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Abstract

The dose regimen of a drug gives important information about the dose sizes, dose

frequency and the duration of treatment. Optimisation of dose regimens is critical to

ensure therapeutic success of the drug and to minimise its possible adverse effects.

The central theme of this thesis is the Efficient Dosing (ED) algorithm - a computation

algorithm developed by us for optimisation of dose regimens. In this thesis, we have

attempted to develop a quantitative framework for measuring the efficiency of a dose

regimen for specified criteria and computing the most efficient dose regimen using the

ED algorithm. The criteria considered by us seek to prevent over- and under-exposure

to the drug. For example, one of the criteria is to maintain the drug’s concentration

around a desired target level. Another criterion is to maintain the concentration

within a therapeutic range or window. The ED algorithm and its various extensions

are programmed in MATLAB R©. Some distinguishing features of our methods are:

mathematical explicitness in the optimisation process for a general objective function,

creation of a theoretical base to draw comparisons among competing dose regimens,

adaptability to any drug for which the PK model is known, and other computational

features. We develop the algorithm further to compute the optimal ratio of two

partner drugs in a fixed dose combination unit and the efficient dose regimens. In

clinical trials, the parameters of the PK model followed by the drug are often unknown.

We develop a methodology to apply our algorithm in an adaptive setting which enables

estimation of the parameters while optimising the dose regimens for the typical subject

in each cohort. A potential application of the ED algorithm for individualisation of

dose regimens is discussed. We also discuss an application for computation of efficient

dose regimens for obliteration of a pre-specified viral load.
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Chapter 1

Introduction

Paracelsus (1493 - 1546) made this timeless maxim on toxicology: “All things are

poison and nothing is without poison; only the dose makes a thing not a poison.”

For most illnesses, multiple doses of the therapy are prescribed for a successful

treatment. Generally, with an increase in the drug’s concentration in the blood, the

efficacy and the magnitude of adverse effects also increase. The concentration should

therefore be maintained in a range that minimises any under- and overexposure to the

drug. The science of pharmacokinetics explains that the concentration of the drug in

the blood depends on, among other factors, the associated dose regimen, that is on

various aspects of administration of the drug to the patient.

Some of the factors that need to be considered for designing a dose regimen are:

• the dose sizes,

• number of doses to be administered,

• the duration of the treatment,

• the time interval between two successive doses or the dose frequency,

• the combination ratio(s) in case multiple drugs are to be administered together

in a single dosing unit,

• the route of administration of the drug,

• whether a single dose regimen would suffice for the entire population of patients

or different dose regimens need to be designed for subpopulations.

The first five factors are quantitative variables while the other two are qualitative.
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The dose size is the amount of the drug that is administered at a time. The time

for which a subject is exposed to the drug is called the duration of treatment. For

drugs which are quickly eliminated from the body, the duration could be the time

interval between the first and the last dose. For drugs which are retained longer in

the body, the exposure continues even after the last dose has been administered. The

dose frequency, like the dose size, is an important variable as the concentration levels

of the drug in blood depend on it and thus, the dose frequency affects the therapeutic

outcome.

Fixed dose combinations consist of two (or more) drugs that are constrained to be

administered together at the same times and in the same ratio, with the help of a dos-

ing unit such as a tablet or a capsule. According to WHO (2005), combination units

have several advantages such as lower risk of side effects, decreased manufacturing

cost, higher patient adherence and simpler logistics of distribution. Such combina-

tions are particularly useful for treatment of HIV/AIDS, malaria, tuberculosis and

other serious infectious diseases. Determination of the optimal ratio for combining

the partner drugs is, therefore, a crucial problem.

There are various channels to introduce a drug into the body. Some of the common

routes are: gastrointestinal which includes oral and rectal administration, intravenous

which involves administration into a vein, intramuscular and nasal. Each route has its

advantages and drawbacks and the properties of the drug, feasibility, cost and patient

convenience are some of the factors which determine the most appropriate route. For

instance, while intravenous administration of the drug can introduce the drug quickly

into the blood stream by bypassing the gastrointestinal tract, it is not as convenient

as an oral administration which can also be had at home.

The design of the dose regimen will affect the resultant concentration of the drug in

the blood which, in turn, will affect the treatment outcome. For example, to optimise

the therapeutic levels of vitamin D from supplementation, Chao et al. (2013) found

that the dose size, frequency and the duration of supplementation are important

factors.

Once a candidate drug has been clinically proven to have a therapeutic effect

and an acceptable level of safety, the design of the dose regimen is an important

problem. An ideal dose regimen achieves the twin objectives of patient safety and

therapeutic efficacy. Dose regimen optimisation is about choosing the optimal values

of variables such as dose sizes, dose frequencies, combination ratio (if applicable)

and the treatment duration. The objective of optimisation is generally to prevent

over- and underexposure to the drug. This optimisation can be done at two levels -

population level and patient level.
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Since dose regimens are usually prescribed for a population or subpopulations of

patients, they are designed for the typical patient in the target group. If a concentra-

tion value at which the drug has the best balance of efficacy and toxicity is known,

then the dose regimen should be designed in such a way that the concentration in the

blood plasma is maintained as close as possible to this value, throughout the duration

of treatment. For some drugs, it might be desirable to restrict the concentration pro-

file within a therapeutic range which consists of a lower and an upper value of blood

concentration of the drug. Best results are obtained from the treatment when the con-

centration of the drug is maintained within this range. In all such cases, optimisation

of the dose regimen has to be done at the population level.

Some drugs have a very narrow therapeutic range, for example, some antibiotics

and analgesics which means that their concentration in blood should be maintained

within the therapeutic range in every patient. This may also be necessary in sensitive

patients such as infants and pregnant women. For the reasons of safety and efficacy,

the dose regimens for such drugs have to be personalised or individualised to every

patient’s profile as one dose regimen cannot be relevant for the entire population.

That is, the optimisation for these drugs has to be done at the patient level.

1.1 Motivation for our Work

While optimisation of dose regimens for a given target is not a new problem, gen-

erally the focus is on the optimisation of dose sizes, ignoring the other aspects of

a dose regimen such as the number of doses or the combination ratio. In practice,

optimisation of dose regimen is performed on a case-to-case basis for a particular drug

or a class of drugs using simulations or with the help of clinical studies. For exam-

ple, Kuti et al. (2003) use Monte Carlo simulations to compare seven plausible dose

regimens of the antibiotic meropenem for their ability to achieve predefined target

exposure of the drug in the body. For some drugs, clinical studies are performed to

choose the best dose regimen from a number of candidate regimens. For example,

Dickinson and Evans (2002) compare three dose regimens of intravaginal misoprostol

for second-trimester pregnancy termination by observing three groups of volunteers,

each assigned to one of the three dose regimens. Novel solutions are sometimes found

for some specific optimisation problems. For example, to improve the image quality

in FDG-PET scan of obese patients, Groot et al. (2013) developed a quadratic model

for the relationship between bodyweight and the dose size of the radioactive com-

pound fluorodeoxyglucose (FDG). The optimised dose regimen of FDG maintained

the image quality, irrespective of the patients’ bodyweights.

Some authors, for example Mehvar (1998) or Thompson (1992), use pharmacoki-
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netic equations and steady-state concentrations to find optimum loading and mainte-

nance dose sizes for constraining the concentration profile within a given therapeutic

range. However, they do not discuss any method to quantify the extent of deviations

of the resultant profile from the target concentration. Nor do they discuss the case of

optimising the combination ratio and the dose regimen in case of combination therapy.

A mathematically formal and holistic approach for explicit optimisation of dose

regimens and a general method of computing optimal dose regimens and combination

ratios was found lacking in the statistical literature reviewed by us. A theoretical base

for comparing competing dose regimens on their degree of adherence to the target was

also found undefined. Our work is a step towards filling this gap.

Our contribution to the subject can be described as follows. Firstly, we propose a

mathematical expression for dose regimen which is composed of some of the variables

that can be controlled in a clinical trial. This enables us to express the optimisation

problem formally. We consider some practical constraints on the dose regimen and

incorporate them into the optimisation problem. We then present a computational

algorithm we developed, called the Efficient Dosing (ED) algorithm, which is able

to solve these types of optimisation problems. The criteria of optimisation of the

dose regimens we discuss in this thesis aim at preventing over- and underexposure to

the drug by maintaining the concentration profile around a target concentration or

within a therapeutic range. The algorithm is flexible for a variety of practical and

computational constraints. For example, our algorithm offers the choice of having

discretised dose sizes or letting them assume real values. The problem of finding the

best ratio to combine two drugs in a fixed dose unit is solved by extending the ED

algorithm to optimise a linear function of two objective functions. We demonstrate

that the ED algorithm can also be used for individualisation of dose regimens. Finally,

we propose a solution for optimisation of the dose regimen for obliteration of a target

bacterial load.

Apart from the problems discussed in this thesis, the ED algorithm has the po-

tential to be adapted for solving other variants of the objective function. The basic

assumption that is made is that the mechanistic model which describes the concen-

tration time relationship of the drug is known. As far as the parameters of the model

are concerned, we consider the optimisation problem in both settings - when the

model parameters are known and when they are unknown but some initial values are

available.

To implement the ED algorithm and its extensions and applications, we wrote

programs in MATLAB R© software. These are presented at the end of the thesis in

Appendices D.1 - D.6. These programs are helpful in not just solving the optimisation

problems but also in gaining insights about the optimisation process.
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1.2 Outline of the Thesis

The thesis is organised as follows.

In Chapter 2 (Introduction to Pharmacometrics) we introduce the field of phar-

macometrics. We explain the basic pharmacokinetic terms and derive the commonly

used compartmental models. We then derive the multiple dosing formula for some

of the compartmental models. Pharmacodynamics is also introduced and some ba-

sic models are discussed. The compartmental models introduced in this chapter are

extensively used throughout the thesis to exemplify our methodologies.

In Chapter 3 (Optimisation of Dose Regimens: The Problem) we introduce the

problem of optimisation of a dose regimen. Current methods are explained along

with their merits and drawbacks. We then explain the medical needs and benefits of

optimisation of dose regimens. We end the chapter by a mathematical expression of

the general optimisation problem for dose regimens. In further chapters of this thesis,

we present some possible solutions to this optimisation problem.

In Chapter 4 (The Efficient Dosing Algorithm for the Case of Known Model Param-

eters) we introduce the Efficient Dosing (ED) Algorithm developed by us to optimise

a dose regimen with respect to the dose sizes. We lay down a few pharmacokinetic

criteria and illustrate how the ED algorithm can compute the optimised dose regimen

for them. We discuss several practical constraints and their solutions. We also show

how the algorithm can be extended to compute the optimal ratio in which two or

more drugs are to be combined into a single dosing unit. The ED algorithm and its

extensions have been programmed in MATLAB R© . We use only mechanistic models

in this chapter.

In Chapter 5 (Non-linear Mixed Effects Models - Estimation and Design) we intro-

duce the theory of non-linear mixed effects models. This is essential for application of

the ED algorithm to models whose parameters are treated as random variables. We

discuss application of the theory to the PK and PD models to account for both inter-

and intra-individual variability in the patient population. We then briefly explain the

methods of estimation of the parameters, in particular, the methods included in the

software MATLAB R© . We briefly discuss them and contrast their properties. We then

introduce the theory of optimal design of experiments. We discuss the different opti-

mality criteria, the Fisher information matrix and briefly discuss some computational

methods to determine the optimal design.

In Chapter 6 (The ED Algorithm for the Case of Unknown Parameters) we consider

the problems discussed in Chapter 4 with the difference that the PK parameters of

the model are assumed to be unknown and the objective is not just dose regimen
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optimisation, but also estimation of the model parameters. We accomplish this by an

adaptive approach where information derived from every preceding cohort of patients

in a clinical trial is used to improve the dose regimen administered to the next cohort.

For this, we extensively apply the theory described in Chapter 5. We validate our

methodology by the means of a simulation study. Sensitivity analyses are undertaken

to study how the choice of input values affects the results from the methodology. The

simulation studies have been programmed in MATLAB R© . Unlike Chapter 4 where

only mechanistic models are discussed, we use statistical models in this chapter. The

results from this chapter demonstrate that the ED algorithm can be applied even

without the precise knowledge of the PK parameters.

In Chapter 7 (Potential Applications of the ED Algorithm) we present two further

potential applications of the ED algorithm. The first application illustrates the use

of the algorithm for dose individualisation. The theory of non-linear mixed effects

models is useful here as well. In the second application, we use pharmacodynamic

models to optimise the dose regimen for anti-infective drugs where instead of aiming

for a target concentration, we modify the methodology so as to optimise the dose

regimen for a target reduction in the bacterial load.

In Chapter 8 (Discussion) we summarise our research presented in the thesis and

discuss some directions in which we would like to take this work forward.

In the appendices, we present some derivations related to the compartmental mod-

els and the MATLAB R© programs for implementing our methodologies described in

Chapters 4, 6 and 7.
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Introduction to Pharmacometrics

The Food and Drug Administration (FDA or USFDA) defines pharmacometrics in

FDA (2015) as:

“Pharmacometrics is an emerging science defined as the science that quan-

tifies drug, disease and trial information to aid efficient drug development

and/or regulatory decisions.”

The field of pharmacometrics rests on three pillars:

• Drug models which consist of two types: Pharmacokinetic (PK) models which

describe the relationship between the drug’s exposure (concentration in blood) and

time and Pharmacodynamic (PD) models which describe the drug’s desired and

undesired effects as a function of the exposure.

• Disease models which study naturally occurring or experimentally induced dis-

eases in animals whose pathological processes are mostly similar to that of humans.

For example, Pandey and Nichols (2011) use the common fruit fly, Drosophila

melanogaster, to discuss models of human diseases such as cardiovascular disease,

cancer and diabetes for therapeutic discovery. This is based on the belief that

nearly 75% of human disease-causing genes have a functional homologue in the fly.

• The trial models which describe the inclusion/exclusion criteria for a clinical trial

and patient compliance to the clinical trial protocol. For example, Kenna et al.

(2005) present models for patient adherence to the assigned therapy in clinical

trials.

However, the major thrust of pharmacometrics is on the drug models and for our work

as well, we focus on pharmacokinetics and pharmacodynamics. They are discussed in

detail in this chapter.
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2.1 Pharmacokinetics

The term pharmacokinetics (PK) is derived from the Greek words pharmakon and

kinetikos which mean ‘drug’ and ‘in motion’. PK is the study of how the body pro-

cesses a substance, usually a drug, from the point at which it is administered until its

elimination from the body. A drug, when administered in a subject, goes through the

four phases of absorption, distribution, metabolism, and excretion (ADME). Absorp-

tion refers to the movement of the drug into the bloodstream. The rate and extent of

the absorption depend on the particular drug and also on the route of administration.

Distribution of the drug refers to the reversible transfer of the drug from one site to

another within the body. Metabolism is the biotransformation or the breakdown of

the drug into its metabolites by the body. The metabolites are responsible for the

pharmacological action of the drug. Finally, the drug is eliminated from the body;

the main organs involved in this are the liver (for metabolism) and the kidneys (for

elimination).

Gibaldi and Levy (1976) describe pharmacokinetics as:

“Pharmacokinetics is concerned with the study and characterization of

the time course of drug absorption, distribution, metabolism and excre-

tion, and with the relationship of these processes to the intensity and time

course of therapeutic and adverse effects of drugs. It involves the appli-

cation of mathematical and biochemical techniques in a physiologic and

pharmacologic context.”

The scope of PK is not just limited to drugs but can be extended to any substance

in an organism such as toxins, nutrients and hormones. PK studies typically involve

collection of data related to concentration of a substance in the body over time. Thus,

for example, blood samples can be collected over time to give values of the plasma

concentration of a drug. The data can be used to build models that can describe the

time course of the drug’s concentration in the body.

Pharmacodynamics, on the other hand, relates the therapeutic effect of a drug to

its concentration in the body. Thus, Pharmacokinetics may be simply defined as what

the body does to the drug, as opposed to Pharmacodynamics which may be defined

as what the drug does to the body, Benet (1984).

2.1.1 Pharmacokinetic Parameters

We now define some common PK parameters and some of the empirical relationships

between them as given in Rowland and Tozer (1994):
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tmax is the time of maximum concentration achieved by the drug in plasma.

C(tmax) or Cmax is the maximum concentration achieved by the drug in plasma.

Bioavilability (F ) is the fraction of the dose actually absorbed into the systemic

circulation. Even for the same drug, F can vary widely depending on how it is

administered into the body. Intravenous (i.v.) bolus administration ensures a

bioavailability of 1 as it bypasses the barriers to absorption, but all other modes

of administration have bioavailability less than 1. The bioavailability may also be

affected by such factors as food or other drugs taken at the same time.

Absorption Rate Constant (Ka) is the rate at which the drug is absorbed into the

systemic circulation. It has units of inverse time.

Elimination Rate Constant (Ke) is the rate at which the drug is eliminated from

the body. It has units of inverse time.

Volume of distribution (V ) is the apparent volume into which the drug distributes

in the body at equilibrium. Thus, if X is the amount of drug in the body at plasma

concentration C then, V = X
C

. In general, the volume of distribution and the true

volume of the compartment are different as the drug is often bound in the tissues

or the drug solution is not homogeneous.

Clearance (CL) is the volume of plasma cleared of the drug per unit time. CL is

the proportionality factor that relates the rate of elimination of the drug from the

body to its concentration. The units of Clearance are volume/time. The total body

clearance is equal to the sum of renal, intrinsic or hepatic (i.e. by liver) and lung

clearance.

Area Under the Curve (AUC) is the area bound under the concentration-time curve.

If the function C(t) is known, the AUC can be computed from the integral of the

concentration-time curve, i.e.,

AUC =

∫ ∞
0

C(t) d t.

AUC gives an idea of the total exposure of a drug to an individual and relates

the effect of a drug on the body to its concentration. Thus, an excessively large

AUC can have undesired toxic effects while even a highly effective drug may fail to

provide therapeutic relief if the AUC is below the threshold level.

Elimination Half Life (t1/2) is the time taken for the drug concentration in the body

to fall by one-half.
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2.1.2 Additional Parameters

For patients who are more sensitive to the adverse effects of excessive levels of the

treatment (for example neonates or pregnant women), care should be taken that they

are not exposed to unnecessary levels of treatment. Nor should they be under-exposed

as lack of sufficient therapeutic intervention could be ineffective. Thus, there is a

certain level at which the concentration is desired to be maintained. Alternatively,

there might be a therapeutic range - a lower and upper concentration levels between

which the profile of a patient’s concentration must be maintained. For this purpose

we define the following parameters:

Target Concentration (Ctgt) is the concentration of the drug which is required to

be maintained in the blood plasma such that concentration greater than Ctgt is

unnecessary and unwanted and concentration lower than Ctgt is not desired for

therapeutic reasons.

Lower limit of the therapeutic range (C−tgt) is the concentration level below which

the therapy is rendered ineffective and it is desirable to maintain the concentration

profile above this level.

Maximum target concentration (C+
tgt) is the concentration level above which the

therapy is potentially toxic and it is desirable to restrict the concentration profile

below this level.

We will use these parameters in the later chapters.

2.1.3 Pharmacokinetic Models

Compartmental models are the most popular models in pharmacokinetics. In com-

partmental analysis the body is thought to be made up of several ‘compartments’.

These compartments have no physiological meaning; they just depict the different

rates at which the drug is distributed in these compartments. For example, organs

more perfused with blood like heart, liver and kidney could form one compartment and

organs less perfused with blood like skin, muscle and peripheral organs could form the

second compartment. The drug flow takes place between the various compartments

and it is mathematically modelled.

We describe some common compartmental models below. All these models assume

first order kinetics. Concentration is proportional to the dose administered and the

rate of elimination of the drug is proportional to its concentration, c.f. Rowland and

Tozer (1994).
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These models are mechanistic, that is, the relationship between the variables in

these models is specified in terms of the underlying biological processes. The param-

eters involved in such models have biological interpretation. Furthermore, we assume

in this chapter that these models are deterministic, that is a given input will always

produce the same output and there is no random variation acting on any of the vari-

ables. In Chapter 6, we will work with statistical models, which seek to best describe

the relationship between the variables in the data.

