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Abstract 

This thesis is a study of the size effect. Improvements on both theoretical work and 

experimental design are involved in this thesis. The theoretical section focuses on the 

grain size effect, while the experimental section is related to the micro-foil bending test.  

Both classic experimental data and theories for the Hall-Petch relationship are reviewed 

comprehensively. The fitting of the datasets show that the inverse square-root 

dependence and simple inverse expressions are equally good. The fully Bayesian 

analysis strongly suggests that the latter is correct. Since the physical mechanism 

underlying the simple inverse dependence is a general size effect, the precise 

description of the Hall-Petch effect is that it is a manifestation of the general size effect, 

instead of having its own special character.  

Improvements on the classic Stolken and Evans’ micro-foil bending experiments are 

also carried out in this thesis. The smart design of the new equipment eliminates the big 

risk of error in the classic experiment. By using the new device, precise datasets from 

the elastic region through the yield point and to high plastic strain area can be obtained. 

The initial results correspond well with the old published data.  
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List of Figure Captions 

Fig.1.1 Plastic bending of a crystal of length l and thickness t to a radius of R. This 

bending process will produce a tensile strain on the upper surface and a compressive 

strain on the lower surface. The strain gradient is accommodated by introducing GNDs 

into the crystal. (Fig.1.1b is partly reproduced from Fleck, 1994) 

 

Fig.1.2 Schematic diagram of GNDs (Reproduced from Ashby, 1970) 

 

Fig.1.3 Schematic diagram of deformed small fragment. (Reproduced from Bragg, 

1942) 

 

Fig.1.4 (a) Tension data for copper wires of diameter in range 12-170μm. (b) Torsion 

data for copper wires of diameter in range 12-170μm. (Reproduced from Fleck et al., 

1994) 

 

Fig.1.5 The normalized bending moment were plotted against the surface strain for all 

three foil thickness ranging from 12.5 to 50μm. (Reproduced from Stolken and Evans, 

1998) 

 

Fig.1.6 The closed symbols are finite element simulations, the open symbols are 

experimental indentation data for Nickel: circle, R=290μm; triangle, R=20μm; square, 

R=10μm; diamond, R=5μm. The strength increased as the radius of indenter decreased. 

(Reproduced from Spary and Bushby, 2006) 

 

Fig.1.7 FIB image of the micro pillar samples. (a) 860 nm diameter, 3.2 micron tall; (b) 

300 nm diameter, 3.15 micron tall. (Reproduce from Greer et al. 2005) 

 

Fig.1.8 The compressive stress-strain plot of (001) oriented pillars: flow stresses 
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increase radically when pillar diameters decrease below 1μm. (Reproduce from Greer 

et al. 2005) 

 

Fig.1.9 The lower yield point plotted against the inverse grain size. A parabola was 

plotted by the author indicated an inverse square root relationship. (Reproduced from 

Hall, 1951) 

 

Fig.1.10 The yield and tensile fracture stresses were plotted against with (a) d–1/2, (b) d–

1 and (c) d–1/3, respectively. The dashed line in (b) and (c) represented the liner plots by 

the least square fitting analysis. The d–1/3 fit was excluded because of a negative 

intercept on the y-axis. (Reproduced from Aldrich, 1970) 

 

Fig.1.11 The Hall-Petch type plot of wire tension data on nickel. The stress was plotted 

against inverse square root grain size. For small strains (less than 5%), the linear 

relationship were plotted, but, for larger strains, the fitting is a curve which clearly 

deviating from the Hall-Petch equation. (Reproduced from Narutani and Takamura 

1991) 

 

Fig.1.12 Schematic diagrams of the various ways to produce the plastic strain gradients. 

(Reproduced from Fleck 1994) 

 

Fig.1.13 Schematic explanation showing that the elastic strain energy ES increases in 

proportion to the strained layer thickness h, the energy of the misfit dislocation has a 

logarithmic dependence on thickness. Critical thickness hc is the crossing of the two 

lines (Reproduced from Dunstan, 1997) 

 

Fig.1.14 Schematic representation of dislocation pile-up. (Reproduced from Y. Li & 

Dunstan 2016) 
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Fig.1.15 The example of grain boundary ledge acting as donor of dislocations. 

(Reproduced from Y. Li & Dunstan) 

 

Fig.1.16 Schematic illustration of slip distance model: dislocation slip length is less in 

a smaller grain, the dislocation density is higher. (Reproduced from Y. Li & Dunstan) 

 

Fig.1.17 The effects of crystalline elastic or plastic anisotropy in forcing stress and 

strain gradients, in which anisotropic grains are subject to a homogenous stress field. 

(Reproduced from Y. Li & Dunstan) 

 

Fig.2.1 Datasets for iron, steel and silicon steel are plotted against (a) the inverse 

square-root of grain size, (b) the simple inverse of grain size, and (c) in normalised form 

on a double logarithmic plot. The normalization constants: Y=211GPa, a0=0.287nm. In 

(a), the solid lines are fits to Eq.2.1; in (b) the solid lines are fits to Eq.2.3 with the 

exponent x= -1; in (c) the solid lines are plots of Eq.2.2 with k = 0.72 and σ0 chosen so 

the lines for each dataset are below most of the data. The heavy black line is for Eq.3.2 

with σ0 = 0. Fe(1) is the classic dataset of Petch (1953); Fe(2) represent the silicon steel 

datasets from Douthwaite and Evans (1973); Fe(3) is data from Agraie-Khafri et al. 

(2012); Fe(4) are data sets for 316L stainless steel from Kashyap and Tangri (1997); 

Fe(5) come from  the EN2 steel datasets in Douthwaite (1970); Fe(6) represent data 

sets from Armstrong (1962); Fe (7) is the classic dataset of Hall (1951). 

 

Fig.2.2 Datasets for brass are plotted against (a) the inverse square-root of grain size, 

(b) the simple inverse of grain size, and (c) in normalised form on a double logarithmic 

plot. The normalization constants: Y=115GPa, a0=0.361nm. B(1) and B (2) are Bassett 

and Davis (1919) data for 68-32 and 69-31 brass; B (3) is Babyak (1960) data for 70-

30 brass; B(4) are the Armstrong (1962) 70-30 brass data at yield stress and at 20% 

strain; B(5) are the data sets from Douthwaite (1970) for the yield stress and the flow 

stress at 5% and 7.5% strain. The solid curves are as in Fig.2.1. 
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Fig2.3 Data sets for copper are plotted against (a) the inverse square-root of grain size, 

(b) the simple inverse of grain size, and (c) in normalised form on a double logarithmic 

plot. The normalization constants: Y=115GPa, a0=0.361nm. Cu(1) and Cu(2) are data 

sets from Hansen and Ralph (1982) liquid nitrogen temperature and room temperature 

at 5%, 10% and 20% strain, respectively; Cu(3) indicate the data for copper at 0.5% 

strain from Armstrong et al. (1962). The solid curves are as in Fig.2.1. 

 

Fig.2.4 W Data for tungsten Vashi et al. (1970); Ti(1) Data from titanium Hu and Cline 

(1968); Cr Data is chromium Brittain et al (1985); Ti(2) Data reproduced from titanium 

Jones and Conrad (1969) are plotted against (a) the inverse square-root of grain size, 

(b) the simple inverse of grain size, and (c) in normalised form on a double 

logarithmmic plot. The normalization constants: for tungsten, Y=411GPa, a0=0.316nm; 

for chromium, Y=279GPa, a0=0.228nm; for titanium, Y=116GPa, a0=0.295nm. The 

solid curves are as in Fig.2.1. 

 

Fig.2.5 (a) The reproduced original Hall-Petch type plot of flow stress for Ni data. (b) 

The linear fitting of both the mechanical flow stress data and electrical resistivity 

method data. The black filled circles indicated the flow stress data points of (a), the red 

filled circles represented the electrical resistivity measurements data which reproduced 

from the Fig.5 and Fig.8 of the original reference, 10% and 20% strain at 77K data were 

reproduced. 

 

Fig.2.6 The kHP values were plotted against square root strain from the data of Table 

2.5. The red filled circles are low strain data, the red crosses are high strain data, and 

the black line is linear relationship indicated by Eq.13 of Narutani’s paper. 

 

Fig.2.7 Data for silver, gold and nickel are plotted against (a) the inverse square-root of 

grain size, (b) the simple inverse of grain size, and (c) in normalised form on a double 
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logarithmic plot. The normalization constants: for silver, Y=83GPa, a0=0.409nm; for 

gold, Y=79GPa, a0=0.408nm; for nickel, Y=200GPa, a0=0.352nm. Ag(1) and Ag(2) 

indicated the silver data of Aldrich and Armstrong (1970) at 20% strain and yield stress; 

Ni(1) is the data set of Thompson (1977); Ni(2) from Keller and Hug (2008); Ni(3) 

from Narutani & Takamura (1991). The solid curves are as in Fig.2.1. 

 

Fig.2.8 Data for aluminium are plotted against (a) the inverse square-root of grain size, 

(b) the simple inverse of grain size, and (c) in normalised form on a double logarithmic 

plot. The normalization constants: Y=70GPa, a0=0.316nm. Al(1) and Al(2) are from 

Hansen (1977) for 99.5% and 99.999% aluminium at 0.2, 1, 5, 10, 20% strain at room 

temperature; Al(3) show the Carreker and Hibbard (1957) aluminium data; Al(4) are 

the data of Tsuji et al. (2002); Al(5) and Al(6) come from Yu et al. (2005) at  77K and 

at room temperature, respectively. The solid curves are as in Fig.2.1. 

 

Fig.2.9 Normalised datasets from the literature for flow or yield stress against grain size. 

The heavy line in all panels is for Eq.2.2 with k = 0.72 and 0 = 0. The thin solid lines 

are for Eq.2.2 with k = 0.72 and 0 as the only fitting parameter. The black dashed lines 

are fits using Eq.2.3 with x = 1, k and 0 as fitting parameters. The black chain-dotted 

lines are fits using Eq.2.1, normalised, so that kHP and 0 are the fitting parameters. 

The purple solid lines are the minimum strength predicted by the Eq.2.8 with the yield 

strain equal to 0.002. The purple chain-dotted lines are Eq.2.8 at yield strain plus the 

elastic strain which describe the bulk strength. The red heavy line and chain-dotted line 

in Fig. ⅳ come from Eq.2.8 with the plastic strain equal to 0.04. The dark yellow line 

in Fig. v is the plot of Eq.2.4 at 20% strain. 

 

Fig.2.10 The probability distribution of Eq.2.2 and Eq.2.8 in the log0–logd space. In 

(a), the Eq.2.2 have a probability density of 1 for datasets above the ݀ିଵ line (black 

heavy line) and 0 for data dramatically below the ݀ିଵ line. In (b), for the Eq.2.8, the 

relative probability density above the ݀ିଵ line is 0.7 due to 0.3 of the gap between 
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modified Ashby theory (purple chain-dotted line) and CTT theory (black heavy line). 

 

Fig.2.11. The schematic of the four classic models: (a) Dislocation pile-up model, (b) 

Grain boundary source model, (c) The slip distance model, (d) The GNDs and elastic 

anisotropy model. 

 

Fig.2.12. (a) The predictions of the pile-up model (Eq.2.8) (heavy black line), the grain-

boundary ledge model (Eq.2.10) (dashed blue lines indicating the range of the upper 

limit of the predictions) and the slip-distance model, Eq.2.12 (chain-dotted red lines) 

are compared with the data.  The depth of shading indicates schematically the 

probability according to these models that data will fall in the various regions; white 

corresponds to a probability close to zero.  In (b), the Hall-Petch slopes are plotted 

against the normalised anisotropy factor. The large data points indicate that only one 

data set is available for a metal; the small data points represent many results for the 

same metal. The red filled circles indicate the yield datasets. The solid black line is a 

least-squares fit of y = ax + b to the averaged data and the dashed blue line a fit of y = 

ax as described in Section 2.4.4. 

 

Fig.2.13. (a) The schematic of Eq.2.2 plots against the inverse square root abscissa. The 

black heavy parabola represents the Eq.2.2. The three regions datasets in different 

ranges of grain size are shown by different colours: large (L), mid-point (M) and small 

(S) grains region, which are represented by blue, green and red, respectively. Fitting to 

the large-grain-size dataset (L, blue) will give the blue straight line with a small slope 

kHP, while fitting to the green (M) and red (S) datasets with medium and small grain 

sizes will give the green and red straight lines with larger slopes (larger values of kHP). 

(b) This is an example from the data of Emery’s gold films tension experiment. The 

blue dashed line is the best fit parabola of Eq.2.2. The black solid straight line is the 

Hall-Petch fitting of Eq.3.1. The red solid line is fitting with the upper and lower halves 

of the dataset. 
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Fig.2.14. The normalised HP factors are plotted against the normalised average grain 

size. 

 

Fig.2.15. Normalised values of kHP for the data from the pure metal datasets are plotted 

against the normalised inverse square root of grain size. The heavy black line indicates 

that the smaller grain size datasets have a higher value of the kHP. 

 

Fig.3.1. Schematic of the Stolken and Evans’ micro-foil bending equipment. (a) 

mounted the foil, (b) load process, (c) unload (elastic recovery). (Reproduced from 

Stolken) 

 

Fig.3.2. Schematic of the calculation of stress-strain behaviour from measured bend 

radii. (Reproduced from Stolken) 

 

Fig.3.3 The normalized bending moment were plotted against the surface strain for all 

three foil thickness ranging from 12.5 to 50μm . (Reproduced from Stolken and Evans) 

 

Fig.3.4 Schematic of the 4-Point micro-foil bend rig reproduced from P.Moreau, 

M.Y.P’ng. The red line is thin metal foil, which is restricted on the shim by two 

weighted bars on both side. 

 

Fig.4.1 Schematic of the load-unload formers bend rig. (a) Introduction of the different 

components of the rig. (b) (c) show the details of how to control the wedge and former. 

 

Fig.4.2 (a) The top-view of the cover plate is shown. The middle part is removed to 

expose the foil. (b) The shape of the load rubber. 

 

Fig4.3 Schematic of the two face mode of the rig. In (a), the flat foil is measured 
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horizontally. In (b), the whole profile couldn’t be obtained since the measurement on 

the end of the foil exceed the height limitation. In (c), with the rotation of the rig, the 

full information could be obtained. 

 

Fig.4.4 (a) The profilometer used in the surface profile measurement. (b) Schematic of 

the optical profilometer. There is a measuring range of profilometer. 

 

Fig.4.5 (a) 3D plot of the surface profile of No.7# Former (low strain). X-axis is scan 

length in mm, Y-axis is the different scanned line, Z-axis is the height of the surface 

profile in m. (b) Fitting of each line of data. The light blue line is the measured surface 

profile data, while the red line from the fitting of Mathematica© software. (c) The 

deviations check of the fitting demonstrates the fitting is relatively accurate. 

 

Fig.4.6 The Mathematica fitting of the surface profile of No.14# Former (high strain). 

The fitting to the profile is focus on the circle component, two fitting tangent lines are 

used to determine the cutting range of the profile data. 

 

Fig.4.7 Schematic of the main components of the RTA. The foil samples are placed 

between two graphite strips and the temperature is measured and controlled by optical 

thermocouple. The samples are annealed in either high vacuum environment or inert 

Nitrogen gas atmosphere to prevent oxidation. 

 

Fig.4.8 Schematic of the load-unload bending test process. (b) is the zoom in detail of 

the foil. Since the former and thin foil fully contact, load radius is the former radius R1. 

The foil is then unloaded, it elastically recover to a larger radius R2. 

 

Fig.4.9 The examples of SEM images of the annealed Ni foil samples. (a) The 125m 

thickness, annealing temperature 1000oC, annealing time 5s. (b) The 50m thickness, 

annealing temperature 700oC, annealing time 30s. 
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Fig.4.10 The measured surface profile of the unload sample. X-axis is the scan length 

of the sample in mm, Y-axis is different scan of the sample. Z-axis represented the 

profile in micron. 

 

Fig.4.11 (a) The normalized bending moment was plotted against the surface strain. 

The red data is the new data, the blue data is the old published data. The sample 

thicknesses of filled squares, circle, triangle and cross are 10m, 50m, 50m and 

125m, respectively. Thinner foils are stronger than thicker foils. 
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Introduction 

Smaller is stronger. This is the so called size effect. The size effect is that the mechanical 

properties of materials depends on the size dramatically when the size is below 100 

microns. The strength of a material increases when the size decreases. The term of “size” 

here represents the general definition of the material size, it includes both the external 

sample dimension and the internal structure size e.g. the grain size[1]. The research of 

this thesis can be divided into two sections: (1) A review on both the experimental 

evidence and the models related to Hall-Petch dependence is investigated; (2) A 

brilliant micro-foil bending test method based on the load-unload measurement is 

designed and fabricated.  

This thesis is composed of 5 Chapters. Chapter 1 is the comprehensive literature review 

on both the experiments and the theories related with my research. Chapter 2 is the 

investigation on the Hall-Petch dependence. Chapter 3 is the literature review particular 

on the foil bending experiments. Chapter 4 describes design and fabrication of the new 

micro-foil bending test method based on the load-unload measurement. Chapter 5 is 

summary.  
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1. Literature review 

In this chapter, the size effect in experimental observations are introduced firstly. The 

external size effect experimental evidences include both inhomogeneous and 

homogeneous deformations, the internal size effect experiments are mainly focused on 

the grain size effect, i.e. the Hall-Petch effect. Then the theories on the general size 

effect and the models related to the Hall-Petch effect are reviewed.  

Before the classic experiments review, some key concepts related to material 

mechanical properties should be reviewed.  

1.1 Key concepts 

1.1.1 SSDs and GNDs 

It is experimentally found that many two-phase alloys are much stronger than pure 

single crystals. In 1970, Ashby [2] proposed the GND model to explain it. When a 

material is deformed, dislocations are generated and moved. Dislocations are trapped 

and form obstacles to prevent the further motion. This is the reason of hardening. If the 

mobile dislocations trapped randomly, such trapped dislocations are referred to as 

statistically stored dislocations (SSDs). The conventional Taylor hardening model [3] 

is based on the SSDs. However, if the materials deform with inhomogeneous strain i.e. 

the plastic deformation occurs with plastic strain gradients, the values of the plastic 

strain varies with position. Hence, dislocation will appear to accommodate this non-

uniform deformation. These are the so called geometrically necessary dislocations 

(GNDs). The plastic strain gradient is achieved by introducing of GNDs into the crystal, 

the density of GNDs are proportional to the strain gradients. 

