
LFO – A Graph-based Modular Approach
to the Processing of Data Streams

Benjamin Matuszewski

CICM/musidance EA1572, Université Paris 8,

UMR STMS IRCAM-CNRS-UPMC

Paris, France

benjamin.matuszewski@ircam.fr

Norbert Schnell

UMR STMS IRCAM-CNRS-UPMC

Paris, France

norbert.schnell@ircam.fr

ABSTRACT
This paper introduces lfo — for Low Frequency Opera-
tors — a graph-based Javascript (ES2015) API for online
and o✏ine processing (i.e. analysis and transformation) of
data streams such as audio and motion sensor data. The
library is open-source and entirely based on web standards.
The project aims at creating an ecosystem consisting of
platform-independent stream operator modules such as fil-
ters and extractors as well as platform-specific source and
sink modules such as audio i/o, motion sensor inputs, and
file access. The modular approach of the API allows for us-
ing the library in virtually any Javascript environment. A
first set of operators as well as basic source and sink modules
for web browsers and Node.js are included in the distribu-
tion of the library. The paper introduces the underlying
concepts, describes the implementation of the API, and re-
ports on benchmarks of a set of operators. It concludes with
the presentation of a set of example applications.

CCS Concepts
•Information systems ! Multimedia and multi-

modal retrieval; •Software and its engineering !
Real-time systems software; Software libraries and reposi-
tories;

Keywords
HTML5, Web Audio API, Digital Signal Processing,
Javascript library

1. INTRODUCTION
In many domains, software environments provide the pos-

sibility to integrate components that are compliant to a spe-
cific API to extend them by particular functionalities. Such
interfaces may be used to extend host environments such as
operating systems, applications, and libraries. The interest
of such interfaces is two fold. From the point of view of the
host environment, they allow for extending its functionalities
by components that can be developed and distributed inde-
pendently. On the other hand, developers can focus on the

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

© 2017 Copyright held by the owner/author(s).

implementation of specific extensions and significantly re-
duce their dependency on platform-specific issues. In some
cases, such extensions are referred to as plugins. In case
that multiple host environments implement a given plugin
interface, a compliant plugin can be integrated in either of
the environments.

Many sound editing and music performance applications
implement one or multiple plugin interfaces (e.g. VST, Au-
dioUnits, and LADSPA) for real-time and o✏ine audio pro-
cessing. The VAMP interface [1] initially has been created
for the SonicVisualiser [2] audio editing and visualization
environment. The interface allows for implementing plugins
that extract information from audio streams and produce
multi-dimensional data streams. Apart from its initial host
environment, the interface has been implemented by several
applications such as Audacity1 and Sonic Annotator.2

The PiPo interface [11] provides a more general formal-
ization of the processing of multi-dimensional data streams.
While other audio processing interfaces only consider audio
streams, the PiPo interface allows modules to consume and
to produce streams of di↵erent dimensions and rates. Apart
from some experimental implementations, the interface has
been integrated into the Max3 audiovisual programming en-
vironment and existing modules are dedicated to the pro-
cessing of audio and motion data streams.

The recent evolution of web standards and Javascript
APIs such as Web Audio [9] and DeviceOrientation [12] per-
mitted the development of audio and music applications that
were previously available as native applications only. In the
past years, the web platform has integrated elaborated audio
and music applications that could profit from the formaliza-
tion of plugin interfaces such as, for example, audio tools
[3, 5, 4] and collaborative audio editors [7]. Unfortunately,
available audio processing libraries such as Meyda [8] and
tone.js [5] are not always modular nor provide an interface
to easily integrate additional components.

The lfo library defines a modular framework to develop
processing modules that can be connected to graphs. The in-
terface provides a general formalization of multidimensional
streams and, abstractions (i.e. Javascript classes) for mod-
ules that transform these streams. As the PiPo interface,
the design of lfo focuses on processing that transforms in-
coming data streams or extracts information from them to
produce reduced output streams of relatively low rate. The
available modules distributed with the library implement

1
http://www.audacityteam.org/

2
http://www.vamp-plugins.org/sonic-annotator/

3
https://cycling74.com/products/max/

http://www.audacityteam.org/
http://www.vamp-plugins.org/sonic-annotator/
https://cycling74.com/products/max/

filters, audio descriptor extractors, and platform dependent
inputs and outputs.

