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Abstract 

The nitrogen cycle is one of the key macronutrient cycles that controls the distribution of life 

on Earth. The nitrogen cycle is composed of a series of distinct microbially mediated processes 

which may be affected differently with warming. Climate change is likely to affect all 

components of the nitrogen cycle. However, the extent to which each component will be 

affected and how this will alter interactions in natural systems is unknown. Here we used 

laboratory and field experiments to investigate the effect of warming on nitrogen cycling. We 

used a combination of pure cultures, in-situ measurements and laboratory manipulations of 

environmental samples to explore responses in freshwater and marine systems. In pure cultures 

of denitrifying bacteria, denitrification rates increased by 117-164%, with a 4oC temperature 

increase (11.5-15.5oC). In freshwater mesocosms, long term warming rates of sediment 

denitrification increased by 247%, with no significant thermal response of sediment 

nitrification within these systems. Marine sediment rates of denitrification and anammox 

increased by 4.69-16.23% and 3.71-35.39% respectively, depending on N substrate. Whereas 

a 3oC temperature increase in the water of the ETNP OMZ increased denitrification and 

anammox rates by 52.5% and 52.9% respectively, with no significant thermal response of 

nitrogen fixation in the OMZ surface waters. From this study, nitrogen removal processes 

increase with increasing temperature across systems but internal transformation and fixation of 

N show little to no thermal response. Further investigation into the causes of the observed 

variation in responses, such as substrate limitation and identification of microbes involved, will 

allow us to better understand and therefore better predict cross-system responses of the nitrogen 

cycle to global warming.   
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Chapter 1: General introduction 

Dinitrogen gas (N2) is the most abundant gas in the atmosphere, comprising 79% of its total 

composition by volume (Francis et al., 2007). Once microbially fixed into a biologically 

available source, such as nitrate (NO3
-), nitrite (NO2

-) or ammonia (NH3), it plays a crucial 

biological role as a key component in amino acids and therefore protein structure in all 

organisms (Canfield et al., 2010). Fixed nitrogen can be a limiting nutrient for primary 

production in the natural environment because it is crucial to make structures such as amino 

acids and nucleic acids (Falkowski, 1997; Wetzel, 1993). The nitrogen cycle involves a 

complex series of processes mediated predominately by a diverse array of bacteria and archaea 

which require both anoxic and oxic environments (Gruber & Galloway, 2008). The nitrogen 

cycle is extremely intricate with the transformation of nitrogen into a possible seven different 

oxidation states (Galloway et al., 2004), with this interspecies conversion achieved through 

respiration and fermentation and involves many different enzymes coded for by specific genes 

(Figure 1.1). The two key parts of the nitrogen cycle governing the availability of fixed nitrogen 

in the biosphere and the overall magnitude of primary production are ultimately nitrogen 

fixation and nitrogen removal to N2 gas through both denitrification and anaerobic ammonium 

oxidation (Singh et al., 2011).  
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Figure 1.1 A simplified diagram of the nitrogen cycle including the different oxidation states, enzymes and genes involved with the different 

processes involved.
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1.1 Denitrification 

Denitrification is a dominant nitrogen removal process (Codispoti, 1995). Denitrifiers are a 

taxonomically diverse group of mainly heterotrophic, facultative aerobic bacteria (Knowles, 

1982) which ultimately convert NO3
- to N2 gas (Falkowski, 1997) though a complex series of 

reactions involving numerous intermediates (Ferguson, 1994), some of which are sub 

substrates for others organisms. For example, the intermediate NO2
- produced through NO3

- 

reduction occurs within the bacterial cytoplasm and must travel to the cells periplasm for 

further reduction. It can therefore accumulate in the surrounding environment and be utilised 

by ammonium oxidising bacteria (Lam & Kuypers, 2011; Naqvi et al., 2000). The full 

denitrification pathway is as follows (Kalkowski & Conrad, 1991; Zumft, 1997): 

NO3
-   NO2

-     NO         + N2O     N2 

Canonical denitrification is complete reduction of either NO3
- or NO2

- through to N2 gas 

(Codispoti, 2007) by a single organism (respiratory denitrification), though some bacteria have 

the ability to reduce NO3
- and NO2

- but do not produce N2 gas as a final product (non-

respiratory denitrification) (Tiedje, 1998) . 

Denitrification requires depleted oxygen levels to undetectable which can be found in 

environments such as aquatic sediments and stratified water columns among others  (Knowles, 

1982; Francis et al., 2007). Denitrification is an important process to understand as it removes 

biologically available nitrogen from systems which may lead to reductions in primary 

productivity which would lead to reduction in carbon sequestration (Seitzinger, 1988). Global 

rates of nitrogen loss through denitrification from oceans have been estimated to be as great as 

230 (± 60) Tg N y-1 (DeVries et al., 2012).  

There are many interacting environmental factors that influence rates of denitrification, 

including NO3
- concentration (Seitzinger, 1988; Teixeria et al, 2010), oxygen concentration 

(de Boi et al 2002), temperature (Maag and Vinther, 1996; Pina-Ochoa and Alvarez-Cobelas, 
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2006) and organic carbon availability (Nixon, 1981) which often have interacting effects. Of 

these factors, NO3
- concentration appears to be the more dominant controlling factor recognised 

in the literature with increasing NO3
- concentrations increasing the rate of denitrification (e.g. 

Seitzinger, 1988; Teixeria et al, 2010). However, if organic content of the sediment is low, 

additions of NO3
- have shown to have a negligible effect on denitrification rates. Teixeria et al 

(2010) measured rates of denitrification in an estuary with a nutrient gradient with high NO3
- 

concentrations in the upper reaches decreasing toward to mouth of the estuary. Rates of 

denitrification increased toward the lower estuary, where organic content of the sediments was 

greater due to pollution inputs, with denitrification rates positively correlating to NH4
+ 

concentrations. High NH4
+ concentrations could have led to production of NO3

- through 

nitrification if enough oxygen was present, allowing these greater rates of denitrification to be 

observed (Magalhaes et al, 2005). Carbon content of sediments is also highly important for 

rates of denitrification. High carbon content can lead to higher rates of respiration (Duff et al, 

2007) which will creating more favourable conditions of low oxygen (de Boi et al, 2002) and 

increase rate at which NO3
- is used an electron acceptor (Stelzer et al, 2014). Seasonal 

variations of denitrification rates have also been observed, with warmer summer months 

stimulating denitrification. This has been observed in natural estuarine and coastal systems 

(Brin et al, 2014), as well as in experimental freshwater mesocosms where sediment 

denitrification doubled following a 3°C warming (Veraart et al, 2011). Though this effect of 

temperature is not in isolation. Increased temperatures also lead to increased oxygen 

consumption due to increased respiration (Gillooly et al, 2001; Perkins et al., 2012). 

Denitrification is also one of the major contributors of nitrous oxide (N2O) production, a potent 

greenhouse gas (GHG) with radiative forcing some 300 times greater than that of carbon 

dioxide (CO2) (Ravishankara et al., 2009; Wright et al., 2012) and that can also damage the 

stratospheric ozone layer (Holtan-Hartwig et al., 2002; Knowles, 1982). N2O affects 
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atmospheric chemistry and has been classified as an ozone depleting substance (ODS) with the 

highest weighted ozone depleting potential (ODP) and is predicted to remain this way for the 

rest of the 21st Century (Ravishankara et al., 2009).   

 

1.2 Anaerobic ammonium oxidation (Anammox) 

Anaerobic ammonium oxidation (Anammox) is an additional process of  nitrogen removal and 

involves the anaerobic oxidation of ammonium (NH4
+) using NO2

- as an electron acceptor with 

a final product of N2 gas (Dalsgaard et al., 2012) with the following transformations: 

NH4
+     +      NO2

-       N2          +       2H2O 

The role anammox plays in removing nitrogen from ecosystems has gained a lot of interest in 

recent years. Anammox was first discovered in sewage treatment facility (Mulder et al., 1995) 

and has since been measured in estuarine sediments (Rich et al, 2008; Trimmer et al, 2003), 

coastal shelf sediments (Engstrom et al., 2005; Thamdrup & Dalsgaard, 2002b) and anoxic 

water bodies such as Oxygen Minimum Zones (OMZ’s) (Beman et al., 2012; Hamersley et al., 

2007; Dalsgaard et al., 2003; Kuypers et al., 2003). Anammox is carried out by autotrophic 

bacteria and is energetically more favourable than oxic nitrification (Jetten et al., 2001).  

The contribution of anammox to N2 production has been measured between 4-79% in coastal 

sediments (Engstrom et al., 2005) and 19-35% in anoxic water columns (Dalsgaard et al., 2003)  

with a recent mean average of 28% off the coast of Chile (Dalsgaard et al., 2012). 

Anammox and denitrification often co-occur as they have similar metabolic requirements; the 

use of NO3- as an electron acceptor in low oxygen environments (Brin et al, 2014). However, 

anammox organisms have a higher affinity for NO3- compared to denitrifying organisms and 

therefore tend to dominate in conditions where NO3- is limited (Gardner and McCarthy, 2009; 

Thamdrup and Dalsgaard, 2002). The anammox process also requires NH4
+ to reduce NO3

-, 

which becomes another controlling factor determining rates of this process (Brin et al, 2017). 
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Temperature has also been shown to have an influence on rates of anammox. Several studies 

have categorised anammox organisms as being slow growing and cold adapted and have noted 

a decrease in activity with increasing temperatures (Teixeira et al., 2012; Brin et al., 2014). 

However, a recent study has shown that rates of anammox activity responded in a similar 

manner to denitrification over a temperature range of 3-59oC, with neither the thermal optimum 

nor activation energy changing with either process (Brin et al, 2017). This result led them to 

disregard previous studies classing anammox organisms as cold adapted.  

 

 1.3 Nitrification 

Nitrification plays an important role coupling one recycling part of the nitrogen cycle, NH4
+ 

from ammonification, to removal processes such as denitrification by providing NO3
- and NO2

- 

which will be reduced through several intermediates to N2.  Nitrification is an aerobic process 

oxidising NH4
+ to NO2

- and NO3
- mediated by a series of enzymes (Carini & Joye, 2008) and 

is predominately an autotrophic process (Hovanec & DeLong, 1996) but it can also be  carried 

out heterotrophically (Robertson et al., 1989). Until recently, nitrification was believed to be 

carried out in two separate processes; the oxidation of NH4
+ to NO2

- followed by further 

oxidation of NO2
- to NO3

- by phylogenetically distinct clades of  heterotrophic and autotrophic 

nitrite-oxidising bacteria and archaea (van Kessel et al., 2015; Wuchter et al., 2006). The 

equations of the two separate steps of nitrification are as follows: 

 

NH4
+   +    1.5O2                 NO2

-      +      H2O      +        2H+ 

NO2
-       +      0.5O2                  NO3

- 
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Recently this belief has come under scrutiny, with the discovery of complete nitrification 

occurring in a single organism, where the process of complete oxidation of NH3  (comammox) 

to NO3
- in a single organism was identified within two species of Nitrospira (van Kessel et al., 

2015) carrying out the following conversion : 

 

NH4
+   +    2O2                 NO3

-      +      H2O      +        2H+ 

Nitrification has been measured in a variety of systems such as freshwater lakes and streams 

(Small et al., 2013; Strauss & Lamberti, 2000) and oceans (Clark et al., 2008; Wuchter et al., 

2006). In oligotrophic ocean surface waters, NH4
+ regeneration rates of 10-160 nmol L-1 d-1 

have been measured (Clark et al., 2008). It can also play a huge role in freshwater lakes, with 

estimates of 93-100% of the NO3
- in Lake Superior produced through nitrification (Finlay et 

al., 2007). Nitrification also has the ability to produce the GHG, N2O, through the oxidation of 

NH4
+ under low oxygen conditions (Hynes & Knowles, 1984; Ritchie & Nicholas, 1972). Rates 

of N2O production in the range of 1.68-7.94 nmol L-1 d-1  have been measured in euphotic 

oceans waters through nitrification (Dore & Karl, 1996). 

Like all metabolic processes, there are environmental factors that affect the rates of 

nitrification. In addition to potential inhibition by sunlight (French et al., 2012; Merbt et al., 

2012), ammonium oxidising organisms (AOO) have also affected by concentrations of NH4
+. 

Whilst there have been studies to show increased rates of nitrification with increasing 

concentrations of NH4
+ (Horak et al, 2013, Newell et al, 2013), other studies have found no 

response of increasing NH4
+ concentrations (Shiozaki et al, 2016), suggestion other factors 

were at play such as low oxygen content of the soils.  

The response of nitrification to temperature has contradicting results in the literature. Hansen 

et al (1981), measured highest rates of nitrification in the winter from Danish inshore 

sediments. This was due to a combination of reduced oxygen penetration into the sediments 
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(from 10 cm to only 2 cm) and potentially increased competition for NH4
+ by more competitive  

autotrophic algae and heterotrophic bacteria. In winter, there is more oxygen present due to 

lower rates of respiration, less demand for NH4
+ , therefore numbers of nitrifying organisms 

have an advantage and population numbers can increase, with the reverse observed with 

increasing temperatures (Hansen et a, 1981). Conversely, other studies have found strong 

correlations between temperature and nitrification rates. Berounsky and Nixon (1990) 

concluded rates of nitrification were positively correlated to temperature. They also determined 

temperature to be the dominant controlling factor, more so than NH4
+ or oxygen content, with 

an r2 of 0.90 and 0.96 for temperature alone, from sediments sampled opposite ends of the 

Narragansett Bay, USA. 

The ammonium oxidising bacteria (AOB) and ammonium oxidising archaea (AOA) that carry 

out nitrification have different affinities for NH4
+ (Martens-Habbena, 2009). AOA have often 

been found in high numbers in low NH4
+ conditions, whilst AOB tend to have a metabolic 

advantage in higher NH4
+ conditions (Hatzenpichler et al, 2008; Könneke et al, 2005). This 

adds complexity to trying to understand nitrification, as little is still known about the 

controlling factors on these organisms and their metabolic processes (Walker et al, 2010).  

 

1.4 Nitrogen fixation 

Nitrogen fixation is the biological conversion of N2 gas into biologically available inorganic 

nitrogen compounds (Zumft, 1997). Ecosystems limited in N provide conditions ideal for 

organisms i.e. the diazotrophs that are able to convert unreactive N2 into reactive forms that 

can be utilised by other biota in the system (Galloway et al., 1995). Over half the fixed N 

available in the ocean is estimated to be provided by microbial nitrogen fixation (Gruber & 

Sarmiento, 1997; Middleburg et al., 1996), with approximately 203 Tg N y-1 being biologically 

fixed globally (Fowler et al., 2013). Open oceans potentially play the most important role with 
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estimates of 60-200 Tg N y-1 (Duce et al., 2008), with many studies estimating an average of 

approximately 140 Tg N y-1(Canfield et al., 2010; Galloway et al., 2004). 

Nitrogen fixation is carried out by a diverse array of prokaryotes, which have the key enzyme, 

nitrogenase, that is necessary for nitrogen fixation (Fiore et al., 2010). Nitrogenase is 

inactivated by oxygen, so these organisms have different methods to prevent the inhibitory 

effect of oxygen. Cyanobacteria are photosynthetic-aquatic-nitrogen-fixing organisms that 

have daily cycles of photosynthesis during daylight hours, and  nitrogen fixation in the dark, 

so that the oxygen created during photosynthesis does not inhibit the enzyme when it is active 

(Zehr, 2011). Most cyanobacteria are unicellular, but there are a few species (e.g. 

Trichodesmium) that are able to grow as multicellular colonies, with specialised sites for 

nitrogen fixation that are completely separated from the photosynthetic cells (e.g. Karl et al., 

2002).  These specialised sites for nitrogen fixation are called heterocyst’s and allow the 

cyanobacteria to fix nitrogen in both light and dark conditions (Zehr, 2011).  

Nitrogen fixation is an energetically costly reaction (Houlton et al, 2008; Howarth, 1988) with 

the enzyme that catalyses this reaction, nitrogenase, requiring a minimum of 16 molecules of 

ATP to fix one molecule of N2 (Stam, Stouthamer, & van Verseveld, 1987). Even with 

concentrations as low as 0.14-0.16µM of nitrate or 1.4-12µM ammonium, N2 fixation 

(diazotrophy) is inhibited (Horne et al, 1972).  

The amount of reactive nitrogen in our biosphere has increased by approximately 210 Tg N y-

1 (Fowler et al., 2013) predominately due to the Harber-Bosch process used to increase crop 

yields and the burning of fossil fuels (Galloway et al., 2008). Coastal areas and freshwater 

systems tend to have increased levels of reactive nitrogen from surface run off from the 

surrounding crop land that has had fertiliser additions. Due to this increase, many freshwater 

and coastal systems have excess nitrogen levels which will lead to eutrophication, increased 

rates of respiration and therefore reduce the ability of the system to sequester carbon. Increased 
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nutrient levels also reduces the competitive advantage that nitrogen fixing organisms have in 

low nutrient systems and they tend to be outcompeted by other biota and less new nitrogen is 

fixed into the system. Alternatively, those systems isolated from anthropogenic fixed nitrogen 

inputs will have more suitable conditions of low nitrogen concentrations. However, with 

increasing CO2 levels and global warming, it is of concern that the rate of new nitrogen entering 

a system, away from anthropogenic sources of nitrogen inputs, will not be able to keep up and 

will ultimately become a limiting factor in primary production and therefore carbon 

sequestration (Vitousek et al., 2013). 

 

1.5 Dissimilatory reduction of nitrate to ammonium (DNRA) 

Dissimilatory nitrate reduction to ammonium (DNRA) is an anaerobic metabolic process 

carried out in a variety of systems including marine and estuarine sediments and water columns 

(Giblin et al, 2013, Hardison et al, 2015) by a variety of bacteria, archaea and eukarya (Kamp 

et al, 2011; Welsh et al, 2014) (Figure 1.1).  

There are two types of DNRA, more common fermentation and DNRA linked to sulphur 

reduction (Burgin and Hamilton, 2006). The fermentation form of DNRA uses electrons from 

organic matter to reduce NO3
- (Megonial et al, 2004; Teidje, 1988) and is carried out by a wide 

variety of microbes including species of Pseudomonas (Teidje, 1988). There is strong 

competition between DNRA and denitrification, as both are present in similar environmental 

conditions such as sediments with low oxygen with the presence of NO3
-. Both processes have 

been documented as being controlled by NO3
- concentrations and organic matter availability 

(Giblin et al, 2013, Christensen et al, 2000, Kraft et al, 2014), but the exact extent of their 

effects is not fully understood. DNRA has been observed to dominate over denitrification in 

anoxic sediments with high reactive organic carbon content (Hardison et al, 2015), and also 

where the ratio of organic carbon to NO3
- is low (Algar and Vallino, 2014; Hardison et al, 
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2015).  DNRA organisms have a higher affinity for NO3
- than denitrifiers, so can out complete  

in low concentrations (Tiedje, 1988; Kelso et al, 1997). The second type of DNRA links 

oxidation of sulphur in reduced forms to the reduction of NO3
- and is a chemolithoautrophic 

process (Brunet and Garcia-Gil, 1996). In the presence of high concentrations of free sulphides, 

DNRA may dominate over denitrification as the free sulphides have been observed to inhibit 

the final two steps of denitrification (Brunet and Garcia-Gil, 1996). The metabolic capability 

to link the oxidation of free sulphur to the reduction of NO3- has been observed across a wide 

range of genera including Thiobacillus, Thiomicospora and Thioploca (Otte et al, 1999; 

Jorgensen 1982; Kelly and Wood, 2000). 

DNA has been measured in freshwater sediments, but this evidence is rare in the literature and 

is often conflicting (Burgin and Hamilton, 2007), with measurements often being below the 

limit of detection or negligible (Lansdown et al, 2012). In this later study, river sediments were 

incubated with excess peptone to provide a readily available organic carbon source and then 

had additions of an isotopic nitrogen tracer. Only 4% of the 15NO3
- converted was due to DNRA 

activity, which may have been down to dominance from denitrification in these incubations.  

 

1.6 The role of climate change and anthropogenic influences 

The nitrogen cycle is tightly coupled to the carbon cycle due to its strong regulation of primary 

production (Galloway et al., 2008; Tyrrell, 1999). Figure 1.2 shows a simplified version of the 

interlinking carbon and nitrogen cycles. If fixed nitrogen becomes limiting for plant growth, 

there will be a reduction in primary production which would lead to a decrease of CO2 

drawdown from the atmosphere (Karl et al., 2002). The nitrogen cycle can therefore play a key 

role in climate regulation and global warming (Falkowski, 1997) but the full complexity of this 

is still unknown.  
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Figure 1.2 Simple diagram illustrating how the nitrogen and carbon cycles are closely 

interconnected. Note, for illustrative purposes not all pathways and intermediate e.g. anammox 

and nitrous oxide (N2O) are included. 

 

Climate change due to global warming is a well-accepted process that is occurring with 

warming predicted to continue increasing (IPCC, 2013). The effects of global warming include 

sea level rise, increased droughts, increased flooding, more extreme weather events and 

reduced biodiversity (Botkin et al., 2007; Loaiciga et al., 1996; Wigley, 2005) to mention a 

few. We must consider how fixed nitrogen will be balanced in ecosystems in response to 

increasing global temperatures. In an ideal situation, which is very difficult in reality, the rate 

at which nitrogen is lost from a system would be balanced by nitrogen fixation, so that primary 

production is not limited. At present we do not have the knowledge of how changes, created 

by rising temperatures, will alter the balance of the nitrogen cycle and to what extent 

(Falkowski, 1997). There is evidence of this delicate balance being disrupted in coastal 

sediments due to decreased primary production. Fulweiler et al. (2007) found estuarine 

sediments that were previously net sinks of nitrogen, reversed and became net sources of 

reactive nitrogen. Strong seasonal effects have been associated with potential rates of N2 

production through denitrification in estuarine and coastal sediments, with increasing rates with 
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in warmer months whereas the contribution of  anammox showed no seasonal response (Brin 

et al., 2014). Brin et al. (2014) also found increased rates of denitrification significant ly 

associated with Oxygen (O2) consumption, which is an indicator of reactive sediments and 

organic matter availability.  

We know warming has been show to increase the rates of photosynthesis and respiration in 

freshwater systems. Respiration has a greater thermal sensitivity (Gillooly et al., 2001; Perkins 

et al., 2012; Yvon-Durocher et al., 2012), therefore increases at a greater rate. Yvon-Durocher 

et al (2010) used experimental mesocosms to demonstrate the effect of a 4°C temperature 

increase (predicted global warming: IPCC, 2013) on the balance of respiration and primary 

production and found a 13% decrease in carbon sequestration. Respiration increased at a higher 

rate than photosynthesis with apparent activation energies of 0.62 eV and 0.43 eV for 

respiration and photosynthesis respectively. Photosynthesis has a much weaker temperature 

dependence than respiration (Allen et al, 2005; Dewar et al, 1999), creating an imbalance in 

net photosynthesis and net respiration. 

In contrast to the carbon cycle, if analogous imbalances occur in the nitrogen cycle, this could 

affect the amount of reactive nitrogen available for plant productivity which would impact the 

carbon cycle by restricting the drawdown of CO2 (Gruber and Galloway, 2008). This will be 

even more important in those systems away from anthropogenic nutrient loading with low 

nutrient levels. However, activation energies of BFN have been calculated as high as 1.06 eV 

(Houlton et al., 2008), which is greater than has been observed for denitrification (0.63 eV) 

(Canion et al., 2014) which would suggest both losses of reactive nitrogen and input through 

BNF could potentially increase at the same rate with warming.   