One Compartment Models

In one compartment models, the body is seen as one system in which the drug dis-

tributes uniformly at the same rate. It is assumed that the concentration of the drug

in the organism is the same everywhere in the body at any given time. However, the

kinetics of absorption of the drug in the compartment can vary depending on how the

drug is administered in the body.

One Compartment Model with Zero Order Absorption

In this model, the drug is assumed to get absorbed instantaneously in the compart-

ment. For example, in case of an intravenous bolus injection, absorption time of the

drug is negligible. The elimination of the drug from the body is modelled by a first

order differential equation. Thus, if X1(t) is the amount of drug in the compartment

at time t and Ke is the elimination rate constant then,

d

d t
X1(t) = −KeX1(t).

Figure 2.1 shows the scheme of this model.

Figure 2.1: Scheme of a one compartment model with zero order absorption. d is
the initial dose, Ke is the elimination rate constant and V1 is the volume of the
compartment.

If the initial dose is d, we assume that X1(0) = d. Solving the above equation for this
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initial condition we get

X1(t) = de−Ket. (2.1)

Dividing by V1, the volume of the main compartment, we get the concentration C(t)

at time t as

C(t) =
de−Ket

V1

. (2.2)

Figure 2.2 shows the concentration-time course for this model for different values of

Ke. It can be seen from the figure that a higher value of Ke causes quicker elimination

of the drug from the body.

Figure 2.2: Plot of C(t) (mg/L) vs t (h) for different values of Ke for a single dose of
d = 500 mg. V1 is taken to be 1 L. Units of Ke are h−1.

One Compartment Model with First Order Absorption

First order absorption means that instead of the drug being absorbed into the com-

partment instantaneously, as was the case with the previous model, the rate at which

the drug is absorbed is proportional to the amount not yet absorbed. Figure 2.3 shows

the scheme of such a model.

Thus, if Ka is defined as the absorption rate constant and X2(t) is the amount not

yet absorbed, the differential equations representing this case can be written as

d

d t
X1(t) = KaX2(t)−KeX1(t),

d

d t
X2(t) = −KaX2(t),

with initial conditions: X2(0) = d and X1(0) = 0.

The solution of the second equation applied into the first equation gives a first
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Figure 2.3: Scheme of a one compartment model with first order absorption. d is the
initial dose, Ka is the absorption rate constant, Ke is the elimination rate constant
and V1 is the volume of the compartment.

order linear differential equation. The solution of this equation divided by the volume

V1 gives the concentration of the drug in the body at time t as

C(t) =
X1(t)

V1

=
dKa

V1(Ka −Ke)
(e−Ket − e−Kat). (2.3)

More often than not, the drug is not absorbed completely in the body. A small

portion of the drug is egested without being metabolised. To account for this, the

dose d is multiplied by F , the bioavailability, in the above equation to get:

C(t) =
FdKa

V1(Ka −Ke)
(e−Ket − e−Kat). (2.4)

Note that for a bolus injection F = 1 and the absorption of the drug is complete

and instantaneous. Therefore, letting Ka → ∞ in the above equation, we get the

equation for the previous model. Figure 2.4 shows the concentration-time course for

the one compartment first order absorption model for different values of Ka and Ke.

As can be seen in the figure, a higher Ka results in faster absorption of the drug.

Consequently, for a fixed Ke, higher Ka results in higher peak concentrations. On the

other hand, for a fixed Ka, higher Ke gives lower total exposure to the drug usually

measured as the area under the PK curve.

It is pragmatic to say that a patient will be administered multiple doses of the

same drug over a certain time period or for the rest of her life. If we assume that the

same dose d is administered at each of the occasions and let the fixed time period

between two successive doses be τ , then the concentration C(t;n, τ) at time t after

the nth dose is

C(t; τ, n) =
FdKa

V1(Ka −Ke)

(
1− e−nKeτ

1− e−Keτ
e−Ket − 1− e−nKaτ

1− e−Kaτ
e−Kat

)
. (2.5)
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(a) Ke = 0.2/h (b) Ke = 1.0 /h

Figure 2.4: Plot of C(t) vs t for a one compartment model with first order absorption
for different values of Ka and Ke. The other parameters are: F = 1, d = 500 mg and
V1 = 1 L.

The derivation of this equation is given in Appendix A.

As the number of doses administered to a subject increases, the concentration

settles to what is known as the steady state concentration. In steady state phase,

concentration fluctuates between a constant maximal and minimal level. Letting

n→∞ in Equation (2.5), we get the steady state concentration as:

C(t; τ,∞) =
FdKa

V1(Ka −Ke)

(
e−Ket

1− e−Keτ
− e−Kat

1− e−Kaτ

)
. (2.6)

Figure 2.5 shows the case when n = 6 doses of a drug are administered at different

values of τ . It can be seen that increasing the dose frequency results in higher peak

concentrations of the drug. However, for a given n, longer dosing intervals mean

that the drug remains in the system for a longer time but reaching a lower maximum

concentration. It may be mentioned here that τ may not always be the same for all

Figure 2.5: Plot of C(t) (mg/L) vs t (h) for different values of τ for n = 6 doses of
d = 100 mg each. The drug follows one compartment model with first order absorption
and the PK parameters are: Ka = .85 /h, Ke = .25 /h, F = 1 and V1 = 1 L.
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the doses. In this thesis, we consider the general case when the doses are administered

at the time points t = (t1, ..., tn)T which are not necessarily equidistant.

Two Compartment Model with First Order Absorption

Next, we describe the two compartment model. As the name suggests, this model

assumes that the body is made up of two compartments having different rates of

drug distribution. The dose d is absorbed into the ‘central compartment’ at the rate

of Ka. From the central compartment, the drug gets absorbed into the ‘peripheral

compartment’ at the rate of K12 and it gets re-absorbed back at the rate of K21.

The drug can be eliminated only through the central compartment which takes

place at the rate of Ke. The volume of the blood plasma that is cleared off of the

drug per unit time is called clearance. For elimination from the central compartment,

the clearance is denoted by CL and for exchange of the drug between the two com-

partments, Q is the inter-compartmental clearance. The volume of the peripheral

compartment is denoted by V2. Figure 2.6 shows the scheme of this model.

Figure 2.6: Scheme of a two compartment model with first order absorption. d is the
initial dose, Ka is the absorption rate constant, Ke is the elimination rate constant,
V1 and V2 are the volumes of the central and the peripheral compartment. The drug
gets absorbed into the peripheral compartment from the central compartment at the
rate of K12 and gets re-absorbed back at the rate of K21.

Then, the concentration of the drug C(t) at time t is given as

C(t) = Ae−λt +Be−µt − (A+B)e−Kat, (2.7)

where the coefficients A and B depend on the PK parameters as follows:

A =
FdKa(K21 − λ)

V1(Ka − λ)(µ− λ)
and B =

FdKa(K21 − µ)

V1(Ka − µ)(λ− µ)
,
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where λ = 1
2
(S+R), µ = 1

2
(S−R), S = K12 +K21 +Ke, R =

√
S2 − 4K21Ke,

K12 = Q/V1, K21 = Q/V2, and Ke = CL/V1.

The derivation of Equation (2.7) is given in Appendix B.1. Figure 2.7 gives an

idea of the concentration-time course of this model for different values of the inter-

compartmental clearance Q. It can be seen from this figure that as Q increases, the

concentration of the drug in the central compartment decreases. This is on account

of the absorption of the drug in the peripheral compartment. In the two compart-

Figure 2.7: Plot of C(t) vs t for a two compartment model for different values of the
inter-compartmental clearance Q. The dose size is d = 500. The values of the other
PK parameters are: CL = 10 L/h, V1 = 100 L, Ka = 1.5 /h and V2 = 50 L and
F = 1.

ment model, the decline in C(t), the concentration in the central compartment, after

reaching Cmax is initially rapid but then it reduces to 0 gradually.

This biphasic behaviour reflects the physiological context on which the two com-

partment model has been defined and the two phases are called the α-phase and the

β-phase. The decline of plasma concentration in the α-phase is mainly attributable to

the distribution of the drug from the central compartment to the peripheral compart-

ment. In β-phase, however, the decline in concentration in the central compartment

is mainly because of metabolism and elimination of the drug from the body. This can

be seen in Figure 2.7 as well.

For a multiple dose two compartment model with first order absorption, the prin-

ciple of superposition can be applied to get the expression for the concentration at

time t after the nth dose as follows,

C(t; τ, n) = A
1− e−nλτ

1− e−λτ
e−λt +B

1− e−nµτ

1− e−µτ
e−µt − (A+B)

1− e−nKaτ

1− e−Kaτ
e−Kat, (2.8)

where A and B are same as before and τ is the fixed time interval between two

successive doses. The derivation of Equation (2.8) is given in Appendix B.2.
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The steady state concentration is:

C(t; τ,∞) = A
e−λt

1− e−λτ
+B

e−µt

1− e−µτ
− (A+B)

e−Kat

1− e−Kaτ
. (2.9)

Three Compartment Models

The compartmental models described above are among the simplest and the most

commonly used models. However, models exist which consider three or more com-

partments. For example, the concentration of remifentanil, an analgesic drug, is

described by a three compartment model, Cascone et al. (2013). Since we do not use

such models in this thesis, we do not go into further details. A comprehensive library

of PK models is given in Bertrand and Mentré (2008).

Physiologically Based Pharmacokinetic Models

The compartmental models described above simplify drug disposition in an organism

by describing the drug flow between ‘compartments’ which have no unique physio-

logical meaning. Physiologically based pharmacokinetic models, on the other hand,

attempt to describe the complex processes of absorption, distribution, metabolism

and elimination of the drug using actual biological functions that regulate these pro-

cesses in the body. Instead of having imaginary compartments based on how the drug

distributes in them, the compartments in physiologically based PK models are spe-

cific body organs and tissues, such as heart, kidneys, liver, brain, skin, lungs. Thus,

they are multi-compartment models with the compartments having clearly defined

physiological and biological meaning. Figure 2.8 gives a graphical representation of a

physiologically based PK model.

A set of differential equations makes up the structure of the model. The parame-

ters represent physiological measures such as the blood flow rates and organ volumes.

Information about these is usually available from the scientific literature. Integrating

this system of differential equations gives the concentration of drug in each compart-

ment as a function of time and dose, c.f., Bois et al. (2010).

Interestingly, the very first PK model described in the literature was a physiologi-

cally based PK model, Teorell (1937). However, lack of computing resources resulted

in it being given up in favour of simpler models which had analytical solutions. With

the advent of powerful computers, interest in these models has been renewed.

In this thesis, we are applying the simple (not physiologically based) compartmen-

tal models in all our methods. However, other ways of modelling the concentration
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Figure 2.8: A graphical representation of a physiologically based PK model, Wikipedia
(2011). The body is divided into 7 compartments - brain, lungs and heart, pancreas,
liver, gut, kidney, and adipose/muscle tissue. Q denotes the blood flow between the
compartments and X is the drug’s concentration.

could also be implemented in our methodology. We plan to incorporate them in our

algorithms in the near future.

Non-Compartmental Approach

As the name suggests, in non-compartmental approach (NCA), the PK parameters

of a drug are determined without assuming a particular compartmental model. In

this case, the PK parameters for a drug, such as AUC, Cmax, tmax, CL, t1/2 are

indirectly determined by the data derived from PK sampling from a subject. PK

sampling entails measuring the drug’s concentration in the blood samples drawn at

designated time points from the body. Using these samples, AUC can be estimated

by, for example, the linear trapezoidal rule. Clearance is computed from the estimated

AUC by the relation CL = dose/AUC. The accuracy of these techniques depends on

the richness of the sampling points.

The main advantage of NCA over model-based inference is that development and

validation of a true model is not required. Non-linear mixed effects models, in particu-

lar, are complicated and the methods for estimation of parameters have several compu-

tational drawbacks. Gabrielsson and Weiner (2012) discuss some methodologies used

for NCA whereas Jaki and Wolfsegger (2012) present NCA methods that can be used

in sparse sampling situations. PK is an R package that applies non-compartmental
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theory for computation of PK parameters, Jaki and Wolfsegger (2011).

The main disadvantage of NCA is that it is based on approximations and also, it

is unable to predict the concentration at any given time since no model is fitted to

the data. In this thesis, we work with the compartmental models.

2.2 Pharmacodynamics

While pharmacokinetics describes the concentration-time relationship of a drug, phar-

macodynamics studies the effect-concentration behaviour of a drug. Pharmacody-

namic models relate the effect that a drug produces to the concentration of the drug

in the body.

2.2.1 Sigmoid Emax Model

The most commonly used pharmacodynamic model is the sigmoid Emax model, also

called the Hill equation, Hill (1910). Apart from pharmacology, the equation has wide

applications in biochemistry.

The general sigmoid model relates the effect E to the concentration C as follows:

E(C) =
Emax × CH

ECH
50 + CH

, (2.10)

where H is the sigmoidicity coefficient, also called the Hill coefficient, Emax is the

maximum effect, EC50 is the concentration required for 50% of Emax to take place.

For H = 1, the sigmoid Emax model is simply referred to as the Emax model.

Figure 2.9 plots the Hill equation for Emax = 5, EC50 = 2 and different values of

H.

Properties

From Equation 2.10, we get

E(C) =
Emax

ECH
50/C

H + 1
. (2.11)

Therefore, as the concentration increases, the effect converges to Emax. The Hill

coefficient, H, determines the steepness of the curve. Higher the value of H, the
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Figure 2.9: The Sigmoid Emax model for various values of the Hill coefficient H. The
parameter values are: Emax = 5 and EC50 = 2.

faster is the convergence. This can also be observed in Figure 2.9.

Furthermore, the curve passes through (EC50, Emax/2) irrespective of the value of

H. This can be verified from the figure by observing that all curves pass through the

point (2, 2.5). This also follows from the definition of EC50.

If a baseline effect Eo is present, the intercept term can be added to the model.

Then,

E(C) = Eo +
Emax × CH

ECH
50 + CH

. (2.12)

The drug’s response can also be studied as a percentage of Emax, in the form of

Ep(C) as,

Ep(C) =

(
E(C)

Emax

)
× 100 =

(
CH

ECH
50 + CH

)
× 100. (2.13)

The general sigmoid model is one of the most commonly used PD models and we use

it in Chapter 7 to describe the effect of anti-microbials on extermination of parasites.

Some other PD models are presented in, for example, Rowland and Tozer (2011).

Minimum Inhibitory Concentration

In this thesis, we will frequently use a PD term called the Minimum Inhibitory Con-

centration (MIC). The MIC is defined as the lowest concentration of an anti-infective

or an antimicrobial required to inhibit the visible growth of a parasite after overnight

incubation. Determination of the MIC is done mainly for two reasons. Firstly, it
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is used in diagnostic laboratories to confirm resistance (if any) to the antimicrobial.

Secondly, it is used as a research tool to determine the activity of a new antimicrobial,

Andrews (2001).

2.3 The Population Approach

The ADME process described in the beginning of this chapter is not the same in

every patient. A drug will have different PK and PD profiles in any two patients.

This variation can be ascribed to mainly two sources: the inter-individual variability

and the intra-individual variability.

The compartmental models discussed in this chapter are deterministic in the PK

parameters. In patient populations, the form of the concentration-time function is

the same for everyone because of the same underlying mechanistic model. However,

the parameters of the model differ from subject to subject giving rise to different

concentration profiles. The difference in the parameters is attributed to the inter-

individual variability. The non-linear mixed effects models are often used to model

the inter-individual variability through an assumption of the parameters being random

variables.

The second source of variation in the measured drug’s concentration is due to some

unobserved individual variation. We assume here that this variation is due to obser-

vational errors. Various models have been proposed to incorporate this variability.

They are discussed in Chapter 5.

To assess the population variability and estimate the parameters of the mechanistic

model, the so called population approach is often used. The population approach is

defined by FDA (1999) as:

“Population pharmacokinetics is the study of the sources and correlates

of variability in drug concentrations among individuals who are the target

patient population receiving clinical relevant doses of a drug of interest.”

In population analysis, instead of fitting a individual profile to every subject, which

will call for a dense sampling scheme, parameters are assumed to be realizations from

probabilistic distributions. This enables the investigator to assess the mean profile

of the drug’s concentration and its variability in the population of patients taking a

minimal number of samples from a subject, which is preferable for economical and

ethical reasons.

L.B. Sheiner was one of the earliest advocates of the population approach, Sheiner
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and Beal (1980) and Sheiner and Beal (1981). He is also one of the developers of the

software NONMEM R© which is the industry standard software for analysing population

PK data, ICON plc (2015). Regulatory agencies also endorse the population approach,

especially for drugs for children, EMEA-CHMP (2006b).

The basic tenets of population pharmacokinetics are as follows: collect a certain

number of blood samples at designated time points from everyone in the cohort.

Based on the measured drug concentration in these samples, estimate the means of

the parameters of the underlying mechanistic model and their variances. The average

PK parameters give the concentration profile of a typical subject in the population.

The precision of the estimated parameters depends on the time points at which the

blood samples are collected. This necessitates the use of theory of optimal design of

experiments. The population models (non-linear mixed effects models) are presented

in Chapter 5, along with the methods of estimation and computation of an optimal

design.

Patient Covariates

A part of the inter-individual variability can be explained on the basis of the covari-

ates, such as age, gender, body weight, comorbidities, which define the physiological

profile of a patient. The covariates affect every phase of the ADME process and thus

the dose needs to be carefully determined so that the effect of the covariates is prop-

erly incorporated into the PK model. Inclusion of covariates has the twin benefits of

increasing the predictive power of the model and opening up the possibility of dose

individualisation based on the patients’ specific covariates. This will be discussed in

the next chapter.

Figure 2.10 gives an idea of how some covariates affect the organ functions. For

instance, intrinsic clearance of an individual is a function of age, body surface area (a

function of height and weight) and genetic profile.

The inclusion of covariates in the PK model introduces new parameters, which

need to be efficiently estimated along with the PK parameters. This may make the

process of parameters estimation complicated. Therefore, only the relevant covariates

which are found to be significantly correlated with a PK parameter of the model

should be selected into the model. We discuss this later in the thesis.
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Figure 2.10: An illustration from Jamei et al. (2009) which shows the effect of dif-
ferent covariates on the drug’s absorption, distribution, metabolism, and elimination
(ADME).

The Role of a Dose Regimen

In the compartmental models discussed in this chapter, the concentration of the drug

in the body is directly proportional to the administered dose, d. In a multiple dose

model, the time points at which the doses are administered, t1, ..., tn, also affect the

resultant concentration. The exposure to the drug also depends on n, the number of

doses which are administered. In case of a fixed dose combination unit, where two

drugs are constrained to be administered in the same ratio and at the same dosing

time points, the combination ratio is an important determinant of individual exposure

to the two partner drugs.

As discussed, there are generally no beneficial effects accrued from a drug beyond

a certain level of exposure. However, excessive amount of a drug in the body can

increase the risk of toxicity. Therefore, to get the best outcomes from a therapy, that

is, to get the maximum possible efficacy and the least toxicity, the choice of the dose

regimen is an important consideration. In the next chapter, we elaborate on this and

propose a mathematical formulation for a dose regimen which enables us to define

the associated optimisation problem. The optimisation problems that we solve in this

thesis assume the knowledge of the PK model associated with the drug. The models

discussed in this chapter are helpful in illustrating the optimisation algorithm that

we introduce in Chapter 4.

43



Chapter 3

Optimisation of Dose Regimens:

The Problem

In this chapter, we highlight the importance of optimisation of dose regimens. We

discuss the methods currently used for dose regimen optimisation, along with the

methods of extrapolating the optimum doses from those used for other populations,

e.g., from adult’s doses to children’s doses. Dose regimen optimisation is an im-

portant problem, especially for certain therapies such as antimicrobials, analgesics,

anaesthetics and anticancer drugs. Such optimisation problems are usually attempted

for individual drugs by the means of simulation studies. There is a need for a more

general approach to the problem, independent of any particular drug or therapy. In

this chapter, we propose a mathematical formulation of dose regimen and use it to

explicitly express the problem of dose regimen optimisation. In the next chapter, we

introduce an algorithm to solve some of the so-defined problems. We firstly discuss

the need for optimised dose regimens.

