

To assess the impact of different low-level heuristics during a run, Table 4
gives the number of calls of each low-level heuristic by CFHH, during the first
100 and last 100 iterations, for the run where the best solution for each of
the largest instances was found (E5000, M5000 and R5000).

From the number of calls during the first 100 iterations, it is clear that in
the early stages of the search, different low-level heuristics are selected more
frequently than in the last 100 iterations of the search. It is interesting that
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Table 4: Number of heuristic calls during the first 100 and last 100 iterations of CFHH
on large instances

First 100 calls Last 100 calls
Heuristic E5000 M5000 R5000 E5000 M5000 R5000

Balancing 2 3 1 19 15 21
Domino 83 60 50 23 16 20
Join 9 18 1 23 37 20
Interchange 6 5 1 16 16 19
Pair 0 14 47 19 16 20

during the first 100 iterations, Domino is selected most often (83, 60 and 50)
and Balancing (2, 3 and 1) is selected least often for all three instances. This
indicates that the hyper-heuristic recognises the low-level heuristics which
intensify and diversify in terms of minimising distance - even in the early
stages of the search. Applying the Domino heuristic, which only causes an
improvement to total distance, is still an indicator of greedy behaviour in the
framework at this point in time. Interestingly the Pair heuristic is selected
far more often for the Random instance than the Exact instance, indicating
that different low-level heuristics are more or less effective depending on the
type of instance being solved. This provides some justification for using a
hyper-heuristic approach, mixing multiple low-level heuristics as appropriate
during a particular search.

From the last 100 calls it is noticeable that the spread of calls over the low-
level heuristics reduces as the search progresses. This suggests that there is
less improvement towards the end of the search. If no improvement is found
for a large number of iterations, the only component that will contribute
towards the choice function score is f3 (time since last called). As such, the
choice function will behave more like a simple random hyper-heuristic when
fewer improvments are made.

In Table 5 we show the proportion of calls to each heuristic over the full
run of the same examples as above, with the relative rank of each low-level
heuristic given in brackets. Note that these percentages have been rounded
to 1 decimal place, and as a result may not all add up to exactly 100%.

From the overall ratio of calls we see that in general, across the three
instances, the Join and Interchange heuristics appear among the top two
heuristics, whereas the Balancing heuristic is always selected the least often.
Join and Interchange explore the solution space in slightly different ways
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Table 5: Percentage of calls (rounded to 1 d.p.) and relative rank of low-level heuristics
selected by CFHH on large instances

E5000 M5000 R5000
Heuristic Call % (rank) Call % (rank) Call % (rank)

Balancing 7.9 (5) 12.1 (5) 14.5 (5)
Domino 12.5 (2) 15.4 (4) 16.6 (4)
Join 58.8 (1) 39.9 (1) 34.1 (1)
Interchange 9.9 (4) 16.8 (2) 17.9 (2)
Pair 10.9 (3) 15.9 (3) 16.8 (3)

compared to the other low-level heuristics. Join is the only low-level heuristic
that tries to minimise total distance, not by dealing with outliers but by
joining close tasks from different sub-regions. There may be many close tasks
which belong to different sub-regions, which can be joined to the same sub-
region to improve the total distance in different ways. This is particularly
important when the hyper-heuristic cannot improve the solution by only
dealing with outliers, whether the best assignment is the current sub-region
or the solution space gets stuck in a local optima. Interchange is designed in
a way that not only improves the solution without being limited to dealing
with the outliers, but also takes care of balancing between sub-regions. The
rank of the Balancing heuristic is perhaps not a surprise, as it doesn’t attempt
to minimise the total distance directly. However, the number of calls of this
heuristic shows that the parameter γ has been appropriately controlled to
explore the search space by calling the Balancing heuristic during the search
despite potential poor performance in objective function terms.

4.5. Trend of solution improvement during a run using CFHH

Figure 6 and Figure 7 show the trend of improvement for three different
measures, using the run in which the best solution for instance E5000 was
found by CFHH. The y-axis in Figure 6 is the total cost of driving distance
(Total D). In Figure 7(b), it is the maximum distance of a crew to a task
(MDD - red plot) and the average of the maximum distance obtained by all of
the crew over the iterations (AVG MDD - green plot). Because the heuristics
selected by CFHH shown almost the same trend in all large instances in the
previous subsection, only the trend of one instance is investigated.

It is evident that CFHH shows an overall trend of improvement, in terms
of minimising total distance throughout the run. In early iterations, it seems
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Figure 6: Trend of improvement of Total D over a sample run of CFHH on instance E5000
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Figure 7: Trend of improvement of MDD (red) and AVG MDD (green) over a sample run
of CFHH on instance E5000
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that CFHH improves the initial solution quickly, however the best solution
fluctuated between 1000 and 4000 iterations. One possible explanation might
be due to punishment of the Balancing heuristic after each call, since when-
ever it is applied, it incurs a bad penalty in terms of total distance. This
could be mitigated by somehow considering the balancing of the solution as
an objective, instead of calculating only the penalty of an increase in total
distance. In this way, Balancing could be called more often and consequently
lead to less fluctuation in solution quality compared to the current trend. It
is notable that the performance stabilises after approximately half of the it-
erations pass. Similarly, the average of the maximum distance (AVG MDD)
in Figure 7 (green plot) shows the same trend with a significant drop in
early iterations, followed by a fluctuation and finally remaining steady with
marginal changes in the latter stages.

In contrast to Total D and AVG MDD, the maximum distance (MDD)
plot (red plot in in Figure 7) fluctuates more in the second half of the search
than in the early stages, indicating that the low-level heuristics can be com-
bined in order to improve all of the embedded factors (minimising total dis-
tance, minimising maximum distance and balancing the sub-regions) over
time, with the hyper-heuristic adapting appropriately through the parame-
ters α, β and γ.

5. Conclusions

In this study, we have proposed a perturbative hyper-heuristic framework
using choice function heuristic selection, which improves the allocation of
maintenance tasks to a set of crew members in the Danish Railway system.
Our framework generates a set of sub-regions of maintenance tasks, with
each sub-region representing the working area of a single crew member. It is
desirable to minimise the distance between any two tasks in each sub-region,
in order to ensure a fast response in the case of recovery failure. Using the
concept of outliers, tasks which are a long distance from the starting location
of each crew member, tasks are reassigned to different sub-regions using one of
five low-level heuristics, with the intention of reducing the maximum distance
between two tasks within the same sub-region.

An adaptive choice function hyper-heuristic has been used to search the
space of low-level heuristics. Once an appropriate allocation of maintenance
tasks have been decided, the sub-regions can be passed on to a routing al-
gorithm to decide the individual routes each crew member should take. Our
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results show that, higher quality initial solutions do not always lead to higher
quality solutions following improvement by the hyper-heuristic. Using ini-
tial solutions which are slightly lower quality does not restrict the search to
particular regions of the search space, allowing hyper-heuristics to traverse
the search space with more flexibility. An adaptive choice function (CFHH)
was shown to be able to adaptively learn which heuristics to apply at a given
stage of the search, balancing intensification and diversification within the
search, outperforming simple random search (SRHH). The results obtained
using CFHH were demonstrated to have a a high degree of cohesion, in terms
of compactness ratio, a desirable property in preparation for the subsequent
routing phase. Future work will seek to link the clustering phase addressed
in this paper to the scheduling phase, where the sub-regions defined are used
to schedule and route individual crew members.
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