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Abstract

Pattern detection is a well-studied area of computer vision, but still current methods are
unstable in images of poor quality. This thesis describes improvements over contemporary
methods in the fast detection of unseen patterns in a large corpus of videos that vary
tremendously in colour and texture definition, captured “in the wild” by mobile devices

and surveillance cameras.

We focus on three key areas of this broad subject;

First, we identify consistency weaknesses in existing techniques of processing an image
and it’s horizontally reflected (mirror) image. This is important in police investigations
where subjects change their appearance to try to avoid recognition, and we propose that
invariance to horizontal reflection should be more widely considered in image description
and recognition tasks too. We observe online Deep Learning system behaviours in
this respect, and provide a comprehensive assessment of 10 popular low level feature

detectors.

Second, we develop simple and fast algorithms that combine to provide memory- and
processing-efficient feature matching. These involve static scene elimination in the pre-
sence of noise and on-screen time indicators, a blur-sensitive feature detection that finds
a greater number of corresponding features in images of varying sharpness, and a com-
binatorial texture and colour feature matching algorithm that matches features when
either attribute may be poorly defined. A comprehensive evaluation is given, showing
some improvements over existing feature correspondence methods.

Finally, we study random decision forests for pattern detection. A new method of
indexing patterns in video sequences is devised and evaluated. We automatically label
positive and negative image training data, reducing a task of unsupervised learning to
one of supervised learning, and devise a node split function that is invariant to mirror
reflection and rotation through 90 degree angles. A high dimensional vote accumulator
encodes the hypothesis support, yielding implicit back-projection for pattern detection.
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Chapter 1

Introduction

Pattern detection is a well studied and yet still unsolved area of Computer Vision research.
Much progress has been made but still the methods are delicate, working with images of
limited variety, captured in controlled environments, or with subjects that are segmented
from the natural environment. General purpose pattern detection remains elusive despite
years of research. Visual Search is an overarching term used to describe a search of a visual
environment for a target among distractors [1]. It is a term that has increased in popularity
and is now commonplace in contemporary literature describing systems of pattern search
of a provided exemplar. The objective is well defined, and the rewards are high; provide
the capability to find a previously unseen pattern within a corpus of images or videos, and
show the user where the patterns (most likely) occur. This thesis focusses on query-by-
example pattern detection in videos of low quality, observing and investigating limitations
of current methods of image analysis and understanding (Chapter 3). We contribute to
the body of literature on pattern description and matching with methods and techniques
that can produce better results than have been achieved before (Chapter 4), in customarily
small increments of improvement. Further, a more radical model of indexing pattern
occurrence in videos is introduced (Chapter 5), which has demonstrated promise in

natural video sequences captured in the wild.

The research has been performed with the specific focus of unconstrained pattern
search and detection. Unconstrained in all meanings of the word; the environment in
which the video is captured is uncontrolled - lighting, camera movement and weather all
add complexity to the images — and videos are unedited and can be very long in duration.
The sources of our images and videos are street-scene closed-circuit television, shop and
private residences’ security cameras, police body-mounted cameras and a plethora of

mobile devices such as digital cameras, mobile phones and tablets. Our challenge is to be

10
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able to find patterns such as corporate brands and logos, tattoos, clothing material and
other distinctive markings on clothing, bags, vehicles and buildings in a large corpus of

data. Our motivating use case is police investigations into criminal activity.

Inlarge criminal investigations, police forces employ numerous officers and volunteers
to watch many hours of camera footage to locate, identify and trace the movements
of suspects, victims, witnesses, vehicles, luggage and other inanimate objects. Their
goal is to piece together a story of events leading up to an incident, and to determine
what happened afterwards. For example, the 2014 investigation by the Metropolitan
Police (the Met Police) in London into the disappearance of school girl Alice Gross collected
8 days (8 x 24 hours) of continuous video camera footage from local authority street
cameras along with footage for shorter durations obtained from private residences, shops
and other businesses. In all, 30 Terabytes of video and image data were gathered. To
assist investigations, the Met Police have looked to computer vision technology, but found
existing systems to be severely limited in their ability to analyse real-world street-scene
videos, because of the practical constraints in the variety of poor quality of videos.

1.1 The impurity of street-scene video footage

Research algorithms in the literature are typically demonstrated to work with high quality
video. Two common examples are Hollywood movies Groundhog Day (Ramis, 1993) and
Run Lola Run (Tykwer, 1998) used in [2-4] and subsequent comparative papers, and
Casablanca (Curtiz, 1942) in [4]. These high quality videos have a high frame rate and
good image resolution. The context in which street-scene videos are recorded differ in a
number of significant ways from a feature film and produce scenes that are challenging

to computer vision algorithms (Figure 1.1).

1.1.1 Long-running video sequences

Sivic and Zisserman [3] were the first to apply text retrieval theory and practices to video
searching, and defined visual words to describe structure in images. The method tracks
features across shots, a contiguous sequence of frames taken from a single camera within
a scene. The number of frames and discovered features to process is manageable because
of the relatively short period of time covered by a shot. The average shot length in feature
films was 8-11 seconds before 1960 and had reduced to 4-6 seconds by 2006 [5]. Localised
processing of feature movement is an aid to the algorithm by reducing the data volumes
and providing a natural delineation of processing. Where necessary, cross-shot feature
tracking can be considered at a later processing stage once features have been tracked
within a shot. Boundary shot detection is well documented as an important prerequisite

Large Scale Pattern Detection in Videos and Images from the Wild
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e

Figure 1.1: Comparing the definition of broadcast quality films (top) with typical CCTV images.
Top left, a frame from the 1993 film Ground Hog Day starring Bill Murray and Andie MacDowell;
Top right, a frame from the 1998 German science-fiction action thriller Run Lola Run starring
Franka Potente. Bottom row, scenes from CCTV footage have far less definition and clarity.

step to automatic video content analysis [6] as shots are regarded as the basic unit by
which to organise the sequenced content of video and primitives [7].

Videos used in criminal investigations are very different. Fixed surveillance cameras
fall into three categories; those that do not move and continuously record the same
field of view, automated movement cameras that follow a defined motion such as a
figure-of-eight to try to maximise area coverage, and human operated cameras that can
be pivoted up and down, rotated around 360° and zoomed to varying depths!. Each
of these cameras produce a video consisting of a single shot that can last for hours.
Body-mounted cameras and mobile phone footage also produce uninterrupted video
sequences that can last several minutes, and hundreds of frames. Without a natural
delineation of shot change, contemporary methods of object tracking and mining become
less manageable, demanding large computing resource to process.

1.1.2 Camera movement

In static surveillance cameras the focal length and field of view are both fixed, and do not
follow any activity. A car or a person that subsequently becomes of interest to police does
not stay within shot, or even within focus. These fleeting glances can be important to

!these cameras are called PTZ, reflecting their capability to Pan, Tilt and Zoom

Large Scale Pattern Detection in Videos and Images from the Wild
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an investigation but could easily be missed by reviewers scanning many hours of CCTV
video.

An alternative to static cameras are those which passively record following a pre-
defined motion path, with the camera mounted on a bracket that automatically moves
around a loop or figure-of-eight. Objects will move in and out of view regularly within
a sequence of frames. Other cameras are human-operated and can record very erratic
movement with dramatic changes of focus and rapid zoom as the camera operator
wrestles with the controls to record action on the streets. Individual frames can therefore
be very blurred. The fast movement in pan and zoom, either in the manually controlled
camera or to a lesser extent in a fixed-path motion camera degrades the image quality
further, and is somewhat unique to the security videos such as those that we analyse.

1.1.3 Environmental

Security cameras record in uncontrolled environments. The footage is continuous, with-
out any controlled change in focus, lighting and position. As a result, images have poor
colour clarity and little discriminative or representative texture definition.

Many variations occur over a long-running video sequence. The sun changes through
the day in position and intensity, and at night the scene changes to artificial ambient
lighting and spot lighting from vehicle headlights, for example. The quality of images
from each security camera therefore varies considerably, and this inconsistency can cause

Figure 1.2: Six images of a person wearing the same jacket, taken on different days with different
street cameras, showing variation in texture and colour definition exhibited in street-scene
videos from CCTV.

Large Scale Pattern Detection in Videos and Images from the Wild
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difficulties in finding correspondences in images even from the same camera (Figure 1.2).

Variations in weather over time cause very different images to be captured by a
camera at different times. A change from sun to cloud affects the light intensity and
colour definitions within the image. Rain or snow can appear as noise and even occlusions
in extreme conditions. Fluctuating lighting conditions can also be caused by burning fire
and by emergency vehicle lights, especially at night, and are commonplace in video that

undergoes forensic analysis.

Closed-circuit television (CCTV) cameras are often sited very high and cover a long
field of view where objects in the distance lack colour definition and texture clarity
and can be difficult to identify even for a human. Fast camera movement pan or zoom,
frenzied motion within a frame, or a combination of both can cause significant blurring
in frame images which results in a lack of texture. Camera instability in free-hand or

body-mounted cameras cause serious image blur and erratic movement.

1.1.4 Video acquisition and recapturing

The source of video footage used in a police investigation can be varied, as there is a
lack of standardisation in CCTV systems. Obtained footage is often in a proprietary
format that can only be viewed on-screen by a manufacturer-supplied application, and
the flexibility and usability of these applications vary tremendously. To achieve their
goal of forensic analysis and examination of segments of video, and to be able to edit
videos into a story that can be used in a criminal court, the Met Police have employed
creative solutions to overcome the limitations of the source video images. The result is
a tedious and time- and resource-intensive activity to transcode the video footage by
re-capturing the video as it is played on a computer screen. The resulting video file is in
a standardised format that can be viewed and edited as required, and can also then be

used in computer vision applications and research.

A consequence of the difficulty of acquisition is that the standardised video is often
without meta-data which may have been useful, such as the video frame rate and date/-
time stamps. These difficulties contrast with environments in most research which
use Hollywood films with fast, and known, frame rates, high resolution images with
consistent lighting, and where scenes are repeatedly re-shot until the quality meets an
acceptable standard.

A further complication with the frame rate is introduced by the recapturing process.
Re-capturing records at a fixed frame rate, perhaps 25 fps. If the video being played
is at a lower frame rate, then multiple frames will be captured for each frame in the

Large Scale Pattern Detection in Videos and Images from the Wild
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original video file. The playback is visually unaffected, but the irregular duplication
of consecutive frames adds another complication for computer vision applications as
the amount of movement between pairs of adjacent frames is inconsistent. A second
piece of meta-data is time sequence data. Time sequences would enable software to be
able to synchronise video captured from multiple cameras, for example, based upon
the time information associated with the video sequence. Edelman [8] reported on a
system at the Netherlands Forensic Institute which uses Optical Character Recognition
to read video timestamps from the video frame images. Such a technique is not reliable
enough to provide sufficient meta-data for steering algorithms, however; the Met Police
observe that camera timestamps are unreliable as the accuracy of the time is dependent
on the ongoing maintenance of the CCTV system, and varies considerably between local
authority, police and private owners of surveillance systems. Standard police procedure
now is to record the actual current time and the presented CCTV time when a security
video is seized for an investigation. This enables the police to calculate the offset of the
CCTV time, but is fragile to the system clock having been altered since footage of interest

was recorded.

1.1.5 Visual image quality

In contrast to Hollywood movies, CCTV cameras videos vary considerably in their frame
rate and image resolution. Established methods of feature detection, extraction and
matching perform less well on these videos than on high-definition images with sharp
focus and controlled lighting conditions, as we describe in [9].

The frame rate of a video is measured by the number of frames per second, fps, that
are recorded. With a lower frame rate, the time between frames is greater, features are
further away relative to the previous frame and move greater distances relative to each
other. Adjacent frames therefore have a greater visual difference than those from a high
frame rate video. This difference can significantly affect the robustness of computer
vision algorithms that often rely on the a priori knowledge that two adjacent frames
in a video are very similar. As an example, a feature tracking algorithm makes the
determination of whether features are related or not based on spatial consistency [3],
which observes the similarity of the spatial arrangement in matched covariant regions
of two images [10, 11]. In a low frame rate video, such determination becomes less
robust as the movement threshold must be increased to compensate for the additional
movement, and this can introduce noise and mis-classifications. It would be possible
to configure spatial consistency algorithms using a video’s meta-data, for example to
adapt the spatial distance threshold of related features based on the frame rate of the
video. In our area of interest, surveillance videos very often have no associated meta-

Large Scale Pattern Detection in Videos and Images from the Wild
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data, and cannot therefore be used as a reliable input into algorithmic choices for spatial

consistency parameters.

Low frame rates reduce the number of images that make up the video sequence and
a low resolution reduces the size of each video frame. Together these two attributes can
significantly reduce the amount of storage required, and therefore the cost of storing
the captured video and so are often reduced by organisations who seek to minimise
the overhead of their security operations. The clarity of images from different security
cameras also vary considerably, and this inconsistency can cause difficulties. Images
are often low resolution with poor colour definition and have little discriminative or
representative texture definition, and images from these need to be matched with those
from higher definition images. Quality is further reduced by varying weather conditions
where the changes in light, presence of rain, snow, mist or fog, direct sunlight and
shadows can all affect the image, and the ability for a feature extractor to consistently

describe an image region.

1.1.6 Video formats

There is no industry standard that defines video resolution, frame rate or file formats
for CCTV security manufacturers. AVI is a commonly used container for storing videos,
but most of the CCTV manufacturers are not compliant with encoding standards of file

= ,’ Gy IC"/
(a) Incorrect aspect ratio (b) Half-screen corruption

S
b
55

y
Y R

Ay

e é \

el R,

A

ey \ﬂ:ﬁ ’

(c) Almost black video (d) Missing keyframes (e) Upside-down video

\

3 ot

L

Figure 1.3: Examples of video corruption common in security videos from uncontrolled sources.
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formats, encoding and compression, causing observable corruption when the video is
played using standard players [12]. In 3.07 Tb of video data provided to us by the Met
Police, only 929 Gb is in a non-proprietary format. Although these files purport to be
Standard formats, viewing many of the videos using standard video players exhibit incor-
rect aspect ratio, half screen corruption, long sequences of blackness, missing keyframe
or upside-down videos (Figure 1.3). This is because most CCTV manufacturers that we
experienced in our study use proprietary video codec schemes [13] instead of relying
on widespread video coding standards. Reasons for this were presented in our 2015

paper [12].

1.2 Contributions

The goal of this thesis is to assess methods of pattern detection that are robust in videos
and images recorded in natural and uncontrolled environments — said to be in the wild —
such as those that are used by police forces in criminal investigations. We contribute
original thought and observations in the complexities of automated processing of videos
from the wild (§1.1) and the asymmetric consistency of contemporary Deep Learning sys-
tems in reflection invariance (§3.3). The seminal work of Sivic and Zisserman [3] applied
text retrieval methods to pattern search, and a large body of work has resulted using
low-level features from image frames to match patterns from a query to the targets. We

therefore begin our focus on such features and their effectiveness in our use case;

1. It is important for our work to be able to recognise patterns in many variations,
including as a mirror image of itself. In §3.2 we begin our work with low-level
teatures by conducting a comprehensive assessment of the stability of popular
feature detectors in images and their mirror reflection. To our knowledge, this is the
first study of its kind, and the results were published in Pattern Recognition Letters,
2016 [15]. We introduce five measurements of error that we show to be useful
in determining the invariance to bilateral symmetry of a feature detector; mean
distance error, mean size error, mean angle error, mean descriptor distance error and the
mean descriptor match error. Further, we measure the accuracy of bilateral keypoint
position, size and angle of orientation in an established dataset of 8, 677 images
and evaluate the capability of popular detectors to find consistent interest points.

2. Toimprove feature detection, we develop simple and fast algorithms that combine to
provide memory- and processing-efficient feature matching. We demonstrate that
these improve on current methods that use Euclidean distance to match intensity-
and colour-feature descriptors. Preprocessing to eliminate redundant information — a
method to robustly eliminate duplicate frames caused by video recapturing or

Large Scale Pattern Detection in Videos and Images from the Wild



Chapter 1. Introduction 18

static frames of no activity, resilient to the presence of an on-screen timer, clock
or frame counter. Adaptive blur-sensitive feature detection, an adaptive approach
to the detection of features that will correspond between two images, guided by
the sharpness of the two images. Combinatorial Texture and Colour feature matching,
a novel technique to combine texture and colour features and measure distance

between descriptors for robust feature matching.

3. We then study random decision forests, specifically Hough Forests, for pattern
detection. First we perform an investigation to effective training with small training
datasets, contributing (a) a means to discover training images from a single query
region provided by the user, (b) an assessment of the impact of tuning standard
Hough Forest parameters on the application of pattern detection using a very
small training set of data, and (c) a novel method by which to improve runtime
performance and precision in pattern detection using an adaptive patch size and

calculated number of patches.

4. Finally, we arrive at a new method of pattern indexing in video sequences with
contributions (a) to automatically label positive and negative image training data,
reducing a task of unsupervised learning to one of supervised learning, (b) a
random node split function that is optimised for image patch clustering and invari-
ant to mirror reflection and rotation through 90° angles, (c) a high-dimensional vote
accumulator that encodes the hypothesis support yielding implicit back-projection
for pattern detection, and (d) multi-vote casting and area-based peak detection in

voting subspace.

1.3 Thesis Organisation

Much of this thesis has previously been published in peer-reviewed Research Journals
and UK Conferences, and as an invited book chapter as well as presentations and posters
at internal Queen Mary University of London research dissemination events. Parts of §1.1
were presented, with colleagues, at the 6th International Conference on Imaging for Crime
Detection and Prevention (ICDP) 2015 [12]. My sole contribution to this paper is contained
in the thesis. Chapter 2 provides background reading for the subjects discussed and

developed in the rest of the thesis and an overview of related work in these areas.

In Chapter 3, we observe reflection invariance in computer vision algorithms (pre-
sented in a position paper at SAI Computing 2016 [14]), and present related work on the
assessment of symmetric stability in popular low-level detectors (§3.2) that was published

in Elsevier Pattern Recognition Letters [15].

Large Scale Pattern Detection in Videos and Images from the Wild
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Chapter 4 is dedicated to our work on feature correspondence in low quality videos,
which was presented at the Science and Information Conference 2015 [9] (winning the Best
Paper Award). Extended work is published in IEEE Transactions on Circuits and Systems
for Video Technology [16] and further as an invited Book Chapter in Emerging Trends and
Advanced Technologies for Computational Intelligence published by Springer International
Publishing, 2016 [17]. Early results were presented as posters at BM VA Summer School 2014
and Visual Image Interpretation in Humans and Machines (ViiHM)* Workshop 2015.

In Chapter 5, we explore a new approach to building an index representation of a
video that can be quickly searched for unseen patterns, and is effective in poor quality
real-world videos. Early ideas with Decision Forests were presented at 22nd International
Conference on Systems, Signals and Image Processing (IWSSIP) 2015 [18], and 4th International
Conference on Computational Visual Media (CVM) 2016 [19]. A research paper describing
the full method as presented herein is accepted for oral presentation in the Data track of
2nd International Conference on Internet of Things, Data and Cloud Computing (ICC 2017) [20].

"http://www.viihm.org.uk/
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Chapter 2

Related work

In this chapter we position the research of the thesis within the context of recent and
contemporary literature and provide some background theory as a foundation for the
following chapters.

2.1 Image features

One of the most important questions in computer vision algorithms is that of how to
represent images or parts of an image such that they can be separated and distinguished
from each other better than in the image domain. Images are distilled from the spatial
description of individual pixel colour or intensity to a more abstract notion of features that
can be identified in an image (detected) and then described using (extracted into) a feature
descriptor. The feature descriptor is typically of a high dimension, which can cause its
own problems (§2.1.3), but are designed to capture the texture, and sometimes colour, of
the image at a given point such that another descriptor extracted from another position,
or from another image, from a visually similar image section will be located close-by in
the high-dimensional feature space. Features can be extracted to describe the image as a
whole (global features) or small regions of interest (local features).

2.1.1 Global features

Global features describe an image as a whole, such as a colour histogram (Figure 2.1a), and
have been used effectively for whole image similarity [21, 22] providing a computationally
light retrieval method. The distance between histograms can be efficiently calculated
using the Earth Mover’s Distance [23] or the normalised Histogram Intersection [21].

Furthermore, Stricker and Orengo [24] observed that most colour histograms are very

20
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(a) Colour histograms! (b) HOG Descriptor [25]

Figure 2.1: Example global feature detectors; colour descriptor, left, and texture descriptor, right.

sparse and therefore sensitive to noise, and so proposed using the cumulated colour
histogram.

In images of less distinct colour, global texture descriptors have been used as an
effective representation of images describing edges found in the image. Earlier descriptors
based on the Haar wavelet transform such as that described in [26] have subsequently been
out performed by the Histogram of Oriented Gradients (HOG) descriptor, demonstrated
by Dalal and Triggs for pedestrian detection (Figure 2.1b) [25].

2.1.2 Local features

Contrary to global features, local features describe a small area of the image around an
interest point. Extraction of local features is typically divided into two stages. First,
feature detection locates areas within an image that contain sufficient texture or colour
information to be considered interesting. Second, feature descriptors are extracted from the

detected area to provide a representation of the image at that position.

Feature detectors

Local features are centred on a pixel in the image that is somehow different from its
neighbourhood, and are consequently referred to as keypoints or interest points. A common
early choice in locating interest points was to detect corners in a grey-scale image. The
still-popular Harris Corner Detector published in 1988 [27] is a combined corner and edge
detector based on the local auto-correlation function, derived from the earlier work of
Moravec [28]. The detector was extended by Shi and Tomasi [29] with a small modification

"http://billmill.org/the_histogram.html
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to create the Good Features to Track (GFTT) detector that yields corners that are more likely

to remain stable between consecutive frames of a video sequence.

Prior to 2002, interest point detectors concentrated on the spatial position of the
interest point, then Mikolajczyk and Schmid [30] described an extension to the Harris
corner detector that was robust against scale and affine transformations (out-of-plane
rotation leading to shape deformation). In 2004, Lowe published a new interest point
detection technique that, while not affine-invariant, was invariant to image scale and
rotation and partially invariant to illumination, along with a descriptor that can describe
the interest point in a scale-invariant way [31]. The Scale-Invariant Feature Transform (SIFT)
applies the Difference-of-Gaussians operator at multiple scales and interest points are
determined at the minima and maxima. It is accepted to be one of the most effective

general-purpose detectors.

Whilst SIFT changed the field of feature detection and description —and is still widely
used today — it is not without limitations. The SIFT detector is computationally expensive,
and feature detection on large images can take too long to be used in real-time or large
scalable systems. Speeded-Up Robust Features (SURF) [32] is a SIFT-inspired scale- and
rotation-invariant detector and descriptor [32] that is more robust than SIFT in the
presence of noise and less computationally expensive. The SURF method is based on a
Hessian matrix and has good performance in computation time and accuracy. To reduce
computation time, SURF’s Fast Hessian detector uses integral images [33] which allow for
the fast implementation of a box type convolution filter. The entry of an integral image
Ix.(x) at a location x = (z,y) represents the sum of all pixels in the input image I of a
rectangular region formed by the point x and the origin; Is;(x) = 1<% Z;ig I(i, 7). With
Is, calculated, it only takes four additions to calculate the sum of the intensities over any
upright rectangular area, independent of its size [34].