On a long-term-global-scale, nitrogen fixation and nitrogen removal processes should keep the 

nitrogen cycle in balance and this has been seen in the past with ice-core analysis.  However, 

as previous studies have determined, nutrient cycles can become unbalanced due to 
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anthropogenic inputs (through fertilizers and fossil fuel burning etc.). Over the past 40 years 

there has been a 120% increase in anthropogenic reactive nitrogen (Galloway et al., 2008) 

primarily through the Harber-Bosch process used for fertiliser production and burning of fossil 

fuels (Seitzinger et al., 2006). Most of the fixed nitrogen added to fields in the form of fertilisers 

is washed out from the soils and makes its way into freshwater systems (Paerl, 1997).  

As previously mentioned, even with low concentrations of nutrients such as ammonia and 

nitrate, nitrogen fixation will no longer occur and the nitrogen fixers will be outcompeted by 

other photosynthetic organisms. The compounding effect of increased anthropogenic nutrient 

loading and increased global temperatures may have sever effects. If denitrification were to 

increase at a higher rate than nitrogen fixation, which has been suggested by previous studies 

looking into past glacial and interglacial periods (Altabet et al, 1995; Ganeshram et al, 1995), 

we could see a loss of photosynthetic productivity in aquatic systems (Codispoti, 1995). This 

would lead to reduced sequestration of CO2 and create a positive feedback, causing a further 

increase in the Earth’s surface temperature. This effect would be further exacerbated by N2O 

production from increased rates of denitrification. The nitrogen cycle is a highly complex series 

of individual components closely linked to one another and we need to increase our knowledge 

to understand how they will be effected with our changing climate.  
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Chapter 2: Effect of temperature on N2 and N2O production in pure cultures 

of denitrifying bacteria 

2.1 Introduction 

Denitrification is a major process for removing fixed nitrogen (Codispoti, 1995) and it is carried 

out by taxonomically diverse groups of, mainly heterotrophic, facultative anaerobic bacteria 

(Knowles, 1982) and, through a complex series of reactions involving numerous intermediates, 

ultimately reduces nitrate (NO3
-) to di-nitrogen gas (N2) via nitrous oxide (N2O) (Falkowski, 

1997). This process requires depleted oxygen (~ < 20-25 µM) down to those below detection 

which can be found in natural environments such as aquatic sediments, stratified water columns 

and water-logged soils (Francis et al., 2007; Knowles, 1982; Smith, 1997). Denitrification is 

an important process to understand as it removes biologically available, fixed  nitrogen from 

ecosystems which may reduce primary productivity and ultimately carbon sequestration 

(Seitzinger, 1988) and is also a major source of N2O. N2O is a potent greenhouse gas (GHG) 

with radiative forcing effects some 300 times greater than that of carbon dioxide (CO2) 

(Ravishankara et al., 2009; Wright et al., 2012) and causes damage to stratospheric ozone 

(Holtan-Hartwig et al., 2002; Knowles, 1982). N2O has been classified as an ozone depleting 

substance (ODS) with the highest weighted ozone depleting potential (ODP) and is predicted 

to remain this way for the rest of the 21st Century (Ravishankara et al., 2009).   

Globally, nitrogen loss through denitrification from oceans alone has been estimated to be ~ 

230 (± 60) Tg N y-1 (DeVries et al., 2012) with rates expected to increase with increasing global 

temperatures. Both direct and indirect effects of warming on denitrification have been observed 

in aquatic and terrestrial systems. Indirect effects include decreased oxygen concentrations 

through either reduced solubility of oxygen in aquatic systems, or increased respiration (e.g. 

Smith, 1997; Veraart et al., 2011).  
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Others have investigated the effects of temperature on N2 and N2O production through 

denitrification in a variety of environments. For example, strong seasonal effects, driven by 

temperature change, show greater potential for denitrification in estuarine and coastal 

sediments (Brin et al., 2014). Further, increased denitrification was significantly correlated 

with greater oxygen (O2) consumption, which is an indicator of reactive sediments and organic 

matter availability which increase with warmer temperatures through increased respiration 

(Gillooly et al, 2001; Perkins et al., 2012). A clear direct effect of temperature was observed in 

freshwater experimental mesocosm where sediment denitrification doubled following a 3°C 

warming (Veraart et al, 2011). Calculated activation energies for N2O production in soil 

samples exposed to a range of temperatures were 0.28-0.81 eV, revealing a strong, but variable 

temperature dependence (Holtan-Hartwig et al., 2002). However, reduction rates of N2O to N2 

had similar activation energies within the same temperature range, suggesting no change in net 

flux of N2O will be seen with increasing temperatures. In fact, lower temperatures actually 

showed a net flux of N2O, due to reduction in enzymatic activity involved in N2O reduction 

(Holtan-Hartwig et al., 2002). A hand full of studies have measured both N2 and N2O 

production, finding the ratio of N2O/ N2 increases with decreasing temperature (Avalakki et 

al., 1995; Bailey & Beauchamp, 1973; Keeney et al., 1979). In contrast, pond sediment slurries 

and  grassland soils have shown a net increase in N2O production with increasing temperature 

(Cantarel et al., 2012; Stadmark & Leonardson, 2007).  

Whilst denitrifying bacteria have been extensively studied in pure cultures,  most of the 

literature focuses on the response of N2 and N2O production with differing O2 concentrations 

(e.g. Baumann et al., 1996; Kester et al, 1997) or measuring their ability to degrade different 

substrates (e.g Schocher et al., 1991). There are gaps in the literature of how pure cultures of 

these organisms will respond to the current pressure of increasing temperature in regards to 

production rates of N2 and N2O. It is important to understand the response of individual strains 
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of denitrifying bacteria to external variables such as increasing temperatures. Though in natural 

systems, these organisms are never in isolation, they will adapt differently to environmental 

factors and gaining knowledge of this will enable us to better predict future emissions of N2 

and N2O.  

This study investigated both the initial response of three strains of denitrifying bacteria 

(through the production of N2 and N2O) to warming and their thermal adaptation after short (~ 

5 generations) periods of acclimatisation. Reported temperature dependencies for 

denitrification vary greatly which may be down to differences in community structure and the 

individual microbes present in those systems responding differently. Studying the response of 

pure strains will allow us to investigate the variability and responses within pure cultures, 

removing other confounding effects.  

2.1.1 Aims and Hypothesise  

The overall aim of this study was to investigate the thermal response of pure strains of 

denitrifying bacteria, by measuring metabolic activity through the production of both N2 and 

N2O gas, at a range of temperatures above, around and below their optimum range thermal.  

From this, the activation energies were calculated for each strain at each exposure temperature, 

with metabolic activity further investigated by calculating the ratio of N2:N2O produced. N2O 

is a product of incomplete denitrification and is an indicator of the efficiency of the overall 

process.  Two distinct experiments were carried out to investigate the thermal response of the 

pure cultures.  

The first experiment investigated the metabolic activity of pure cultures of denitrifying bacteria 

that were incubated at different temperatures over several generations (10 oC, 22 oC, 27 oC and 

37 oC). The aim of study one was to determine if the strains adapted metabolically to an 

extended period of exposure to these temperatures. Two main hypothesise were suggested for 
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this study; either there would be greater rates of gas production from those incubated in the 

warmer temperatures due to increased enzymatic activity, or similar gas production rates would 

be observed at all temperatures due to an adaptation of the enzymes controlling the different 

steps of the denitrification pathway.   

The second experiment investigated the effect of short term temperature exposure on the strains 

denitrifying bacteria. The aim of this experiment was to measure the change in metabolic 

activity to a range of temperature when incubated at a single, optimum temperature and how 

the different strains responded to these temperature changes. The main hypothesis for this study 

was each strain would increase its production of N2 and N2O to a maximum at a temperature 

close to its optimum. Either side of this temperature, metabolic activity would decrease due to 

reduced enzymatic activity. The second hypothesis would be the three strains would respond 

in a similar manner. These strains were isolated from similar ecological niches and therefore 

have the same environmental requirements and could be expected to have similar metabolic 

responses to changes in temperature.    

 

2.2 Methods 

2.2.1 Strains of denitrifying bacteria 

Three strains of denitrifying bacteria were selected for experimental analysis of the thermal 

sensitivity of denitrification in pure cultures. The selected strains were Paracoccus 

denitrificans (PD 1222), Pseudomonas marginalis (DMS 13124) and Pseudomonas brenneri 

(DMS 15294), all of which are mesophilic chemoorganoheterotrophic bacteria. The strains 

were chosen as they culture easily and on the same media which reduced variability within 

experiments. Pure cultures of P. denitrificans were obtained internally within the department 

and both P. marginalis and P. brenneri were obtained as freeze dried cultures from a culture 
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collection (Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures , 

Germany) which were rehydrated on delivery.  

2.2.2 Preparation of pure cultures  

The three strains of denitrifying bacteria were grown in Tryptic soya broth media (Sigma 

Aldrich) with additions of 0.1 M ammonium chloride (NH4Cl), 1M sodium nitrate (NaNO3
-) 

and 1 M potassium dihydrogen phosphate (KH2PO4). Autoclaved media (5 mL) was dispensed 

into gas-tight vials (12 mL Exetainer, Labco, UK) and purged with oxygen free nitrogen (OFN, 

99.998%, British Oxygen Company) to be completely anoxic (Tschech and Fuchs., 1987). OFN 

was gently bubbled for 10 minutes through the media within the gas-tight vials using a syringe 

filter attached to a long sterile needle, with an additional sterile needle as a valve through the 

septa. The sterile oxygen free media was left for 24 hours before inoculation to ensure it was 

not visibly contaminated. 

To inoculate the growth media, 50 µL of one of the three strains from the starting cultures were 

injected through the septa of the vials using aseptic techniques. Inoculated vials for additional 

starting cultures were then placed on an orbital shaker at 65 rpm at room temperature (22oC) 

to ensure constant but gentle mixing, this reduced the chances of clumping and maximised 

growth. After each inoculation, a loop spread of each culture was added to growth plates 

containing the same growth medium, with the addition of agar (20g L-1). This was done to 

ensure the cultures were still uncontaminated by other organisms by observing the growth of 

single, pure cultures on the agar plates. Growth of any a different formation or colour would 

indicate contamination by another microorganism. This had to be done frequently as the growth 

medium used was a broad growth medium suitable for many other heterotrophic 

microorganisms.     
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µ = lnOD2 – lnOD1 
              t2 – t1 

From the growth curves, specific growth rate (h-1) could then be calculated using the following 

equation: 

 

Where µ is the specific growth rate (h-1), lnOD2 – lnOD1 is the difference in natural log optical 

density between the start of the exponential phase (OD1) and the end of the exponential phase 

(OD2). T2 is the time point of OD2 and T1 is the time point of OD1 (h-1) (Widdel, 2007).  

The generation time (or doubling time) was calculated by dividing by the time it took for the 

OD to double by the length of the exponential growth phase.  

2.2.3 Measuring thermal sensitivity of denitrification with prior temperature adaptation  

The first investigation into the thermal response of pure cultures of denitrifying bacteria 

considered the effect of N2 production rates after adaptation to temperatures. Using the same 

preparation methods above, sterile gas-tight vials (12 mL) containing media (5 mL, headspace 

7 mL) were inoculated with starting cultures of bacteria (50 µL) which were stored at room 

temperature (22 oC). The inoculated vials were placed into different temperature controlled 

rooms on an orbital shaker. When the cultures began to double within the exponential phase, 

these were subsampled into new vials to ensure there was no limitation of growth and to keep 

the cultures in exponential phase. This was repeated five times before the experiment began 

allowing five generations to have grown at the specific temperature. The generation time was 

calculated by growth rate calculations carried out in preliminary experiments, measuring 

increase in turbidity when the pure strains were grown at the experimental temperatures, as 

mentioned above. This experiment was to investigate short-term adaptation to temperature of 

N2 and N2O production rates by pure cultures.  



Chapter 2 
 

43 

The experiment was initiated by adding a subsample (50 µL) of the thermal adapted cultures 

into gas-tight oxygen free vials (12 mL) containing growth media (5 mL). The media differed 

with the addition of Na15NO3
- instead of Na14NO3

- as the nitrate source to allow the production 

of N2 to be traced by mass spectrometry. Time series sampling was carried out with replicates 

at each time point, at 4 different temperatures (Table 2.1). Figure 2.1 shows the basic 

experimental design which was repeated for all three strains of denitrifying bacteria. The 

experiment was stopped with an injection of zinc chloride (100 µL, 50% (w/v), Sigma Aldrich) 

through the septa. Samples for background reference amounts of N2 (15N natural abundance) 

and N2O (background concentration) were prepared in the same way as above but injected with 

zinc chloride prior to inoculation. Production rates of N2 and N2O were measured as excess 

above reference samples. Additional vials were prepared as controls with the same media batch 

and left un-amended to ensure media was not contaminated.  

 

 

 

 

 

 

Figure 2.1 A schematic diagram for the experiment to investigate the thermal sensitivity of 

denitrification in pure cultures of denitrifying bacteria with prior thermal adaptation.  
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Table 2.1 Experimental design for temperature adaption of denitrification with pure cultures of 

denitrifying bacteria.  

Strains Temperatures 
Time points  

(hours) 

Replicates at each time 

point  

P. denitrificans 

10 oC, 22 oC,       
27 oC & 37 oC 

0, 2.5, 5.5, 22, 
26, 31 

3 

P. brenneri 
0, 1.5, 4.5, 7.5, 

23, 27 
3 

P. marginalis  
0, 0.5, 3, 7, 22.5, 

27 
3 

 

2.2.4 Measuring thermal sensitivity of denitrification with no prior temperature 

adaptation  

Cultures for these short-term temperature exposure experiments on the rates of N2 and N2O 

production were prepared in the same way as for the temperature adaptation experiment. The 

method differs in that only the starting cultures, which were kept at 22oC, were used for 

inoculations. Once vials were inoculated with the starting culture of denitrifying bacteria, they 

were exposed for a short period of time (12 h) to a range of temperatures using a thermal 

gradient bar (Figure 2.2). The thermal gradient was created using an aluminium thermal 

gradient block containing aluminium racks into which the 12 mL vials were fitted. A final 

temperature range between 11oC and 37.5oC was obtained. The thermal gradient within the 

block was created using a heated water bath (Grant TC120) at one end and a chilling unit (Grant 

RC350G) at the other. To obtain the widest temperature range possible the thermal gradient 

had to be completed in three separate ranges, 11-16oC (chiller: 2oC, heated water bath: 20oC), 

16-36oC (chiller: 2oC, heated water bath: 80oC), 31-37.5oC (chiller: 25oC, heated water bath: 

60oC). As with the previous method, reference samples were prepared in the same way to 

measure background concentration of both N2 and N2O. The rates of N2 and N2O were 

measured as excess above the reference samples. Two strains were investigated in this 

experiment: P. denitrificans and P. brenneri, with measurements of production of N2 and N2O 
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Cold water 
circulation 

Hot water 
circulation 

Cold water 
circulation 

Hot water 
circulation 

at a single time point as preliminary experiments allowed us to determine the length of the 

exponential phase to ensure that the experiment was carried out in this phase of linear 

production. Further experimental details can be seen in Table 2.2 and a schematic diagram of 

the basic experiment which was repeated for two strains of denitrifying bacteria can be seen in 

Figure 2.3.  

 

 

 

 

 

 

Figure 2.2 Solid aluminium thermal gradient bar used for short term temperature experiments. 

Heated water circulation at one end and cooled water circulation at the opposite end created a 

thermal gradient along the bar. Gradient block is shown open but was fitted with insulation and 

an aluminium lid during the incubations.  

Table 2.2 Experimental design for rates of denitrification with pure cultures of denitrifying 

bacteria with no-prior temperature exposure. Only one time point was necessary as previous 

analysis determined the phase of constant N2 production (Trimmer et al., 2006). 

Strains Temperatures (oC) Time point (hours) 
Replicates at 

each time point  

P. denitrificans 11.5, 12, 12.5, 13, 14, 14.5, 

15.5, 16.5, 22, 22.5, 28, 
28.5,35, 36.7 

12 3 

P. brenneri 12 3 
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Figure 2.3 A schematic diagram for the experiment to investigate the thermal sensitivity of 

denitrification in pure cultures of denitrifying bacteria with no prior thermal adaptation across 

a wide temperature range.  

2.2.5 Gas analysis for N2 and N2O 

Samples for both the prior temperature exposure and non-prior temperature exposure thermal 

sensitivity of denitrification experiments were sampled for N2O concentration using a gas 

chromatograph fitted with a micro-electron capture detector (GC/µECD, Agilent Technologies 

UK Ltd., South Queensferry, U.K.; Nicholls et al., 2007). Headspace N2O concentrations were 

calculated from peak areas using a known standard concentration (Scientific and Technical 

Gases) and the total amount in the vial (headspace plus media) was corrected for temperature, 

pressure and solubility (Weiss & Price, 1980).  

Production of 15N-N2 (29N2 + 30N2) gas from the denitrification experiments was measured in 

the headspace of each vial (culture) by continuous-flow isotope ratio mass spectrometry 

(Thermo-Finnigan, Delta Matt Plus) previously described in Trimmer and Nicholls (2009). Gas 

production rates were normalised to cell density by dividing by their respective OD680 values. 

As mentioned above, all measurements were taken whilst the cultures were in the linear growth 

phase (exponential) (Widdel, 2007).   
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2.2.6 Deriving apparent activation energies  

The rates of the measured processes were log transformed and the incubation temperatures 

were converted to 1/kT, where k  is the Boltzmann’s Constant (8.62x10-5 eV k -1 (T)) and T is 

the absolute temperature in Kelvin. The natural log rates were plotted against centered 

temperature (1/kT-1/kTc, where 1/kTc is the average 1/kT for the thermal range included), on 

an Arrhenius plot where the negative slope of the regression line gives an estimate of the 

apparent activation energy in electron volts (eV) where 1eV is equivalent to 96.49 kJ mol-1.  

Plotting in this manner centres the inverse temperature around zero so that the intercept 

(normalisation constant) is equivalent to the mean rate of activity (Perkins et al, 2012).  

2.2.7 Statistical analysis 

To determine whether there were any significant differences between the strains of pure 

denitrifyers, both parametric t-test and non-parametric Kruskal-Wallis one-way analysis of 

variance was carried out and either t-value or H value, respectively, was reported. To determine 

whether there were any significant effect of temperature on the rates of N2 and N2O production, 

one-way ANOVA was carried out on the slope of the rates and the p values recorded.   

2.3 Results 

2.3.1 Thermal sensitivity of denitrification with prior temperature adaptation 

The rate of cell specific N2 production increased with temperature for all 3 strains of 

denitrifying bacteria, with rates corrected for by absorbance (Figure 2.4). For P. denitrificans, 

the average rate of non-log-transformed N2 production ranged from 128.9 (± 4.9) nmol N 

OD680
-1 h-1 at 10oC to an optima of 1683376 (± 192641) nmol N OD680

-1 h-1 at 27oC. For P. 

brenneri, the average rate of non-transformed N2 production ranged from 705.5 nmol N OD680
-

1 h-1  (± 43.7) at 10oC to an optima of 3657.3 (± 298.1) nmol N OD680
-1 h-1 at 27oC. P. marginalis 

produced a minimum average rate of non-transformed N2 169.9 (± 13.5) nmol N OD680
-1 h-1 at 
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10oC to an optima rate of 1973.7 (± 77.6) nmol N OD680
-1 h-1 at 27oC, with deactivation 

observed at 37oC.  

Due to deactivation at 37oC, activation energies were only calculated up to 27oC, and all 

statistics were carried out using data up to 27oC for all 3 strains. Similar and low apparent 

activation energies were observed for all three strains of pure cultures for the production rates 

of natural log N2 (Table 2.3). A significant effect of temperature on N2 production was observed 

for all 3 pure culture strains (Table 2.6). P. marginalis had the lowest apparent activation 

energy but the relationship between N2 and temperature was most significant for this strain (p 

< 0.0001). No significant difference was observed between the three strains for natural log N2 

production rates (p > 0.05). Therefore, the N2 production rates were pooled together for the 

three strains (Figure 2.4D) and the effect of temperature on the slope of N2 production rates 

was highly significant (ANOVA, f = 18.83, df = 26, p < 0.001), suggesting as temperature 

increases, so does the cell specific rate of N2 production, normalised to turbidity.  
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Figure 2.4 Arrhenius plot for the thermal sensitivity of 15N2 production rates (natural log nmol 

OD680
-1 h-1) for 3 strains of denitrifying bacteria P. denitrificans, P. brenneri, P. marginalis 

and all 3 strains rates pooled together against incubation temperature in pure cultures 

(centered1/kT, where k  = Boltzmann’s constant and T is in Kelvin) with prior temperature 

exposure. Temperature increases from right to left.  

 

Table 2.3. Apparent activation energies (eV) of natural log of cell specific N2 production for 3 

strains of denitrifying bacteria grown in pure cultures calculated on the linear section of the 

data (10 – 27oC) with prior temperature exposure. 

Species Ea (eV) r2 

P. denitrificans 0.16 0.55 

P. brenneri 0.15 0.48 

P. marginalis 0.07 0.91 

Pooled data for all 3 strains 0.12 0.45 
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For each of the three strains, a non-significant effect of temperature on the growth-specific rate 

of N2O production was observed (p > 0.05) (Table 2.6, Figure 2.5). Production was linear up 

to 27oC, therefore activation energies and statistical analysis was carried out on N2O production 

rates up to 27oC.  For P. denitrificans, the average rate of N2O production ranged from 7.5 (± 

1.1) nmol N2O OD680
-1 h-1 at 10oC to an optima of 62.1 (± 15.67) nmol N2O OD680

-1 h-1 at 27oC. 

For P. brenneri, the average rate of N2O production ranged from 41.9 (± 7.43) nmol N2O OD680
-

1 h-1 at 37oC to 129.4 (± 15.6) nmol N2O OD680
-1 h-1 at 27oC. P. marginalis produced a minimum 

average rate of N2O 102.8 (± 34.1) nmol at 10oC and a maximum rate of 342.0 (± 45.8) nmol 

N2O OD680
-1 h-1 at 27oC, with deactivation observed at 37oC. Apparent activation energies were 

calculated, suggesting a non-significant effect of temperature for all 3 strains (Table 2.6). P. 

denitrificans had a slightly greater thermal response than the other two strains (Table 2.4). P. 

brenneri had significantly higher rates of N2O production than P. marginalis (H = 15.1, df = 2, 

p < 0.001). No other statistical difference of N2O production rates were observed between 

strains.  When the N2O production rates from all 3 strains were pooled together, to get an 

average estimate of the process of N2O production, a non-significant effect of temperature is 

still observed (ANOVA, p > 0.05).  
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Figure 2.5 Arrhenius plots for the thermal sensitivity of N2O production rates (natural log nmol 

OD680
-1 h-1) for 3 strains of denitrifying bacteria pure cultures. P. denitrificans, P. brenneri, P. 

marginalis and all 3 strains rates pooled together against incubation temperature (centered1/kT, 

where k  = Boltzmann’s constant and T is in Kelvin) with prior temperature exposure. 

Temperature increases from right to left.
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Table 2.4. Apparent activation energies (eV) of natural log N2O production for 3 strains of 

denitrifying bacteria grown in pure cultures with prior temperature exposure (10–27oC). 

Species Ea (eV) r2 

P. denitrificans 0.11 0.38 

P. brenneri 0.03 0.08 

P. marginalis 0.03 0.35 

Pooled data for all 3 strains 0.05 0.11 

 

The ratio of N2O/N2 evolution was calculated to determine the number of N2O molecules 

produced for every molecule of N2, with a positive ratio indicating more molecules of N2O are 

produced for every molecule of N2. N2O is a genuine intermediate in the biochemical pathway 

of denitrification and allows us to investigate the effect of temperature on the efficiency of 

complete denitrification. All 3 strains of denitrifying bacteria showed a decrease in the ratio of 

N2O/N2 with increasing temperature as the rate of N2O is unaffected by temperature, whereas 

N2 increases, with deactivation energies suggesting a thermal response (Table 2.5, Figure 2.6).  