3.1 Why Should a Dose Regimen be Optimised?

As discussed in the previous chapter, the therapeutic effect of a drug is a function

of its concentration in the body. However, increase in the concentration beyond a

limit increases the risk of toxicity. Therefore, a good dose regimen should be able to

keep the concentration within the therapeutic range. This calls for optimisation of

the dose regimen which, for most drugs, is generally done for the typical individual in

the population. For certain drugs, the optimisation has to be done for each patient, a

process called dose individualisation. We discuss both these situations in this chapter.
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3.1.1 Toxicity Reduction and Enhancing Efficacy

Following the correct selection of a therapy based on the indication, an optimal dose

regimen is the most important determinant of therapeutic success of the therapy.

Since health authorities may lack sufficient pharmacometric capacity to check the

dose information provided by the pharmaceutical industry and most physicians rely on

the prescription information for choosing dose regimens, the ethical responsibility for

supplying an optimal dose regimen remains largely with pharmaceutical companies.

In the past, the pharmaceutical industry was predominantly interested in achieving a

new drug approval based on differentiation of the drug against placebo or an active

comparator, neglecting the optimisation of dose regimens. The maximal safe dose

was often chosen for confirmatory phase III trials and having been initially approved,

administered to the general patient population.

Nowadays, health authorities actively challenge the dose regimen suggested by the

industry, usually by stating that the doses are unnecessarily high and leave the burden

of proof with the company applying for approval or marketing, DiNicolantonio and

Serebruany (2013) and Sacks et al. (2014). Provision of the minimal clinical effective

dose, the maximum safe dose and the optimal dose by indication not only improves

the chances of a successful approval, but can be considered state of the art, Martinez

et al. (2012).

There are several disease areas (e.g., oncology, infectious diseases, advanced anal-

gesic therapies) where the optimal dose regimen consists of co-administration of sev-

eral drugs with different pharmacokinetic and pharmacodynamic properties ideally at

the same time. For some indications such as HIV, malaria and tuberculosis, combi-

nation therapies are mandatory to prevent the spread and development of resistance

to the single components of the regimen. The most stringent way to enforce co-

administration is co-formulation, i.e., several drugs are contained in a single dosing

unit. In this case, the physician can only choose to administer fixed multiples of

two (or more) doses, the dose ratio having been selected by the manufacturer of the

drugs. Therefore, it is crucial that the optimal dose ratio has been identified during

the development process.

All dose regimens should be optimised for the best possible treatment outcome, but

there are certain drugs for which the optimisation could make a difference between

therapeutic success or failure. Antibiotics are the best examples of this. Based on the

main pharmacodynamic parameters of these drugs, which are strongly correlated with

clinical outcome and are used as predictors of clinical efficacy, they can be divided

into the following types, Wise (2003):
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• Type 1. The treatment goal is to maximise the drug’s concentration relative to

the minimum inhibitory concentration (MIC). The PD parameter to maximise

is the ratio Cmax/MIC. For example, aminoglycosides which are used to treat

serious life-threatening infections such as that of the abdomen and urinary tract.

• Type 2. The treatment goal is to maximise the duration of exposure to the drug.

The PD parameter to maximise is the time for which the blood concentration

exceeds the MIC. For example, penicillin, one of the earliest discovered antibi-

otics. It is a broad spectrum antibiotic for treatment of infections, for example,

those caused by the bacteria staphylococci and streptococci.

• Type 3. The treatment goal is to maximise the exposure to the drug. The PD

parameter to maximise is the ratio AUC/MIC. For example, azithromycin is

an antibiotic which has a long half life and is used in combination therapies for

the treatment of infections like respiratory and gastrointestinal.

Therefore, for these antibiotics to be able to eliminate the infection effectively, the

relevant criterion for that type of antibiotic must be met as closely as possible. For

example, for the Type 2 antibiotics, the dose regimen should be such that the drug’s

concentration remains above the MIC for the duration of the treatment. This can be

accomplished by either giving ‘large’ doses at regular intervals of time or making the

dosing ‘more frequent’. For accurate values of the optimal doses or the dosing time

points, a quantitative approach to the optimisation problem becomes a necessity.

Optimisation of dose regimens is important in oncology as well. For example, an

important finding that has been made from breast cancer trials is that increasing the

dose beyond a certain limit does not accrue any additional benefits in reducing the

tumour burden. However, more frequent dosing, called the ‘dose-dense’ regimen, has

been found to be more potent in killing cancer cells, Citron et al. (2003). This is

because of the fact that growth of most cancer cells follows non-exponential Gom-

pertzian kinetics which means that the regrowth of cancer cells between the drug

cycles is rapid. This necessitates optimisation of the dose regimen for such drugs.

Thus, to balance the beneficial and the harmful effects of a drug, the design of

its dose regimen is an important consideration. Aronson (2005) gives some general

guidance for adjusting dose regimens to balance the beneficial and harmful effects of

the drug.

3.1.2 Optimisation for Dose Individualisation

Dose personalisation or individualisation is adaptation of a therapy to the physiologi-

cal profile of a patient. Individualisation of a therapy to a patient is not just choosing
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the appropriate dose levels or dose schedules, but also examining the patient’s profile

to check if the particular therapy will benefit the patient at all. This is explained

below.

Therapeutic Drug Monitoring

Therapeutic Drug Monitoring (TDM) is only used for certain drugs which exhibit the

following characteristics: a narrow therapeutic range, large PK variability, existence

of a direct relationship between the serum concentration and the toxic or beneficial

effects of the drug, Kang and Lee (2009) and Aarnoutse et al. (2003). For exam-

ple, TDM is a standard of care for certain antimicrobial agents such as gentamicin

and vancomycin and it appears that TDM of β-lactam antibiotics may be clinically

beneficial for critically ill patients, Felton et al. (2014). TDM, as the name suggests,

consists in measuring the drug concentrations in an individual at regular intervals of

time. Depending on the serum concentrations, the dose is adjusted to maintain it

within the target range. A person’s PK profile may keep changing over time owing

to change in physical attributes like age, body weight and emergence of comorbidites.

Also non-compliance with the advised dose regimen may result in departure from the

target.

TDM strives to take care of all these factors by periodic adjustment of the dose

regimen. It entails administering an initial dose regimen to the patient based on the

covariates, comorbidites and any concomitant drug therapies. Also taken into account

are the past PK/PD data available for the drug, demographic data and physiological

profile of the patient. This is referred to as a priori TDM. Blood samples are then

collected at designated intervals and based on the results, the dose regimen is adjusted

so that the blood concentration remains within the desired range, Burton (2006).

The dose adjustment for TDM requires clinical and computational resources. A

variety of software are available for adjustment of the dose regimen based on the

collected blood samples, of which MwPharm R©, MM-USC*PACK R© and TCIworks are

commonly used. A comparison of 12 such software including the ones mentioned

above can be found in Fuchs et al. (2013).

Below we discuss, as an example, the software MwPharm R©, Proost and Meijer

(1992). It contains a database of PK information on 180 drugs. The clinician needs

to select from this database the drug whose doses are to be individualised to a patient,

and needs to enter the patient’s covariates like age, weight, gender. Based on the past

PK information about the drug already stored in the software, the desired target

range and the patient covariates, the software determines the best loading dose to

be administered to the patient. After some time, a PK sample is drawn from the
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patient and the measured concentration in entered into the software. Using Bayesian

techniques, the PK parameters’ estimates of the drug are revised on the basis of this

observation, Thomson and Whiting (1992). In other words, the revised estimates are

the PK parameters’ estimates of the patient for whom the software computes the

next dose to be administered. Since TDM requires careful monitoring of the drug’s

concentration in the patient, regular samples are drawn at designated intervals of time.

Every time a sample is drawn, the next dose will be computed by the software by

taking into account the concentration values obtained from all the previous samples.

This process will continue as long as necessary to achieve the desired outcome.

Therapeutic Concentration Intervention

Therapeutic Concentration Intervention (TCI), another dose individualisation tech-

nique, has been suggested as an alternative conceptual strategy to TDM, Holford

(1999). TCI is a variation of TDM in the sense that instead of optimising the dose

regimen for a range of dose levels, a target concentration is sought to be achieved.

This target concentration is computed on the basis of a target effect desired to be

achieved. The two main arguments given by the author against TDM are the follow-

ing. Firstly, TDM aims to maintain the concentration within a therapeutic range and

thus gives rise to a range of possible doses from which one dose needs to be chosen by

the clinician. TDM gives no guidance to make such a choice. Secondly, TDM assumes

that all concentrations within a range are equally desirable. Intuitively, this appears

to be a sub-optimal strategy as within the therapeutic range as well, a patient may

have varying response to the therapy. Based on these two advantages and the fact

that TCI uses PD models to determine the target concentration, the author advocates

this technique over TDM.

For example, if estimates of EC50, Emax and H are available, the target concen-

tration can be calculated from the general sigmoid model described in Equation 2.10

as,

Ctgt =

ÊCĤ

50 × Etgt
Êmax − Etgt


1

Ĥ
,

where Etgt denotes the desired target effect.

Once the target concentration has been determined, the rest of the steps are the

same as TDM. Software used for maintaining a target range by TDM can also be used

to maintain a target concentration by TCI, as the basic steps of computing patients’

PK parameters using sparse data remain the same.

48



Chapter 3. Optimisation of Dose Regimens: The Problem

Pharmacogenetic Studies

Pharmacogentic studies are used to predict the response of an individual to a par-

ticular therapy by studying his/her genetic profile. A well known example is the

drug trastuzumab which is used to treat breast cancer in patients whose cancer cells

have over-expression of the HER2/neu gene, Vogel et al. (2002). Patients whose can-

cer cells lack this over-expression derive no benefit from this drug and thus should

not be administered it. Other examples include dasatinib (used for treating myel-

ogenous leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia

and advanced prostrate cancer) and detuximab (used for treating metastatic colorec-

tal cancer and metastatic non-small cell lung cancer with epidermal growth factor

receptor (EGFR)-expressing cells).

Genetic variability could also result in some patients showing heightened adverse

reactions to a drug which are not seen in the general population, Roden and George Jr

(2002), Ma and Lu (2011).

However, pharmacogenetic studies are currently available for a limited number

of drugs and more research is needed before using them as an alternative or even

complementary to dose regimen individualisation methods, Gervasini et al. (2010).

For our work in this thesis, we do not make use of such studies.

3.1.3 Optimisation for Randomized Concentration - Controlled

Trials

The Randomized Dose-Controlled Trials are one of the most commonly used clinical

designs. They involve random assignment of the subjects to predetermined dose levels

of the candidate drug.

In contrast, the Randomized Concentration-Controlled Trials (RCCTs) involve

random assignment of the subjects to predetermined levels of drug concentrations

or their ranges. It is important to understand that RCCT is a clinical trial design

and unlike TDM and TCI, no dose adjustments take place for a subject.

This scheme accounts for, to a large extent, the variability between the subjects due

to different rates of absorption, elimination and distribution. Some studies have shown

that RCCTs on an average require smaller sample sizes as compared to RDCTs, and

therefore could be more powerful, Reeve (1996) and Sanathanan and Peck (1991). The

main drawback of RCCT is that the protocol becomes more tedious and the adherence

to a specified concentration or its range may be difficult to achieve in practice.
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To bring every subject to the specified target concentration, an adaptive procedure

is followed in which a covariate such as the subject’s body weight and subsequent

doses are adjusted depending on the results obtained by repeated blood sampling.

Optimisation of the dose regimen is, therefore, an essential requirement for conducting

RCCTs.

3.1.4 Optimisation by Dose Scaling

Clinical trials for infants and children present ethical and legal challenges which often

result in sparse PK/PD data for this population. In the absence of proper PK/PD

studies in children, extrapolation from adult data to determine the appropriate doses

for children is a common practice. If the adult dose regimen happens to be optimised

for given set of values of adult covariates, then a sensible method of scaling should

give optimised dose regimen for children’s covariates as well.

Size is the primary covariate used to scale adult’s doses for children, although age

based models also exist. We discuss here briefly the three size models as given in

Johnson (2008) and Anderson and Meakin (2002). Age based mechanistic models can

be found in Anderson and Holford (2008).

Body Weight Model

The body weight (BW) dose scaling model to determine the appropriate dose for a

paediatric patient is given as

DoseP = DoseA

(
BWP

BWA

)
,

where DoseP and DoseA are the paediatric and adult doses respectively. BWP

and BWA are the paediatric and adult values of BW respectively. Usually, BWA is

taken as 70 Kg as body weight of a typical adult.

The fundamental assumption of this model is the linear relationship between the

body weight and the dose, which in general, is not found to be true. It has been

observed that children require a larger dose when expressed in mg per kg of weight

than adults. Despite of these limitations, this model is commonly used for dose

scaling because of its simplicity.

Body Surface Area Model
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The basic assumption of this method is that children and adults are geometrically

similar. Since it is practically difficult to measure the body surface area (BSA)

directly, the Du Bois and Du Bois height-weight formula by D. Du Bois and E. F.

Du Bois (1916), one of the earliest formulas to estimate the BSA, is commonly used

to estimate it as shown below:

BSA = Weight0.425 ×Height.725 × 0.007184,

where weight is given in kilograms and height in centimetres.

The estimated surface area can be used for dose scaling as follows:

DoseP = DoseA

(
BSAP
BSAA

)
,

where BSAP and BSAA are the paediatric and adult values of BSA respectively.

Usually BSAA is taken as 1.73 m2 as a typical adult’s BSA.

The body surface area model is generally more accurate than the body weight model

as development of physiological systems is represented more by the changing body

surface area than the change in body weight, Johnson (2008). However it is not

very useful for dose scaling for infants as their bodies are morphologically different

having shorter legs and relatively larger heads and trunks, Anderson and Meakin

(2002).

The Allometric 3/4 Power Model

Galileo in 1637 discussed the relationship of skeletal size to the body weight. It has

since been scientifically established that the plot of the log of the basal metabolic

rate (the amount of energy required by the body to keep functioning at rest) in

almost all species including humans, produces a straight line with a slope of 3/4.

This gives the model its name, although, it is used for scaling of many physiological

parameters and the power may not necessarily be 3/4 every time. For instance,

time related parameters like heart rate, respiratory rate are scaled using the body

weight with the power 1/4.

For the ith individual with body weight BWi the clearance parameter is scaled as,

CLi = CLstd

(
BWi

BWstd

)3/4

,

where CLstd is the clearance parameter of a standardized individual with weight

BWstd.
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The model for physiological volume, for body weight BWi has power parameter 1,

Vi = Vstd

(
BWi

BWstd

)
,

where Vstd is the volume parameter of a standardized individual with weight BWstd.

For scaling of the loading dose, which is a function of the volume V , the model is:

Dosei = DosestdL

(
BWi

BWstd

)
,

where DosestdL is the loading dose for a standardized individual with weight BWstd.

Maintenance dose, being a function of the clearance CL, can accordingly be scaled

as:

Dosei = DosestdM

(
BWi

BWstd

)3/4

,

where DosestdM is the maintenance dose for a standardized individual with weight

BWstd.

Traditionally, doses suitable for adults have been scaled for children using simple

rules based mainly on the age, weight or surface area of the child. However, scaling

of adult data to children’s is not as simple as it appears. Infants and young children

have immature organ systems and the resultant PK profile may be erratic and un-

predictable. As noted by Halpern (1988), “Paediatrics does not deal with miniature

men and women, with reduced doses and the same class of disease in smaller bodies,

but ... has its own independent range and horizon.”

Kearns et al. (2003) emphasize that human growth is not a linear process and age

associated changes in body composition and organ functions are dissonant during the

first decade of life. The situation for neonates is the most complicated. Their body

composition and organ functions change rapidly during the first few weeks. Extrapo-

lation from adult or even children’s data to determine doses for neonates can be very

misleading. Over-dosing may have an adverse effect on a neonate whose body may

lack the mechanism to tackle drug induced toxicity and under-dosing may all together

defeat the purpose of therapeutic intervention. Detailed regulatory guidance on the

impact of kidney, liver and cardiovascular immaturity of neonates on dose selection is

available, EMEA (2004), EMEA-CHMP (2005) and EMEA-CHMP (2006a).

Johnson (2008) found that the precision and bias of these methods in determining

the appropriate dose depend on the age group of the paediatric patients. The author

further highlights the need of having more robust methods of dose scaling which are

set up on physiologically based pharmacokinetic models (PBPK) which were discussed

in Chapter 2. For example, PBPK models were formulated to study the PK profiles of
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theophylline and caffeine in adults and neonates, Ginsberg et al. (2004). As compared

to adults, faster metabolism and clearance of theophylline relative to caffeine were

observed in neonates.

It may be mentioned here that dose scaling is not limited to children applications

only. The standard way to prescribe a dose is usually per kilogram of the body weight.

Traditionally, the dosage of chemotherapy drugs has been determined according to

the BSA of the patient, estimated using the height and the weight in the Du Bois and

Du Bois formula. However, there have been concerns about whether the BSA method

increases the risk of under-dosing (over-dosing is more readily recognised). Although

a better method than the BSA approach is not yet available, research has urged

clinicians not to place full reliance on the BSA but to simultaneously look at other

factors like possible interactions with other drugs and to assess the drug elimination

profile of the patient, Gurney (2002).

Thus, for obtaining the best outcome it is necessary for the therapy’s exposure to

be of just the right magnitude. As discussed in the previous chapter, the exposure is

determined by not just the dose sizes, but also by the number and frequency of the

administered doses. In case of a fixed dose combination unit, the two partner drugs

are constrained to be administered at the same dosing time points and in the same

ratio. Variables such as dose sizes, number of doses, frequency of dose administration

and the combination ratio (if applicable) are design variables which form the dose

regimen of a drug and the choice of values of these variables eventually influences the

therapeutic outcome from the treatment. Indeed, optimisation of the dose regimen

amounts to determining the optimum values of the design variables like these. To

facilitate explicit optimisation of dose regimens, it is imperative that the concept of

a dose regimen is explained in mathematical terms. In the next section, we propose

such a form which will be useful for our work in this thesis.

3.2 Dose Regimen - Mathematical Formulation

A dose regimen R of dimension n is defined as the following collection of design

variables,

R = {n,D, t, T, θ},

where

n is the number of doses to be administered;

D = (d1, d2, ..., dn)T is a n-dimensional column vector of the doses. D ∈ D ⊂ Rn
+,

where D = [r1, s1]× [r2, s2]× ...× [rn, sn], for some positive constants ri and si such
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that ri < si, i = 1, ..., n. D will be referred to as the dose vector in this thesis;

t = (t1, t2, ..., tn)T is a n-dimensional column vector of the dosing time points; we

take t1 = 0 and ti ∈ R>0 for i = 2, ..., n;

T is the duration of the treatment; T ∈ R>0;

θ is the ratio of drug A to drug B in the fixed dose combination unit, θ ∈ [e, f ] ⊂ R≥0

for some positive constants e and f . In case of a single drug, we set θ = 0.

n,D, t, T and θ are referred to as the components of the dose regimen. In case of a

combination therapy, D refers to the dose regimen of drug A. The dose regimen for

drug B will be given by θ ×D.

Many drug therapies, e.g., for diabetes and hypertension, are taken for a long time

over regular intervals, possibly for the rest of the life. For such drugs n is not specified

and the time of the treatment is assumed to be T =∞. Then, the dose regimen can

be expressed as R∞ = {D, t,∞, θ}.

For such regimens, D = (d1, d2, ...)
T and t = (t1, t2, ...)

T . All the doses of the

dose vector D can be the same for drugs used to treat chronic diseases like diabetes

and hypertension, while if the drug is being administered under the TDM set-up, in

which the doses are regularly adapted, the individual doses could be different.

3.3 The Optimisation Problem

By optimisation of a dose regimen, we mean determination of R which results in

maximisation or minimisation of a function ϑ(R), called the objective function. As

discussed before, a therapy can have beneficial as well as adverse effects. We formulate

ϑ(R) as a function of the components of the dose regimen to quantitatively measure

the beneficial and the adverse effects of the therapy. In most cases, as the components

(n,D, T ) of the dose regimen increase, the beneficial effects of the therapy will increase

only upto a point. Beyond that, the risk of toxicity will increase without any increase

in the beneficial effects. It will be ideal to determine that point at which the benefits

are maximum and the risk of toxicity minimal.