Rosten and Drummond [35] learn a ternary decision tree that can detect points with
high repeatability, to create FAST; Features from Accelerated Segment Test. The Binary Robust
Invariant Scalable Keypoints (BRISK) detector [36] extends FAST with an assembly of a bit-
string descriptor from intensity comparisons retrieved by dedicated sampling of each
keypoint neighbourhood. ORB [37], is also based on the FAST detector from where
the name is derived; Oriented FAST and Rotated BRIEF, where Binary Robust Elementary
Independent Features (BRIEF) [38] is a feature descriptor. CenSurE [39] is described as a
fast variant of the upright SURF descriptor, and sometime called STAR.

Some researchers consider interest points to be an irregular region of the image,
rather than a single pixel keypoint. Maximally Stable (MS) regions, for example, are
discovered using a common Maximally Stable Extremal Region (MSER) detection algo-
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rithm [40, 41]. MSER is accepted to be a reliably effective and computationally efficient
method of detecting feature regions in single channel images. Early work to extend
MSER to multi-channel colour images was presented in [42] but did not achieve bottom
up feature detection as in [43] where the author presents a derivative work specifically
for maximally stable colour regions, MSCR. Cheng et al. [44] combine MSCR and a colour
histogram to create an ID signature, and define a distance calculation to match IDs using

a Bhattacharyya distance [45] between the histograms and the distance between MSCRs.

Symmetric stability Tuytelaars and Mikolajczyk [46] identified repeatability to be an
important property of an interest point detector, meaning that two similar images of the
same scene should yield a high number of corresponding interest points. In Chapter 3,
we extend this thinking by proposing another important invariance property; that of
reflection invariance. Although not the first to consider such a property, our assessment of
popular interest point and region detectors with respect to it [15] is unique. In a recent
work, [47] assessed object part localization and observed that the state-of-the-art methods
augment the training set with mirrored images, but they did not result in bilaterally
symmetric results. The authors introduced the term mirrorability and a mirror error that

correlated with localization errors in human pose estimation and face alignment.

Feature descriptors

The orientation of a SIFT interest point is computed by extracting the gradient magnitude
and direction of the neighbourhood, thus yielding the descriptors invariant to rotation as
well as scale. However, they are sensitive to distortion [48], and the 128-dimension size of
the descriptors is a drawback for using the method in large systems. However its accuracy
has lent itself to widespread adoption and many descriptors have been presented that are
based on SIFT and extend its capability in many different ways. Morel and Yu introduced
an affine invariant version, called ASIFT [49] to overcome robustness to distortion, and to
address the problem of the size of the descriptor, Ke and Sukthankar [50] applied PCA on
the gradient image. The result is a 36-dimension descriptor that is fast for matching, but
proved to be less distinctive than SIFT in a comparative study by Mikolajczyk et al. [51].
Gradient Location and Orientation Histogram (GLOH) [51] showed to be more distinctive
than SIFT with the same number of dimensions, but is even more computationally
expensive. Many other SIFT-based descriptors have been developed, and described
by many. Examples include Local Contrast magnitude (LC-SIFT) [52] and Differential
Excitation magnitude (DE-SIFT) [53], gradient magnitude approaches such as Orientation
Restricted (OR-SIFT) [54], Gradient Orientation Modification (GOM-SIFT) [55], and Weber
Local Descriptor (WLD) [53]. Robustness against non-linear intensity changes between
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multi-spectral images was the goal of [56] who introduced NG-SIFT using Normalised
Gradients. However this descriptor does not perform well on textured scene images,
mainly due to binary nature of the NG features [57]. Later in the paper, the authors
proposed MN-SIFT as a modification, based on Modified Normalised gradients. Another
popular technique aside from the SIFI-based approach is that of Local Binary Patterns,
of which Centre Symmetric Local Binary Patterns (CS-LBP) [58] and Local Binary Pattern of
Gradients (LBPG) [59] are two examples.

RootSIFT SIFT descriptors, which are histograms, were designed for use with Eucli-
dean distance measures for comparison and matching [31]. However, it is well known
that using Euclidean distance to compare histograms often yields inferior performance
than x? or Hellinger measures. Arandjelovi¢ and Zisserman embraced this observation
and proposed RootSIFT [60], which transforms the SIFT descriptor such that the Eucli-
dean distance between two descriptors is equivalent to using the Hellinger kernel, also
known as Bhattacharyya’s coefficient. RootSIFT is dubbed Hellinger distance for SIFT, and
can yield a significantly more accurate result in calculating the distance between two

descriptors used in feature descriptor matching.

The Euclidean distance Ls(p, ¢) between two n-dimension vectors is given by

Ly(p. @) = I[P = q |2
n 2.1)

= > (i — a:)?

=1

and is related to the similarity (kernel) Sg(p,q) = p" ¢, thus

Lo(7,q)* = |7 = ql3

(2.2)
= 1715 + 4ll5 — 257 ¢

When §and ¢ are normalised to unit length ||7]|3 = ||7]|3 = 1, then this simplifies thus

Lo(p,9)* =2 20"
=2-2Sg(p, 9

(2.3)

Observing that the Hellinger kernel (Bhattacharyya’s coefficient) for two L; normalised

histograms is defined as
H(p,q) =) /piti (2.4)
i=1

Arandjelovi¢ and Zisserman proceed to demonstrate that SIFT vectors can be compared
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using a Hellinger kernel with two simple steps of algebraic manipulation: (i) L; normalise
the SIFT vector, and (ii) square root each element of the vector. Since

Se(VPAND = V5 VT = H(,) (2.5)

and the resulting vectors are Ly normalised, then
Se(VPVD) =Y pi=1, (2.6)
i=1

RootSIFT is then defined as an element-wise square root of the L; normalised SIFT vec-
tors [60]. Their key observation is that comparing RootSIFT descriptors using Euclidean
distance is equivalent to using the Hellinger kernel to compare the original SIFT vectors:

La(VP,VG)? =2 = 2H(p, Q)

Colour feature descriptors

There have been a number of proposals for colour descriptors that describe colour attribu-
tes of an image. These are conveniently small in dimensionality (Table 2-A) and represent
the colour information around a keypoint using a colour histogram. A detailed descrip-
tion of histogram based colour descriptors is provided in [61]. There have been many
descriptors proposed to use colour and texture in combination, such as the biologically
inspired SODOSIFT [63] and those that use texture descriptors in various colour channel
combinations, concatenating the texture from each channel. Many colour descriptors aim
to find and describe features found in three-channel colour images, based on the SIFT des-
criptor resulting in a large 128 x 3 = 384 dimension descriptor. HSV-SIFT [64] calculates
a SIFT descriptor on each of the three channels in HSV colour space and RGB-SIFT [61]
is a similar algorithm using RGB channels, with values equal to the Transformed Colour
SIFT method [61]. rgSIFT [61] builds descriptors on the r and g chromacity components
of the normalised RGB colour model

R G B)T

' = 2.7
(r.9,) <R+G+B’R+G+B’R+G+B 2.7)

Biologically inspired opponent colour [62] describes two pairs of colours that cannot be
seen in one location — red and green, and yellow and blue — explaining why humans
don’t see colours such as “bluish yellow” or “reddish green”. The three opponent colour

channels, red-green (RG), yellow-blue (Y B), and intensity (/) are calculated

R—G R+G-2B R+G+B)T

(RG,YB,I)T:< 7 VR

2.8)
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Table 2-A: Colour histogram descriptors and their dimensionality. See [61] for a details of these
descriptors and their properties.

Descriptor Dimension
Normalised RG Histogram 30
Hue-Histogram 37
Opponent Histogram 45
RGB-Histogram 45
Transformed Colour Histogram 45

OpponentSIFT computes SIFT descriptors in each of the channels and OpponentSURF
uses the same technique with SURF features. C-SIFT [65] uses a normalised opponent
colour space, dividing the first two channels by the intensity channel I, ¢ and Y5,
making it invariant with respect to light intensity [61]. A comprehensive review of colour
descriptors is presented in [61].

In each of these, the descriptors are constructors from intensity descriptors that are
extracted from colour channels and concatenated into a vector of 3x the dimension (one
for each colour channel). These descriptors are implicitly discriminative by virtue of
their construction, however, the colour detail of the image area around the feature is
not encoded into the descriptor and is not used to discriminate between similar features.
HueSIFT [66] describes a concatenation of a quantised Hue histogram of 37 dimensions
with the SIFT descriptor, concentrating on the effective detection of features without
consideration for the descriptor encoding. SIFT was also used as a base for the bag-
of-colours algorithm in the context of image search in [67]. Our method presented in
Chapter 4 takes a similar approach in descriptor concatenation, but we do not limit
our focus on SIFT descriptors and we describe a robust approach to feature distance

calculations.

The three fold increase in the descriptor dimension of these colour descriptors beco-
mes problematic for efficient computation and storage at scale. Principal Component
Analysis (PCA) [68] was used to reduce the dimensionality in PCA-SIFT [50], but is
computationally expensive; given n data points, each represented by p features, the
computational complexity is the sum of the covariance matrix computation O(p?n) and
its eigen-value decomposition O(p?), hence O(p*n + p?) [18]. A method of fast PCA cal-
culation has been suggested [69], which finds the desired number of leading eigenvectors

using less computation, but with a slightly larger mean-squared error.

In the same year that MSCR was described by Forssén [43], the use of colour and
texture features were described [70] for use in an image retrieval system combining an
MSCR detector with PCA-SIFT [50] and subsequently MSCR was reported to produce
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a small but significant improvement in repeatability and an increase in the number of

correspondences by more than 50% compared to MSER [71].

The recently introduced Fused-Colour GPHOG (FC-GPHOG) [72] builds on succes-
sive works on Histogram of Oriented Gradients (HOG) [25], Pyramid of HOG (PHOG) [73]
and Gabor-PHOG (GPHOQG) to create an integration of PCA features of GPHOG des-
criptors in six colour spaces to combine colour, shape, local and wavelet features into
a single descriptor. The authors report an improvement over Pyramid of Histograms
of Visual Words (PHOW) [74], Colour SIFT four Concentric Circles (C4CC) [75], Spatial
Envelope [76] and Local Binary Patterns (LBP) [77].

Other methods include creating compact local descriptors using an approximate
affine transform between image space and colour space [78] and an edge orientation
difference histogram (EODH) feature descriptor, which is a rotation-invariant and scale-
invariant feature representation [79], integrated with Colour-SIFT. Learning local feature
descriptors has begun to attract research attention using Linear Discriminant Analysis [80]
and Convex Optimisation [81], for example. The contribution of colour in matching video
frames from multiple views was a motivator for the recent work of by Fezza et al. [82],
using a Histogram Matching algorithm in a group of pictures considering pixels within
a square window around each SIFT feature that is proportional to the scale parameter of
the SIFT keypoint.

Object and Scene Recognition is an area of research that uses colour descriptors exten-
sively [61, 83, 84]. The body of work concentrates on the influence of colour and intensity
variance in local or global image representations based on a colour profile, typically
using colour histograms. Histograms are built using grids of empirically-derived size,
passed over the image in a sliding window approach. Dominant or average colours [85]
in each position are tallied in histogram bins to build a profile of the appearance of the
image. van de Sande et al. [61] provide a comprehensive review of colour descriptors and
analysis of intensity and colour scale and shift invariance. In their evaluation of colour
teature descriptors they conclude that OpponentSIFT is generally a better performing
descriptor and is a good choice where there is no prior knowledge of the data set or
object/scene categories. Other evaluations of feature descriptors in the literature are
provided by Mikolajczyk and Schmid [51], and Vedaldi et al. [86] five years later.

Feature Channels

A feature channel is a representation of an image that is used to extract features of interest.
They can be a simple colour component channel representing, for example, red, green

and blue components of an RGB image or hue, saturation and intensity of an HSV
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Figure 2.2: Feature channels; top row RGB channels, bottom row HSV colour space channels

image (Figure 2.2), or a result of more complex image processing to create an alternative
representation, such as the HoG features shown in Figure 2.1b on page 21. HSV is a
popular choice for colour channel representations, e.g. [87], because it is close to human
vision [77], however the choice is not universal and many researchers choose others, or
combinations of colour channels. Several papers in the literature [88-91] have described
the use of the eight unique channels of three colour models RGB, YUV and YCbCr as
feature channels. YUV and YCrCb share a similar luminance/brightness channel in V'
and Y respectively, so only one of these channels is used. Gray and Tao [89] extend the
notion of feature channels further by distinguishing colour channels from texture channels.
The colour channels are the unique channels of the colour models described previously,
and the texture channels are created by convolving each of eight Gabor filters and thirteen
Schmid filters with the luminance channel. They define parameters for the filters but
admit the methodology was haphazard so the channels are unlikely to be optimal. Working
in the HSV colour space, Shi et al. quantise colour into a 256 dimensional vector with 16
bins from H, and 4 bins from each S and V [70].

2.1.3 Dimensionality and Scale

An individual image can contain a large number of features that will be found by any
individual detector. It is not uncommon to use a combination of detectors, for example a
keypoint detector in conjunction with a region detector, to try to maximise the opportunity
to identify salient areas of the image. An image can therefore contain a large number
of features, often thousands, and each feature is represented by a descriptor of a fixed
size. The popular SIFT descriptor is 128 dimensions, and colour variants can be up

to 3 x 128 = 384 dimensions. The quantity and size of the image features becomes a
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significant concern in managing more than a handful of images because memory capacity,
processing time and storage constraints limit a system’s capacity. For a system to be
capable of processing a large number of images, each image representation needs to be
compact but descriptive and efficient to compute and compare.

Reducing the number of features can easily be achieved through quantisation [3]
where a cluster of similar vectors (close in feature space) are replaced with a vector
of averaged values, representing visual words. Sivic and colleagues have published
widely on their Video Google [3, 4, 93, 167] project, applying the principles of text-based
search to object search and retrieval in images and videos. They devised a Bag-of-Words
(BoW) implementation that has become known as Bag-of-Visual-Words (BoVW) [94, 95]
and subsequently, Bag-of-Features [96, 97]. They use two region descriptors of mono-
chrome images from the original videos; an elliptical shape adaptation about an interest
point [30, 98] referred to as Shape Adapted (SA) features and an intensity watershed image
segmentation [99] referred to as Maximally Stable (MS) features. Colour information
was not used in the algorithms. Shape Adapted features use an affine invariant interest
point detector [30] based on Harris corner detector [27] and a Gaussian scale-space [100].
Maximally Stable (MS) regions are discovered using a common Maximally Stable Extremal
Region (MSER) detection algorithm [40, 41]. A decent introduction to BoVW and litera-
ture review is in [96] (another literature review is at [101], but the text is almost the same
as [102] in part). BOVW centres on quantisation of feature descriptors, but quantisation
can inevitably lose features during assignment. This can be somewhat overcome using a
soft assignment of features to a weighted set of words [97, 103, 104].

An alternative feature reduction technique is Fisher Vectors [105, 106] which is often
used to compress the representation of thousands of descriptors into a global image
descriptor in visual classification and large scale image retrieval [107]. Perronnin and
Dance applied Fisher kernels in the context of image classification and large scale image
search [107] and their experimental results demonstrate that this choice significantly
outperforms BoVW for the same size on most data sets. Moreover, it is cheaper to
compute because fewer visual words are required. Four years later, Tao et al. [108] report
“superior” results over a BOVW model using VLAD and Fisher vectors.

Fisher Vectors have also been used to encode local descriptors into a simple 7-dimen-
sional vector encoding pixel co-ordinates, centre pixel intensity and first and second
order derivatives (Local Descriptors encoded by Fisher Vectors (LDFV) [109]). The authors
somewhat naively extend this to colour images by simply applying the same extraction
on each of the H, S and V' channels and concatenating into a single 21-dimensional
descriptor and specifying the distances between two LDFV descriptors as the Euclidean

distance. In the context of searching for objects in videos, Snoek et al. encode the colour
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descriptors with the aid of difference coding using Fisher vectors with a Gaussian Mixture
Model codebook [110]. Jiang et al. propose a fusion of Bag-of-Features (BoF) with Colour
Moments and Wavelet Texture [111] and report a 40% improvement compared with
BoF alone [97]. They highlight the importance of selecting an appropriate detector
and soft-weighting scheme in quantisation and use an SVM learning kernel with a
Difference of Gaussians (DoG) detector and x? [112] radial basis function (RBF) kernel
to attain their results. Experiments to reduce the size of the 128-dimensional SIFT
descriptor using Principal Component Analysis (PCA) [68] resulted in a descriptor of 20
dimensions encoding the salient aspects of the intensity gradient in the feature point’s
neighbourhood [50]. Instead of using SIFI’s smoothed weighted histograms, the authors
applied PCA to the normalised gradient patch and demonstrate that their compact
descriptors were more distinctive and more robust to image deformations than the

standard SIFT representation.

A simplification of the Fisher kernel representation is the Vector of Locally Aggregated
Descriptors, VLAD [113] where the dimension reduction and indexing algorithm are
jointly optimised so that it best preserves the quality of vector comparison, yielding a
significant improvement on the state of the art with search accuracy comparable to the bag-
of-features approach for an image representation that fits in a very small dimensionality,
e.g. 16 bytes per image. Improvements to VLAD [114] change the normalisation method
to significantly improve retrieval performance and use vocabulary adaptation to alleviate
problems caused when images are added to the dataset after initial vocabulary learning.
Multiple Spatial VLAD (MultiVLAD) [114] extends further to allow the retrieval and
localisation of objects that only extend over a small part of an image, without requiring
use of the original image SIFT descriptors. MultiVLAD claims the new state-of-the-art
over all benchmarks investigated therein for both mid-dimensional (20k-D to 30k-D) and
small (128-D) descriptors [114].

As well as thinking about the dimensionality of individual descriptors, it is important
to consider the quantity of descriptors for an image. Lowe [31] reported that reliable
recognition is possible with as few as three features, with a typical image containing over
2,000 features. This suggests that it may not be the number of features that is critical to the
success of a recognition and /or matching algorithm, but the saliency of the features [115],
and that selective analysis of salient features may be a reasonable way to manage the
volume of features in an image library. By understanding a feature’s saliency [116], the
features containing less information can perhaps be considered less important and be
ignored through appropriate feature selection [117]. Burstiness is a property given to
visual elements that appear more times in an image than a statistically independent

model would predict [118]. Early detection and removal of these can reduce memory
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and improve efficiency in image retrieval systems [119]. Identified features can be said to
form a stop-list defining the most frequently occurring visual words as noise [3] that can
be eliminated in feature matching and tracking. Meng et al. [120] report that the use of a
stop-list removes the top 5% and bottom 10% of features from their 7Gb inverted index
tile, however the effectiveness of stop-lists has been questioned [121]. In similar thinking,
Turcot and Lowe [122] describe an additional step to reducing memory requirements
by selecting only a small sub-set of training features to use for recognition, based on the
observation that many local features are unreliable or represent irrelevant clutter.

2.1.4 Feature matching

Robust feature matching is important for many tasks such as image alignment, stitching,
object tracking, and search and retrieval. Typical methods for matching feature descrip-
tors find the closest descriptor to another in n-dimensional space and use a threshold to

determine if the descriptors are close enough to assume that they match.

In object tracking systems, matching features between adjacent frames is crucial, and
many systems use keypoint features. Sun and Liu [123] describe a selective method of
tracking in which they calculate a confidence of feature matches by two measures —a
mean value of the maximum inner product for every descriptor, and a ratio of reliably
matched features to the total number of features - and adapt the tracking algorithm
appropriately. Fast keypoint detectors and corner detectors such as [124] enable use of
keypoint tracking in real time systems by reducing the computation overhead [125], and
real-time applications may employ probabilistic methods [126] for data association to

discover matching consensus [36].

Distance measures

Feature matching is typically performed using a distance measure between descriptor
vectors and methods such as approximate nearest neighbours, k-nearest neighbours, a
radius match or randomised kd-trees [127] to find closest matches. Common distance

measures between two vectors p'= (p1,p2,...,pn) and ¢ = (q1,q2, - - ., qn) are,

the L4, rectilinear (taxicab) distance

L, @) =P — T lh=_ Ipi — 4 (2.9)
i=1

the L, Euclidean distance see Equation (2.1) on page 24
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the cosine distance

vq 1_ i=1

C Al n n
e 4iﬁﬁ§:ﬁ

the Mahalanobis distance [128, 129] is a measure of the distance between an observation

cosine distance = 1 (2.10)

p and a distribution with mean i = (uq, u2, - . ., ,un)T and covariance matrix S;

Dur(p) = /(5 — @) (5 — )~ (2.11)

Two random vectors from the same distribution has a dissimilarity measure

d5.0) = /G~ DT~ DS (2.12)

and, where the covariance matrix is the identity matrix, the Mahalanobis distance D s
reduces to the Euclidean distance L. Further, if the covariance matrix is diagonal (all
off-diagonal elements “\, are zero), then D), is the normalised Euclidean distance;

N o 4)\2
Z (pl 2%) (2.13)

Histograms Where vectors represent histograms with identical bins, their similarity can
be calculated using the Normalised Histogram Intersection (NHI) [21],

> min(p;, ;)
170 =" (2.14)

n
> pj
=1

Subtracting the NHI from one gives a dissimilarity, which is a distance measure between
two histograms

n
> min(p;, ¢;)

j=1
n
> pj
j=1

H@§=1- (2.15)

For histograms that do not have identical bins, the Earth Mover’s Distance [23] has

shown to provide an effective measure and can be used as a coarse measure of image
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similarity.

Distance ratio

A feature can be said to correspond to its closest match in a set of candidate features
where the descriptor with the smallest distance is selected, irrespective of the value of
the distance or its relationship to its neighbours. Lowe [31] refined this method using
a distance ratio to determine if the closest match was a good match. The distance ratio
method finds the closest two features f. and f.11 and divides the nearest distance by the

second closest distance,

distance ratio = M (2.16)

1f = ferlls

This ratio helps to determine how reliable the match is. If the nearest feature has another
feature close to it, then there is a lesser likelihood that the match is correct. Tests in the
original paper suggest that 0.8 is a reasonable threshold for this ratio and that matches

with a distance ratio greater than 0.8 should be considered less reliable, thus,

true  if equation (2.16) < 0.8
match = (2.17)

false otherwise

Lowe observed using a database of 40, 000 keypoints that discarding matches with
a distance ratio greater than 0.8 eliminates 90% of the false matches while discarding
less than 5% of the correct matches [31] (Figure 2.3). The same statistics are somewhat
misleadingly reported again by Shi and Yan in 2010 [71] as fact without citation, rather
than an observation in their own experiments. The same authors used a matching ratio
to measure accuracy of their algorithms, defined as r = % where N is the number of
correct matches and N, is the number of features in the query image. However, feature

matching accuracy is more typically measured using Precision-Recall [130].