Take the plastic bending of a single crystal as an example to explain GNDs, as shown 

in Fig.1.1. We consider a crystal is of length l and thickness t before the deformation 

(Fig.1.1a). Then the crystal is bent to a radius of R, the angle of the arc is  (Fig.1.1b). 

The different sections of the crystal undergo the various strain: the strain of the middle 
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plane of the bar is zero; the upper part of the crystal is deformed as a tension behaviour, 

i.e. the length of the upper surface is increased l; conversely, the lower part of the 

crystal is deformed as a compression behaviour, the length change of the lower surface 

is negative l. Hence, the total length difference is 2 l t  , the strain difference 

between the two surfaces is 2l/l. The strain gradient is this strain difference divided by 

the thickness t: 

                Strain gradient 2
l t

lt lt l

  
                   (1.1) 

The number of atomic planes in the crystal is the length divided by the Burgers vector 

b. In plastic strain, the difference in the number of atomic planes between the surfaces 

is:  

                           2 l
n

b


                               (1.2) 

This difference number is accommodated by introducing the GNDs. The density of the 

GNDs is then expressed as: 

2 1 Strain Gradient
2

G

n l l

lt blt lt b b

  
        (1.3) 

By considering the difference between the orientation of the slip plane and direction of 

the bending axis, Eq.1.3 will be changed to: 

 Strain Gradient
G b

                     (1.4) 

where  is a constant of order unity, b is the Burgers vector. 
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(a)                                       (b) 

Fig.1.1 Plastic bending of a crystal of length l and thickness t to a radius of R. This bending 

process will produce a tensile strain on the upper surface and a compressive strain on the 

lower surface. The strain gradient is accommodated by introducing GNDs into the crystal. 

(Fig.1.1b is partly reproduced from Fleck, 1994 [4]) 

 

For two-phase alloys, the two phases deform differently. One component deforms more 

than the other, such alloys are plastically non-homogeneous. In this way, an additional 

density of GNDs will appear, increasing the total density of the dislocations, therefore 

making the material much stronger. 

Further, poly-crystals of pure metals are also plastically inhomogeneous even under 

uniform deformation, the mechanism is shown in Fig.1.2. In Fig.1.2 (a), each grain of 

a poly-crystal has a random orientation, while the tensile strain is uniaxial. Because of 

the random orientations, each grain will slip in a different direction under the uniaxial 

strain, then overlap and voids will appear, the grain boundary will correct overlaps or 

voids, then GNDs are formed. 
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Fig.1.2 Schematic diagram of GNDs (Reproduced from Ashby, 1970 [2]) 

1.1.2 Finite size effect on strain hardening  

In 1942, ten years before the famous Hall-Petch equation was established, in order to 

explain the strain hardening, Bragg [5] proposed that the strength is inversely 

proportional to the grain size. It is generally observed that the effect of plastic 

deformation by strain hardening is to disintegrate the crystalline grain into much 

smaller crystal fragments. Hence, during the strain hardening, with the deformation 

increased, the increase strength of the metal can be attributed to a corresponding 

decrease of the size of fragments. For simplicity, Bragg supposed a fragment to be a 

cube of volume V and side t, it is also supposed that the general shear strain of the metal 

is parallel to the glide planes of the fragment. The displacement of the fragment is x, as 

shown in the Fig.1.3.  
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Fig.1.3 Schematic diagram of deformed small fragment. (Reproduced from Bragg, 1942 [5]) 

It may be considered that glide will occur in this fragment when the value of x reaches 

the magnitude of burger’s vector b. The shear strain is  

s

b

t
                           (1.5) 

where t is length of the fragment and therefore the grain size d. 

All the fragments are subject to this condition. By multiplying the shear modulus G, the 

whole metal will withstand a shear stress 

                                
s

b
G
d

                          (1.6) 

According to Eq.1.6, the smaller grain size d, the strength of material will increase. 

1.2 External size effects 

In the past a few decades, the size effects have been observed in various experiments 

with different external geometric dimension include both inhomogeneous and 

homogeneous deformation. The experiment only be described here in this section, the 

theory will be reviewed later.   
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1.2.1 Inhomogeneous deformation experiments 

The classic inhomogeneous deformation experiments are the wire diameter in micro-

wire torsion [4, 6, 7], the foil thickness in micro-foil bending [8] and the plastic 

deformation zone in nano-indentation experiments [9-11].  

 

ⅰ Micro-wire torsion 

In order to confirm the SGP theory and observe direct experimental results for strain 

gradient hardening, in 1994, Fleck et al. [4] designed both tension and torsion 

experiments on thin polycrystalline copper wires. The purpose of these two experiments 

design is to test the effect of the strain gradients on the strength of the samples. In 

uniaxial tension experiments, the strain gradients are insignificant; the strength is 

attribute to the accumulation of statistically stored dislocations (SSDs) only. On the 

other hand, in wire torsion experiments, since the samples are deformed 

inhomogeneously, strain gradients are involved, hence, the sample is strengthened by 

both statistically stored and geometrically necessary dislocations (GNDs). For a given 

surface shear strain, the smaller diameter wire has the greater strain gradients and 

associated higher GNDs density. As a result, the thinner wire is expected to be much 

stronger than the thicker wire in the torsion experiment.  

Specimens ranging in diameter from 12 to 170μm were used for both tension and 

torsion tests. Corresponding to their expectation, they observed very strong size effects 

in the torsion experiments on thin copper wires, however, there is no obvious influence 

of wire diameter on the tensile behavior. As shown in Fig.1.4 (a), tension data for 

diameter in the range 12-30μm almost overlap together. The data of 170μm is about 10% 

below of other plots, maybe the reason is the grain size was larger than other wires. The 

torsion data is displayed in figure1 (b), with the increase of the wire diameter, it is quite 

clear that the strength of the specimens decreased. 
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(a)                                   (b) 

Fig.1.4 (a) Tension data for copper wires of diameter in range 12-170μm. (b) Torsion data for 

copper wires of diameter in range 12-170μm. (Reproduced from Fleck et al., 1994 [4] ) 

 

ⅱ Micro-foil bending  

Since the micro-foil bending experiment is closely related with my research project, I 

will give a full literature review in chapter 3. In this section, the classic results of the 

Stolken and Evans’ experiment is described briefly. 

In 1998, Stolken and Evans [8] published a micro-foil bending experiment. They were 

motivated by the significant divergence on the plasticity length scale values obtained 

by torsion (2.6-5.1μm [4, 12] ) and indentation (~0.5μm [13] ), respectively. Hence, the 

main purpose of this experimental design is to propose a new brilliant and convenient 

load-unload method for obtaining the plasticity length scale value. Results for high 

purity Ni were presented.  

The normalized bending moments were plotted against the surface strain in their results, 

as shown in Fig.1.5. The plot obviously suggested that the strength of the foils increased 

greatly when the thickness of the foil decrease below 25μm. Their measurements of the 

plasticity length scale was about 4μm which was quite close to the magnitude obtained 

for Cu by wire torsion experiments [4].  
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Fig.1.5 The normalized bending moment were plotted against the surface strain for all three 

foil thickness ranging from 12.5 to 50μm. (Reproduced from Stolken and Evans, 1998 [8]) 

 

ⅲ Nano-indentation  

The indentation test is a technique to determine the hardness of materials. The 

indentation size effect (ISE) is one kind of size effect related to the finite volume of 

material undergoing strain. There are various indenter shape in the different indentation 

experiments. I will introduce the spherical indentation test, because the spherical 

indentation tests generate a large contact area but with a small depth. In this case, the 

small elastic deformation could be fully recovered during the unloading process, hence, 

the entire stress-strain plot including yield and elastic-plastic transition could be 

measured. Spary and Bushby [9] published indentation test data on Ni, as shown in 

Fig.1.6. The stress is expressed by the indentation load divided by contact area, the 

strain is defined by the ratio of the contact radius (a) and the indenter radius (R). The 

four different symbols represented the different radii of the indenter: circle, R=290μm; 
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triangle, R=20μm; square, R=10μm; diamond, R=5μm. Significantly, with the decrease 

of the radius of the indenter, the strength increased.  

 

Fig.1.6 The closed symbols are finite element simulations, the open symbols are experimental 

indentation data for Nickel: circle, R=290μm; triangle, R=20μm; square, R=10μm; diamond, 

R=5μm. The strength increased as the radius of indenter decreased. (Reproduced from Spary 

and Bushby, 2006 [9] ) 

 

1.2.2 Homogeneous deformation experiment 

The typical homogeneous deformation external size effect experiment is the pillar 

diameter in uniaxial micro-pillar compressions. Recently, with the application of 

focused ion beam (FIB) machining technique and high resolution systems for 

displacement and force measurements, investigations of the uniaxial micro-pillar 

compressions became popular. There is plenty of literature on micro-pillar compression 

experiments with various materials (including Ni [14], Cu [15] and Au [16] ). Julia 

Greer et al. [17] published a dataset of gold micro-pillar compressions. They tested the 

size effect at the micron scale without the obvious strain gradients which were 
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frequently associated with micron scale deformation.  

In order to ensure the experimental results were not related to one particular sample 

preparation technique, they adopted two different sample fabrication processes (FIB 

machining & electroplating). In this paragraph, I will introduce their FIB machining 

process since this method is the most commonly used technique in sample fabrication. 

Their work is the first to apply the FIB machining technique to gold samples. The (001) 

oriented single crystal gold disc was used as the raw material of the pillar fabrication. 

At the beginning, a high current of Ga ions was used to make a cavity with a 4 micron 

diameter pillar in the center at the surface of the material. This is important to make 

sure the indenter tip is contact only with the pillar. Secondly, the finer currents and 

angles were then used to produce the pillar samples with various diameter. Samples of 

diameter ranging from 0.4 to 7.5 microns were obtained by this method, Fig.1.7 is an 

example of the FIB image of the samples. 

 

 

 

Fig.1.7 FIB image of the micro pillar samples. (a) 860 nm diameter, 3.2 micron tall; (b) 300 

nm diameter, 3.15 micron tall. (Reproduce from Greer et al. 2005 [17]) 

 

Mechanical testing was carried out by using the dynamic contact module of the Nano-

indenter XP with a flat indenter tip. To guarantee the unloading data was elastic, the 
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compressing process used multiple cycles of loading & unloading method before 

reaching the maximum load.  

The results of the uniaxial compression experiments suggested a clear sample size effect. 

The compressive stress-strain dataset was plotted, as shown in Fig.1.8. Six different 

samples with diameters ranging from 0.4 to 7.45μm were plotted. When the sample size 

decrease below 1μm, the yield and flow stress of the samples increase significantly. 

 

 

Fig.1.8 The compressive stress-strain plot of (001) oriented pillars: flow stresses increase 

radically when pillar diameters decrease below 1μm. (Reproduce from Greer et al. 2005 [17]) 

 

1.3 Internal size effect 

Internal size effects are due to the size constraints of the microstructure such as impurity 

particle and grain size. The internal size effects are mainly affected by materials 

fabrication processes, e.g. metallurgical process of the alloy. The main hardening 
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mechanisms include precipitation hardening (age hardening) [18, 19], Taylor 

dislocation hardening (work hardening) [20, 21] and the grain size effect. I will only 

review the classic references on the grain size effect in this chapter since it is closely 

related with my research project (investigation on the grain size effect model and 

theory). The grain size effect is the most common and important subject of 

investigations on internal size effects.  

Grain size has been known to have a significant effect on the mechanical behaviour 

(yield or flow stress) of the materials [5]. The most famous grain size effect relationship 

is Hall-Petch effect, which I will described in detail below. 

 

In the 1950s, Hall [22] and Petch [23] presented experimental data showing that the 

yield stress of iron and steel increases when the grain size is smaller. Based on the 

dislocation pile-up theory of Eshelby et al. [24], they first established the relationship 

expressed by the famous Hall-Petch equation: 

  
d

k
d HP 0)(                      (1.7) 

where σ(d) is the yield stress or a flow stress at higher plastic strains, ߪ଴  is the 

corresponding bulk yield stress for large single crystals, kHP is considered to be a 

material constant and d is the grain size. Hall’s mild steel wire tension data is shown in 

Fig.1.9. This data was consisted of three kinds of mild steel, Armco, Siemens-Martin 

(PXQ quality) and Basic Bessemer (Thomas quality). The samples were annealed in 

vacuum to obtain the different grain sizes. 
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Fig.1.9 The lower yield point plotted against the inverse grain size. A parabola was plotted by 

the author indicated an inverse square root relationship. (Reproduced from Hall, 1951 [22]) 

A large body of data on other metals was soon reported [25-28] . All of them claimed 

to fit the inverse square root relationship well. It is worth to present the reference from 

Aldrich and Armstrong, 1970 [29]. They studied tensile data on silver. The pure silver 

samples were recrystallized over a wide range of grain size from 1 to 60μm. In their 

discussions, the yield and tensile fracture stresses were plotted against ݀ିଵ/ଶ, ݀ିଵ and 

݀ିଵ/ଷ, as shown in Fig.1.10. The linear plots were obtained by the least squares fitting 

method. They concluded that ݀ିଵ/ଶ relationship fitted best. The ݀ିଵ fitting were also 

supported by much of the data but not by all. They ruled out the ݀ିଵ/ଷ fit because it 

gives a negative intercept on the y-axis. The negative stress intercept was considered 

unphysically acceptable.  
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(a) 

 

(b)                                      (c) 

Fig.1.10 The yield and tensile fracture stresses were plotted against with (a) ିࢊ૚/૛, (b) ିࢊ૚ 

and (c) ିࢊ૚/૜, respectively. The dashed line in (b) and (c) represented the liner plots by the 

least square fitting analysis. The ିࢊ૚/૜ fit was excluded because of a negative intercept on 

the y-axis. (Reproduced from Aldrich, 1970 [29] ) 

Another interesting Hall-Petch data is from Narutani and Takamura [30]. They reported 

wire tension data on nickel. They obtained the Hall-Petch plot data from the tensile tests 

at a strain rate of 3.0×10–4 s–1 at 77K. They concluded that the data follow the Hall-

Petch relationship for small strains (less than 5%). However, for larger strains, the plot 

clearly deviating from the inverse square root relationship. The data are reproduced in 

Fig.1.11. 
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Fig.1.11 The Hall-Petch plot of wire tension data on nickel. The stress was plotted against 

inverse square root grain size. For small strains (less than 5%), the linear relationship were 

plotted, but, for larger strains, the fitting is a curve which clearly deviating from the Hall-

Petch equation. (Reproduced from Narutani and Takamura 1991 [30]) 

 

1.4 General size effect theories 

The most popular theory for the explanation of inhomogeneous deformation size effects 

is strain gradient plasticity (SGP) theory [4]. When the SGP theory is related to a high 

density of GNDs at large plastic strain, however, Evans and Hutchinson (2009) [31] 

indicated that SGP theory can predict a size effect on enhancing yield stress. For a 

perfect plastic solid, they showed that the Fleck & Hutchinson (FH) model can predict 

an increase in the yield strength but no size effect in strain hardening, while the Nix & 

Gao (NG) model predicts an elevation of the strain hardening rate but not the yield 

strength. Evans and Hutchinson cannot explain this behaviour in physical terms. The 

FH model considers an increase of the energy required for generating a strain gradient, 
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by considering no effect of any dislocation density. At the initial yield point, there is no 

plastic strain, the density of GNDs is zero. Producing a plastic strain gradient requires 

the creation of GNDs. Actually, this is exactly the same physical mechanism when the 

critical thickness theory (CTT) [32] explains the initial yield size effects. Hence, in this 

section, both the SGP and CTT theories are reviewed. 

 

1.4.1 Strain gradient plasticity theory 

As introduced in the description of GNDs (Section 1.1.1), when the materials deform 

with inhomogeneous strain, the GNDs will be introduced to accommodate the plastic 

strain gradient. When the sample size decreases, a larger plastic strain gradients are 

introduced, then the related higher density of GNDs (Eq.1.4) makes the total density of 

dislocation ρt (assumption of the sum of GNDs and SSDs) greater. Based on Taylor 

work hardening model, the materials will get stronger. This is the SGP theory [2, 33].  

There are various reasons for the production of the plastic strain gradient [4]: (1) the 

external geometry of samples; (2) some mechanical test methods e.g. nano or micro-

indentation; (3) the micro-structure is plastically inhomogeneous e.g. containing non-

deforming particles. Schematics are shown in Fig.1.12. In the micro-wire torsion 

experiment, the strain is zero along the axis of twist but it is greater than zero at the 

surface. In the micro-foil bending experiment, the plastic strain is zero at neutral plane 

but it is greater than zero at the both surfaces, as shown in Fig.1.12 (a), (b). In the nano 

or micro indentation test, the plastic strain under the indenter is greater than zero but it 

is zero far from plastic zone, as shown in Fig.1.12 (c), (d). In the micro-structure 

containing non-deforming particles, the strain gradients are produced in the space 

between the non-deforming particles, but the plastic strain in the non-deforming particle 

itself is zero; the different slip orientation at the grain boundaries will also produce the 

plastic strain gradient, as shown in Fig.1.12 (e), (f).  
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Fig.1.12 Schematic diagrams of the various ways to produce the plastic strain 

gradients. (Reproduced from Fleck 1994 [4]) 
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The Nix-Gao model is a typical model to describe the SGP theory. This model is 

based on the Taylor hardening relation, in which the flow stress
e is expressed as  

                           e Tm Gb                           (1.8) 

where mis a Taylor constant acting as an isotropic interpretation of the crystalline 

anisotropy, and 3m  for an isotropic solid, 3.06m   for FCC polycrystalline 

metals, is an empirical constant,G is the shear modulus, b is the average magnitude 

of the Burgers vector for the polycrystalline structure, the magnitude of the b in a 

single crystal depends on the angle between the crystal orientation and slip plane, and

T is the total dislocation density. According to Ashby’s theory [2], the total 

dislocation density can be assumed as the sum of the density of statistically stored 

dislocations (SSDs), S  and that of geometrically necessary dislocations (GNDs), G . 