Owing to manufacturing and other practical reasons, the components of the dose

regimen will have certain constraints imposed on them. These constraints must be

taken into account when optimising the dose regimen. In this thesis, we focus on

optimisation of ϑ(R) with respect to one or two components at a time, keeping the

others fixed. The main reasons for this are clinical practicalities and computational

limitations. We consider two types of problems:
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Type 1. Optimisation with respect to D and θ.

Here, for given values of n, t and T , we optimise the dose vector D for a single

drug and if the therapy is a combination of two drugs, we optimise D and θ. The

objective function is expressed as a function of R given n, t and T . The optimisation

problem can then be stated as:

minimise ϑ(R|n, t, T ),

that is, choose D ∈ D and θ ∈ [e, f ] to minimise function ϑ for given values of n, t

and T .

Type 2. Optimisation with respect to D, T and n.

The second type of problem we attempt is the optimisation of ϑ(R) for given val-

ues of t and θ. This is done in Chapter 7 where we find the best dose regimen for a

target reduction in the viral load. The optimisation problem in this case is:

minimise ϑ(R|t, θ),

that is, choose D ∈ D, n and T to minimise function ϑ for given values of t and θ.

Feasible Region for the Dose Vector D

For the vector of dose sizes D, we consider two cases. The first is the case of doses

whose values may be any real numbers in the admissible range ri ≤ di ≤ si, i = 1, ..., n.

That is, the dose vector is an element of a hyper-rectangle D. In the next chapter we

assume that ri = 0, i = 1, ..., n and si = dmax for all i, where dmax is the maximum

dose which can be administered at a given time.

Then, the solution space for D is the hypercube [0, dmax]
n. The second case is

of discretised doses, where it is assumed that the doses can be administered in mul-

tiples of a constant, κ. The solution space in this case is a discretised hypercube

{0, κ, 2κ, ..., dmax}n, assuming that dmax is a multiple of κ. Such discretised doses are

useful to consider when the drug is available only in fixed single units.

A Note on the Objective Function ϑ

In the above optimisation problems, the objective function ϑ can be formulated ac-

cording to the desired clinical criteria. In this thesis, we consider criteria which seek

55



Chapter 3. Optimisation of Dose Regimens: The Problem

to minimise over- and under-exposure to the drug. Therefore, in the problems that we

attempt, ϑ measures the magnitude of deviation from the desired level of exposure.

For example, for maintaining the drug’s concentration around a target concentra-

tion of Ctgt, the objective function ϑ must be able to measure the deviations of the

expected concentration profile from this target.

Function ϑ will depend on the mechanistic model, say C(D, t), which describes

the concentration-time relationship of the drug. Generally, ϑ will be a complicated

function of the components of R and the parameters of the mechanistic model of the

drug and therefore, optimisation of the objective function will not be a straightforward

problem. This motivated us to develop an algorithm to find the optimal dose regimen

R.

Assuming that the form of the mechanistic model C is known, we introduce the

notion of efficient dose regimens in the next chapter, which defines the goodness of

a dose regimen by its ability to keep the serum concentrations close to the target

concentration or within a therapeutic range. However, the concept of efficiency ex-

tends to all possible cases where a dose regimen is being optimised by minimisation or

maximisation of ϑ. In the same chapter, we present the Efficient Dosing algorithm de-

veloped by us, to compute the efficient dose regimens for a given target concentration

or range. We consider several constraints like discrete dose levels, skipped doses and

propose solutions for them. We also extend the algorithm for the case of combination

therapies where we present a method of computing the optimal ratio in which two

drugs should be combined and the efficient dose regimen for the combination unit.

We later discuss in Chapter 6 the case when the parameters of the assumed PK

model are unknown and simultaneous estimation of the parameters and optimisation

of the dose regimen are to be done. For this, the theory of non-linear mixed effects

models would be indispensable, which has been briefly explained in Chapter 5.
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Chapter 4

The Efficient Dosing Algorithm for

the Case of Known Model

Parameters

In this chapter, we introduce the Efficient Dosing (ED) algorithm to determine the

optimal dose regimen for the two types of optimisation problems introduced in Section

3.3. We handle the Type 1 problem in Chapters 4 and 6 while the Type 2 problem is

discussed in Chapter 7.

The Type 1 problem pertains to optimisation of ϑ(R) with respect to D in case

of a single drug and with respect to D and θ for a combination therapy, for given

values of n, t, and T . We assume that the mechanistic model which describes the

concentration-time relationship for the drug(s) is known. In this chapter, we make

a further assumption that the parameters of the model are known as well. In this

chapter, we work with mechanistic models which are assumed to be deterministic.

4.1 Efficient Dose Regimens

We denote by C(t, d) the concentration of the drug at time t after a single dose d is

administered. An example of the dependence on time t and on a single dose d in a

one-compartment parametric model of a drug concentration is shown in Figure 4.1.

The five different dose levels clearly impact the concentration which after achieving

a maximum value, decreases to zero in its elimination phase. The model parameters

are the same for all these cases.

Suppose a target concentration, denoted by Ctgt, is to be achieved and maintained

during the treatment period for T hours. Knowledge of the target concentration,
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Figure 4.1: The function C(t, d) for five different single dose levels, where C(t, d) is a

one compartment first order absorption model with parameter estimates K̂a = .37 h−1,
K̂e = 0.2 h−1, V̂ = 24 L and F̂ = .95.

Figure 4.2: The problem is to find a dose regimen which minimises under- and
over-exposure, that is the shaded area.

Ctgt, is a prerequisite to the application of the ED algorithm.

Then, Figure 4.2 shows the problem to be solved: for given n, t and T , how to

compute a dose vector D = (d1, ..., dn)T which minimises the areas denoted by the

‘+’ and ‘-’ signs. It is assumed that the mechanistic model followed by the drug is

known along with the estimates of the pharmacokinetic parameters.

Underexposure occurs when the concentration is below the target level (Ctgt) and

overexposure occurs when the concentration is above the target level. As a measure of

the under- and overexposure, we consider the area between the drug’s concentration

and the assumed target. This can be calculated by integration of |C(t, d)−Ctgt| over

the appropriate intervals of time. Let tj be the dose time point for the jth dose, where

j = 1, ..., n and t1 = 0. The number of doses n and the times tj’s should be chosen in

such a manner that T is covered. Let τj = tj+1 − tj, j = 1, .., n− 1, and τn = T − tn.
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We define a function ∆i : Ri
≥0 7→ R≥0 such that,

∆1(d1) =

∫ τ1

0

|C(t, d1)− Ctgt|dt,

∆2(d1, d2) =

∫ τ2

0

|C(τ1 + t, d1) + C(t, d2)− Ctgt|dt,

∆3(d1, d2, d3) =

∫ τ3

0

|C(τ1 + τ2 + t, d1) + C(τ2 + t, d2) + C(t, d3)− Ctgt|dt,

...

∆n(d1, d2, ..., dn) =

∫ τn

0

|C(τ1 + ...+ τn−1 + t, d1) + ...+ C(t, dn)− Ctgt|dt.

The ∆-functions measure the areas of under- and overexposure around the target

concentration. ∆1 measures the areas in the interval [0, t2] as a function of d1. ∆2

measures the areas in the interval [t2, t3] as a function of (d1, d2) and so on. ∆1 is

generally the largest as the concentration increases from 0 and it may take a few doses

to stabilise around the target concentration. In the next section we define various

efficiency criteria based on these measures for optimisation of the dose regimen.

4.2 Criteria of Efficiency

Let ∆ = (∆1, ∆2, ..., ∆n)T . We consider real valued functionals ϕ : Rn
≥0 7→ R≥0 of

∆. Dose regimens that minimise ϕ(∆) will be called ϕ-efficient. We minimise the

function ϕ(∆) over the sequences of doses D̃ = {(d1), (d1, d2), . . . , (d1, d2, . . . , dn)}.

The last element of the sequence is a dose vector D and it contains all other

elements of the sequence. Hence, for brevity, we will be saying that D minimises the

function ϕ(∆). It is possible to have di = 0 for any i = 1, ..., n. This may correspond

to intended or unintended skipping of the dose. We discuss these situations later.

Function ϕ(∆) can also be expressed using the notation introduced in Chapter 3 as

follows:

ϕ(∆) = ϑ(R|n, T, t, θ = 0). (4.1)

Since here the objective function is being optimised with respect to the dose vec-

tor D only, the terms optimum dose regimen and optimum dose vector will be used

interchangeably.

Definition 1. Let D be the class of all dose vectors D defined on [0, dmax]
n, where

dmax is the maximum dose which can be administered.

The choice of ϕ depends on many factors. Below we propose some possible effi-
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ciency measures.

Definition 2 (ϕA-efficiency). A regimen D∗ ∈ D, D∗ = (d∗1, . . . , d
∗
n)T is called ϕA-

efficient if the function

ϕA(∆(D)) =
1

n

n∑
i=1

∆i

is minimised by D∗ or equivalently

n∑
i=1

∆∗i ≤
n∑
i=1

∆i

for all D ∈ D, where ∆∗i = ∆i(d
∗
1, ..., d

∗
i ), i = 1, ..., n.

ϕA-efficiency is the first criterion which comes to mind to achieve the objective of

ensuring closeness of C(t) and Ctgt. However, arithmetic mean as a measure of loca-

tion is quite sensitive to extreme observations. Generally, values of ∆1 will be quite

large as compared to subsequent values because the concentration increases from 0

to hit Ctgt for the first time. This would lead to selection of a very high loading dose

which although may be prescribable, may not be desirable. To overcome this prob-

lem, one could use the ϕG-efficiency criterion which is based on the geometric mean,

a measure of location relatively less influenced by extreme observations.

Definition 3 (ϕG-efficiency). A regimen D∗ ∈ D is called ϕG-efficient if the function

ϕG(∆) = (Πn
i=1∆i)

1
n

is minimised by D∗ or equivalently

Πn
i=1∆∗i ≤ Πn

i=1∆i

for all D ∈ D.

Alternatively, one could take a weighted mean of the ∆is so that initial doses are

given lesser importance as compared to subsequent ones. We can thus define ϕC-

efficiency as follows.

Definition 4 (ϕC-efficiency). Let C = (c1, ... , cn)T be a vector of real numbers defined

on [0, 1]n such that
∑n

i=1 ci = 1. A regimen D∗ is called ϕC-efficient if the function

ϕC(∆) = CT∆ =
n∑
i=1

ci∆i
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is minimised by D∗ or equivalently

CT∆∗ ≤ CT∆

for all D ∈ D, where ∆∗ = (∆∗1, ...,∆
∗
n)T .

Another possibility is the harmonic mean. It is less affected by large outliers than

the arithmetic mean and thus leads to a smaller loading dose in the optimised dose

vector. This makes the dose sizes in the optimised dose vector more uniform.

Definition 5 (ϕH-efficiency). A regimen D∗ is called ϕH-efficient if the function

ϕH(∆) =
1

1
n

∑n
i=1

1
∆i

is minimised by D∗ or equivalently

n∑
i=1

1

∆∗i
≥

n∑
i=1

1

∆i

for all D ∈ D.

The harmonic mean is also used in the science of drug discovery to identify the

active components in a mixture of compounds, Santos et al. (2011).

A potential problem with ϕG and ϕH criteria is that they can not be used if any of

the functions ∆i, i = 1, ..., n, are zero. In this thesis, we mainly use the ϕA criterion.

In the next section we present the Efficient Dosing (ED) algorithm for solving some

of the optimisation problems we proposed in Section 3.3.

4.3 The Efficient Dosing Algorithm

We propose the following iterative algorithm for finding the efficient dose regimens for

the criteria defined previously. The optimal doses so obtained will be real numbers

which, for practical or manufacturing reasons, can be rounded to the nearest dose

levels possible. Alternatively, we propose to perform the optimisation over discrete

set of possible dose levels. Such a case is discussed later.

Let Lki = {dki1, dki2, dki3} be the set of 3 possible doses that can be administered at

the ith occasion, i = 1, ..., n, and k-th iteration, k = 1, 2, ..., w. These sets will be

called the dose sets. Thus, the number of possible dose regimens in this case is 3n.
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Iteration No. 1

Set L1
i = {10% of dmax, 50% of dmax, dmax} for all i = 1, ..., n, e.g., if dmax = 1000,

L1
i = {100, 500, 1000} for all i = 1, ..., n. Any three values can be selected from

(0, dmax] to form L1
i , though the algorithm will generally converge quicker if the val-

ues are uniformly spread in the interval (0, dmax]. Zero should not be used for a reason

which will be apparent later. For each of the 3n dose regimens, we compute ϕ(∆).

Let D1 be the dose regimen which minimises ϕ(∆) under the desired criterion. This

will be the most efficient regimen at the 1st iteration.

Iteration No. k

In iteration k the dose sets Lki are reconstituted based on the doses in Dk−1, that is

the doses minimising ϕ(∆) in the previous iteration. For example, if dk−1
i3 was selected

for i-th occasion in iteration k − 1, the new Lki will be:

Lki =

{
δ × dk−1

i3 , dk−1
i3 , min

(
dk−1
i3

δ
, dmax

)}
, (4.2)

where δ ∈ (0, 1) is a fixed constant, called the resolution. What value of δ to use is

discussed later. If dk−1
i1 or dk−1

i2 were selected, Lki will be constituted in the similar way.

Terminal Iteration

To terminate the algorithm, a suitable convergence criterion is required. The algo-

rithm is terminated at wth iteration if

dwi = dw−1
i ∀ i = 1, ... , n, (4.3)

where dki denotes the optimal dose to be administered at the ith occasion, at the kth

iteration. Thus, the algorithm terminates when for the given resolution, no further

improvement is possible.

The Efficient Dosing (ED) algorithm was programmed in MATLAB R© version

7.13.0.564 and the code is given in Appendix D.1.

Figure 4.3 presents the algorithm schematically.

By choosing an appropriate resolution, Dw can be driven as close as required to

the most efficient dose regimen D∗. This is stated in the following theorem.

Theorem 1. The ED Algorithm converges to the true unknown ϕ-efficient dose reg-

imen D∗ when the resolution tends to 1, that is

δ → 1 ⇒Dw →D∗.
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Input three initial values for each 

of the n dose sets in the first 

iteration. 

For each of the 3n dose regimens, compute 

ϕ(Δ). Note down the dose regimen Dk having 

the smallest ϕ(Δ).  

For each of the n doses belonging to Dk, create a 
new dose set by having that dose in the middle, 
(dose × δ) in the first position and the smaller of 
dmax and (dose ÷ δ) in the third position.  
 

Is this Dk same as 

in the previous 

iteration?  

Stop and report Dk, 

corresponding ϕ(Δ) 

and the iteration 

number. 

Yes 

No 

k = 1 

Start 

k = k + 1 

Figure 4.3: Flowchart showing the working of the ED algorithm. The ‘position’ in a
dose set is the order in which the doses appear. So for Li = {a, b, c}, a is in the first
position, b in the middle and c in the third position.

Proof. At each iteration, the algorithm selects the best dose regimen - the one hav-

ing minimum ϕ(∆), amongst the 3n dose regimens available at that iteration. For

this dose regimen, the n doses are then matched to their corresponding dose sets L.

Matching means that the positions of the selected doses in their respective dose sets

are identified by the algorithm. This matching enables the algorithm to find the direc-

tion in which the optimal dose is located. For example, if the first member di1 of a dose

set {di1, di2, di3} gets selected, that means the optimal dose is located in the interval

[0, di2). Dose di2 will be selected when the optimal dose lies in (di1, di2] ∪ [di2, di3). If

di3 gets selected, it means that the optimal dose is in the interval (di2,∞). However,

if the optimal dose lies beyond dmax, the algorithm selects dmax as the optimal dose

for that occasion. We deem dmax to be the optimal dose in that case.
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In the next iteration, for all the n doses, new dose sets are constituted in the

respective directions, around the doses selected in the previous iteration. Thus, at

each iteration, the dose sets move towards the optimal doses d∗i , i = 1, ..., n. The

algorithm is terminated at the wth iteration when, for the given resolution δ, the

same dose as in the previous iteration is selected for each occasion according to the

stopping rule (4.3). This rule is equivalent to

|dwi − d∗i | < |δdwi − d∗i | and |dwi − d∗i | <
∣∣∣∣min

(
dwi
δ
, dmax

)
− d∗i

∣∣∣∣ , (4.4)

where the unknown true optimal doses d∗i lie in the respective intervals(
δdwi ,min

{
dwi
δ
, dmax

})
, (4.5)

whose lower and upper limits tend to dwi when δ → 1, that is, the solution tends to

the optimum. This means that Dw →D∗ when δ → 1.

Equation (4.5) gives the interval in which the true optimal dose would lie. Obvi-

ously, one would want this interval to be as narrow as possible. The only way to do

this is to choose a value of δ very close to 1. However, a downside of having δ close to

1 is slower convergence of the algorithm. If the distance between the optimal dose and

the dose at current iteration is large, it will take many iterations for that interval to

move towards and encompass the optimal dose. The idea behind choosing the initial

values in iteration 1 is to cover the range of doses - (0, dmax] in the three points. The

optimal doses so found, are a function of the initial values chosen in iteration 1. As

the resolution is increased, this dependence on initial values diminishes and as δ → 1,

the algorithm is indifferent to the initial values chosen. We discuss in an example later

on how the resolution affects the precision and the rate of convergence. Henceforth,

ϕ(∆∗|δ) will denote the optimal value of ϕ(∆) obtained at resolution δ.

Alternatives to having 3 doses in a dose set

Let l be the number of dose levels in a dose set. We consider two alternatives to l = 3:

• l = 2. Dose sets in successive iterations can be constituted as (assuming dki1 is

selected in the current iteration),

Lki =

{
δdki1,min

(
dki1
δ
, dmax

)}
.

The number of possible dosing regimens in this case is 2n which is significantly

less than 3n. This will enable an iteration to be completed faster than when
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l = 3. However, if dmax is large, the number of iterations required for the

neighborhood to be formed around the optimal doses will be large and thus any

gain in efficiency will be substantially outweighed. However, if dmax is small,

this could be more efficient than taking l = 3.

• l = 4. We define two types of dose sets here.

Type 1 dose sets are those which in successive iterations can be constituted as

(assuming dki1 is selected in the current iteration),

Lki =

{
δ2dki1, δd

k
i1, d

k
i1, min

(
dki1
δ
, dmax

)}

Type 2 dose sets are those which in successive iterations can be constituted as

(assuming dki1 is selected in the current iteration),

Lki =

{
δdki1, d

k
i1, min

(
dki1
δ
, dmax

)
, min

(
dki1
δ2
, dmax

)}

The number of dose regimens in this case is 4n which will considerably increase

the time required to complete a single iteration. However, the number of iter-

ations required in case of l = 4 will be smaller as the optimal doses d∗i will be

quickly captured. This could be more efficient if dmax is very large. In the next

section, we shall explore the effect of the choice of l on the performance of the

ED algorithm with the help of an example.

Practical Constraints and Solutions

We discuss below some constraints which may arise in practical application of the

methods discussed above and how to resolve them.

Discretisation of doses: It may not be always possible to administer doses of any

quantity. For example, a tablet is manufactured at only one weight say, 20 mg and

multiple tablets can be taken as required. Thus the doses which can be administered

to the patient would be in multiples of 20. The problem then is to find the most

efficient dose regimen in such a case. One way could be to run the ED algorithm

over D = [0, dmax]
n ⊂ Rn and round the optimal doses found to the nearest multiples

of 20. However, this will be a sub-optimal method as changing one dose affects all

subsequent doses.

The ED algorithm can be adapted to find the most efficient dose regimen from a

discrete set of dose levels. Let κ be the quantity at which a drug is manufactured
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and so doses can only be in multiples of κ. We also assume that dmax is a multiple of

κ. Let Dκ = {0, κ, 2κ, ..., dmax}n be the class of all dose regimens in this case. The

objective then is to find D∗κ ∈ Dκ such that ϕ(∆κ|κ) is minimised, where the vector

∆κ contains the ∆-functions for the case of discretised doses.

The ED algorithm can now be adapted for this situation by making some changes.