Spatial consistency

A raw bag-of-word is not robust enough for object detection because there is no identifi-
cation or localisation of objects to distinguish that a match of features represents a given
shape of object [96]. However, a refinement of the descriptor-space using the spatial
distance between features as a complementary measure can help. Spatial Consistency is a
measure of neighbouring matches in the query region that lie in a surrounding area in
the corresponding image [4]. A more strict measure requires that matching features have
the same spatial layout in the two images. Figure 2.4 shows spatial consistency filtering
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r e

-

(a) Without distance ratio filtering, 146 (b) 117 SIFT features matched using
SIFT features are matched from the query distance ratio filtering. All features are
image; not all of these matches are correct correctly matched

i)

(c) 842 ASIFT features matched without (d) 321 ASIFT features matched using
distance ratio filtering distance ratio filtering

Figure 2.3: Matching SIFT feature descriptors. The query image in the top-left of each sub-figure
is the Mona Lisa’s famous smile. Blue lines track features matched from the query image to the
high-resolution image (1927 x 2403) and their angular spread provide a visual indication of
match accuracy. Matching features without distance ratio filtering yields SURF:156 matches (not
shown), SIFT:146 matches (2.3a), ASIFT:842 matches (2.3c). Matching the same features using
distance ratio filtering yields SURF:57 matches (not shown), SIFT:117 matches (2.3b), ASIFT:321
matches (2.3d).
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(a) Matching Distance Ratio filtered ASIFT (b) Matching the Distance Ratio filtered
features without spatial consistency ASIFT features with spatial consistency
filtering (from Figure 2.3d) filtering yields 215 matches

Figure 2.4: Spatial Consistency applied to Distance Ratio filtered ASIFT features in a
high-resolution image reduces 321 matched features to 215 high quality matches.

applied to Figure 2.3d.

In the field of logo detection, Chu et al. [131] introduce encoding angles between
features as relative headings to describe the spatial relationship between features, as do
Romberg et al. in building a hierarchical database using a cascading index of edges and
triangles [132]. Future work to build visual language models that describe distribution of
visual words in images was proposed [94] but never published.

2.1.5 Indexing

Indexing provides a mechanism for a quick look-up of search data — in the case of image
matching, feature descriptors — in a large collection of data. A popular method is the
standard weighting, “term frequency-inverse document frequency” (tf-idf) [133], and
is described in [134]; suppose a vocabulary of V' words, then each document (image) is
represented by a vector ¥y = (t1,...,ty|) " of weighted word frequencies with compo-
nents word frequency and inverse document frequency

Nsq N
ti=— 1 — 2.18
ng o8 <N1> (2.18)

where n,;4 is the number of occurrences of word 7 in document d, n, is the total number
of words in document d, N; is the number of documents containing the term ¢, and NV
is the number of documents in the database. At retrieval, documents are ranked by the
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normalised scalar product (cosine of angle, equation (2.10)) between the query vector v,

and all document vectors v, in the database.

tf-idf is the most commonly used indexing method in text- and image-based systems,
such as in [3, 4, 95, 104, 134-138]. Nistér and Stewénius [121] developed break-through
scalability and demonstrated image retrieval on a million-image data set [96], proposing a
hierarchical tf-idf scoring using hierarchically defined visual words that form a vocabulary
tree hierarchical quantisation that is built by hierarchical k-means clustering. Others
have used alternatives, such as [139] who describe a bag-of-features image representation
model combined with SVM classification in a Microsoft SQL Server database, and general
randomised forests were used as part of a solution to index short video sequences using
spatio-temporal interest points in [140], which is the closest contemporary research

related to our work in Chapter 5 which we introduced in [19].

2.2 Visual search

While this thesis concentrates on pattern detection, our motivating use-case is query-by-
example in the context of visual search. Most search and retrieval systems are object-
class [84, 141] or object-instance [120, 142] search using learning algorithms that must be
trained using a large set of ground truth images containing many positive and negative
sample images. However, Chu et al. [131] developed a single image query system for
logo recognition without training a model. They used mean shift clustering [143, 144] of
SIFT [31] keypoints to select a candidate region, and verify the presence of the object in
subsequent frames using a visual word histogram [3] describing appearance and their
own visual patterns to provide spatial context. Meng et al. [120] use FLANN [127] to
build a 250, 000-word vocabulary of RootSIFT features from one keyframe extracted
from every 30th frame, and Kalal et al. [145] present Training-Learning-Detection, a met-
hod to track unseen objects in a video stream from a single image query. The system
learns the appearance of the object as it is tracked (inspiration for our work in §5.1),
using P-N Learning experts that learn errors by uniquely identifying missed detections (P-
experts) and false alarms (N-experts), and provide mutual compensation of their errors

through independence.

Object search was recently (June 2015) described [146] using the familiar combination
of BoVW, a stop-list and an inverted file for indexing, and the authors propose a spatial
context using a spatial random partition. The authors claim benefits by aggregating the
matching scores over multiple random patches to provide robust local matching and
efficient object localisation in a pixelwise confidence map.
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2.3 Shot Boundary Detection

The complexity of shot boundary detection techniques [6, 147] varies considerably. Wang
and Qureshi [148], for example use an Embedded Hidden Markov model (EHMM) [149,
150] trained on GIST-like descriptors (GIST [76]), while Zhai and Shah [151] describe
a statistical framework for the temporal scene segmentation of videos using Markov
chain Monte Carlo (MCMC) [152], and Huang et al. 2008 [153] match local keypoints
across frames. Anjulan and Canagarajah [2], shot boundaries are based on the number of
Local Invariant Regions (LIR) matched between adjacent frames. A consistency measure is

calculated, thus
NU/U

M= W
¢ max (N, Ny)

(2.19)

where Ny, is the number of matched features descriptors in consecutive frames v and
v. The value of C'M is reported to vary significantly between inter-shot frames and
intra-shot frames and the partition is sufficiently large that a threshold value can be
chosen easily. The authors chose to fix their threshold based on their observations during
experiments, but a learned approach that can adapt to the video sequence in process
would be preferable.

In solving the problem of keyframe extraction, Porter et al. [154] represent frames in
a shot and their correlations using a directed weighted graph. The shortest path in the
graph is found and the vertices in the shortest path which correspond to the minimum
correlation between frames designate the keyframes [155]. Others use clustering and
identify a keyframe and those closest to the centre of each cluster [156-158], and Wang
reported on motion projection of segmented regions between frames and subsequent
region merging for adaptive tracking in the context of video segmentation [159].

2.4 Random Decision Forests

In Chapter 5 we will use Random (Decision) Forests [160] (Random Forests?) machine
learning techniques to build a searchable index of patterns in video corpus. Random
Forests are a well-studied and popular supervised learning method, and have been
applied to a number of machine learning problems. Based on independent sets of binary
trees, random forests are fast to train and scale well with increased volumes of training
data [92]. The ensemble method constructs multiple diverse predictive models from

% The algorithm for inducing Breiman’s random forest was developed by Leo Breiman and Adele Cutler, and
“Random Forests” is their trademark (U.S. trademark registration number 3185828). The method combines
Breiman’s “bagging” idea and the random selection of features, introduced independently by Ho [161, 162]
and Amit & Geman [163] in order to construct a collection of decision trees with controlled variance.
[https://en.wikipedia.org/wiki/Random_forest]
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adapted versions of the training data that correct for individual decision trees” habit of
over-fitting to their training set [164] pp. 587-588.

2.4.1 Bootstrap Aggregation (Bagging)

Bootstrap aggregating, also called bagging, is designed to improve the stability and accuracy
of machine learning ensemble algorithms, and is a key part of random decision forests,
reducing variance and helping to avoid over-fitting. The training set is uniformly sampled
with replacement; i.e. data will be duplicated in each sample. Drawing with replacement
n’ values out of a set of n (different and equally likely), the expected number of unique
draws is n(1 — e‘"'/”) [165]. If n = n/, then for large n, n(1 — %) ~ 63.2% of draws are

expected to be unique, and the rest duplicates.

2.4.2 Hough Forests

Hough Forests [92, 166] use a random forest framework that is trained to learn a mapping
from densely-sampled D-dimensional feature cuboids to their corresponding votes in a
Hough space # C R¥. The Hough space encodes the hypothesis h(c, x, s) for an object
belonging to class ¢ € C centred on x € RP and with size s. The term cuboid refers to a
local image patch (D = 2) or video spatio-temporal neighbourhood (D = 3) depending
on the task [166]. Since we are interested in image pattern detection in this thesis, we

consider each video frame as a static image, with D = 2.

In work inspiring ours in Chapter 5, Gall and Lempitsky [92] extend feature channels
(8§2.1.2) to tease out nuanced artefacts, and create 32 feature channel images, Ji, ... J33;
three colour channels of the Lab colour space, the absolute values of the first-order
derivatives % and a%, the absolute values of the two second-order derivatives 88—;2 and
g—;, and nine HOG [25] channels, obtained as the soft bin count of gradient orientations
ina 5 x 5 neighbourhood around a pixel. The 16 resulting channels are further processed
by applying the minimum and maximum filtration filters — also known as erosion and

dilation filters, respectively — with 5 x 5 filter size, yielding 32 feature channels.

Each tree in the forest is trained with independently and randomly selected negative
and positive training samples from the 32 features channels. The unit of data in a tree is
a patch, v and the appearance of a patch can be described as [92]

vi=(J}LJ2 T (2.20)

(2RI 2

where each Jij isa 16 x 16 feature channel image and j = 32 is the number of channels.
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Each patch is a constant size in training and testing; 16 x 16 pixels is commonly used,
including in this thesis. Patches are extracted from random positions and a randomly
selected feature channel a € {1,2,... 32}, in each training image. A forest is constructed
using a set of patches S = {vy, vy,... v,,} of uniform size. Trees are grown using subsets
of patches S; at each node ¢ in the tree, starting with the full training set So = S. A
random split test function is applied to each patch in §; and the patch is assigned to
subset LS, or £S; based on the result, such that S; = £S; U £S; on conclusion. At each

leaf node, the probability that a patch belongs to the foreground is calculated®
571
pF = (2.21)

Sy
|87 oar + 187
S5

where S and S represent positive and negative training patches respectively, at node i

and ¢ = 0 at the root of the tree.

Discussion

In this thesis we are concerned with the detection of unseen patterns in a large corpus of
videos and images. Manually designed feature channels have been the foundation of com-
puter vision since the very early explorations of trying to “understand” images by com-
puter. Research have also begun to try to find more general ways to represent image
patterns to reduce complexity and increase robustness and performance. Early attempts
used combinatorial techniques. For example, short- and long- range tracking methods
were used to define tracks (continuously matched feature descriptors) over a sequence of
frames to mine objects [167] and again recently in [168] where Temporally Aggregated Patch
Set (TAPS) was described using the Temporally Coherent Detector (TCD) [169]. Sivic and
Zisserman [3] argue that averaging descriptors in a track improves signal-to-noise ratio,
without evaluating the idea, but Araujo et al. [168] provide a justification for averaging

and demonstrate a quantitative improvement in search quality.

In recent years, machine learning has become fashionable once again, particularly
Deep Learning techniques — a development of artificial neural networks (ANNs) from
the 1980s-1990s — where no manually designed features are used at all, and the algo-
rithms somehow learn representations of the training images. Research is still ongoing
to understand quite what goes on inside these hugely complex models, but the results
are undeniably successful in a number of computer vision tasks, and others. Interes-

tingly, the learned features that are produced in later layers of a Convolutional Neural

Shttp://www.iai.uni-bonn.de/~gall/projects/houghforest/houghforest.html
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Network (CNN) have been demonstrated to be generic features and transferable to other
domains [170-172].

This hugely important contemporary research area is very active in many vision tasks
relevant to our interests, such as image description, captioning and understanding, and
we are excited to see developments that may be applicable to query-on-demand. We
focus our study in other areas of feature mining and learning from data that have longer
established success in pattern detection and classification tasks, and that we can study

specifically in the context of our complex use case of detection in low quality videos.
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Chapter 3

Asymmetric image analysis

We observe that computer vision algorithms are sensitive to the reflection of an image
as if looking in a mirror, and that this sensitivity has not received very much attention
in the literature. A recent work assessed object part localization [47] and observed that
the state-of-the-art methods augment the training set with mirrored images but do not
result in bilaterally symmetric results. The authors introduced the term mirrorability
and a mirror error that correlated with localisation errors in human pose estimation and
face alignment.

In this chapter, we explore a property of reflection invariance, specifically studying
horizontal reflection as an introduction to the concept, assessing popular low level feature
detectors for their invariance in reflected images and observing contemporary high-level
systems based on popular Deep Learning techniques. Just as scale invariance seeks to
neutralise the size of a feature to avoid bias in scale, we propose reflection invariance to
avoid bias in mirror reflection about an arbitrary axis. We suggest reflection invariance
is an important property in designing and implementing algorithms, and as a metric
for measuring their success. It is important that algorithms should be consistent in
applications such as object recognition and scene classification, and we demonstrate that
current state-of-the-art methods do not exhibit consistency when an image is reflected
horizontally.

The importance of reflection invariance in CCTV pattern detection is perhaps not
immediately obvious, but is demonstrated in the two images from London street CCTV
cameras in Figure 3.1. A man wearing a hoodie exhibiting a Nike sportswear logo is
later captured wearing the hoodie inside-out, with the Nike logo showing in reverse. In
a wider context, low-cost, good quality cameras built into mobile phones and tablet
computers has fuelled a proliferation of images and short videos made available on
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Figure 3.1: Motivating example. Cropped frames from a CCTV camera capture images of a man
wearing a Nike hoodie (left) and later in the video having turned the hoodie inside-out, showing
the Nike logo in reverse.

websites and social media. Many devices now have multiple cameras; one on the back
of the phone that shows a live image on the screen, and one on the front of the phone
alongside the screen. The latter has sparked a phenomenon for selfies — images taken by
the camera user of themselves, often with others or in a scene. The two cameras work
differently, consistent the user’s intuitive expectations. Cameras on the back show the
image as a conventional camera would, as if the user is looking through their device at a
scene. Cameras on the front produce a reflected-image consistent with the user looking
at themselves in a mirror. This satisfies their expectation of what the camera should
show them on the live screen display alongside the camera lens. The explosion in selfie
images has lead to a large number of mirror-reflected images and videos available online.
As they become more prevalent, systems are increasingly in need of matching features

between regular images and mirror images of the same subject.

3.1 Scale and orientation significance

Feature detectors fulfil the common need to identify interest points within an image.
Information at these positions is extracted into a descriptor — a fixed length vector of
numeric coefficients or a binary string — that can used to match similar features in

applications such as image retrieval, alignment, stitching, and classification.

Low-level keypoint features describe a neighbourhood of a few pixels, where the
co-location of pixel intensities is an important attribute used to describe the feature.
Most feature descriptors, including the some of the most popular such as SIFT [31] and
HoG [25], use the orientation of pixel gradients in a colour space or channel in some way
to represent distinct feature characteristics. These algorithms are inherently sensitive to

orientation, however others are sensitive only in practice, caused by poor implementation
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Figure 3.2: Pyramid of Scales and Orientation significance: as the scale increases, the importance
of orientation diminishes

choices and mathematical rounding errors (§3.2.3) that accumulate to affect the result

and cause dependence on image orientation.

A collection of descriptors can be composed to describe a distinctive pattern or region,
such as in the popular Bag of Visual Words method [3]. In such a collection, the orientation
of individual features relative to each other is important, but the orientation of the collection
as a whole is less significant. As the scale of description increases further, orientation
becomes less important and indeed becomes a limitation when considering high-level
features in an image. The significance of orientation can therefore be considered inversely
proportional to the scale of description, diminishing with the increase in distance from
the pixel detail (Figure 3.2).

Reflection has the same scale of sensitivity as rotational-orientation. Consider an
example of scene recognition. A human is likely to describe a city-scape scene, and
identify a familiar city regardless of the horizontal reflection of the image; if the image
is reflected about its vertical centre, this mirrored image would still be recognisable to
a human and would not influence their description or identification. Computer vision
algorithms are, however, more sensitive and often produce different results for these
images, as we’ll show later in Table 3-D on page 54.

The challenge is to generalize the description as the scale increases, with orientation
becoming less relevant to the point where it is irrelevant at image scale. We first assess in
detail the symmetric stability of low level feature detectors (§3.2) and then experiment
with reflection invariance properties in high level learned systems (§3.3).

3.2 Symmetric stability of low level feature detectors

Most work on bilateral symmetry —a symmetry through a central vertical plane in an image
or region — concentrate on the detection of symmetry [173] and accurate positioning
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(a) Image bilateral (b) Local bilateral
symmetry symmetry (c) Inter-image bilateral symmetry

Figure 3.3: Bilateral Symmetry (mirror reflection) at different scales. (a) and (b) show areas
within an image where there exists a local line of symmetry. Detection of the line of symmetry
position is a large research area in itself. (c) shows our test case for assessing low level feature
detectors, where we horizontally mirror the image to assess inter-image bilateral symmetry.

of the line of symmetry within a single image, for example [174-176]. Many reflection
invariant feature descriptors have been proposed but none have corresponding reflection
invariant feature detectors; Mirror reflection Invariant Feature Descriptor (MIFT) [177,178],
Mirror and Inversion invariant generalization for SIFT (MI-SIFT) [179], Flip-invariant
SIFT (F-SIFT) [180], Flip INvariant Descriptor (FIND) [181], Flip Invariance Shape detec-
tor (FIS) [182], Max-SIFT [183], Mirror reflection invariant HOG descriptors [184], and the
Fourier descriptor [185]. This is a serious omission because consistency in the detected
position of a keypoint between an image and its horizontal reflection is important to
enable a reflection invariant descriptor to be extracted from the same point in the logo
and maximise the potential to achieve a correspondence.

Bilateral symmetry can occur at different scales, demonstrated with two examples
from the CALTECH101 dataset [186] in Figure 3.3; (a) the image as a whole is bilaterally
symmetrical because the right hand side of a vertical line drawn down the centre (the
dotted blue line) is a mirror image of the left hand side and (b) the highlighted section
of the image is bilaterally symmetrical although the image as a whole is not. Detected
keypoints in an image are generally very small and detection of bilateral symmetry will be
at a finer scale than both of these examples. Figure 3.3c shows our test case for assessing
low level feature detectors, where we horizontally mirror the image to assess inter-image

bilateral symmetry.

3.2.1 Method of assessment

General invariance properties of detectors and descriptors are important, and in work
to date are consistent; an algorithm that provides for feature detection and feature
description can provide invariance to scale, rotation, illumination or affine regions in
both steps. Many research papers combine the two stages of detection and description
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Figure 3.4: Reflecting a keypoint

into a single step, but each are independent.

The goal of feature detection is to find keypoints or regions in an image that contain
interesting information. The definition of interesting is specific to the goal of the detector,
but it is reasonable to expect that a location that is interesting in an image should also be

interesting in the same image that is horizontally reflected.

To be reflection invariant, a feature detector must show that the set of keypoints or
regions found in an image are equivalent to those found in the a mirror reflection of
the image. The orientation of a feature is an important and discriminating attribute,
and extracted descriptors should generally maintain local orientation so that established
methods of feature matching, for example, can accurately measure the magnitude and
position of a feature vector in high-dimensional space. Reflection invariance in low-
level descriptors can be especially useful for detecting intra-image lines of symmetry,
such as water reflections in scene analysis. Research has explored reflection-invariant
HoG [184] and, more frequently, SIFT-based methods such as RIFT [187], MI-SIFT [179]
and MIFT [178]. Generally, rotational invariance can be achieved by finding the dominant
gradient and rotating the image patch so that the gradient is always in the same direction.
RIFT, for example, divides normalized patches into four concentric rings of equal width,
from each of which eight gradient orientation histograms are computed. The orientation
is measured at each point relative to the direction pointing outward from the centre, thus

maintaining rotation invariance.

A keypoint is defined by its (x,y) co-ordinates, size, and sometimes, angle of orienta-
tion (Figure 3.4). We reflect a keypoint in its centre line (red dotted line). Let I be the
image in which the keypoint is found, and I be the width of the image. Let o be the
angle of orientation, measured clockwise from 0° parallel to the z-axis. Then, the new

values for the x position of the keypoint is 2’ and the new angle of orientation is o/, thus

¥=I"—x-1 (3.1)

, —sina
o =m—atan2 | ——— (3.2)
—cos
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where!
arctan () ifx >0,
arctan (£) + 7 ifz <0Oandy >0,
atan2 (i) = qarctan () — 7 ifz <0andy <0, (3.3)
+5 ifr=0andy > 0,
-5 ifr=0andy < 0.

Numerous detector methods have been described in the literature, and many have
become popular for different tasks. Two distinct categories of feature detectors exist;
keypoint detectors and region detectors. Recent trends in Deep Learning yield features that
are discovered automatically during the training process that can be used in place of
traditional features [170-172]. Here we concentrate on ten low-level feature detectors
that are popular in contemporary literature of feature detection and can be described
algorithmically (see §2.1.2), assessing how they perform in respect to reflection invariance;
eight keypoint detectors BRISK, FAST, GFTT, HARRIS, ORB, SIFT, CenSurE, and SURE,
and two region detectors MSER and MSCR.

3.2.2 Experiments and data

We assess the detectors using the well established CALTECH101 dataset [186]. The
dataset consists of 8,677 JPEG images of approximately 300 x 200 pixels, grouped into
101 categories. Image are in a variety of styles including cartoons and photographs of
objects, human faces, animals and natural scenes. Each category contains between 40
and 800 images, but most categories have about 50 images. MSCR is the only detector
that works with 3-channel colour images and for all other detectors, the original colour
images are first converted to single channel intensity images.

To measure the reflection invariance of the detectors, we use SIFT descriptors and
measure their distance in feature space. Feature descriptors are themselves not invariance
to bilateral symmetry and descriptors from an original image cannot be compared to
a corresponding feature in a mirrored image. To overcome this, we extract feature
descriptors from the original image using the detected keypoint attributes, and from
reflected attributes detected in the mirror image. Let I represent an original image and
M be the mirror of I. Then K7 and K represents keypoints detected in each of I and
M respectively. Keypoints K are reflected as k), € K, using equations (3.1) and (3.2),
and feature descriptors are extracted from I using K7,.

latan? is undefined if z = 0 and y = 0, but that case not possible for our use in Equation (3.2)
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Our assessment is based on keypoint size and position. For features found by region
detectors, we define a keypoint at the centre of the non-orthogonal (rotated) bounding
rectangle of the region, and measure the size of the region as the encasing circle, We
ran experiments across the entire dataset, counting the number of keypoints found in
each of the images from the dataset (the original image) and in the horizontally reflected
image of the original (the mirror image). Horizontal reflection was performed using basic
pixel swapping without interpolation to ensure that no artefacts were introduced into
the image data. Statistics were collected for each detector. Keypoints were matched using
brute-force exact matching, based only on their (z,y) position in each image.

For each image I and its mirror M, the difference in the number of keypoints found
were tallied per detector. If more keypoints were found in I, then the difference is
accumulated in D{ otherwise the difference is accumulated in DY, where d denotes the
detector. Values of D¢ and D§ then demonstrate the variability in the detectors and their

inability to find even a consistent number of keypoints in an image and its mirror.

Of course, counting the number of keypoints alone is not sufficient to measure quality,
so we proceed to quantify the accuracy of the detected keypoints in position, scale and
orientation. We first measure accuracy based upon keypoint position. Keypoints k; € K7
and ks € Ky are spatially matched to their nearest neighbour and the sub-pixel distance
between each matched pair is accumulated and divided by the total number of keypoints
to establish mean distance error for keypoints for each detector.