Then the Eq.1.8 can be written as 

                            e S Gm Gb                        (1.9) 

In the absence of strain gradients, i.e. only S is considered in Eq.1.9 
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 
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 
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e S Y S

f
mGb f

mGb
           (1.10) 

 PY f   represents the stress-plastic strain relation in the absence of the gradient 

effect. And
Y is the initial yield stress,  Pf  is a function of plastic strain. The 

density of GNDs can be calculated as  

 PG r b                            (1.11) 

where 
P is the effective plastic strain gradient, r  is the Nye factor reflecting the 

scalar measure of the density of GNDs due to plastic strain gradients [34]. For FCC 

polycrystalline metals, Arsenlis and Parks [34] indicated that the Nye factor 1.85r   

in bending and 1.93r   in torsion. 

If 
e is a function ofP and

P , then on dimensional consideration, 
P must be 
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multiplied by a length. Substituting Eq.1.10 and Eq.1.11 into Eq.1.9, Nix and Gao 

[35] obtain a law for strain gradient plasticity 

  P N PG
2

e Y f l      (1.12) 

where P P2
P 3 ij ij    is the effective plastic strain, and NGl  is the material length 

scale in the NG theory which is expressed as 
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 (1.13) 

For an isotropy material, the yield stress can be calculated as 

  2 1Y YG     (1.14) 

where  is the poisson’s ratio. Substituting Eq.1.14 into Eq.1.13, we then have 

 NG 2
Y

b
l




  (1.15) 

Here,  
2 2

2
4 1

m r





  is on the order of unit. For FCC metals, 3.06m  , 1.85r  ,

=0.4 , 0.33  , so we have 0.22  .  

1.4.2 Critical thickness theory 

The theory of the critical thickness of strained layers was first introduced by Frank and 

van der Merwe [36] in 1949. They proposed a one-dimensional theory to explain 

monolayer growth on a crystalline substrate. They found that the critical misfit between 

the monolayer and substrate is 9%. Up to the critical misfit 9%, the epitaxial layer is 

deformed to fit the substrate. Above 9% misfit, dislocations formed in the lattice. In the 

1970s, Matthews [37, 38] considered the energy thermodynamic stability of film 

growth. The strain energy is linearly proportional to the film thickness from zero, while 

the energy of the misfit dislocation which is responsible for relaxation has a weaker 

(logarithmic) dependence on thickness (shown in Fig.1.13). It is clear that thin films 

should be thermodynamically stable. Hence, critical thickness is defined as the 

thickness at which the fully strained layer becomes unstable or metastable. It means 
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that up to critical thickness, the layer grows with an elastic strain determined by the 

misfit, above the critical thickness, thermodynamic stability is lost and misfit 

dislocations are introduced to relax the coherency strain, i.e. once the strain energy is 

sufficient enough to create a misfit dislocation, thermodynamics permits misfit 

dislocations to reduce the total energy of the system by the nucleation and propagation.  

 

 
 

Fig.1.13 Schematic diagram showing that the elastic strain energy ES increases in proportion 

to the strained layer thickness h, the energy of the misfit dislocation has a logarithmic 

dependence on thickness. Critical thickness hc is the crossing of the two lines  (Reproduced 

from Dunstan, 1997 [39]) 

 

Matthews derived the critical thickness theory by considering the force balance on 

threading dislocations and the equilibrium of total energy of system which include the 

energy of an elastically strained overlayer and energy of misfit dislocation per unit area. 

For a 001-oriented layer, this is given as 

                    
2(1 - cos )

ln
8 (1 )cos

c
c

hb
h

b

 
  




                  (1.16) 

Where b is the magnitude of the Burgers vector,  is the Poisson ratio,  is the angle 

between the slip plane direction and a line in the film plane which is perpendicular to 
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the intersection of the glide plane with the interface,  is the angle between the 

dislocation line and the Burgers vector. 0 is a given misfit. 

We consider that 

                         
21 cos

8 (1 )cos
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 
  





                    (1.17) 

is a factor of the order of unity determined by crystallographic parameters, the relative 

orientation of the slip planes, the growth plane and the direction of the Burgers vector. 

Critical thickness Eq.1.16 is expressed by  

                           ln c
c

hkb
h

b
                         (1.18) 

Fitzgerald [40] reviewed carefully the Matthews analysis and gave the correct 

derivation of Matthews equation to account for the l-1 and lnl terms from the mechanical 

and dislocation energy aspect, respectively. Balancing the total lateral force which acts 

on the point of intersection between the threading dislocation and the interface plane is 

the line-tension force of the dislocation section residing in the interface, the 

displacement of material due to the introduction of a dislocation is the constant b. This 

explains that the stress required scales inversely with the dimension l of the material 

displaced through b. The dislocation energy can be mainly attributed to the elastic 

energy of the strain field of the dislocation. This elastic energy is determined by the 

integration of the strain energy ∝r-1 from the dislocation. To avoid divergence the 

integral has to be cut off at an inner core radius r0~b and an outer radius R0 which is 

given by a free surface, the outcome of ln (R0/b) is the physical origin of the logarithmic 

term in Eq.1.18.  

Matthew’s critical thickness theory has been applied powerfully in the semiconductor 

[41, 42] and the epitaxial layers of the ductile metals. This robustness led Dunstan and 

Bushby to propose [32] a general explanation underlying any microscopic mechanism. 

Based on the critical thickness theory, strain relaxation requires a displacement of 

materials over a finite distance (the magnitude of the burgers vector). They proposed 

that the misfit dislocation will formed only if the change of the strain b/h is less than 
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the order of the strain to be relaxed. They gave the relationship between the critical 

thickness and critical strain: 

                              c

c

b

h
                            (1.19) 

By considering dislocation multiplication, source operation and significant relaxation 

happen at five times critical thickness, we can write Eq.1.19 as: 

                              
5

c

c

b

h
                             (1.20) 

Eq.1.19 (Eq.1.20) is called the geometrical strength or the geometrical contribution to 

the yield strain. In micro-mechanical tests on metals, the elastic strains are much smaller 

than that in epitaxial strained layers. Hence, the bulk yield strain also needs to be 

considered. The Eq.1.19 (Eq.1.20) then could be changed to: 

c Y

c

b

h
                            (1.21) 

5
c Y
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h
                           (1.22) 

The Eq.1.21 could be transformed into a general size effect equation which was named 

as dislocation curvature equation: 

                           1

0
kd                          (1.23) 

And also the very similar form, 

                          0

ln d
k

d
                        (1.24) 

where  is the elastic strain obtained by stress normalized by the relevant elastic 

modulus, dimensionless constant k is the factor of the order of unity, 0 is the strain σ0/Y 

describing the bulk strength, it may be the strength due to other material processing 

methods e.g. work-hardening, d is the dimensionless parameter c
h

b
, e.g. grain size 

normalized by the magnitude of Burgers’ vector. The physical meaning of d is the 

number of the crystal unit cell. Eq.1.23 (Eq.1.24) is theoretically applicable to any 
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situation where a dimension constrains the size of the dislocation sources that have to 

operate if plasticity is to occur, so d may be normalized non-dimension structure size, 

or some suitable combination of these factors. 

 

1.5 The Hall-Petch effect models 

The famous Hall-Petch equation has been proposed more than 60 years. However, the 

real physical mechanism underlying this relationship remains unclear. In the past a few 

decades, many different models were developed to explain the Hall-Petch equation. 

Schuh published a review to present the models comprehensively [43]. Generally, there 

are four distinct models proposed by the classic literature: 

(a) Dislocation pile-up model; 

(b) Grain boundary source model; 

(c) The slip distance model; 

(d) The elastic anisotropy model. 

Most of these models explain the two parameters of Eq.1.7 (kHP & σ0) separately. The 

σ0 is considered to bulk yield stress which unrelated to the grain size, while the kHP is 

key term to account for the grain size dependent. Different models predict the different 

values of kHP. 

1.5.1 Dislocation pile-up model 

The dislocation pile-up model is the most commonly cited explanation of the Hall-Petch 

effects. In 1951, Hall [22] published a series of papers to show yield behaviour of mild 

steels. In the third paper, he used the dislocation pile-up model to explain the inverse 

square root relationship [44]. 

In this model, for an applied stress, the dislocation sources become activated. A 

dislocation source in a grain can produce a number of dislocations. The grain 

boundaries in poly-crystals are obstacles for the generated dislocations. Hence, the 
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dislocations plie up against grain boundary. They are distributed in the slip plane non-

uniformly as shown in Fig.1.14.    

 

Fig.1.14 Schematic representation of dislocation pile-up. (Reproduced from Y. Li & Dunstan 

2016 [45]) 

The first dislocation next to the grain boundary supports the forces from the following 

dislocations behind it. A cumulative stress is built up at the tip of the pile-up [46, 47]. 

We assume there are n dislocations in this pile-up, the cumulative stress is 

		                             e
n                             (1.25) 

τe is the effective shear stress. 

When the stress concentration at the first dislocation reaches a critical value τc, slip will 

cross the grain boundary. Dislocations will propagate to the next grain. In this situation, 

c e
n                            (1.26) 

If the pile-up is of length L, Eshelby [24] calculated τe as 

e

Gnb

L



                           (1.27) 

where G is shear modulus, b is magnitude of the burger’s vector and pile-up length L 

here is grain size d. Combining the Eq.1.26 and Eq.1.27, the expression of τe can be 

obtained as 

c
e
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



                         (1.28) 
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If we considered τo is the corresponding stress for large single crystals material, then 

Eq.1.28 becomes 

0
c

Gb

d


 


                        (1.29) 

1.5.2 Grain boundary source model 

The dislocation pile-up model explains well for a number of steel data. However, direct 

experimental observations (i.e. SEM images of dislocation pile-up at boundaries) are 

not always found [48]. As a result of this weakness, other explanations for grain size 

strengthening were proposed by researchers. 

Li [49] first proposed that grain boundaries are sources of dislocation. In this model, 

dislocation pile-up is unnecessary. The example of grain boundary ledge generated 

dislocation is shown in Fig.1.15. The grain boundary ledge just donates a single 

dislocation. At the beginning of the yield, the initial dislocation density is provided by 

the grain boundary ledges. The forest formed by all the dislocations produced by the 

grain boundary ledge. If the ledge density in the grain boundary is m (number per unit 

length), the dislocation density in the forest is about 8m/l. Hence, according to Taylor’s 

law for forest dislocation hardening, the flow stress is: 

0

8m
Gb

d
  


                       (1.30) 

where  is a constant depends on dislocation arrangement, generally, the value of  is 

0.4. G is shear modulus. 

  



43 

 

+ 

 

Fig.1.15 The example of grain boundary ledge acting as donor of dislocations. (Reproduced 

from Y. Li & Dunstan [45] ) 

 

In 1975, Murr [50] reported the direct experimental observation of the grain boundary 

ledge model. A transmission electron microscope (TEM) was used to study the grain 

boundary structure of annealed Ni, Al, Cu, stainless steel and other metals. The results 

shown the occurrence of grain boundary ledges in many of the metals and alloys. Grain 

boundary ledges have been observed to be sources of dislocations during plastic 

deformation. 

 

1.5.3 The slip distance model 

In 1953, Cottrell [51] reported that the dislocation density is related to the tensile strain. 

It is expressed by: 

                              1
bs                            (1.31) 

where 1 is a constant of the value of 1.4, b is the burgers’ vector and s is the average 

distance each dislocation has moved. Based on Taylor’s law, the slope of Hall-Petch 

equation depends on the plastic strain. 

In 1967, Conrad and co-workers [52-54] developed the slip distance model based on 
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Eq.7. In this model, they proposed that, for a given strain, the higher dislocation density 

in small grain sample is attribute to the smaller slip distance, as shown in Fig.1.16. 

 
Fig.1.16 Schematic illustration of slip distance model: dislocation slip length is less in a smaller 

grain, the dislocation density is higher. (Reproduced from Y. Li & Dunstan [45] ) 

 

To obtain a ݀ିଵ/ଶ relationship, they proposed the dislocation density ρ varies as ݀ିଵ. 

They indicated that for a constant strain, the dislocation density is proportional to ݀ିଵ. 

In Eq.1.31, they assumed that the average free path s is proportional to the grain size d, 

i.e. s=d. Then Eq.1.31 can be rearranged to 

1

pl

b d




 
                          (1.32) 

using the work hardening equation, substituting Eq.1.32 and rearranging, we can get 

0 0

1

pl
b

Gb G
d


     

 
               (1.33) 

where  is a Taylor constant depends on dislocation arrangement, G is the shear 

modulus. 1 and  are both constant but less the order of unity. 

1.5.4 The elastic anisotropy model 

Hirth [55] and Meyers [56] proposed the elastic anisotropy model. In this model, 

anisotropic grains are distributed in a homogenous stress field, the same GNDs 

mechanism is used, as shown in the Fig.1.17.  
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Fig.1.14 present a two-dimensional cubic material with anisotropy factor           

C = c11 – c12 – 2c44 elastically deformed under a uniform shear stress field. In this 

model, as introduced in Section 1.4.1, when the grain sizes decrease, the strain gradients 

and the density of GNDs will be proportionately larger. Hence, if the total density of 

dislocation ρ is the simply sum of SSDs and GNDs, ρ will increase accordingly. This 

model predicts that after suitable normalization, kHP will be proportional to the elastic 

anisotropy. The factor of proportionality is not explained by the model. The only 

experimental evidence of this factor is that it depends on the characteristic length in the 

strain-gradient theory.  

 

Fig.1.17 The effects of crystalline elastic or plastic anisotropy in forcing stress and strain 

gradients, in which anisotropic grains are subject to a homogenous stress field. (Reproduced 

from Y. Li & Dunstan [45] ) 

 

1.6 Summary 

Research on the size effect is essential in materials science. In this chapter, both the 

experimental observations in different geometries and various theories related to 

experimental results are reviewed.  

Grain size effect is one of the most important issue of size effect. In the six decades 

since Hall-Petch equation was proposed in 1953, a large body of researches on this 

empirical equation have been published. However, there are various models. On the 
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other hand, based on the critical thickness theory, Dunstan and Bushby proposed the 

curvature dislocation equation theoretically applicable to any situation, i.e. it is a 

general size effect theory. Thus, one aim of my thesis is to review plenty of classic Hall-

Petch data and theories and to discuss the physical mechanism underlying the Hall-

Petch relationship.  

Investigations on SGP theory were very popular since Fleck et al. published wire 

torsion and tension results in 1994. The micro-foil bending test is a good candidate for 

the testing of SGP theory. The traditional experimental design had weaknesses for 

obtaining high quality data. Hence, another aim of my thesis is to design of a new 

equipment to overcome the difficulties. Then high quality data could be used to test the 

relative theories.  
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2. The Hall-Petch effect as a manifestation of the 

general size effect 

2.1 Introduction 

Grain size has been known to have a significant effect on the mechanical behaviour 

(yield or flow stress) of the materials [5]. As described in the literature review, the most 

famous equation to explain the grain size effect is Hall-Petch equation: 

                          
d

k
d HP 0)(                      (2.1) 

where σ(d) is the yield or a tensile flow stress at higher plastic strains, σ0 is the 

corresponding bulk yield stress or large single crystals, kHP is a constant that considered 

to be a material constant and d is the grain diameter.  

As described in Section 1.4.2, based on the critical thickness theory, Dunstan and 

Bushby presented a general size effect expression underlying any microscopic 

mechanism: 

d

d
kdel

ln
)( 0                     (2.2) 

where the fixed constant k is expected to be the order of unity, 0  is the strain σ0/Y 

describe the bulk strength or it may be the strength due to other material processing 

methods, e.g. the work-hardening, the dimensionless parameter d is theoretically 

applicable to any situation where a dimension constrains the size of the dislocation 

sources. In this chapter, d will be the grain size which normalized by lattice constant a0.  

It is found that the complete lack of any data falling under the line of Eq.2.2 with k~1 

and 0 =0, implying that Eq.2.2 describes the minimum strength, due to the size effect 

[57]. Then a collection of 17 datasets from the classic literature of the Hall-Petch effect 

are also above this line [58]. They recognized that this can be taken as experimental 

support for the applicability of Eq.2.2 to the Hall-Petch effect. 
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Returning to the Hall-Petch effect, as described in the literature review, many authors 

have considered the exponent of inverse square root is not suitable for their datasets. 

Hence, different exponent values like 2/3 [59], 1/3 and 1 [29] were also proposed. In 

order to test the power law relationship and confirm the value of the exponent x, the 

free exponent of Hall-Petch equation is used to the fitting as well, expressed as 

                           
xka  0)a(                     (2.3) 

where a is some suitable characteristic dimension such as micro-pillar diameter or 

indentation contact radius. Much effort has been invested in finding appropriate values 

of the scaling exponent x for particular materials, or for particular types of materials 

such as FCC or BCC metals. 

In Section 2.2 in total 61 the classic Hall-Petch datasets which include quite general 

metals e.g. Fe, Brass, Cu, W, Cr, Ti, Ag, Au, Ni and Al were reviewed. All of the dataset 

resources came from citations, references and search engines. From the early data 

which contribute to the establishment of Hall-Petch equation to the recent data, I 

collected all the data I searched with no selection. The analyses shown that the there is 

no evidence that the data support for Eq.2.1, meanwhile, when we fitted the datasets 

with Eq.2.3 and the value of scaling exponent x is scatted from 0 to 1. In Section 2.3 

we use a Bayesian theorem to compare Eq.2.2 and modified Ashby theory. In Section 

2.4 we compare the predictions of the different models of the Hall-Petch effect with the 

data fitting. In Section 2.5, we propose a method to test the Eq.2.2, from the view of 

the data point distribution in one dataset. Finally, we conclude that Eq.2.2 fits the data 

as well as with Eq.2.1, but compared with two free fitting parameters in Eq.2.1, one 

fixed parameter fitting (the factor of the order of unity k ~ 1) of Eq.2.2 and modified 

Ashby equation applied more reasonable, the small grain size data are more close to 

Eq.2.2.   
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2.2 Review and analysis of the data 

We collected 61 datasets in total from the classic references which were claimed 

strongly corresponding well with Hall-Petch relationship in the past a few decades. All 

of the general metal datasets like Fe, Brass, Cu, W, Cr, Ti, Ag, Au, Ni and Al were 

digitized and fitted by using the Mathematica© software.  