Firstly, the initial dose sets should have doses which are multiples of κ. They can

be chosen in such a way that the interval (0, dmax] is covered uniformly in three

points of the initial dose sets. Secondly, the re-constitution of the new dose sets

in successive iterations will be different than what was done previously. Instead of

multiplying and dividing by δ, we add and subtract κ. For example Equation (4.2),

in the adapted algorithm, will become

Lki =
{

max(0, dk−1
i3 − κ), dk−1

i3 , min
(
dk−1
i3 + κ, dmax

)}
.

As a result, at each iteration, the possible doses will remain as multiples of κ. The

max function is necessary to ensure non-negativity of the doses.

One might be interested to know the loss in efficiency in this case as compared to the

case of real valued dose levels. Let ϕ(∆∗|δ) be the ϕ-efficient regimen at resolution

δ and let ϕ(∆∗|κ) be the efficient dose regimen for the case of discrete dose levels.

We define a measure of relative efficiency as

χ =
ϕ(∆∗|δ)
ϕ(∆∗|κ)

× 100. (4.6)

In Section 4.4 we present an example and calculate the efficiency to see the effect of

discretising the dose levels’ space.

Skipped or partially administered doses: There might be some deviations from

the intended dose regimens because of a variety of reasons. Whenever a departure

takes place, this information should be entered, before the next occasion, in the

ED algorithm to get the revised dose regimens. For example, if a dose is skipped,

the dose set at that time point should be set to 0 and the ED algorithm should be

re-run to get the updated subsequent doses. Another instance could be when only

a part of the intended dose is administered. The dose sets at such occasions could

be retrospectively set to the amount which got administered. Then, re-running the

ED algorithm would compute the updated dose regimen. The algorithm can thus

be used to quantify the effect of patient non-compliance on the efficiency of the ad-

ministered dose regimen.
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All doses constrained to be equal: If there is an additional constraint on the dose

vector that the doses must be equal, i.e, di = d for all i = 1, ..., n, then this can be

incorporated in the algorithm. In every iteration, the n dose sets are taken to be

equal to each other, i.e., Lki = Lk for all i = 1, ..., n and k = 1, ..., w. This results

in just l = 3 distinct dose vectors in each iteration from which the algorithm selects

that dose vector which minimises ϕ. In the next iteration, the dose selected in the

previous iteration is used to form n equal dose sets as shown in Equation 4.2. This

continues until convergence is obtained.

4.4 Applications and Extensions

We now illustrate the ED algorithm by means of a numerical example. We also give

an example of how the algorithm can be extended to find the best dose regimen and

the combination ratio in case of two drugs in a fixed dose combination unit. In these

examples, we assume the knowledge of the mechanistic model followed by the drug’s

concentration and the model parameters as well.

Example 1: Dose Regimen for a Single Drug

We consider the concentration profile of a one-compartment model which, after a

single dose d is the following function of time t:

C(t) =
FdKa

V (Ka −Ke)
(e−Ket − e−Kat) , (4.7)

where Ka denotes the absorption rate constant, Ke denotes the elimination rate con-

stant, V is the volume of distribution and F is the bioavailability. For the calcula-

tions we take the following values of the parameters as their estimates: K̂a = .37 h−1,

K̂e = 0.2 h−1, V̂ = 24 L and F̂ = .95. We assume that Ctgt = 3 mg/L, dmax = 240

mg and we consider n = 7 occasions to administer the drug with τj = 6 h, j = 1, ..., 7.

Furthermore, we assume that it is desired to maintain Ctgt for T = 42 h. We take the

resolution of the algorithm as δ = 0.99.

For each of the seven dosing time points, the corresponding initial dose sets to

choose from are shown in Table 4.1. The values in italic minimise ϕA(∆|0.99) over

the 37 dose regimens. They are used in the next iteration as the middle points of the

new dose sets. To exemplify the ED algorithm we show the dose sets of iterations two

and three (Tables 4.2 and 4.3).
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t1 t2 t3 t4 t5 t6 t7
40.00 40.00 40.00 40.00 40.00 40.00 40.00
120.00 120.00 120.00 120.00 120.00 120.00 120.00
240.00 240.00 240.00 240.00 240.00 240.00 240.00

Table 4.1: The seven dose sets in the first iteration, represented by the columns. We
chose the same initial dose sets for all the occasions. The rows represent the positions
of the doses in their respective dose sets.

t1 t2 t3 t4 t5 t6 t7
118.80 118.80 39.60 118.80 118.80 39.60 118.80
120.00 120.00 40.00 120.00 120.00 40.00 120.00
121.21 121.21 40.40 121.21 121.21 40.40 121.21

Table 4.2: The seven dose sets in the second iteration.

t1 t2 t3 t4 t5 t6 t7
120.00 117.61 40.00 117.61 117.61 40.00 117.61
121.21 118.80 40.40 118.80 118.80 40.40 118.80
122.44 120.00 40.81 120.00 120.00 40.81 120.00

Table 4.3: The seven dose sets in the third iteration.

The algorithm converged at the 85th iteration and the following ϕA-efficient dose

regimen in D = [0, dmax]
7, at resolution of δ = 0.99, was obtained:

D?
A = (163.87, 69.04, 92.12, 87.00, 87.88, 88.49, 87.88)T .

The loading dose is the largest and after dose 3, the dose levels stabilise at about 88

mg/L. Figure 4.4 shows the output from the ED algorithm. Plots 4.4a and 4.4b show

the property of convergence of the algorithm. Although convergence was achieved

at the 85th iteration, we allowed the algorithm to run for another 20 iterations to

demonstrate convergence.

For the ϕA criterion, we obtain ϕA(∆?|0.99) = 1.6494 (mg/L)×h. Plot 4.4c shows

the concentration profile obtained for the efficient dose regimen for the assumed pa-

rameter values. It oscillates about the target concentration.

On the other hand, the ϕH-efficient dose regimen is

D?
H = (159.00, 72.00, 91.20, 87.00, 88.76, 87.60, 87.88)T .

Figure 4.5 shows the output from the ED algorithm. For this criterion, we obtain

ϕH(∆∗|0.99) = 1.5190. It can be seen that the initial loading dose is lower for the

ϕH-efficient dose regimen in comparison to the ϕA-efficient dose regimen. The reason

for this is that as ∆1 is the largest in ∆, the arithmetic mean is more influenced by

its value than the harmonic mean is.
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(a) Convergence of DA = (d1, ..., d7)T . (b) Convergence of ϕA(∆|0.99).

(c) Concentration profile resulting from D?.

Figure 4.4: Output from the ED algorithm for ϕA-efficiency criterion. The Algorithm
Converged at the 85th iteration, with ϕA(∆∗|0.99) = 1.6494, but was allowed to run
for another 20 iterations to demonstrate convergence.

(a) Convergence of D = (d1, ..., d7)T . (b) Convergence of ϕH(∆∗|.99).

(c) Concentration profile resulting from D∗.

Figure 4.5: Output from ED algorithm for ϕH-efficiency criterion. The Algorithm
Converged at 84th iteration, with ϕH(∆∗|0.99) = 1.5190, but was allowed to run for
another 20 iterations to demonstrate convergence.

To compare the results with the case of having a lower resolution, the above com-
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putations were repeated for resolution 0.95. The ϕA-efficient dose regimen is

D?
A = (163.24, 68.26, 90.88, 88.21, 88.21, 86.34, 88.21)T .

The algorithm converged in just 18 iterations and ϕA(∆∗|.95) = 1.6511. It took 97

seconds while that for δ = 0.99 took 421 seconds, which may be an important gain

when the algorithm needs to be repeatedly used as part of a larger simulation study.

Thus, there is no significant loss in precision but substantial gain in computational

efficiency. One may, therefore, use a resolution of 0.95 for practical purposes. Figure

4.6 displays the output from the ED algorithm.

(a) Convergence of DA = (d1, ..., d7)T (b) Convergence of ϕA(∆∗|.95)

(c) Concentration profile resulting from D∗.

Figure 4.6: Output from ED algorithm for ϕA-efficiency criterion. The Algorithm
Converged at 18th iteration with, ϕA(∆∗|0.95) = 1.6511, but was allowed to run for
another 20 iterations to demonstrate convergence.

To explore the dependence of the algorithm on the initial values, we took 5 different

sets of starting values as shown in Table 4.4. It is clear that at a resolution of 0.99,

the choice of starting values does not significantly affect the solution.

We also considered different sizes of dose sets. Table 4.5 presents the results. The

optimal dose regimens are almost the same for all choices of the dose set size. There is

a slight difference in the case of Type 2 dose set of size four. The ϕA values marginally

improve with increase in the value of l. Since the number of possible dose regimens in

each iteration is ln, this small improvement is because of the increased refinement of

the search grid. As discussed earlier, the number of iterations decrease with increase

in the value of l.

Let us now consider the case of discretisation of the dose space. Let us take
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d1
1 d1

2 d1
3 d?1 d?2 d?3 d?4 d?5 d?6 d?7 ϕ?A

60 80 160 163.25 69.50 92.09 86.70 88.46 87.57 88.46 1.6492

75 150 225 162.56 69.90 91.70 87.18 88.08 88.08 88.08 1.6495

50 100 150 162.56 69.64 92.30 86.87 87.75 87.75 87.75 1.6495

30 130 250 163.81 69.02 91.54 86.97 87.84 87.93 87.84 1.6494

25 125 250 163.97 69.09 92.33 87.05 87.93 87.81 87.93 1.6495

Table 4.4: Dependence of the ED algorithm on the initial values chosen chosen for
the dose sets.

l d1 d2 d3 d4 d5 d6 d7 ϕA Iterations Time

2 163.81 68.83 91.20 87.60 87.85 87.60 87.60 1.6497 100 34

3 163.87 69.04 92.12 87.00 87.88 88.49 87.88 1.6494 85 421

4 (I) 163.25 69.50 92.09 86.7 88.46 87.57 88.46 1.6492 16 511

4 (II) 160.00 71.63 91.17 87.57 87.57 88.46 87.57 1.6485 18 526

Table 4.5: The effect of different dose set sizes on the convergence properties of the
ED algorithm. The time in seconds taken by the algorithm shown in the last column.

κ = 10 mg. For this value of κ, ϕA(∆∗10) = 1.6676. For the case of continuous doses

with δ = 0.99, ϕA(∆∗|0.99) was found to be 1.6494. Comparing the two values we

obtain χ = 1.6494/1.6676 = 98.91%. The loss in efficiency is therefore not that much.

However, when κ = 20 mg, we obtain ϕA(∆∗20) = 1.7217. Comparing it with the

continuous doses case we get χ = 1.6494/1.7217 = 95.80%. As expected, χ decreases

when κ is increased. The dose regimens are given in Table 4.6.

κ Efficient Dose Regimen ϕA

0 (163.87, 69.04, 92.12, 87.00, 87.90, 88.50, 87.90)T 1.6493

10 (160, 70, 90, 90, 90, 90, 90)T 1.6676

20 (160, 80, 80, 100, 80, 100, 80)T 1.7217

Table 4.6: Effect of Discretisation on the Efficient Dose Regimens (κ = 0 describes
the case of no discretisation).

Another observation regarding the criterion ϕ is that, generally, ϕ(∆∗) increases

with increasing dosing time τ . Maintenance around Ctgt becomes difficult if τ is large,

whereas, for example in the case of i.v. infusion, for which τ is very small, we will

obtain ϕ(∆∗) close to zero. This is clear from Figure 4.7.
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(a) C(t) for τ = 3 h. ϕA(∆∗|.99) = 0.5284. (b) C(t) for τ = 8 h. ϕA(∆∗|.99) = 3.4515.

Figure 4.7: Graphs showing how the course of concentration about the target depends
on the dosing interval τ .

4.4.1 Misspecification of the PK Model

A practical issue that can be studied in the context of the ED algorithm is the

occurrence of a mild misspecification of the PK model. That is, if the PK parameters

of the patient are slightly different from those assumed to be true, how inferior will

the administered dose regimen be for the patient. This is also important in all the

trials where cohorts of patients are treated with the same dose regimen obtained from

the population mean model parameters.

In the example discussed above, for maintenance of the concentration around Ctgt =

3 mg/L, the ϕA-efficient dose regimen and the optimal value of the objective function

were computed when the parameters of the PK model were assumed to be:

βo = (Kao, Keo, Vo, Fo)
T = (.37, .2, 24, .95)T .

Further, in this section we drop index A in ϕA to simplify the notation. Let D∗o and

ϕo(D
∗
o) be the optimum dose regimen and the optimal value of the objective function

corresponding to the assumed vector of parameters βo and D∗o .

D∗o is the dose regimen which is administered to the patient. As shown in the

above example, for resolution δ = 0.95. We have,

D∗o = (163.24, 68.26, 90.88, 88.21, 88.21, 86.34, 88.21)T with ϕo(D
∗
o) = 1.6511.

Now, suppose that the true vector of parameter values is βt and not the assumed

vector βo. The robustness of the ED algorithm can be ascertained by analysing the

magnitude of deviations of:

• the optimal dose regimen, D∗t , based on βt, from the administered dose regimen

D∗o and

• ϕt(D∗o) from ϕt(D
∗
t ), where ϕt(.) is the average over- and under-exposure when
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the true PK parameters of the model are βt. Since the dose regimen D∗t is op-

timal for βt, therefore, ϕt(D
∗
o) ≥ ϕt(D

∗
t ). Let us denote by ϕdev the percentage

by which ϕt(D
∗
o) exceeds ϕt(D

∗
t ), i.e.,

ϕdev =
ϕt(D

∗
o)− ϕt(D∗t )
ϕt(D∗t )

× 100.

The greater the magnitude of ϕdev, the higher is the inefficiency of the admin-

istered dose regimen D∗o for the patient. The range of ϕdev is [0,∞).

We can also measure the relative efficiency, ϕref , as

ϕref =
ϕt(D

∗
t )

ϕt(D∗o)
× 100.

ϕref measures the relative efficiency of D∗o , the dose regimen which is actually

administered, to the dose regimen which should have been administered, i.e.,

D∗t . The range of ϕref is [0, 100]. A value of ϕref close to 100 signifies that

the administered dose regimen was not very inferior to the true optimal dose

regimen.

• ϕref and ϕdev are related as follows:

ϕdev = 100

(
100

ϕref
− 1

)
.

We explore these concepts by means of a simulation study as described below.

We simulate Nsim = 1000 vectors of true PK parameters, β
(k)
t , k = 1, ..., Nsim,

from normal distributions centred at the assumed values of the parameters and having

variances as a certain percentage of the respective assumed values. That is, βt
(k) ∼

N 4(βo,Ω) where βo = (.37, .2, 24, .95)T and Ω = diag(.0056, .003, .36, .0143). These

variances are 1.5% of the respective values of the parameters.

The simulated concentration profiles, for the administered dose regimen D∗o , are

shown in Figure 4.8 to see the extent of variability generated in C(t). Most simulated

profiles deviate mildly from the concentration profile based on the assumed parameters

βo (shown in Figure 4.6c). However, several profiles show large departure from the

assumed model. We analyse this behaviour later in this section.

For every simulated vector β
(k)
t , the optimal dose regimen D∗

(k)

t , the percentage

deviation, ϕ
(k)
dev and the relative efficiency ϕ

(k)
ref are computed, k = 1, ..., Nsim.

To understand the distributions of the deviations, we compute the following statis-

tics:

73



Chapter 4. The Efficient Dosing Algorithm for the Case of Known Model Parameters

Figure 4.8: Concentration profiles generated by PK parameters simulated from normal
distributions having variance of 1.5% of the assumed parameter values, βo, for D∗o =
(163.24, 68.26, 90.88, 88.21, 88.21, 86.34, 88.21)T .

• D∗t = 1
Nsim

∑Nsim
k=1 D

∗(k)
t , which gives the average of the optimal dose regimens

based on the simulated parameters. Similarly, ϕdev and ϕref give the average

percentage deviation and the average relative efficiency.

• ∼D∗t is the median of the Nsim optimal dose regimens. Similarly, ∼ϕdev and ∼ϕref
are the median percentage deviation and the median relative efficiency.

• The coefficient of variation (CV) is the percentage ratio of the standard deviation

of the simulated values (D∗
(k)

t , ϕ
(k)
dev and ϕ

(k)
ref , k = 1, ..., Nsim) to their arithmetic

mean.

Results

Figure 4.9 presents the distribution of the optimal dose regimens based on the sim-

ulated vector of parameter values β
(k)
t . The administered dose regimen in every

simulation is D∗o = (163.24, 68.26, 90.88, 88.21, 88.21, 86.34, 88.21)T .

The distributions of the individual optimal doses seem to be centred around the

administered doses. The data presented in Table 4.7 also confirm this observation.

The mean and median optimal dose regimens are almost equal to the administered

dose regimen.

The symmetric distributions of the simulated optimal dose regimens could be at-

tributed to the use of a symmetric, i.e., normal distribution for generation of the PK

parameters.
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Figure 4.9: Distributions of the optimal doses d∗ti, i = 1, ..., 7, based on the simulated

parameters β
(k)
t , k = 1, ..., 1000.

Statistic d1 d2 d3 d4 d5 d6 d7

D∗t 167.26 69.57 92.58 87.87 88.91 88.80 88.82
∼
D∗t 163.24 68.26 90.88 86.34 88.21 86.34 88.21

CV 19.02 38.32 28.22 29.52 29.09 29.34 29.18

D∗o 163.24 68.26 90.88 88.21 88.21 86.34 88.21

Table 4.7: Mean, median and the CV of the doses in the optimal dose regimens based
on the simulated parameters β

(k)
t . The administered dose regimen, D∗o , has been

added to facilitate comparisons.

Table 4.8 presents the average, median, CV and the IQR for ϕdev and ϕref . From

the table, it can be seen that the average relative efficiency of the administered dose

regimen on account of model misspecification is about 50%. In other words, on ac-

count of model misspecification described above, the average under- and over-exposure

experienced by a typical subject is almost twice of what is experienced when the model

is specified correctly.

Figure 4.10 presents the percentage distribution of ϕref for the Nsim simulations.

It can be seen from the figure that in about 13% of the simulations, the administered

dose regimen is at least 90% as efficient with respect to the optimal dose regimen

whereas in about 5% of the simulations, the relative efficiency is less than 10%.

Now, let us consider three scenarios for further analysis of the simulated data.

According to the relative efficiency measure, ϕref , we define Scenarios I, II and III as

follows: Scenario I is when the relative efficiency is at least 80%, i.e., ϕref ≥ 80%,
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Deviations Efficiency

Statistic Value Statistic Value

ϕdev 202.61 ϕref 52.53
∼ϕdev 102.85 ∼ϕref 49.30
CV 175.92 CV 51.15
IQR 188.93 IQR 44.95

Table 4.8: Average, median, CV and the IQR of ϕdev and ϕref for the Nsim

simulations of βt
(k) ∼ N 4(βo,Ω) where βo = (.37, .2, 24, .95)T and Ω =

diag(.0056, .003, .36, .0143).

Figure 4.10: Percentage distribution of ϕ
(k)
ref , k = 1, ..., Nsim.

Scenario II is such that 50% ≤ ϕref < 80% and Scenario III when ϕref < 50%.

Table 4.9 shows the percentages of the simulations for which the scenarios occurred,

average, median and the CV of ϕref for these three scenarios.

Statistic I II III

Percent of Nsim 20.8 28.2 51.0
ϕref 91.74 64.37 30.0
∼ϕref 92.46 63.03 31.58
CV 6.21 13.87 40.12

Table 4.9: Average, median and the CV of ϕref for the three scenarios. Scenario I
is when ϕref ≥ 80%, Scenario II is such that 50% ≤ ϕref < 80% and Scenario III is
when ϕref < 50%.

As expected, the average relative efficiency of the administered dose regimen is

highest for Scenario I followed by Scenario II and Scenario III. Figure 4.11 presents

the distribution of ϕref for the three scenarios.

The PK model considered in this section depends on four parameters. The dose

regimen D∗o was determined to be optimal for the parameters contained in βo. It
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Figure 4.11: Distribution of ϕref for the three scenarios.

is obvious that if a single parameter is misspecified, D∗o will cease to be optimal

and greater the degree of misspecification, the larger will be the deviation from the

optimal dose regimen. However, when all the four parameters are misspecified to

varying degrees, the effect on optimality is not straightforward to understand. This

is what we explore now.