At each keypoint k; € K, and reflected keypoint k), € K}, a SIFT descriptor is
extracted from image I, giving Sy and S, respectively. These descriptors are matched
using a brute-force Ly distance matching algorithm in 128-dimensional space, and their
distances accumulated to compute a mean distance error per detector. This mean descriptor
distance error measures the average error found in matching a SIFT descriptor extracted
from the original image at an original keypoint location, size and orientation, with a SIFT
descriptor extracted from the original image using the keypoint attributes found in the

mirror image, adjusted by horizontal reflection.

Our final metric of reflection invariance is a mean descriptor match error. We compare

the results of matching keypoints k; € K with k), € K}, using two methods;

1. common descriptor matching based on the L distance between the SIFT descriptors

in 128-dimension feature space, and
2. spatial matching of keypoint position in the (z, y) image co-ordinate space.

We count the number of keypoints that do not correspond identically using the two
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methods and divide by the total number of matched keypoint pairs to give a mean value
per descriptor. By comparing the results of the two keypoint matching strategies, we can
determine an overall measure of how closely aligned the two sets of keypoints are, and
therefore how robust the detector is to bilateral symmetry.

3.2.3 Results

Using the ten detectors, 41.78 million keypoints where found in the 8, 677 original images
(Table 3-A). Overall, 1330 more keypoints were found in mirror images than in the
original images, but this varied by descriptor. BRISK, SIFT, and MSER for example found
735, 644 and 437 more keypoints in the mirror images, but this represents only 0.05%,
0.02% and 0.06% increases. SURF found 494 fewer keypoints in the mirror image, 0.01%.
Columns 4 and 5 of Table 3-A shows the number of keypoints found per detector, with
highlights showing where the number of features is inconsistent in the original and

reflected images.

Two detectors appear to perform well in handling bilateral symmetry of an image and
its mirror. The FAST and CenSurE detectors both find an identical number of keypoints
in every image, across all categories of the 8,677 image dataset. Both also have a zero
mean distance error (Table 3-B column 2) indicating an exact match. GFTT and HARRIS
have very small errors < 1075. The same protocol is followed to measure the mean error
in the size of the keypoint (column 3) and the mean error in the angle of orientation
of the keypoint (column 4). Four of the keypoint detectors do not define an angle of
orientations; FAST, GFTT, HARRIS and CenSurE. For these detectors, there is no mean

angle error.

In a keypoint detector that is perfectly invariant to bilateral symmetry, the mean
descriptor distance error (Table 3-C column 2) value is 0.0, as is the case for four of the tested
descriptors; FAST, GFTT, HARRIS and CenSurE. However, mean descriptor distance error of
0.0 alone cannot determine perfect invariance to bilateral symmetry. Our observations in
Table 3-A tell us that the GFTT and HARRIS feature detectors produce a different number
of keypoints in I and M, so while the descriptors can be matched with zero error, the
spatial position of matched keypoints k; and ks have not been proven to be consistent.

The mean descriptor match error for each detector is shown in Table 3-C column 3. The
four detectors FAST, GFTT, HARRIS and CenSurE all show a 0.0 match error, demon-
strating that keypoints kj; € K found by these detectors can be matched to identical
keypoints in k; € K7 in the original images.
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Table 3-A: Breakdown of keypoint metrics per detector, across all 8,677 images in the
CALTECH101 dataset. From left to right; (a) Detector name, (b) Number of keypoints found in
all the original images, and in the mirror images (c), (d) Number of keypoints matched between
the images and their mirror image, (e f) tally of keypoints found in each set of images and not the

other.
D # keypoints in the  # keypoints excess k eypoints excess keypoints
etector S 1 . : . # matches in original in mirror

original images in mirror images . d . d

images Df images D5
BRISK 1443461 1444196 1401422 16 409 17144
FAST 17013915 17013915 17013915 0 0
GFIT 6865916 6865915 6865887 15 14
HARRIS 3361261 3361262 3361257 1 2
ORB 3566 926 3566931 3566797 5 10
SIFT 3066878 3067522 3005498 20858 21502
CenSurE 395124 395124 395124 0 0
SURF 4664275 4663781 4641957 8474 7980
MSCR 663 284 663 287 662871 304 307
MSER 740002 740439 722555 6682 7119

41781042 41782372 41637283

Table 3-B: Measurements of accuracy in the spatial domain. The highlighted detectors FAST,
GFTT, HARRIS and CenSurE are those which are shown to be reflection invariant.

D Mean Distance Mean Size Mean Angle
etector

Error Error Error
BRISK 1.98 0.434 9.28
FAST 0.00 0.000 -
GFTT 8.07E-06 0.000 -
HARRIS 4.19E-07 0.000 -
ORB 0.48 1.324 2.61
SIFT 2.10 0.214 11.52
CenSurE 0.00 0.000 -
SURF 0.22 0.125 0.76
MSCR 0.01 0.005 0.22
MSER 0.86 0.317 1.49

Table 3-C: Measurements of accuracy based on SIFT feature descriptors

Mean Descriptor

Mean Descriptor

Detector Distance Error Match Error
BRISK 58.02 26.81
FAST 0.00 0.00
GFTT 0.00 0.00
HARRIS 0.00 0.00
ORB 30.53 39.38
SIFT 113.32 62.46
CenSurE 0.00 0.00
SURF 3.65 7.32
MSCR 0.70 0.88
MSER 13.68 5.92

Large Scale Pattern Detection in Videos and Images from the Wild



Chapter 3. Asymmetric image analysis 50

Error measurements

The mean descriptor distance error and mean descriptor match error are perhaps the most
important measurements in assessing invariance to bilateral symmetry. Mean descriptor
distance error is the average Euclidean distance between matched descriptors measured
in 128-dimension descriptor space. A mean of 0.0 indicates perfect matching. Mean
descriptor match error is a measure of the matching accuracy based on descriptors against
matching spatially. In a perfect set of bilateral feature keypoints, the feature descriptor

match would yield the same keypoint pairings as matching keypoints spatially.

Eight out of ten feature detectors that we tested found a different number of keypoints
in an image and in the mirror of the image. FAST and CenSurE detectors were the
two exceptions. The initial test identified that these two detectors were consistent in the
number of keypoints that they were able to detect and further experiments confirmed that
there was consistency across all 101 categories. Our measures of error —mean distance error,
mean size error, mean descriptor distance error and mean descriptor match error — all confirmed
perfect bilateral symmetry in all of the 17013 915 and 395 124 keypoints, respectively. It
is important to note, though, that these detectors only determine location and size of
a feature, and do not define the angle of orientation of the feature, which we conclude
to be a significant factor in their invariance. The fifth error measure, mean angle error
is therefore omitted for these detectors. Nonetheless, the invariance in an important

attribute of the detectors for location and size.

Other detectors that do not identify the angle of orientation of the feature keypoint —
GFTIT and HARRIS - also performed well in our error measurement tests. The number
of keypoints detected in the images and their mirror reflected images varied in 18 and 3
categories respectively and the detectors therefore cannot be seen as perfectly invariant
to bilateral symmetry. However, all the error measurements are 0.0, except for the mean
distance error which are 8.07E "¢ and 4.19E %7 respectively. With such small errors across
6 865916 and 3 361 261 feature keypoints, it is fair to conclude these to also be invariant to
bilateral symmetry, given the mean descriptor distance error and mean descriptor match error
are both 0.0. It should be noted though, that feature matching and filtering is required to

achieve correct correspondence between non-identical sets of keypoint features.

The region-based detectors MSCR and MSER generally identify fewer features —
663 284 and 740 002 in the original images — and demonstrated a greater invariance to
bilateral symmetry than keypoint detectors with orientation. MSCR feature positions are
very consistent, with a mean distance error of 0.01 pixels and mean size error of 0.005 pixels
and the mean angle error is only 0.22°. Corresponding MSER error values are 0.86 pixels,
0.317 pixels and 1.49°. MSCR (on colour images) has a low mean descriptor match error
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of 0.88. MSER using the same underlying algorithm on grey-scale images has a larger
error of 5.92 suggesting that colour helps with invariance to bilateral symmetry in the
maximally stable region algorithm.

The final four detectors have much larger error measurements in some or all of our
position, size and angle metrics (Table 3-B), which cause some large error values in the
descriptors (Table 3-C). SURF has the lowest mean descriptor match error of 7.32 and BRISK,
ORB and SIFT show much higher error values of 26.81, 39.38 and 62.46 respectively. In an
image and mirror image pair, correspondence can be expected to fail with this accuracy

on this number of keypoint matches.

Causes of reflection variance

Many algorithms described in the research literature — especially saliency based feature
detectors — are not inherently sensitive to orientation. Nonetheless, no mention is made
of reflection invariance in the papers, suggesting a general unawareness of this property.
Consequently, we have observed several cases where commonly used, freely available
code - including reference implementations from original authors — have an invariance

worsened by, or caused by, choices made in the implementation.

The FAST detector analyses the set of pixels in close proximity to a candidate pixel
and classifies each pixel as a corner or non-corner pixel without regard of the relative
spatial layout of the neighbourhood. The BRISK derivative introduces sampling of the
pixel neighbourhood and consequently loses the inherent reflection invariance. ORB,
another FAST derivative, uses an intensity centroid [188] to measure orientation, which
may suggest a cause for the error that we have observed. HARRIS is invariant through its
use of local auto-correlation, and GFTT largely maintains this property in its extension.
SIFT sub-samples the image at higher scales, losing pixel-precision as [39] observes, and
this pixel-level imprecision is further observed in our experiments. SURF’s use of a
Hessian matrix improves on SIFT’s invariance. The two region detectors look for stable
regions, similar to a watershed algorithm. The use of three colour channels in MSCR
shows a large improvement in the region stability in the oriented image.

Design and implementation choices both contribute to invariance to bilateral symme-
try in common feature detectors. Scale-invariant detectors, for example, smooth pixel
values when scaling an image, which introduces pixel value changes sensitive to sur-
rounding values and leads to invariance. This is a design issue. Other invariance is
caused by implementation choices. For example, algorithms that use a Difference-of-
Gaussian pyramid (such as SIFT) for sub-pixel feature detection can inadvertently increase

their reflection dependence by using 32-bit floating point arithmetic for intermediate
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calculations.

Using the popular OpenCV library [189] — version 2.4.12 for C++ — we tested the
GaussianBlur () function that convolves an image with a specified Gaussian kernel. We
found that the library implementation that uses 32-bit floating-point arithmetic produces
reflection-sensitive convolutions for many images that we tested. We re-implemented
the algorithm using 64-bit floating-point arithmetic and all convolutions of our test
images were reflection invariant (Listing 3.1). This demonstrates that the implementation
choice of using 32-bit floating-point arithmetic introduces a rounding error which can

subsequently cause invariance in the dependent interest point calculations.

Conceptually, one would expect salient regions to be less biased to horizontal orien-
tation, because they use neighbourhood colour and intensity measures and are less
dependent on pixel gradients. However, common implementations of salient region
detectors such as maximally stable extremal regions (MSER) [40] can suffer in the initial step
of the algorithm blurring the image with a Gaussian kernel. In their saliency detector
reference implementation, Cheng et al. [190] exhibit orientation sensitivity due to many
reasons including floating point errors in colour quantization which are realized diffe-
rently dependent on the order in which the data is processed, which is determined by
the image orientation. Increasing floating point arithmetic to double-precision 64-bit

calculations correct the quantisation sensitivity to reflection invariance.

cv::Mat src = imread("image.png", CV_LOAD_IMAGE_GRAYSCALE);

cv::Mat fpt;
src.convertTo(fpt, CV_32F, SIFT_FIXPT_SCALE, 0);

cv::Mat fpt_r;
flip(fpt, fpt_r, 1);

double const sigma = 1.24899971;
GaussianBlur(fpt, fpt, cv::Size(), sigma, sigma);

GaussianBlur(fpt_r, fpt_r, cv::Size(), sigma,sigma);

assert (countNonZero (fpt - fptx_r) == 0);

Listing 3.1: Example C++ code to assess reflection invariance of a Gaussian filter in OpenCV.
Using 32-bit floating point arithmetic — CV_32F on line 4 — will often result in an assertion failure
on line 13 indicating that a Gaussian filter on a horizontally flipped image does not produce the
same as the result as applying the same filter to the original image. Changing to use 64-bit
double precision arithmetic — CV_64F — produces identical results on all of our test images, with
no assertion failures.
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3.3 Reflection Invariance in learned representation systems

While the recent adoption and development of neural network techniques have undoub-
tedly produced impressive results in computer vision tasks, and object and scene recog-
nition in particular, they are not at all robust to variation in data. Studies have shown
that changing an image in a way imperceptible to humans can cause a deep neural
network (DNN) to label the image as something else entirely [191] and that it is easy to
produce images that are completely unrecognisable to humans, but that state-of-the-art
DNNs believe to be recognizable objects with 99.99% confidence [192].

Recently published research on a scene recognition system [193] includes an online
demonstration. Figure 3.5 shows a set of four images and their mirror reflections (top
row) with the information regions that the author’s online demo produce. The information
regions are salient areas that the system has identified in its quest to understand and
describe an image. We note the difference in the information regions and suggest that
this may demonstrate a bias to the horizontal orientation of the image.

Table 3-D shows the detailed results from scene recognition using the system, determi-

ning the environment, semantic categories and SUN scene attributes [194]. The category

Figure 3.5: Informative regions of images and their mirror, identified by [193]. Note where the
informative regions are not perfect mirror images which may suggest the algorithm’s sensitivity
to the horizontal orientation of the image.
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column summarizes the highest scoring semantic category. Despite the differences in
salient areas of the images, the overall categorisation has not been affected. Each image
and its mirror image are categorized the same in these examples. However, there are
differences in the detail, which illustrate inconsistencies that, in boundary cases, could
change the categorization. The semantic categories are rated with a likelihood. The Rock
Arch — a stock image from the author’s own demonstration — reduces in likelihood by
0.01 in the mirror image, the Palace of Westminster [195] is classified exactly the same
in each pair, Tower Bridge — another stock image from the author’s own demonstration
— appears less like a skyscraper and more like an office building in the reflected image
than in the original, and the City of London skyline [196] increases its likelihood of
being an abbey in the reflection image. The inconsistency in the ratings, albeit very small,
further strengthens our resolve that computer vision systems are commonly bias to image

horizontal orientation.

We used a second neural network based object recognition system, The Wolfram
Language Image Identification Project [197], to test classification of our images, this time
using different sizes of the same image. Table 3-E shows the results; the Rock Arch is
classified differently in its original orientation at a small scale, the Palace of Westminster
was classified consistently at each scale, Tower Bridge is classified differently in its original
orientation at a large scale and the London Skyline is classified differently in its mirror
orientation at a large scale. These results show that this system is sensitive to scale, and

that the scale change also influences the invariance to horizontal reflection.

Finally, Microsoft’s How-01d.net [198] asks “How Old Do I Look?” and uses machine
learning to guess the answer to the question from a photograph. We used photographs

Figure 3.6: Microsoft’s How-01d.Net demonstration [198] attempts to guess a person’s age from a
photograph image. These two examples demonstrate that the system is sensitive to image
orientation — and not head orientation — as the ages are quite different for each pair.
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Table 3-E: Object recognition results from the Wolfram Language Image Identity Project

Resolution Original Mirror

550 x 412

244 x 183

736 x 490

275 x 183

607 x 338

329 x 183

4370 x 2383

- L P
industrial park

336 x 183

- - = L.
oil refinery oil refinery

1 pascule - a moveable bridge with a counterweight to balance an upward swing that provides clearance for boat traffic

[https://en.wikipedia.org/wiki/Bascule_bridge]
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of Alan Turing [199] and Charles, Prince of Wales [200] and observed the difference in
age that was guessed for each image and its reflection (Figure 3.6). In both cases, the
ages decreased in the reflected image (right), despite the orientation of the head being
different in each case.

This inconsistency in results is perhaps more surprising as the image orientation
affects the guess of the person’s age, but the system does not appear to be intrinsically
biased towards the orientation of the head itself. On close examination, the bounding
boxes of the identified faces are different sizes — smaller in the reflected image in both
cases — by 5 pixels in each x- and y-axis in the case of the photograph of Alan Turing and
1 pixel in each axis in the case of Prince Charles. The detected face of Alan Turing is in
a consistent corner position relative to the visible ear, and the detected face of Prince
Charles is consistent in the opposite top corner. Thus we conclude that the face detection
algorithm used in the system is sensitive to head orientation and this may affect the
subsequent learned system of age estimation, which may or may not be orientation-
sensitive itself.

3.4 Conclusion

In this chapter we have assessed ten popular image feature detectors to determine their
invariance to bilateral symmetry. We focussed on the accuracy and consistency of feature
detection between an image and its mirror reflection. We conclude (Table 3-F) that FAST
and CenSurE detectors are perfectly invariant and GFTT and the Harris Corner detector
are invariant after feature matching and filtering algorithms are applied to find the
correct correspondences in uneven sized sets of detected interest points. BRISK, ORB,
SIFT and SURF cannot be considered invariant to bilateral symmetry, and SIFT is the least

Table 3-F: Conclusions of the invariance characteristics of ten feature detectors used in our
experiments

Detector Invariant
BRISK No

FAST Perfect
GFIT Yes, after matching
HARRIS Yes, after matching
ORB No

SIFT No
CenSurE Perfect
SURF No

MSCR Somewhat
MSER Somewhat
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invariant of all the detectors that we have experimented with. Region-based detectors
MSCR and MSER were also assessed based on a common approach of defining a keypoint
at the centre of the detected region. In this case, MSCR is largely invariant and MSER is
somewhat invariant, indicating that colour plays an important role in the invariance of

maximally stable region algorithm.

We have proposed reflection invariance to be an important consideration when desig-
ning and implementing algorithms. It is evident from the cited contemporary research
projects that many inconsistencies exist within applications of scene classification, object
detection and age-guessing when systems are presented with images and their horizontal
reflections. In each of our examples, the systems have produced results that are different
for each reflected image orientation. We have described where some of the sensitivity
is exhibited in feature detection and descriptors, and the interested reader is referred

to [47] for a detailed analysis and experiments in alignment and localization.

A pattern detection scheme that is robust to reflection invariance is presented in Chapter 5

with specific discussion in respect to this invariance in §5.2.2.
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Chapter 4

Feature correspondence in
poor quality images

Feature correspondence is the common and important technique of matching features
found in an image to those in another image, and is used extensively in tasks such as
image alignment, stitching, object tracking, and search and retrieval (§2.1.4). These image
features are represented using feature descriptors that typically describe the texture (pixel
intensity structure) of a small neighbourhood of pixels. The challenging conditions of
video acquisitions illustrated in §1.1 suggest that texture alone is not sufficient to find
correspondences between frames in security videos, and the effectiveness of matching
popular intensity descriptors such as SIFT and SUREF is therefore limited. In this chapter,
we establish a method to improve the robustness of finding and matching features in poor
quality images by combining colour and texture information to increase discriminative
properties of a feature descriptors. The methods that we develop are useful in improving
the effectiveness of object tracking etc. in low quality videos, and are tested using street-

scene videos from real crime investigations in London.

4.1 Measuring image blur

The first step in dealing with images that vary in quality is to be able to somehow quantify
the degree of blurriness of a frame image so we can adjust some of the processing
parameters accordingly. Accurate models for calculating the motion blur of an image
have been described using a multitude of techniques, from estimating the parameters
of a Point Spread Function [201] to using machine learning [202]. Our intent is not to

accurately calculate the blur parameters such that the blurred image can be restored to a
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sharp image, but to quickly be able to estimate the degree to which an image, or part of
an image, is blurred. For this use a straightforward method that is fast to calculate and is
shown to give a reasonable estimation of blurriness for our purposes.

We derive an efficient technique from the intuition that a blurred image will contain
fewer sharp edges than a non-blurred image. The number of edges in an image can
therefore be used as an expression of image blurriness (or, conversely, image sharpness).
We use a Canny edge detector [203] with a 3 x 3 Gaussian kernel, a lower threshold
of 175 and an upper threshold of 225. The small Gaussian kernel balances execution
time with sensitivity to salt-and-pepper noise that can be caused by analogue-to-digital
converter errors or bit errors in transmission. The threshold values have been chosen
empirically to avoid breaking noisy edges (if the lower threshold is too high) and to
reduce fragmentation if the upper threshold is too low.

The Canny edge detector is used to construct a binary edge map E from image I of

sizem X n,

E[I@Z'j i:1,2,...,m
j=12,...,n 4.1)
€ij € {071}

The sharpness of image I is then determined by a function S(I) that calculates the fraction
of non-zero pixels in the edge map E, which is the fraction of pixels representing edges

in the image I.

1 m n

=—> > e (4.2)
mn i=17=1

We use this measure of image sharpness to eliminate duplicate frames and static sce-
nes (§4.2) and in blur-sensitive feature detection (§4.3).

4.2 Duplicate frames and static scenes

Frame rate instability can cause non-deterministic duplicate frames to appear in a video
sequence. Visually duplicate frames are seldom identical in their pixel values, and so
eliminating them from the processing stream requires more attention than simple pixel
comparison. A related problem in video surveillance, particularly with fixed cameras,
are static scenes; those where nothing happens for periods of time, but the camera
continues to record and subsequently produces large sequences of video with no activity.
A security camera will often produce a time stamp on the captured image, and frames are
therefore different in the counting clock (and date roll-over at midnight) but otherwise
unchanged (Figure 4.1).
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scene
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Figure 4.2: Difference images of the frames in Figure 4.1 with their previous frame. The colours
represent pixel value differences in the RGB channels

Processing duplicate images is time-consuming, wasteful of resource and complicates
algorithms that are designed to work with movement. It is therefore desirable to eliminate
duplicate frames and static scenes from the processing queue. The sparse optical flow
is calculated using the multi-scale Lucas-Kanade algorithm [204], with good features to
track [29] keypoint features. Corner features are compared in each pair of temporally
adjacent frames and if no features change position in the second frame, then the frames
are treated as identical. We ignore extreme small or large movements and only consider
movements between 1 pixel and 20 pixels, as 95% of values are within two standard
deviations of the mean. An exception case is made if one or other of the images is
measured as blurred (Equation (4.3)) and the other isn’t. In this case, the feature matching
algorithm may fail but given a difference in sharpness measure, the frames are considered
not duplicate and not static.

The determination of a blurred image is to find a suitable threshold below which S([)
from Equation (4.2) must fall to represent an image that is blurred. Our definition of a
blurred image is therefore;

_ true if S(I) <o
image I is blurred = (4.3)
false otherwise

In our experiments, we empirically discovered a value of ¢ = 3 performs well on our
dataset; an image is classified as a blurred image where edges are present in 3.125%
or less of the image. This value is sensitive to the content of the scene. Our dataset of
CCTV footage contains scenes that are generally busy, in built-up areas containing a lot of
activity (moving people and vehicles) and structures (e.g. buildings, etc.). The duplicate
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frame elimination is an optimisation to reduce processing frames where the result will
be the same as a previous frame. As such, there is some flexibility in the robustness of
the algorithm. The value of ¢ determines the classification boundary of a blurred frame
and false positives may cause a frame to be processed where perhaps it need not have
been, or in the worst case, incorrectly identified as a duplicate, and not processed at all.