2. CONCEPTS AND FORMALIZATION
The basic idea, lfo shares with the PiPo library, is to

create a framework for software modules that implement al-
gorithms to be applied to a↵erent data streams in interactive
systems. Typically, these data streams are generated by in-
put peripherals such as sensors and other input devices or
ready from files and databases. The algorithms used to pro-
cess the data streams usually reduce their information rate
and/or dimensionality in terms of operations such as filter-
ing, mapping, or analysis. The processed data may drive the
generation and modulation of audiovisual rendering, such as
audio synthesis and visualizations, or may be used to control
output peripherals such as actuators and motors. Especially
for the purpose of simulation, debugging and batch process-
ing, data streams may also be read from and stored into
files and databases. While some transformations, such as
simple filters or scaling, solely alter the values of incoming
data frames, others may reduce their dimensionality (e.g.
an RMS or a projection onto principal components) or even
produce a data stream of a di↵erent temporality. A sample
rate converter, for example, would transform an incoming
stream of frames in a given rate into a stream of a di↵erent
rate. An onset detector could receive a stream of a constant
sample rate to produce a stream of aperiodic time-tagged
markers.

Graphs of Modules
The lfo API implements a graph based approach. As shown
in figure 1, a graph generally consists of a source module,
one or more operator modules and/or a terminating sink
module.4 While the output of one module can be connected
to the inputs of multiple other modules, each module accepts
only a single input.

A source module usually acts as an interface to an under-
lying — usually platform-dependent — API for data acqui-
sition, such as device sensor APIs (e.g. DeviceMotion, De-
viceOrientation), network reception, and file input. Other
source modules, such as oscillators, may output data that
is generated algorithmically. A source module defines the
attributes of the source data stream, such as frame rate and
frame size, and outputs a stream of frames into the mod-
ules connected to its output. The operator modules usually
implement platform-independent algorithms that process an
incoming data stream and output a transformed stream. An
operator can accept any kind of stream at its input or be
limited to a certain kind of input stream. While the out-
put stream of some operators inherit the attributes of the
input stream, other operators may output a di↵erent kind of
stream defining new attributes. A sink module often acts as
an interface to system outputs such as peripherals, network
transmission, file or database storage. Moreover, the visual
rendering of a data stream is usually implemented as a sink.
Insofar the platform-dependencies of a graph are limited

to its source and sink modules, stream processing that is im-
plemented by platform-independent operator modules can
easily be applied across di↵erent platforms and within dif-
ferent configurations on the same platform. For example,

4
A list of available modules is available in the documentation of

the library at http://wavesjs.github.io/waves-lfo/.

operatorsource operator sink

platform specific platform specificplatform agnostic

Figure 1: A basic lfo graph composed of a source, two oper-

ators and a sink. The figure also highlights the articulation be-

tween platform agnostic operators and platform specific sources

and sinks.

the same stream processing (i.e. an operator or a chain of
operators) that is applied to the accelerometer inputs of a
mobile web-client to control the parameters of a Web Audio
synthesis engine can be easily adapted to render the data
on a graphical display (e.g. for debugging), or to transform
a data stream read from a file by a Node.js application to
control a synthesizer via a MIDI connection.

Streams of Frames
In the formalization of data streams underlying the lfo API,
a stream is a succession of frames that consists of a time-tag
(i.e. a timestamp associating each frame in a stream to a
point in time regarding an arbitrary reference common to all
modules of a graph) and data (i.e. the payload of the frame).
Currently, the frame data can have one of three types:

• vector , an array of values corresponding to di↵erent
dimensions (e.g. x, y, z or mean, stddev, min, max)

• signal , an array of time-domain values corresponding
to a fragment of a signal

• scalar , a single value that can be arbitrarily consid-
ered as a one-dimensional vector or as a signal frag-
ment of one sample

The data stream produced by an lfo module is charac-
terized by a set of stream parameters:

• frame size, number of values in the frame data (i.e.
number of vector dimensions or signal samples).