Since we are sampling βt from a four-dimensional normal distribution, it is not

obvious which combinations of the parameter values give large and which give small

values of the inefficiency. Also, the induced variability in the PK parameters results in

large variation in the simulated concentration profiles. To examine the effects of the

parameter misspecification, we first evaluate the relationship between the efficiency of

the administered dose regimen and the misspecification in individual PK parameters.

For this, in Figure 4.12, we plotted ϕref against each of the simulated true parameters

contained in βt. The parameters contained in βt are drawn from the respective normal

distributions as explained earlier.

The plots give interesting insights into how the values assumed by the four param-

eters influence ϕref . We would expect that large values of Ka, the absorption rate

constant, result in small values of ϕref on account of the over-exposure that occurs

because of rapid absorption of the drug. However, it can be seen from the figure that

even for some large values of Ka, the relative efficiency is quite high. This behaviour

can also be seen in the plots for the other three parameters. This points to the pos-

sibility that the effect of misspecification in one parameter may get counterbalanced

by misspecification in other parameters thereby resulting in minimal net effect on

the relative efficiency of the administered dose regimen. Out of the four parameters,

values of the elimination rate constant, Ke show the most definitive relationship with

ϕref .

It is, therefore, pertinent to study the joint effect of the parameters’ values on the

relative efficiency. Let us first consider the parameters pairwise. Now, the parameters
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(a) Ka (Kao = 0.37) (b) Ke (Keo = 0.20)

(c) V (Vo = 24) (d) F (Fo = 0.95)

Figure 4.12: Plots of ϕref (y - axis) and the simulated PK parameters.

V and F behave like scaling parameters in the assumed PK model, as can be seen in

Equation (4.7). Large value of F , which comes in the numerator, increases exposure

to the drug while large values of V , which comes in the denominator, decrease the

exposure to the drug. Therefore, a small ratio of V/F should, in general, result in

excessive exposure to the drug while a large ratio should cause under-exposure. Also,

the concentration achieved generally increases with increase in Ka and decreases with

an increase in Ke. Figure 4.13 plots the relative efficiency against four ratios of the

parameters: Ka/Ke, V/F , V/Ka and F/Ke.

These plots are more informative and helpful than the plots in Figure 4.12 in ex-

plaining the effect of the parameter values on the relative efficiency of the administered

dose regimen. For example, in Figure 4.13a, the relative efficiency can take almost

any value if the ratio of Ka to Ke is around the assumed value of 1.85. However, it

declines rapidly with increasing values of (Ka/Ke). Similar inference can be drawn

from Figures 4.13b and 4.13c, but there is less influence of high ratios shown on the

efficiency values.

In Figure 4.13d, however, the pair (F , Ke) seem to explain the variability in the

relative efficiency of the simulated dose regimens quite well. For values of the ratio

F/Ke less than the assumed value (4.75), the relative efficiency is low, because of

under-exposure to the drug due to small bioavailability and slow rate of elimination.

The relative efficiency is highest near the assumed value of the ratio and then declines

with increasing values on account of over-exposure to the drug due to high bioavail-

ability and slow rate of elimination. This figure reinforces importance of Ke already

seen in Figure 4.12.
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(a) ϕref vs Ka/Ke

(
Kao
Keo

= 1.85
)

(b) ϕref vs V/F
(
Vo
Fo

= 25.3
)

(c) ϕref vs V/Ka

(
Vo
Kao

= 64.9
)

(d) ϕref vs F/Ke

(
Fo
Keo

= 4.75
)

Figure 4.13: Plots of ϕref (y - axis) and ratios of simulated PK parameters.

To further assess the effects of parameter values on the relative efficiency of the

administered dose regimen, it is helpful to see the dependence of ϕref on two ratios

simultaneously. This is done in Figure 4.14, which depicts the dependence of ϕref on

the ratios F/Ke and V/Ka.

Figure 4.14: Dependence of ϕref on the ratios F/Ke (y-axis) and V/Ka (x-axis) -
complete graph. The colour scheme represents ϕref .

For better clarity of the plot, Figure 4.15 presents the same data but over truncated

ranges of the ratios F/Ke and V/Ka, since the bulk of the data points lie in these

ranges.

Interesting observations can be made from this plot. Most dose regimens for which
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Figure 4.15: Dependence of ϕref on the ratios F/Ke (y-axis) and V/Ka (x-axis) -
truncated graph. The colour scheme represents ϕref .

the relative efficiency, ϕref , is at least 80% have the ratio F/Ke close to the assumed

value of 4.75. For dose regimens having the ratio F/Ke far from the assumed value,

the relative efficiency is quite poor, in many cases even below 20%. Furthermore,

even if the ratio F/Ke for a dose regimen is close to the assumed value, for very large

departures of the ratio V/Ka from the respective assumed value, the relative efficiency

can still be low, since a large V/Ka ratio will result in significant under-exposure to

the drug. However, small ratios V/Ka do not affect the efficiency so much as long as

F/Ke is close to the assumed one. The somewhat parallel pattern of the efficiencies

indicates high sensitivity of ϕref to misspecification of F/Ke irrespective of the value

of V/Ka. From the figure, it is clear that for mild misspecification in the ratio F/Ke,

the relative efficiency remains high (up to 80%) for a large range of values of V/Ka.

Therefore, the optimal dose regimen computed by the ED algorithm is reasonably

robust against mild misspecification of the PK model parameters. Moderate to major

misspecification, however, may result in poor efficiency of the administered dose regi-

men. As observed in this example, the misspecification in parameters may sometimes

balance out so that the net effect on the relative efficiency of the administered dose

regimen is negligible. This means that even major misspecification in the parame-

ters may lead to the administered dose regimen being reasonably efficient whereas, in

some cases, even moderate misspecification can severely reduce the administered dose

regimen’s efficiency. The robustness of the ED algorithm is, therefore, dependent not

only on the degree of misspecification but also on the parameters which get misspeci-

fied. Careful analysis of the dependencies may help in understanding the sensitivity of

the drug concentration to patient’s characteristics represented by model parameters.

The PK model is, therefore, an important determinant of how the misspecification in

parameters will affect the efficiency of the administered dose regimen.
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4.4.2 Efficient Dose Regimen for a Drug Combination Unit

We now consider the case of a fixed dose combination unit (e.g., a tablet or a capsule)

which consists of two drugs: A and B. Each of the drugs will have their own PK profile

and target concentration but will be administered in a fixed proportion together in

one tablet. Let the ratio of drug B to drug A in the tablet be θ. The problem then is

two-fold: Find the optimal ratio θ∗ in which the drugs should be combined and find

the most efficient dose regimen for the tablet.

Let CA
tgt and CB

tgt be the target concentrations for drug A and drug B and let

DA = (dA1 , ..., d
A
n )T and DB = (dB1 , ..., d

B
n )T be the dose vectors of drug A and drug B

such that dBi /d
A
i = θ, for all i = 1, ..., n, i.e., the dosing unit always has the same ratio

of drug B and drug A. The dose vector for the tablet will be DA +DB = DA(1 + θ).

The treatment duration of both the drugs is same and it is denoted by T . However,

in case the drugs need to be maintained for different duration of time, the algorithm

can still be applied.

The algorithm assumes that the drugs A and B do not interact with each other,

i.e., when administered together, their pharmacological action is independent of each

other. It is possible to adapt the algorithm when interaction effect is present. The

example we discuss in this thesis, however, assumes no interaction between the partner

drugs.

We minimise a linear combination denoted by ϕC(∆) of efficiency criterion for drug

A (ϕA(∆)) and of drug B (ϕB(∆)), that is

ϑ(R|n, t,T ) = ϕC(∆) = ωϕA(∆) + (1− ω)ϕB(∆),

where ω is a weighting constant which can be used to adjust the importance to be

attached to one drug in comparison to the other.

If the concentration profiles of the two drugs are not in the same units, the dif-

ference in the magnitude can lead to one drug dominating the other. For example,

if CA
tgt is 10 µg/L and CB

tgt is 5 mg/L, the combined equation should be adjusted as

ϕC(∆) = 1000×ωϕA(∆) +(1−ω)ϕB(∆) (as 1 mg/L = 1000 µg/L) so that the areas

of under- and over-exposure of the two drugs are comparable.

The extension of the ED algorithm for this problem is called the Extended ED

(EED) algorithm and is explained below.

The EED algorithm extends the ED algorithm to find optimal ratio θ∗ in which

the two drugs should be combined and the optimal dose regimen of the tablet. In

each iteration of the EED algorithm, a ratio set for θ is created, the ED algorithm
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is run and optimal doses found for each of the three values of the ratio in the ratio

set. The ratio which results in the least value of ϕC(∆) is then used for creating a

new ratio set around it. The working of the EED algorithm is quite similar to the ED

algorithm, however, at each iteration of the EED algorithm, the ED algorithm is run

completely.

Let θmax and θmin denote the maximum and the minimum permissible values of

the ratio θ. Furthermore, let Θk = {θk1 , θk2 , θk3} be the ratio set of possible values

of the combination ratio, where k is the iteration number, k = 1, 2, ..., w. Below we

present the iterations of the EED algorithm.

Iteration No. 1

We assume that some preliminary information about a possible value of θ is available.

We use this information to choose the initial values θ1
i , i = 1, 2, 3. In case no infor-

mation is available about θ, we let Θ1 = {θmin, 1, θmax}.
For each of the θ1

i s, the ED algorithm is run to find best dose vector DA of drug A.

At each iteration of the ED algorithm,

• We set DB = θ1
iD

A.

• We compute ϕC(∆) = ωϕAA(∆) + (1− ω)ϕBA(∆).

• We check the stopping rule given in Equation (4.3) on DA to find the optimum

dose regimen, DA∗ conditional on θ1
i .

The optimum dose regimen for drug B, conditional on θ1
i , is then DB∗ = θ1

iD
A∗ .

The ratio θ1
i for which ϕC(∆) = ωϕAA(∆) + (1 − ω)ϕBA(∆) is the smallest is then

used to create a ratio set around it in the next iteration of the EED algorithm.

Iteration No. k

In iteration k, θ selected in the previous iteration is matched with its ratio set. The

ratio set Θk is constituted based on this matching. For example, if θk−1
3 was selected,

Θk will be:

Θk =

{
max

(
θmin, δ × θk−1

3

)
, θk−1

3 , min

(
θk−1

3

δ
, θmax

)}
, (4.8)

where δ ∈ (0, 1) is the resolution. The steps in iteration no. 1 are then repeated using

Θk in place of Θ1.

Terminal iteration
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The EED algorithm is terminated at the wth iteration if θw = θw−1, i.e., the algorithm

terminates when for the given resolution, no further improvement in θ is possible. The

final combination ratio and the efficient dose regimen associated with it are then given

as the output from the algorithm.

The EED algorithm was programmed in MATLAB R© and the code is given in

Appendix D.2.

Example 2: Dose Regimen for Coartem R©

Coartem R©/Riamet R© is made up of two components - Artemether (A) and Lume-

fantrine (L) in a 1:6 ratio. Artemether is rapidly absorbed and eliminated from

the body while lumefantrine is slowly absorbed and retained longer in the body.

Artemether rapidly clears the parasites from the body while lumefantrine ensures

extermination of residual parasites and prevents recrudescence.

The PK parameters of A and L in adult malaria patients which we use in this

example are adapted from Ezzet et al. (1998). The pharmacokinetics of artemether

are described by a one compartment model (4.7) with the following parameter values

K̂a = .37 /h, K̂e = 0.829 /h, V̂ = 217 L, ĈL = 180 L/h and F̂ = 0.7.

The pharmacokinetics of lumefantrine are described by a two compartment model

according to the following equation:

C(t) = αe−λt + βe−µt − (α + β)e−Kat, (4.9)

where Ka denotes the absorption rate and the constants α, β, λ and µ depend on

dose, clearance, volume of distribution, bio-availability and rate constants as shown

in Equation 2.7.

The parameter values for lumefantrine are ĈL = 15 L/h, V̂1 = 215 L, K̂a = .13

/h, Q̂ = 13.4 L/h, V̂2 = 1043 L and F̂ = 1. Here a time dependent change of

bioavailability for both drugs and auto-induction of the metabolism of artemether

were not taken into account. The standard dose regimen of Coartem R© is as follows:

it is administered over a period of 3-days for a total of n = 6 doses. The dosing

time points are: t = (0, 8, 24, 36, 48, 60)T , that is, τ1 = 8 h, τ2 = 16, τ3 = τ4 = τ5 =

12h. Assuming T = 72 h, we have τ6 = 12 h. Dose vector of artemether is DA =

(80, 80, 80, 80, 80, 80)T and of lumefantrine is DL = (480, 480, 480, 480, 480, 480)T and

the combination ratio is θ = 6.

The current dose sizes and the ratio between artemether and lumefantrine were

chosen in the 1990s and cure rates exceeding 95% have been observed in multiple
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studies including several thousands of patients.

Therefore, for artemether having a short half life, the existing regimen was used

to determine the target concentration, CA
tgt, as the average concentration over the

entire dosing period of 72 h (τ6 = 12 h added to the last time of dosing at 60 h). It

was calculated from cumulative dose (Dcum) which for artemether is 6 × 80 = 480,

clearance (CL) and the duration of the treatment period as CA
tgt = Dcum/(72 × CL)

= .037 mg/L.

For lumefantrine, which has a longer half life, the target concentration was com-

puted in the same way, but over a time period of 7 days (168 h) as CL
tgt = 1.14 mg/L.

Lumefantrine’s efficacy is known to depend on its concentration at day 7 being above

a threshold level, Ezzet et al. (1998). This motivated us to take the time period for

maintenance of the average concentration of L, CL
tgt, as seven days (168 h).

This example should serve as a positive control for our approach, since the dose

regimen used to derive the target concentrations is expected to be returned by the

extended ED algorithm.

This is an illustrative example, using PK models published in the literature. It

should not be interpreted as suggesting that the current dose regimen and the propor-

tions of A and L in Coartem R© need to be modified in any way to achieve the clinical

cure rates in malaria as observed today.

As derived above, we use CA
tgt = .037 mg/L which is to be maintained for 72 h

and CL
tgt = 1.14 mg/L, which is to be maintained for 168 h. The resolution of the

algorithm is set at δ = 0.99 and ω at 0.5. Owing to the difference in magnitude of

the concentrations of the drugs, we compute the objective function ϕC(∆) as:

ϕC(∆) = 1000× ωϕAA(∆) + (1− ω)ϕLA(∆).

Figure 4.16 shows the concentration profiles resulting from the standard dose regi-

men along with the respective average concentrations (the targets used in the ED

algorithm).

In the same graph, we have also plotted the ratio of concentration of A to the

concentration of L. It is interesting to see that although the concentration ratio follows

a pattern similar to that of the concentration profile of A, it is markedly higher

immediately after the first dose is administered. This is on account of their respective

rates of absorption in the body. As mentioned earlier, A is rapidly absorbed while

L is absorbed more gradually and has a slower elimination rate than A. Therefore,

as L accumulates in the body, the ratio of A to L decreases. The different rates

of disposition of A and L is one of the reasons of partnering them into a successful
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combination unit. While A rapidly kills parasites after administration, L prevents

recrudescence by being retained longer in the body.

A major difference between the dose ratio, θ, and the concentration ratio is that

while θ remains constant throughout the treatment, the concentration ratio is a func-

tion of time.

For the standard dose regimen, ϕC(∆) defined above is computed as 136.16.

Figure 4.16: Concentration profiles of A and L for the standard dose regimen. The
concentration of A and the concentration ratio have been multiplied with 10 to en-
hance the legibility of the graph.

The EED algorithm was applied to this problem with resolution δ = 0.99. The opti-

mal ratio θ∗ was found to be 6.60 withD∗A = (65.68, 80.00, 61.84, 61.22, 61.22, 61.22)T ,

D∗L = (424.24, 516.74, 399.42, 395.42, 395.42, 395.42)T and ϕC(∆∗) = 123.98. The

resulting concentration profiles and the concentration ratio of A to L are shown in

Figure 4.17. The plot of the concentration ratio is similar to the one corresponding

to the standard dose regimen.

Next, the algorithm was run again with one additional constraint: the six doses of

each drug were enforced to be same. The optimal ratio θ∗ was found to be 6.46 with

D∗A = (61.22, 61.22, 61.22, 61.22, 61.22, 61.22)T ,

D∗L = (403.45, 403.45, 403.45, 403.45, 403.45, 403.45)T ,

and ϕC(∆∗) = 124.96. The resulting concentration profiles and the concentration

ratio of A to L are shown in Figure 4.18.

It is interesting to observe that although a larger first dose of L would have further
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Figure 4.17: Concentration profiles of A and L for the dose regimen computed by the
EED algorithm and the raio of concentration of A to that of A. The concentration of
A and the concentration ratio have been multiplied with 10 to enhance the legibility
of the graph.

Figure 4.18: Concentration profiles of A and L for the dose regimen computed by
the EED algorithm (all doses enforced to be equal). The concentration of A and
the concentration ratio have been multiplied with 10 to enhance the legibility of the
graph.

decreased ϕLA(∆), the simultaneous optimisation with A’s doses prevents that from

taking place.

Similarly, smaller fifth and sixth doses of L would also have decreased ϕLA(∆) but

the simultaneous optimisation ensures that the ratio of doses of A to L, i.e., θ is

maintained for all the n doses. It may appear that these doses of L are excessive but

they are indeed optimal as a reduction in these doses of L would decrease the exposure

to A. Since A and L have different rates of elimination, L tends to accumulate in the
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body, in contrast with A which is quickly eliminated.

The standard dose regimen of Coartem R© may actually aim at slightly higher targets

than what we calculated. This explains the difference between the standard dose

regimen and the one returned by the EED algorithm when the doses are constrained

to be equal. This example is for illustrative purpose and it underscores the role our

methodology can play in setting the combination ratio of combination therapies.

To the best of our knowledge, our approach is one of the first, which extends dose

finding into optimisation of the dose ratio for fixed dose combinations. This is of

pivotal importance for the development of fixed dose combinations, as preferred for

the therapy of malaria, HIV, and tuberculosis. Moreover, the quantitative assessment

of the effect of different ratios can help in analysing ‘what-if’ scenarios. The features

of the ED algorithm such as discretisation of doses can be leveraged to accommodate

other practical constraints.

4.4.3 Dose Regimens for a Therapeutic Range

Sometimes the interest is in restricting the concentration profile of the drug to a

therapeutic range rather then around a target concentration, i.e., instead of Ctgt,

we have C+
tgt and C−tgt within which the profile must be maintained. Adherence to

one limit may be more important than the other. For example, in case of malaria,

the concentration of the drug in the body must exceed a specified C−tgt for effective

extermination of the parasites. Figure 4.19 shows the problem to be solved: find a

dose regimen that minimises the exposure to the drug outside the therapeutic range

(C−tgt, C
+
tgt) as much as possible.

The ED algorithm can be adapted for this situation as well. The adapted algorithm

penalises that dose regimen for which the concentration falls below C−tgt or increases

beyond C+
tgt. The penalty can be equal for both limits or weights can be attached if

adherence to one is of greater importance.

The algorithm in this case is the same as the ED algorithm with the difference

that the ∆-functions in this case will be defined as follows:

∆±i (d1, ..., di) = ν∆−i (d1, ..., di) + (1− ν)∆+
i (d1, ..., di) , i = 1, ..., n,

where,

∆−1 (d1) =

∫ τ1

0

max(0, C−tgt − C(t, d1)) d t,
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Figure 4.19: The problem is to find a dose regimen which minimises the area of
underexposure (below C−tgt) and overexposure (above C+

tgt) for duration T so that the
concentration remains within the therapeutic range of (C−tgt, C

+
tgt) as much as possible.

∆+
1 (d1) =

∫ τ1

0

max(0, C(t, d1)− C+
tgt) d t,

...
...

...

∆−n (d1, ..., dn) =

∫ τn

0

max(0, C−tgt − C(τ1 + ...+ τn−1 + t, d1)− ...− C(t, dn)) d t,

∆+
n (d1, ..., dn) =

∫ τn

0

max(0, C(τ1 + ...+ τn−1 + t, d1) + ...+ C(t, dn)− C+
tgt) d t,

and ν ∈ (0, 1) is a chosen weighing constant. Constant ν close to 1 will ensure that

the concentration remains above C−tgt while ν close to 0 will enable it to be maintained

below C+
tgt.