2.2.1 Data presentation & Metallurgy review 

For each metal, in Fig. (a), we present the datasets as the reported original reference 

(i.e. Yield or flow stress plots against the inverse square root of grain size with a 

straight-line). We only change the authors’ original units to SI units (MPa), this is 

convenient to show the different datasets in the same framework. For each dataset, the 

best fit to the Eq.2.1 is shown, calculated using the Mathematica© function 

NonlinearModelFit with both σ0 and kHP treated as free fitting parameters. Then in Fig. 

(b), we show the data plotted simply against the inverse of grain size. Finally in Fig. 

(c), the stress and grain size are normalized by the relevant material Young’s modulus 

Y and lattice constant a0, respectively. The purpose of the normalized process here is to 

eliminate the known differences between the different kinds of metals, i.e. the pure 

comparisons of constrain size on the different metals. we show the normalized data on 

log-log plots because of the very wide range of data, on which we show the plot of 

Eq.2.2 with a fixed appropriate parameter value of k = 0.72 and 0 treated as free fitting 

parameter which interpreted the expected minimum strength.  

For each dataset, we give what relevant information is available in the original papers 

about the metallurgical processing, especially grain-size modification and 

determination, and the yield or flow stress determination, or we mention the absence of 

this information. It should be noted that Rhines [60] listed about ten ways of 

determining the grain size. For grains that are not equi-axed or which have a distribution 

of sizes, these methods can give diverse values for the average grain diameter. Since 

few authors give their method of grain size determination, much of the variation in 
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fitted values of 0 in Eq.2.2 or kHP in Eq.2.1 may arise from this. 

ⅰ Iron and steel 

We should begin with Hall (1951) and Petch (1953) data in which the famous Hall-

Petch equation was firstly proposed. For iron and steel, the normalization constants are 

Y=211GPa, a0=0.287nm. Hall [22] measured wires tension data, made from three kinds 

of mild steel, Armco, Siemens-Martin (PXQ quality) and Basic Bessemer (Thomas 

quality). The samples were annealed in vacuum to obtain the different grain sizes. The 

method of measuring the grain sizes is not given. The lower yield points, measured at 

a strain rate of 10–4 min–1, were plotted by Hall and fitted by an inverse square-root 

dependence on grain size. We do not distinguish between the three kinds of mild steel 

in copying this data to Fig.2.1 (Fe (7) black crosses).  

Petch [23] reported tensile experiment data on mild steel, ingot iron and spectrographic 

iron, indicated by Fe (1) black filled circles in Fig.2.1. The specimens ranged from 

single crystals to 8000 grains/sq.mm. They were prepared by annealing in vacuo at 

temperatures up to 1050oC for times up to 24h, followed by cooling at various rates. 

The single crystals and a few coarse-grained specimens were obtained by straining and 

annealing the decarburized mild steel. The method of measuring the grain sizes is 

described as “6–12 counts” on the surface, and to give not the true diameter but to be 

proportional to the true diameter. Petch was primarily concerned with the cleavage 

strength, which he showed obeyed Eq.2.1 and explained by identifying glide planes on 

which the dislocation motion is blocked by grain boundaries with Griffith cracks [61] 

(1920) and again invoking the theory of Eshelby [24] et al. (1951). However, he also 

plotted the lower yield point against ݀ିଵ/ଶ and fitted a single straight line to the data 

for all three metals, which we do not distinguish in Fig.2.1.  

Armstrong et al. [62] (1962) give data for the yield and flow stress of a 0.1%C semi-

killed mild steel. The mild steel elemental composition is given. Grain sizes were 

obtained by 900–1200oC anneals, followed by machining and polishing and then a final 

anneal at 650oC. For the largest grains, annealing at 1200oC was followed by 8% strain 
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and a long 650oC anneal. The method of measuring the grain sizes is not given. They 

find excellent agreement with linear dependences on ݀ିଵ/ଶ, explained by invoking the 

Eshelby et al. [24] theory, within the context of the Taylor [63] theory of polycrystalline 

aggregates. In Fig.2.1 we reproduce their data (Fe (6) brown crosses) for the lower yield 

point, for 2.5% strain and 20% strain (intermediate strain values of 5%, 7.5%, 10% and 

15% gave data evenly spaced between and parallel to the 2.5% and 20% data).   

Douthwaite [64] was interested in the relationship between hardness and flow stress, 

with the flow stress varied by different grain sizes and by strain-hardening. He studied 

EN2 steel (elemental compositions are given). Different grain sizes were obtained by 

annealing specimens in the range of 950oC-1250oC, followed by cooling at various rates 

through the critical range and a final anneal for 20h at 650oC. The largest grain size was 

obtained by strain annealing. The method of measuring the grain sizes is not given. All 

his data was plotted against ݀ିଵ/ଶ	and given linear fits. In Fig.2.1 we plot his data for 

the flow stress of strained at 2.5%, 10% and 18.25% (Fe (5) green open triangles). 

Douthwaite and Evans [65] (1973) studied 2.9% Si-steel with grain sizes varied by 

vacuum annealing between 650oC and 1150oC. Micro-strain was obtained by tensile 

loading to below the yield point. Slip lines and grain boundaries were observed by 

optical microscopy after etching. The yield point was measured at 77K and 298K and 

they plotted their data with linear fits to ݀ିଵ/ଶ	  They followed Kelly (1966) in 

considering that elastic anisotropy can give rise to the ݀ିଵ/ଶ	 dependence. We plot 

their data in Fig.2.1 as Fe (2) red filled triangles. 

More recently, Kashyap and Tangri [66] (1997) report tensile experiments at room 

temperature on 416L stainless steel. The specimens were vacuum annealed at 

temperatures from 900oC to 1300oC to obtain grain sizes from 3.1 to 104μm. Both 

optical and transmission electron microscopy were used to measure the grain size. 

Tensile testing was carried out with a strain rate of 1×10-4s-1 at room temperature and 

at 400oC and 700oC. We plot their room temperature flow stress data at the yield point 

and 2%, 5%, 10%, 20% and 30% strain (Fe (4) purple open circles) in Fig.2.1. Kashyap 

and Tangri were interested in the variation of the Hall-Petch parameters σ0 and kHP of 
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Eq.2.1 with strain. They considered the slip-distance model of Conrad [52] and the 

anisotropy model of Ashby [2], both of which predict kHP ∝ 1/2, but their data showed 

a much smaller strain sensitivity.  

Agraie-Khafri et al. [59] (2012) also studied stainless, hot rolled AISI 301 sheet. After 

annealing for an hour at various temperatures 800–1200oC and forced-air-cooling, they 

measured grain sizes by both ultrasonic attenuation and by polishing and etching, and 

reported grain size distributions. Uniaxial tensile test data at the yield point were plotted 

and fitted with x = 0.66. Their data is plotted in Fig.2.1 (Fe (3) red solid squares). 
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Fig.2.1 Datasets for iron, steel and silicon steel are plotted against (a) the inverse square-root 

of grain size, (b) the simple inverse of grain size, and (c) in normalised form on a double 

logarithmic plot. The normalization constants: Y=211GPa, a0=0.287nm. In (a), the solid lines 

are fits to Eq.2.1; in (b) the solid lines are fits to Eq.2.3 with the exponent x= -1; in (c) the solid 

lines are plots of Eq.2.2 with k = 0.72 and σ0 chosen so the lines for each dataset are below 

most of the data. The heavy black line is for Eq.3.2 with σ0 = 0. Fe(1) is the classic dataset of 
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Petch (1953); Fe(2) represent the silicon steel datasets from Douthwaite and Evans (1973); 

Fe(3) is data from Agraie-Khafri et al. (2012); Fe(4) are data sets for 316L stainless steel from 

Kashyap and Tangri (1997); Fe(5) come from  the EN2 steel datasets in Douthwaite (1970); 

Fe(6) represent data sets from Armstrong (1962); Fe (7) is the classic dataset of Hall (1951). 

 

 

 

Table 2.1 The knowledge of Fe data from the original references. (N.G. is Not Given) 

Data Strain Texture Twinning 
Crystallography of slip 

Work hardening 
Slip plane Slip direction 

Fe(1) Yield N.G. N.G.  

 

{110} 

 

 

 

 

{211} 

 

 

 

{321} 

 

 

<111 > 

 

 

 

 

<111 > 

 

 

<111 > 

Not reported 

Fe(2) Yield N.G. N.G. Not reported 

Fe(3) Yield N.G. N.G. Not reported 

 

Fe(4) 

Yield 
 

N.G. 

 

N.G. 

 

See Fig.2.1 Fe(4) 

2% 

5% 

10% 

20% 

30% 

 

Fe(5) 

2.5%  

N.G. 

 

N.G. 

 

See Fig.2.1 Fe(5)10% 

18.25% 

 

Fe(6) 

Yield  

N.G. 

 

N.G. 

 

See Fig.2.1 Fe(6)2.5% 

20% 

Fe(7) Yield N.G. N.G. Not reported 
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ⅱ Brass 

For brass and copper, Y=115GPa, a0=0.361nm are used as normalization constants. The 

oldest datasets come from Bassett and Davis [67] (1919) and Babyak and Rhines [68] 

(1960); neither of these papers presented plots of data against d–1/2. Jindal and 

Armstrong [69] (1967) replotted these datasets. Armstrong and Elban [70] (2012) also 

reported that Mathewson [71](1919) fitted an inverse fourth-root to the data of Bassett 

and Davis. In Fig.2.2 we plot the Bassett and Davis data for 68-32 (B (1) red circles) 

and 69-31 (B (2) red crosses) brass and the Babyak and Rhines data for 70-30 brass (B 

(3) green filled triangles), taken from Jindal and Armstrong [69]. 

Armstrong et al. [62] (1962) also presented data for the flow stress of 70-30 brass at the 

yield point and at 2%, 5%, 10% and 20% strain. The grain size was varied by vacuum 

annealing at temperatures from 400oC to 800oC; how the grain size was measured was 

not stated. In Fig.2.2 we plot their data for the flow stress of 70-30 brass at yield stress 

and at 20% strain (B (4) blue crosses); the data at intermediate strains follows parallel 

regularly spaced lines.  

Douthwaite [64] (1970) also reports data for 70-30 brass. The grain size range was 

obtained by annealing for different times in the range 450-950oC. However, the method 

of measuring the grain sizes is not given. Tensile tests were carried out at a strain rate 

of 2×10-4 s-1. Data for the yield stress and the flow stress at 5% and 7.5% strain are 

given, and are plotted in Fig.2.2 (B (5) black open squares). 
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Fig.2.2 Datasets for brass are plotted against (a) the inverse square-root of grain size, (b) the 

simple inverse of grain size, and (c) in normalised form on a double logarithmic plot. The 

normalization constants: Y=115GPa, a0=0.361nm. B(1) and B (2) are Bassett and Davis (1919) 

data for 68-32 and 69-31 brass; B (3) is Babyak (1960) data for 70-30 brass; B(4) are the 

Armstrong (1962) 70-30 brass data at yield stress and at 20% strain; B(5) are the data sets 

from Douthwaite (1970) for the yield stress and the flow stress at 5% and 7.5% strain. The 

solid curves are as in Fig.2.1. 
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Table 2.2 The knowledge of Brass data from the original references. (N.G. is Not Given) 

Data Strain Texture Twinning
Crystallography of slip 

Work hardening 
Slip plane Slip direction 

Brass(1) Yield N.G. N.G.  

 

 

{111} 

 

 

 

110   

Not reported 

Brass(2) Yield N.G. N.G. Not reported 

Brass(3) Yield N.G. N.G. Not reported 

Brass(4) 
Yield 

N.G. N.G. See Fig.2.2 B(4) 
20% 

 

Brass(5) 

Yield  

N.G. 

 

N.G. 

 

See Fig.2.2 B(5) 5% 

7.5% 

 

 

ⅲ Copper 

Feltham and Meakin [72] (1957) reported data for copper at 0.5% strain. Tensile 

specimens of oxygen-free copper (99.9911%) were annealed for various periods in 

vacuum, in the range 500–700°C. Grain size measurements are not described. 

Armstrong et al. (1962) plotted this data with a linear fit to d–1/2, and we have replotted 

this data from Armstrong et al. in Fig.2.3 (Cu (3) green filled circles).  

Hansen [73] (1982) reported tensile test data for 99.999% copper. The copper was 

reduced by cold drawing and recrystallized at temperatures from 300-400oC for 1h. The 

recrystallized grain size was further increased by annealing at temperatures from 500-

600oC. The grain size was determined by optical microscopy and specimens having 

grain sizes of 8.5, 25 and 60μm were examined. Tensile testing was carried out with a 

strain rate of 7×10–4s–1, and after straining, detailed electron microscopy was carried 

out to elucidate the mechanisms of grain boundary hardening. We plot their data in 

Fig.2.3 for measurements at liquid nitrogen temperature and room temperature at 5%, 

10% and 20% strain, indicated by Cu (1) red and Cu (2) black filled circles respectively. 
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Fig2.3 Data sets for copper are plotted against (a) the inverse square-root of grain size, (b) the 

simple inverse of grain size, and (c) in normalised form on a double logarithmic plot. The 

normalization constants: Y=115GPa, a0=0.361nm. Cu(1) and Cu(2) are data sets from Hansen 

and Ralph (1982) liquid nitrogen temperature and room temperature at 5%, 10% and 20% 

strain, respectively; Cu(3) indicate the data for copper at 0.5% strain from Armstrong et al. 

(1962). The solid curves are as in Fig.2.1. 
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Table 2.3 The knowledge of Cu data from the original references. (N.G. is Not Given) 

Data Strain Texture Twinning
Crystallography of slip 

Work hardening 
Slip plane Slip direction

 

Cu(1) 

5%  

Reported 

 

N.G. 

 

 

 

{111} 

 

 

 

110   

 

See Fig.2.3 Cu(1)10% 

20% 

 

Cu(2) 

5%  

Reported 

 

N.G. 

 

See Fig.2.3 Cu(2)10% 

20% 

Cu(3) Yield N.G. N.G. Not reported 

 

 

ⅳ Tungsten, Titanium, Chromium 

With only one or two datasets per metal, we consider W, Ti and Cr together. Three 

hardness test datasets were transfer to yield or flow stress by dividing the coefficient 

2.8. The normalization constants: for tungsten, Y=411GPa, a0=0.316nm; for chromium, 

Y=279GPa, a0=0.228nm; for titanium, Y=116GPa, a0=0.295nm. 

Vashi et al. [74] (1970) consolidated 0.05μm tungsten powder material at a pressure of 

1GPa for 10min at temperatures of 820oC, 870oC and 920oC. The grain sizes ranged 

from 0.15μm to 10μm, measured by both optical metallography and electron 

microscopy. Hardness testing was performed with indentation sizes always large 

compared with the grain sizes. Their data is plotted in Fig.2.4 (W black circles). 

Chromium hardness data is given by Brittain et al. [75] (1985). Specimens of different 

grain size were prepared by electrodeposition. The method of measuring the grain sizes 

is not given. The diamond pyramid hardness values they report are plotted in Fig.2.4 

(Cr blue crosses). 

Hu and Cline [76] (1968) reported micro-hardness tests on titanium. The raw material 

was repeatedly cold-rolled and recrystallized by vacuum annealing. After the specimen 
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preparation, the various grain sizes were obtained by a final anneal at various 

temperatures, and measured by both optical and transmission-electron microscopy. 

Their data is plotted in Fig.2.4 (Ti (1) red crosses). 

Jones and Conrad [77] (1969) studied tensile test data for alpha-Titanium at room 

temperature. Commercial purity (A-70) titanium was supplied as 1/4 inch in diam 

centerless-ground rod. The raw rods were cold-swaged to 0.078 inch in diam wires and 

2 inch lengths were recrystallized in a vacuum of -5×10–5 torr, giving grain sizes in the 

range 0.8 to 30μm. The grain size values are obtained from mean linear intercept 

method and measurements were made using conventional optical techniques. Data for 

the 4% strain flow stress are plotted in Fig.2.4 (Ti (2) red filled circles). 

It is interesting to note that in Fig.4a and Fig.4b titanium appears to have a much weaker 

Hall-Petch effect than tungsten or chromium. However, this is just an effect of its much 

lower Young’s modulus, for in the normalised plot of Fig.4c, it is not far away from 

tungsten or chromium. 
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Fig.2.4 W Data for tungsten Vashi et al. (1970); Ti(1) Data from titanium Hu and Cline (1968); 

Cr Data is chromium Brittain et al (1985); Ti(2) Data reproduced from titanium Jones and 

Conrad (1969) are plotted against (a) the inverse square-root of grain size, (b) the simple 

inverse of grain size, and (c) in normalised form on a double logarithmmic plot. The 

normalization constants: for tungsten, Y=411GPa, a0=0.316nm; for chromium, Y=279GPa, 

a0=0.228nm; for titanium, Y=116GPa, a0=0.295nm. The solid curves are as in Fig.2.1. 

 

 

 



62 

 

Table 2.4 The knowledge of W, Cr and Ti data from the original references. (N.G. is Not Given) 

Data Strain Texture Twinning
Crystallography of slip 

Work hardening 
Slip plane Slip direction

W N.G. N.G. N.G. {110}&{211} <111 > Not reported 

Cr N.G. N.G. N.G. {110}&{211} <111 > Not reported 

Ti(1) N.G. N.G. N.G. {0001}{1011}

{1010} 

 

1120   

Not reported 

Ti(2) 4% N.G. N.G. Not reported 

 

ⅴ Silver, Gold, Nickel 

For silver, Y=83GPa, a0=0.409nm are used. Aldrich and Armstrong [29](1970) reported 

a silver data over a wide range of grain size between 1 and 60μm. Specimens of cold-

rolled sheet material of purity 99.9% were annealed in air at temperatures from 100oC 

to 900oC for 0.5 hr. The grain size measurement include both optical and electron 

microscope. The grain size was calculated by three-halves the mean linear intercept. 

Tensile testing rate was 0.0667 min–1. Their datasets included the yield stress, the flow 

stress at 0.2%, 5% and 20% strain and the fracture stress. The yield stress ( Ag(2) green 

circles) and flow stress at 20% strain ( Ag(1) green crosses) is shown in Fig.2.7. In the 

original paper, the author compared linear fits to ݀ିଵ , ݀ିଵ/ଶ  and ݀ିଵ/ଷ ,The final 

conclusion is ݀ିଵ/ଶ fitted best, they excluded the ݀ିଵ/ଷ fit because it gives a negative 

intercept on the y-axis. The negative stress intercept was considered unphysical. 