• frame rate, number of frames per second for streams
of regularly sampled frames (0 otherwise).

• frame type, type of the frame (i.e. vector, signal or
scalar).

• source sample rate , sample rate of the source stream
(if any) in samples per second

• source sample count , block size of the source stream
• description , an array of strings describing the output

dimensions of vector and scalar frames (e.g. [’x’,
’y’, ’z’], [’mean’, ’stddev’, ’min’, ’max’])

The output stream parameters of a module are propagated
to its connected modules. An operator module can define
its output stream parameters as a function of its incoming
stream parameters.

3. IMPLEMENTATION
The distribution of the lfo library provides four di↵erent

entry points (see example in figure 2):
• waves-lfo/common contains all platform-independent

operators and a few source and sink modules which
do not depend on platform specific functions (e.g.
EventIn, Logger).

• waves-lfo/client additionally exposes source and
sink modules specific to web-browsers, such as bind-
ings with the Web Audio API and real-time canvas

http://wavesjs.github.io/waves-lfo/

rendering of the output streams (e.g. AudioInNode,
WaveformDisplay, VuMeterDisplay).

• waves-lfo/node includes bindings with the file system
such as audio file loading and decoding as well as read-
ing and writing of json and csv files.

• waves-lfo/core exposes the BaseLfo class and should
be imported when creating extensions of the library.

1 import � as lfo from �waves�lfo/node �;

Figure 2: A code example that shows how to import the

waves-lfo/node entry point, giving access to source and sink

modules specific to the Node.js platform.

The high-level API of the library is strongly inspired by
the Web Audio API interface. To create a graph, modules
are connected from source to sink (see example in figure 3)
using the connect method inherited from the BaseLfo class.
However, while an audio graph usually connects multiple in-
puts to a single output, lfo graphs are composed of a single
source that can be connected to multiple outputs. Similarly
to the Web Audio API, source modules expose start and
stop methods that allow to control the state of the graph.

1 import � as lfo from �waves�lfo/ client �;

2 // create some lfo modules (assuming some �AudioBuffer �)

3 const audioInBuffer = new lfo.source.AudioInBuffer ({

4 audioBuffer: audioBuffer ,

5 frameSize: 512 ,

6 });

7 const rms = new lfo.operator.Rms ();

8 const logger = new lfo.sink.Logger ({ data: true });

9 // connect modules together

10 audioInBuffer.connect (rms);

11 rms.connect (logger);

12 // init and start the graph

13 audioInBuffer.init ().then(audioInBuffer.start);

Figure 3: A code example that highlights the creation of a basic

lfo graph that computes the Root Mean Square of signal frames

of 512 samples and log the result in the console. The graph is

composed of a source, the AudioInBuffer, an operator, the Rms,

and a sink, the Logger.

The example in figure 3 also shows how a graph is ini-
tialized and started. When the init method is called, the
source makes sure that each module of the graph is ready to
handle incoming frames. Since the initialization of certain
modules can be asynchronous, promises are used to synchro-
nize the initialization of the graph. As part of the initial-
ization, the source also propagates its stream parameters
to the modules connected to its outlet. During this step,
each module can define its own stream parameters and allo-
cate additional memory. Stream parameters are propagated
step by step through the graph down to the sink. When all
modules of the graph finish their initialization — beginning
from the the sink(s) and successively resolving the promises
back to the source —, the source can safely start to produce
frames and propagate them through the graph.

This initialization procedure allows for optimizing the per-
formance of an lfo graph when processing an incoming data
stream.

Independent of the data type (i.e. vector, signal or
scalar), the data sent within the frames from one module
to another is implemented as a Float32Array. The time-tag
associated to each frame — a Number — is usually defined
by the source of the graph using a high precision clock such
as performance.now or process.hrtime.