The rationale of the ∆±-function defined above is as follows: as long as the drug

concentration remains above C−tgt, the max-function selects 0 and the contribution of

this term to the ∆±-function is 0. But for those values of t where C−tgt exceeds the

drug concentration, it contributes to the ∆±-function, the quantum of which can be

controlled by the weighing constant ν. Similarly, as long as the drug concentration

remains below C+
tgt, the max-function selects 0 and the contribution of this term to

the ∆±-function is 0. But for those values of t where the drug concentration exceeds

C+
tgt, it contributes positively to the ∆±-function.

The relationship between ∆±-function and the original ∆-function is expressed be-

low.

Property 1. If C+
tgt = C−tgt = Ctgt i.e. the therapeutic range is shrunk to a single
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target concentration, then

2∆±i (.) = ∆i(.) , ∀ i = 1, 2, ... n.

Proof. We have,

∆±1 (d1) = ν∆−1 (d1) + (1− ν)∆+
1 (d1). (4.10)

Given that C+
tgt = C−tgt = Ctgt and since in the case of a single target concentration,

both under- and overexposure are equally minimised, ν = 0.5.

Therefore, equation 4.10 can be written as,

∆±1 (d1) =
1

2

∫ τ1

0

max(0, Ctgt − C(t, d1)) d t+
1

2

∫ τ1

0

max(0, C(t, d1)− Ctgt) d t.

⇒ 2∆±1 (d1) =

∫ τ1

0

{
max(0, Ctgt − C(t, d1)) + max(0, C(t, d1)− Ctgt)

}
d t.

⇒ 2∆±1 (d1) =


∫ τ1

0
(Ctgt − C(t, d1)) d t if C(t, d1) ≤ Ctgt∫ τ1

0
(C(t, d1)− Ctgt) d t if C(t, d1) ≥ Ctgt

⇒ 2∆±1 (d1) =

∫ τ1

0

|C(t, d1)− Ctgt| d t = ∆1(d1).

Similarly, the result can be proved for ∆±i , i = 2, ..., n.

The ED algorithm can be applied to select a dose regimen which minimises a

function of ∆±(D) = (∆±1 , ∆±2 , ..., ∆±n )T in exactly the same way as it was done for

a single target concentration.

Example 3: Maintenance Within a Therapeutic Range

Here we consider the drug discussed in Example 1 with τ = 6h and n = 7. Suppose

instead of Ctgt = 3 mg/L, we have C+
tgt = 3.5 mg/L and C−tgt = 2.5 mg/L. The

MATLAB R© code for implementing this method is given in Appendix D.3.

For ϕA-efficiency criterion of resolution 0.99 and ν = 0.5, the dose regimen is

D = (183.14, 67.71, 104.06, 91.54, 94.34, 95.06, 93.40)T

and the corresponding concentration profile is shown in Figure 4.20a.
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If maintaining a threshold concentration is more important, one might want to

completely avoid the dose regimen for which the concentration drops below C−tgt. In

this situation, ν can be increased to, say, 0.95 to reflect more importance attached to

C−tgt. The most efficient dose regimen in this case is given as:

D = (235.37, 52.07, 101.22, 94.34, 93.40, 95.30, 93.40)T .

The corresponding concentration profile is shown in Figure 4.20b. As expected, the

loading dose in this case is higher since more importance has been given to prevention

of underexposure by taking ν close to 1. Because of the higher importance attached

to maintenance of C−tgt by choosing a large value of ν, the larger loading dose causes

the concentration profile to breach the upper limit of the target concentration, C+
tgt.

(a) ν = 0.5 (b) ν = 0.95

Figure 4.20: Concentration profiles for different values of ν

From the figures it can be seen that the concentration profile can be maintained in

the desired therapeutic range and the relative importance of the two constraints can

be adjusted by the choice of ν.

In case of combination therapies, the criterion of maintenance of the concentration

within the therapeutic range can be used for either or both of the partner drugs,

and the extended ED algorithm can be used to optimise the dose vector and the

combination ratio of the fixed dose combination unit.

We end this chapter with a discussion on the limitations of the ED algorithm,

along with some possible remedies.
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4.5 Limitations of the ED Algorithm and Possible

Remedies

Prerequisites for the application of the algorithm are: knowledge of the PK model,

availability of the model parameters in the target population, target concentration

or therapeutic range for the drug and knowledge about the ‘symmetry of risk’, i.e.,

whether over- or under-dosing is more undesirable.

The limitations arise from the lack of knowledge about the correct target, from not

accounting for underlying variability in the population and from not accounting for

drug-drug interaction, when simultaneously optimising for two drugs. Any iterative

or simulation based approach will carry forward the uncertainties of the input.

The user will have to make sure that the pharmacokinetic parameters of the target

population match those of the source population, for example, that patient parame-

ters are comparable to those of healthy volunteers, special sub-populations’ (children,

geriatric patients) PK parameters are comparable to those of general patient popula-

tions, or adequate corrections have been performed. The same is true for the target

concentrations and therapeutic ranges, which also may differ between populations.

In infectious diseases, the concentration range applicable in one geographic area may

not be applicable in other areas due to local resistance. These limitations cannot be

ameliorated by further work on the algorithm.

In the example related to combination therapies, we have assumed that the partner

drugs behave independently of each other when administered together. Drug inter-

actions, especially infra- or supra-additivity will severely impede the validity of the

algorithm, when optimising for several drugs. In this case, a change in the dose ratio

will lead to a change in the concentration ratio and therefore a different contribution

of the interaction term to the overall effect. In infectious diseases, where near optimal

concentration profiles of different drugs are targeted regardless of the combination

partner (i.e. maximal proximity to EC90), this shortcoming is less relevant than in

areas, where trade-offs for toxicity have to be made, i.e., co-administering doses of

drugs, which are suboptimal for monotherapy, but effective in combination, in order

to improve the adverse effects profile.

The parameter values which would generally be used in the algorithm will be those

of a typical individual, i.e., the mean or the median concentration-time profile will

be used for optimisation. It is expected that 50% of the population will be above

and 50% of the population will fall below this value. It can be envisioned, that a

different quantile will be needed to cover certain scenarios. For example, it will be

entirely insufficient to have 50% of the population below the minimum inhibitory
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concentration (MIC), should this threshold be targeted. Optimisation based on a

different quantile of the distribution of concentration-time curves may be preferable,

e.g., at least 95% of the concentration time courses above the MIC at any time.

In Chapter 6, we consider the case when the ED algorithm has to be applied with-

out the knowledge of the PK parameters. This is done using an adaptive procedure

which also allows assessment of the population variability. This will help in miti-

gating the limitation of lack of past knowledge to some extent. The foundation of

the methodology is based on the theory of non-linear mixed effects models, which is

discussed in the next chapter.
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Chapter 5

Non-linear Mixed Effects Models -

Estimation and Design

As most of the compartmental models describing the concentration-time relationship

of a drug are non-linear functions of the PK parameters, the theory of parameter

estimation and of design of experiments for non-linear models are particularly useful

in PK/PD studies. If the parameters of the non-linear model are assumed to be

random variables having a defined density function, the model is then called a ‘non-

linear mixed effects model’. It is assumed that the underlying mechanistic model,

which explains the drug disposition process, is the same for all individuals. However,

each individual has their own vector of parameters, which is a realization of a random

vector. Such models are hierarchical and are generally described in two stages. The

two stages refer to the modelling of the intra- and the inter-individual variability.

Such models are commonly used for the population approach, as discussed in Section

2.3.

To extend the scope of the ED algorithm for the case of unknown parameters, we

use non-linear mixed effects models. Before discussing the theory of such models, we

firstly define a new expression for the drug concentration when multiple doses of a drug

are administered. This will help us in synchronising the multiple dose compartmental

model with the theory of non-linear mixed effects models.

5.1 Mechanistic Model for Multiple Doses of the

Drug

The problem with Equations (2.5) and (2.8) is that for a pre-selected τ , they give the

concentration at time t after the nth dose is administered. In other words, the function
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C becomes dependent on the dose number for which the subsequent concentration is

sought. For computational purposes, it would be desirable to make the function C

depend only on the time t at which the concentration is desired and not on a particular

dose number. We define such a function as shown below. Let n doses of a drug be

given with the corresponding dose vector D = (d1, ..., dn)T . Let tk be the time point

at which the kth dose is administered, k = 1, ..., n, with the first dose being given

at time 0, i.e., t1 = 0. Let C(t; d,βi) be the concentration at time t after a dose d

is administered to a patient i, i = 1, ..., N , where the parameters βi are unknown

constants. When multiple doses are administered, the resulting concentration can

be obtained by the principle of superposition as shown in Chapter 2. As discussed

in Chapter 2, population approach comprises of drawing inferences about the PK

parameters of a population based on the data collected from a cohort of patients.

The data are the drug concentrations measured from the blood samples drawn from

the subjects at pre-determined time points.

Let the jth observation on subject i be collected at times Tij, i = 1, ..., N and j =

1, ...,m. We propose the following form to compute C(Tij;D,βi), the concentration

at any time Tij when a dose vector D is administered to patient i:

C(Tij;D,βi) =
n∑
k=1

I{Tij≥tk}C(Tij − tk; dk,βi), (5.1)

where I{Tij≥tk} is an indicator function defined as

I{Tij≥tk} =

1 if Tij ≥ tk

0 otherwise.
(5.2)

Equation 5.1 is a computationally convenient expression for determining the con-

centration at time Tij without specifying where Tij occurs. If C(t; d,βi) is differen-

tiable with respect to βi, this expression preserves that in C(Tij;D,βi), as sum of a

finite number of differentiable functions is also differentiable.

If the samples are collected at the same times for all the N subjects in a group,

then Tij = Tj for i = 1, ..., N and j = 1, ...,m.

Example

Let n = 4 doses be administered at time points t = (t1, t2, t3, t4)T = (0, 8, 24, 36)T

h and let m = 3 blood samples be collected at (Ti1, Ti2, Ti3) = (6, 20, 40) h for

i = 1, ..., N subjects. Then, the drug concentration in the ith subject at sampling

time Ti1 = 6 is C(Ti1;D,βi) = C(6; d1,βi),
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at T2i = 20 it is C(Ti2;D,βi) = C(20; d1,βi) + C(12; d2,βi),

and at T3i = 40 is

C(T3i;D,βi) = C(40; d1,βi) + C(32; d2,βi) + C(16; d3,βi) + C(4; d4,βi).

This follows the principle of superposition but unlike the usual multiple dose formula,

it gives the drug’s concentration at any time.

We now introduce non-linear mixed effects models which are commonly used in

pharmacokinetic studies.

5.2 The General Statistical Model

Statistical models are a class of mathematical models which include assumptions

regarding generation of sample data from a larger population. They are specified by

a set of mathematical equations that relate random variables. Formally, a statistical

model is defined as a pair (S,P), where S is the sample space, and P is a set of

probability distributions on S, McCullagh (2002). The probabilistic assumptions

contained in a statistical model distinguishes it from deterministic models. Also,

unlike mechanistic models, the objective of statistical models is to best describe the

relationship between the variables without attempting to explain the reasons behind

this relationship.

To discuss the ED algorithm in an adaptive trial setting in Chapter 6, we use sta-

tistical models, in contrast with Chapter 4 where we used only deterministic models.

The statistical models are helpful in expressing not only the variability across the

population but also the variability in the observations collected from a single subject.

This is discussed below.

STAGE I (Intra-Individual Variability)

Let yij be the response variable, that is jth observation on the ith subject at the

experimental setting xij. Some commonly used response models are:

Additive error model: yij = η(xij,βi) + εij

Exponential error model: yij = η(xij,βi) exp(εij)

Proportional error model: yij = η(xij,βi)(1 + εij)

for i = 1, ..., N and j = 1, ...,m where,
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εij is the observational error associated with yij such that εij
i.i.d.∼ N (0, σ2),

βi is the q × 1 vector of parameters for the ith subject,

xij is the experimental setting for the (i, j)th observation ,

m is the number of observations collected from each subject,

M = Nm is the total number of observations collected from the N subjects,

η(.) is the regression function, non-linear in some or all elements of the parameter

vector βi.

For instance, in pharmacokinetics, η(.) would be one of the compartmental models

described previously and xij could be the time at which the jth observation is collected

on the ith subject.

By a suitable log transformation, the last two models can also be expressed in the

form of the additive error model and as such, we will be restricting ourselves to the

additive error model throughout the thesis.

For an additive error model, the ith subject’s responses can be summarised in vector

form as:

yi = η(xi, βi) + εi , i = 1, ..., N, (5.3)

where, yi =


yi1
...

yim

 , xi =


xi1
...

xim

 , η(xi, βi) =


η(xi1,βi)

...

η(xim,βi)

 and

εi =


εi1
...

εim

 , εi ∼ Nm(0, σ2I).

We assume in the above model that the variance of the errors, σ2, is constant

across subjects. The examples described in this thesis assume a homoscedastic error

structure in this sense.

A heteroscedastic model would be when the variance of the errors is subject specific;

however, we do not consider such situation in this work.
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STAGE II (Inter-Individual Variability)

In the second stage of the hierarchical model, βi is modelled as a function of mean

PK parameters and random effects as follows:

βi = Aiβ +Bibi, i = 1, ..., N, (5.4)

where

β is a p× 1 vector of unknown constant population parameters,

Ai is a q × p dimensional matrix of constants or covariates associated with the

population parameters relevant to the ith subject,

Bi is a q × r dimensional matrix used to associate random effects to the relevant

parameters,

bi is the r × 1 vector of random effects such that bi ∼ N r(0, σ
2Ω) assumed to be

independent of the vector of the observational errors εi.

This notation makes it possible for some parameters of the population to be fixed

across subjects by setting their corresponding variance and covariance entry in the

matrix Ω to 0.

The models for the N subjects can be combined in one as

y = η(x,φ) + ε, (5.5)

where y =


y1

...

yN

, η(x,φ) =


η(x1,β1)

...

η(xN ,βN)

, φ = Aβ +Bb, A =


A1

...

AN

 ,

B = diag(B1, ...,BN) , b =


b1

...

bN

 and ε =


ε1

...

εN

.

We assume that ε ∼ NM(0, σ2I) and b ∼ N (0, σ2Ω̃), where Ω̃ = diag(Ω, ...,Ω).

The distribution of y, conditional on the vector of random effects b, can then be

expressed as

y|b ∼ NM(η(x,φ), σ2I), (5.6)
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i.e.,

y − η(x,φ) | b ∼ NM(0, σ2I). (5.7)

Another common form of expressing the model parameters is βi = g(β, bi), where

g is a vector of linear or non-linear functions of the population parameters and the

random effects.

Example - Multiple Doses

We consider the above defined model in the context of the multiple dose model we

defined in Equation 5.1.

We have a cohort of size nc in which every subject is administered n doses of

a particular drug. The form of the compartmental model is known but the model

parameters are to be estimated. To accomplish this, m blood samples are taken from

each of the nc subjects at times Tj, j = 1, ...,m (for all i = 1, ..., nc, so index i is

dropped). We consider the exponential error model. Then, stage 1 model is:

yij =

(
n∑
k=1

I{Tj≥tk}C(Tj − tk; dk,βi)

)
exp(εij), (5.8)

where i = 1, ..., nc and j = 1, ...,m. The error terms are independently distributed as

εij ∼ N (0, σ2). Consequently, the conditional distribution of yij given bi is lognormal.

This is consistent with the non-negativity of drug concentrations.

Taking natural logarithm of both sides we get:

ln(yij) = ln

(
n∑
k=1

I{Tj≥tk}C(Tj − tk; dk,βi)

)
+ εij.

The above model is of the form of the additive error model. Here, however, for a given

value of the random vector bi the ln of the response variable is normally distributed.

Let us take

C(t; d,β) =
dKa

V (Ka −Ke)
(e−Ket − e−Kat) . (5.9)

Now, for the second stage model, we model the three PK parameters using a

lognormal distribution for βi = (Kai, Kei, Vi)
T . We assume that Kai = Ka exp(bi1),

Kei = Ke exp(bi2) and Vi = V exp(bi3)wβ4i , where wi is the body weight of the ith

subject, the only covariate considered here. As discussed in Section 2.3, inclusion of

covariates such as bodyweight or age in the model leads to a reduction in the residual
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variability.

Taking natural logarithm on both sides we obtain:

ln(Kai) = ln(Ka) + bi1, (5.10)

ln(Kei) = ln(Ke) + bi2, (5.11)

ln(Vi) = ln(V ) + β4 ln(wi) + bi3, (5.12)

This system can be further expressed in the vector notation as:

ln(Kai)

ln(Kei)

ln(Vi)

 =

1 0 0 0

0 1 0 0

0 0 1 ln(wi)




ln(Ka)

ln(Ke)

ln(V )

β4

+

1 0 0

0 1 0

0 0 1


bi1bi2
bi3

 , (5.13)

where bi = (bi1, bi2, bi3)T ∼ N (0,Ω) and Ω = diag(ω1, ω2, ω3).

This is of the form: βi = Aiβ+Bibi, i = 1, .., nc, where vector β of the population

parameters includes the log-transformed model parameters and the additional one

corresponding to the covariate.

The distributions of the PK parameters in the above example are lognormal. For

example, for the absorption rate constant Kai , since ln(Kai) ∼ N (ln(Ka), ω1), we

have Kai ∼ lnN (ln(Ka), ω1).

Consequently,

E(Kai) = exp
{

ln(Ka) +
ω1

2

}
= Kae

ω1/2 and

Var(Kai) = exp{2 ln(Ka) + ω1} (eω1 − 1) = K2
ae
ω1 (eω1 − 1) .

Similarly, Kei ∼ lnN (ln(Ke), ω2). We therefore have E(Kei) = Kee
ω2/2 and

Var(Kei) = K2
e e
ω2 (eω2 − 1) .

For the volume parameter, we have

ln(Vi) ∼ N (ln(V wβ4i ), ω3) ⇐⇒ Vi ∼ lnN (ln(V wβ4i ), ω3).

Thus, E(Vi) = V wβ4i e
ω3/2 and Var(Vi) = V 2w2β4

i eω3 (eω3 − 1) .

A usual practice when the bodyweight wi is used in a PK model, as for example,

in Equation (5.12) is to use (wi/wstd) instead of wi, where wstd is taken as the stan-

dardised weight such that the percentages of people having bodyweight greater than
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and less than wstd are approximately equal. In adult trials, wstd is generally taken to

be 70 Kg. This ratio is used to scale the subjects’ bodyweights with reference to the

standardised weight.

The lognormal distribution is the preferred choice for modelling pharmacokinetic

parameters. There are mainly two reasons for this. Firstly, the PK parameters are

non-negative. Secondly, the distributions of PK parameters, like of most biological

data, have been observed to be positively skewed, thus making them suitable to be

modelled by the log-normal distribution.

Having embedded the multiple dose model into the context of non-linear mixed

effects models, our next problem is to estimate the model parameters as precisely

as possible. This will require blood sampling at optimal time points. In the rest of

this chapter, we discuss the methods and the software available to solve these twin

problems of parameters’ estimation and optimal design.

5.3 Estimation of the Model Parameters

We assume that the variance-covariance matrix, Ω, of the random effects is unknown.

Let the column vector ω consist of the unique elements of the variance-covariance

matrix Ω. We are interested in estimation of the vector Ψ = (βT ,ωT , σ2)T . In this

section we present a brief overview of the most commonly used methods.