The method is robust to time stamp counters within the frame because movement
between frames is only identified if a matching feature is in a different position in the
two frames. In the case of counting digits of a time stamp, features surrounding a 4, for
example, are not matched in an adjacent frame with the features surrounding the 5 that
replaces the 4, and therefore no movement is detected. This technique therefore detects
movement between frames, not simply differences between the frames.

Figure 4.1 shows an example of frames from a video sequence recorded with a static
camera, with a time stamp counter in the corner. Each of these frames were determined
to be duplicates by the above algorithm, despite the substantial pixel value differences

shown in Figure 4.2, caused by stability of the optical sensor in an outdoor scene.

4.3 Blur sensitive feature detection

Image blur is a very significant hindrance to matching features between frames in low
quality images. This observation leads us to adapt feature detection to maximise corre-
spondence accuracy in a technique we call blur sensitive feature detection. The method is
designed to optimise a local region within an image with respect to its blurriness and that
of the adjacent frame image to which correspondence is to be established. Applying a
localised blur of the area before detecting features can help to find more similar features

to the corresponding image, if the amount of image blur can be more closely matched.

In the absence of any prior knowledge of the properties of the image blur, applying a
Normal distribution Gaussian filter is a sensible choice for two reasons. First the central
limit theorem shows that the sum of many independent random variables is approxi-
mately normally distributed and many complex systems can therefore by successfully
modelled as normally distributed noise. Second, of all possible probability distributi-
ons with the same variance, the normal distribution encodes the maximum amount of
uncertainty and inserts the least amount of prior knowledge into the model [205; §3.9.3,
§19.4.2].

A relationship map M is established to correspond the properties of a 2D Gaussian
kernel G, of size k with the sharpness measure of the query image I after a convolution
with G. The map holds sharpness values for the query image after convolution with 2D
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Figure 4.3: Relationship between the size of a Gaussian kernel (z-axis) used to artificially blur
example query images and the sharpness of the resulting image. Each curve represents a sample
query image and their measured sharpness at different Gaussian kernel sizes. The kernel size
steadily increases while the decline in sharpness (increase in image blur) varies with different
query image regions. The relationship map M therefore needs to calculated for each query
region used for correspondence matching.

Gaussian filters of kernel size in the set I'. Let
F'={peNjp=2g—1ANqgeN} 4.4)
The sharpness is calculated for each kernel size and stored in an associative map k£ — S(I),
M(k)=S(g * Gp) VkeI'ANk<aeN (4.5)

where
M(-) represents an entry in an associative map

S(-) image sharpness, from Equation (4.2)
G, Gaussian filter of kernel size k
%  represents 2D convolution
a an upper bound on the Guassian kernel size

Figure 4.3 shows some examples of the relationships between the size of a Gaussian
kernel used to artificially blur example query images and the sharpness of the resulting
image in M. This demonstrates the variance in the correlation between the steepness in
the decline in sharpness (increase in image blur) with steadily increasing kernel sizes
for different query image regions, and therefore the need to calculate M for each query

region used for correspondence matching.

A sharpness adjustment S, is calculated as the difference between the sharpness of

the original (unconvolved) query image region I and the target image I7 to which

Large Scale Pattern Detection in Videos and Images from the Wild



Chapter 4. Feature correspondence in poor quality images 64

correspondence is to be established.
Sa = S(Ig) — S(Ir) (4.6)

The value of S, is used to find the corresponding Gaussian kernel size k in M which,
when convolved with I will produce an image /¢, with sharpness that will most closely
match S(Ir) from all T’

m = arg mkin {Sa—SUg * Gr)} m=>0 4.7)

I)=1Ig % Gm (4.8)

Features are detected in, and extracted from I ég and Ir and correspondences are found
between these feature sets.

Matching performance is considerably improved by aligning the sharpness of the
images before feature detection. However, blurring an image reduces texture structure,
which generally reduces the effectiveness of feature detectors, especially corner-based
detectors such as FAST and BRISK. If no features are found in I, we repeat the process
with I as the entire query image, not bounded to the query region of interest. We do
this with the understanding that the bounded region of interest contains little texture so
retrying with greater kernel sizes would offer only minor improvements, whereas the
sharpness of the query image as a whole provides more information with respect to blur
induced by camera movement. In the unlikely event that no features are found in the
revised I, é, we fall back to features found in Ig. In all of our experiments, this fall back
position is never required as the unbounded I image always produces a usable feature
set.

4.4 Combinatorial Texture and Colour feature matching

We create a new combinatorial feature descriptor representing local features with colour
information — or grey scale intensity structure — from the surrounding region. First, any
local feature detector is used to find feature locations and both a keypoint and a region
are defined for each. In the case of a keypoint detector such as SIFT, a circular region is
created with its center at the keypoint co-ordinates. For region based feature detectors
such as Maximally Stable Extremal Regions (MSER), the region is approximated using an
ellipse fitting algorithm through the region boundary points and a keypoint is defined at
the center of the ellipse.

With the resulting set of keypoint locations and region definitions, we extract a texture
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descriptor at each keypoint. The texture descriptor is a standard feature descriptor that
will be extended by our method to improve its discriminative capability in colour images.
Using the region shape as a mask over the colour image, pixels that fall within the shape
are quantised into a colour histogram. This histogram is transformed into a feature
descriptor using the histogram bins as the feature dimension and the texture descriptor

and colour histogram are concatenated into a composite descriptor.

The RGB colour space is known to be a poor representation for colour segmentation
as there is no straightforward correlation between the RGB channel values and the
intensity of a particular colour that lends itself to simple thresholding. We therefore
transform the RGB image to the HSV colour space for our algorithm. The Hue (H) channel
determines the colour, the Saturation (S) is the intensity of the colour and the brightness

or luminance (V) can be used to find non-colour white, grey and black.

Allocating a pixel value to its closest histogram bin is done by calculating a partial
distance in HSV colour space. For colour entries in the histogram, the distance is deter-
mined by the Euclidean distance of the Hue and Saturation components, d = / H? + S?.
Distance to non-colour entries in the histogram, white, black and grey, are calcula-
ted using the Euclidean distance of the Saturation and Value (luminance) components,
d = 4/S? + V2. Measuring colour distances in the HSV colour space in this way maintains

robustness to affine illumination changes in the image.

4.4.1 Designing a combinatorial descriptor

In designing an algorithm to extend an existing feature descriptor, consideration is made
to the potential of falsely matching dissimilar features of similar colour or moving vectors
in feature space closer together where neither their feature descriptor nor the colour are
similar. Our goal is to produce a generic extension that can be used with any underlying
texture feature descriptor, and so we focus on a method to combine an n;-dimension
texture feature descriptor with an ny-dimension colour histogram in such a way as to

discriminate similar features of different colours without these pitfalls.

Consider a naive implementation that concatenates an ny-dimension colour-histogram
onto a n;-dimension texture descriptor to form an (n; 4 ny)-dimension feature descriptor,
and compares the combined descriptors as single vectors. Extending the dimensionality
to accommodate the colour information is intuitive, however this method will treat the
colour histogram as an integral part of the feature. The Euclidean distance is calculated
for the vectors as a whole, losing the unique properties of the colour histogram. Further,
the two individual vector descriptors measure attributes in different scales, and a simple

combination will yield bias within the components.
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4.4.2 Distance Definition

We follow the understanding of Lowe’s distance ratio (§2.1.4) in our method and use
the colour information of both features to scale the distance between their descriptors.
In doing this, a metric of the difference in the colour histograms logically moves the
teatures apart. The composite feature descriptor f is conveniently represented as a single
n-dimensional vector, where n is the sum of the lengths of the texture t, and histogram h.

f = ({h) (4.9)

In calculating the distance D between two composite descriptors, we first consider a
distance measure between each of the two parts independently, d; and d», and combine
the results. The texture descriptor distance d; is a standard calculation of the Euclidean
distance between the two vectors and ds is the distance between the two colour histogram
descriptors, H(-) from Equation (2.15) on page 32.

di = Ht} _ t§H2 (4.10)

dy = H(hy, hy) (4.11)

The individual distance measures d; and dy are then combined to yield a representa-
tive distance between the two composite descriptors. A simple sum D = d; + d2 does not
account for the difference in scale within each of the descriptors, which itself will be dif-
ferent depending on the choice of texture descriptor. The product D = d;d down-scales
the texture distance based on the colour histogram distance, effectively moving similar
texture descriptors closer together. This reduces the discrimination of similar textual
descriptors, increasing the number of mismatches and reduces the overall accuracy. We
derive a composition applying a constant multiplier to the normalised histogram distance

and summing with the texture distance, in general form,

D =dj + A2 (4.12)

The selection of a suitable value for A has been the subject of many experiments. Any
empirically chosen constant value is not robust for the variety of challenging images
from surveillance video images, and we therefore look to a dynamic value for A which

represents the conditions within which the feature appears.

Figure 4.4 shows a comparison of performance using a variety of combination met-
hods; D = d; + (d2)2, D=di+doy, D= dQ(l + dl), D = dids, D = dids + di + ds, and
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Figure 4.4: F; score comparing a variety of combination methods in the distance calculation;
(@) D = dy + (d2)?, (b) D = dy + da, (¢) D = dz(1 +d1), (d) D = didy, (€) D = drdy + dy + dy, and
the proposed (f) D = dy(1 + d2), against the F; measure of an unmodified SIFT descriptor

the proposed D = d;(1 + d2), against the F; measure of an unmodified SIFT descriptor,
highlighting the superior performance of the proposed method in our experiment data.

Using d» as a value for A reduces the impact of the colour histogram distance because
ds is a normalised value, which when multiplied by itself becomes smaller, and overall
less discriminative. However, d; is a good candidate. With A\ = d;, the colour distance
is used to scale the distance measure of the texture descriptor so that it discriminates

between similar descriptors of different colours.

D =di + Mo
A=d; (4.13)
S.D=di(1+dp)

We see from Equation (4.13) that with A = d; we apply the colour distance measure as a
scalar to the distance between two texture feature descriptors. Increasing the normalised
value of d from the range 0...1 into 1...2, thus upscaling the distance of a texture
feature by multiplication. Therefore, let a = h; and b = hy, with a; and b; being the 4th

element of each, then the overall distance between two composite descriptors is

n
j=14j

I, " min(a;,b; (4.14)
:Htl_tQH <2_ j=1 min(a; y))
2
The use of a scalar applied to the texture descriptor distance ensures that attributes
of the texture descriptor such as invariance to affine scale and rotation transformations,

are preserved. The calculation of the colour histogram in Hue and Saturation channels
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maintains invariance in affine illumination transformations.

Distance Calculation To find the closest descriptor D, to a given descriptor D; it is cus-
tomary to use an algorithm based on Euclidean distance, such as k-Nearest Neighbour.
We perform a nearest descriptor calculation in two parts. First, the k-nearest neighbours
of the texture descriptor ¢ are found using the standard algorithm with k = 5, giving
{vi,v3,v3,v1,v5}. For each of the five closest descriptors, we perform the scaling mul-
tiplication of Equation (4.14) and determine the descriptor with the smallest resulting
distance to be the closest, D,.

D, = arg miin {Dy,} (4.15)

This is not guaranteed to be optimal; the choice of value k limits the search for candidate
descriptors to which to apply the combinatorial algorithm of Equation (4.14), in the
interest of runtime complexity. In our tests increasing k to 10 does not improve the final
result, and it is reasonable to expect value £ > 10 will yield no better composition. This
calculation does not produce a worse approximation than the common method to reduce
computational complexity in a k-Nearest Neighbour search using Approximate Nearest
Neighbour algorithm (ANN), which uses a randomised indexing method making the
result non-deterministic, but is widely accepted for most matching tasks. Reducing k
below 5 is an option for improving runtime complexity further in a system where it is

acceptable to trade accuracy for execution speed.

4.5 Evaluation

We evaluate the performance of the proposed descriptor by measuring the accuracy of
matching features between pairs of images. The definition of a feature match depends
on the matching strategy that is applied [51]. Our intention is to measure the accuracy of
our new composite feature descriptor and distance calculation. We therefore compare
our results with a nearest neighbour matching algorithm without any threshold filtering,

such as Nearest Neighbour Distance Ratio to discard poor matches.

We use seven feature detectors to find initial regions of interest. Five popular intensity
based keypoint detectors; Harris Corners detector (HARRIS), SIFT, SURFE, BRISK and
FAST, and two region detectors; MSER on grey scale representations and maximally stable
colour regions (MSCR) on colour images. For each of these sets of features, we compare
feature matching performance of descriptors extracted using SIFT and SURF, with and
without our combinatorial descriptor, and later using OpponentSIFT and OpponentSURF
3-channel descriptors, again with and without our combinatorial descriptor.
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The keypoint detectors HARRIS, SIFT and SURF are chosen because of their popula-
rity and widespread adoption in many tasks including object classification and image
retrieval [206], and BRISK and FAST for their high performance and relevance for real-
time processing. We are keen to demonstrate the universal improvements of our method

and therefore also include region based detectors MSER and MSCR in our comparisons.

4.5.1 Blur sensitive feature detection

We evaluate the blur sensitive feature detection technique independently using our seven
selected feature detectors with state-of-the-art descriptors and Euclidean distance measu-
rements. Our sharpness map contains convolutions with Gaussian kernels up to 11 x 11,
thus a = 11 in Equation (4.5). In experiments, 9 x 9 was the largest Gaussian filter that
produced an improved result, so we include the next largest as our upper limit. The map
size is a constraint imposed to control runtime complexity, and can be increased further

for other datasets.

Figure 4.5 shows the percentage improvements in matching quality achieved by
applying the blur sensitive feature detection algorithm to our test database. The mat-
ching accuracy improvement is subject to the choice of feature detector, which is expected
because the artificial blurring of the image will affect each detector differently. The
matching performance is broadly consistent across all extractors for each detector. The
exception are Harris Corner features which vary considerably for each descriptor type,
and decreases matching performance in two cases; rootSIFT and OpponentSIFT des-
criptors. BRISK features yielded consistently small improvements, and matching SURF
features was generally more improved. With rootSIFT descriptors extracted from SURF
keypoints being improved the most, by 92.8%.

4.5.2 Combinatorial descriptor assessment

We use a fixed colour histogram for all images. In experiments, the 10-bin palette of
Park et al. [88] has proven to work well; seven colours and three special considerations
for intensities (Table 4-A). This palette has been used for the experiments presented in

this paper. The descriptor extension is therefore 10 dimensions in size.

Query by example

A rectangular area of an image is specified as a query region containing features that
are to be matched in subsequent frames of the video sequence. In our first test the
query region represents a distinctive two-colour back-pack being worn by a person. This
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Figure 4.5: Matching accuracy improvements of blur sensitive feature detection. Matching accuracy
improvement is subject to the choice of feature detector and performance is broadly consistent
across all extractors for each detector. However, Harris Corner features vary considerably for
each descriptor type, and decreases matching performance in two cases.

Table 4-A: Colour palette from [88] used in our experiments

Colour H S Vv

Red 0°  100% 100%
Brown 15.1°  74.5% 64.7%
Yellow 60° 100% 100%
Green 120°  100%  100%
Blue 240°  100%  100%
Violet 300° 45.4% 93.3%
Pink 349.5°  24.7% 100%

White 0° 0%  100%
Black 0° 0% 0%
Grey 0° 0 60%
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region is matched against 250 video frames, each of which has ground truth information
defining the boundaries of the back-pack within it.

Descriptors are created for the query image region and each image under considera-
tion (candidate images) using the method described above. The positions of the features
within the candidate image that match with the query region are then assessed relative to
the ground truth and determined to be a true or false positive result or a negative result.
A true positive result is a feature that matched with the query region (a query match) lies
within the ground truth region. If a query match falls outside the ground truth then the
region is labelled as false negative result. A feature matched between the images from
outside the query region that falls within the ground truth region is counted as a false
positive result. A match between the images from outside the query region to outside
the ground truth region is not used directly within our analysis but are implicitly relative
to other metrics.

Results for each feature are tallied for each image, and these are then summed across
all of the images in the sequence. The true positive tp, false positive fp and false negative
fn totals for the images are then used to calculate the recall and precision measures of

performance of each of the four descriptors with and without our extension;

tp . ip
pT@CZSZOTL =
tp +tn tp+ fp

recall =

In reporting our results we use the F-measure, the weighted harmonic mean of recall
and precision, to measure and compare the accuracy of our combinatorial descriptor and
distance measure with well-known descriptors. We favour neither precision nor recall

over the other, and therefore use the Fj score, defined as

o 2 - recall -prec.is.‘ion (4.16)
recall 4+ precision

Intensity descriptors

It is important to compare the feature matching performance with popular intensity
descriptors because these have the smallest dimensionality. In a large-scale processing
system, size of descriptors is important for minimising memory and disk storage and
data processing time.

Our experiments compared the matching performance of SIFT and SURF descriptors
against our combinatorial descriptor based on SIFT and SURF with our distance measure,
for features detected using Harris Corners (HARRIS), SIFT, SURF, BRISK, FAST, MSCR

Large Scale Pattern Detection in Videos and Images from the Wild



Chapter 4. Feature correspondence in poor quality images 72

SURF SIFT

HARRIS
SIFT

SURF

BRISK 158.2%

Descriptor

FAST 155.8%
MSCR

MSER 163.0%

0% 20% 40% 60% 80% 100%  120% 140% 160%  180%
Percentage Improvement

Figure 4.6: Improvement of SIFT and SUREF intensity descriptors using our combinatorial
descriptor and distance measure. Orange bars show percentage improvements of SURF
descriptors using our method, and blue bars show improvements in SIFT. The baseline uses
standard descriptors with Euclidean distance measures in feature space. The overall average
improvement across all of the feature descriptors in this test was 95.2%.

and MSER (Figure 4.6). Feature matching is determined by the nearest neighbour feature
in descriptor space. The greatest improvement was achieved with SIFT descriptors
extracted from MSER features where the F; measure increased by 163% using our method
(from 0.064 to 0.167) compared to a plain SIFT descriptor on the same MSER features.

Overall, the average improvement across all feature descriptors in this test was 95.2%.

Figure 4.7 shows two examples of matching feature descriptors from a region of
interest within a query image to a subsequent frame in a surveillance video, using a
SUREF feature detector. Figure 4.7a shows matches of SURF descriptors extracted from
the SURF features within the region of interest in the query image (left), and a blurred
frame (right). There is a notable increase in the number of features matched into the
bag region in the right hand image. Figure 4.7b shows matches from the same query
frame to a sharper subsequent frame and demonstrates the reduction in false-positive
matches into background features. The less cluttered Figure 4.8 repeats Figure 4.7b using
the distance ratio filter (Equation (2.17)) from [31]. There are new positive matches in
both images, matching points within the rucksack that are not matched in the top row.
In addition, the number of false positives is visibly reduced, with fewer yellow lines
matched to the background in the right-hand images.
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(a) Matches to a blurred image perform poorly using Approximate Nearest Neighbour (blue
matches) and a visually evident increase in matches to the target bag using our method, show in
yellow (b). In (a) a single feature is matched, and in (b), eight features matched

(b) Significantly reduced number of false positive matches to the background using our
method (yellow) compared with Approximate Nearest Neighbour matching (blue)

Figure 4.7: Two examples of matching SURF features on a coloured bag from a query frame (left
in each pair) to a subsequent video frame. This is particularly evident in the railings on the right
hand side of the images.
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Figure 4.8: Good matches (Equation (2.17)) are shown for SURF features (top row) and using our
method (bottom row). Only one SURF feature in the distinctive bag is matched, and this has
incorrectly been matched to a feature in the background, on the pavement. Using our method,
six features are correctly matched to the bag in the second frame, and only one incorrect match to
the background remains.

Colour descriptors

We now assess our algorithm using two high-dimensional colour descriptors, Opponent-
SIFT (384-dimensions) and OpponentSURF (192-dimensions), with the same features
from the previous section.

The F; measure on our test video sequence is improved using colour descriptors over
using the intensity texture descriptors. This is to be expected as the colour information
provides a more discriminative comparison. In our test video sequence, the best match
performance was achieved using the combinatorial OpponentSIFT descriptor with FAST
features, achieving an improvement of 12% over the original OpponentSIFT descriptors’
accuracy of 0.415. Matching OpponentSURF descriptors of FAST features was improved
the most of all colour descriptors, by 98.5% but the F score is low, increasing from just
0.149 to 0.296.

OpponentSIFT uses colour information in the extraction of the descriptor and can be
expected to out-perform those that do not use colour information in a dataset in which
colour is visually distinctive. In their thorough evaluation of colour feature descrip-
tors, van de Sande et al. conclude that OpponentSIFT is generally a better performing
descriptor and is a good choice where there is no prior knowledge of the images or
object/scene categories [61]. In our tests, results show that our extension method gene-
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Figure 4.9: Improvements of OpponentSIFT and OpponentSURF colour descriptors using our
combinatorial descriptor and distance measure. Orange bars show percentage improvements of
OpponentSURF descriptors using our method, and blue bars show improvements in
OpponentSIFT. The baseline uses standard descriptors with Euclidean distance measures in
feature space. The overall average improvement across all of the feature descriptors in this test
was 95.2%.

rally improves matching with this descriptor by up to 47.2% depending on the initial
feature detector (Figure 4.9).

Overall the average improvement across all of the colour feature descriptors in this test
was 39.8%.

Matching with colour variations

The representation of colour of an object within an image changes with many factors
such as illumination, camera, distance, and weather. Our method is invariant to illumi-
nation changes by its analysis of Hue and Saturation in the HSV colour space and the
quantisation of colour to a fixed palette. The clarity of colour is sensitive to the distance
between the object and the camera, and distant objects begin to appear overwhelmingly

grey (Figure 4.10).

In video sequences such as these, the colour quantisation to the fixed palette converges
to a spike of grey pixels which subsequently reduces the performance of the colour boost
algorithm. Instead, such nearly-grey images can be processed using only the Hue channel
of the HSV colour space to quantise the colours to the fixed histogram and accentuate

the dull colour. The resulting histogram provides increased colour information which is
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Figure 4.10: Clarity of colour is sensitive to the distance between an object and the camera, and
distant objects begin to appear overwhelmingly grey.

more discriminative than grey.

We have tested combinations of channels for quantising colour to the palette, and
found that performance is optimal on a general set of images when the Hue and Satu-
ration channels are used. However, in poor imaging conditions, performance can be
improved by using only the Hue channel. The images in Figure 4.10 are taken from a
short video sequence of 486 frames. The improvements that were gained using only the
Hue channel to generate correspondences of the green checked shirt (highlighted) are
shown in Figure 4.11. The discriminative nature of the colour boosting method is clearly
demonstrated with two key performance measures. While true positive correspondence
of features was reduced by 2-4%, which typically represents only one or two features, the
number of False Positive matches reduced by up to 9%. The improvement of the overall
Fi-measure, plotted in green against the secondary axis, shows a maximum improvement
of 100%, and in only twelve frames the F'; measure was reduced.