However, we found that the datasets Fe(3), Au, Al(4) and Al(5) also have the negative 

y-axis intercept in the ݀ିଵ/ଶ fits.  

For gold data, we use Y=79GPa, a0=0.408nm. Emery [78] (2003) reported a tensile 

testing data of gold thin films. The films specimens were made by electron beam or 

thermal evaporation, the thickness ranging from 0.2-2.1μm. The samples were annealed 

for 10, 30 and 60 second at 800oC. The film microstructure and morphology were 

measured by scanning ion microscopy. The grain size were calculated by eye in SIM 
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images. The testing strain rate was 6×10–5s-1. They concluded flow strength was 

generally consistent with the Hall-Petch relationship. However, we can see the 

parabola-shape of the fitting with eye observation. We reproduced this data in the 

Fig.2.7 with red triangle.  

For nickel data, Y=200GPa, a0=0.352nm are used. Thompson [79] (1977) reported a 

nickel data. This data is a study of work-hardening. The small grain size specimens 

were obtained by electroplating from a high-purity bath and then annealing at various 

temperatures. Grain sizes of 80m and larger came from swaged and annealed material. 

Grain size measurements are not described. Tensile tests were conducted at the strain 

rate of 8.3×10–4 s–1. They only gave a log-log plot showed a slope of 0.367 for grain 

sizes above 1 m. We plot Thompson’s data for yield stress in Fig.2.7 ( Ni(1) blue filled 

squares).  

Keller and Hug [80] (2008) reported tensile tests on nickel specimens with a thickness 

to grain size ratio t/d between 1.3 and 15. Specimens of 99.98% wt.% purity were 

annealed in vacuum for 220 min at temperatures between 600oC and 1050oC and then 

air cooled. The grain size and weak texture were revealed by electron back-scattered 

diffraction (EBSD). Uniaxial tensile tests were conducted at a strain rate of 2.4×10–4 s–

1. At yield stress, they observed a normal Hall-Petch behaviour for all t/d values and 

this data is reproduced in Fig.2.7 (Ni (2) blue crosses).  
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(a)                                 (b) 

Fig.2.5 (a) The reproduced original Hall-Petch type plot of flow stress for Ni data. (b) The 

linear fitting of both the mechanical flow stress data and electrical resistivity method data. 

The black filled circles indicated the flow stress data points of (a), the red filled circles 

represented the electrical resistivity measurements data which reproduced from the Fig.5 and 

Fig.8 of the original reference [30], 10% and 20% strain at 77K data were reproduced.   

 

Narutani and Takamura [30] (1991) reported wire tension data on nickel. This is a 

very interesting paper, which has been cited as supporting the Ashby equation 

(Brown, Argon). The detail of modified Ashby equation will be discussed in section 

2.2.2. The 99.99% purity Ni samples were re-crystallized at temperatures between 

475oC and 1000oC. The grain sizes ranging from 20 to 90m. The tensile tests were 

carried out at a strain rate of 3.0×10–4 s–1 at 77 and 295K. The Hall-Petch plot data 

were obtained from the deformation at 77K. The author concluded that for small 

strains (below 5%), the plot follow a linear relation between the flow stress and the 

inverse square root of grain size. However, for larger strains, the fitting were clearly 

deviating from the Hall-Petch equation, as shown in Fig.2.5 (a). The effect of 

dislocation density on flow stress were also investigated, irrespective of grain size. 
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The dislocation density were obtained by the measurement of electrical resistivity. It 

was found that the flow stress is proportional to the square root of dislocation density. 

The linear relationship was also obtained between dislocation density and the 

reciprocal of grain size [30]. We reproduced both the mechanical testing data and 

electrical resistivity data. The datasets are fitted with linear equation, which are shown 

in Fig.2.5 (b). The black filled circle are the Hall-Petch data produced by mechanical 

testing method (Fig.2.5 (a)). The red filled circle represent the data obtained by means 

of electrical resistivity which reproduced from the Fig.5 and Fig.8 of the original 

reference [30]. Only 77K datasets were reproduced for the comparison of the 

mechanical testing results. The red data corresponding well with the black data, which 

indicate the measurement of electrical resistivity is a very good method to obtain the 

Hall-Petch type data. From the Fig.2.5 (b), it is found that the linear fittings for the 

high strain data (10%, 15% and 20%) are equally good as the lower strain fitting. All 

of the data are also fitted with simply inverse grain size function and free exponent 

function. The fitting parameters are given in table 2.5.  

 

 

 

Table 2.5. The fitting parameters of Hall-Petch equation, reciprocal grain size equation and 

free exponent fitting equation to Narutani’s Ni data. 

 
0 1/2

HP
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d
    0
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    0

HP
n

k

d
    

Data  σ0 kHP σ0 kHP σ0 kHP n 

0.2% 19.812 4.298 30.843 0.406 19.659 4.236 1.22.6

2.5% 87.944 10.929 115.883 1.037 87.469 10.836 1.01.3

5% 158.000 12.016 188.781 1.136 158.051 12.016 0.51.0

10% 270.664 13.696 305.174 1.318 272.795 12.746 1.91.7

15% 363.043 15.114 400.896 1.461 364.721 14.257 1.61.7

20% 447.470 15.026 484.934 1.458 447.165 14.565 1.61.9
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According to Eq.13 of Narutani’s paper [30], the kHP values should proportional with 

the square root strain at the low strain (0.2%, 2.5% and 5%). Hence, the kHP values 

were plotted against square root strain from the data of Table 2.5, as shown in Fig.2.6. 

The red filled circles are low strain data, the red crosses are high strain data, and the 

black line is linear relationship indicated by Eq.13 of Narutani’s paper. It is found that 

with increased of the square root strain values, the kHP values increased but not 

followed the linear relationship. At the high strain region (10%, 15% and 20%), there 

is nearly no effect of strain on kHP values. The free exponent fitting results show that 

the most of the exponents are greater than 1 but with the very big error.  

From the fitting results, it can be concluded that the electrical resistivity measurement 

provide a very good method to investigate the effect of dislocation density and grain 

size on flow stress. However, the datasets cannot confirm the theory cited by the 

author.  

 

Fig.2.6 The kHP values were plotted against square root strain from the data of Table 2.5. The 

red filled circles are low strain data, the red crosses are high strain data, and the black line is 

linear relationship indicated by Eq.13 of Narutani’s paper [30]. 
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In the Fig.2.7, Narutani’s data is shown as the brown triangle. 

 

Fig.2.7 Data for silver, gold and nickel are plotted against (a) the inverse square-root of grain 

size, (b) the simple inverse of grain size, and (c) in normalised form on a double logarithmic 

plot. The normalization constants: for silver, Y=83GPa, a0=0.409nm; for gold, Y=79GPa, 

a0=0.408nm; for nickel, Y=200GPa, a0=0.352nm. Ag(1) and Ag(2) indicated the silver data of 

Aldrich and Armstrong (1970) at 20% strain and yield stress; Ni(1) is the data set of 

Thompson (1977); Ni(2) from Keller and Hug (2008); Ni(3) from Narutani & Takamura (1991). 

The solid curves are as in Fig.2.1.   
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Table 2.6 The knowledge of Ag, Au and Ni data from the original references.(N.G. is Not Given) 

Data Strain Texture Twinning
Crystallography of slip 

Work hardening 
Slip plane Slip direction

Ag(1) 20% N.G. N.G.  

 

 

 

 

{111} 

 

 

 

 

 

110   

See Fig.2.6 

Ag(1) & Ag(2) Ag(2) Yield N.G. N.G. 

Au Yield Reported N.G. Not reported 

Ni(1) Yield N.G. N.G Reported 

Ni(2) Yield N.G. N.G. Reported 

 

Ni(3) 

Yield 
 

N.G. 

 

N.G. 

 

 

See Fig.2.5 & 

Fig.2.6 Ni(3) 

2.5% 

5% 

10% 

15% 

20% 

 

 

ⅵ Aluminium 

The normalization constants used for aluminium data are Y=70GPa, a0=0.316nm. 

Carreker and Hibbard [81] (1955) reported tensile tests on wires made from two batches 

of aluminium both of 99.987% purity (elemental compositions given). Samples were 

annealed in air for 1h at temperatures from 300oC to 500oC. Grain sizes were measured 

by optical microscopy. Tensile tests were carried out at a strain rate of 0.66×10–4 s–1 at 

various temperatures down to 20K. They presented log-log plots; at 300K, 5% strain 

the flow stress scarcely depends on grain size while at 1% strain the slope is close to  

-1/2. We reproduce their data for 300K at 1% strain in Fig.2.8 (Al (3) red crosses); their 

data for yield is very similar. 

Hansen [27] (1977) reported tensile test data for two grades of aluminium, purities 
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99.999% and 99.5%. The material was reduced by cold rolling or drawing and annealed 

at temperatures from 300oC to 625oC. The recrystallized grain sizes were determined 

by optical microscopy in polarized light. Tensile tests were carried out at a strain rate 

of 0.66×10–4 s–1. After the tests, the grain sizes of the specimens at 0.5%, 5% and 10% 

strain were measured by electron microscopy. The data for five strains from 0.2% to 

20% are reproduced in Fig.2.8 (Al (1) blue open circles & Al (2) green open squares 

for the low-purity and high-purity materials respectively).  

Tsuji et al. [82] (2002) prepared ultrafine-grained (UFG) aluminium by accumulative 

roll-bonding (ARB) process. Commercial purity aluminium (JIS-1100) was used for 

the ARB process. The material was annealed for 600 s or 1800 s at temperatures from 

373 K to 673 K. The resulting grain sizes were measured by TEM, using the mean 

interception method. Tensile tests were carried out at a strain rate of 8.3×10–4 s–1, and a 

linear fit to	݀ିଵ/ଶfor the yield point. It is found that work-hardening is not enhanced 

but rather suppressed by ultra-grain refinement. This data is reproduced in Fig.2.8c (Al 

(4) green triangles). 

Yu et al. [83] (2005) prepared ultrafine grained aluminium by equal channel angular 

extrusion of commercial purity aluminium, followed by annealing. For materials of 

larger grain sizes, the grain sizes were measured by EBSD. For materials of fine grain 

size, the grains were determined from TEM measurements. Tensile tests were 

conducted at a strain rate of 7.1×10-4 s-1, at room temperature and 77K. They reported 

a good fit to the inverse-square root dependence (Eq.1). These data are reproduced in 

Fig.2.8c (room temperature, Al (6) purple squares; 77K, Al (5) circles). 
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Fig.2.8 Data for aluminium are plotted against (a) the inverse square-root of grain size, (b) the 

simple inverse of grain size, and (c) in normalised form on a double logarithmic plot. The 

normalization constants: Y=70GPa, a0=0.316nm. Al(1) and Al(2) are from Hansen (1977) for 

99.5% and 99.999% aluminium at 0.2, 1, 5, 10, 20% strain at room temperature; Al(3) show 

the Carreker and Hibbard (1957) aluminium data; Al(4) are the data of Tsuji et al. (2002); 

Al(5) and Al(6) come from Yu et al. (2005) at 77K and at room temperature, respectively. The 

solid curves are as in Fig.2.1. 
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Table 2.7 The knowledge of Al data from the original references. (N.G. is Not Given) 

Data Strain Texture Twinning
Crystallography of slip 

Work hardening 
Slip plane Slip direction

 

 

Al(1) 

Yield  

 

N.G. 

 

 

N.G. 

 

 

 

 

 

 

{111} 

 

 

 

 

 

 

110   

 

 

See Fig.2.7 Al(1)

1% 

5% 

10% 

20% 

 

 

Al(2) 

Yield  

 

N.G. 

 

 

N.G. 

 

 

See Fig.2.7 Al(2)

1% 

5% 

10% 

20% 

Al(3) 1% N.G. N.G. Reported 

Al(4) Yield Reported N.G. Reported 

Al(5) Yield N.G. N.G. Reported 

Al(6) Yield N.G. N.G. Reported 

 

2.2.2 Comprehensive comparison 

Brown recommended the modified Ashby equation [84], which is expressed as 

                      0 ( )
      

A
M b

L
                    (2.4) 

where σ0 is the corresponding bulk yield stress or large single crystals, M is the Taylor 

factor, which can convert the shear stress to the tensile flow stress. The Taylor factor 

acts as an isotropic interpretation of the crystalline anisotropy at the continuum level, 

and 3M  for an isotropic solid, 3.06M  for FCC polycrystalline metals [85], 

3aveM for BCC polycrystalline metals [86],  is the forest hardening constant related 
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to the crystal and grain structure and generally ranging from 0.1 to 0.5, a value of 1/3 

was suggested by Brown [84], μ is the elastic shear modulus, b is the magnitude of the 

Burgers vector. The constant A results from averaging the Schmidt factors S of the 

polycrystalline array and for planar glide in f.c.c. and b.c.c. ductile crystal structures, 

the calculation of constant A is given by 
4 2 2

2 2

S S
A

b S

     


 
, Brown [84] (his 

Eq.6) gave the value is about equal to
0.53

b
.  

By considering
2(1 ) 2.6

E E


 


, the Eq.2.4 is also normalized by Young’s modulus, 

then  

                     0

1
( )

2.6

      el

A
M b

L
                   (2.5) 

By considering 3-D density, 3 


A A

L L
, if 3

( )
   A

L
( yield or small strain), 

irrespective of the elastic strain 0 described bulk strength, the modified Ashby theory 

may also predict a minimum strength (depending on plastic strain and grain size), which 

is expressed as 

1 3

2.6

 el

A
M b

L
                     (2.6) 

The plastic strain can be taken as 0.002 at yield. Substituting the values of parameters, 

then the Eq.2.6 is expressed as 

           14.85 10  el

b

L
  & 22.16 10  Y

b

L
               (2.7) 

For FCC or BCC materials, 0

2

2
b a  or 0

3

2
b a , Eq.2.7 can be written as  

1 04.2 10  el

a

L
  &  2 01.88 10  Y

a

L
               (2.8) 

To compare the fitting to the normalized data by Eq.2.1, Eq.2.2, Eq.2.3 and Eq.2.8 in 

the same framework, the comprehensive figure of all 61 datasets is shown in Fig.2.9. 
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The black heavy lines are Eq.2.2 with the parameter k = 0.72 and 0 = 0. While the thin 

solid lines are Eq.2.2 with k = 0.72 and 0  as the single fitting parameter. The black 

chain-dotted lines are the Hall-Petch equation with kHP and 0  as free fitting parameters. 

The black dashed lines are the fits of Eq.2.3 with x=1, k and 0  as free fitting 

parameters. The purple solid lines are the minimum strength predicted by the Eq.2.8 at 

yield strain equal to 0.002. The purple chain-dotted lines are Eq.2.8 plus the elastic 

strain 0 which describe the bulk strength. The red heavy line and chain-dotted line in 

Fig.2.9 (ⅳ) come from Eq.2.8 with equal to 0.04, since the dataset (red circle) is 4% 

strain flow stress of titanium. At high strain the value of ( )  is important. However, 

only one of datasets reports the measurements of ( )  . A value of ( )  is reported 

from resistivity measurement method for the 20% strain in Narutani’s Ni data [30], a 

minimum strength for 20% strain using Eq.2.4 is plotted, as shown in the dark yellow 

line in Fig.2.9 (ⅴ). The dark yellow line is too low to predict the 20% strain Ni data very 

well. There are four features of Fig.2.9: (1) only quite few experimental data points 

locate below the black heavy line but quite near it; (2) experimental data points don’t 

follow the Eq.2.8 prediction at small grain size, the strength of experimental data 

increase sharply at small grain size, however, Eq.2.8 increases gently (purple chain-

dotted line); (3) the fitting of the inverse square root (black chain-dotted line) and 

simply inverse relationship (black dashed line) diverge significantly only outside the 

range of each dataset; (4) very consistently, there is a significant gap above the purple 

line. If the data obeyed Eq.2.4, there should be data locate in this area. If this area is 

about 0.3 of the total area (see Section 2.3), the probability of it being empty in all 30 

yield data is (0.7)30 ~ 2×10-5. 

By considering the compatibility of modified Ashby equation (Eq.2.8), the gradient 

value of Eq.2.8 is adjusted to make it as likely as Eq.2.2. It is found that at least a value 

of 3.76×10-2 (double the original value) of gradient plus the bulk strength parameter are 

adopted to make the Eq.2.8 fit the yield data equally well as Eq.2.2. Except plastic strain
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 , the values of Taylor factor M and forest hardening constant  can also affected the 

gradient value. The Taylor factor is a fixed value for a particular type of metal, e.g. 

3M  for both FCC and BCC polycrystalline metals. Hence, the only possible 

changed parameter is the forest hardening constant which related to the crystal and grain 

structure. To describe the double gradient value of Eq.2.8, the double forest hardening 

constant is the most physical reasonable adjustment. In this case, a value of 0.66 of  

is obtained. The different classic papers suggested various values of  ranging from 0.1 

to 0.5, Taylor gave a value of 1 0.32   [3], Ashby suggested a value of 0.3 [2], a 

value of 0.33 was given by Brown [84]. Comparing with the maximum value of 0.5, 

0.66 is not out of range too much.  
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Fig.2.9 Normalised datasets from the literature for flow or yield stress against 

grain size. The heavy line in all panels is for Eq.2.2 with k = 0.72 and 0 = 0. The 

thin solid lines are for Eq.2.2 with k = 0.72 and 0 as the only fitting parameter. 

The black dashed lines are fits using Eq.2.3 with x = 1, k and 0 as fitting 

parameters. The black chain-dotted lines are fits using Eq.2.1, normalised, so that 

kHP and 0 are the fitting parameters. The purple solid lines are the minimum 

strength predicted by the Eq.2.8 with the yield strain equal to 0.002. The purple 

chain-dotted lines are Eq.2.8 at yield strain plus the elastic strain which describe 
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the bulk strength. The red heavy line and chain-dotted line in Fig. ⅳ come from 

Eq.2.8 with the plastic strain equal to 0.04. The dark yellow line in Fig. v is the 

plot of Eq.2.4 at 20% strain. 