P. denitrificans had a maximum average ratio of 0.059 (± 0.01) at 10oC and a minimum average 

ratio of 0.026 (± 0.007) at 24oC with a non-significant effect of temperature (Table 2.6). P. 

brenneri had a maximum average ratio of 0.11 (± 0.01) at 10oC and a minimum average ratio 

of 0.004 (± 0.0005) at 24oC with a significant effect of temperature (Table 2.6). P. marginalis 

had the greatest maximum average ratio of 0.65 (± 0.27) at 10oC and a minimum average ratio 

of 0.14 (± 0.003) at 24oC with a significant effect of temperature (Table 2.6). For all three 

strains, as temperature increases, N2 increases and N2O production rates stay relatively 

constant. The ratio of N2O/ N2 is significantly greater in P. marginalis than P. denitrificans (H 

= 7.65, df = 2, p = 0.01), with no other statistical differences observed. Again, the ratios from 

all 3 strains was pooled together to get an estimate of the overall ratio at each temperature. 

Increasing temperature had a significant effect on the pooed data with the ratio increasing with 

decreasing temperatures (ANOVA, f = 4.33, df = 26, p < 0.05). 
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Figure 2.6 Arrhenius plots for the thermal sensitivity of natural log N2O/ N2 production for 3 

strains of denitrifying bacteria; P. denitrificans, P. brenneri, P. marginalis and all 3 strains 

rates pooled together against incubation temperature (centered 1/kT, where k  = Boltzmann’s 

constant and T is in Kelvin) with prior temperature exposure. Temperature increases from right 

to left.  

 

Table 2.5 Apparent deactivation energies (eV) of natural log N2O/ N2 production for 3 strains 

of denitrifying bacteria grown in pure cultures calculated on the linear section of the data with 

prior temperature exposure. 

Species Ea (eV) r2 

P. denitrificans -0.21 0.19 

P. brenneri -0.37 0.50 

P. marginalis -0.52 0.54 

Pooled data for all 3 strains -0.36 0.15 
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Table 2.6 Statistical significance for measured processes with one way ANOVA testing for the 

effect of temperature on N2 and N2O with for 3 pure strains of denitrifying bacteria with prior 

temperature exposure. 

Test Strain variable f  Df p 

ANOVA P. denitrificans ln N2  8.66 8 < 0.03 

ANOVA P. brenneri ln N2  6.41 8 < 0.05 

ANOVA P. marginalis ln N2  67.4 8 < 0.0001 

ANOVA P. denitrificans ln N2O 4.23 8 > 0.05 

ANOVA P. brenneri ln N2O 0.54 8 > 0.05 

ANOVA P. marginalis ln N2O 3.28 8 > 0.05 

ANOVA P. denitrificans ln N2O/ N2 1.68 8 > 0.05 

ANOVA P. brenneri ln N2O/ N2 6.92 8 < 0.05 

ANOVA P. marginalis ln N2O/ N2 8.14 8 < 0.03 

 

 

2.3.2 Thermal sensitivity of denitrification with no prior temperature adaptation 

The rates of N2 production across the entire thermal gradient were calculated and plotted on an 

Arrhenius plot (Figure 2.7) to identify the thermal response of the two strains. To calculate 

apparent activation energies, the temperature range was split into 11.5-16oC (range one, Figure 

2.8A) and 16.5oC to 36oC (range two, Figure 2.8B) for both P. denitrificans and P. brenneri as 

the response is non-linear, with optimal temperatures in the middle range. The average rates at 

the individual temperatures was also plotted against temperature (oC) to show the thermal 

response in a more familiar format (Figure 2.8C and 2.8D). The two strains have different 

optimal temperatures for N2 production (denitrification). P. denitrificans shows an increase 

across the entire temperature range, but with the rate of production decreasing after 16oC. 

Conversely, P. brenneri shows an increase in production with temperature up to 16oC, with 

lower N2 production rates above 16.5oC.  
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Figure 2.7 Arrhenius plots for the thermal sensitivity of N2 production rates (natural log nmol 

OD680
-1 h-1) for two pure strains of denitrifying bacteria (P. denitrificans and P. brenneri) 

grown in pure cultures, with no prior temperature exposure, against incubation temperature 

(centered 1/kT, where k  = Boltzmann’s constant and T is in Kelvin) across the entire thermal 

gradient (11.5-36.5oC). 

 

The rate of N2 for P. denitrificans reached a maximum average of 1077 (± 159) nmol N OD680
-

1 h-1 at 28.5oC. A highly significant effect of temperature was observed for N2 production rates 

for P. denitrificans (p < 0.001, Table 2.8) for both ranges. A greater apparent activation energy 

was calculated from the lower temperature range with a steeper slope (Table 2.7). The rate of 

N2 production for P. brenneri had an optimum temperature of 22oC with a maximum average 

N2 production rate of 319 (± 44) nmol N OD680
-1 h-1. A significant effect of temperature was 
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observed for N2 for P. brenneri (p < 0.01, Table 2.8) for temperature range two (16.5-36.5oC). 

A deactivation in the rates of N2 production was calculated in the higher temperature range and 

a strong activation energy calculated in the lower temperature range for P. brenneri (Table 

2.7). P. brenneri produced significantly more N2 than P. denitrificans within temperature range 

one (t = -7.46, df = 14, p <0.0001) and significantly less than P. denitrificans within temperature 

range two (t = 4.11, df = 12, p < 0.01). As the production rates were normalised for turbidity, 

a proxy for cell density, the specific growth rate of N2 production is greater for P. brenneri 

than P. denitrificans, with a much higher intercept in the lower temperature (Figure 2.8A), and 

this relationship is reversed in the higher temperature range (Figure 2.8B).  P. denitrificans 

appears to have a wider thermal niche than P. brenneri. 
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Figure 2.8 Arrhenius plots for the thermal sensitivity of N2 production rates (natural log nmol 

OD680
-1 h-1) for two pure strains of denitrifying bacteria (P. denitrificans and P. brenneri) 

grown in pure cultures, with no prior temperature exposure, against incubation temperature 

(centered 1/kT, where k  = Boltzmann’s constant and T is in Kelvin). A) Temperature range one 

(11.5-16oC), B) Temperature range two (16.5-36.5oC). Temperature increases from right to 

left. Average rates of N2 production (± se), C) Temperature range one (11.5-16oC), D) 

temperature range two (16.5-36.7oC) against incubation temperature (oC). Filled circles are for 

P. brenneri and open circles are for P. denitrificans.  

 

Both P. denitrificans and P. brenneri show very little response in production of N2O in 

response to increasing temperature between 11.5 to 16oC, with rates increasing slightly after 

16.5oC for P. denitrificans and decreasing for P. brenneri (Figure 2.9), so again the data were 



Chapter 3 
 

58 

divided into two temperature ranges (range one 11.5-16oC and range two 16.5-36.5oC, Figure 

2.10), to allow accurate calculations of apparent activation energies (Table 2.7).  The rate of 

N2O for P. denitrificans reached a maximum average of 152 (± 58) nmol N2O OD680
-1 h-1 at 

28.5oC, the optimal temperature.  

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Arrhenius plot for the thermal sensitivity of N2O production rates (natural log nmol 

OD680
-1 h-1) for two pure strains of denitrifying bacteria (P. denitrificans and P. brenneri) 

grown in pure cultures, with no prior temperature exposure, against incubation temperature 

(centered 1/kT, where k  = Boltzmann’s constant and T is in Kelvin) across the entire thermal 

gradient (11.5-36.5oC). 

A highly significant effect of temperature was observed for rates of N2O production for P. 

denitrificans within temperature range one (p < 0.001) and temperature range two (p < 0.05, 

Table 2.8), with significantly greater production rates observed in the higher temperature range 
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between 16.5 and 36oC (t = -14.09, df = 14, p <0.0001).The rate of N2O for P. brenneri reached 

a maximum average of 37 (± 3) nmol N2O OD680
-1 h-1 at 22oC. No significant effect of 

temperature was observed for N2O for P. brenneri with either temperature range (Table 2.8). 

N2O production rates are significantly greater within temperature range one for P. brenneri (U 

= 0.00, t = 36, df = 14, p = 0.001) than P. denitrificans. However, the two strains swap positions 

when temperatures increase in the second range of 16.5-36.5oC, with P. denitrificans N2O 

production rates are significantly greater than P. brenneri (t = 4.39, df = 12, p <0.001). Results 

indicate that the two strains have different responses to temperature for production rates of 

N2O.  
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Figure 2.10 Arrhenius plots for the thermal sensitivity of N2O production (nmol OD680
-1 h-1) 

for two strains of denitrifying bacteria (P. denitrificans and P. brenneri) grown in pure cultures, 

with no prior temperature exposure, against incubation temperature (centered 1/kT, where k  = 

Boltzmann’s constant and T is in Kelvin). A) Range one (11.5-16oC), B) Range two (16.5-

36.5oC). Temperature increases from right to left. Average rates of N2O production (± se) C) 

Temperature range one (11.5-16oC) D) temperature range two (16.5-36.7oC) against incubation 

temperature. Filled circles are for P. brenneri and open circles are for P. denitrificans.  

 

The ratio of N2O/ N2 production shows very little thermal response for either strain across the 

entire temperature range (Figure 2.11). Within the temperature range of 11.5-16oC, both P. 

denitrificans and P. brenneri show almost no response to increasing temperature (Figure 2.12 
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A). Within temperature range two, more of a thermal response can be observed (Figure 2.12 

B). The average rates at the individual temperatures was also plotted against temperature (oC) 

to show the thermal response in a more familiar format (Figures 2.12 C and 2.12 D).  

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Arrhenius plots for the thermal sensitivity of N2O/ N2 production rates (natural log 

nmol OD680
-1 h-1) for two pure strains of denitrifying bacteria (P. denitrificans and P. brenneri) 

grown in pure cultures, with no prior temperature exposure, against incubation temperature 

(centered 1/kT, where k  = Boltzmann’s constant and T is in Kelvin) across the entire thermal 

gradient (11.5-36.5oC). Temperature increases from right to left. 
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Figure 2.12 Arrhenius plots for thermal sensitivity of N2O/N2 ratio for two strains of 

denitrifying bacteria (P. denitrificans and P. brenneri) grown in pure cultures, with no prior 

temperature exposure, against incubation temperature (corrected 1/kT, where k  = Boltzmann’s 

constant and T is in Kelvin). A) Temperature range one (11.5-16oC), B) Temperature range 

two (16.5-36.5oC). Temperature increases from right to left. Average rates of N2O/ N2 

production (± se) C) Temperature range one (11.5-16oC) D) temperature range two (16.5-

36.7oC) against incubation temperature. Filled circles are for P. brenneri and open circles are 

for P. denitrificans.  

 

The ratio of N2O/ N2 for P. denitrificans reached a maximum average of 0.26 (± 0.015) at 16oC. 

The effect of temperature was non-significant within temperature range one (p > 0.05), but 

significant within range two for P. denitrificans (p < 0.05, Table 2.6). The ratio in temperature 
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range one shows a positive effect of temperature with a positive activation energy, with the 

reverse observed with the higher temperatures (Table 2.7), though both are very minor 

responses to temperature. 

The ratio of N2O/ N2 for P. brenneri had an optimum temperature of 36.5oC with a maximum 

average ratio of 0.98 (± 0.07). No significant effect of temperature was observed for 

temperature range one for P. brenneri (p > 0.05) but a significant effect was observed within 

temperature range two (p < 0.05, Table 2.8).  

The ratio of N2O/ N2 was significantly greater in P. brenneri than P. denitrificans within the 

lower temperature range (t = -4.375, df = 14, p < 0.001), with no significant difference in the 

ratio in the higher temperature range of 16.5-36oC (p > 0.05). Higher ratio’s in P. brenneri is 

confirmed by the lower production rates of N2O compared to production rates of N2O by P 

.denitrificans. 

 

Table 2.7 Apparent activation (Ea) energies (eV) of measured variables P. denitrificans and P. 

brenneri grown in pure cultures, with no prior temperature exposure, calculated on the linear 

section of the data. 

Strain Variable Temperature range Ea (eV) r2 

P. denitrificans ln N2 11.5-16oC  1.38 0.59 

P. denitrificans ln N2O 11.5-16oC 1.40 0.52 

P. denitrificans ln ratio N2O/N2 11.5-16oC 0.02 0.0003 

P. brenneri ln N2 11.5-16oC  1.10 0.68 

P. brenneri ln N2O 11.5-16oC  0.21 0.02 

P. brenneri ln ratio N2O/N2 11.5-16oC  -0.25 0.43 

P. denitrificans ln N2 16-36.5oC  0.58 0.74 

P. denitrificans ln N2O 16-36.5oC  0.26 0.32 

P. denitrificans ln ratio N2O/N2 16-36.5oC - 0.31 0.35 

P. brenneri ln N2 16-36.5oC - 0.90 0.87 

P. brenneri ln N2O 16-36.5oC  -0.18 0.08 

P. brenneri ln ratio N2O/N2 16-36.5oC  0.69 0.45 
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Table 2.8 Statistical significance for measured processes testing the sensitivity of temperature 

on the slopes (* indicate non-significant results). Kruskal Wallis Rank Sum test was used for 

non-normal data (indicated by ˟) and linear mixed effect model and ANOVA for statistically 

normal data for cultures with no prior temperature exposure.  

Strain 
Temperature 

Range 

Response 

Variable 

Random 

Variable 
X2 df p 

P. denitrificans 11.5-16oC ln N2 Replicate 39.98 4 <0.001 

P. denitrificans 11.5-16oC ln N2O Replicate 15.6 4 <0.001 

P. denitrificans 11.5-16oC 
ln ratio 
N2O/N2 

Replicate  4 >0.05* 

P. denitrificans 16.5-36.5oC ln N2 Replicate 37.12 4 <0.001 

P. denitrificans 16.5-36.5oC ln N2O / 15.39 7 <0.05  

P. denitrificans 16.5-36.5oC 
ln ratio 

N2O/N2 
/ 14.15 7 <0.05˟ 

P. brenneri 11.5-16oC ln N2 / 5.53 7 >0.05*˟  

P. brenneri 11.5-16oC ln N2O / 4.77 7 >0.05*˟ 

P. brenneri 11.5-16oC 
ln ratio 
N2O/N2 

/ 2.52 7 >0.05*˟ 

P. brenneri 16.5-36.5oC ln N2 / 20.29 7 <0.01 ˟ 

P. brenneri 16.5-36.5oC ln N2O / 3.82 7 >0.05*˟ 

P. brenneri 16.5-36.5oC 
ln ratio 
N2O/N2 

/ 
15.99 

7 <0.05 ˟ 

 

2.4 Discussion 

The data from the current study indicates N2 production has a stronger thermal sensitivity than 

N2O production in pure strains of denitrifying bacteria. Furthermore, prior temperature 

exposure causes adaptive responses, reducing their thermal sensitivity and optimal 

temperatures.  

With no prior temperature exposure, the activation energies of N2 production from P. 

denitrificans and P. brenneri were greater within the lower temperature range (11.5-16oC) 

(1.38 eV and 1.10 eV respectively) than the higher temperature range (16.5-37.5oC) (0.58 eV 

and -0.90 eV respectively). These activation energies are similar to than those in the literature 
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from environmental samples in riverbed sediments (0.84 eV), phototrophic river biofilms (1.42 

eV), temperate marine sediments (0.40-0.63 eV) and estuarine sediments (0.37-0.55) (e.g. 

Boulêtreau et al., 2012; Brin et al., 2016; Sheibley et al., 2003). Our values of N2 production 

and activation energies have the potential to be higher than those recorded in environmental 

samples as there are no other factors confounding the potential rates, i.e. the cultures were not 

substrate limited.  P. denitrificans shows only a slight decrease in activation energy of N2 

production between the lower and higher temperature ranges, suggesting this strain has a 

broader thermal niche than P. brenneri which shows deactivation in the higher temperature 

range. This is likely due to denaturing of the enzymes which can happen when exposed to 

temperatures above their normal range. The higher intercept indicates P. brenneri is more 

competitive than P. denitrificans below 16oC and the reverse is evident above 16.5oC (Figure 

2.8).  

The activation energies of N2 production with prior exposure for the three strains (P. 

denitrificans, P. brenneri and P. marginalis) were all very similar and therefore were pooled 

together to get an overall activation of the process which was much lower (0.12 eV) than those 

calculated with no prior exposure. The lower temperature dependency in samples which 

experienced prior temperature exposure suggested that these cultures have adapted and 

decreased their thermal sensitivity.  P. denitrificans and P. brenneri have very similar 

activation energies and intercepts and optimal temperature with prior exposure. These findings 

suggest, with prior temperature exposure, P. denitrificans and P. brenneri have become more 

similar in their physiological responses in regards to their capacity to produce N2 and the 

thermal sensitivity of the process.  

The activation energies for N2O production from P. denitrificans and P. brenneri, with no prior 

temperature exposure, are again greater in the lower temperature range (1.4 eV and 0.21 

respectively) than in the higher temperature range (0.26 eV and -0.18 respectively). These 
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responses to warming observed in  N2O production are comparable with those reported in 

arable (0.29-0.79 eV) and desert soils (0.42 eV) (Holtan-Hartwig et al., 2002; Peterjohn, 1991). 

The rates of N2O production from the two strains of denitrifying bacteria (P. denitrificans and 

P. brenneri) with no prior temperature exposure had differing thermal responses. P. 

denitrificans had a significant increase in production of N2O with increasing temperature, 

whereas P. brenneri had no significant thermal response.  Slightly higher production of N2O 

was observed from P. brenneri in the lower temperature, indicated by a higher intercept. 

Whereas in the higher temperatures, significantly greater N2O production was measured from 

P. denitrificans, again indicated by a slightly greater intercept than P. brenneri. The response 

of N2O for these two strains follows the trend observed with the production of N2 prior  

temperature exposure. However, the data is more variable than that of N2.  

The activation energies of N2O production with prior exposure for the three strains (P. 

denitrificans, P. brenneri and P. marginalis) was pooled together to get an overall activation 

of the process which was much lower (0.05 eV, r2 0.11) than those calculated with no prior 

exposure and those from the literature. However, this has followed the same pattern of N2 

production and again suggests an adaptation has occurred, making this process less sensitive 

to temperature after prior exposure, with the three strains behaving very similarly to one 

another.  

Prior warming has reduced the thermal sensitivity by reducing the activation energies of N2 

and N2O production in these pure cultures of denitrifying bacteria, as well as reducing the 

production rates of N2 and N2O at similar measurement temperatures compared to with no prior 

exposure. This could be down to ‘thermal adaptation’ of the bacteria which is a term used to 

encompass a variety of physiological changes, such as instantaneous response to temperature 

to mutations being selected for to increase fitness in a changing environment (Bradford et al., 

2008). Instantaneous responses of denitrification to warming has been observed in the present 



Chapter 3 
 

67 

study as well as previous publications, with increases in production of N2 and N2O when 

exposed to warmer temperatures but very few studies have considered the long term response 

of denitrification. Long term, as well as short term (i.e. that shown in this study), increase in 

N2 and N2O production in response to warming is expected (e.g. Brin et al., 2016; Holtan-

Hartwig et al., 2002; Smith, 1997; Veraart et al., 2011). However, it has been shown that long 

term warming can actually cause physiological thermal adaptations and after an initial increase 

in rates, the rates return to pre warming values. Bradford et al. (2008) carried out long term 

warming (>15 years) experiments measuring respiration rates (as CO2 production) from 

temperate soils and found after the initial increase of respiration, rates returned to those in the 

un-warmed control soils due to thermal adaptations of the bacterial community. Similar 

findings have been found in e.g. boreal forest soils (Jarvis & Linder, 2000), Arctic ecosystems 

(Oechel et al., 2000) and tall grass prairie systems (Luo et al., 2001). This thermal adaptation 

of communities to increased warming may have wider implications, weakening the response 

of heterotrophic respiration to global warming, and over estimating the increase of CO2 release 

with current global warming predictions (Bradford et al., 2008; Luo et al., 2001). As 

denitrification is a form of heterotrophic respiration, we may see similar responses, with no 

long term effects on the release of N2 and N2O, as bacteria can change their physiology to 

maximise fitness in changing environments as seen with previously mentioned studies (e.g. 

Bradford et al., 2008; Jarvis & Linder, 2000; Luo et al., 2001; Oechel et al., 2000).  

The ratio of N2O/ N2 produced gives us an indication of the efficiency of denitrification. The 

decreasing of the ratio with increasing temperature with prior exposure was significant in all 

three strains and again the data was pooled for all three strains to give us an overall activation 

energy of the ratio (-0.36 eV, r2 0.15). This ratio was driven by the increase in N2 production 

being greater than that of N2O, suggesting increased efficiency by a greater occurrence of 

complete denitrification, which has been frequently found in environmental samples (e.g. 
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Avalakki et al., 1995; Bailey & Beauchamp, 1973; Cavigelli & Robertson, 2000; Holtan-

Hartwig et al., 2002; Keeney et al., 1979). Though the causes for these observed ratios differ 

between studies. Holtan-Hartwig et al (2002) found temperate soils had greater ratios of N2O/ 

N2 in colder months but when these soils were exposed to a range of temperatures (5-20oC), 

the activation energies of the enzymes involved in N2O production and N2O reduction (N2 

production) were very similar meaning no net flux of N2O was observed. The net flux of N2O 

and therefore greater ratio of N2O/ N2 was observed at temperatures around 0oC. This suggested 

the activity of enzyme involved in N2O reduction decreased more strongly than the enzyme 

involved with N2O production.  

2.5 Conclusions 

In this study, prior warming affected the capacity of denitrifying bacteria to produce N2 and 

N2O when exposed to a range of temperature compared to no prior exposure. Thermal 

sensitivity is observed in both treatments, but much greater with those that have not 

acclimatised to the exposure temperatures. This is an indication of potential thermal adaptation. 

This muddies the waters when predicting the response of denitrification with increased 

warming. The initial response of temperature with no-prior temperature exposure is much 

greater, however, evidence of the similar metabolic process of heterotrophic respiration, and 

suggests this response may not be long lived. Bacterial communities are able to thermally adapt 

their physiology and reduce initial increased rates to those of pre-warmed conditions whilst 

still at the increased temperatures. To better understand these complex metabolic process, more 

long-term studies need to be carried out considering both individual and community 

adaptations and combining pure culture and environmental samples will provide the most 

robust datasets. 
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Chapter 3: The effect of moderate long-term warming (4°C) on sediment 

denitrification and nitrification activity in experimental mesocosms 

3.1 Introduction 

With the increasing use of fossil fuels and in invention of the Harber-Bosch process, the amount 

of reactive nitrogen (N) entering the biosphere has doubled the amount of reactive nitrogen that 

is naturally fixed by biological nitrogen fixation (Galloway et al., 2008; Seitzinger et al., 2006) . 

A large proportion of the fixed N makes its way into freshwater systems where it can cause 

eutrophication (Paerl, 1997).  

Denitrification is a nitrogen removal process reducing nitrate (NO3
-) and nitrite (NO2

-), 

converting it to nitrous oxide (N2O) and di-nitrogen gas (N2) via a series of intermediates 

(Groffman et al., 2006). It is a form of respiration and important for removing reactive nitrogen 

out of systems that have excess concentrations due to anthropogenic inputs, specifically from 

fertiliser use (Tiedje, 1998).  