An intelligent implementation can adjust which channels are used for the colour
quantisation based upon real-time analysis of the resulting histogram. If H.S channels
yield a histogram that is biased to grey, then the quantisation calculation should be
repeated with only the Hue channel, H.
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Figure 4.11: Difference in F; accuracy using only the Hue component on near-grey images. The
slight reduction (2-4%) in True Positive values (blue) is compensated by a larger reduction (up to
9%) in the False Positive rate (orange). The overall F; measure is consistently improved in 92% of
the 145 frames (green).

State of the Art Colour Descriptors

There have been a number of colour descriptors proposed, and we compare state-of-the-
art colour SIFT descriptors to our extension applied to intensity SIFT descriptors. SIFT
descriptors are extracted from the images at feature positions detected by our trial set of
detectors; Harris Corners, SIFT, SURF, BRISK, FAST, MSCR and MSER. We apply our
combinatorial extension to these SIFT descriptors and measure the F; score on our test
dataset. A distance ratio filter (Equation (2.17)) is applied to ensure we are comparing
the robust matches in all cases. The F} scores are then compared with those achieved
on the same dataset using state of the art colour SIFT descriptors HUE-SIFT, RGB-SIFT,
C-SIFT, HSV-SIFT and RG-SIFT (Figure 4.12) using the implementation of [61]. HUE-SIFT
has dimension D = 165 and all the others have D = 384. Our combined descriptor is
D = 138, based on D = 128 SIFT with a 10 bin colour extension. The F; score of the
original descriptor is shown alongside the F; score of our combined descriptor. In all
cases apart from features detected by MSCR, the combined descriptor shows a large
increase in I over the original descriptor.

A combinatorial extension to SIFT descriptors of SIFT features shows the largest
improvement, and comes close to matching the accuracy of C-SIFT, which is three times
slower to compute and nearly three times the size. SIFT descriptors extracted from BRISK
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Figure 4.12: Comparing the F; score of state-of-the-art colour descriptors with our combinatorial
method

features is a significant result for our application as BRISK is a high performance detector
and with our combinatorial extension, we achieve an F; score that improves on HUE-SIFT
and RGB-SIFT and comes close to the others.

Selection of an appropriate feature detector and descriptor is difficult, and the best
performing is not universal across all images or all applications. Our method significantly
improves the 1 measurement of accuracy using fast-to-compute detectors to match or

exceed state-of-the-art colour descriptors with much lower memory requirements.

4.5.3 Feature matching results

The graphs in Figure 4.13 summarise the results from our test database of 251 images.
Each graph shows the F; measure of one of our seven selected feature detectors and all
four of the feature extractors, comparing the matching performance of four methods
of calculating correspondence. The pale blue line shows SIFT features extracted from
each of the feature keypoints or region centers, the orange line shows rootSIFT features,
SUREF is in grey, and colour features of OpponentSIFT and OpponentSURF are in yellow
and dark blue respectively. Each of the four methods are represented on the x-axis; the
original correspondence using Euclidean distance of unmodified feature descriptors is
the baseline against which we measure performance improvements. Blur sensitive applies
the blur sensitive feature detection algorithm using unmodified feature descriptors.
Combinatorial results are those achieved in using the combinatorial texture and colour
feature matching descriptor extensions and matching algorithm, and finally Combinatorial

Blur sensitive are results from the combined methodology described in this chapter.

The upward left-to-right trend in each of the graphs demonstrates the improvement in

matching performance that is achieved with each of our method’s components, and the

Large Scale Pattern Detection in Videos and Images from the Wild



Chapter 4. Feature correspondence in poor quality images 79

SIFT Features SURF

0.700 0.700
0.600 0.600
0.500 0.500
0.400 / 0.400
0.300 0.300
0.200 0.200
0.100 0.100 —

F1 measure
F1 measure

0.000 0.000
Original Blur sensitive Combinatorial Combinatorial Blur Original Blur sensitive Combinatorial Combinat.o.rial Blur
sensitive sensitive
—@=SIFT =@ rootSIFT SURF Opponent SIFT  —@=0OpponentSURF «=@=SIFT  =@=rootSIFT SURF Opponent SIFT  ==@==OpponentSURF
BRISK Features
FAST Features
0.700
0.700
0.600
0.600
0.500 /‘
2 o 0.500
2 0.400 5
o 2 0.400
£ 0.300 o
— £ 0.300
b
0.200 sl
- 0.200
0.100
0.100
0000 . - - S 0.000
Original Blur sensitive Combinatorial Combinatorial Blur . - . . " .
s Original Blur sensitive Combinatorial Combinatorial Blur
sensitive .
sensitive
«=@==SIFT ==@==rootSIFT SURF Opponent SIFT  ==@==0OpponentSURF
PP PP —0—SIFT  —@—rootSIFT SURF Opponent SIFT  —8=OpponentSURF
HARRIS Features
0.700
0.600
) 0.500
2 0.400
©
o
£ 0300 -
5 $
% 0.200 —-
0.100 /
0.000
Original Blur sensitive Combinatorial Combinatorial Blur
sensitive
w=@==S|FT  ==@==rootSIFT SURF Opponent SIFT  «=@==0OpponentSURF
MSER Features MSCR Features
0.700 0.700
0.600 0.600
o 0.500 o 0.500
2 0.400 2 0.400
© @
o o
£ 0.300 /\/ £ 0300
— —
* 0.200 - 0.200
0.100 0.100
P —
0.000 0.000
Original Blur sensitive Combinatorial Combinatorial Blur Original Blur sensitive Combinatorial Combinatorial Blur
sensitive sensitive
«@==SIFT  «=@==rootSIFT SURF Opponent SIFT  «=@==OpponentSURF @ SIFT  w=@==rootSIFT SURF Opponent SIFT  ==@==0OpponentSURF

Figure 4.13: Summary of the results of feature matching with each component of the method,
and our combined methodology. Each graph shows results from a different feature detector, and
compares results with each descriptors using four methods; Euclidean — Euclidean distance of
unmodified feature descriptors is the baseline, Blur sensitive — blur sensitive feature detection
algorithm using unmodified feature descriptors, Composite — composite texture and colour
feature matching descriptor extensions and matching algorithm, Composite Blur sensitive — the
combined methodology described in this chapter.
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combined methodology. The consistent closeness of the orange and yellow lines in the
Combinatorial Blur sensitive result is particularly striking. The performance of our method
using rootSIFT descriptors (128 + 10 dimensions) closely matches the performance of the
much larger OpponentSIFT 384 4- 10 dimension descriptor and significantly outperforms
state-of-the-art feature matching using the OpponentSIFT 128D descriptors with the

Euclidean distance measure.

4.5.4 Storage efficiency vs. matching performance

The choice of feature detector to use in the initial step of the processing pipeline signi-
ticantly affects the ability to match features across images. The variability of matching
accuracy is observable in the results presented in this chapter. Systems attempting to
match features across a high volume of images are becoming increasingly common, and
a key consideration for such systems is the storage efficiency of the descriptors used and

the trade-off between storage and accuracy.
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Figure 4.14: The correlation between F; matching accuracy (y-axis, left) and descriptor size
(y-axis, right). Yellow bars show measures for established descriptors and Green bars are F;
measures using our method. Using our method with SIFT and RootSIFT 138D combinatorial
descriptors out-perform OpponentSIFT and OpponentSurf descriptors of almost 3 times the size.
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The accuracy of feature matching using contemporary techniques generally increases
in line with the size of the descriptor that is determined by a choice of feature extractor.
Figure 4.14 demonstrates this where the tops of the bars represent the peak performance
on each descriptor, and the yellow bars of established descriptors are generally higher
moving left-to-right. The green bars show the F; matching accuracy using our method,
where there is a peak in matching accuracy at dimensionality D = 138 where our method
using SIFT and rootSIFT descriptors outperforms all other state-of-the-art descriptor mat-
ching using Euclidean distance measures. The saving in storage using our Combinatorial
r00tSIFT over the performance-comparable Combinatorial OpponentSIFT is 394 — 138 = 256

values per descriptor.

4.6 Conclusion

This chapter has introduced a methodology for improved discriminative feature corre-
spondence in low-quality images, with an emphasis on storage optimisation and runtime
complexity. Our efficient and generic extension for feature descriptors improves the
performance of feature matching and the blur sensitive feature detection method further
enhances feature matching performance. We have shown the flexibility of the approach
by applying it to five common keypoint descriptors and two popular region descriptors
and we have compared the performance of all of them in matching features between
images that vary in quality and appearance. Our experiments have demonstrated that the
introduction of colour information to the feature descriptors, a unique feature distance
measure and compensating for inter-image blur differences can improve the matching
accuracy over the original descriptors in most combinations that were tested, even where

the colour detail is visually subtle in poor quality images.

The method provides flexibility as it can be used with any feature descriptor extracted
from any keypoint or region detector. Further, evaluation of the method in our problem
domain of frame-to-frame feature tracking in low quality videos has demonstrated that
smaller descriptors that are computationally lighter can be used to out-perform larger
and more expensive feature descriptors. Our experiments have demonstrated an accuracy
in matching features that out-performs all state-of-the-art methods using descriptors of
less than 36% of size of the nearest performing colour descriptor.

The gains shown with this method are incremental, and while useful in improving
correspondence in individual feature sets, do not represent exponential advancement
in large scale pattern matching. In the next chapter, we broaden out consideration, and

introduce scalable method that shows promise for greater advancement.
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Chapter 5

Random Forests for
pattern indexing

There has been a lot of research into detecting low level feature interest points, describing
those interest points with feature descriptors (§2.1.2), and corresponding similar features
from different images (§2.1.4), as we saw in Chapter 4. Finding patterns in a corpus of
data extends feature matching to search a database of images — usually represented by
their feature descriptors — for correspondences to a previously unseen query image. This
indexing is well-researched (§2.1.5), but not a solved problem because of the problems
of high-dimensionality of feature descriptors and the volume of images and feature
descriptors therein (§2.1.3). In a criminal investigation, distinctive patterns can be iden-
tified by investigators which then because a search query to identify the same pattern
in other video sequences. Some examples of distinctive patterns are tattoos, clothing
combinations (Figure 5.1c,e), or baggage (Figure 5.1d).

Inspired by the work of Gall et al. [92], we look to random decision forests to provide
a learned method to make sense of the large volume of data. In this chapter, we first
investigate the feasibility of using a random forest for pattern detection by training a
forest with very few samples of the pattern to be detected, which is representative of our
online query-by-example use case. We then move to a novel method of training a decision
forest offline to encode the patterns contained within a video which can be searched very

quickly for any unseen pattern.
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5.1 Minimal training datasets

Machine learning algorithms consist of two phases, 1) training a model to represent a
complex relationship between the input data and a set of desired results, and 2) applying
the trained model to a set of unseen data to predict a result. The training phase is usually
an offline task that processes a lot of data and takes many hours. Some applications have
constraints that prohibit the use of such a large-scale training scheme, but can benefit
from using a learned model. Specifically, our interest in Query-by-Example video search
falls into this category, where a user draws a rectangle on the screen to specify an image
pattern to be found in a database of videos and images (Figure 5.1). From this rectangle,
a set of training data must be found to train a (machine learning) model on demand. The
data set of training images is necessarily small and the time to train must be minimised;
the application is interactive — online — and a user’s expectation is that results will be
available within a short time frame. In our use case, the end-user is a part of a police
investigation team, and their tolerance to waiting for a result is somewhat greater than a
typical user of a web search such as Google. Typically, if a result is returned within a few
seconds, then the user will be happy as such a delay doesn’t distract from their workflow.

Random forests are highly configurable A+ predictors, but the mechanism by which
they produce a prediction is difficult to understand [207]; “[t]rying to delve into the tangled
web that generated a plurality vote from 100 trees is a Herculean task.” Introduced in 2009,
Hough Forest — a form of random forests trained on image patches — have gained inte-
rest in object detection [208, 209]. Some work has improved the runtime performance

ime stamp 08/08/2011 16:55:46.309
0: HTH_3 - C004 Mare St/Graham

Figure 5.1: (a—e) Pattern queries used in five videos in our experiments
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in voting [210], however to the best of our knowledge, no comprehensive study has
been made of the impact of parameter tuning on runtime performance or accuracy of
pattern detection. We empirically assess the impact of varying a number of configu-
ration parameters (Table 5-A, page 86), measuring the training time, pattern detection
time and precision against a manually-created ground truth. We assess the viability of
Hough Forests to detection tasks when they are trained with minimal data from a simple
initialisation where the user defines a rectangular guery region as the single input into
the system (Figure 5.1).

5.1.1 Discovery of training data through temporal pattern tracking

The query region is tracked through the video using template matching [211], calculating
a similarity measure vy that we use as a confidence of tracking accuracy. The template
is not updated during the tracking, so avoiding template drift [212] as every frame is
matched to the original region. Two thresholds are used during tracking; ¢, to accept or
reject the tracked region as a potential training image, and ¢; to terminate the tracking,
where ¢; < ¢,. Let ,, represent the maximum Normalised Cross Correlation found in
the image using a sliding window. If ¢; < v, < ¢, then the region is too dissimilar to
the query region to be used as a positive training image, but may represent a partial
occlusion. In this case, it is rejected but tracking continues so that the correspondence
may be re-established in a later frame. If ~,, < ¢, the tracking is terminated because the
found region is so dissimilar to the query region that it is unlikely to be a partial-occlusion
from which we can recover in a subsequent frame. If ,,, > ¢, then the frame image is
stored, along with the region bounding box (z1, y1, 2, y2) and 7y,. The value of ¢; adjusts
the system’s sensitivity to partial occlusions; a higher value will include more frames in
the candidate list that have a lower similarity to the original search pattern, but which
will likely be excluded by the next algorithm steps. A higher value of ¢; therefore also

increases the runtime complexity and consequently introduces a longer runtime.

When the tracking terminates, we have a list of candidate training images. The process
is repeated in a reverse direction to extend the list to include images from before and
after the query frame. The candidates are sorted into descending order of +,,, and the n®
images with the highest values of ~,, are selected as positive training images. Figure 5.2
shows an example, with n® = 10 and some of the positive images that were rejected
as training images. Increasing n® selects more images from the left of Figure 5.2b into
Figure 5.2a. Each image increases variation from the template which helps to generalise

the forest but increases the time required to train.

The tracked regions in the n® frames are extracted as positive training images P; =

Large Scale Pattern Detection in Videos and Images from the Wild



Chapter 5. Random Forests for pattern indexing 85

Figure 5.2: Tracked regions are extracted before and after the query frame. (a, Top) The 10 best
matching regions are selected as positive training images (n® = 10). (b, Bottom) Rejected
candidate positive training images, based on the values of v, = 0.16 and ~; = 0.1. Images are
sorted in descending ,,; varying n® will select more or fewer from the left of (b) into (a).

(x1,y1,22,y2). Negative training images are extracted from the rest of the image; the
background. First, up to four background regions are defined from the background

surrounding P; in the image

Bl =IL0,y1 — 1,21 — 1L,y2 + 1) the area to the left of P;

B2 =I,(0,0,w —1,y; — 1) the area above P,

B =Ii(zo+1,5n —1,w—1,y2+1) the area to the right of P;
=L0,ya+1,w—1,h—1) the area below P;

where w and h represent the width and height of P;. Up to two of these images may have
no area (be empty) if the region is against an edge of the image. The non-empty images

B}',1 <n < 4 are then used as negative training images.

We train a forest using features from our set of training images using code from the
original authors [166] available online at https://github.com/cdmh/hough_forests/

tree/master.

5.1.2 Hough Forest parameters

Many parameters can be changed to tune the time taken to train a forest and apply
it (Table 5-A), in our case to pattern detection. Training parameters determine the shape
and size of the forest and how trained the forest is. Feature channels are created from each
training image, and from each feature channel a set of o, x g, patches are extracted from
random positions. The number of patches, 7,,,, that are extracted often goes unmentioned
in the literature; in the implementation from [166], 7, = 50 patches and the paper
describes resizing each image such that the longest spatial dimension is 100 pixels. We
propose to optimise this parameter based on the shape and size of the query region,
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Table 5-A: Training parameters of a Hough Forest used to balance performance and accuracy

Parameter Description

T number of trees

Td maximum depth of each tree

Th stop growing when number of patches in a node < 7y

n® n® number of positive and negative images used to train the forest
Tm number of patches to extract from each training image

Oz, Oy dimension of patches extracted from training images

without resizing the images. Given that patches are extracted from random positions
within a training image, it follows that the quantity and size of patches as well as the
size of the training image determine the coverage. A large number of patches in a small
training image will cause a lot of overlap, leading to redundancy in the forest, bloating
the trees and reducing runtime performance. An optimum coverage of each positive
training image of dimension w x h by patches g, x o, is achieved with

V= LQ,L:ch)ZyJ 61

non-overlapping patches.

It is our intuition that a correlation exists between the accuracy of a Hough Forest
in detection and the shape of the query region. To our knowledge, this consideration
has not be reported in previous literature, and we therefore investigate the hypothesis.
We introduce a computed dimension for patches based on the aspect ratio of the query
region, and consider two alternative means by which to calculate ¢, and g,. First, we

scale the patch so that the minimum dimension is 16 [92],

16w
Gr = [min(w, h)w

16h
1

min(w, h

(5.2)
Oy = [

and second, we restrict the patch size to be within a 16 x 16 array and adjust the aspect

ratio, thus reducing one of the dimensions

16w
Or = [max(w, h)w

16w W (5.3)

&y = Lnax(w, h)

where [-] represents the integer ceiling.
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5.1.3 Empirical Evaluation

Our experiments use five videos from different scenes (Figure 5.1, page 83) that include
footage taken by hand-held cameras — videos 1, 2 and 5, Figure 5.1 a, b and e — and
operator-controlled Pan, Tilt and Zoom street cameras that contains a lot of blur caused
by fast camera movements (Videos 3 and 4, Figure 5.1 c and d). One query region was
selected per video, as shown.

Defining ground truth is subjective and somewhat imprecise, so was carried out in a
research group with cross-validation and peer-review. We define 16 query patterns as a
baseline assessment. Ground truth annotations are defined per-frame to give the most
detailed temporal description possible [10], in ViPER format XML files with an xgtf file
extension. ViPER XML is a common format from the ViPER annotation tool [213] used
by Etiseo [214] and PETS!.

We ran experiments with the parameter values shown in Table 5-B, and Table 5-C
shows the calculated number of patches 7,,, = 1 and calculated patch sizes o, x o, for

each video. Starting with a baseline experiment, we performed further experiments

Table 5-B: Parameter values used in our experiments (baseline values from [166] are highlighted)

rt € {2,3,4,5,10, 15,20}

Ty € {5,15,20,25}

o € {5,15,20,25}

n® € {10, 15,20, 25}

n® = 5n®

T € {1, 25,50,75}

0z, 0y €(9,9),(16,16),(25,25), (36, 36), Equation (5.2), Equation (5.3)}
™ € {0.5,1.0}

T € {1.0}

Table 5-C: Five videos are used in our experiments, with a total of 6 887 frames. Each video has
different query region dimensions. The calculated number of training patches, 7,,, = ¢
(Equation (5.1)) and adaptive patch dimensions for two constraints Equation (5.2) and
Equation (5.3) are shown respectively.

Number Query region

Dimensions of frames dimensions Tm =P Oz X 0y 0z X Oy
P, x Py, equation (5.1) equation (5.2) equation (5.3)
Video1l 640 x 480 268 54 x 39 8 22 x 16 16 x 11
Video2 640 x 480 743 58 x 135 30 16 x 37 6x 16
Video3 704 x 625 427 73 x 165 47 16 x 36 7% 16
Video4 691 x 360 3585 74 %75 21 16 x 16 15 x 16
Video5 640 x 480 1864 61 x 58 13 16 x 16 16 x 15
6 887

"http://www.cvg.reading.ac.uk/PETS2016/
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Precision

10 15 o 20 25
Number of positive training images

M Precision —Training Time -=—Detection Time

Figure 5.3: Performance and precision change with the number of training images n®. No of
Negative training images is n® = 5n®. The logarithmic trend of precision is shown as a green
dotted line, decreasing as n® increases.

varying one parameter value at a time. We measured the time taken to train the forest
and to apply pattern detection. Precision is calculated thus: 6 887 frames of video have
been manually inspected to create a ground truth of the position or absence of the pattern
within each frame. The position is defined by a rectangle of the dimensions of the query
region. Detection is applied to each frame in which the ground truth identified the
pattern to be present. The intersection area of the detected region and ground truth is
divided by the area of the query region, and if the ratio is > 0.8 then a correct detection
is recorded.

5.1.4 Results

The number of training images, n®, is an obvious parameter to consider. There is,
unsurprisingly, a strong correlation (0.994) between the number of training images and
the time taken to train the forest (Figure 5.3, blue curve). The precision drops steeply as
n® increased from the baseline 10 to 15 and 20. This can be explained by the correctness
of images found during tracking. Training images are added in descending order of their
cross correlation to the original query region. As more training images are added, these
images match less well, and begin to introduce poor images into the training set. Hough
Forests are good at handling noisy training data, and training with some noise helps
to generalise the classifier, but there comes a point where the training images are too
dissimilar to be useful; there is a correlation of —0.993 between the number of trees and
the precision achieved. In most of our experiments the detection time (orange curve) is
within 10% of the 1 second baseline, therefore the influence of parameter tuning does not
materially affect the timing. We do not comment further on the detection performance
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Figure 5.4: Precision measured with each parameter affecting the size and shape of the forest;

Number of trees 73, Maximum tree depth 74, Growth threshold 7. Dotted lines show logarithmic
trend as each parameter is increases.

for each test unless it is outside of this margin.

Parameters 74, 75 and 7, affect the size and shape of the forest; the number of trees,
the maximum tree depth, and the growth threshold, respectively. Figure 5.4 shows the
results of our experiments in changing each of these parameters individually. Time to
train a forest is linear with respect to the number of trees in the forest, 7;. Trees can
be trained independently from each other, and so the task is appropriate for parallel
processing. The depth of a forest increases memory requirements exponentially; the
maximum number of leaves in a tree of depth 7,4 is 2™. An example using the code
of [166] and a forest with 7, = 25, consumed 11Gb of memory. The baseline 75 = 15
produces the highest precision in 4 of 5 videos in our experiments. Precision is increased
by 1% for Video 4 with 7; = 20, but Video 3 decreases to 63% from 68% with the baseline.

Each tree in the forest stops growing when a threshold 7, number of patches is reached.
Varying the value of 7, from the baseline 20 reduced the precision, or left it unchanged
in all of our experiments. 7,,, patches are extracted from each training image. Varying 7,,
from the baseline 7,,, = 50 to other constant values does not improve precision at all.

Our novel method using a dynamic number of patches relative to the size of the query
region, Equation (5.1), produces interesting results (Table 5-D). There is a very strong
correlation (0.98) between the training time when 7,,, = ¢ and the area of the query
region (width x height). In 4 of the 5 videos the training time reduced considerably and
was unchanged for Video 3 (column 3). The detection time is unchanged or marginally
faster (not shown), but the variance in precision is less consistent. For three of the five

videos, the precision drops 1 to 4 percentage points, for Video 2 it remains the same and
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for one of the most challenging videos, Video 5, the precision increases to 57.9% from
57.1% baseline.