Standalone Module API
As show in the example in figure 4, many operators can
be used as standalone modules allowing for applying their
algorithm to arbitrary data bu↵ers without connecting the
modules to an lfo graph. This alternative API allows, for
example, to use the same implementation of a filter — in-
cluding the initialization and state — as an lfo module or as
a filter object that can be applied to any succession of values
or arrays without explicitly using the lfo formalism. More-
over, compound lfo operators can use the standalone API
of other operators. Our implementation of an Mfcc module,
for example, uses the standalone API of the Fft, Mel and
Dct operators.

1 import � as lfo from �waves�lfo/ common �;

2 // create and configure the operator

3 const rms = new lfo.operator.Rms ();

4 rms.initStream ({ frameType: �signal �, frameSize: 1000 });

5 // process some data

6 const results = rms.inputSignal ([... values]);

Figure 4: A code example that highlights the use of an operator,

here the Rms operator, with the standalone API.

Bring Your Own Modules
An important motivation for the development of lfo was the
idea to create an ecosystem of stream processing modules.
While the development of applications can benefit from a
rich set of modules implementing di↵erent functionalities,
developers of processing algorithms may appreciate an en-
vironment to test and debug their code as well as to easily
compare its performance with available implementations of
similar features. In this sense, the design of the library aims
at creating an easy-to-use API on both ends, the integration
of existing modules into an application and the development
and distribution of new modules.

As shown in the example of figure 5, an lfo module imple-
ments an ES2015 class that extends the BaseLfo class. The
base class constructor must be called with the definition of
the module’s parameters5 and the user defined options that
override the default parameters. To handle incoming data
stream of di↵erent types, a module has to implement pre-
defined interfaces and follow a small set of conventions. To
process incoming vector frames the derived class has to im-
plement the processVector interface. Similarly, processing
signal frames requires the derived class to implement the
processSignal interface.

According to the type of frames output by the previous
module, incoming frames will be routed to the appropriate
processing method. If the module does not implement the
required interface, an error is thrown when the source is
started. To handle scalar frames — which can be considered
as vector as well as signal frames — the module first looks for
a processScalar method, but falls back on processVector
or processSignal if processScalar is not implemented.

For consistency as well as for performance considerations,
a module should comply with the following rules:

• Any memory allocation that depends on the modules
configuration and/or its stream parameters — for ex-
ample to create internal ring bu↵ers — should be done
in the processStreamParams method called during the

5
Parameters are defined using a small library that implements

casting and constraints for a small set of types such as integer,

float, enum — https://github.com/ircam-jstools/parameters

https://github.com/ircam-jstools/parameters

1 import { BaseLfo } from �waves�lfo/core �;

2 // define class parameters

3 const parameters = {

4 factor: {

5 type: �float �,

6 default: 1,

7 },

8 };

9
10 class Multiplier extends BaseLfo {

11 constructor (options = {}) {

12 // configure the module with the defaults parameters and

13 // user defined options by passing them to the base class

14 super (parameters , options);

15 }

16 // allow the node to handle incoming �vector � frames

17 processVector (frame) {

18 const frameSize = this.streamParams.frameSize;

19 const factor = this.params.get (�factor �);

20 // transfer data from �frame � (output of the previous node)

21 // to the current node �s frame , the data from the incoming

22 // frame should never be modified

23 for (let i = 0; i < frameSize; i++)

24 this.frame.data [i] = frame.data [i] � factor;

25 }

26 }

27 const multiplier = new Multiplier ({ factor: 4 });

Figure 5: A code example that highlights the creation of a

new operator dedicated at scaling frames by an arbitrary fac-

tor. The module implements the processVector interface and

can then consume incoming frames of vector type. The example

also shows how parameters of a module are defined using a small

abstraction that enforces parameters casting.

initialization of the graph.
• A module must not modify incoming frames, but write

the output data into its own frame.data bu↵er au-
tomatically allocated during the initialization of the
graph (see code example in figure 5).