Denitrification also produces N2O as an intermediate under anaerobic conditions (Ritchie & 

Nicholas, 1972). N2O is a potent greenhouse gas (GHG) with radiative forces some 300 times 

greater than that of carbon dioxide (CO2), (Ravishankara et al., 2009; Wright et al., 2012) and 

can also damage the stratospheric ozone layer (Holtan-Hartwig et al., 2002; Knowles, 1982) so 

production of this GHG will lead to further warming.  Emissions of N2O from rivers, estuaries 

and coastal systems are estimated to be 1.9 Tg N2O y-1, which is approximately 35% of the 

total global emissions (Seitzinger et al., 2000), with the majority of those emissions from rivers 

(1.1 Tg N2O y-1) (Seitzinger and Kroeze, 1998).  

A second important nitrogen removal process from aquatic systems is anaerobic ammonium 

oxidation (anammox). Anammox microorganisms convert ammonium (NH4
+), using nitrite 

(NO2
-) as an electron acceptor, to produce N2 (Dalsgaard et al., 2012; Strous et al, 1998; Van 

Hulle et al, 2010). Anammox has been measured in a variety of different aquatic systems 
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including oceanic oxygen minimum zones (Dalsgaard et al, 2012), estuaries and shelf 

sediments (Brin et al, 2014; Canion et al 2014) and freshwater lakes and rivers (Schubert et al, 

2006; Zhang et al, 2007). One of the first measurements of significant rates of anammox 

activity in freshwater was measured in Lake Tanganyika, with anammox rates of up to 10 nM 

N2 h-1 within the tropical deep suboxic waters (100-110 m) (Schubert et al, 2006). Lesser rates 

were also detected in a permanently stratified temperate lake, Lake Rassnitzer, Germany, up to 

504 nmol N2 L-1 d-1 (Hammersley et al, 2009). Rates of anammox would be expected to be 

lower in a temperature region compared to a tropical region as they are generally slow growing 

(Strous et al, 1998), and have high optimum temperatures around 30-40oC (Lotti et al, 2015; 

Zhang et al, 2017). What is interesting with Hammersley et al (2009) study, is that rates of 

anammox were greater in the colder months of January and October (maximum of 504 nmol 

N2 L-1 d-1), with rates as low as 16 nmol N2 L-1 d-1 when temperatures were higher in May. 

Similarly, Brin et al (2014) measured anammox rates in a New England estuary and also found 

no correlation with season. Rates of up to 8.7 nmol N2 h-1 mL-1 sediment were measured in 

slurries along the estuary which positively correlated to organic matter content and NO3
- of the 

pore water with no correlation to seasonal differences in temperature.  Conversely, other studies 

have found temporal variation of anammox rates. Zhao et al (2013) measured seasonal rates of 

anammox in the Taihu River region, China. The anammox rates ranged from 0.11 to 6.79 µmol 

N2 m-2 h-1, with the greatest rates observed at the end of summer to early autumn, positively 

correlating to water temperature and NO3
- concentration.  

This suggests more factors are at play and temperature is not the only dominant driver of 

anammox activity. The knowledge of factors controlling anammox in freshwaters is very 

limited but many studies have come to their own conclusions of the dominant controlling 

factors in other aquatic, more saline, environments. Different dominant controls in estuarine 

and coastal systems, for example, include organic matter content of the sediment (Dalsgaard 
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and Thamdrup, 2002; Dalsgaard et al, 2005), NO3
- concentration (Rich et al, 2008; Dong et al, 

2009; Teixeira et al, 2012), NO2
- concentration in the sediments (Meyer et al, 2005) and 

temperature (Dalsgaard and Thamdrup et al, 2002). 

Nitrification is another important part of the N cycle that couples the mineralisation of organic 

matter (ammonification) to the oxidised species of NO3
- and NO2

- that can, in turn, be 

denitrified. Nitrification can also produce N2O as a bi-product through NH2OH metabolism in 

ammonium oxidising bacteria and also through the Archaea.  

Nitrification has been measured in a variety of systems such as freshwater lakes and streams 

(Small et al., 2013; Strauss & Lamberti, 2000) and oceans (Clark et al., 2008; Wuchter et al., 

2006). It can also play a large role in freshwater lakes, with estimates of 93-100% of the NO3
- 

in Lake Superior being produced through nitrification (Finlay et al., 2007).  

There is clear evidence of climate change affecting ecosystems across the Earth through 

increasing temperatures , rising sea levels and changing weather patterns, to mention a few 

(IPCC, 2013). Since the industrial revolution, average global temperatures have been 

increasing due to the burning of fossil fuels increasing production rates and amplifying the 

natural effect of harmful GHG such as CO2, methane (CH4) and N2O into the atmosphere (Jana 

et al., 2013). With the continual burning of fossil fuels and use of fertilisers it is imperative that 

we understand how the biogeochemical cycling of the bio-elements that both produces and 

consumes these GHG, and how they are going to respond to further warming.  

Warming has been shown to enhance both photosynthesis and respiration in freshwater 

systems, but to different extents; respiration has a greater thermal sensitivity than 

photosynthesis (Gillooly et al., 2001; Perkins et al., 2012; Yvon-Durocher et al., 2012), 

therefore CO2 tends to be is produced at a greater rate than it is consumed within a warmed 

ecosystem relative to an un-warmed control. Yvon-Durocher et al (2010) used experimental 

mesocosms to demonstrate the effect of a 4°C temperature increase (predicted global warming: 
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IPCC, 2013) on the balance of respiration and primary production and found a 13% decrease 

in carbon sequestration within these systems. Respiration increased at faster than 

photosynthesis with apparent activation energies of 0.62 eV and 0.43 eV respectively, altering 

the balance of the carbon cycle. Other have reached similar conclusion with modelling based 

on environmental data (Allen et al, 2005; Dewar et al, 1999), These studies suggest a positive 

feedback mechanism where warming may lead to further increases of CO2 emissions and 

therefore further warming through the greenhouse effect.  

The nitrogen cycle is tightly coupled to the carbon cycle due to its strong regulation of primary 

production (Galloway et al., 2008; Tyrrell, 1999). If fixed nitrogen becomes limiting for plant 

growth, there will be a reduction in primary production which would lead to a decrease of CO2 

drawdown from the atmosphere (Karl et al., 2002). The nitrogen cycle can therefore play a key 

role in climate regulation and global warming (Falkowski, 1997) but the full complexity 

including interactions and response to temperature is still unknown. Following the metabolic 

theory of ecology, enzymatic activity increases with increasing temperatures (Brown et al., 

2004) and therefore we should expect to see an increase in rates of denitrification as global 

temperatures increase. We have much evidence of how the carbon cycle may be affected with 

warming but little research has been done into the long term effects of increasing temperatures 

on the nitrogen cycle in freshwaters.  One study using a short term freshwater experimental 

mesocosm set up measured an increase in denitrification by 24-28% with only a 1oC increase 

(Veraart et al, 2011).  

The use of experimental mesocosms has come under criticism in the past (Carpenter, 2016), in 

that they are disconnected from natural systems. However, many mesocosm studies have 

proved successful in that they have increased our understanding of processes of e.g. warming 

effects on community structure (Yvon-Durocher et al., 2011) and primary productivity (Yvon-

Durocher et al., 2015) and so can be used as models to mimic natural systems (Drenner & 
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Mazumder, 1999). The use of experimental mesocosms is especially useful in temperature 

manipulation experiments, allowing us to consider the specific effects of warming on 

biogeochemical processes in a semi-natural environment.   

 

3.1.1 Aims and Hypothesise  

The main aim of the present study is to investigate the effect of long term warming on 

denitrification and nitrification with the use of freshwater mesocosms. This will be carried out 

with two different experiments: 

1) In situ seasonal measurements of potential rates of denitrification and nitrification will be 

measured using slurries at mesocosm in-situ temperatures in the field to investigate the long 

term treatment effect of moderate warming (3-5oC over ~10 years). The aim of this study 

is to determine if the rates of denitrification and nitrification are significantly different 

between sediments from the heated and ambient mesocosms and whether this is observed 

across seasons. We hypothesised for this seasonal study is that rates of both denitrification 

will be significantly greater in the heated mesocosms than the ambient due to increased 

metabolic activity with warmer temperature. But this may very seasonal due to other 

limiting factors such as carbon and nutrient availability.   

2) Seasonal measurements of potential rates of denitrification and nitrification will also be 

measured after exposure to a range of temperatures using a thermal gradient bar in the 

laboratory, allow us to investigate the short term thermal response in sediments from the 

heated and ambient experimental mesocosms. The aim of the second experiment is to 

determine if the long term warming has altered the capacity of denitrification and 

nitrification compared to the ambient treatment. This will be investigated by exposing 

sediment slurries from the ambient and heated mesocosms to the same temperatures in the 

laboratory and measuring rates of denitrification and nitrification. We hypothesised, for 
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this second experiment that sediments from the warmed treatment will have a greater 

capacity for both denitrification and nitrification at the warmer temperatures compared to 

the ambient treatment at the same exposure temperatures. This may be due to the bacteria 

responsible for these processes increasing their efficiency after exposure to long term 

warmer temperatures.  

 

3.2 Methods 

3.2.1 Experimental design 

Experiments were carried out using freshwater mesocosms specifically designed for ecosystem 

scale temperature manipulation. They are installed at the Freshwater Biological Association 

River Laboratory, East Stoke, Dorset, UK (2o 10’W, 50o 13’N). There are 20 mesocosms, each 

holding 1m3 of water. This size of mesocosms enables them to act as shallow pond systems 

recently highlighted to play a disproportionality large role in emissions of GHGs (Holgerson 

& Raymond, 2016) and in organism community structure and nutrient cycling which has been 

shown in several previous studies (Jones et al, 2002; Liboriussen et al, 2005; Yvon-Durocher 

et al., 2010). Half of the ponds are warmed, with the degree of experimental warming in line 

with one of the scenarios put forward for warming of the Northern Hemisphere by the end of 

this century (IPCC, 2007). An electric heating element connected to a thermocouple maintained 

the water temperature in the heated mesocosms at 3-5°C above that in the ambient mesocosms. 

A total of 16 ponds were sampled were included with each pair including a warmed and an 

ambient pond (Figure 3.1). The mesocosms were established in December 2005, with heating 

beginning in September 2006, and set up with natural organic substrates, fauna and flora to 

replicate natural shallow lake systems (Jones et al., 2002; Liboriussen et al, 2005; Yvon-

Durocher et al., 2015, 2010) (full species lists are available in Yvon-Durocher et al, 2010). 
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Sampling was carried out between spring 2013 and spring 2015 (January, April and August), 

approximately 8 years after warming began. Two main components of the nitrogen cycle were 

measured from the mesocosms; anaerobic denitrification and aerobic nitrification.  

Prior to the main experimental analysis, preliminary experiments were completed to investigate 

the potential of the freshwater mesocosms to carry out anammox. Though we carried out 

measurements on several occasions across different seasons, no anammox was detected in any 

of the mesocosms. Details of the methodology and potential reasons for lack of detection will 

be discussed later in the chapter. 
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Figure 3.1 Photograph of experimental mesocosms (A) and experimental warming and ambient 

pairs design (B). Red circles indicate warmed mesocosms and blue circles indicate ambient 

mesocosms. 

 

To investigate the effects of long term warming, two different experiments were carried out for 

both processes. The first experiment investigated the difference in rates of both denitrification 

and nitrification from the long term warmed and ambient mesocosms at in-situ conditions. The 

second experiment investigated the effects of short term exposure to a range of temperatures 
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Cold water 
circulation 

Hot water 
circulation

Cold water 
circulation 

Hot water 
circulation 

with sediments from both heated and ambient mesocosms, again for both denitrification and 

nitrification, using a thermal gradient block (Figure 3.2). 

 

 

 

 

 

 

 

Figure 3.2 Solid aluminium thermal gradient bar used for short term temperature experiments. 

Heated water circulation at one end and cooled water circulation at the opposite end created a 

thermal gradient along the bar. Gradient block is shown open but was fitted with insulation and 

an aluminium lid during the incubations.  

3.2.2 Water nutrient analysis  

Water samples were collected at the time of sediment collection for microbial process 

measurements from each of the 16 mesocosms (8 heated, 8 ambient) to compare background 

nutrient concentrations in the two treatments. A minimum of 5 mL of mid-depth mesocosm 

water was filtered through a pre-rinsed sterile syringe filter (Whatman, Sigma Aldrich) and 

immediately frozen (-5oC) for later processing in the laboratory. Water nutrient samples were 

analysed using a segmented- flow auto analyser (Skalar) and standard colourimetric techniques  

(SKLAR, San ++ System, Flow Access software 1.2.5) for NO3
-, NO2

-, NH4
+ and PO4-.  
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3.2.3 Sediment sampling for denitrification and Anammox  

To measure the potential for denitrification and anammox, sampling was conducted in spring, 

summer and winter over 2013-2015. A total of 6 intact sediment cores were collected from 

each experimental mesocosm using 60 ml truncated syringes which were refrigerated 5oC (< 1 

h). In the laboratory, the top 2 cm of each cores was homogenised.  Separate vials were used 

to measure potential anammox and denitrification activity. 

3.2.4 Measuring potential rates of activity of denitrification and anammox and the 

thermal response of denitrification 

For in-situ temperature response time series measurements, homogenised sediment (1 g) was 

placed into 3 mL gas-tight vials (Exetainer, Labco) which were then transferred into an anoxic 

hood (CV204, Belle Technology) filled with Oxygen free Nitrogen (OFN, 99.998%, British 

Oxygen Company) (Lansdown et al., 2012). Corresponding mesocosm water (1 mL) that had 

been vigorously bubbled for 20 minutes with OFN was added to each vial to make anoxic 

slurries which were then sealed with an OFN headspace (1 mL). The vials were placed back 

into the corresponding mesocosms to pre-incubate for 24 hours to ensure that any natural 14NOx 

(NO3
- + NO2

-) and O2 was reduced (Risgaard-petersen et al., 2004; Trimmer et al., 2003).  

For the thermal block experiment (denitrification only), all samples were prepared in the same 

method for the in-situ experiment. However, the slurries were in larger gastight vials (12 mL, 

Exetainer, Labco) with 2 g of homogenised sediments and 2 mL of corresponding mesocosm 

water, leaving an 8 mL headspace of OFN. The sediments were exposed to a range of 

temperatures created using an aluminium thermal gradient block containing aluminium racks 

in which the 12 mL vials fitted into. A final temperature range between 11oC and 37.5oC was 

obtained. The thermal gradient within the block was created using a heated water bath (Grant 

TC120) at one end and a chilling unit (Grant RC350G) connected to the opposite end. To obtain 
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the widest temperature range possible the thermal gradient had to be completed in three 

separate ranges, 11-16oC (chiller: 2oC, heated water bath: 20oC), 16-36oC (chiller: 2oC, heated 

water bath: 80oC), 31-37.5oC (chiller: 25oC, heated water bath: 60oC). 

After the pre-incubation period, the sediment slurries were spiked with deoxygenated Na15NO3
-
 

(98 15N atom %, Sigma Aldrich) by injecting through the butyl septa 160 μL of 1570 μM for 

the 3 mL in-situ vials or 160 μL of 3140 μM for the 12 mL thermal gradient vials to give a final 

concentration of 200 µM in the slurry porewater. Microbial activity was stopped by injection 

of formaldehyde solution (50 µL for the in-situ and 100 µL formaldehyde for the thermal 

gradient experiments, 38% w/v.) (Trimmer & Nicholls., 2009). Each vial was an independent 

sample for a particular time point (n = 8) within the time series in-situ experiments. For the 

thermal gradient block, each vial represented an independent sample at a particular temperature 

(n = 6).  For production of N2O and 15N-labelled N2 over background measurements, parallel 

slurries were prepared in the same method as above at the same time for both experiments but 

with the addition of formaldehyde at the beginning of the experimental incubations (after the 

pre-incubation) without the addition of Na15NO3
-. These background samples act as references 

for natural abundance 15N and the rate of denitrification was calculated by the excess of 15N-

labelled N2 (29N2 + 30N2) for denitrification and anammox (29N2) (Thamdrup & Dalsgaard, 

2000). 

Similarly, N2O production was measured excess above reference samples. Individual samples 

for in-situ rates were stopped at 0, 2, 4, 8, 16, 32, 64 hours and samples for short term thermal 

response rates were killed after 24 hours with background samples killed at 0 hours. The 

thermal block is a single time-point incubation (Trimmer et al., 2006). Details of experimental 

design can be seen in figure 3.3.  
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Figure 3.3 Experimental design for denitrification and nitrification from experimental 

mesocosms including in-situ (orange boxes) and thermal gradient experiments (yellow boxes).  

 

3.2.5 Gas analysis (15N2 and N2O) and calculations for denitrification and anammox 

potential 

Samples for both the in-situ and thermal gradient block experiments for denitrification potential 

were measured for N2O concentration using a gas chromatograph fitted with a micro electron 

capture detector (GCµ/ECD, Agilent Technologies UK Ltd., South Queensferry, U.K.; 

Nicholls et al., 2007). Headspace N2O concentrations were calculated from peak areas using a 

known standard concentration (Scientific and Technical Gases) and the total amount in the vial 

(headspace plus slurry) was corrected for temperature, pressure and solubility (Weiss & Price, 

1980; Yamamoto et al., 1976).  
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Isotopic analysis of the production of 15N-N2 (29N2 + 30N2) gas from the denitrification 

experiments, and 28N2 and 29N2 from anammox activity, were measured from the headspace by 

continuous-flow isotope ratio mass spectrometry (Thermo-Finnigan, Delta Matt Plus) 

previously described in Nicholls & Trimmer (2009).  

To determine both denitrification and anammox activity, the several calculations are carried 

out. The mole fraction of the added substrate (98% 15N atom) and measured excess N2 

production are used to calculate production via denitrification and anammox (Bo Thamdrup & 

Dalsgaard, 2002). With the addition of 15N (in the form of Na15NO3
-), denitrification has the 

ability to produce 28N2, 29N2 and 30N2 via random isotope pairing, calculated using the 

following equations:  

Dtot = P30 x FN
-2 

D30 = Dtot x FN
2 

D28 = Dtot x (1-FN) 2 

D29 = Dtot x 2 x 1 x (1-FN) x FN 

Dx denotes the production of N2 via denitrification. P30 represents the total N2 produced in the 

vial measured by mass-spectrometry. FN represents the 15N mole fraction of the source 

compound (Na15NO3
-, or Na15NO2

-, 98% 15N). 

Anammox can only produce 28N2 and 29N2 assuming one molecule is obtained from Na15NOx 

added to the samples and the other from 14NH4
+ in the slurries (Dalsgaard et al., 2012). The 

following equations are required to determine the production via anammox: 

 

 



Chapter 3 
 

86 

A29 = P29 – D29 

A28 = A29 x FN
-1 x (1-FN) 

Atot = A29 + A30 

RA = Atot / (Dtot + Atot) 

Where Ax denotes the production of N2 via anammox. RA denotes that relative contribution of 

anammox to the total production of N2 gas produced and can be multiplied by 100 to obtain 

anammox contribution as a percent (ra %).  

Following the calculations above, rates of excess production of 15N-N2 were calculated as the 

slope of production P30 (linear regression) against time of the incubations.  

Once all gas measurements were completed, the vials were opened and sediments were dried 

to a constant weight at 80oC and gas production rates were normalised to dry mass (Lansdown 

et al., 2012; Shelley et al., 2014).  

3.2.6 Sediment sampling for nitrification 

Following the same method for sediments collected for denitrification, sediments were also 

collected to determine the temperature sensitivity or characteristic of potential nitrification 

activity.  

3.2.7 Measuring potential rates of activity and thermal response of nitrification 

For in-situ temperature response and the thermal gradient response of nitrification, 2 g of 

homogenised surface sediment was transferred into 12mL gas tight vials with aerated 

corresponding mesocosm water (2 mL) before being sealed with air headspace (~8 mL). To 

quantify nitrification, sediments were incubated with 15N-ammonium (98 15N atom % Sigma 

Aldrich) and tracked its oxidation to 15NOx
-
 (Small et al., 2013). 122 µL of 1.83 mM 15NH4Cl 
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was injected through the butyl rubber septa of each vial to give a final concentration of 90 µM 

in the water. Once vials were injected with 15N tracer, samples were incubated in the same 

method as above for denitrification for both in-situ and thermal gradient experiments. As with 

the measurements for denitrification, parallel reference were prepared in the same method as 

above at the same time for both experiments but with the addition of formaldehyde at the 

beginning of the experimental incubations without the addition of 15NH4Cl. These background 

samples act as references for natural abundance 15N and the rate of nitrification (ammonium 

oxidation) was calculated by the excess of 15N-labelled NOx
- (Thamdrup & Dalsgaard, 2000).  

Similarly, N2O production was measured excess above reference samples. Nitrification 

potentials under in-situ conditions were measured with a time series experiment and for the 

thermal response of nitrification the single time-point was used (16 hours). All vials were 

injected with 100 µL formaldehyde (38% w/v) to stop microbial activity. Details of 

experimental design for both experiments can be seen in figure 3.3.  

3.2.8 Gas and nutrient (NOx
-) analysis for nitrification  

As previously mentioned, nitrification has the potential to also produce N2O gas. Before 

carrying out any other analysis, N2O was measured from the headspace of each vial (same 

method as above for denitrification, GCµ/ECD). Each vial was then opened and sediments 

washed with ultrapure water to ensure all NOx
- was extracted from the sediment slurries. 

Ultrapure water (2 mL) was added to each vial and then placed on a rotation table for 2 hours 

at 100 revolutions min-1, before being centrifuged (1700 x g, 5 minutes) (Lansdown et al., 

2012). The 4 mL (2 mL ultrapure water + 2 mL from slurry) supernatant was then removed, 

retained and the process was repeated once more, leaving us with 6 ml extractions for 15N 

analysis with a 3 fold dilution. Following extraction of the supernatant, the sediment slurries 

were dried to a constant weight at 80oC and nitrification rates were corrected for dry mass as 

above (Lansdown et al., 2012; Shelley et al., 2014). 
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To measure the oxidation rates of 15NH4
+ several steps were required. Firstly, NO3

- and NO2
- 

concentrations were measured from the extracted water samples using a segmented- flow auto 

analyser (Skalar) and standard colourmetric techniques using certified standards for 

calibration. Once concentrations were determined, the reduction of NO3
- to NO2

- using a 

modified spongy cadmium method (Mcilvin & Altabet, 2005). 0.2 mL of Imidazole was added 

to 5 mL of sample and incubated on an orbital shaker for 2 h (150 rpm). Samples were then 

transferred into 3mL gas-tight vials, sealed with no headspace, then a 0.5 mL headspace helium 

headspace was introduced (as above). Sulphamic acid was injected through the septa to reduce 

NO2
- to N2 (100 µL of 4 mM sulphamic acid in 4 M HCL). Samples were placed back onto the 

orbital shaker overnight (as above) to allow gases to equilibrate. Following conversion into 

15N-N2, samples were measured by continuous-flow isotope ratio mass spectrometry (Thermo-

Finnigan, Delta Matt Plus) for 29N2 as above. Concentrations of 29N2 were calculated using a 

calibration curve of different concentrations of N2 in the range of the samples and different 

atom % of 15N2 obtained using the same method converting NO3
- to N2 (Lansdown et al., 2016).  

3.2.9 Deriving apparent Activation Energies  

The rates of the measured processes were log transformed and the incubation temperatures 

were converted to 1/kT, where k  is the Boltzmann’s Constant (8.62x10-5 eV K-1 (T)) and T is 

the absolute temperature in Kelvin. The natural log rates were plotted against standardised 

temperature (1/kT-1/kTc, where 1/kTc is the average 1/kT for the thermal range included), on 

an Arrhenius plot where the negative slope of the regression line gives an estimate of the 

apparent activation energy in electron volts (eV) where 1 eV is equivalent to 96.49 kJ mol-1.  