We calculate the patch size o, x 0, and the number of patches to extract from each
training image, 7, based on the size of the query region and compare results from
combinations of fixed and dynamic values for all of these parameters; 7, = 9 from
Equation (5.1) and two calculations of ¢, and g, from Equation (5.2) (columns 5 and 7),
and Equation (5.3) (columns 4 and 6). Finally, we constrain the patch size to a minimum
value of 12 in Equation (5.3) and show the results in column 8. The highlighted values in
Table 5-D indicate improvements in training runtime performance and precision across
the five videos. Column 4 shows that the best overall performance is achieved with
Tm = 50 using Equation (5.3) to dynamically calculate the patch size, with improved
accuracy on 4/5 videos and faster training time in 3/5 videos with one unchanged and

only one increasing.

5.1.5 Conclusion

Contemporary literature use a fixed number of 50 square patches of 16 x 16 for Hough
Forest training and its applications, per [166] and our baseline. We have demonstrated
that while using a very small training set of images, the accuracy of pattern detection
is sensitive to patch size, aspect ratio, and the number of patches that are used. Our
experiments have shown that using an adaptive patch size influences both the training
time and precision results. Each of our test result sets bar one (Table 5-D column 7)
shows increased precision in 3 of 5 videos, and many show reduced training time, too.

We consider the variation of patch quantity and dimension to be a interesting area

Table 5-D: Precision results of dynamic patch sizes. Highlighted values indicate improvements in
training runtime performance and precision across the five videos. Timings are reported as
relative multipliers to the wall clock times of the baseline configuration to ease comparison.

Tm = 50 Tm = 50 Tm = 1/) Tm = [} :m ><:Q¢)
baseline 7, =1 0z X 0y 0z X 0y 0 X 0y 0 X 0y E qJ;tion 3(’5.3)

Equation (5.3) Equation (5.2) Equation (5.3) Equation (5.2) min(oy, 0,) — 12
Ox; Oy) =

Training
Video 1 1.0 0.1 1.1 1.2 0.1 0.0 0.1
Video 2 1.0 0.4 0.9 1.1 25 0.2 0.3
Video 3 1.0 1.0 1.0 1.1 2.6 0.3 0.7
Video 4 1.0 0.3 0.9 0.9 0.3 0.3 0.3
Video 5 1.0 0.2 0.9 0.9 0.2 0.2 0.2
Precision
Video1l = 100.0% 98.7% 100.0% 98.7% 98.7% 96.0% 98.7%
Video 2 98.9% 98.9% 99.5% 99.5% 99.5% 97.3% 99.5%
Video 3 67.9% 67.4% 58.5% 54.8% 64.2% 45.4% 58.5%
Video 4 54.4%  49.9% 58.8% 55.4% 58.4% 49.9% 58.4%
Video 5 57.1%  57.9% 57.9% 57.5% 58.3% 57.9% 58.3%
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and encourage further study of how our results can be generalised in detection and
classification tasks. However, in a very large corpus, it is impractical to apply forest
detection to every image and video frame, even with a fast and lightweight training
scheme. The detection process therefore does not scale sufficiently to provide for a user-
interactive online search, and we do not pursue this further in our study. Rather, use the

knowledge gained to inspire our next contribution.

5.2 Random Forests for a video database index

We use the knowledge from §5.1 that a Hough Forest can be trained effectively for
pattern detection with only a small amount of data to further investigate if a forest can
discriminate specific patterns that appear in only a few images of a larger set; a typical

needle-in-a-haystack search.

Our pattern detection method builds on preceding Hough Forest literature that have
demonstrated success in common computer vision tasks such as tracking [215] and action
recognition [216], as well as robotics [217], facial expression recognition [218], medical
imaging [219] and particularly object detection [92]. Object detection using forests gene-
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(a) A typical forest training and regression
schema. The forest is trained using random
patches from images depicting an object or
pattern and a regression is run on a query
image to detect the object or pattern.

(b) Our schema inverts the training data and
pattern image. The forest is trained using
random patches from frames of a video
sequence, and testing is run on a query
image containing the object or pattern to be
searched for. Using back-projection, one pass
of the pattern through the forest
simultaneously identifies the pattern in all
frames of the video.

Figure 5.5: A typical forest training and regression process (left) and our novel process for video

indexing (right).
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rally, such as in [92, 220, 221], is a supervised learning task based on training using
exemplar representations of an object class to be detected in unseen images. However,
query-by-example pattern detection in a corpus of images (video frames) does not afford
the luxury of prior knowledge of the pattern, and is an inverse problem; the search corpus
is known a priori, but the pattern to detect is not. To this end, we propose a departure
from established methods of forest training, and conceptually invert the use of the forest.
We consider the image domain to consist not of instances of an object class or variations
of the pattern to be detected, but the corpus to be searched. In our case, a forest’s image
domain is a set of frame images from a single video, or set of related images, within a
corpus. The change to conventional use of random forests is illustrated in Figure 5.5. The
new schema results in a very fast search of a large set of data whereby a single pass of a
small query image through the forest yields probabilistic hypotheses of pattern detection

in every image in the training data.

We use a collection of forests to build a complete index of our video and image
corpus. Each forest is trained using a single video (Figure 5.6) and can therefore be
considered a sub-index of the database relating exclusively to a single video. Each forest
F = {T,T2, T3, ..., Tn} consists of N trees where each tree 7; is independent of all
other trees for training and detection. Trees are trained per video, using keyframes for
both negative and positive training. Each forest therefore represents a pattern index for a
video, and the set of forests F' = {Fi, ..., F} is synonymous with a database index file
that can be used to search for patterns.

Forests are trained using a novel scheme to label training data as positive and negative
samples (§5.2.1) which reduces the unsupervised learning task to a supervised learning

problem without manual intervention (such as manually labelled training data) and
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Figure 5.6: The video database index is a collection of independent forests. Each row represents a
forest of five independent trees, trained using frames from single video sequence.
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removes the need for an explicit set of negative training images altogether. Training is
the most time-consuming function — consuming several hours of processing for each
video — and can be done as an offline activity for each video, independently of all other
videos in the index. Training each forest is therefore consistent with building a video
index in a more conventional retrieval system. A trained forest provides fast access to
the patterns contained within the video such that it is searchable on-demand for unseen

patterns of any size and dimension.

We draw inspiration from Razavi et al. and their use of back-projection to recover
information regarding the origins of the votes in Hough space to determine a bounding
box of an object in the image domain [222]. To perform a search, patches are extracted
from a query image (or sub-image defined by a query region) using a sliding window (a
common technique in object detection [223, 224]) and filtered through each tree of the
forest. Atarriving at a leaf node, all patches held at the leaf are used to back-project a
weighted vote into a high-dimensional accumulator space. The support of the leaf is used
to trace the contributing vote back to the source frames, and the vote is accumulate in
each of them (see §5.2.3 on page 100).

The independence of the components within a collection of forests is important for
large-scale searching, providing scalability and flexibility.

Scalability To support large video database search, the index must be highly scalable.
The independence of components in the forest collection means that algorithms to train
and detect can easily be paralleled to extend processing across many cores, processors
and machines as there is no dependence between individual trees. Pattern search is fast,
but is easily scalable to gain potential increases in performance — each forest can pass the
query image patches through all of its trees simultaneously and accumulate the results
as they complete.

Flexibility New videos can be added easily without need for any re-training of existing
forests. A new forest is simply created, trained with the new data and then added to the
collection. If a video is no longer required to be searched, then the relevant forest can
simply be removed from the collection and will no longer be included in future searches.
No re-training is necessary. Where available, the date of the video can be added as a
property of the forest to further increase performance and search results relevance. A
user can specify a time frame and forests containing videos from outside of the range

can easily be excluded from the search.
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5.2.1 Training

There is enormous redundancy in videos when treated simply as a collection of individual
frames [168]. To reduce data volumes, each forest is trained with keyframes of a video.
In line with other researchers, e.g. [225-227], we sample keyframes at a fixed interval
through each video. However rather than fixing a pre-defined constant interval, we

calculate the interval according to the length of the video,

(5.4)

# frames
—FF, 100
100

interval = min (

This dynamic selection of an interval ensures that enough frames are included in the
index without including too many keyframes so as to increase the size of the forest’s
trees and consequently increase processing time and storage requirements unreasonable.

Each tree is trained with a set of feature patch data S = SPUS®, where §% = {F;(J/")}
and §® = {P,(J*)} are sets of positive and negative training patches selected from a
random choice of feature channel J* from v (Equation (2.20), page 38).

Extracting patches

A large number of patches, NV, is selected, where N is derived from the dimensions of

the images w, h and the patch size wy, h, thus

wirh
where [-] is the integer ceiling. Such a large number of patches ensures dense placement
with a good coverage of the image area so that patterns from across each frame will be
contained in the index. Selection of the patch position is random in three dimensions;

(x,y,a) where z, y is the image plane co-ordinates and a is the feature channel.

Automatic patch labelling

To reduce the unsupervised learning problem to one of supervised learning, each patch is
algorithmically assigned a label for positive or negative training, ¢; € {®, ©}, determined
by a texture saliency metric based upon triangulation derived from [228]. Each training
image is padded to square dimensions and divided into two right-angled isosceles
triangles which are then recursively subdivided half way along the hypotenuse, through
the right-angle. Let M (z,y) be the measured intensity value at co-ordinate (z,y), and
given a triangle with vertices (z1,y1), (x2,y2), (23, y3),lety1 = M(z1,y1), 2 = M(x2, y2),
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Figure 5.7: Triangular decomposition (column 2) searching for high-saliency areas. Negative
training patches will be extracted from red regions in column 3, and positive training patches
will be extracted from the unmarked regions. A randomly offset grid (column 4) of 16 x 16
patches placed over the image are labelled green squares as positive training patch positions and
red are used as negative training positions (based on intersection of the mask in column 3).
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and v3 = M (z3,y3). A linear-interpolated approximation of the intensity of a point inside

the triangle is then defined

R(z,y) =m +alye — )+ B8y —m) (5.6)

where o and 5 are the barycentric coordinates, defined by

(z —z1)(ys —y1) — (y —y1) (23 — 1)
o= (5.7)
(2 —x1)(ys — y1) = (Y2 — y1) (3 — 1)
(@) —y) = (2 —y) (e —m1) 5.8)
(2 —21)(y3 — y1) — (42 — 1) (23 — 1) '
The accuracy of the approximation is given by comparison with M (z, y)
|M({I,‘,y>—R<(L‘,y)| <ee>0 (59)

if this condition is satisfied for every point (z, y) within the triangle, then the region is
marked as low-saliency, and recursion is terminated. Figure 5.7 shows example frames of
videos (column 1), the triangulation (column 2), labelling mask (column 3), and labelled
patches (column 4). Randomly positioned patches that overlap the red area are labelled

for negative training, ¢; = ©, and all others are labelled for positive training, ¢; = @®.

Node split functions

At each non-leaf node j in the tree, a split function binary test is performed on each
patch appearance by comparison of some offset 7 with § parameters h(v;6) — {0,1} to
determine whether to direct incoming patches to the left or right subtree, 1'S; or 1S},
such that S; = £S; U £S;. The goal of splitting the data is to increase the similarity of
patches within a node as the depth of the tree increases. Therefore a constraint is place
that £S; # () and ©S; # (). Candidate functions that do not satisfy this constraint are
discarded.

A very simple pixel pairwise-comparison test is used in [166], consisting two feature

values at locations p € R? and q € R? in feature channel q,

h(v;0) = 6= (p,q,a) (5.10)

0 ifI(p)<I(q)+T
1 otherwise

where I(-) is the pixel intensity at the given position. Such a simple test has the advantage

of being very fast to execute, but many disadvantages. The comparison of patches
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containing 256 values is reduced to the comparison of two randomly positioned pixels
within the patches. By using such little information from the patch and ignoring 254 of the
256 values, the comparison is sensitive to salt-and-pepper noise and rescale interpolation
artefacts. We choose a more complex method of patch comparison than that of Gall and
Lempitsky [92], and accept an inevitable increase in runtime complexity in return for a

more robust test function.

We use an entropy calculation of the grey-scale co-occurrence matrix [229] (GLCM) that is
naturally aligned with the optimisation goal of maximising the information gain achieved
in each subtree. The split node function is parameterised with ¢ consisting a patch
bounding box b = (p,q), p € R? and q € R? in feature channel q,

0 it H(C(b)) <
h(v: 6) :{ e (5.11)

1 otherwise

where C(b) is the GLCM matrix of the patch image at b in feature channel a, and H (-) is

the entropy,
256 256

H(X) == plxy)logp(zi) X =C(b) (5.12)

i=1j=1

Optimising the split function

A set of random split functions is generated, and the best is selected according to the
greatest information gain AF), i.e. the reduction in uncertainty achieved by splitting the
data at a node into child subsets [230]

h = argmax AFE (5.13)
1“8,
AE=H(S) - > TH( S) (5.14)
de{L,R} | |
5]
H(S)=— Z pelog(pe); pe = S| (5.15)
ce{®,0}

where H denotes class entropy and p. is the fraction of S; belonging to class c.

An exhaustive search for the maximum information gain is undefined in the context of
using randomised tests for the node split function, and some stop condition is required for
the search. The stop condition may be an absolute threshold of the minimum acceptable
measured gain, a relative value to counter diminishing returns on effort and/or time, or

simply a number of iterations (random tests) performed during a search.
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Choosing an absolute threshold is difficult; it must be high enough so as to determine
a good - or at least reasonable - split of data, and yet not so high that it is unachievable in a
reasonable processing time. In the worst case, a too-high threshold may cause a deadlock
of training where a suitable split function cannot be found to satisfy the condition of
the threshold. A relative threshold — one that determines a search to continue until a
measured gain is within a proportion of the gain at the parent node, can suffer similar
dangers of impossibility. Commonly, therefore, the number of iterations of a search are

limited to balance complexity and performance.

Most naively, a fixed number of iterations can be set in the algorithm, and at each
node said number of random tests are performed and the test that results in the greatest
information gain is selected. The published implementation' from [166] uses this techni-
que. Random trees are hierarchical, with node splits being independently optimised at
each level using data progressively more similar as the depth increases. Lepetit and Fua
observed that by optimising the split less well at the root node of each tree, the correlation
between trees is reduced [231]. Reflecting the hierarchical nature of trees, the authors

further suggest a variable iteration limit, n, based on the current level of the tree, d;

10, ifd=1 (rootnode)
n= (5.16)

100d, if otherwise

Randomising on tests is far more powerful than randomising on data [48], and we

randomise on both.

Information Gain The information gain AE at each node j is calculated from the
negative entropy H (-) and the cardinality | - | of the training sets at the node. Observe
that each subtree consists of two subsets of data, labelled for positive and negative
training. Let L; represent the left subtree L; = ©S; and L§ C L; be the subset for a
given class label, thus L = LS]‘?, ce{@,o}suchthat L; = L;B U L]@ and L;B N Lj@ = 0.
Lje may be the empty set. Where \L?\ < ¢, typically € = 5 in our application, there is
insignificant gain to be made by further division of a node. Further, let R; represents the
right subtree R; = £S; with all the same properties as L;. Expanding Equation (5.14)
and substituting Equation (5.15) for node j gives,

AE(S;) = H(Sp) + ‘51]' (] EsilH(E8;) +| st\H(st)) (5.17)

"http://www.iai.uni-bonn.de/~gall/projects/houghforest/houghforest.html
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where S is the full training data set. Given Sy = S§’ U S§, then H(Sp) = log1 = 0,

AE(S;) = ﬁ (\ Lglm(Fs;) + \st\H(RSj)) (5.18)

5.2.2 Reflection and Rotation Invariance

In Chapter 3, we discussed the importance of invariance to pattern appearances, specifi-
cally with respect to reflection invariance which is currently ignored in contemporary lite-
rature. Our choice of node split function using the GLCM entropy is a deliberate conside-
ration of this requirement, and achieves invariance to rotation in 90°, 180° and 270° [232],

and in reflection of the pattern.

The GLCM is a statistical method of examining second-order texture that considers
the spatial relationship of pixels. GLCM texture is a two-dimensional histogram in which
the relative frequencies P(3, j, d, ) of two pixels are recorded. The pixels are separated

by distance d, occur in a direction specified by the angle 2 and have grey level intensities

Table 5-E: Examples of GLCM Entropy of the Nike logo seen in Figure 3.1. We show the GLCM
Entropy value of the extracted logo pattern as it appears (“Original”), and in reflection and
rotation, with the value relative to the original.

| Pattern GLCM Entropy |  Pattern GLCM Entropy

Original . —53867.1 —75476.5

Mirrored - —53867.1 —T75476.5
[

Rotated 90° —53 867.1 —75476.5

Rotated 180° . —53 867.1 —75476.5

Rotated 270° —53867.1 —75476.5
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iand j [233]. Weset d = 1,9 € {0, 90, 180, 270}, tallying the co-occurrence of each pixel
intensity and its neighbour in each direction up, down, left and right. The co-occurrence
matrix is therefore invariant to rotation and reflection. We then calculate the entropy of
the matrix using Equation (5.12), which produces a rotation- and reflection-invariant

measure of randomness in the image.

We demonstrate the invariance in Table 5-E with the entire pattern, although in the
forest trees, the GLCM entropy is used with individual patches of 16 x 16 pixels. The
Original image in row 1 shows the pattern extracted from two original frames, as we
described in Figure 3.1 on page 42. Row 2 shows the reflected image and Rows 3 — 5 show
the original image rotated by multiples of 90°. For each of the 10 images, the GLCM
Entropy is shown, and the entropy is equal for all variations of each original image. The
consistency in these figures demonstrate the invariance to reflection and rotation such
that the patches extracted from any of the variations will group into the same tree leaf,

and yield a positive vote.

5.2.3 Pattern Detection

The trees of a trained forest represent the codebook of visual appearance, where each
leaf node contains a set of patches!, and a probability for those patches representing a
foreground patch; positive classification, c;, = ©. During detection, a sliding window of
16 x 16 is passed over the query image, extracting patches at each position. The patch is
passed through each tree of the forest, and a weighted vote is calculated for each patch;

Py
w =S (5.19)
l; 1571 - |£]

where py is the probability that a patch belongs to the foreground, shown in Equa-
tion (2.21) on page 39, and L is the set of leaves at which the patch arrives within each
tree, after being passed through the tree from the root node.

Votes w; from the trees are back-propagated to the original position of the source
patch using a Hough accumulation space, #. H is a high dimensional space of pat-
tern hypotheses h(c,r, f, o), for class ¢ € {®, ©}, originating from a patch at position
(bounding box) r = (z1, y1, z2, y2), in frame f of the training dataset at scale 0. For each
patch in the leaf, votes are cast into H{ using parameters (¢ = &, z, y, f, o). Rather than a
single vote, multiple votes are cast over the original patch area, r. For example, if a patch
atr = (150,100,165,115) in frame 6 at scale 1.0 has w = 0.2, then every 2D position

! patches with similar texture properties, independent of the feature channel, will share a leaf node, for
example a patch from channel a and a patch from channel b that have similar GLCM entropies
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(150, 100, 6,1.0) — (165, 115, 6, 1.0) is incremented by 0.2, therefore casting 16 x 16 = 256
votes. This is repeated for every patch from the sliding-window, accumulating a high-
dimensional voting landscape of pattern position likelihoods.

Finding Hypotheses

Given the automatic labelling has produced ¢ = 1 for foreground patches of high saliency,
the subspace Py C H at0 = (c = @, f = f*,0 = 0*) represents likelihoods of pattern
occurrences in each frame f at scale o (Figure 5.8). All subspaces Py, € H within the
constraints of § can then be assessed for peak values of maximum likelihood of pattern
occurrences in each frame f at each scale 0. Common approaches that search for peak
likelihoods smooth the voting landscape with a large Gaussian kernel (perhaps 5 x 5)
and identify the location of the maximum value as a detection hit. As our votes are cast
in 16 x 16 patch-size regions, we take a different approach. No Gaussian smoothing is
required, and we find a region the size of the query image at scale o with the largest
score consisting the sum of votes contained with the region.

Relative hypothesis scoring

Each image hypothesis score is independent. To produce a relative ranking for the pattern
hypotheses across all images, we calculate a Standardised score, z, such that the absolute
value of z represents the distance between the independent score x and the population

Figure 5.8: Back-projection of votes from the high-dimension voting space to the original video
frames. Left, the subspace Py C H at0 = (¢ = ®, f = f*,0 = 0*) represents likelihoods of
pattern occurrences in each frame f at scale . Right, a peak is found in the votes that correctly
identifies the pattern being searched.
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mean 4 in units of the standard deviation o;

=2k (5.20)

g

where the population is the set of strongest hypothesis scores from each image in the
forest’s dataset.

The Standard scores can be ordered in descending numerical order to produce a
ranking result of pattern appearances in the video or image set. A further extension ena-
bles the standardisation to inter-forest ranking, providing corpus-wide relative ranking.
Corpus-wide relative ranking is somewhat outside the scope of this thesis. While we ine-
vitably consider ranking to some degree for use in the precision/recall analysis (§5.2.5),
we recognise the need for further research to improve ranking results (§6.1.1), and we
establish our method with good detection precision results.

Eliminating frame dimension bias

Votes are accumulated from random patches in the image space (§2.4.2) and the quantity
of patches is a function of the constant dimension of images in the forest’s dataset (§5.2.1).
The dynamic calculation of the number of patches relative to the size of the image
(Equation (5.5)) ensures that random patch placement provides good coverage over the
image, but inadvertently introduces a bias. Larger images contain a greater number of
patches, which can increase the strength of the accumulated vote not because the pattern
is more likely, but because there are more votes to be cast from patches that overlap the
pattern. This bias is, however, easily removed by dividing the unstandardised hypothesis

score by the area (number of pixels) of the images in the dataset 2’ = .

5.2.4 Evaluation

We evaluate our method on a variety of videos that are representative of footage from
fixed-camera street-scene CCTV cameras prevalent in the UK, Table 5-F. Ground truth
was created by manual inspection, defining a tight bounding-box around the pattern
in each keyframe in which it appeared. Ground truth was then verified by at least one

other member of our research team.

Feature matching accuracy is typically measured using Precision-Recall [130]. Pre-
cision is the ability of the system to retrieve only relevant documents and Recall is the
ability of the system to retrieve all relevant documents [234]. Precision is also known as
Confidence or True Positive Accuracy, and Recall is also known as Sensitivity or True Positive
Rate [235]. Receiver Operator Characteristic (ROC) curves are commonly used to present
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results for binary decision problems, but can present an overly optimistic view of an
algorithm’s performance if there is a large skew in the class distribution [236], which can
be misleading [237]. Precision-Recall (PR) curves [238] give a more informative picture

of an algorithm’s performance [236], and we therefore use these in our assessment.