To implement a standalone API, the module should pro-
vide one or several input methods (i.e. inputVector,
inputSignal, inputScalar) following the same conventions
as the processing methods.

4. BENCHMARKS
In order to assess the implementation of the operators

distributed with the lfo library, we produced benchmarks
that compare them with the PiPo C/C++ library and
the Meyda (version 4.0.5) Javascript library [8]. While
the C/C++ benchmarks use the hayai framework6, the
Javascript benchmarks are based on benchmark.js.7

1 // configure of the library

2 const fft = new lfo.operator.Fft ({ ... });

3 fft.initStream ({ ... });

4
5 // beginning of benchmark iteration

6 for (let i = 0; i < numFrames; i++) {

7 const start = i � frameSize;

8 const end = start + frameSize;

9 const frame = buffer.subarray (start , end);

10 const res = fft.inputSignal (frame);

11 }

12 // end of benchmark iteration

Figure 6: A pseudo-code example that highlights how the bench-

marks are created to achieve comparability across the di↵erent

libraries. A benchmark iteration consists in the processing of an

entire bu↵er of one second sliced in frames of di↵erent sizes.

As shown in the example of figure 6, each iteration of
the benchmarks consists in the extraction of a given fea-
ture on a whole sound file of 1 second (44100 samples) us-
ing di↵erent frame sizes (i.e. 256, 1024 and 4048 samples)
without overlap. The last and incomplete frame is always
dropped. The results are expressed in number of iterations
6
https://github.com/nickbruun/hayai

7
https://benchmarkjs.com/

per second which, given the nature of an iteration, easily
allows to evaluate the real-time performance of the imple-
mented algorithms. To get consistent and comparable re-
sults across di↵erent libraries, only the processing functions
— using the standalone API of the lfo modules — are
benchmarked. The measured algorithms, implemented by
all tested libraries, are an Fft, an Rms, and Mfcc extraction.

The benchmarks have been performed on a MacBook
Pro with a 2.8 GHz Intel Core i7 CPU and 16 GB of
1600 MHz DDR3 RAM under MacOS 10.11.6. The tested
Javascript environments are Node.js (8.1.4), Google Chrome
(59.0.3071.115, 64-bit), Firefox (54.0.1, 64-bit), and Safari
(10.1). Detailed results are reported in table 1.

Frame size 256 1024 4096

FFT

PiPo (C/C++) 4,078 3,494 3,068 it/s

Node.js
lfo 330 285 266 it/s
meyda 61.27 53.67 40.48 it/s

Chrome
lfo 455 388 358 it/s
meyda 129 123 79.10 it/s

Firefox
lfo 542 503 446 it/s
meyda 157 180 30.60 it/s

Safari
lfo 673 623 562 it/s
meyda 23.88 18.76 18.00 it/s

RMS

PiPo (C/C++) 28,662 28,498 31,954 it/s

Node.js
lfo 11,640 13,844 15,328 it/s
meyda 57.58 51.53 40.16 it/s

Chrome
lfo 13,670 17,098 19,887 it/s
meyda 112 108 73.53 it/s

Firefox
lfo 9,547 18,774 27,317 it/s
meyda 74.38 79.60 29.96 it/s

Safari
lfo 28,284 21,691 15,472 it/s
meyda 17.66 16.35 16.53 it/s

MFCC

PiPo (C/C++) 2,622 2,604 2,219 it/s

Node.js
lfo 301 279 268 it/s
meyda 36.34 31.60 28.38 it/s

Chrome
lfo 382 366 348 it/s
meyda 52.85 38.71 36.66 it/s

Firefox
lfo 449 473 444 it/s
meyda 72.76 82.77 27.13 it/s

Safari
lfo 543 538 508 it/s
meyda 10.90 10.28 11.16 it/s

Table 1: Number of iterations per second for computing the

FFT, RMS and MFCC of a sound file of 1 seconds at di↵erent

frame sizes with no overlapping. The benchmarks compare three

libraries, PiPo, Meyda and lfo.