2.2.3 Fits to the data 

All of the datasets are fitted with Eq.2.1 (HP fitting), Eq.2.2 (EDC fitting) and Eq.2.3 

(x=1 (SI fitting) and as a free-fitting parameter (EQ3 fitting)) by using the 

Mathematica© NonlinearModelFit. The R2 values generally over 0.999 which means 

all of the fittings are quite good. It is found that the exponents of the Eq.2.3 are scatted 

largely. Then we choose some representative data for the detailed analysis: (1) The 

copper datasets because the quality of these 3 datasets are quite good, (2) Ag (1) because 

it was fitted by Aldrich and Armstrong [29] with the exponents of x=1/3, x=1/2 and x=1, 

(3) B (1) because many brass and steel datasets have very high values of kHP. In the 

detailed analysis, the 4 additional equations are used to the fitting. They are (1) Linear 

equation (LIN fit), (2) Aldrich & Armstrong 1/3 exponent equation (A3 fit), (3) the 

power law fit (EXP fit), (4) log fit (LOG fit), respectively. 

           

dcce

d

k
cd

d

HP

ln:LOG:EXP

:A3:LIN

00

3/100
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



           (2.9) 

The Linear equation is clearly wrong for the explanation of the HP data, hence, the 

fittings are expected to provide statistical benchmarks of wrong equations fittings. A3 

fitting comes from Aldrich and Armstrong. The EXP and LOG fits are used to compare 

the power law fits with non-power law fits. The 1-R2 values of the fittings are shown in 

Table 2.8. The LIN fit has the expected highest values. However, for other seven model 

fits, all of the 1-R2 values quite small and little scatted. The fitting result just confirm 

the Fig.2.9 conclusion: we can’t distinguish which model is better. No evidence support 

the Hall-Petch relationship is true. The values of the exponent x may prefer the Hall-

Petch equation, but with quite large uncertainties.  
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Table 2.8. The 1-R2 values of the fittings to the eight models. All 1-R2 values are in ‰. The 

final column is the values of the exponent by Eq.2.3.  

Data LIN SI HP A3 EDC EXP LOG EQ3 x 

Cu(1) 5% 2.1 0.9 0.5 0.5 0.8 0.6 0.6 0.5 0.3±0.16 

Cu(1) 10% 1.1 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.22±0.27

Cu(1) 20% 0.9 0.6 0.5 0.5 0.6 0.6 0.6 0.5 0.35±0.39

Ag(1) 68 30 21 20 27 22 22 20 0.28±0.19

B(1) 11 1.4 1.4 1.8 1.3 1.5 3.2 1.1 0.74±0.13

 

2.2.4 Discussion  

The comprehensive comparison Fig.2.9 suggests that fits of the 61 data to Eq.2.1 and 

Eq.2.2 (with or without the lnd term) are equally good. The fitting of the HP equation 

and SI equation diverge significantly only out the range of each dataset. There is no 

statistical result show Eq.2.1 is correct. The large scatted and variable exponent x in 

Eq.2.3 explains that there is no experimental evidence support for a power law. Eq.2.8 

also suggested a minimum strength depending on the strain which corresponding well 

with large grain size data, however, the small grain size data are more close to the Eq.2.2 

theory. We can only get one conclusion from the fitting results is that the strength 

decreases monotonically with the increase of the grain size. 

Almost all of the Hall-Petch data points as well as micromechanical testing data on 

micro pillars are found above the line of Eq.2.2 with k~1 and 0=0. This line indicates 

a minimum strength with the general sample size. This is consistent with the theory of 

dislocation source operation. The datasets above this line can be explained by other 

strengthening mechanisms such as work hardening. Only few data falls below this line, 

we suggest the reason is the error in the grain size determination. Rhines [60] 

demonstrated about 10 methods to determine the grain size and most authors did not 

introduce their methods for the grain size determination. Hence, the random error of 

the grain size values can come from authors’ subjective choices. We proposed that the 
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low values of the exponent obtained from fitting to the Eq.2.3, are also attribute to the 

error in the grain size determination. According to the classic Ag and Cu data, Dunstan 

designed the new dummy data with the errors in grain size measurement [45]. The 

errors are expected to be proportional to grain size (lognormal distribution). The reason 

for using lognormal distribution is because large and small grain size are usually 

measured from micrographs showing a similar number of grains. The values of grain 

size and error can be obtained before the scale bar is read. Then the Eq.2.3 were used 

to the fitting to the new dummy datasets, the exponents obtained are dramatically 

smaller than the values got from the fitting to the relevant original datasets. The dummy 

data fitting results are corresponding well with some simulation works [87-89]. In 

modelling works, there is no error bar on the grain size, their conclusions suggest that 

the exponents are greater than 0.5.  

It is true that all the datasets agree well with Hall-Petch equation, but there is an 

important feature of the HP equation, that both σ0 and kHP were treated as free fitting 

parameters. This is reasonable for σ0, for the bulk strengths of metals can generally be 

varied widely by metallurgical processing. It is less reasonable for kHP, this factor might 

have been given a fixed value which was explained by theory. However, the factor kHP 

varies largely even for a particular metal data. The modified Ashby theory also predict 

a minimum strength but depending on strain. Our other statistical results (submitted to 

Acta Mat.) shown that the factor of kHP is independent on strain, which outside the scope 

of this thesis. In contrast, many of the datasets agree very well with Eq.2.2 for the fixed 

value of k = 0.72, e.g. Fig. 2.3-2.7. 

2.3 Bayesian analysis of support for hypotheses 

Since the comparison of the fitting of the Eq.2.2 and Eq.2.8 by eye are not rigorous, an 

analysis of the statistical method should be introduced to explain eventually which 

equation is better. Hence, a fully Bayesian analysis is given in this section. Bayes’ 

theorem can be expressed that the posterior probability for the observed data is the 

result based on the prior probability and likelihood function [90], the formula is: 
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P N E


                (2.10) 

where H stands for any hypothesis whose probability may be affected by the data, N E 

stand for the new evidence, P (H|N E) means the probability of a hypothesis given the 

new observed evidence, i.e. the new probability after new data is tested, and P (H) 

corresponds to prior probability, is the prior probability of H before the new data is 

observed. P (N E|H) is the likelihood which indicates that the probability of observing 

the new data given H.  

We use the H  represent the hypothesis is false. From the Eq.2.10, it is not difficult to 

derive the equation below: 

 
 

 
 

 
 

  

  

P H N E P N E HP H

P HP H N E P N E H
                (2.11) 

The new probability of the hypothesis under the new data being true equal the prior 

probability of the previous data, multiply by the ratio of the probability of the new data 

under the hypothesis H and its probability if H is false ( H ).  

In our analysis, we take H to be the hypothesis that Eq.2.2 is correct, then H  to be the 

hypothesis that Eq.2.8 (modified Ashby theory) is correct. Both the theory of Eq.2.2 

and Eq.2.8 proposed a minimum strength due to the size effect, i.e. the line of Eq.2.2 

with k~1 and 0=0 and Eq.2.8 at yield strain. We consider the grain size at sub-

millimeter region, the minimum strength of Eq.2.2 divides the log0–logd space into 

two equal parts. The theory determined all of datasets should be concentrated into the 

half of the space above the line, the probability of the dataset falls far below the line is 

zero. Hence, in our hypothesis of Eq.2.2 is correct, we have a probability density of 1 

for datasets above the ݀ିଵ line and 0 for data dramatically below the ݀ିଵ line. On 

the other hand, modified Ashby theory also predict a minimum strength, the plot of 

yield minimum strength is lower than Eq.2.2. This leaves an empty gap with no data in 

it, as shown in Fig.2.10. The area of the two triangles A and B can be estimated to be 

about 4.5 and 11.5. Then the probabilities of dataset falling in these areas are about 0.3 
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and 0.7, respectively. If the hypothesis of Eq.2.8 is valid, the relative probability density 

above the ݀ିଵ line is about equal to 0.7.  

 

 

  (a)                                     (b) 

Fig.2.10 The probability distribution of Eq.2.2 and Eq.2.8 in the log0–logd space. In (a), the 

Eq.2.2 have a probability density of 1 for datasets above the ିࢊ૚ line (black heavy line) and 

0 for data dramatically below the ିࢊ૚ line. In (b), for the Eq.2.8, the relative probability 

density above the ିࢊ૚ line is 0.7 due to 0.3 of the gap between modified Ashby theory (purple 

chain-dotted line) and CTT theory (black heavy line). 

 

More formally, using Bates Theorem, the Eq.2.11 is applied repetitively to get the 

probability of our hypothesis. We consider the second term on the RHS, the ratio of the 

probability of the new data under the hypothesis H and its probability if H is false. It 

means that for every single dataset falls above the ݀ିଵ line, the ratio gives a value 1.43 

to the second term on the RHS. If each dataset i falls above the ݀ିଵ line, we can get 

the new probability of Pi=1.43Pi-1, and for n datasets, Pn=1.43nPo. As observed in 

Fig2.8, there are in total 30 yield strain datasets from the classic literature, all of 30 

datasets are fall above the ݀ିଵ line with only a few data points not significantly fall 

below the ݀ିଵ line. Hence, for the hypothesis of Eq.2.2 is valid, these 30 datasets 

giving the probability of 1.4330P0 (4.6×104) to one. We can conclude that for any 
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reasonable value of prior probability Po, the final probability P30 is a tremendous value 

to accept the Eq2.2 as preferable to modified Ashby theory. 

It is hard to say there is no data point fall below the ݀ିଵ line. For example, one data 

point of Ni (1), some data points of the ultra-fine grain size samples Al (4), Al (5) and 

Al (6), are fall below the line. But they are very close to the line. Compare to the large 

amount of the datasets, these data points are quite little. There are several reasons can 

explain these data points. In fact, the grain size determination methods, the grain size 

distribution and the experimental equipment error can all contribute to these data points 

fall below the line. For the ultra-fine grain size samples, may be accounted by grain 

boundary sliding, migration and diffusion which have been considered in the inverse 

Hall-Petch effect [91-93].  

 

2.4 One-parameter Hall-Petch theories 

As described in the literature review (Section 1.5), in the past a few decades, generally, 

four typical models were proposed to explain the Hall-Petch relationship. The 

schematic of the four classic models are shown together in Fig.2.11. It is clear that there 

are two constraining parameters 0 and kHP in the Hall-Petch relationship, the value of 

parameter σ0 are various, the reason is that the bulk strengths of metals can generally 

be varied widely by metallurgical processing. For the predictions for the values of 

parameter kHP, each model implied a different value. The σ0 is unrelated to the grain 

size, while the kHP is account for the grain size dependent. Hence, it is necessary to 

compare their predictions of kHP with the real experimental datasets, to test whether 

they are in fact supported by the experimental data. The details of the formula derivation 

of the four models have been described in the Section 1.5. In this section, the normalized 

form of the equations corresponding to the normalized data are illustrated below.  
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(a)                                   (b) 

 
(c)                                    (d) 

Fig.2.11. The schematic of the four classic models: (a) Dislocation pile-up model, (b) Grain 

boundary source model, (c) The slip distance model, (d) The GNDs and elastic anisotropy 

model. 

 

2.4.1 Dislocation pile-up model 

The most frequently cited explanation of the Hall-Petch effects is the dislocation pile-

up model. This model gives the equation: 

0
c

Gb

d


 


                          (2.12) 

where G is shear modulus, b is the burger’s vector, τc is the critical shear stress at the 

grain boundary, when the stress over this value, slip will cross the grain boundary. 

Dislocations will propagate to the next grain. The maximum reasonable value of τc is 

less than G/10. In the data normalization, the grain size and stress are normalized by 

the relevant material lattice constant a0 and Young’s modulus Y, respectively. Combine 
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the relationship of Yൌ ሺ1ܩ2 ൅ ሻ ൎ2G, we consider the approximation τ/G ~ 2σ/Y, b ~ 

a0. Then the Eq.2.7 becomes 

0 1 1

0 0

1 1 0.09

2
c

G a d a d


 

  
  


             (2.13) 

where  is the elastic flow strain. 

 

2.4.2 Grain boundary source model 

Since the directly experimental observations on dislocation pile-up model are not 

always found. Li [49] first proposed that sources of dislocation is grain boundary. 

According to Taylor’s law for forest dislocation hardening, the grain boundary source 

model: 

0

8m
Gb

d
  


                       (2.14) 

where  is a constant depends on dislocation arrangement, the value of  is 0.4. G is 

shear modulus, b is the burger’s vector, m is a constant represents the ledge density, 

typically, mb will be in the range 0.02~0.2 [94, 95]. With the same approximation τ/G 

~ 2σ/Y, b ~ a0, the Eq.2.9 becomes  

0 1 1

0 0

8 1 0.05 0.15

2
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a d a d

 
  

  


          (2.15)  

2.4.3 The slip distance model 

In 1967, Conrad and co-workers developed the slip distance model. They suggested 

that the value of kHP depends on the plastic strain (with no Hall-Petch effect at the yield 

point), for a given strain, the dislocation density was higher in small grain samples than 

in the larger grain specimens. Combining with the work hardening equation, they give 

the slip distance model by: 
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where  is a Taylor constant depends on dislocation arrangement, the value of  is 0.4. 

G is shear modulus, b is the burger’s vector. 1 are both constant but less the order of 

unity. The equation is converted by our approximation τ/G ~ 2σ/Y, b ~ a0, we can get 

0 1
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2
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a d

 
 

                     (2.17) 

In Eq.2.12, the factor of 
1

2   is a constant depends on the order of unity. For the 

high plastic strains about 0.2, that the value of kHP may be around 0.5, while for the low 

plastic strains near the yield point e.g. pl is near 0.002, the value of the slope will be 

below 0.05. 

2.4.4 The GNDs and elastic anisotropy model 

The GNDs was introduced by Ashby [2] to explain the extra strength of the materials. 

Similarly, Kelly [96], Hirth [55] and Meyers [56] proposed the elastic anisotropy model. 

They suggested that the anisotropic grains are distributed in a homogenous stress field. 

With the grain sizes decrease, the strain gradients and the densities of GNDs will be 

proportionately larger. This model predicts that after suitable normalization, kHP will be 

proportional to the elastic anisotropy. The factor of proportionality is not clear under 

the model. In the cubic material, a formula to calculate the anisotropy factor is       

C = c11 – c12 – 2c44.  

 

2.4.5 Results and discussion 

The first three models (Section 2.4.1-2.4.3) make the clear predictions of the value of 

kHP, respectively. Thus, it is convenient to compare these three models together with 

the normalized datasets. As shown in the Fig.2.12 (a). According to these models, the 

depth of shading indicates the probability of data will fall in the various regions, white 
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corresponds to a probability close to zero. 

The heavy black line indicates the predictions of the pile-up model (Eq.2.8), the triangle 

below the solid black line is the expected region of the pile-up model. It is found that 

many of the datasets falls above the heavy black line where the maximum kHP value 

from the pile-up model. Obviously, the pile-up model cannot explain a great part of the 

experimental datasets. Some datasets have a much greater slope means that the 

predictions of the pile-up are too weak to explain the effect of the grain size on the 

dislocation mechanism. This conclusion is confirmed by discrete dislocation dynamics 

simulations of wires in torsion.  

The predictions of the grain boundary source model (Eq.2.10) are illustrated by the 

region between the two blue dashed lines. It is also found that many datasets located 

outside of the region. This model is again inconsistent with much of the data. The 

narrow region cannot explain the wide scattered datasets.  

The red chain-dotted lines stand for the predictions of the slip distance model (Eq.2.12). 

Evidently, this theory is failed to explain the Hall-Petch effect near the yield point. For 

the high plastic strains datasets, this model is good enough as an explanation. It is worth 

noting that we consider several high quality datasets with various strains from yield 

region to the high plastic strains, e.g. Cu(1), Cu(2), Al(1) and Al(2), there is a very weak 

evidence that the value of kHP depends on the plastic strain. 

For the GNDs and elastic anisotropy model (Section 2.4.4), the values of kHP for the 

cubic metals were plotted against the related normalized anisotropy C/Y, as shown in 

Fig2.12. (b). Large data points indicate that only one data is available for a metal. Small 

data points represent the different values of datasets for the same metal. The red filled 

circles indicate the yield data sets. For one particular metal, there is a significant scatter 

of the value of kHP. The solid black line is a least-squares fitting of y=ax+b to the 

averaged data, the slope of the fitting is nearly horizontal suggests that there is no 

evidence support the parameter kHP is proportional to the elastic anisotropy. 

From the results of this section, we can conclude that none of these classic models could 

explain the experimental data well. All of them are failed to predict the values of the 
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parameter kHP. From the view of the Bayesian analysis, the datasets distribution show 

that the probability of these models being true is close to zero. In contrast, almost all of 

datasets support the Eq.2.2. 

 

(a)                                    (b) 

Fig.2.12. (a) The predictions of the pile-up model (Eq.2.8) (heavy black line), the grain-

boundary ledge model (Eq.2.10) (dashed blue lines indicating the range of the upper limit of 

the predictions) and the slip-distance model, Eq.2.12 (chain-dotted red lines) are compared 

with the data.  The depth of shading indicates schematically the probability according to 

these models that data will fall in the various regions; white corresponds to a probability close 

to zero.  In (b), the Hall-Petch slopes are plotted against the normalised anisotropy factor. 

The large data points indicate that only one data set is available for a metal; the small data 

points represent many results for the same metal. The red filled circles indicate the yield 

datasets. The solid black line is a least-squares fit of y = ax + b to the averaged data and the 

dashed blue line a fit of y = ax as described in Section 2.4.4. 

 

2.5 Hypothesis on Eq.2.2 is correct 

In section 2.3, the Bayesian analysis on the data distribution conclude the Eq.2.2 is 

correct. Then in section 2.4, it is concluded that none of the classic models on Hall-

Petch relationship could explain the experimental data well. Thus, in this section, it is 



87 

 

quite meaningful to propose a method to test the Eq.2.2, from the view of one dataset. 