Plotting in this manner centres the inverse temperature around zero (Perkins et al., 2012). This 

calculated ‘apparent’ activation energy is used as an empirical index of temperature response 

of each process as this will always be lower than the theoretical sensitivity of biogeochemical 
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reactions to temperature. This is because other environmental factors come into play such as 

connectivity to other microbial processes.   

3.2.10 Statistical analysis 

Random mixed effect models were carried out to determine either effect of treatment (with 

season as random effect and treatment as fixed) or effect of season (with treatment as random 

effect and season as fixed) on potential rates in the in situ experiments. To compare differences 

between seasons with potential denitrification in the in situ experiments, a Kruskal Wallis 

ANOVA followed by a post Hoc Tukey test or Dunn’s method, depending or normality of data, 

was undertaken. The effect of temperature was determined by the activation energy calculated 

in the method above (3.2.9).  

3.3 Results 

3.3.1 Water nutrient analysis  

Water nutrient analysis was carried out at the same time of sediment sampling for microbial 

nitrogen transformations and statistical significance was calculated between the two treatments 

within season and also between seasons. The lowest nutrient concentrations were observed in 

the summer where, for example, the concentration of NO3- was below the limit of detection 

(Appendix, Table 3.1).  For NO2
-, NO3

- and NH4
+, no significant difference was observed when 

the warmed treatments from the different seasons were compared (p > 0.05). However, PO4
+ 

was significantly greater in the warmed mesocosms in spring compared to summer and winter 

(f = 4.34, df = 2, p < 0.05). Whereas much more seasonality was observed in the ambient 

treatment mesocosms. NO2
- was significantly greater in the winter (f = 22.87, df = 2, p < 

0.0001), NO3
- and PO4

+ were both significantly greater in spring (f = 8.48, df = 1, p < 0.01 and 

f = 6.75, df = 2, p < 0.005 respectively). The only calculated significant difference in nutrient 

concentrations between the two treatments within season was observed in spring when the 
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concentration of NO3
- was significantly greater in the ambient treatment compared to the heated 

(f = 14.04, df = 1, p < 0.002).  All other within season comparisons between treatments for 

NO2
-, NO3

-, NH4
+ and PO4

+ were non-significant (p > 0.05).  

3.3.2 In-situ potential rates of anammox 

Though experiments were carried out on several occasions across the different seasons, no 

anammox activity was detected in any of the mesocosms, heated or ambient.  

3.3.3 In-situ potential rates of denitrification 

When rates of 15N2 production from the different seasons were combined and season fitted as 

a random effect, the effect of treatment was significant; sediments from the heated treatment 

had greater production rates of 15N2 than the ambient treatment (X2 = 11.43, df = 2, p < 0.001) 

(Figure 3.4A). Though greater production was observed in the heated treatments over ambient 

treatments in all seasons, statistical significance was only seen in summer between treatments 

(t = 4.3, df = 14, p < 0.001). When rates of denitrification from both treatments were put 

together and treatment fitted as a random effect, there was a significant effect of season (X2= 

40.28, df = 2, p < 0.0001).  15N2 production was significantly faster in summer than both spring 

(H = 17.1, df = 2, p = < 0.001) and winter (H = 17.1, df = 2, p = 0.03), and there was no  

difference between production in spring and winter (Kruskal-Wallis One Way Analysis of 

Variance, followed by Post Hoc Tukey).  The greatest rates of 15N2 production were measured 

in summer with a rate of 3.19 (± 0.79) and 0.78 (± 0.11) nmol g-1 h-1 in the heated and ambient 

treatments respectively. The lowest rates were observed in spring from the ambient treatment 

of 0.17 (±0.05) nmol g-1 h-1. Winter had the lowest rate observed for the heated treatment of 

0.47 (± 0.15) nmol 15N2 g-1 h-1. 

Rates of N2O production were slightly greater in the heated treatments in summer and winter, 

but rates were greater in spring from the ambient treatment (Figure 3.4B). When rates of N2O 



Chapter 3 
 

91 

production from the different seasons were combined and season fitted as a random effect, the 

effect of treatment was non-significant.  When rates of N2O from the different treatments were 

grouped together and fitted as a random effect, there was an overall significant effect of season 

(X2 = 8.38, df = 2, p = 0.01). Overall, production rates of N2O were significantly greater in the 

summer in both treatments. Average ambient winter N2O production is significantly lower than 

both summer (t = 5.01, df = 14, p = <0.001) and spring (t = -4.11, df = 13, p = 0.001). With the 

heated treatment, average rates were significantly greater in the summer than spring (t = -1.9, 

df = 14, p = 0.04) and winter (t = 3.31, df = 14, p < 0.01) (Kruskal-Wallis One Way Analysis 

of Variance, followed by Post Hoc Tukey) 

The highest average production rates of N2O were measured in summer for both the heated and 

ambient treatment with 0.61 (± 0.27) and 0.22 (± 0.07) nmol g-1 h-1 respectively. The lowest 

average rates of N2O production were observed in winter for both heated and ambient 

treatments of 0.07 (± 0.02) and 0.04 (± 0.01) nmol g-1 h-1 respectively.  

The ratio of N2O to N2 was calculated to determine the number of N2O molecules produced for 

every molecule of N2 produced. N2O is a bi-product of denitrification and allows us to 

investigate the efficiency of the denitrifying bacteria carrying out this process at the exposure 

temperatures. A positive ratio indicates more N2O molecules were produced per N2 and the 

greater the number, the greater the amount of N2O produced per molecule of N2.Controlling 

for season, fitting it as a random effect and treatment as a fixed effect, the effect of treatment 

was significant on the ratio of N2O/ N2 production (X2 = 4.79, df = 1, p = 0.03), with the only 

significant difference observed in spring between the heated and ambient mesocosms (U = 4, 

df = 13, p = 0.004), with the greatest ratio observed in the ambient mesocosms (Figure 3.4C). 

Controlling for treatment and fitting it as a random effect, the effect of season on the ratio of 

N2O/ N2 production was highly significant (X2 = 16.72, df = 1, p < 0.001). The ratio was 

significantly higher in spring than both summer (t = 4.38, df = 13, p < 0.001) and winter (t = -
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3.27, df = 13, p = 0.006) in the ambient treatment. No significant effect was observed within 

the heated treatment between seasons. The ratio of N2O to N2 production was consistently 

greater in sediments from the ambient treatments compared to the warmed treatments across 

all season. The highest ratio was observed in spring for both treatments, with an average ratio 

of 0.36 (± 0.12) and 1.21 (± 0.32) for the heated and ambient mesocosms respectively. The 

lowest average ratios were in summer for both treatments of 0.17 (± 0.05) and 0.29 (± 0.09) 

for heated and ambient treatments respectively. These results suggest the effect of season is a 

more important influence than long term warming.  
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Figure 3.4 Production rates for A)15N2, B) N2O and C) ratio of N2O to N2 for ambient (blue) 

and heated (red) treated mesocosms across seasons (means ± se, n = 8) through denitrification. 

Bars with different letters indicate results significantly different from one another (p < 0.001) 

within each figure.  
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3.3.4 In-situ seasonal potential rates of nitrification 

Rates of net nitrification through oxidation of NH4
+ were measured in spring, summer and 

winter in sediments from both heated and ambient mesocosms. Highest nitrification activity 

was measured in spring for both treatments, with very similar rates observed between the 

treatments (Figure 3.5). Rates of nitrification in sediments from the ambient treatment in 

summer and the heated treatment in winter were almost below detection levels. The only 

significant effect of treatment within season was shown in summer, with rates of nitrification 

greater from the heated treatment (X2 = 7.71, df = 1, p = < 0.01). Within the heated treatment, 

spring nitrification rates were significantly greater than summer (t = 3.86, df = 20, p < 0.01) 

and summer nitrification rates were significantly greater than winter (t = 2.73, df = 20, p < 

0.03) (ANOVA). A significant effect of season was also observed with ambient treatment 

sediments with spring having significantly greater rates of nitrification than summer (t = 3.72, 

df = 17, p < 0.01) and winter (t = 2.54, df = 20, p < 0.01) (ANOVA). These results suggest 

seasonal effects are much greater than those created by the treatment of warming. 
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Figure 3.5 Average rates of nitrification (± se) through 15NH4
+ oxidation for ambient and heated 

treated mesocosms across seasons (± se, n = 8) after long term moderate warming. Bars with 

different letters indicate results significantly different from one another (p < 0.01) within each 

figure.   

 

3.3.5 Potential denitrification rates over a thermal gradient 

Arrhenius plots can be used to derive an estimate of an apparent activation energy (Ea) or 

temperature sensitivity for a specific process over the linear range of production. The linear 

range of production of 15N2 varied between the seasons, as such, both winter and spring have a 

linear temperature range between 11 to 16.5oC, whereas in the summer, the linear range lay 

between 11-15.5oC. 
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The short-term temperature sensitivity of denitrification (15N2 production) was measured in 

spring, summer and winter for both heated and ambient treatments (Figure 3.6) which 

demonstrated a clear positive effect of temperature on denitrification. Across all seasons, the 

short-term temperature sensitivity (Ea) was greatest in sediments from the heated treatments 

where slopes (activation energy) were steeper and the activity per gram of sediment were also 

greater. Further, the short-term temperature sensitivity for 15N2 production was greatest (1.97 

Ea) with sediments from the heated treatments in spring, followed by summer and then winter. 

The temperature sensitivity obtained from the ambient treatments were very similar for spring 

and winter but much greater in the summer (Appendix, Table 3.2). Production rates of 15N2 

from the ambient treatment were significantly lower in the winter than both summer (Q = 4.43, 

df = 2, p < 0.001) and spring (Q = 4.65, df = 2, p < 0.001; Kruskal-Wallis ANOVA, followed 

by Dunn’s method post hoc analysis for non-normalised data).  No significant difference in the 

intercept was determined between the seasons for the heated treatments. Therefore the effect 

of temperature was tested with season as a random effect and the results indicate that the effect 

of temperature was highly significant for the heated treatment (X2 = 39.82, df = 1, p < 0.0001) 

on production rates of 15N2.  
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Figure 3.6. Arrhenius plots of natural log transformed 15N2 production against incubation 

temperature through denitrification (centered 1/kT, where K = Boltzmann’s constant and T is 

in Kelvin) for Spring (A), Summer (B) and Winter (C). Temperature increases from right to 

left.
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Statistical significance of the short term temperature sensitivity for each treatment in each 

season is presented in Table 3.3 (Appendix). The most significant effect of temperature on the 

rate of 15N2 production was observed in the heated treatments in spring and summer (Appendix, 

Table 3.3). However no significant difference was observed between the two treatments. This 

suggests a greater short term temperature sensitivity than long term warming effect created by 

the treatments. Even though the activation for the overall mean in the heated treatment 

sediments is much greater than that from the ambient treatment, the low r2 values reduce any 

significant difference between the two.   

The activation energies (Ea) for N2O production showed little variation between the two 

treatments within spring and summer i.e. they are the same in spring and summer, but a large 

difference was observed between the heated and ambient treatments in winter (Figure 3.7). In 

both spring and summer, activation energies are greatest for sediments from the heated 

treatments, but the reverse is obtained in winter, with the ambient treatment showing a much 

greater sensitivity to temperature than sediment from the heated treatment (Appendix, Table 

3.4). The greatest average production rates were observed in summer for both treatments, with 

the lowest average rates of N2O production observed in winter for both treatments (Appendix, 

Table 3.4).  
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Figure 3.7 Arrhenius plots of natural log transformed N2O production against incubation 

temperature through denitrification (corrected 1/kT, where K = Boltzmann’s constant and T is 
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in Kelvin) for Spring (A), Summer (B) and Winter (C). Temperature increases from right to 

left. 

As temperature increased, so did the production rates of N2O. Statistical analysis of the effect 

of short term temperature exposure on N2O production are summarised in Table 3.5 

(Appendix). The greatest short term temperature sensitivity was observed from sediments 

collected in spring. The only non-significant effect of short term temperature was obtained in 

winter within the heated treatment. However, again, no significant effect of treatment was 

obtained within seasons indicating a stronger seasonal response for the production of N2O from 

sediments that have had short term temperature exposure.   

Rates of N2O production were significantly greater from the ambient treatment in summer than 

both spring (Q = 8.42, df = 2, p < 0.001) and winter (Q = 7.46, df = 2, p < 0.001). N2O 

production was also significantly greater in sediment from the heated treatment sediments in 

summer than both spring (Q = 5.75, df = 2, p < 0.001) and winter (Q = 7.73, df = 2, p < 0.001) 

determined by a Kruskal-Wallis ANOVA, followed by Dunn’s method post hoc analysis for 

non-normalised data.  

With the ratio of N2O/ N2 production there is a general trend of a constant ratio with sediments 

from the ambient treatments but an increase in the ratio towards the cooler temperatures from 

sediments that have had long term warming. This pattern is observed with sediments from all 

three seasons, except in the summer ambient treatment (Figure 3.8). Therefore, instead of 

activation energies, we get a negative response to temperature with a deactivation energy. 

Across all three seasons, the greatest effect of short term temperature exposure is observed with 

the heated treatments, with the largest deactivation energies (Appendix, Table 3.6). The largest 

ratios for both treatments were calculated from the summer season, indicating the greatest 

difference in the production rates of 15N2 and N2O. The lowest ratios occurred in winter for 

both treatments, suggesting the production rates of 15N2 and N2O were more similar than in 
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other seasons (Appendix, Table 3.6). The ratio of N2O/ N2 from the ambient treatment was 

significantly greater in summer than both spring (Q = 6.25, df = 2, p < 0.001) and winter (Q = 

10.49, df = 2, p < 0.001). Spring was also significantly greater than winter from the ambient 

treatment (Q = 4.75, df = 2, p < 0.001). Similar results are seen from the heated treatment. 

Summer has significantly greater ratios than spring Q = 5.78, df = 2, p < 0.001) and winter (Q 

= 10.01, df = 2, p < 0.001) and spring has significantly greater ratios than winter (Q = 4.93, df 

= 2, p < 0.001). Results were determined by a Kruskal-Wallis ANOVA, followed by Dunn’s 

method post hoc analysis for non-normalised data.  

A highly significant response to short term temperature exposure, for N2O/ N2, was measured 

in spring from the heated treatment sediments (p < 0.001). A significant response to 

temperature is also seen in winter with the heated treatment (p < 0.01), though less significant 

than spring. In the warmer summer months, a significant response to temperature was seen in 

the ambient treatment (p < 0.05) (Appendix, Table 3.7). Although the ratios of N2O/ N2 was 

consistently greater from sediments in the ambient treatments than the heated sediments 

(Appendix, Table 3.7), this difference between treatments was non-significant.  
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Figure 3.8 Arrhenius plots of the natural log transformed ratio of N2O/ N2 against incubation 

temperature through denitrification (corrected 1/kT, where K = Boltzmann’s constant and T is 

in Kelvin) for Spring (A), Summer (B) and Winter (C). Temperature increases from right to 

left. 
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When the entire temperature range is considered for the thermal gradient (short term) 

temperature characteristics experiment for denitrification, production rates of 15N2 (nmol g-1 h-

1) were significantly greater in sediments from the heated mesocosms when season is a random 

effect (X2 = 187.73, df = 2, p < 0.001) (Figure 3.9A.). The average maximum rates of 15N2 

production were greater in the heated treatments in all season (Appendix, Table 3.8).  

Seasonal effects were also observed. Within the ambient treatment, significantly higher 

production rates were measured from sediments analysed in winter and therefore greater 

temperature sensitivity was observed than in summer (p < 0.001) and spring (p < 0.001). Spring 

15N2 production rates were also significantly greater than those in summer (p < 0.001). The 

same significance was observed within the heated treatment. Winter had significantly higher 

rates of 15N2 production than both summer (p < 0.001) and spring (p < 0.001) and spring had 

significantly higher rates than summer (p < 0.001) (Appendix, Table 3.9).  

Similarly to production of 15N2, production of N2O (nmol g-1 h-1) from short term temperature 

exposure was significantly greater in sediments from the heated treatment when season was 

treated as a random effect (X2 = 8.84, df = 2, p < 0.003). Average maximum rates of N2O 

production rates were greatest in the heated treatments in all seasons (Appendix, Table 3.10) 

(Figure 3.9B).  

Seasonal effects were also observed for rates of N2O production with short-term temperature 

exposure. For the heated treatment, rates were significantly greater in summer than spring (p < 

0.001) and winter (p < 0.001). With rates in spring also significantly greater than those in winter 

(p < 0.05) (Appendix, Table 3.11). The same trend was again seen in sediments from the heated 

mesocosms. Rates of N2O production were significantly greater in the summer than spring (p 

< 0.001) and winter (p < 0.001), with rates in spring significantly greater than those in winter 

(p < 0.001) (Appendix, Table 3.11). 
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Figure 3.9 Box and whisker plots showing the production of  A) 15N2, B) N2O and C) the ratio 

of N2O/ N2 through denitrification from mesocosm sediments. Sediments (warmed mesocosm 

– red, ambient mesocosm – blue) were exposed to a thermal gradient (11.5 – 36.5 oC) and each 

box and whisker plot shows the natural log production across this thermal gradient created by 

the thermal gradient block. Bars with different letters indicate results significantly different 

from one another within each figure.   
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When the effect of season is removed, and the ratio of N2O/ N2 considered, significantly greater 

ratios were observed in sediments from the ambient mesocosms (X2 = 68.03, df = 2, p < 0.001). 

The maximum average ratios are always greatest from the ambient treatment when broken 

down by season (Figure 3.9C, Appendix: Table 3.12).   

Seasonal effects were also observed for the ratio of N2O/ N2. Within the heated and ambient 

treatments, the ratios were significantly greater in summer than spring (p < 0.001) and winter 

(p < 0.001) and spring ratios also significantly greater than those in winter (p < 0.001) 

(Appendix, Table 3.13).  

3.3.6 Short-term temperature sensitivity of nitrification  

For rates of nitrification with short term temperature exposure, the thermal range was divided 

into 2 temperature ranges to ensure the linear range was used to determine activation energies. 

In the first temperature range of 11.5-24oC, no significant effect of temperature was observed 

on the rate of nitrification in summer and winter (Figure 3.10). Apparent activation energies 

indicated a slight thermal sensitivity in both treatments in summer and winter, with low r2 

values confirming very little thermal response within this range (Appendix, Table 3.14). The 

heated treatment in winter shows a decrease in nitrification rates with increasing temperature, 

suggesting a deactivation. All other activation energies suggest an increase in activity with 

increasing temperature within this range. A significant difference was observed between 

seasons (p < 0.0001) with significantly higher rates in summer than winter for ambient (p < 

0.0001) and heated (p < 0.0001) treatments (Appendix, Table 3.15). This again indicates a 

stronger seasonal response than long-term warming response from the treatment. 
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Figure 3.10 Arrhenius plots of natural log transformed nitrification rates (as NH4
+ oxidation) 

against incubation temperature (corrected 1/kT, where K = Boltzmann’s constant and T is in 

Kelvin) between 11.5-24oC in summer (A) and winter (B). Temperature increase from right to 

left.  
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In the higher thermal gradient range of 27-37.5oC, an increase in net nitrification activity with 

increasing temperature in both treatments in summer and winter was observed (Figure 3.11). 

An increase in apparent activation energies confirms there is a greater response of nitrification 

at this higher temperature range (Appendix, Table 3.14), with the greatest activation energies 

observed in summer. No significant difference was observed in the rates of nitrification 

between the heated and ambient treatments within summer or winter. However, increasing 

temperature had a significant positive response to summer heated and ambient treatments (p < 

0.0001) and for the winter ambient mesocosms (p < 0.003) (Appendix, Table 3.15). This 

suggests that at the higher temperature range, both treatments show greater thermal sensitivity 

in summer and confirming seasonal importance to this process.  
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Figure 3.11 Arrhenius plots natural log transformed nitrification rates (as 15NH4
+ oxidation) 

against incubation temperature (corrected 1/kT, where K = Boltzmann’s constant and T is in 

Kelvin) between 27-37.5oC in summer (A) and winter (B). Temperature increases from right 

to left.  
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Rates of nitrification were measured over a thermal gradient ranging from 11.5 to 37oC in 

sediments taken from both the heated and ambient mesocosms in summer and winter (Figure 

3.12). When considering the entire temperature range, the greatest average rates of nitrification 

rates were measured in summer for both the heated and ambient treatments (0.023 ± 0.0019 

and 0.018 ± 0.0015 nmol N g-1 h-1, respectively, n =143). With rates in summer significant ly 

greater than those in winter (Appendix, Table 3.14). The lowest average rate of nitrification 

was observed in winter from the ambient treatment (0.0007 ± 0.0002 nmol N g-1 h-1). The 

heated treatment in winter had a slightly higher average rate of 0.0015 (± 0.0003) nmol N g-1 

h-1. No significant effect was observed within season between treatments. 

Very little thermal response was observed for rates of nitrification within treatments in either 

summer or winter (activation energies, Appendix: Table 3.17). The ambient in both summer 

and winter and heated in summer show a marginal increase in rates of nitrification with 

increasing temperature when looking at the entire range. The heated in winter however, shows 

an overall decrease in nitrification activity with increasing temperature. However, to calculate 

accurate apparent activation energies we need to consider the temperature range where 

production is linear. To do this, the temperature range was divided into two distinct sections of 

linear production. These ranges are 11.5-24oC and 27-37.5oC for both treatments in summer 

and winter.  
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Figure 3.12 Nitrification rates through 15NH4 oxidation for ambient (blue boxes) and heated 

(red boxes) treated mesocosms across seasons after short term exposure to a range of 

temperatures in a thermal gradient bar (± se, n = 8).   

 

3.4 Discussion 

Evidence of global warming altering the nitrogen cycle has been well documented through both 

direct effects (e.g. increased metabolic rate) or indirectly (e.g. availability of substrates and 

synergistic effects with respiration and photosynthesis (e.g. Canion et al., 2014; Veraart et al., 

2011; Yvon-Durocher et al., 2010). The dominant controlling factors of denitrification and 

nitrification are temperature, NO3
-, dissolved oxygen and carbon substrates (Holtan-Hartwig et 

al., 2002). The present study investigates direct temperature effects on denitrification and 

nitrification in sediments from warmed (long-term, 4°C) mesocosms. From the present study 

we found the thermal sensitivity of both denitrification and nitrification appeared to be more 
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affected by immediate temperature exposure, with significant effects of season. The effect of 

treatment (long-term warming vs ambient) appears to less important in determining rates of 

nitrogen conversion.   

3.4.1 Denitrification 

A significant effect of treatment was observed with rates of N2 production, with greatest rates 

measured in the heated treatment from the in-situ experiment.  It is expected that greater 

denitrification would be observed at warmer temperatures as most biochemical reactions 

increase with warmer temperatures due increased metabolic activity (Arrhenius, 1915., 

Boltzmann, 1872). Previous mesocosm experiments have shown denitrification to double with 

an increase of 3oC, with only a 1oC temperature rise required to increase denitrification by 24-

28% in freshwater sediments (Veraart et al., 2011) which corresponds to the findings in the 

present study. Conversely, there was no significant effect of treatment on the rates of N2O 

production within the in-situ experiment. This is in contrast to previous studies which have 

found increases in N2O production in water-logged grassland sediments after 4 years of 

warming, due to a decrease in the ratio of the genes involved with N2O reduction (nosZ) and 

NO2
- reduction (nirK) reduction (i.e. nosZ/nirK) (Cantarel et al., 2012). However, evidence 

suggests lower temperatures (< 4oC) may have greater net fluxes of N2O due to reduced activity 

of the enzyme responsible for the reduction of N2O (Holtan-Hartwig et al., 2002). This suggests 

that rates of N2O production can stay relatively constant whereas the process of reducing N2O 

to N2 could increase with increasing temperature due to different optimal temperatures of the 

enzymes involved.  