The comparison of the lfo operators to the PiPo C/C++
implementations shows that, the library performs 5.4 to 13.5
times slower than native code for the FFT, 1.1 times to
3 times slower for the RMS and 4.4 to 9.3 times slower
for the MFCC extraction. All in all, these results show
that the library performs well compared to native bina-
ries, while leaving room for improvements. The compari-
son to Meyda shows that the lfo operators largely outper-
form the functions provided by the currently most popular
Javascript library available. The particularly bad perfor-
mance of Meyda’s RMS is certainly due to the fact that the

https://github.com/nickbruun/hayai
https://benchmarkjs.com/

library calculates an FFT for all audio features even if the
result of the FFT is not used by the requested feature.

The benchmarks show large di↵erences between di↵er-
ent environments. On average, Safari is 1.2 times faster
and Firefox 1.4 times faster than Google Chrome. The
relatively poor performance of environments based on the
V8 Javascript engine (i.e. Google Chrome and especially
Node.js) are particularly unexpected.

Mobile Devices
Since many of our envisaged use cases imply mobile devices,
our benchmarks include mobile browsers on Android and
iOS. The performance of the library was measured using
the same test program on both platforms. The benchmarks
on Android (6.0.1) use Google Chrome (59.0.3071.125) and
Firefox (54.0.1) running on a Samsung A3 (2017) with a
octa-core 1.6 GHz CPU and 2 GB RAM (referred to as
device A). On iOS (10.3.2) we used Safari running on an
iPhone 5C with a dual-core 1.3 GHz CPU and 1 GB RAM
(referred to as device B). Detailed results are reported in
table 2.

Frame size 256 1024 4096

FFT

Chrome (A) 37.95 32.80 27.85 it/s
Firefox (A) 41.21 36.25 30.98 it/s
Safari (B) 41.04 34.50 30.76 it/s

RMS

Chrome (A) 1,249 1,512 1,698 it/s
Firefox (A) 933 1,543 1,856 it/s
Safari (B) 887 1,612 1,748 it/s

MFCC

Chrome (A) 33.29 31.39 27.45 it/s
Firefox (A) 36.24 34.48 30.97 it/s
Safari (B) 35.24 33.37 30.65 it/s

Table 2: Number of iterations per second on mobile devices for

computing the FFT, RMS, MFCC of a sound file of 1 seconds at

di↵erent frame sizes with no overlapping.

As expected, measured results are drastically slower by an
order of magnitude compared to laptop results, and however
they show that the library remains usable even in this con-
strained context. As an example, the slowest measurement
(i.e. MFCCs in Google Chrome with a frame size of 4096
samples, or about 93 ms) still performs 27 times faster than
real-time with a processing time of approximately 3.4 ms for
each frame.

WebAssembly
The WebAssembly open standard [13], by enabling the us-
age of a binary format inside browsers, o↵ers a new way
to improve the performance of algorithms while remaining
platform independant. The technology has been released as
a minimum viable product in Mars 2017. Even if the Web-
Assembly implementations of some lfo operators are still
too experimental to be shipped with the library, they give
an idea of the performance improvements enabled by this
technology. For this purpose, we have developed an alter-
native implementation of the FFT lfo operator based on
a standard C implementation of the algorithm compiled to

WebAssembly (.wasm) using emscripten.8

Benchmarks were run using the same setup as in previous
tests, using Google Chrome and Firefox on the MacBook
Pro and the Android device. Results are shown in table 3.

Frame size 256 1024 4096

PiPo (C/C++) 4,078 3,494 3,068 it/s

Chrome
js 455 388 358 it/s
wasm 826 720 673 it/s

Firefox
js 542 503 446 it/s
wasm 1,166 1,044 970 it/s

Chrome Android
js 37.95 32.80 27.45 it/s
wasm 67.84 60.20 50.66 it/s

Firefox Android
js 41.21 36.25 30.98 it/s
wasm 82.84 77.86 67.78 it/s

Table 3: Number of iterations per second for computing the

FFT of a sound file of 1 seconds at di↵erent frame sizes with no

overlapping. For each tested browser, performance of C/C++

and vanilla Javascript are compared to the performance of the

WebAssembly execution.