If we consider the Eq.2.2 is correct, i.e. for each dataset, the data points are actually 

consistent with the Eq.2.2, then in the ݀ିଵ/ଶ	 plot (the traditional Hall-Petch plot), they 

will follow a parabola instead of the straight line. In other words, if we plot the Eq.2.2 

against the inverse square root abscissa, it will be a parabola. The schematic is shown 

in Fig 2.13 (a). The black heavy parabola represents the Eq.2.2. When the data point 

distribution obey this parabola, we can divide the whole data points into three regions: 

large (L), mid-point (M) and small (S) grains region, which are represented by blue, 

green and red, respectively. It is clear that for these three regions, the slopes of the 

fitting with straight lines are different, as shown in the figure, the slope of the mid-point 

region fitting (green line) should be the value of the parameter kHP, the gradient of the 

large grains fitting is lower (blue line), the higher value can be obtained for small grains 

fitting (red line). Fig 2.13 (b) is an example from the data of Emery’s gold films tension 

experiment. The blue dashed line is the best fit parabola of Eq2.2. The black solid 

straight line is the Hall-Petch fitting of Eq.2.1. The red solid line is the fitting to the 

large grain size and small grain size datasets, separately, according to the equation 

below: 

xxxxkyy

xxxxkyy
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
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0

0                       (2.18) 

where the ̅ݔ is the mild-point of the whole dataset.  
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(a)                                        (b) 

Fig.2.13. (a) The schematic of Eq.2.2 plots against the inverse square root abscissa. The black 

heavy parabola represents the Eq.2.2. The three regions datasets in different ranges of grain 

size are shown by different colours: large (L), mid-point (M) and small (S) grains region, which 

are represented by blue, green and red, respectively. Fitting to the large-grain-size dataset (L, 

blue) will give the blue straight line with a small slope kHP, while fitting to the green (M) and 

red (S) datasets with medium and small grain sizes will give the green and red straight lines 

with larger slopes (larger values of kHP). (b) This is an example from the data of Emery’s gold 

films tension experiment. The blue dashed line is the best fit parabola of Eq.2.2. The black 

solid straight line is the Hall-Petch fitting of Eq.2.1. The red solid line is fitting with the upper 

and lower halves of the dataset. 

Based on the schematic of Fig.2.13 (a), we can conclude that the experimental values 

of kHP shows a dependence on grain size d when the data points distribution actually 

consistent with Eq.2.2. Thus, the Hall-Petch gradient kHP of the 61 datasets are plotted 

against the normalized average grain size, as shown in Fig.2.14. For the grain size 

normalization, the mid-points of each dataset on the classic Hall-Petch plots were taken, 

i.e. )(½ minmax
ISRISR

mean
ISR ddd  . The reason for choosing the mid-points of each dataset is 

because the slope of a straight line fitted to data that follow the parabola would be 
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approximately the gradient of the parabola at the mid-point of the data range. 

Indeed, the data points are scattered largely. However, the fit of the data are shown a 

trend that the smaller grain size are related to a higher value of the kHP. For a few large 

grain sizes data, the value of the gradient are quite low.  

 

Fig.2.14. The normalised HP factors are plotted against the normalised average grain size. 

 

We verify the unreasonable scattered high values of the kHP of the large grain size data. 

It is found that most of them are from the alloy like steel and brass. The high values 

could be accounted by complicated microstructure and impurity. Thus, if we consider 

only pure metals, we will get a less scattered plot, as shown in Fig.2.15. The values 

from 27 pure metals datasets are plotted against inverse square root of the normalized 

average grain size. The dashed line represented that the values of the kHP have no 

dependence with the grain size. The heavy black line indicates a trend that the smaller 

grain size datasets have a higher value of the kHP. 
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Fig.2.15. Normalised values of kHP for the data from the pure metal datasets are plotted against 

the normalised inverse square root of grain size. The heavy black line indicates that the 

smaller grain size datasets have a higher value of the kHP. 

 

2.6 Conclusions 

It is clear that the experimental evidence can support the 60-year-old Hall-Petch 

equation (Eq.2.1), the dislocation curvature equation (Eq.2.2) and modified Ashby 

equation (Eq.2.4). However, the fully Bayesian analysis result, giving the probability 

for the hypothesis of the Eq.2.2 is preferable compared with the two parameters 

Eq.2.1. From the fitting to the datasets with Eq.2.1, we get a wide range values for the 

Hall-Petch constant kHP. For even one material, the large scattered kHP cannot explain 

anything valuable character of the relative material. Additionally, the four classic 
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models described in Section 2.4 are all failed to predict the values of kHP. On the other 

hand, both Eq.2.2 with the fixed parameter k = 0.72 and 0 = 0 and Eq.2.4 at the yield 

strain with 0 = 0 (Eq.2.8) can predict the minimum strength expected for a given grain 

size, i.e. the kHP is a fixed constant. The large grain size data could corresponding well 

with both Eq.2.2 and Eq.2.4 (Eq.2.8), the small grain size data are more prefer to 

Eq.2.2. However, when the maximum physical reasonable values of Taylor factor and 

forest hardening constant are adopted, Eq.2.4 (Eq.2.8) can also compatible with the 

small grain size data. 

It has been claimed that the Hall-Petch relationship is a valid empirical relation and it 

is useful for the prediction in the material community. It does not matter whether it is 

theoretically correct. Actually, for one material, the experimental observations obtain a 

large scattered parameter kHP. Thus, the Hall-Petch equation is failed to predict the 

parameter for one kind of metal material. It is hard to say that Hall-Petch equation is 

qualified as an empirical formula. We consider the precise description of Hall-Petch 

relation is that the strength decreases monotonically with the increase of the grain size. 

We can obtain a disputable conclusion from this chapter: The Hall-Petch effect is a 

manifestation of the general size effect, instead of a particular experimental behavior 

with its own unique inverse square root exponent and individual value of kHP. 

Accordingly, there is no necessary to find its own explanation and theoretical model of 

the kHP. We propose that a fundamental size dependence in all experimental observation 

is dislocation curvature equation based on the critical thickness theory: the size is 

inversely proportional to dislocation curvature and therefore to stress. In the case of 

grain size effect has the same mechanism as other general size effects, it will be 

considered that combined these effects together. For example, Dunstan & Ehrler 

proposed an effective length which coupling of grain size and structural size [97].  
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3. Size effects in the bending of micro-foils 
Because there is a strain gradient from zero strain on the neutral plane to a maximum 

strain at the foil surface, the micro-foil bending experiment is one of the best method 

for testing SGP theory.  

In micro-foil bending tests, measurements of bending moments are difficult because 

the values are small. It is also difficult to control the strain level precisely. To overcome 

both of these difficulties, in 1998, Stolken and Evans [8] designed a brilliant micro-foil 

bending experiment method. In this section, their experimental design is reviewed in 

detail. 

3.1 Stolken and Evans’ experiment 

The most convenient design feature of their method is that the data are obtained only 

from measurement of curvature, using a non-contact optical microscope.  

3.1.1 Experimental design 

The schematic of their micro-bending method is reproduced in Fig.3.1. Firstly, the foil 

sample is clamped between two cylindrical mandrels. The lower mandrel is used for 

supporting the foil loading i.e. during the loading process, the foil will be bent on the 

cylindrical surface of it. The upper mandrel is necessary for clamping the foil, it can 

secure the foil to make sure the symmetric loading, as well as preventing the distortion 

upon the unloading process. On each side of the sample, there is an aluminium die for 

loading the sample (Fig.3.1 a). Secondly, the profiled dies move downward, and load 

the foil on the lower cylinder (Fig.3.1 b). Finally, unload process, the foil is elastically 

recovered (Fig.3.1 c). During the unload process, to minimize the friction with the foil, 

it is necessary to have highly polished contact surfaces. Otherwise, the friction will 

cause the distortion when the die is removed. 
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Fig.3.1. Schematic of the Stolken and Evans’ micro-foil bending equipment. (a) mounted the 

foil, (b) load process, (c) unload (elastic recovery). (Reproduced from Stolken and Evans [8]) 

 

The schematic of the calculation of stress-strain behaviour from measured bend radii is 

shown in Fig.3.2. During the load process, the flat foil sample is bent plastically around 

the cylinder below, as shown in Fig.3.2 (b). The radius of the cylinder is R0. Then the 

load is removed, the foil is unload elastically. The sample recovers elastically to a large 

radius of curvature Rf, as shown in Fig.3.2 (c). Because the foil is fully contacted with 

the cylinder, the surface strain of the foil in the loaded state is simply related to the 

radius of cylinder, giving the surface strain by 

                            
0

2b

h

R
                               (3.1) 

where h is the thickness of the foil and R0 is the radius of the cylinder. The moment of 

the foil is related to two radii of curvature. When the foil is in the loaded state, the total 

strain contains both elastic and plastic component; when it is unloaded, for the reason 

of elastically recovery, the strain only contains plastic component. Hence, the increase 

in the radius of curvature gives a determination of the bending moment at the load 

radius R0. The bending moment normalized by bh2 is  
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where Mn is the normalized bending moment, b is the width of the foil, h is the thickness 

of the foil, E is the Young’s modulus of the material and Rf is the radius of curvature for 

the unloaded foil. By selecting cylinders with a suitable range of radii, a range of surface 

strains and related moments will be obtained. Then the stress-strain figure can be 

plotted. 

 

Fig.3.2. Schematic of the calculation of stress-strain behaviour from measured bend radii. 

(Reproduced from Stolken and Evans [8]) 

3.1.2 Results and Weakness 

Stolken and Evans observed a strong size effect in the foil bending tests. As shown in 

Fig.3.3, the normalized bending moment were plotted against the surface strain. The 

strength of the foils increased greatly when the thickness of the foil decreased below 

25μm. Their experiment is a very good design but has its own weakness: firstly, the 

grain size effect is not studied in their results; secondly, they can only obtain data at 

high plastic strain; thirdly, the plots have large error bars. Hence, more work is needed 
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to be done to improve the data, specifically, the obtaining of more precise data over a 

wider range of strain.   

 

Fig.3.3 The normalized bending moment were plotted against the surface strain for all three 

foil thickness ranging from 12.5 to 50μm . (Reproduced from Stolken and Evans [8]) 

 

3.2 M.Y. P’ng Four-Point Bending Test 

Previously, in our group, M.Y.P’ng and David Dunstan [98] (2005) reported one yield 

strength data set of nickel foils. They adopted the classic measurement of curvature of 

the foils test method. As described in the upper paragraph, in this method, the most 

important issue is the quality of the data. The metals such as Cu and Ni are so soft. 

Hence, the stress-strain data can be obtained only when large plastic deformation. 

Obtaining data around the yield point is not easy. That is why Stolken and Evans’ data 

was focus on the high plastic strain area. To obtain the data around yield point which 

requires the measurement of large radii of curvature, the modification to the bend test 
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have to be made. Hence, they designed a 4-Point bending test and constructed the new 

apparatus. 

 

3.2.1 Rig and method introduction 

Schematic of the micro-foil 4-Point bending apparatus is shown in Fig.3.4. 4-Point 

bending means there are four roller: two Middle rollers and two Outer rollers. These 

four rollers are distributed symmetric in the rig. A shim made by spring steel is mounted 

between the Middle rollers and Outer rollers. The screw on the left side is used to drive 

the wedge move towards the right direction or return back. The two Middle rollers will 

be raised up when the wedge moves to the right side. Initially, the shim is flat (radius is 

infinity). The radius of the shim is reduced by raising the two middle rollers. The red 

line in the Fig.3.4 is thin metal foil. The foil is restricted on the shim by two weighted 

bars on both sides of the foil. Hence, the foil is bent into the curvature of the shim. The 

top of the foil is exposed in the rig. Hence, they can use a non-contact optical 

profilometer to measure the load and unload radius (curvature). 

 
Fig.3.4 Schematic of the 4-Point micro-foil bend rig reproduced from P.Moreau, M.Y.P’ng 

[98]. The red line is thin metal foil, which is restricted on the shim by two weighted bars on 

both side.  
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3.2.2 Weakness 

This rig can obtain the data around yield point of the soft metal by introducing the 

spring steel shim, because the spring steel shim makes it possible to control the small 

strain level (measure the large radius of the curvature) precisely. However, the 

introduced spring steel shim also constrains the flexure (deformation) upper limit, 

because it is too hard to deform easily. The minimum radius of the shim in this rig can 

be obtained is 30mm. It means that the data points obtained by this rig can only cover 

the elastic and yield point area.  

These data sets are good enough to study mechanical properties around the yield point 

of the foil. However, if we would like to get accurate discrete data from the elastic 

region through the yield point and to high plastic strain area, we have to use two 

different apparatus work on one particular thin metal foil sample, i.e. the 4-Point 

bending rig is used to produce the elastic region and yield point data, then the load-

unload method on a range of mandrels of smaller radii to obtain the high plastic strain 

data. Since it is quite difficult to mount the thin soft metal foil into the rig, particularly, 

it is very complex to mount the already bent foil with the different mandrels, the 

accuracy of the whole data sets are hard to guarantee.  

 

3.3 Summary  

Stolken and Evans proposed a brilliant testing method that the data are obtained only 

from measurement of curvature, using a non-contact optical microscope. However, the 

most important weakness is the big error bar in the results. This uncertainty is from the 

experimental operation since the soft thin metal foils are so fragile that repeated 

handling deform the foil itself. Hence, the great challenge of the experimental design is 

obtaining the precise data with minimum error bars. If we would like to get the excellent 

data sets for the whole range, we should avoid to mount the thin foil many times. The 

best method is to design a new device in which the thin foil is mounted only once then 



98 

 

the whole range of different radii of load formers could be substituted. We call it load-

unload formers bending test. 
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4. New testing method for micro-foil bending test  

4.1 Introduction 

I will introduce the new load-unload formers bending test experimental design in this 

chapter. At the beginning, I will introduce the idea of the rig design and fabrication of 

the formers in section 4.2. Secondly, the experimental design of this new methods 

include the sample preparation method and data plot will be illustrated in section 4.3. 

Finally, the experimental procedure and initial test results will be shown in section 4.4 

and 4.5. 

 

4.2 Mechanical testing equipment 

4.2.1 The rig  

A schematic of the load-unload former bending rig is shown in Fig.4.1. The different 

components of the rig are shown in Fig.4.1 (a). The thin metal foil is fixed by the cover 

plate on the top of the rig. There are two screws that can fix the cover plate and foil. 

The middle part of the cover plate is removed, so the thin foil sample can be exposed. 

Then we can load the foil and measure the surface profile conveniently. The top-view 

of the cover plate is shown in Fig.4.2 (a).The wedge has an angle of 12o, a trench with 

the same angle 12o is designed in the rig (the purple dash line). Hence, the wedge can 

be moved in the rig freely. Each former has a certain radius. The former is put on the 

wedge, and moves forward with the wedge, as shown in Fig.4.1 (b). When the former 

reach to the stopping plate, with the push forward of the wedge, the former will move 

upward. Finally, the wedge will be stopped by the second plate, as shown in Fig.4.1 (c). 

The distance between the two stopping plate is calculated precisely to make sure the 

former and thin foil contact compactly. When the experiment is in progress, to put the 

former and thin foil in full contact, a rubber is used to load the foil, then unload. The 
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shape of the rubber is shown in Fig.4.2 (b).  

 

(a) 

 

(b) 
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(c) 

Fig.4.1 Schematic of the load-unload formers bend rig. (a) Introduction of the different 

components of the rig. (b) (c) show the details of how to control the wedge and former. 

 

(a)                                (b) 

Fig.4.2 (a) The top-view of the cover plate is shown. The middle part is removed to expose the 

foil. (b) The shape of the load rubber. 

 

The bottom of the rig has two kind of faces (face1 and face 2), the angle of intersection 
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between these two faces is also 12o. The surface profile of foil can be only measured in 

the X-Y plane and has a height limitation in Z-axis, because the non-contact 

profilometer can only measure small vertical displacement over long distance. Hence, 

this two-face design can make sure the measurement of the surface profile is possible. 

As shown in Fig.4.3 (a), when the face 1 is horizontal, the flat thin foil is horizontal as 

well. Then the surface profile could be measured. With the foil deformed gradually, the 

curvature of the foil increases largely, we can’t obtain the whole profile with this 

horizontal mode, since measurement on the end part of the foil exceed the height 

limitation in Z-axis, as shown in Fig.4.3 (b). In this case, we can set the face 2 

horizontally, i.e. rotate the whole rig by 12o, as shown in Fig.4.3 (c). The peak of the 

foil curvature changes into the middle part, i.e. both ends of the foil are lower than the 

middle but within the Z-axis limitation, then the whole surface profile information 

could be detected.  

The rig and formers were manufactured by Geoff Gannaway and Geoff Simpson in the 

Workshops, School of Physics, Queen Mary University of London. 

 

(a)                        (b)                       (c) 

Fig4.3 Schematic of the two face mode of the rig. In (a), the flat foil is measured horizontally. 

In (b), the whole profile couldn’t be obtained since the measurement on the end of the foil 

exceed the height limitation. In (c), with the rotation of the rig, the full information could be 

obtained. 
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4.2.2 Non-contact optical profilometer 

The surface profiles of the designed experiments are measured by using a non-contact 

optical profilometer (OTM3 profilometer from Wolf & Beck Sensorik, Germany), 

shown in Fig.4.4 (a). The rig in 4.2.1 is designed to be mounted under this profilometer. 

Hence, the curvature of the foil could be measured without physical contact and without 

dismounting the foil from the rig. A schematic of the optical profilometer is shown in 

Fig.4.4 (b). When the light beam goes through the objective lens, the focal plane is 

formed. The position of the sample to be measured should be located in the focal plane. 

Hence, there is a measuring range of the sensor. The 3D coordinate is formed by the 

position on the X-Y plane and height distance. The surface morphology is recorded by 

the digital image sensor.  