When the sediments from the two treatments were exposed to a range of temperatures to 

characterise their short-term temperature response, there was a significant positive effect of 

temperature, but no significant effect of treatment was observed within the linear range of N2 
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or N2O production. Activation energies for rates of N2 and N2O were in the range of 0.97-1.97 

eV and 0.66-1.34 eV respectively. These are slightly higher than those recorded for 

denitrification in soils (0.28-0.81 eV) but are more in line with those measured from marine 

sediments (0.53-1.28 eV) (Canion et al., 2014; Holtan-Hartwig et al., 2002). The non-

significant effect of treatment suggests short term temperature exposure is more important than 

the long term warming and potentially no adaptation to temperature of the microbial 

communities in these sediments has occurred over the ~10 years of warming. No evidence of 

a physiological response was observed, with similar thermal sensitivities obtained from 

sediments in both the heated and ambient mesocosms.  However, the capacity to produce N2 

and N2O from sediments has increased as the intercepts (production at mean temperature, nmol 

g-1 h-1) are consistently greater from sediments within the heated treatment.  When systems are 

limited in substrates required for metabolism, the microbial communities may not invest in 

adaptations to changes in temperature (Brin et al., 2016). The mesocosms in the present study 

are not directly influenced by outside sources of organic matter, relying on in-situ primary 

production and decomposition, so are therefore relatively nutrient limited and nitrate (the 

substrate) is very low. This may explain the limited effect of treatment in the linear range of 

the short term temperature exposure experiment. Several other studies have shown other 

microbial communities to have little to no adaptation to increased temperatures (Hartley et al., 

2008; Rinnan et al., 2009; Vicca et al., 2009).  Rates of N2 and N2O continued to increase after 

the initial linear phase with maximum rates measured between 35.5–37.5oC for N2 and 16.5-

37.5oC for N2O. When exposed to these higher temperatures, sediments from the heated 

treatment had significantly greater production of N2 and N2O than those from the ambient 

treatment. The response observed at the higher temperatures suggests a thermal adaptation of 

the denitrifying communities has occurred in response to long term warming and those in the 

heated treatment have higher metabolic activity than those from the ambient. Aquatic 
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organisms tend to not be exposed to rapid changes in temperature due to the high specific heat 

capacity of water (Wallenstein & Hall, 2012). However, temperate aquatic systems are exposed 

to a range of temperatures throughout the annual cycle and the organisms can therefore be 

adapted to a broad thermal range. We may only have observed a significant effect of treatment 

during the short term temperature exposure at the highest temperature as we have exposed them 

to temperatures they do not normally reach. The denitrifiers in the heated treatment may have 

a slight advantage over those in the ambient treatment. Long term thermal adaptations could 

include changes in e.g. community structure, gene expression, a change in protein structure 

affecting enzyme efficiency or abundance of either the organisms or the key genes involved in 

biochemical processes (Adams et al., 2010; Pörtner et al., 2006; Van der Gucht et al., 2007).  

Calculating the ratio of N2O/ N2 allows us to investigate the efficiency of denitrification. A 

greater ratio indicates that more molecules of N2O are produced per molecule of N2. For each 

experiment that was carried out, the ratios were more greatly influenced by the production of 

N2 rather than N2O, as N2 production had a stronger thermal response. The ratio of N2O/ N2 

from the in-situ long term temperature experiment measurements were significantly affected 

by treatment, with the greatest ratios calculated in sediments from the ambient treatments. The 

ratios from the heated and ambient treatment sediments decreased with increasing temperature 

in the short-term exposure experiments, though this was non-significant.  Whilst no significant 

effect of treatment was observed in the linear range, the intercepts were always greatest from 

the sediments in the ambient treatment. We only observe a significant effect of temperature at 

the highest temperatures with short-term temperature exposure. The response of a decrease in 

the ratio of N2O/ N2 with increasing temperatures has previously been measured but literature 

for aquatic systems is lacking with most studies having been carried out using soils (Avalakki 

et al., 1995; Bailey & Beauchamp, 1973; Keeney, Fillery, & Marx, 1979). 
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Significant seasonal variations were observed in the production of N2 and N2O. Within the 

long-term temperature experiment, greatest rates of N2 production were observed in sediments 

analysed in the summer and greatest production of N2O was observed in spring. Conversely, 

across the thermal gradient, production rates of N2 were significantly greater in winter with 

N2O rates significantly greater in the summer sediments. The ratio of N2O/ N2 were 

significantly greater in spring for both the in-situ experiment and the initial linear range of the 

short-term thermal sensitivity experiment. However, when the entire thermal gradient is 

considered, the greatest ratios are observed in summer. Previous studies have shown that 

seasonal variations of denitrification in freshwater systems has been most strongly correlated 

to NO3
- availability with enhancement from increased temperature (Hasegawa & Okino, 2004; 

Pattinson et al., 1998). Seasonal sampling of sediments along the river continuum of Swale-

Ouse, UK,  had greatest rates of denitrification in spring which was significantly correlated 

with higher concentrations of NO3
- and temperature (Pattinson et al., 1998). Eutrophic, 

stratified lakes have shown similar trends, with denitrification greatest in the winter and spring, 

when NO3
- concentrations are higher and low to negligible in the summer due to increased 

primary production. Both these studies suggest NO3
- to be the dominant factor controlling 

denitrification, whether in a eutrophic system or with large influxes of NO3
- from field run off. 

Due to our method of slurry incubations, our samples were not limited by NO3
- availability, so 

other factors will need to come into play. Greater denitrification in summer could be related to 

increased organic matter deposition after the spring bloom providing more organic carbon to 

the sediments. Warmer temperatures also have a positive effect on the availability of organic 

carbon for heterotrophic metabolism by increased rates of decomposition  (Brin et al., 2015; 

Andy Canion et al., 2014; Isaksen & Jørgensen, 1996). However, the high rates in spring of 

N2O from the in-situ experiments and greatest production of N2O from sediments collected in 

the winter is a slight anomaly.  
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Results from these two experiments, as well as previously published findings, suggest as 

temperatures increase we will see an increase in production of both N2 and N2O, however, from 

the current study we can also expect to see a greater occurrence of complete denitrification 

with deceasing ratios of N2O/ N2.  

3.4.2 Nitrification 

No significant effect of treatment for nitrification was observed for either in-situ, long term 

thermal response or the short term temperature exposure experiment using a thermal gradient 

bar. Season appears to be more important than long term exposure with significantly greater 

rates in sediments analysed in spring. A minor thermal response was only observed in the 

higher thermal range of 27-37.5oC, with rates significantly greater in sediments in the summer. 

The rates of nitrification presented in this study are much lower than those presented in the 

literature. For example, rates of nitrification in Lake Superior, a large oligotrophic lake, ranged 

between 18-34 nmol N L-1 d-1 (Small et al., 2013). These values are regarded as low in 

comparison to other lake systems that have rates ranging from 60-480 nmol N L-1 d-1 in the 

summer and 230-335 nmol N L-1 d-1 in the winter (Carini & Joye, 2008). The Lake Superior 

study suggested low rates were positively correlated with low abundances of ammonium 

oxidising archaea and nitrite oxidising bacteria due to competition with other heterotrophic and 

autotrophic organisms that also utilise NH4
+ as a substrate (Small et al., 2013). In river 

sediments, nitrification was completely inhibited by additions of organic carbon due to more 

competitive heterotrophic bacteria utilising available NH4
+ (Strauss & Lamberti, 2000) 

however, this limiting factor was removed by using slurry experiments and providing ample 

NH4
+. Another possibility for the low rates of nitrification observed is the link with 

denitrification. Coupled nitrification-denitrification is often observed at oxic-anoxic interfaces 

within sediments, as nitrification produces NO3
- which denitrification requires as a substrate 

(An & Joye, 2001; Seitzinger et al., 2006).  Though our slurries were oxic, there may still have 
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been micro pockets of anoxia where denitrification could have utilised NO3
- that had been 

produced through nitrification, therefore underestimating the rates of nitrification. 

Dissimilatory reduction of nitrate to ammonium (DNRA) is another process within the nitrogen 

cycle which may have caused an under estimation with our measured rates of nitrification. 

DNRA bacteria are predominately heterotrophic that reduce NO3
- back into NH4

+ (Hardison et 

al, 2015). We did not measure DNRA in this study due to the small possibility of detectable 

rates. DNRA is favoured in environments with high labile organic carbon and low NO3
- 

concentrations, where it can outcompete denitrification (Tiedje, 1988; Hardison et al, 2015). 

Additionally, direct measurements of DNRA from freshwater systems are scarce in the 

literature, therefore very little is known of the controlling factors in these environments (Burgin 

and Hamilton, 2007; Giblin et al, 2013). The experimental mesocosms could have potentially 

favoured DNRA due to low concentration of NO3
-. However, these are closed systems with 

very little input from external sources, which also suggests organic carbon content would be 

low. In these conditions of potentially a low ration of organically available carbon to NO3
-, 

denitrification is favoured (Bonin, 1996; Nijburg et al, 1997; Silver et al, 2001).  

We did however, see seasonal variation for nitrification. Previous studies have shown seasonal 

fluctuations of nitrification are positively correlated with NH4
+ release from sediments due to 

increasing temperatures and subsequently increase rates of decomposition (Sheibley et al.,  

2003).  The greatest rates were observed in spring, which marry up with spring blooms and 

increased rates of photosynthesis during spring have been positively correlated with increased 

rates of nitrification due to increased oxygen concentration of overlying waters (An & Joye, 

2001). The low nitrification rates observed in summer could have been due to lowered oxygen 

concentrations caused by increased respiration. Nitrification is an aerobic process, requiring 

the presence of oxygen to oxidise NH4
+ (Kemp et al, 1990; Rysgaard et al, 1994). Seasonal 

variations in nitrification rates were measured in Chesapeake Bay sediments, with highest rates 
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observed in November (70.4 µmol m-2 h-1), reducing by up to 50% in April to negligible in the 

summer months, which positively correlated with oxygen concentration of the overlying water 

in those sampling months (Kemp et al, 1990).  In addition to potentially low oxygen 

concentration in the summer reducing nitrification activity, sunlight can also hinder this 

process. Ammonium oxidising archaea (AOA) and bacteria (AOB) have been observed to be 

inhibited by sunlight (French et al., 2012; Merbt et al., 2012) and with longer and generally 

sunnier days in the summer, there is more potential for this inhibition to occur. The 

experimental mesocosms in this study were shallow and therefore did not provide depth for 

which these nitrifying organisms to remain out of the sunlight. Though many studies have 

detected nitrification in marine euphotic zones (e.g. Beman et al, 2012; Clark et al, 2008; 

Raimbault & Garcia, 2008), a more recent study, covering a 7500 km transect from the 

equatorial Pacific Ocean to the Arctic Ocean, maximum rates of nitrification were observed at 

1-0.1% of light depth (Shiozaki et al, 2016). The organisms responsible for nitrification, AOA 

and AOB are widespread and have been recorded in a variety of systems from marine and 

coastal areas (Beman et al, 2008; Shiozaki et al, 2016), estuarine sediments (Beman and 

Francis, 2006; Mosier & Francis, 2008), hot springs (Hatzenpichler et al, 2008) and freshwater 

sediments (Francis et al, 2005; Heermann et al, 2008) to mention a few. Environmental 

requirements of the two nitrifying microorganisms differ. AOB have a low affinity for NH4
+ 

and are therefore more dominant in regions with high NH4
+ concentrations, whereas AOA have 

a higher affinity and can thrive in low NH4
+ environments (Martens-Habbena et al, 2009). The 

experimental systems used in this study had low NH4
+ concentrations throughout the year and 

could suggest AOA may be the dominant nitrifyers in the system due to their ability to thrive 

in low NH4
+ environments. The high concentration of NH4

+ used in the sediment slurries (90 

µM in the vial) were much greater than the concentrations naturally found in the systems (0.4-

5.2 µM NH4
+). We used a high concentration in the experiment to remove NH4

+ limitation, but 
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this may have inhibited AOA activity.  Several species of AOA isolated from the environment 

have shown maximum growth rates at low concentrations of NH4
+ and growth inhibition at 

higher concentration. An AOA species (C. Nitrososphaera gargensis) isolated from hot springs 

with concentrations of 5.9 µM NH4
+, thrived at 0.14-0.8 mM concentrations but showed 

inhibition at 3.2 mM NH4
+ (Hatzenpichler et al, 2008). Similarly, N. maritimus, an isolated 

marine species, had a maximum growth rate of 0.78 day-1 in a medium with a NH4
+ 

concentration of 0.5 mM (Könneke et al, 2005). However, gene expression of the amoA gene 

responsible for Archaeal nitrification, has been reported in concentration as high as 10 mM 

NH4
+ (Treusch et al, 2005). This suggests a flexibility in the capability of AOA activity at 

different concentrations, but potentially a preference for low NH4
+ concentrations. Molecular 

analysis would need to be carried out to determine the dominant nitrifying communities present 

in the experimental mesocosms.  

Even though emissions of N2O through nitrification has been well documented across a variety 

of both terrestrial and aquatic systems (Baulch et al., 2012; Dore & Karl, 1996; Parton et al., 

1996; Small et al., 2013; Sutka et al., 2006) we did not have any detectable rates of N2O in 

either the long-term or short-term temperature response experiments. It has commonly been 

found that < 1% of nitrified N is actually converted into N2O in laboratory studies on soils (e.g. 

Klemedtsson et al., 1988; Maag & Vinther, 1996). If this is the case, with the low rates of 

nitrification that we observed, any N2O produced would be below the limit of detection.  

3.5 Conclusions 

The current study has considered the potential rates of nitrogen transformations after a period 

of prolonged moderate warming to enable us to investigate the potential long term effect of 

climate change and global warming. The direct comparison between heated and non-heated 

experimental mesocosms allowed us to remove other confounding effect such as allochthonous 
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carbon and nutrient inputs and focus on the effect of temperature. The long term response of 

denitrification appears to have increased the capacity of these systems to produce N2 and N2O, 

however, there has been no significant physiological adaptation with similar thermal 

sensitivities observed between the two treatments. The response of potential rates of 

nitrification appeared to be negligible, either to long term warming or short-term temperature 

response, reasons for which are unclear. The low rates of nitrification are of interest as it would 

be expected they would provide the substrates required for denitrification within the 

mesocosms. The rates measured in the present study would not be sufficient to support 

denitrification and so further experiments are required. Though more difficult, in-situ rates 

would be beneficial to investigate the coupling between these two processes.  
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Chapter 4: Effect of temperature on benthic and pelagic nitrogen 

transformations in the Eastern Tropical North Pacific Oxygen Minimum 

Zone (ETNP OMZ) 

4.1 Introduction 

Oxygen minimum zones (OMZ) are stratified bodies of water in the ocean with oxygen near 

or below detection limits (typically < 1.5-2 µM (Beman et al., 2012; Karstensen et al., 2008). 

The formation of OMZ’s occurs when respiration, associated with the breakdown of organic 

matter, requires more oxygen than can be resupplied in areas of poor water circulation 

(Karstensen et al., 2008; Lam & Kuypers, 2011). These areas are prominent contributors to the 

global nutrient cycles, specifically the nitrogen cycle (Beman et al., 2012; Dalsgaard et al., 

2012) as they are responsible for removing large amount of fixed nitrogen from the biosphere. 

Even though they only constitute ~ 0.1% of the total ocean volume (Codispoti, 2007), they are 

estimated to be responsible for 20-50% of all oceanic nitrogen loss (Codispoti et al., 2001; 

Gruber & Sarmiento, 1997). Two processes are known to be involved in the removal of fixed 

nitrogen from the marine environment: denitrification and anaerobic ammonium oxidation 

(anammox). 

Briefly, denitrification is the microbially mediated reduction of nitrate (NO3
-) to di-nitrogen 

gas (N2) through a series of steps performed by different bacteria (Falkowski, 1997). Canonical 

denitrification is complete reduction of either NO3
- or NO2

- through to N2 gas (Codispoti, 2007) 

by a single organism (respiratory denitrification), though some bacterial have the ability to 

reduce NO3
- and NO2

- but do not produce N2 gas as a final product (non-respiratory 

denitrification) (Tiedje, 1998). The full denitrification pathway is as follows (Kalkowski & 

Conrad, 1991; Zumft, 1997): 

NO3-   NO2-     NO       + N2O     N2 
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Anaerobic ammonium oxidation (anammox) also produces N2 via the anaerobic oxidation of 

ammonium (NH4
+) using nitrite (NO2

-) (Dalsgaard et al., 2012) with the following 

transformation: 

NH4
+     +      NO2

-                N2       +         2H2O 

Although anammox produces N2, it does not produce the greenhouse gas (GHG) nitrous oxide 

(N2O), which is an intermediate in the denitrification pathway. N2O is a highly potent GHG, 

with radiative forcing ~300 times that of CO2 and leads to the reduction of ozone in the 

stratosphere (Ravishankara et al., 2009; Wright et al., 2012). Oceanic N2O production is 

classified as natural production as it is away from anthropogenic influences of nutrient loading, 

with production rates in the range of 1.8-5.8 Tg y-1, while the anthropogenic influenced N2O 

production from coastal systems, estuaries and freshwaters is in the range of 0.5-2.9 Tg y-1 

(IPCC, 2007). Globally, approximately a third of all natural N2O emissions are from the oceans, 

and the majority of that is released into the atmosphere from OMZ’s (Bange, 2006; Naqvi et 

al., 2010). As  oceanic water temperatures increase under global warming, the amount of 

dissolved oxygen is decreasing, and rates of respiration  are increasing, causing expansion of 

OMZ’s (Keeling et al., 2010; Stramma et al., 2008; Vázquez-Domínguez et al., 2007). Not only 

could this lead to enhanced removal of fixed nitrogen from the oceans, but also increased N2O 

emissions, a potential positive feedback mechanism.  

Denitrification is an important process to understand as it removes biologically available 

nitrogen from systems, which may lead to reduction in primary productivity and, ultimately, to 

reduction in carbon sequestration (Seitzinger, 1988). As mentioned above, OMZ’s are 

significant sites of nitrogen removal, and with evidence of their expansion (Stramma et al., 

2008), this will lead to even greater rates of nitrogen loss. The temperature response of nitrogen 

removal has previously been investigated in marine and estuarine sediments. Denitrification 

generally responded more strongly to temperature than anammox, with greater contribution to 
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production of N2 through denitrification (Canion et al., 2014; Rysgaard et al., 2004). Both 

studies suggest slow growing anammox bacteria to be psychrophilic (thriving at colder 

temperatures) and denitrifying bacteria to be psychrotrophic (able to survive and potentially 

thrive in cold temperatures). Given the increasing size of OMZ’s and the potential for increased 

rates of denitrification with warming, we could witness an even greater loss of reactive nitrogen 

from the oceans. This loss will remove the reactive nitrogen for primary production and lead 

to reduced draw down of CO2 from the atmosphere, leading to further warming.   

Whilst many studies have reported N2 production and the relative contributions of 

denitrification and anammox to the total N2 production, very few have reported N2O 

production. The ratio of N2O/ N2 is of interest because of the GHG properties of N2O. If, as 

predicted, rates of denitrification increase with warmer temperatures, how will the efficiency 

of the process be effected? As mentioned above, N2O is an intermediate that can be released 

during denitrification, which means it is not fully reduced to N2. It is the reduction steps that 

release energy for the denitrifying organism and losing this intermediate makes the process less 

energy efficient. A decrease in the efficiency of denitrification will lead to more of the 

intermediate N2O being released and a positive feedback for global warming. The temperature 

response of N2O production was investigated in soils where they found increased N2O 

production with warming temperatures between 5-20oC (Holtan-Hartwig et al., 2002; Schaufler 

et al., 2010). To my knowledge, no one has explored the thermal sensitivity of N2O production 

rates in marine environments, let alone in an OMZ.  

Biological nitrogen fixation (BNF) is the biological conversion of abundant N2 gas into 

biologically available inorganic nitrogen compounds, namely NO2
-, NO3

- and NH4
+ (Zumft, 

1997). Most systems are limited in nitrogen and BNF is the main natural source of these 

compounds into the biosphere (Galloway et al., 1995). Rates of BNF from the North Pacific 

ranged between 70 to 2800 µmol N m-2 d-1 (Montoya et al., 2004). Published rates of marine 
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nitrogen fixation are rare, especially those which focus on thermal sensitivity. A general rule 

of biological processes is that as temperatures increases so does enzyme activity (Brown et al., 

2004). Therefore, it could be predicted that the rate of nitrogen fixation will increase with 

warming. It is unclear whether the rate of BNF will balance the losses of nitrogen through 

processes such as denitrification and anammox in a changing climate. It could be suggested 

that rates of BNF will be insufficient to keep up nitrogen losses, relying on energy obtained 

from photosynthesis, which, as we have seen, responds less to warming than respiration. 

Denitrification and anammox are forms of respiration (Tiedje, 1998) and therefore could 

respond more to warming.   

We investigated the thermal sensitivity of denitrification and anammox as forms of N loss in 

both sediments and the water column and BNF in the upper oxic waters of the Eastern Tropical 

North Pacific Oxygen Minimum Zone (ETNP OMZ), the largest in the world (Paulmier & 

Ruiz-Pino, 2009), from 70 to 120 km off the coast of Guatemala. Production rates of N2 through 

denitrification and anammox and N2O production through denitrification were measured over 

a range of temperatures close to and above ambient using the isotope pairing technique to 

investigate nitrogen losses. To determine nitrogen uptake, the rates of nitrogen fixation was 

also measured in concentrated plankton surface waters over a range of temperatures close to 

and above ambient using the stable isotope 15N2. Measuring these processes will allow us to 

investigate the nitrogen in and nitrogen losses from this system.    

4.1.1 Aims and Hypothesise  

We hypothesised with increasing temperature, we would see an increase in metabolic activity 

of anammox, denitrification and BNF. The aim of this work was to analyse the thermal 

sensitivity of OMZ sediment slurries and water column samples to produce N2 and N2O through 

denitrification and anammox, with different substrates in controlled conditions, and how these 

N losses may be balanced out with water column BNF.   
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4.2 Methods 

4.2.1 Sampling sites 

Several sampling sites were selected between 70-150 km off the coast of Guatemala where 

both sediment and water collection was carried out between 28/12/13 – 10/2/2014 (Figure 4.1). 

A standard conductivity–temperature–depth (CTD) rosette, comprising 24 Niskin (20 L) 

bottles and a Sea-Bird 24 electronics system (fluorimeter, altimeter, PAR and oxygen sensors, 

etc.) was used to collect water and a multi-corer (Mega Corer, OSIL, U.K.) was used to recover 

intact cores of sediment and overlying water. Site selection for denitrification and Anammox 

was predominately based on oxygen concentration (to ensure we were within the OMZ) and 

water density (to ensure organic matter was available for microbial activity). Figure 4.2 shows 

water column oxygen concentration and density with depth and horizontal lines indicate 

sampling depths. Sampling sites for surface water nitrogen fixation were aided by NO3
- and 

PO4
- concentrations (Figure 4.3).  
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Figure 4.1. Location map of selected sites for sampling approximately 70-150 km off the coast 

of Guatemala. Blue dots indicate specific sampling sites. 
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Figure 4.2. Water column profiles constructed based on CTD sensors measurements, with the 

top 400 m shown in the main panel and all data points (0-2000 m ) shown in in-set plots. The 

coloured lines indicate sampling depths for water column N2 production (denitrification and 

anammox); the coloured lines indicate the different sampling sites, with at least two depths 

collected from each site.   
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Figure 4.3. Water column profiles for NO3
- and PO4

-, with the top 250 m shown in the main 

panel and all data points (0-3000 m) shown in in-set plots. These profiles were used to 

determine nitrogen fixation sampling depths. (Sample processing carried out by cruise 

technician, Dr Ian Sanders, on site).
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4.2.2 Sample collection and preparation for denitrification and anammox 

measurements in sediments 

Sediments for potential denitrification and anammox rates were collected from the ocean floor 

using a Mega-Corer, with up to six cores at a time (Figure 4.4 left). The Mega-Corer allowed 

us to retrieve intact sediment cores overlaid with undisturbed bottom-water. At each site, 

surface sediments (0-2cm) were collected from all six sediment cores, transferred into zip-lock 

bags and quickly moved into an anoxic hood (CV204, Belle Technology) filled with oxygen 

free nitrogen (99.998%, OFN, British Gas Company). Additional water from ~10m above the 

ocean floor was collected using a CTD (conductivity –temperature-depth) rosette system with 

20L Niskin bottles at the same sites of sediment collection. This water was later used to prepare 

sediment slurries for the temperature characteristic experiments (Figure 4.4 right).  