Measurements show an improvement of overall perfor-
mances by a factor of 1.9 on average. This confirms that the
library would greatly benefit from using small WebAssembly
modules as algorithmic units inside operators.

5. EXAMPLE APPLICATIONS
To illustrate some use cases of the library and its integra-

tion into applications, we present a set of example applica-
tions.

Mosaicking
The example application shown in figure 7 implements in-
teractive audio mosaicking. This synthesis technique refers
to the process of recomposing the temporal evolution of a
given target audio file from segments cut out of source au-
dio materials [10]. In the application, the user can record
an excerpt of speech that is analysed by an lfo graph to
extract the MFCCs of successive frames. The result of the
analysis is used to control a concatenative synthesis process
that recomposes the recorded excerpt (i.e. the target) using
grains extracted from another audio file (i.e. the source).
The source file is analysed server-side in Node.js using the
same lfo graph as on the client-side. The application high-
lights how a graph of operators can be reused across di↵erent
environments by simply providing platform-specific sources
and sinks.

Figure 7: Screenshot of an example application that implements

audio mosaicking, a concatenative synthesis technique based on

MFCC descriptors of two audio files.

The application has been published at the fol-
lowing URL: https://cdn.rawgit.com/wavesjs/waves-lfo/
master/examples/mosaicking/index.html

8
https://github.com/kripken/emscripten

https://cdn.rawgit.com/wavesjs/waves-lfo/master/examples/mosaicking/index.html
https://cdn.rawgit.com/wavesjs/waves-lfo/master/examples/mosaicking/index.html
https://github.com/kripken/emscripten

Segmentation
In the example application shown in figure 8, the audio
stream captured from the microphone is sent into an lfo
graph and analysed in real-time. The loudness and detected
onsets are displayed on screen using simple visual elements.
To illustrate o✏ine abilities of the library, the user can also
record few seconds from the audio stream. The recorded au-
dio bu↵er is sent into a similar lfo graph using the same on-
set detection for o✏ine segmentation. The extracted mark-
ers are displayed on top of the waveform of the recorded
bu↵er using the waves-ui library [6].

Figure 8: Screenshot of an example application that features

real-time and o✏ine analysis and segmentation of the audio signal

captured by the microphone.

The application has been published at the fol-
lowing URL: https://cdn.rawgit.com/wavesjs/waves-lfo/
master/examples/realtime-o✏ine-segmentation/index.html

Networked Graph
The last example application is a proof of concept that high-
lights the ability to create lfo graphs composed of sev-
eral subgraphs distributed across multiple platforms over
the network. The application consists of two di↵erent web-
clients. The first client, running on a mobile device, contains
the source of the graph and produces frames extracted from
DeviceOrientation events (i.e. measuring the orientation
of the mobile device using inertial sensors and compass).
The frames are propagated through the server to the other
web-client to be graphically displayed on screen. The net-
worked lfo graph is composed of three sub-graphs — one
on each client and one on the server — that are connected
through WebSocket sources and sinks.

The source code of the application is available at the
following URL: https://github.com/wavesjs/waves-lfo/tree/
master/examples/networked-graph

6. CONCLUSIONS
We have presented the lfo library highlighting the under-

lying concepts and giving some details of its implementation.
The benchmarks show that the implemented modules per-
form very well compared to existing Javascript libraries and
comparable C/C++ implementations.

We hope that the lfo API and formalism will be picked
up by other contributors and will foster the development of
an ecosystem of modules implementing a large range of algo-
rithms as well as new platform bindings. The library easily
allows for developing modules that are distributed indepen-
dently of the core of the library.9

Even if the library has been designed with interactive au-
dio processing and music information retrieval in mind, the
lfo formalism does not prevent the use of existing modules
in other applications nor the integration of processing algo-
rithms from other domains.

9
While currently the distribution of the library includes a set

of operators, sources and sinks, these modules may be separated

from the core and distributed independently in the future.