 

(a)                                    (b) 

Fig.4.4 (a) The profilometer used in the surface profile measurement. (b) Schematic of the 

optical profilometer. There is a measuring range of profilometer. [99] 

4.2.3 Formers 

In order to get complete data sets for the whole range (elastic section, the yield point 

and high plastic st rain section), a discrete and large range of radii of formers were 

designed, fabricated and measured, as shown in Table 4.1. 
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Table 4.1. The nominal and measured radius of the former 

No. Nominal (mm) Measured (mm) Tolerance (mm) 

1 312.500 332.14 ±0.208 

2 250.000 261.236 ±0.166 

3 208.333 225.785 ±0.182 

4 156.250 159.113 ±0.116 

5 125.000 132.656 ±0.187 

6 104.167 105.115 ±0.133 

7 70.000 70.456 ±0.088 

8 50.000 50.126 ±0.055 

9 30.000 30.152 ±0.034 

10 20.000 20.398 ±0.033 

11 15.000 15.100 ±0.800 

12 10.000 10.100 ±0.033 

13 7.000 7.120 ±0.033 

14 4.167 4.214 ±0.114 

15 2.500 2.602 ±0.033 

16 2.083 2.131 ±0.010 

17 1.667 1.812 ±0.024 

18 1.250 1.327 ±0.067 

19 0.833 0.909 ±0.016 
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Take the No.7# & No.14# Former as examples. We propose the nominal radius of No.7# 

is 70.000mm (low strain). The former is produced by Geoff Gannaway and Geoff 

Simpson in Workshop, School of Physics, Queen Mary University of London. I 

measure the surface profile of the produced former by optical profilometer. The 

profilometer does not calculate radius of curvature. It only measures and records the 

surface profile data. Hence, the data have to be exported from the software of the 

profilometer. The radius of curvature is obtained by fitting to the data by using the 

Mathematica© software, as shown in Fig.4.5 In (a), the 3D plot of the surface profile is 

illustrated. The former is mounted on the rig. The sensor scan the former along the X-

axis. The steps of X-axis is scan length in mm. Each former is scanned 5 times produce 

5 parallel lines with different Y-axis value. The Z-axis is the height of the surface profile 

in nm. Each line of the data is fitted by Mathematica© separately, as shown in (b). The 

light blue line is the measured surface profile data, while the red line from the fitting of 

Mathematica© software. Then the value of the radius can be obtained by the fitting value. 

The deviations of the fitting are checked as well, as shown in (c). The values of data 

points are subtracted from the value of fitting curvature. The deviations residuals of 

most data points are within 2μm. This check shows that the fitting to the curvature by 

the Mathematica© software is sufficiently precise. We repeat the same fitting procedure 

to the five scans. The average result is the final measured radius, and the tolerance is 

calculated as well, as shown in Table 1.  

 

(a) 



106 

 

 

(b) 

 

(c) 

Fig.4.5 (a) 3D plot of the surface profile of No.7# Former (low strain). X-axis is scan length in 

mm, Y-axis is the different scanned line, Z-axis is the height of the surface profile in m. (b) 

Fitting of each line of data. The light blue line is the measured surface profile data, while the 

red line from the fitting of Mathematica© software. (c) The deviations check of the fitting 

demonstrates the fitting is relatively accurate. 
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Fitting of the No.14# Former (high strain) is shown in Fig.4.6. The fitting process is 

exactly the same with No.7# Former. One more step is the cutting of the measured 

profile. Because the high strain former has a smaller radius, the whole measured profile 

is consist of one circle part and two tangent lines on each side of the circle. The fitting 

to the profile is focus on the circle component, two fitting tangent lines are used to 

determine the cutting range of the profile data. 

 

 

 

(a) 

 
(b) 



108 

 

(c) 

Fig.4.6 The Mathematica fitting of the surface profile of No.14# Former (high strain). The 

fitting to the profile is focus on the circle component, two fitting tangent lines are used to 

determine the cutting range of the profile data. 

 

4.3 Experimental design 

4.3.1 Rapid thermal anneal (RTA) 

The rapid thermal anneal is used to modify the crystal structure and surface profile of 

the thin metal foils [100]. It was built and operated by school of physics, Queen Mary, 

University of London. A schematic of the RTA chamber is shown in Fig.4.7. The 

chamber can obtain a rough vacuum by using the vacuum pump. Nitrogen gas is 

supplied by the pipe under the chamber. Hence, the samples can be annealed in either 

vacuum environment or inert N2 gas atmosphere to prevent oxidation of the samples. 

The annealing components consist of electric terminals and graphite carbon strips. 

There are screws on both side of the graphite carbon strips to fix them on the electric 

terminal. When annealing is in progress, the thin metal foil samples are sandwiched by 

two carbon strips, electric current raises the temperature of the resistive graphite strips. 
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A water cooling system prevents overheating of the electric terminal and the chamber. 

The monitoring feedback is achieved by the sapphire rod taking light to the pyrometer 

located under the graphite carbon strips and the electric terminal. This is used via a 

Proportional-Integral-Derivative (PID) to control the temperature of the graphite and 

samples. The accuracy of the control is ±1oC. A thermocouple is used for monitoring 

the temperature of the electric terminal and whole chamber to prevent overheating.  

The whole annealing process is controlled by program and software. The software was 

written by Prof. Willian Gillin from school of physics, Queen Mary, University of 

London. The most significant ability of the RTA is rapid temperature rise slope. The 

duration of heating from room temperature to 1000oC is 15s. This capacity is fully 

important for small dimensions samples. In the traditional furnace, different diffusion 

rates of the surface and bulk material can produce a rough surface. RTA’s shorter times 

and higher temperatures are expected to reduce surface roughening significantly.   

 

Fig.4.7 Schematic of the main components of the RTA. The foil samples are placed between 

two graphite strips and the temperature is measured and controlled by optical thermocouple. 

The samples are annealed in either high vacuum environment or inert Nitrogen gas 

atmosphere to prevent oxidation. 
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4.3.2 Micro-foil bending test method 

We adopt load-unload micro-foil bending test method which was proposed by Stolken 

and Evans [8], as described in the literature review. The bending equipment are the new 

designed load-unload Formers Rig introduced in section 4.2. Schematic of the load-

unload bending test process is shown in Fig.4.8. The metal foil is loaded round the 

former with rubber. We have known the former radius as introduced in Table 4.1. Here 

we assume the former radius is R1. The width of the rubber and foil are exactly the same 

but slightly less than the middle of rig cover plate. Since the distance between the two 

stopping plate is calculated precisely to make sure the former and thin foil fully contact, 

we could consider that the load radius is the former radius R1. The surface strain of the 

foil in the loaded state is then expressed by 

                              
1

2S

h

R
                             (4.1) 

where S is surface strain, h is the thickness of the foil. In the fully loaded state, the 

stress contains both elastic and plastic component. The foil is then unloaded, it 

elastically recovers to a larger radius R2. It contains only the plastic component of strain 

in the unload state together with residual internal stresses. The normalized bending 

moment is expressed as 
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                     (4.2) 

where E is the Young’s modulus of the material, h is the thickness of the foil, R1 is 

former radius and R2 is relaxed foil radius in unload state.  

By substituting the formers successively from large radius to smaller radius, this 

bending test can give brilliant data over a wide range of surface strain. We plot 

normalized moment versus strain. The whole range of strain from elasticity, yield to 

high plasticity of the foil can be obtained.  

When the strain is too small to get plasticity, the foil will elastically recover to flat 

which means R2 is . In this case, 1/ R2 is null and Mn is expressed by 



111 

 

                       
1 1

1

12 6 2 6n S

Eh E h E
M

R R


 
   

 
              (4.3) 

Then the plot of the normalized moment versus strain is a straight line. The slope is a 

constant E/6. This straight line is the theoretical elastic line of the material. 

 

(a)                             (b) 

Fig.4.8 Schematic of the load-unload bending test process. (b) is the zoom in detail of the foil. 

Since the former and thin foil fully contact, load radius is the former radius R1. The foil is then 

unloaded, it elastically recover to a larger radius R2. 

 

4.4 Experimental procedure 

4.4.1 Sample preparation 

Nickel foils of three different thickness (h=10, 50 and 125 m) were obtained from 

Goodfellows Cambridge Limited, UK, with purity of 99.9%. The 125 m thickness foil 

was un-annealed rolled sheet, while the thinner foils were electrodeposited with very 

small grain size. Hence, the initial microstructure and grain size of the foils is 
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substantially different. We know that the strength of polycrystalline metals depends on 

the microstructure significantly. Therefore, the annealing process was used to modify 

the microstructure. Before the annealing and foil bending, the 5mm*20mm samples 

were cut from the original metal sheet by using a scalpel. Scissors can’t be used for 

cutting, they will bend the foil samples because of the shearing involved. The samples 

were annealed by using the RTA described in section 4.3.1. The annealing process is in 

the inert nitrogen gas atmosphere with temperatures from 700-1000oC. Annealing times 

from 15s to 900s are used to obtain different grain sizes.  

After annealing, the foils were etched to show the grain size. The etching solution is a 

mixture of acetic and nitric acid with a ratio of 5 to 1. Because the etching process 

damages the foil, for each annealing process, we prepare two samples, one is used for 

the bending test while another one is for the grain size measurement.  

4.4.2 Load-unload test  

Before the load process, the initial radius of the foil was measured by profilometer. 

Then the largest radius of former was mounted and the foil was loaded by using a rubber. 

The load rubber was covered with clean plastic film to avoid sticking on the foil. The 

foil was then unloaded, the unload radius of the foil was also measured by profilometer. 

Next, the next smaller former was substituted, the repeat load-unload procedure was 

carried out to get the new unload radius. The measurement of the curvature of the foil 

was the same as for the formers as introduced in section 4.2.3. 

4.5 Initial results 

4.5.1 Grain size measurement 

To test feasibility of the new experimental method, the nickel foil samples were 

prepared and annealed at the published data annealing conditions [98]. Some typical 

annealing conditions in the old data were adopted, as shown in table 4.2.  
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Table 4.2. The typical annealing conditions and grain sizes on different thickness of the foils 

No. Thickness 

/m 

Annealing 

Temperature/ oC

Annealing Time 

/s 

Grain size 

/m 

Published data 

grain size/m 

(1) 125 1000 5 76 85 

(2) 50 1000 120 51.5 50 

(3) 50 700 30 4.7 14 

(4) 10 1000 300 20.4 12 

 

 

The micro-structure of the samples were measured by SEM, the examples of SEM 

images are shown in Fig.4.9. The grain size measurements were adopted Average Grain 

Intercept (AGI) method [101, 102]. The results are illustrated in table 4.2. The initial 

grain sizes of the different thickness of the foils are various because the different 

fabrication method. The thickest foil (125m) was un-annealed rolled sheet with large 

grains, while the thinner foils (50m, 10m) were electrodeposited with very small 

grains. Annealing results confirm the expectation that the grain growth rate of the 10m 

foil is very slow, while 125m foil grain growth rate is very fast. 
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       (a)                                      (b) 

Fig.4.9 The examples of SEM images of the annealed Ni foil samples. (a) The 125m thickness, 

annealing temperature 1000oC, annealing time 5s. (b) The 50m thickness, annealing 

temperature 700oC, annealing time 30s. 

I compared the sample grain sizes of my data with the published data, which is shown 

in Table 4.2. Annealing the 125 m (thickest) thickness foil at 1000oC (high 

temperature) for 5s (short time) and the 50m thickness sample at 1000oC (high 

temperature) for 120s, my data corresponding well with the published data. The 50m 

thickness foil annealed at 700oC (low temperature) for 30s (short time), my data has a 

much smaller grain size than the published data, while the 10m (thinnest) thickness 

foil annealed at 1000oC (high temperature) for 300s (long time), my data has a larger 

grain size than the expected value. The results show that sample annealed at the lower 

temperature and less time has a smaller grain sizes, while the higher temperature and 

more annealing time sample has a larger grain than the expected values. I attribute this 

difference results to the temperature feedback and control system of the RTA.  
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4.5.2 Curvature measurement 

The curvature of the unload foils were measured by non-contact optical profilometer. 

The sample rate of the sensor is 300MHz, the scan rate is 0.02mm in X-axis and 0.2mm 

in Y-axis. Take the 50m thickness foil annealed at 1000oC for 120s as an example, the 

load radius is 4.214 mm. The foil was deformed in the high strain and then unloaded. 

The measured unload surface profile is shown in Fig.4.10. X-axis is the scan length of 

the sample in mm, Y-axis is different scan of the sample. The profile of the sample is 

represented by Z-axis in micron. The smooth surface profile of the sample explains the 

load-unload process is relatively good. The data is qualified for the fitting of the 

curvature. The fitting process has been introduced in Section 4.2.3.  

 

 

Fig.4.10 The measured surface profile of the unload sample. X-axis is the scan length of the 

sample in mm, Y-axis is different scan of the sample. Z-axis represented the profile in micron. 
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4.5.3 Mechanical property 

The surface strain and the normalized bending moment of the samples were calculated 

by Eq.4.1 & Eq.4.2. The mechanical tests results were shown in Fig.4.11 (a), (b). The 

normalized bending moment was plotted against the surface strain. Fig.4.11 (b) expands 

the small strain region, then we can observe more detail clearly from Fig.4.11 (b). 

Before the load process, the curvature of flat foil was measured (very large but is a 

specific value), which is called un-deformed curvature. During the load process under 

very large radii formers, the foil is recovered to its initial un-deformed curvature. We 

define this behaviour as elastic deformation. The blue line in the Fig.4.11 is the elastic 

modulus line calculated by the young’s modulus of Ni. When the curvature of the 

unload radius R2 is smaller than initial un-deformed curvature, the foil displays 

plasticity. In this figure, the red data is my new data, the blue data is the old published 

data. The red data points are much more numerous than the blue data points, because 

the radii of formers are designed fully covered the whole region of the bending test. 

From Fig.4.11b, we can find that there are no old data points around the onset of plastic 

deformation, while the new data points covered that region. In the elastic-plastic 

transition region, the new data points can display more detail behaviour, hence, the 

more accurate results about the yield points will be obtained.    

Generally, the new datasets are corresponding well with the published old data. The 

thickest 125m foils (Symbol: Cross) are very weak and have already yielded at the 

largest former radius. The size effect is observed clearly when the sample thicknesses 

decreased below 50m. The 50m thickness sample is stronger than the 10m 

thickness samples in this figure, because the very small grain size. One abnormal 

dataset is red triangle samples (50m thickness and 52m grain size). It is much weak 

than the expected behaviour. I cannot explain this dataset, it is attribute to the 

experimental operations. This dataset should be repeated.  

  



117 

 

 

(a) 

 

(b) 

Fig.4.11 (a) The normalized bending moment was plotted against the surface strain. The red 

data is the new data, the blue data is the old published data. The sample thicknesses of filled 

squares, circle, triangle and cross are 10m, 50m, 50m and 125m, respectively. Thinner 

foils are stronger than thicker foils. 
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4.6 Future work 

It is clear that this new designed load-unload formers bending method works well. 

There are two main works needed to be done in the future with the new method and rig: 

(1)  It is necessary to obtain more datasets of pure metal samples contain various grain 

sizes and thicknesses to complete the datasets. Because the new rig can produce 

more testing data points, the detail information around yield point will display. The 

grain size effect theories could be tested with more accurate data.  

(2)  To test the SGP theory, the sandwich structure samples will be fabricated and be 

tested with the new rig. The sandwich structure samples will be made by gluing 

pairs of foils together with paper between them. The paper is soft which can barely 

affect the strength of the whole samples. Hence, by adjusting the thickness of the 

paper between the foils, we can obtain the sandwich structure samples with various 

foil thicknesses but with a fixed sample thickness. This sample design make it 

possible to separate the effects of size and of strain gradient. Then the SGP theory 

will be tested by this new experimental design. The new rig will provide more 

accurate results. 

 

4.7 Conclusion 

In this new load-unload former equipment, the un-deformed thin metal foil is mounted 

only once. During the whole load-unload process, the foil sample is fixed on the rig and 

measured by non-contact optical profilometer. The precise design of the rig can make 

sure that the former and foil are fully contacted during the load process. Only the former 

substitution is done before each new load-unload operation. Compare to the traditional 

mandrel method equipment, this new method eliminates the complex operations of 

mounting and dismounting the foil between each measurement. Repeated handling 
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risks deforming the foil itself; the new method avoids the unnecessary handling of the 

sample and make sure that more accurate data could be obtained. 

We designed and made the large number of formers which the radii ranging from more 

than 300 mm (even flat) to less than 1mm (quite high strain). By substituting different 

formers, we can get the discrete data from the elastic region through the yield point and 

to high plastic strain area, i.e. the whole region information of deformed foil can be 

obtained. More testing data points around the elastic-plastic transition region can reveal 

the yield behaviour. 

It is clear that the initial results from the new designed load-unload formers bending 

method corresponding well with the published data. The initial results test the feasibility 

of the new experimental method. The new experimental device create a good 

foundation for future mechanical property testing experiments. 
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5. Summary 

Generally, there are two main sections in this thesis. The first section is a comprehensive 

review on the Hall-Petch relationship. The second section is a new experimental design 

on micro-foil bending test. I will summarize the conclusions separately below.  

Firstly, in total, 61 typical Hall-Petch datasets were collected from the classic references. 

These datasets included all of the general metals. They were digitized and fitted with 

the Hall-Petch equation (both σ0 and kHP treated as free fitting parameters), free 

exponent of Hall-Petch equation and dislocation curvature equation. The scaling 

exponent values are scatted from 0 to 1. There is no rigorous inverse square-root power 

law on Hall-Petch relationship. We summarized the kHP values of these 61 datasets. 

They are widely scattered even for a single metal, hence, Hall-Petch equation is not 

qualified as an empirical formula for predicting the material mechanical behaviour. The 

four classic models all fail to predict the parameter kHP. The data fit both Hall-Petch 

and dislocation curvature equations equally well, but the fully Bayesian analysis 

strongly supports the latter. There is a trend that the smaller grain sizes have a higher 

value of the kHP. This is evidence that the dislocation curvature equation is correct. We 

conclude that the Hall-Petch effect is not a special behaviour with its own unique 

parameters. Actually, it is another manifestation of the general size effect.  

Secondly, on micro-foil bending test, we designed and fabricated a new device based 

on the classic load-unload method. Because the thin foils are soft and fragile, repeated 

handling in classic experimental design deformed the foil to some extent. Repeated 

operations of mounting the foil risk error of the data. The brilliant design of the new 

equipment is that the foil sample is mounted only once before the mechanical testing 

process. The new devices overcome the difficulty for obtaining accurate data. Our 

initial results show that the new device worked well. We made a large number of 

formers which the radii covered the gap between the elastic and plastic strain. Hence, 

in the elastic-plastic transition region, the new device can produce more testing data 

points to show the yield strain and stress clearly. The new datasets contains more data 
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points with smaller error bar which make it possible to test the Hall-Petch and SGP 

theories precisely in the further work.  
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