 

 

 

 

 

 

Figure 4.4. Sediment multi-corer to collect large intact sediments (left) and rosette niskin 

bottles used to collect water from the ocean floor (right).  

 

 



Chapter 4 
 

139 

Sediments were homogenised and slurries were prepared by the addition of degassed (OFN for 

20 minutes) bottom water from the same site. The amount of water to sediment varied on the 

water content of the sediments but was typically between 2-4 mL of water mixed with 6-8 mL 

of sediment. The slurries were then transferred into 12 mL gas-tight vials (Exitainer, Labco).  

Once sealed, the gas tight vials were placed at a range of temperatures over night to ensure that 

any natural 14NO3
- or other oxidants present would have been reduced along with any traces of 

oxygen (Risgaard-Petersen et al., 2004; Trimmer et al., 2003). To begin the experiment, each 

vial was injected through the rubber butyl septa with deoxygenated Na15NO3
- or Na15NO2

- (98 

15N atom %, Sigma Aldrich) to a final concentration of 100µM in the water. The two 

experiments were conducted to determine if the species of 15NOx (NO3
- or NO2

-) affected the 

potential activity of denitrification and anammox. The experiment was repeated at 5 sites, with 

3 replicates at each time point. Slurries were incubated at 5, 12, 15, 20 and 24oC for 0, 0.5, 1, 

2, 4 and 8 h. Once the experiment was complete, microbial activity was stopped with the 

addition of 200 µL formaldehyde (38% w/v) (Trimmer & Nicholls., 2009). Rates of N2 and 

N2O production were measured from sediments exposed to a range of temperatures close to 

and above the ambient temperature the sediments would normally be exposed to.  

4.2.3 Sample collection and preparation for denitrification and anammox 

measurements in the water column 

Rates and temperature characteristics of denitrification and anammox in the water column of 

the OMZ were also measured. Specific depths within the water column were determined based 

on oxygen concentrations and water density (Figure 4.2) following previous studies (De 

Brabandere et al., 2014). Briefly, we focused on the top of the OMZ where oxygen was almost 

at a minimum concentration and the density reached a peak, with a second depth selected within 

the core of the OMZ. Water was dispersed directly from the Niskin bottles into 1 L serum 
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bottles, which were overflowed 3 times to minimise contact with the atmosphere and oxygen 

contamination. This was then vigorously bubbled with helium for 20 minutes (BOC) to 

minimise oxygen concentration and transferred into 12 mL gas tight vials (Exetainer, Labco), 

overflowed 3 times and sealed with no headspace. The filled glass vials were then pre-

incubated at the desired temperature for 20 minutes to ensure the water was at this temperature 

before beginning the experiment. To begin the experiment each vial was injected through the 

septa with 50 µL of degassed, concentrated stock of Na15NO2
- (2.4 mM, 98 15N atom %, Sigma 

Aldrich and helium (BOC)), to a final concentration in the vial of 10 µM. To stop microbial 

activity, samples were injected with 50 µL ZnCl (50% w/v, Sigma Aldrich). Sampling sites, 

depths, incubation temperatures and time points can be seen in Table 4.1.  

Table 4.1. Description of sampling sites and experimental design for water column anammox 

and denitrification activity.  

Site 

Sea 

bed                  

depth 

(m) 

Latitude 

(oN) 

Longitude 

(oW) 

Sampling                 

depth  (m) 

 Incubation 

Temperature 

(oC) 

Time 

points 

(h) 

1 121 1331.02 9121.62 85, 105 

6, 12, 15, 20, 24 
0, 3, 6, 
12, 24, 

48 

2 179 1326.31 9122.5 135, 140, 155,  

3 382 1324.68 9122.69 125, 135, 195 

4 1504 1318.68 9123.73 120, 185, 225 

5 503 1316.3 9108.06 90, 205, 220 
 

4.2.4 Gas sample analysis for denitrification and anammox activity 

Gas samples from the headspace (100 µL) were measured for N2O concentration using a gas 

chromatograph fitted with a micro-electron capture detector (GC/µECD, Agilent Technologies 

UK Ltd., South Queensferry, U.K.; (Nicholls et al., 2007).  N2O concentrations were calculated 

from peak areas using a known standard concentration (Scientific and Technical Gases) and 
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the total amount in the vial (headspace and slurry) was corrected for temperature, pressure and 

solubility (Weiss & Price, 1980; Yamamoto et al., 1976).Water samples were headspaced just 

before gas analysis by introducing  2 mL He (analytical-grade helium) using a two-way valve 

and a gastight syringe (Hamilton). The total concentration of the gas measured was corrected 

in the same way as in the sediment samples.  

Production of 15N-labelled N2O was measured using a gas-chromatograph isotope ratio mass 

spectrometer (GC/IRMS) coupled to a modified pre-concentration unit (Precon). 100 µL was 

sub-sampled from the headspace of the original samples using a gas tight syringe (Hamilton) 

into air filled gas tight vials (12 mL) and processed following the method previously descried 

in detail in Trimmer et al, (2006). Briefly, cryo-focusing removes most of the CO2 and allows 

separation of N2O from the CO2. The GC/IRMS then analyses the specific mass to charge ratios 

of 44N2O, 45N2O and 46N2O (Mander & Zaman, 2015; Trimmer et al., 2006). The concentration 

of N2O measured by the GC was multiplied by the contribution of 15N-N2O measured by the 

IRMS to obtain the concentration of labelled 15N-N2O. 

Isotopic analysis of the production of N2 (28N2, 29N2 and 30N2) gas from the vials was measured 

from the headspace by continuous-flow isotope ratio mass spectrometry (Thermo-Finnigan, 

Delta Matt Plus) as previously described in Trimmer and Nicholls (2009). For the sediment 

samples (or slurries), once all gas measurements were completed, the vials were opened and 

sediments were dried to a constant weight at 80oC. Gas production rates were corrected for dry 

mass (Lansdown et al., 2012; Shelley et al., 2014).  

4.2.5 Calculations for denitrification and anammox  

The mole fraction of the added substrate (98% 15N atom) and measured excess N2 production 

are used to distinguish between production via denitrification and anammox (Bo Thamdrup & 
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Dalsgaard, 2002). With the addition of 15N, denitrification has the ability to produce 28N2, 29N2 

and 30N2 via random isotope pairing, calculated using the following equations:  

Dtot = P30 x FN
-2 

D30 = Dtot x FN
2 

D28 = Dtot x (1-FN) 2 

D29 = Dtot x 2 x 1 x (1-FN) x FN 

Dx denotes the production of N2 via denitrification. P30 represents the total N2 produced in the 

vial measured by mass-spectrometry. FN represents the 15N mole fraction of the source 

compound (Na15NO3
-, or Na15NO2

-, 98% 15N). 

Anammox can only produce 28N2 and 29N2 assuming one molecule is obtained from Na15NOx 

added to the samples and the other from 14NH4
+ in the slurries (Dalsgaard et al., 2012). The 

following equations are required to determine the production via anammox: 

A29 = P29 – D29 

A28 = A29 x FN
-1 x (1-FN) 

Atot = A29 + A30 

RA = Atot / (Dtot + Atot) 

Where Ax denotes the production of N2 via anammox. RA denotes that relative contribution of 

anammox to the total production of N2 gas produced and can be multiplied by 100 to obtain 

anammox contribution as a percent (ra %).  

Following the calculations above, rates of excess production of 15N-N2 were calculated as the 

slope of production P30 (linear regression) against time of the incubations. These equations 
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were used to calculate both sediment and water column production of N2 gas. The only 

difference was the source compound: for sediment, both 15NO3
- and 15NO2

- were used, whereas 

only 15NO2
- was used for the water column incubations.  

4.2.6 Sample collection and preparation for nitrogen fixation 

Given that the availability of fixed N in any ecosystem is ultimately governed by the net balance 

between N fixation and N2 gas production, the temperature dependency of nitrogen fixation in 

the water column was also investigated. Characterisation of the water column through nutrient 

analysis aided site selection, though site selection was more importantly based on being close  

to the coast to where more organic matter would be available for microbial processes. Water 

samples for nutrient analysis were collected using CTD rosette and 20 L Niskin bottles as above 

and were analysed using a segmented- flow auto analyser (Skalar) and standard colourimetric 

techniques (SKLAR, San ++ System, Flow Access software 1.2.5) for NO3
-, NO2

-, NH4
+ and 

PO4-.  Surface water samples (10m) were collected at dusk using the CTD rosette and 20 L 

Niskin bottles as above. Water was collected at this depth, top of the euphotic zone, where 

concentrations of nitrate and phosphate were at a minimum, as shown by the water column 

characterisation (Figure 4.3).   

Water from the Niskin bottles was directly transferred into 30 mL serum bottles, which were 

overflowed 3 times and left with 1 mL headspace. At the same time, a plankton net was hauled 

through the top 20 m to collect a concentrated sample of plankton (~2000 times concentrated). 

1 mL of the concentrated plankton was added to each 30 mL serum bottle before sealing with 

a butyl stopper. As the low nitrate and phosphate upper waters of the OMZ have low 

abundances of planktonic nitrogen fixing organisms, adding the concentrated sea water allowed 

us to increase the number of nitrogen fixing organisms in the sample to better determine the 

temperature dependency of the process. Once sealed, the serum bottles were placed at the 
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incubation temperatures for 30 minutes to ensure they reached temperature before the 

experiment began. The 30 minute temperature adaptation period was based on preliminary test 

to ensure adequate time for 30 mL water to reach the experimental temperature. To begin the 

experiment, 0.5 mL of 20 nmol 15N2 gas was injected through the septa into each serum bottle. 

The 15N2 was produced from pure cultures of denitrifying bacteria. The bacteria were grown in 

a growth medium with Na15NO3
- (98 15N atom %, Sigma Aldrich) as substrate which then 

produced 15N2 gas through denitrification (Details of pure culture bacterial growth can be seen 

in chapter 2). Samples were incubated in the dark, at 5 temperatures (15, 20, 24, 30, 35oC), 

which straddled ambient surface water temperature (24oC) and were sacrificed over a time 

series (maximum 18 hours). There were 2 replicates at each temperature and the process was 

carried out at 4 different sites. Samples were harvested by filtration on to (GF-F, Whatman) 

using a filtration tower and vacuum pump. Filter papers were placed into individual cryo-vials, 

immediately frozen in liquid nitrogen to ensure microbial activity was quickly stopped and 

transferred to -80oC till processing back in the on-land laboratory.  

4.2.7 Sample analysis for Nitrogen fixation 

On return to the UK, filter papers were removed from the freezer (-80oC) and dried for 24 hours 

at 80oC. Eight discs were cut out from each filter, placed into ultra-clean tin capsules 

(Elemental Microanalysis, UK) and run through an elemental analyser (Flash EA 1112, 

Thermo-finnigan), coupled to a continuous flow isotope ratio mass spectrometer (CF/IRMS; 

Finnigan MAT DeltaPlus, Thermo-Finnigan). The amount of 15N2 incorporated into the biomass 

of the nitrogen fixing organisms on the filter paper was calculated using standard reference 

material (Caesin, Elemental Microanalysis Ltd, Devon, UK). To calculate excess nitrogen 

fixation, background (natural abundance) values were subtracted from samples incubated with 
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15N. We obtained natural abundance values from filtering control water samples with no 

addition of 15N2 that were treated in the same way as the 15N2 addition samples.  

4.2.8 Deriving apparent Activation and Deactivation Energies  

In order to calculate the temperature dependency of each process, natural Log transformed rates 

of each process was plotted against standardised incubation temperatures (1/kT, where k  is the 

Boltzmann’s Constant (8.62x10-5 eV K-1 (T)) and T is the absolute temperature in Kelvin) on 

an Arrhenius plot. The temperature was centred (1/kT-1/kTc, where 1/kTc is the average 1/kT 

for the thermal range included), and the negative slope of the regression line gives an estimate 

of the apparent activation energy in electron volts (eV) where 1eV is equivalent to 96.49 kJ 

mol-1. Plotting in this manner centres the inverse temperature around zero (Perkins et al., 2012). 

This calculated ‘apparent’ activation energy is used as an empirical index of temperature 

response of each process as this will always be lower than the theoretical sensitivity of 

biogeochemical reactions to temperature. This is because other environmental factors come 

into play such as connectivity to other microbial processes.   

4.2.9 Statistical analysis 

To determine whether there were any significant differences between N2 and N2O production 

rates with either NO3
- or NO2

- additions to sediments, paired t-tests (two tailed) were performed 

and the P-values are reported. To test for a significant effect of temperature on 15N2 production 

and 15N2 fixation, we used linear regression analysis. For all processes, site was fitted as a 

random effect in a mixed effect model to determine an overall population estimate for the 

temperature characteristics.  
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4.3 Results 

4.3.1 Oxygen and density water profiles  

At all 5 sites, high-resolution (~10 m) gas and nutrient vertical profiles were constructed from 

the water column. Figure 4.2 shows the profiles of oxygen and density with depth for each of 

the 5 sites, which were used to characterise the water column and determine exact sampling 

areas for further analysis.   

4.3.2 Temperature characteristic of potential rates of denitrification and 

anammox in sediments 

With the addition of 15NO3
-, sediment slurries showed almost no response in production of N2 

via denitrification with increasing in temperature (Figure 4.5A). This response is marginal with 

an apparent activation energy of only 0.014 eV (Table 4.2) and was non-significant (p > 0.05, 

Table 4.3).  However, when the average rate of N2 production via denitrification is calculated 

with 15NO3
-, the maximum rate was measured at 6oC, with a rate of 4.25 (± 0.42) nmol g-1 h-1, 

and the minimum rate observed at 12oC (3.45 ± 0.46 nmol g-1 h-1). 
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Figure 4.5. Arrhenius plots for the thermal sensitivity of natural log N2 production rates from 

sediments via denitrification (A) and anammox (B) from both 15NO3
- and 15NO2

- addition 

experiments at all sites against incubation temperature (corrected 1/kT, where K = Boltzmann’s 

constant and T is in Kelvin). Temperature increases from right to left.

B 
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Incubations with the addition of 15NO2
- showed a stronger, though negative, thermal response, 

with a significant decrease in N2 production through denitrification with increasing temperature 

(p < 0.05, Table 4.3). Though, again, the actual thermal response was only marginal, with an 

activation energy of -0.04 eV (Table 4.2). The maximum rate of N2 production was observed 

at 12oC with 7.36 (± 1.82) nmol g-1 h-1. Overall production of N2 through denitrification was 

significantly greater in the sediment slurry incubations with 15NO2
- additions (p < 0.001, Table 

4.4). Based on the average across the entire temperature range, production rates of N2 through 

denitrification were 40% greater from incubations with 15NO2
- than 15NO3

-. 

The production of N2 through anammox increased marginally for both 15NO3
- and 15NO2

- with 

increasing temperature (Figure 4.5B); however, the apparent activation energy was low for 

both treatments. With the 15NO3
-, the activation energy was 0.02 eV and with 15NO2

- the 

activation energy was even lower at 0.008 eV (Table 4.2). Overall, there was no significant 

effect of temperature with either 15NO3
- or 15NO2

- for the production of N2 through anammox 

(p > 0.05, Table 4.3). These results suggest anammox had a very weak thermal response in 

these type of sediments. With 15NO3
-, the maximum average rate of N2 production via 

anammox was measured at 15oC and was 4.19 (± 0.42) nmol g-1 d-1. Incubations with 15NO2
- 

had much greater average rates of N2 production through anammox of 8.99 (± 2.43) nmol g-1 

d-1 at 12oC. Average production rates of N2 through anammox were 70% greater with 15NO2
- 

than with 15NO3
- incubations. Significantly greater production of N2 through anammox was 

determined for incubations with 15NO2
- additions than sediments incubated with 15NO3

- (p < 

0.001, Table 4.4). These results suggest a preference of nitrite over nitrate as a nitrogen source.  

Anammox had significantly greater overall contribution to N2 production with NO2
- than NO3

- 

(p < 0.001, Table 4.4). In sediments with 15NO3
-, the contribution of anammox to N2 production 

reached a maximum at 15oC, with 55.72% (± 2.07), and sediments incubated with 15NO2
- had 

a maximum average contribution of anammox to N2 production at 24oC, with 70.49% (± 1.15) 
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(Figure 4.6). The average contribution to N2 production from nitrite across the thermal gradient 

was 65.72% (± 0.93) and for nitrate, 55.39% (± 0.76). No significant temperature effect was 

observed with either treatment (p > 0.05, Table 4.4).  

 

 

 

 

 

 

 

 

  

 

Figure 4.6. Average percentage contribution of anammox (± se, n = 18) to total N2 production 

from both 15NO3
- and 15NO2

- addition experiments against incubation temperature (oC) from 

sediments.  

 

The temperature sensitivity of N2O production from the sediment slurries was also calculated 

for 15NO3
- and 15NO2

- incubations (Figure 4.7). A significant decrease of N2O production rates 

with exposure to increasing temperatures was observed with additions of 15NO3
- (p < 0.002, 

Table 4.4). The mean maximum production rate for N2O was 44.92 (± 15.64) nmol g-1 h-1, at 

6oC.  Conversely, sediments incubated with 15NO2
- showed a non-significant response to 
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temperature for N2O production rates (p > 0.05, Table 4.3), with a maximum of 80.35 (± 20.09) 

nmol g-1 h-1 observed at 20oC. A significant difference was observed in the rates of N2O 

production between the two treatments (p < 0.001, Table 4.4), with greater production of N2O 

occurring with 15NO2
- addition. Activation and deactivation energies suggest a similar response 

for N2O production rates as N2 production (Table 4.2). With increasing temperature, 15NO2
- 

additions showed an increase in the rate of production of N2O, whereas additions of 15NO3
- 

showed a decrease in activity. 

 

Figure 4.7 Arrhenius plot of log transformed N2O production rates for 15NO3
- and 15NO2

- 

addition experiments against incubation temperature (corrected 1/kT, where K = Boltzmann’s 

constant and T is in Kelvin ) from sediments. Temperature increases from right to left. 
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Figure 4.8 shows the effect of temperature on the ratio of log N2O to log N2 production for both 

15NO2
- and 15NO3

- additions. There was a significant decrease in the ratio with increasing 

temperature with 15NO3
- (p < 0.003), whilst, with 15NO2

- , there was a significant decrease (p 

< 0.03, Table 4.3), with significantly greater ratios from the 15NO2
- addition experiment when 

comparing the intercepts at the mean temperature (p < 0.001, Table 4.4). Calculated activation 

energies of the ratios are 0.45 eV and -0.54 eV for 15NO2
- and 15NO3

- incubations, respectively 

(Table 4.2). The maximum average ratio for the 15NO3
- incubations was 5.7 (± 2.06) at 6oC, 

and for 15NO2
- incubations, the maximum average ratio was 10.6 (± 2.58) at 24oC.  
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Figure 4.8 Arrhenius plot of the ratio of natural log N2O to N2 production rates for 15NO3
- and 

15NO2
- addition experiments against incubation temperature (corrected 1/kT, where K = 

Boltzmann’s constant and T is in Kelvin) from sediments. Temperature increases from right to 

left. 
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Table 4.2 Summary of apparent activation energy (Ea) in electron volts (eV) for sediment 

incubations (nmol g-1 h-1 (1/kT)-1) and r2 of the regression. A minus sign (-) indicates a negative 

response to temperature. 

Treatment Variable Process Ea  (eV) r2 

15NO3
- ln N2 Denitrification 0.014 0.02 

15NO3
- ln N2 Anammox 0.02 0.02 

15NO3
- ln N2O Total -0.63 0.05 

15NO3
- ln N2O/ N2 Total -0.54 0.05 

15NO2
- ln N2 Denitrification -0.04 0.43 

15NO2
- ln N2 Anammox -0.008 0.01 

15NO2
- ln N2O Total 0.17 0.11 

15NO2
- ln N2O/ N2 Total 0.45 0.34 

 

 



Chapter 4 
 

154 
 

 

 

 

Table 4.3 Response of the rate of activity to temperature for N2 production through anammox and denitrification, total N2O production, and the 

ratio of N2O to N2 from 15NO3
- and 15NO2

- sediment slurry incubations. 

Test Treatment Explanatory variable  Dependent variable Random effect df X2  p 

Linear mixed effects model 15NO3
- Temperature 

ln 15N2 production 

denitrification 
site depth 1 1.07 > 0.05 

Linear mixed effects model 15NO3
- Temperature 

ln 15N2 production 

anammox 
site depth 1 1.46 > 0.05 

Linear mixed effects model 15NO3
- Temperature ln N2O production site depth 1 9.87 < 0.002 

Linear mixed effects model 15NO3
- Temperature ln N2O/ N2 site depth 1 9.18 < 0.003 

Linear mixed effects model 15NO2
- Temperature 

15N2 production 
denitrification 

site depth 11 5.02 < 0.05 

Linear mixed effects model 15NO2
- Temperature 

15N2 production 
anammox 

site depth 11 0.36 > 0.05 

Linear mixed effects model 15NO2
- Temperature N2O production site depth 11 1.54 > 0.05 

Linear mixed effects model 15NO2
- Temperature ln N2O/ N2 site depth 11 6.62 <0.03 
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Table 4.4 Summary of statistical significance between 15NO3
- and 15NO2

- addition on rates of 

response variables (nmol g-1 h-1) for sediment potential of denitrification and anammox.  

Test Response variable  df T p 

Mann Whitney; Rank Sum ln N2  denitrification 62 673 < 0.001 

Mann Whitney; Rank Sum ln N2  anammox 62 681 < 0.001 

Mann Whitney; Rank Sum Total ln N2O 62 621 < 0.001 

Mann Whitney; Rank Sum Total ln N2O/ ln N2 62 596 < 0.001 

 

 

4.3.3 Temperature characteristic of potential rates of denitrification and 

anammox in the water column 

Water column incubations with the addition of 15NO2
- showed very little response to 

temperature for N2 production through either denitrification or anammox (Figure 4.9), with 

corresponding activation energies of 0.003 eV and 0.0004 eV, respectively (Table 4.5). The 

non-transformed maximum average rate of N2 production via denitrification was 0.93 (± 0.47) 

nmol L-1 d-1 at 24oC. The maximum average rate of N2 production via anammox was 0.69 (± 

0.23) nmol L-1 d-1 at 24oC. No significant effect of temperature was observed for N2 production 

rates via either denitrification or anammox (p > 0.05, Table 4.6), with no significant difference 

observed between the contribution of N2 production via denitrification and anammox (p > 

0.05).  
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Figure 4.9 Arrhenius plots of natural log N2 production rates through denitrification (A) and 

anammox (B) from water column incubations against incubation temperature (corrected 1/kT, 

where K = Boltzmann’s constant and T is in Kelvin). Temperature increases from right to left.  