7. ACKNOWLEDGMENTS
The presented work has been developed in the framework

of the CoSiMa10 research project supported by the French
National Research Agency (ANR-13-CORD-0010) and has
received support from the Rapid-Mix Project (H2020-ICT-
2014-1, Project ID 644862). We would like to thank our
project partners and our colleagues at IRCAM for their pre-
cious contributions to the project. We would especially like
to acknowledge Victor Saiz who has collaborated on the very
first version of the library of which the basic concepts have
been presented at the 1st Web Audio Conference.

8. REFERENCES
[1] C. Cannam. The VAMP Audio Analysis Plugin API:

A Programmer’s Guide.
http://vamp-plugins.org/guide.pdf, 2008.

[2] C. Cannam, C. Landone, and M. Sandler. Sonic
visualiser: An open source application for viewing,
analysing, and annotating music audio files. In 18th
ACM International Conference on Multimedia, New
York, NY, USA, 2010. ACM.

[3] C. Finch, T. Parisot, and C. Needham. Peaks.js:
Audio waveform rendering in the browser. http:
//www.bbc.co.uk/rd/blog/2013/10/audio-waveforms,
2013.

[4] Katspaugh. wavesurfer.js. http://wavesurfer-js.org/,
2012.

[5] Y. Mann. Interactive Music with Tone.js. In 1st Web
Audio Conference, Paris, France, 2015.

[6] B. Matuszewski, N. Schnell, and S. Goldszmidt.
Interactive Audiovisual Rendering of Recorded Audio
and Related Data with the WavesJS Building Blocks.
In 2nd Web Audio Conference, Atlanta, USA, 2015.

[7] J. Monschke. Building a Collaborative Music
Production Environment Using Emerging Web
Standards. Master’s thesis, HTW Berlin, Germany,
2014.

[8] H. Rawlinson, N. Segal, and J. Fiala. Meyda: an audio
feature extraction library for the Web Audio API. In
1st Web Audio Conference, Paris, France, 2015.

[9] C. Rogers, C. Wilson, P. Adenot, and R. Toy. Web
Audio API – W3C Editor’s Draft.
http://webaudio.github.io/web-audio-api/.

[10] N. Schnell. Real-Time Audio Mosaicking.
http://recherche.ircam.fr/equipes/temps-reel/
audio-mosaicking/.

[11] N. Schnell, D. Schwarz, and J. Larralde. PiPo, A
Plugin Interface for A↵erent Data Stream Processing
Modules. In 18th International Society for Music
Information Retrieval Conference, Suzhou, China,
2017.

[12] R. Tibbett, T. Volodine, S. Block, and A. Popescu.
DeviceOrientation Event Specification – W3C
Candidate Recommandation.
https://www.w3.org/TR/orientation-event/.

[13] L. Wagner, D. Gohman, D. Herman, J.-F. Bastien,
and A. Zakai. WebAssembly. http://webassembly.org/.

10
http://cosima.ircam.fr/

https://cdn.rawgit.com/wavesjs/waves-lfo/master/examples/realtime-offline-segmentation/index.html
https://cdn.rawgit.com/wavesjs/waves-lfo/master/examples/realtime-offline-segmentation/index.html
https://github.com/wavesjs/waves-lfo/tree/master/examples/networked-graph
https://github.com/wavesjs/waves-lfo/tree/master/examples/networked-graph
http://vamp-plugins.org/guide.pdf
http://www.bbc.co.uk/rd/blog/2013/10/audio-waveforms
http://www.bbc.co.uk/rd/blog/2013/10/audio-waveforms
http://wavesurfer-js.org/
http://webaudio.github.io/web-audio-api/
http://recherche.ircam.fr/equipes/temps-reel/audio-mosaicking/
http://recherche.ircam.fr/equipes/temps-reel/audio-mosaicking/
https://www.w3.org/TR/orientation-event/
http://webassembly.org/
http://cosima.ircam.fr/

	Introduction
	Concepts and Formalization
	Implementation
	Benchmarks
	Example Applications
	Conclusions
	Acknowledgments
	References