Two precision and recall evaluations are used; for pattern detection and for retrieval.
In the case of pattern detection — our primary focus in this thesis — accuracy is assessed
by an overlap of bounding boxes of the detected region, A4, and the ground truth region,

Ay, thus
AgN Agt

)
Agt

AgN Agt

Y (5.21)

recall = precision =

In the case of retrieval, precision and recall are calculated with respect to True Posi-
tive (TP), True Negative (FN), and False Positive (FP) results ranked in the Top n results
where n € {5, 10, 20, 50, 100, 1000, 2000, 3000, 4000, 5000, 6000, 6554 } in a dataset of 6554
keyframe images. Defining Y number of GT frames to be the set of frames that are included
in the ground truth as containing a given pattern, then

TP = # observed GT frames in the top n
FP=n—-TP (5.22)
FN =min(n,Y) - TP

and
TP TP

recall = ———— precision = TP+ FP

TP+ FN’ (23)

Videos from the wild

The videos in our dataset were provided to our research group by the Metropolitan
Police in London, and suffer all of the impurities that we described in our introduction
(81.1). The videos contain images of very busy street scenes (Figure 5.9) from which
a number of query patterns can be selected. We assess our detection method using a
baseline of 16 query patterns shown in Figure 5.10, with a description and key provided
in Table 5-G and a detailed cross-reference in Table 5-F. The query patterns have been
selected as a representative set of distinctive patterns that appear in a varying number
of videos, which is designed to test pattern detection and retrieval accuracies in recall
and precision. The videos are challenging for detection tasks for a number of reasons
as we've discussed, including the variation of scale and occlusions that occur in nature
scenes. This is effectively demonstrated in Table 5-G where we show, for each pattern, the
dimensions of the defined ground truth and the minimum and maximum size (in pixel

area) at which the pattern is observed along with the range of the observed pattern scales.
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Figure 5.9: Representative thumbnails of videos in the dataset

Figure 5.10: Query patterns A-N (see Table 5-G for descriptions) for which ground truth
annotations are provided. The images are shown in proportional size to each other
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Table 5-G: Key to the query patterns (Figure 5.10) in the dataset. See Table 5-F for detailed
video attributes.
Key Pattern Query Image  Smallest Largest Scale
Size (min area) (max area) range
A Green check shirt 70 x 80 11 x 22 87 x 170  0.04-2.64
B Red and blue bag 76 x 88 18 x 31 94 x 139 0.08-1.95
C  Karrimor logo 39 x 36 5x15 86 x63  0.05-3.81
D  Grey Rhino hoodie 58 x 48 24 x 13 70x59  0.11-1.48
E  Blue]D sports bag 56 x 67 10 x 37 96 x 80  0.11-2.05
F  Blue Adidas sports bag 121 x 206 19 x 20 210 x 349  0.02-2.94
G  Black hoodie with orange zip 63 x 217 8 x 22 83 x 272 0.01-1.65
H  Tescosign 56 x 138 11 x 109 57 x 147  0.16-1.08
I Empire theatre sign 67 x 39 24 x 23 70x43 0.21-1.15
J Orange SuperDry (very small) 33 x29 10 x 10 35x31 0.10-1.13
K Muscle gym logo 130 x 117 19 x 10 126 x 136 0.01-1.13
L  White Adidas logo (very small) 24 x 28 8 x 8 33x46  0.10-2.28
M  CATlogo 31 x 23 8§ x 14 49 x 33  0.16-2.27
N  Nike logo (also seen in reverse) 72 X 67 16 x 17 109 x 78  0.06 —1.76

We draw attention to some specific complexities contained within the dataset;

the two blue sports bags, patterns E and F, appear identical apart from the logo on the

bag; one is a white JD Sports logo and the other is a white Adidas logo. There is a

high chance of confusion in detecting one bag over the other

the dataset contains multiple copies of the same logo in different colour and/or with

different coloured backgrounds, which can confuse algorithms in identifying the

“correct” instance

some videos are (partial) subsets of another; these are included to test the

effectiveness of indexing short and long videos

some query patterns are extremely small (e.g. pattern K is 67 x 39 pixels) which

reduces the effectiveness of many detection and retrieval algorithms

the Nike logo (pattern N) appears in reverse in some sections of video, which can be

invisible to many detection algorithms

5.2.5 Results

Precision/Recall curves for the evaluations are shown in Figure 5.11 on the following

pages. Pattern detection is the primary focus of the thesis, and we measure the accuracy

of our method with respect to pattern detection (red curve) using precision and recall

defined in Equation (5.21) on page 104. For completeness, we also discuss retrieval in

two scales; video retrieval (blue curve) measures the retrieval accuracy ranking each of the
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Figure 5.11a: Precision/Recall curves for search patterns A-F in our video corpus
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Figure 5.11b: Precision/Recall curves for search patterns G-L in our video corpus
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Figure 5.11: Precision/Recall curves for search patterns in our video corpus

forty three videos based on the likelihood of them containing the pattern in any frame,
and more challenging, frame retrieval ( curve) measures the retrieval accuracy of
individual frames based on their rank position in the 6, 117 frame images. Each chart
represents results for a single pattern (Table 5-G, Figure 5.10), and the area under the curve
(AUC) measurement is calculated and shown in the legend. For patterns B, H, I and N,

the video retrieval curve has only single data point, and therefore no AUC.

Pattern C has the largest AUC at 0.628 with 200 frame images in the index that contain
the pattern, and ranks fourth highest in video retrieval and frame retrieval. The best
retrieval result is seen for pattern G, with a video retrieval AUC of 0.408, but a frame
retrieval AUC of only 0.055 which is matched by pattern D. This can be explained because
pattern G appears in 11 of the 43 videos. Pattern N has only a single data point for video
retrieval, however its position is highest on all the precision/recall charts with precision
of 0.5 at recall 1.

5.2.6 Visual inspection of the pattern detection

While precision/recall curves show a full assessment of the method’s accuracy, it is useful
to inspect some examples closer to understand the effectiveness of the feature detection.
In Figure 5.12 we illustrate a typical example of matching SIFT features from a query
image to frames from our database . In Figure 5.12a, 16 features are accurately matched
to their corresponding position in the frame from which the query image is extracted.
In a different scene containing a clear shot of the shirt (query pattern) there is only one
correspondence found (Figure 5.12b). In a third frame (Figure 5.12c), with a lot of visual
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A ) 3

(d)

Figure 5.12: Examples of matching SIFT features in a query region to low quality images; (a) 16
features are correctly matched to the original query frame; (b) a single feature match from the
query image to a subsequent frame of the video; (c) a single false match in a low contrast frame,
and (d) a single false match in the presence of significant occlusion

Figure 5.13: Visual comparison of pattern detection results from the same query as Figure 5.12,
using the Hough-forest-based pattern index method described in this chapter. Green rectangles
are ground truth, yellow rectangles show the detected area and white rectangles show
lower-ranked detection positions, eliminated in preference for the yellow.
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interference, a correspondence is found to an incorrect position, and no features in the
correct position are identified. Finally, Figure 5.12d shows a frame with ~ 75% occlusion
of the pattern, and that also yields a single correspondence to an incorrect position. The
same frames of videos are shown in Figure 5.13 with pattern detections shown using our
method. The green rectangles show the ground truth bounding box of the pattern and
the yellow rectangles show the detected area. The less dominant white rectangles show
lower-ranked detection positions which were eliminated in preference for the yellow. In
all example frames, the detected region heavily overlaps the ground truth and is classified
as a positive detection. Figure 5.13c and Figure 5.13d are particularly noteworthy not
only because both frames generated false positive correspondence using SIFT feature
matching, but because of the cause of failure in matching SIFT descriptors. These frames
demonstrate the ability of our method to detect patterns in very low contrast images and

in the presence of very heavy occlusions.

5.2.7 Complexity

The runtime complexity of our systems is measure on a desktop PC with 32Gb RAM
and an Intel® Core™ i7-4790 processor running at 3.6GHz with 8 logical processors on
4 cores. Forests were trained with 30 trees, each with a maximum depth of 30, thus a
potential tree size of 23° (=~ 10%) nodes. Our implementation® is multi-threaded to make
maximum utilisation of the available CPU resource; in training each tree is trained using
a CPU core and in detection, 8 sets of trees vote into independent accumulators and
the accumulators are summed when all voting is complete (this follows the well-known

map-reduce idiom of functional programming and popularised in [239]).

Training complexity The runtime complexity of building the index is not critical as it is
not interacting with a user, but is important for scaling a solution. Building a search index
is a one-off task to summarise the corpus into an easily searchable form, and is performed
offline. The complexity of training using the videos in our test dataset ranged from 12 to
25 minutes per tree. Forests of 30 trees therefore required between 360 and 750 minutes
of training time, which can be run in parallel depending of the machine capacity. In our
environment, we have 8 CPU cores, and therefore train 8 trees simultaneously, requiring
an elapsed time of 45 to 94 minutes per forest. The search index is built independently
from user access to the system and can be made available — brought online — when the
process completes. New videos can be added to the corpus at any time by training a new
forest 7' independently of the working system, and adding it to F" at any time without
any impact to existing trained forests. Similarly, videos can be deleted immediately from

"https://github.com/cdmh/hough_forests/tree/track_contributors
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Table 5-H: Detection complexity for the patterns in Figure 5.10, Table 5-G (page 106)

Pattern  Query pattern Number of Average
size (pixels) patches  Detection time
A 70 x 80 3575 5.143 secs
B 76 x 88 4453 6.629 secs
C 39 x 36 504 2.085 secs
D 58 x 48 1419 3.087 secs
E 56 x 67 2132 3.661 secs
F 121 x 206 20 246 20.819 secs
G 63 x 217 9 696 14.495 secs
H 56 x 138 5043 6.601 secs
I 67 x 39 1248 2.729 secs
J 33 x 29 252 1.778 secs
K 130 x 117 11730 13.334 secs
L 24 x 28 117 1.761 secs
M 31 x 23 128 1.680 secs
N 72 x 67 2964 4.642 secs

the corpus simply by removing its forest.

Detection complexity is dependent on the size of forest and the size of the query
pattern. Average times per forest are shown in Table 5-H. The smallest pattern, L, is
24 x 28 pixels and is detected in 1.761 seconds. The largest pattern, F, is 121 x 206 pixels
and takes 20.819 seconds. The difference is explained because the sliding window passed
over the query pattern creates a far greater number of patches which are filtered through
the trees of the forest to cast votes. The query patterns contain 672 and 24, 926 pixels,
respectively, yielding (24 — 15)(28 — 15) = 117 and (121 — 15)(206 — 15) = 20 246 patches.
The bottleneck in our current implementation is the GLCM entropy calculation, which
takes 94% of the CPU time for detection.

5.2.8 Scalability

To reduce data volumes, each forest is trained using data extracted from keyframes
sampled from the videos (§5.2.1). Analysis of the most appropriate method of keyframe
detection for pattern detection is an open research question beyond the scope of this
thesis (§6.1.2), however the number of frames in the index directly affect the training time,
and to a lesser extent the detection time, and is therefore a critical factor in scalability.

The method can be easily parallelised and the complexity can be easily handled with
state-of-the-art computational tools and hardware. Each forest indexes a separate video
and is independent of all other forests in off-line training and on-line user interaction.
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As such, the limit of scalability is in the availability of hardware and the associated costs,
rather than any physical limit.

5.2.9 Multi-scale detection

As people and objects move around a scene, or as a camera operator zooms in or out,
the pattern for which we are searching can change size significantly, as was evident in
Table 5-G. Detecting a pattern from a given example without consideration for multiple
scales will perform much worse for a pattern of a dissimilar size to the query image.
Consequently, multi-scale detection is performed to increase the likelihood of successful
detection. A popular approach uniformly rescales the query image to different sizes,
and multiple detections are performed, one at each scale. In each keyframe, the scale
producing the strongest response (normalised with the scaled query frame height x width)
can be selected as the pattern hypothesis.

This multi-scale detection technique is commonplace but is not without its fragility.
In rescaling the query image, blurring and other artefacts can be introduced, which
affects pixel values. In up-scaling, missing information is filled in through various
means of interpolation, and in downscaling, pixel values can be altered to improve
visual appearance at the expense of distortion, which can affect our algorithm. The
pixel pairwise-comparison from [92] is sensitive to pixel value interference such as that
introduced by rescaling for multi-scale detection, and although the nature of random
forests is that they are insensitive to noise through the accumulation of many thousands
of votes from uncorrelated trees, this co-occurrence sensitivity is undesirable. Our use of
the GLCM entropy of a patch in the split node helps with multi-scale detection because
the entropy is minimally affected by relative effect of blurring during rescaling.

5.2.10 Multi-pattern search

Each forest is trained with keyframes of a video without regard of a query pattern. Conse-
quently, a single forest forms a generic index that can be used to search for any number of
patterns. This is demonstrated in Figure 5.14 where one forest is used to locate an adidas
logo and a marble hill logo on different clothing. No additional training was performed,
and a single forest can accurately detect the two distinct patterns shown (yellow boxes).

5.3 Conclusion

This chapter investigated the feasibility of training random decision forests for pattern
detection using very few samples, and described a new technique for applying an esta-
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Figure 5.14: Result of searching for multiple patterns in one video using a single forest. Left, the
adidas logo is correctly found, and Right, the marble hill logo is detected, shown with a
yellow rectangle.

blished framework of randomised Hough Forests to large-scale pattern detection. By
re-thinking how a forest is trained and used in pattern detection, we have demonstrated
the scalability and performance of pattern detection on a large scale.

Training the forest effectively is key to the performance of the method, and inevitably
remains somewhat of an open research area with respect to the selection of keyframe
images. This, and other future work, is discussed in more detail in §6.1. The use of
negative patches from low-contrast areas of the image to train the forest works well
in our experiments to date and has a good basis in theory. Experience from textual
retrieval systems suggest this may not always hold, and perhaps is another area for future

investigation.

Studies of [textual] retrieval effectiveness show that all terms should be indexed
...any visible component of a page might reasonably be used as a query term ... Even
stopwords — which are of questionable value for bag-of-words queries — have an

important role in phrase queries [135].

Relating this experience to the image search domain may suggest that low-contrast, and
even background patches, should be included in the searchable forest and therefore used

as positive patches for training.
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Conclusion

Pattern Detection has been a well-studied area in computer vision for many years, and yet
current systems fall short in their capability to succeed in robust and consistent detection
of patterns. This is particularly the case in low quality images, such as those studied in
this thesis. We have observed the causes of the low quality that result from video recorded
in natural environments (§1.1), often with low-grade and poorly maintained equipment,
and we have described the practical issues of acquisition and re-capturing (§1.1.4) from
the experience of the Metropolitan Police’s VIIDO unit dealing with CCTV videos.

It is common knowledge that subjects in CCTV images who know they are being
recorded try to disguise their identity and appearance. We described a particular example
in Figure 3.1 which identified a need for algorithms to be effective in detecting patterns
not only in their given orientation, but also in the mirror reflected orientation. To that
end, Chapter 3 looked at the robustness of contemporary methods regarding reflection
invariance. For the first time in the literature we analysed popular low-level feature
detectors for consistency in images in either mirrored orientation. Assessment of ten
popular image feature detectors showed that variance exists to some extent in most
detectors (Table 3-F on page 57), although some are implementation flaws — for example,
numerical rounding precision — and some are fundamental in the design of the detector.
Our findings conclude that FAST and CenSurE detectors are the only two that are perfectly
invariant. GFIT and the Harris Corner detector are invariant after feature matching and
filtering algorithms are applied to find the correct correspondences in uneven sized sets
of detected interest points. BRISK, ORB, SIFT and SURF cannot be considered invariant
to bilateral symmetry, and SIFT is the least invariant of all the detectors that we have
experimented with. Region-based detectors MSER and MSCR were assessed based on

a common approach of defining a keypoint at the centre of the detected region. In
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these cases, MSER is somewhat invariant, and MSCR is largely invariant, indicating
that colour plays an important role in the reflection invariance of the maximally stable
region algorithm. In modern research projects of scene classification [193, 197], object
detection [193] and age-guessing [198], we demonstrated that when systems are presented
with images and their horizontal reflections, they have produced results that are different
for each reflected image orientation. In depth analysis of these systems and the cause of
their variance is, however, outside the scope of this thesis.

Low level features are a fundamental working unit for most computer vision tasks,
and matching features from two or more images is commonplace for many tasks inclu-
ding detection and retrieval. In Chapter 4 our research investigated improvements in
corresponding features in low-quality images. Feature detectors work using the image
texture, and are therefore sensitive variances caused by blurring and illumination chan-
ges. Under different image conditions, the features are less well defined and the feature
detector can highlight different interest points. When this occurs, correspondence bet-
ween feature descriptors extracted from the interest points is very difficult. Our novel
blur-sensitive feature detection technique employed an adaptive approach to discovering
matching features in pairs of images and can be simply extended to longer sequences of
frame images by considering each consecutive pair in the sequence in turn and matching
the blur parameters in each pair. Further, we used the texture and colour attributes
in a composite descriptor with a unique distance calculation for feature matching that

combined the attributes to improve matching effectiveness.

Our pattern detection scheme in Chapter 5 is robust to reflection invariance (§5.2.2),
motivated by our findings in Chapter 3. We described a novel method of pattern indexing
for large-scale video search using random forests in place of conventional tf-idf reverse
indexes. By inverting the use of the forest to encode the patterns contained within
video keyframes rather than the more usual model trained to encode representations of
an a priori pattern or object, we demonstrated using a real-world work-flow of query-
by-example, searching for distinctive patterns in videos from the wild. The automatic
labelling of image training data from the same video is convenient for discovering negative
test data and filtering low saliency regions of the image from the index. The node split
function described results in a search query that is invariant to mirror reflection and
rotation through 90° angles. The achieved performance shows results that are useful
in a practical sense, and capable of detecting even small or occluded patterns in poor

quality videos.
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6.1 Future work

In respect of the pattern indexing presented in Chapter 5, there are a number of areas
that interesting research exists to improve the performance in detection and retrieval.
We take an opportunity to outline here a few ideas from where we think the greatest

gains may come.

6.1.1 Retrieval & ranking

As we stated in §5.2.3 (page 102), “[clorpus-wide relative ranking is somewhat outside the
scope of this thesis.” If our method is to be usable in a content-based retrieval system,
then retrieval and ranking need to be addressed. Other improvements discussed in this
chapter should also improve retrieval performance, and further research is required to
elevate it to an acceptable level for end-users.

Query Expansion Identifying objects in videos using object-based features that use
dominant colour, texture, size, etc. is difficult and time-consuming [155]. Textual infor-
mation retrieval system use Query Expansion [234] to improve recall rates by expanding
a search term which may consist of only one or two words to find related and relevant
documents on the search subject. Chum et al. successfully used a query expansion techni-
que [137, 244] to improve the recall rate from that achieved with a descriptor quantisation
method, which can restrict the search horizon too much. Others have experimented with
query expansion in multimedia retrieval [245, 246] and search re-ranking to improve the
precision of search results [247]. It seems reasonable that a query expansion method

could be applied in our system to improve and re-rank results for greater accuracy.

6.1.2 Keyframe selection

How to select the most effective keyframes for our method is an open research question,
and more generally an active research area in the literature, e.g. [240, 241]. An asses-
sment of the best method is local to the problem domain, and commonly addressed in
related areas such as video summarisation [157, 242, 243]. In §5.2.1, consistent with other
researchers [225-227], we sampled keyframes at a fixed interval through each video, but
dynamically calculated the frame interval based on a formulation designed to capture a
reasonable quantity of data while preventing an overload of keyframes on long videos.
While this method produces an acceptable level of frames that contained patterns that
we subsequent searched for, we recognise that there is room for further development to
improve the technique. We need to balance the quantity of resulting keyframes with a
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representative sample of the video. Our goal is to build an index for subsequent search
for patterns of distinct visual appearance. Rather than sampling at fixed intervals, we

pose a research question for further exploration:

Can the precision of our method be improved by using the local or global entropy
properties to select keyframes from each video?

If keyframes are better selected to increase the likelihood of the pattern occurring,
then the accuracy will be improved. More occurrences of the pattern in the tree will
yield a stronger accumulated vote and therefore more accurate detection precision. More
frames in the index containing the pattern — and perhaps more importantly, fewer frames
not containing the pattern — will improve the retrieval recall, as we saw with pattern G in
Figure 5.11 (blue curve) on page 109. Both these improvements are resulting in reduced
noise and increasing distinct pattern inclusion in the index. This was the motivation
behind our pattern labelling technique in §5.2.1 (page 94), and it seems a reasonable
choice to use a similar measure in the selection of keyframes.

6.1.3 Feature Channels

We have seen throughout this thesis that the choice of image features greatly affects
the performance of computer vision algorithms. This is no less true for the feature
channels (§2.1.2) used in the pattern detection forests of Chapter 5 than those assessed
for reflection invariance in §3.2 of Chapter 3.

Investigation of the choice of feature channels fell outside of the scope of our study,
and consequently we chose to use the feature channels described by the original authors
of the Hough Forests, Gall et al. [166]. However, some cursory experiments have showed
that some feature channels contribute more votes into the ground truth area than others
(see Figure 6.1; the channels are numbered 0 — 31 and ordered as described in §2.4.2).
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Figure 6.1: Distribution of feature channel contributions to correct votes in a sample of pattern
searches
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A small collection of pattern searches was run using a random selection of feature
channel (per our method in Chapter 5), shown in §2.4.2 as Rnd. The same collection
of searches was then repeated, limiting votes from each of the 32 feature channels in
turn. The average precision of each collection is plotted in the figure. It is clear that
some channels are more contributory than others in casting accurate votes for the ground
truth area, which suggests that careful selection of the set of feature channels could
improve the overall accuracy. Note, however, that the random selection out-performs all
single-channel voting. It seems reasonable random selection of channels from a set of
channels that each perform to greater accuracy than the current set would combine to an

overall superior accuracy.

6.1.4 Online growth of trained random trees

Random forest methods, including ours, are typically trained to a fixed dimension of num-
ber of trees and the maximum depth of the forest. The choice of each of these parameters,
along with others, affect the performance, complexity and memory requirements of the
system, as we investigated in §5.1. Online random forests have been explored [248, 249],
growing the trees further while the system is in use, rather than limiting training to a
pre-user offline activity. On-the-fly learning offers a way to overcome the ’closed world’
problem in computer vision, where object category recognition systems are restricted to
only these pre-defined categories [250]. We have experimented with some online training
in combination with our described method, but the the runtime complexity is currently
too high to make a worthwhile evaluation.

We believe that a hybrid system can perform well; we suggest that each pattern search
begins with the forests trained as described in Chapter 5, and with each patch extracted
from the query image, the tree leaves are further split based on the GLCM entropy of
the pattern’s patch. Votes are then cast from these new leaves, which provide a more
discriminative vote for the specific pattern being search for.

To accommodate the online training, trees are trained offline to a shallower depth,
keeping the leaves with larger numbers of patches. Leaf nodes are then subdivided using
the online patches extracted from the search pattern. This reduction in tree depth reduces
the complexity of the offline training, speeding up the training process. Conversely, the
online detection process is significantly increased, and in the current implementation
yields the system inappropriate for online searching. Some accuracy performance success
has been observed in cursory experiments, however, and the hybrid offline/online trai-

ning scheme could be very useful if the complexity is overcome.
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Consummatum est

The research contained in this thesis will, I hope, live on and inspire future work in some
of the areas described, and many more besides. As Charles Darwin wrote in 1869, towards
the end of his life, in a letter to J.D. Hooker — botanists, explorer, founder of geographi-
cal botany, and Darwin’s closest friend — “well it is a beginning, and that is something.”!

|

"http://harvardmagazine.com/2005/11/intelligent-evolution.html
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