B 

A 
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The average contribution in the water column of anammox to total N2 production shows very 

little, non-significant (p > 0.05) response to increasing temperature (Figure 4.10). The average 

contribution of anammox over the incubation temperatures was 51.09% (± 1.67). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Average contribution of anammox (± se, n = 27) to total N2 production from water 

column experiments over incubation temperatures.  
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Table 4.5 Summary of apparent activation energy (Ea) in electron volts (eV) for water column 

incubations (nmol L-1 d-1 (1/kT)-1) and r2 of the regression line for water column capacity for 

denitrification and anammox. 

Variable Ea (eV) r2 

ln N2  denitrification 0.003 0.03 

ln N2  anammox 0.002 0.005 

Anammox % contribution 0.7 0.001 

 

Table 4.6 Statistical analysis for the response in rates of N2 production to temperature via 

denitrification and anammox (nmol L-1 d-1) and the contribution of anammox to N2 production 

rates in water column incubations.  Linear mixed effect models, with temperature as the 

explanatory variable and random effect as water column depth (factor).  

Dependent variable df X2 p 

ln N2 Denitrification 1 3.08 > 0.05 

ln N2 Anammox 1 0.08 > 0.05 

Anammox % contribution 1 0.98 > 0.05 

 

 

4.3.4 Water column nitrogen fixation 

Rates of nitrogen fixation, measured as the amount of 15N2 incorporated into organic biomass 

showed an overall decrease with increasing temperature between a range of 15-35oC, though 

this was non-significant (p > 0.05, Figure 4.11A).  No significant effect of site was observed, 

therefore rates from each site were averaged together by temperature (p > 0.05, Figure 4.11B), 
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and we observed an increase in 15N2 fixation rates from 0.61 (± 0.16)  ng L-1 h-1 at 15oC to 1.1 

(± 0.2)  ng L-1 h-1 at 20oC. This is followed by a decrease back down to 0.42 (± 0.11) ng L-1 h-

1 at 24oC where it appears to plateau. Nitrogen fixation is significantly greater at 20oC than all 

other temperatures, with no significant differences observed between the other measured 

temperatures (Table 4.7). Due to the data not being suitable for a linear regression, no activation 

energy could be calculated, simply a peak of activity at 20oC. This indicates a potential optimal 

temperature of nitrogen fixation at 20oC, whereas on either side of this temperature rates of 

nitrogen fixation are significantly lower.  
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Figure 4.11  Arrhenius plot for rates of nitrogen fixation (as natural log 15N2 incorporation) 

against incubation temperatures (corrected 1/kT, where K = Boltzmann’s constant and T is in 

Kelvin) (A) and average rates of nitrogen fixation (± se, n = 8) (B) as 15N2 incorporated into 

organic biomass (ng L-1 h-1) of nitrogen fixing organisms against incubation temperature (oC).  
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Table 4.7 Statistically significant results of nitrogen fixation rates between temperatures (One-

way ANOVA followed by Holm-Sidak method pairwise comparison). 

Temperature (oC) t  df p 

20 vs15 3.09 34 < 0.05 

20 vs 24 4.98 34 <0.001 

20 vs 30 4.10 34 < 0.005 

20 vs 35 4.04 34 < 0.005 

 

 

4.4 Discussion 

Rates of anammox and denitrification were measured in sediments and water column within 

the ETNP OMZ. Sediment rates of anammox and denitrification did not show strong thermal 

responses, with greatest rates at temperatures closest to the ambient temperature, suggesting 

narrow thermal optima for both processes. However, we did observe a difference in rates with 

different N substrates, with greater rates of denitrification with additions of NO3
-and anammox 

rates were greatest with additions of NO2
-. Water column rates of N2 fixation had no significant 

thermal response, as did rates of nitrification.  

4.4.1 Temperature characteristic of potential rates of denitrification  

Our average rates of sediment N2 production through denitrification (3.75 ± 0.26 nmol g-1 h-1 

15NO3
- additions and 15NO2

- additions 5.28 ± 0.66 nmol g-1 h-1) are comparable to those found 

in other permanently cold sediments (Canion et al., 2014a; Dalsgaard & Thamdrup, 2002; 

Rysgaard et al., 2004). However, sediment N2 production rates had marginal thermal responses 

from denitrification confirmed by their low activation energies. This limited thermal response 

was observed with both 15NO3
- and 15NO2

-
 additions. We measured optimum temperatures for 

maximum N2 production through sediment denitrification at 6oC and 15oC with 15NO3
- and 

15NO2
- additions respectively. This is lower than optimal temperatures in previous publications, 
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where the optimal temperature for denitrification ranges from 20-27oC in marine sediments, 

and is activity still occurring at 37oC (Brin et al, 2014; Canion et al., 2014a; Rysgaard et al., 

2004). In slurry incubations from near shore Arctic sediments, denitrification had an optimal 

temperature of 25-27oC (Canion et al., 2014a), however, they determined organic substrate 

additions (acetate and lactate) to be a more dominant control for rates of denitrification than 

temperature alone. In marine Arctic sediments, with an average annual temperature of -1.7 to 

4oC, a strong thermal response was calculated for denitrification rather than anammox, with an 

activation energy of 0.63 eV (Rysgaard et al., 2004). Temperate estuarine and shelf sediments 

have also shown denitrification to be positively correlated to temperature (Brin et al., 2014). 

Brin et al (2014) confirmed that the major drivers of denitrification activity in the estuarine and 

shelf sediments off the coast of New England were temperature and O2 consumption. These 

sediments were exposed to natural temperature fluctuations between 3-24oC over a year and 

therefore the denitrifiers were also exposed to this range. In comparison, the sediments used in 

this study are from a permanently cold site, therefore are adapted to cold and not fluctuating 

temperatures. Another key factor for the limited thermal response in this study could be the 

availability of organic matter, a limiting factor for microbial growth, which has been observed 

in previous studies (Brin et al., 2014; Mark Trimmer & Nicholls, 2009).  In-situ rates of 

denitrification were measured at the same sites as Brin et al (2014) with no thermal response, 

with reactivity limited by substrate availability (Heiss et al., 2012). Whilst our slurry 

incubations had concentrations of NO3
- and NO2

- above limiting values, other substrates, such 

as organic carbon, may have limited their potential thermal response. The only way to fully 

explore the thermal capabilities of such processes is to remove all limiting factors (Brin et al., 

2014). 

A decrease in production rates of N2O through denitrification was observed with increasing 

temperature, with a maximum rate of 44.92 nmol g-1 h-1 at the lowest temperature (6oC), which 
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is closest to the average ambient temperature of 4oC. This thermal response was only observed 

with 15NO3
- incubations. Rates of N2O production with 15NO2

- addition showed no thermal 

response but were significantly greater with a maximum rate double than that produced in 

15NO3
- incubations (80.35 ± 20.09 nmol g-1 h-1). Decreases of net N2O production with 

increasing temperature have been observed in other systems, mainly soils (Holtan-Hartwig et 

al., 2002),  potentially due to the enzymes involved with N2O production and reduction. Studies 

of soils have suggested the enzymes involved in N2O reduction had depleted activity at lower 

temperatures, having a greater optimal temperature than the enzymes responsible for N2O 

production, resulting in a net flux of N2O (Holtan-Hartwig et al., 2002). N2O production rates 

were negligible above background levels in the water column incubations. The literature 

suggests that N2O levels within the OMZ are supersaturated so the production from within our 

samples may have been swamped by background levels (Cohen & Gordon, 1978; Pierotti & 

Rasmussen, 1980). Furthermore, our rates of N2 production were very low, so N2O may have 

just been below the limit of detection.  

 

The ratio of N2O/ N2 allows us to consider the efficiency of denitrification, as increased N2O 

release means less N2O has been reduced within the microbial cells and therefore potential 

energy is lost. The substrate additions had differing effects on the ratio; additions of 15NO3
- 

showed a significant decrease in the ratio with increasing temperature. This means as 

temperature increased, the number of molecules of N2O produced, per molecule of N2, 

decreased. The opposite was observed with 15NO2
- additions, where the ratio significant ly 

increased with increasing temperature, so more molecules of N2O were produced for every 

molecule of N2 with warming. This is an interesting finding when compared to the N2 

production rates which suggest these organisms have a preference for NO2
- even though this is 

potentially less energy efficient. The response of a decrease in the ratio of N2O/ N2 with 
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increasing temperatures has previously been measured but literature for aquatic systems is 

lacking with most studies having been carried out using soils (Avalakki et al., 1995; Bailey & 

Beauchamp, 1973; Keeney, Fillery, & Marx, 1979). 

4.4.2 Temperature characteristic of potential rates of anammox  

Anammox had optimum temperatures of 15oC and 12oC with additions of 15NO3
- and 15NO2

-
, 

respectively within sediment incubations. Though we found no significant thermal response of 

anammox activity, the optimum temperatures, where maximum rates of N2 production were 

measured, are similar to those found in other sediment studies with optimum temperatures 

between 12-17oC (Canion et al., 2014a; Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004) . 

Relatively few studies have examined the temperature response of anammox in sediments, but 

those studies have found anammox to have a thermal response in marine systems (e.g. Canion 

et al., 2014a; Canion et al., 2014b; Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004) . 

However, there are exceptions in the literature: in estuarine and shelf sediments off the coast 

of New England, anammox had no thermal response (Brin et al., 2014), with organic matter 

and NO3
- porewater concentrations being the main drivers of observed anammox activity. 

Trimmer & Nicholls (2009) found rates of anammox to be positively correlated to sediment 

organic carbon content as well as NO3
- in the overlying water in estuaries along the east coast 

of the UK.  Brin et al (2014) found that rates of anammox were positively correlated to rates 

of denitrification, limited by the rate of NO2
- production via reduction of NO3

- by denitrifying 

organisms. Our results of N2 production through anammox were 70% greater with additions of 

NO2
-, than when NO3

- was the substrate, reducing its dependence on denitrification. This is 

further confirmed by the contribution of anammox to total N2 production in our study. 

Anammox was slightly more dominant as a source of N2 for both treatments and this 

contribution was constant across the temperature exposure with 55.39% and 65.75% with 

additions of 15NO3
- and 15NO2

- respectively. Published values for the contribution of anammox 
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to N2 production can be as high as 80% in cold marine sediments incubated at in-situ 

temperatures (6oC) (Dalsgaard & Thamdrup, 2002). In contrast, temperate estuarine and shelf 

sediments have shown a dominance of denitrification with the contribution of anammox 

between 0 - 4% and 8 - 42% respectively, indicating that anammox was reliant on 

denitrification (Brin et al., 2014). The importance of NO3
- concentration was also found in 

Chesapeake Bay estuarine sediments, with the greatest rates positively correlated with 

maximum NO3
- concentrations (Rich et al., 2008).  

Rates of N2 production from the water column through anammox also showed no significant 

thermal response. Though an average maximum was observed 24oC with 0.69 nmol L-1 d-1, 

they were much lower than rates measured from the sediments, suggesting sediments are more 

important sources of N2 production. Our rates of anammox are closer to the lower end of 

previously published rates found in oxygen deficit waters (Dalsgaard et al., 2012; Thamdrup 

et al., 2006; Ward et al., 2009). Previously published rates of water column N2 production 

through anammox found no correlation with concentrations of either NO3
- or NO2

- (Dalsgaard 

et al., 2012). The literature is limited in thermal responses of anammox in marine oxygen-

depleted waters and so direct comparisons are difficult.  

Anammox communities have been described as psychrophilic (Canion et al., 2014a; Canion et 

al., 2014b), which means that they have higher enzymatic activity at lower temperatures and 

therefore thrive at lower temperatures (Feller & Gerday, 2003). They are slow growing (Jetten 

et al., 1998) and therefore likely to respond more slowly to environmental changes (Dalsgaard 

et al., 2012). No dominance was observed in the relative contribution of either anammox or 

denitrification in the water column, with almost 50/50 contribution of the two processes to total 

N2 production. Previously published data for the Eastern Tropical South Pacific OMZ, where 

rates of water column denitrification, though patchy, dominated and contributed to 72% of the 

N2 production (Dalsgaard et al., 2012).  
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4.4.3 Water column nitrogen fixation 

Measuring rates of nitrogen fixation are difficult in the open ocean as the spread of organisms 

are patchy and generally not in high concentrations (Zehr, 2011). Our method of concentrating 

the plankton sample before incubations was to encourage measurable rates. We collected the 

water at dusk to allow the nitrogen fixing organisms to generate maximum energy during the 

day to enable nitrogen fixation (diazotrophy) to occur during the night (Zehr, 2011). We also 

targeted areas with low concentrations of phosphate which could be an indication of nitrogen 

fixation (Bonnet et al., 2008), with the nitrogen fixing organisms requiring phosphate for 

protein and DNA synthesis (Hynes et al., 2009; Moutin et al., 2005) and low nitrate 

concentrations encouraging nitrogen fixation as new nitrogen is required in the system. 

However, we still measured rates much lower than those previously recorded and we did not 

measure iron which is important for the formation of nitrogenase enzyme required for N2 

fixation (Karl et al., 2002). In the South Pacific, rates of ~1-2 nmol L-1 d-1 have been recorded 

(Raimbault & Garcia, 2007) and rates between 0.9-2.9 nmol L-1 d-1 have been observed in the 

North Pacific upper mixed layers (4-14 m) (Dore et al., 2002). However, no measurable rates 

of N2 fixation were found in one study carried out in the South Pacific central gyre, even with 

additions of both iron and phosphate, suggesting neither nutrient is limiting fixation here, rather 

they found low abundances of the gene (nif H) required to produce the enzymes to carry out 

this process (Bonnet et al., 2008).  

The rates of nitrogen fixation in the present study were non-linear with temperature and peaked 

at 20oC, close to the average ambient surface temperatures of 24oC, suggesting the process has 

a narrow thermal niche. Increasing temperatures would be expected to increase rates of 

metabolic processes due to increased enzyme activity. Very few studies have considered the 

effect of temperature on rates of aquatic nitrogen fixation. One previous study found an 

increase in temperature (6oC) did not significantly increase rates of nitrogen fixation in 
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Trichodesmium but was much more influenced by concentration of CO2 for photosynthesis 

(Levitan et al., 2010).  Trichodesmium are potentially one of the most important nitrogen fixing 

organisms in the open ocean (Capone et al., 2005; LaRoche & Breitbarth, 2005), and therefore 

been widely studied (Bonnet et al., 2008; Karl et al., 2002; Zehr, 2011). Laboratory 

experiments on the effect of temperature on Trichodesmium have shown optimal temperature 

between 24-30oC, in line with optimal temperature found in this study, with maximum rates of 

0.13 mmol N mol POC-1 h-1 d-1  at 27oC when all other factors were controlled for (e.g. light, 

nutrients etc). However, this study was carried out with acclimation at experimental 

temperatures. Whereas short-term incubations have shown a linear increases of nitrogen 

fixation up to 36oC (Staal et al., 2003) which is not in-line with our findings. With many 

different variables affecting the rates of nitrogen fixation, it is difficult for us to fully explain 

the low rates observed in the current study. Further investigation into the genes required for N 

fixation would allow to determine if the potential for measurable rates of N fixation exists at 

these sites. We can then further investigate the external limiting factors, such as PO4
-, NO3

- and 

iron on the rates at increasing temperatures.  

4.5 Conclusion 

The current study enabled us to investigate the thermal response of denitrification and 

anammox in both the water column and sediment within the ETNP OMZ. The rates of nitrogen 

loss and fixation in this study suggest the OMZ’s to be a significant source of nitrogen in the 

form of N2. The marginal thermal responses observed in this study may have been constrained 

by substrate limitation. Availability of organic carbon is a key factor in determining rates of 

both denitrification and anammox. Open ocean sediments are limited in organic substrates, 

relying on primary productivity in the surface waters to bring down nutrients and carbon. The 

low rates of nitrogen fixation observed in the currently study, may suggest very little new 
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nitrogen is entering the systems and therefore rates of primary productivity will be low, creating 

a knock-on effect further in the system. To try to reduce the limitation of organic substrates in 

the water column, we selected sites closer to shore where water density was greatest. However, 

in both sediments and water column, the greatest rates of denitrification and anammox were 

measured at temperatures closest to those experienced in-situ, which may also suggest the 

microbes involved are adapted to these temperatures with a narrow thermal niche and are not 

necessarily substrate limited. Substrate addition experiments with additional sources of carbon 

and exposure to increasing temperature will aid in determining if the responses are limited by 

substrate or microbe physiology.  
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Chapter 5: Conclusions and suggestions for future work 

The aim of the research presented in this thesis, was to investigate the thermal responses of 

different processes within the nitrogen cycle in both pure cultures and different environmental 

samples. The data presented in this study highlights the similarity of responses to temperature 

i.e. generally rates of nitrogen transformations increase with increasing temperature, but the 

degree of these responses are variable between systems and processes. In chapters two and 

three, we found strong thermal responses of denitrification to temperature, with both rates of 

N2 and N2O production increasing to an optimal temperature.  However, we found very little 

thermal response of denitrification or anammox in marine sediments or water column of an 

oxygen minimum zone (chapter four).  

There are two key differences between the laboratory pure culture experiments, the closed 

system experimental mesocosms and the marine oxygen minimum zones; substrate availability 

and ambient temperatures. Within chapter two, pure cultures of denitrifying bacteria were 

grown at room temperature in a media providing all required substrates in non-limit ing 

concentrations. Here we observed an increase in metabolic activity with increasing rate of 

production of N2 and N2O up to an optimum temperature, after which, activity decreased. 

Ensuring all substrates for denitrification were available meant we could thoroughly investigate 

the thermal response in isolation, which is very difficult with environmental samples. In 

addition to increasing rates with increasing temperature, we also observed an increase in 

efficiency of denitrification with a decrease in the ration of N2O/ N2. This has wider 

implications of a more efficient excess nitrogen removal pathway from eutrophic systems as 

global temperatures increase with a relative reduced about of GHG emissions. Results from 

chapter two suggest even moderate-term exposure to different temperatures can alter 

denitrifiers thermal sensitivity in pure culture laboratory.  Furthermore, this response varied 

between strains, highlighting the importance of molecular analysis on environmental samples.  
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 In chapter three, the experimental mesocosms, sediments were exposed to a range of 

temperatures throughout the year as experienced are in a temperate climate. These systems are 

‘closed’ in that they rely on organic substrates from primary production and cycling within the 

system and receive very little allochthonous contributions. We found an interesting differing 

responses of short-term temperature exposure and moderate to long-term warming. Short-term 

temperature exposure experiments allow us to investigate the capacity of the microbes in their 

present physiological state to adjust to temperature changes. Whereas long-term warming 

allows us to investigate potential physiological or community structure changes. With long-

term warming of the experimental mesocosm sediments, we observed a significant effect of 

temperature, with greater rates of denitrification in the warmed mesocosms at in-situ 

temperatures. However, when sediments from both treatments were exposed to a range of 

temperatures, we only observed a significant difference between treatments at the highest 

temperature, which they are not exposed to when in-situ.  These results may suggest an 

adaptation has occurred within the heated treatment denitrifying community. Molecular 

analysis on these sediments would allow us to determine if there has been a community shift 

in the warmed ponds to bacterial strains that are more efficient at higher temperatures or 

whether we see similar bacterial strains that have adapted to increase fitness when warmed. We 

also found significant effects of season on the rates of denitrification within the experimental 

mesocosms in both long-term warming and short term temperature exposure experiments. We 

measured the greatest rates of N2 and N2O production in the warmer summer months with no 

effect of treatment. This seasonal variability highlights the importance of substrate availability , 

which are strong limiting factors for nitrogen cycling processes. The organisms present will 

only have the ability to increase their metabolic process if the substrates are available.  

However, the observed seasonal variability may also be influenced by changes in community 

structure. This again highlights the advantage of molecular analysis to identify if this is the 
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case, or whether other factors, such as substrate availability has a stronger influence. Molecular 

analysis is advantageous as it not only allows the identification of the species present through 

DNA analysis and sequencing but RNA analysis allows the identification of genes that are 

active at that point in time.  

Chapter four measured anammox and denitrification in permanently cold sediments (~ 4oC) 

and nutrient limited waters within the core of the OMZ that have relatively stable temperatures 

due to stratification. As seen in previously published studies, organic substrate availability can 

limit temperature responses (e.g. Brin et al, 2014; Heiss et al., 2012; Trimmer & Nicholls, 

2009), which may have been the case within chapter four. However, potential rates in response 

to temperature may have also been reduced in the marine system due to a narrow thermal niche  

of the microbes responsible. As previously mentioned, these systems do not experience a wide 

range of temperatures, and it could be suggested that the microbes are specifically adapted to 

maximise fitness at their constant temperature. To investigate whether the responses observed 

in these three systems are controlled by substrate availability or natural ambient temperatures 

and their adaptations to this, we would need to carry out substrate addition experiments with 

temperature. This would reduce the effect of substrate limitation and allow us to investigate 

the full capacity of the microbe’s potential at greater temperatures.  

The nitrogen cycle is an important macronutrient cycle, controlling the distribution of life on 

Earth as it is a key nutrient required for primary production. It is an extremely complex cycle, 

with numerous steps, all mediated by different enzymes which have individual optimal 

temperatures. The thermal range of these enzymes and the rate at which they can adjust to 

warming will ultimately dictate how the different processes within the nitrogen cycle will 

change with the predicted changes in climate. This study has highlighted gaps in the literature 

as to the long-term and short-term warming effects on the various processes within the nitrogen 

but also the direct effects on the microbes carrying out these processes in aquatic systems, 
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especially in open oceans. Comparison of the thermal responses of organisms present in the 

nitrogen cycles and their ability to alter their metabolic processes in relation to temperature, 

also highlights the importance of substrate availability. We obersved stronger thermal 

responses in the pure cultures with no substrate limitation than we observed with the 

environmental samples. We did ensure enough N was available in the experiments, but did not 

have any additions of a source of carbon or any additional micro nutrients which may have 

been limiting, dampening the potential thermal responses.  

Key future work which would aid in our understanding of the potential of the nitrogen cycle 

dynamics with increasing temperature, would be to include both substrate addition experiments 

and molecular analysis.  For a greater understanding, these would be carried out in conjunction 

with one another. For environmental samples, seasonal sampling for the different processes 

would be carried out, including addition of increasing substrate concentrations (N and C 

source) at a range of temperatures. These samples would then be stored in a way to ensure 

community structure could be investigated. DNR and RNA analysis could be carried out, which 

would allow us to determine what organisms were present at the time of sampling, and the 

genes active at that particular time. To further this understanding, more processes within the 

nitrogen cycle would also be measured. Different components of the nitrogen are tightly 

connected to one another and we may have underestimated certain processes within our 

investigations. For example, nitrification within the experimental mesocosms may have been 

greater than measured, as due to practical restrains, we do not measure DNRA which can 

convert the product of nitrification back into NH4
+.  

5.1 Parallel research projects  

During our six week cruise on the RSS James Cook investigating aspects of the nitrogen 

cycling in the North-Eastern Tropical Pacific oxygen minimum zone just off the Guatemalan 
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coastline, water samples were collected for molecular analysis within the water column by a 

colleague. This data includes gene copy numbers for nitrogen cycling genes and it is our hope 

to combine the molecular data with the process data and combine the findings in the near future.  

Currently a meta-analysis on the experimental mesocosm is underway, including seasonal 

molecular analysis on both carbon and nitrogen cycling genes. This will compliment previous 

process measurements carried out by myself within this thesis and also previously published 

finding on carbon cycling within these systems (Yvon-Durocher et al., 2010; Yvon-Durocher 

et al., 2011).
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