5.3.1 Method of Maximum Likelihood

The likelihood function for the N subjects, based on the assumption of subjects’

independence, is given as:

L(Ψ|y) =
N∏
i=1

p(yi|xi; Ψ), (5.14)

where p(yi|xi; Ψ) is the marginal distribution of yi|xi obtained from integrating out

the random effects bi, i.e.,

p(yi|xi; Ψ) =

∫
p(yi, bi|xi; Ψ) d bi (5.15)

=

∫
p(yi|bi,xi; Ψ)p(bi|xi; Ψ) d bi. (5.16)
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We assume that the random effects bi are independent of the design variables xi which

results in,

p(yi|xi; Ψ) =

∫
p(yi|bi,xi; Ψ)p(bi; Ψ) d bi. (5.17)

The likelihood function is thus expressed as

L(Ψ|y) =
N∏
i=1

∫
p(yi|bi,xi; Ψ)p(bi; Ψ) d bi. (5.18)

Further, let Ω be parametrized by an r × r matrix γ such that Ω = (γTγ)−1. If Ω

is positive definite, such a γ will exist but may not be unique. One possible γ is the

Cholesky factor of σ2Ω−1.

Now, as we have assumed that bi ∼ N r(0, σ
2Ω), where Ω = (γTγ)−1, we can write

p(bi; Ψ) =
1

(2πσ2)r/2|(γTγ)−1|1/2
exp

[
− 1

2σ2
bi
T (γTγ)bi

]
. (5.19)

Also, under the assumption that εi ∼ Nm(0, σ2I), the distribution function of yi,

conditional on the random effects bi, is given as,

p(yi|bi,xi; Ψ) =
1

(2πσ2)m/2
exp

[
− 1

2σ2
(yi − η(xi, βi))

T (yi − η(xi, βi))

]
, (5.20)

where βi = Aiβ + Bibi expresses a subject’s parameters as a function of the fixed

effects, random effects and the covariates.

Finally, the marginal likelihood function is:

L(Ψ|y) =
N∏
i=1

∫
1

(2πσ2)m/2
exp

[
− 1

2σ2
(yi − η(xi, βi))

T (yi − η(xi, βi))

]
×

1

(2πσ2)r/2|(γTγ)−1|1/2
exp

[
− 1

2σ2
bi
T (γTγ)bi

]
d bi (5.21)

=
|γ|N

(2πσ2)(N(r+m))/2

N∏
i=1

∫
exp

[
− 1

2σ2
(yi − η(xi, βi))

T (yi − η(xi, βi))

]
×

exp

[
− 1

2σ2
bi
T (γTγ)bi

]
d bi.

(5.22)

=
|γ|N

(2πσ2)(N(r+m))/2

N∏
i=1

∫
exp

[
||yi − η(xi,βi)||2 + ||γbi||2

−2σ2

]
d bi, (5.23)
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where the symbol ||a|| denotes the Euclidean norm of a vector a = (a1, ..., an)T ,

that is ||a|| =
√
aTa.

Therefore, maximising Equation (5.23) with respect to Ψ = (βT ,ωT , σ2)T would

give us the estimates of the parameters. Unfortunately, the integral has no closed form

solution, in general, and therefore must be evaluated numerically. Several methods

have been proposed for a numerical solution. Pinheiro and Bates (2000) and Davidian

and Giltinan (1995) give a review of these methods. For our work, we make use of

the MATLAB R© package nlmefit.

We briefly explain some of the estimation methods available for non-linear mixed

effects models. We firstly express the function η(xi, g(β, bi)) in an approximate lin-

earised form. This will also be useful when we discuss the theory of optimal designs

for non-linear models.

5.3.2 Methods Based on Linearisation of the Response

Linearisation of η(xi, g(β, bi))

As mentioned before, the regression function η(xi, g(β, bi)) is non-linear in the pa-

rameters Ψ. Let αi = (βT , bTi )T . Using a first order Taylor series expansion,

η(xi, g(β, bi)) can be linearised around αi at αo = (βoT , boT )T as shown below:

η(xi, g(β, bi)) ≈ η(xi, g(βo, bo)) +

(
∂η(xi, g(β, bi))

∂αi

)T ∣∣∣∣∣
αo

(α−αo)

= η(xi, g(βo, bo))+

(
∂η(xi, g(β, bi))

∂β

)T ∣∣∣∣∣
αo

(β−βo)+
(
∂η(xi, g(β, bi))

∂bi

)T ∣∣∣∣∣
αo

(bi−bo),

= Ki +

(
∂η(xi, g(β, bi))

∂β

)T ∣∣∣∣∣
αo

β +

(
∂η(xi, g(β, bi))

∂bi

)T ∣∣∣∣∣
αo

bi,

where Ki is a m× 1 vector of constants. The non-linear mixed effects model can

now be expressed in the form a linear mixed effects model as:

yi ≈Ki +Giβ +Hibi + εi, (5.24)

102



Chapter 5. Non-linear Mixed Effects Models - Estimation and Design

where the elements of the matrices Gi and Hi are given as:

(Gi)jk =
∂η(xij, g(β, bi))

∂βk

∣∣∣∣∣
αo

and (Hi)jk =
∂η(xij, g(β, bi))

∂bk

∣∣∣∣∣
αo

,

for j = 1, ...,m and k = 1, ..., p.

From Equation (5.24) we get an evaluation of the expectation vector and the

dispersion matrix for yi, that is

E(yi) = Eo
i ≈Ki +Giβ,

and

var(yi) = V o
i ≈ σ2(HiΩH

T
i + Im).

The expression of variance is valid only on the assumption of independence of bi and

εi. Further, as εi ∼ Nm(0, σ2I), the approximate distribution of yi is Nm(Eo
i ,V

o
i ).

We now discuss some methods which are available for the estimation of non-linear

mixed effects models.

First Order (FO)

The FO method is among the first methods proposed for estimation of population

parameters by maximum likelihood. This method is due to Sheiner and Beal (1980)

and consists in using the first-order Taylor series expansion of the model η around the

current estimate, β, of β and the expected value of the random effects, i.e., around

E(b) = 0. The distribution of yi is thus approximated as:

yi ∼̇ Nm(Êi, V̂i), (5.25)

where ∼̇ stands for ‘approximately distributed as’ and Êi and V̂i are evaluated at

α̂ = (β̂T ,0T )T .

This simplification makes the FO method computationally less expensive than the

Linear Mixed Effects method (discussed below) but may result in significantly biased

estimates. An extended least squares method, as discussed in Sheiner and Beal (1985),

can be used to estimate the population parameters from Equation (5.25) and these

estimates can then be used to linearise η in the next iteration. These iterations

continue until a pre-specified convergence criterion is met. This method has been
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implemented in the software NONMEM, Beal and Sheiner (1989).

Linear Mixed Effects (LME)

We briefly describe here the Linear Mixed Effects (LME) method as given in Lind-

strom and Bates (1990).

LME consists in using a Taylor series expansion of η(xi, g(β, bi) about estimates

of both b and β. The estimates are then updated by minimisation of a penalised least

squares function. It is a two-step algorithm as discussed below:

Step 1

Let the initial values of Ω and σ2 be Ωo and (σo)2.

The penalised least squares function:

N∑
i=1

[
||yi − η(xi, g(β, bi)||2 + bTi Ωobi

(σo)2

]

is then minimised with respect to β and bi. We denote the optimised values by

α̂i = (β̂T , b̂T )T .

Step 2

First order Taylor series is then used to expand η(xi, g(β, bi)) around α̂i. The vector

of response of the ith subject can be expressed as

yi ≈ η(xi, g(β̂, b̂i)) +

(
∂η(xi, g(β, bi))

∂β

)T ∣∣∣∣∣
α̂i

(β − β̂) +

(
∂η(xi, g(β, bi))

∂bi

)T ∣∣∣∣∣
α̂i

(b− b̂i) + εi. (5.26)

Let X̂i =

(
∂η(xi, g(β, bi))

∂β

)T ∣∣∣∣∣
α̂i

and Ẑi =

(
∂η(xi, g(β, bi))

∂bi

)T ∣∣∣∣∣
α̂i

.

We then have,

E(yi) ≈ Êi = η(xi, g(β̂, b̂i)) + X̂i(β − β̂)− Ẑib̂i,
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and

var(yi) ≈ V̂i = σ2(Im + ẐiΩẐ
T
i )

Since yi is now a linear function of bi and εi, the distribution of yi is approximately

Nm(Êi, V̂i). The log-likelihood function for this distribution is given as:

lF (β, σ,Ω|yi) ≈ −
1

2
ln(V̂i)−

1

2
(yi − Êi)

T V̂i
−1

(yi − Êi).

This is obtained for a linear mixed effects model for which standard methods are

available. Let β̂, Ω̂ and σ̂2 be the values which maximise the approximate likelihood

function generated by yi above. Now setting Ωo = Ω̂ and (σo)2 = σ̂2, the algorithm

returns to Step 1 and minimises the updated penalised least squares function.

The algorithm iterates between these two steps until convergence is attained. The

maximum likelihood estimates of β, Ω and σ2 are obtained at the end along with

the updated estimate of the vector of random effects b̂. We will use the vector b̂ in

Chapter 7, where we present a new method of dose individualisation, by computing

the subjects’ individual PK parameters.

First Order Conditional Estimation (FOCE)

A major disadvantage of the FO method is that it assumes the expected vector of

random effects to be equal to 0, which will produce imprecise estimates if there is large

inter-individual variability in the data. The FOCE method is a refinement over the FO

method and has also been implemented in NONMEM, Beal and Sheiner (1998). The

primary difference between these two methods is the way the log-likelihood function is

approximated. While in FO method the linearisation was done around the expected

value of the random effect, i.e., E(b) = 0, in the FOCE method, the linearisation is

done around the current estimates of b. The estimation algorithm for the parameters

is similar to the two step algorithm proposed by Lindstrom and Bates (1990). A

disadvantage of this method is that it is very sensitive to the initial estimates of the

parameters.

Stochastic Expectation Maximisation Algorithms

The Expectation Maximisation (EM) algorithm is a popular tool and was first pro-

posed by Dempster et al. (1977) to handle the issue of missing values in maximum

likelihood problems. However, it has a wider scope and has several applications in

statistics including computation of MLEs. The algorithm consists of the E-step in

which a function for expectation of the log-likelihood is evaluated at the current
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estimates of the parameters. Next, in the M-step, the parameters maximising the

log-likelihood function found in the E-step are computed. These parameters are then

used to find the log-likelihood function for the next E-step. The algorithm terminates

with the convergence of the parameters. The EM algorithm can thus be used to find

the MLEs when the equations cannot be solved directly. An advantage of this method

is that no derivatives need to be computed for computation of the MLEs.

However, in the case of non-linear mixed effects models, the E-step is difficult to

carry out due to the complexity of the integrals involved. To overcome this problem,

many stochastic methods have been proposed. The two most commonly used methods

are:

• Monte Carlo integration during the E-step with importance sampling around

the current individual estimates as in Bauer and Guzy (2004). If x is a random

variable with pdf f(x), then Monte Carlo integration consists in estimating

E[g(x)] =
∫
g(x)f(x) dx as g̃(xn) = 1

n

∑n
i=1 g(xi), where xn = (x1, ..., xn)T is a

random sample drawn from f . g̃(xn) is an unbiased and consistent estimator of

E[g(x)]. Importance sampling is a variance-reduction technique which modifies

the above estimator to facilitate a lower variance, Tokdar and Kass (2010).

• The Stochastic Approximated EM (SAEM) method which makes use of stochas-

tic approximation of the expected likelihood function, Delyon et al. (1999).

Stochastic approximation comprises of optimisation methods which are used

to find extrema of functions of random variables which cannot be computed

directly.

Mentré and Lavielle (2008) discuss the performances of the Stochastic EM methods

for PKPD analyses. They conclude that the SAEM algorithm has good statistical

properties and overcomes some of the limitations of the other methods described

above.

Other Methods for Estimation

Laplace approximation to integrals can be used to approximate the integral given in

(5.23), Wolfinger (1993). Laplace approximation converts the problem of integration

into a simpler problem of maximisation. Suppose we have to evaluate the integral

I =
∫
g(b) d b where b is a r × 1 vector. Let l(b) be the ln of the integrand and b̂ be

the point of maxima of l(b). Then, the first derivative is l′(b) = 0 and using second

order Taylor Series expansion at the point b̂ we have: l(b) ≈ l(b̂)+ 1
2
(b− b̂)T l′′(b̂)(b−

b̂), where l′′(b̂) denotes the second derivative evaluated at b̂. Using this, I can be

approximated as I =
∫

exp(l(b)) d b ≈ exp(l(b̂))
∫

exp(1
2
(b − b̂)T l′′(b̂)(b − b̂)) d b.
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This is a Gaussian integral and can be computed as I ≈ exp(l(b̂))(2π)r/2|− l′′(b̂)|−1/2.

This approximation is available in most software dealing with non-linear mixed effects

models.

SAS R© (SAS Institute Inc., USA) software provides ‘PROC NLMIXED ’ for esti-

mation of parameters in non-linear mixed effects models. It provides an option of

integration of the likelihood function using adaptive Gaussian quadrature method

presented by Pinheiro and Bates (1995). This method approximates the integral

given in (5.23) by a weighted sum over predefined abscissae for the random effects bi.

For a good approximation, this method centres the abscissae at the empirical Bayes

estimate of bi, defined as the vector b̂i that minimises − ln[p(yi|bi,Xi; Ψ)p(bi; Ψ)].

Standard optimisation algorithms can then be used to compute Ψ̂.

Many statistical software have a dedicated submodule for estimation of parameters

of non-linear mixed effects models. For example, R and S-Plus R© both have packages

called nlme. Specialist PK/PD software like NONMEM R© and Monolix R© present a

library of PK/PD models and provide a choice of methods to estimate the parameters,

of which the main ones were presented in this section.

The linear mixed effects (LME) estimation algorithm of Lindstrom and Bates

(1990) is one of the most popular methods for estimation of parameters of non-linear

mixed effects models and we use this method for our computations in this thesis. The

MATLAB R© package nlmefit implements this algorithm and returns estimates of the

parameters and matrix of the estimated random effects. It also returns model fitting

statistics such as the final maximised log-likelihood, the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC). More information about the

nlmefit package is available in MathWorks (2015).

5.3.3 Predictions in Non-linear Mixed Effects Models

One of the primary objectives of statistical modelling is to determine the rela-

tionship between the response and the explanatory variables. Existing values of the

explanatory variables can be applied in the estimated model to obtain the fitted val-

ues of the response and new values of the variables can be applied in the estimated

model to obtain the predicted response at those observations.

In the previous sections, we discussed some of the methods available in the lit-

erature for estimation of the parameters of non-linear mixed effects models. The

estimated vector of fixed effects, β̂ and the estimated vector of random effects, b̂i, can

be applied back into the original model to get the fitted or predicted values. The fitted

values are useful for checking the goodness of the fit as well as for drawing inferences
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from the estimated model. In this section, we discuss the concept of predictions in

the context of non-linear mixed effects models. We adapt the theory presented in

the books Pinheiro and Bates (2000) and Davidian and Giltinan (1995). We continue

using the notation already defined in Section 5.2.

Non-linear mixed effects models are useful in modelling the intra- as well as the

inter-individual variability. They contain not only population mean effects but also

random individual effects. This feature makes it possible to obtain predicted values

of the response at not only the population level but also at the individual level. This

is discussed below.

Population Level

Suppose the interest is in finding the predicted population response at the experimen-

tal settings contained in a vector denoted by x̃ = (x̃T1 , ..., x̃
T
N)T , where x̃Ti are vectors

of some new values of the explanatory variables. Let us consider the additive model

expressed in Equation (5.5). Since the other models discussed can also be expressed

in additive form, the theory presented here can be applied to these cases as well.

Population level predictions are obtained by estimating the expected response when

the random effects, b, are taken to be equal to their mean value, i.e., 0. This results

in φ = Aβ.

Taking expectation on both sides of Equation (5.5) we get E(y) = η(x̃,Aβ).

Estimated vector of the PK parameters, β̂, can be used to obtain the predicted

response at the population level, ỹ = (ỹT1 , ..., ỹ
T
N)T , at the experimental settings x̃ as

ỹ = η(x̃,Aβ̂).

If in a group of N patients the observations for all the individuals are collected at the

same experimental settings, that is, x̃i = x̃s (say) for i = 1, ..., N , then the predicted

response at the population level, ỹs, for all the N individuals will be the same. That

is,

ỹi = ỹs = η(x̃s,Aβ̂), i = 1, ..., N.

Individual Level

Here, we are interested in prediction of the expected response of the ith individual,

i = 1, ..., N , at the experimental settings x̃i = (x̃i1, ..., x̃im)T .

In Section 5.3, we discussed some of the methods available in literature for estima-
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tion of parameters of non-linear mixed effects models. For example, the linear mixed

effects (LME) method outlined in Section 5.3.2, enables estimation of the vector of

population parameters, β, and the vectors of individuals’ random effects, bi.

The estimates β̂ and b̂i can then be used to obtain the predicted response for the ith

subject. Firstly, estimated individual parameters for the ith subject can be obtained

from Equation (5.4) as

β̂i = Aiβ̂ +Bib̂i. (5.27)

Now, taking expectation given the random effects bi on both sides of Equation

(5.3) we obtain the conditional expected response for the ith subject at the setting x̃i

as

E(yi|bi) = η(x̃i,Aiβ +Bibi), i = 1, ..., N.

The predicted response for the ith subject, ỹi can be obtained by estimating the

conditional expectation above by using β̂ and b̂i, i.e.,

ỹi = η(x̃i,Aiβ̂ +Bib̂i).

Example

Let us consider the one-compartment model with zero order absorption described in

Chapter 2, that is:

C(t) =
de−Ket

V1

. (5.28)

The parameters of the ith subject are βi = (Kei, V1i)
T = (β1i, β2i)

T and the popula-

tion parameters are β = (Ke, V1)T = (β1, β2)T . Let m = 3 blood samples be collected

from each subject at the same times. For the ith subject, the experimental settings

are xi = (t1, t2, t3)T , i = 1, ..., N .

Assuming an exponential error structure, the Stage 1 model can be represented as:

yij =
de−β1itj

β2i

exp(εij),

where εij ∼ N (0, σ2), i = 1, ..., N and j = 1, 2, 3.

Assuming exponential random effects, the Stage 2 model can be expressed as:(
β1i

β2i

)
=

(
β1 exp(b1i)

β2 exp(b2i)

)
.
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Now, for the above model, the estimated vector of parameters β̂ can be obtained by

using any of the estimation methods described earlier. Then the predicted population

response ỹs at a new experimental setting t̃s is

ỹs =
de−β̂1 t̃s

β̂2

.

If estimates of the random effects for the ith subject, b̂i, are available, then the

predicted response ỹi for this subject at the experimental setting t̃s is

ỹi =
de−β̂1i t̃s

β̂2i

,

where (
β̂1i

β̂2i

)
=

(
β̂1 exp(̂b1i)

β̂2 exp(̂b2i)

)
,

is the vector of estimated parameters of the ith subject.

On account of different estimates of the random effects for different subjects, the

corresponding values of the predicted response, even at the same experimental set-

tings, are different.

Some authors such as Pinheiro and Bates (2000) argue that since the random

effects bi are sources of random variation in the model and not model parameters as

such, it is more appropriate to say that they are ‘predicted’ rather than ‘estimated’

on the basis of the observed data.

Predictions are particularly useful in scientific studies involving multi-level or hi-

erarchical models such as the ones described in this chapter as they enable model

fitting for individual units in a study. For example, Stirnemann et al. (2012) pre-

dict the individual growth of foetuses in twin pregnancies and Brabec et al. (2008)

present predictions of natural gas consumption by individual customers using non-

linear mixed effects models.

In this thesis, we compute predicted responses in Section 7.1 to fit individual

concentration profiles to each of the subjects in the cohort by applying the estimated

population parameters and the estimated random effects in the originally assumed

PK model. This enables estimation of the individual concentration profiles of the

subjects which then facilitates individualisation of the dose regimen to each subject.

The predicted values described above are point estimates and their values depend
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on the observed responses which are themselves subject to random error. It will

be useful, therefore, to estimate an interval in which the predicted value will lie

with a specified probability. Such an interval is called a prediction interval and it

is analogous to the concept of a confidence interval which contains an unobservable

population parameter with a specified probability. For the case of non-linear mixed

effects models, the derivation of prediction intervals is often complex and heuristic

methods have to be used for their computation as done in, for example, Stirnemann

et al. (2012). Since we do not require prediction intervals for our work in this thesis

we do not go into further details here.

5.4 Optimal Design of the Study

In the previous section, estimation of the vector of parameters Ψ was discussed. The

samples of data are designated to be collected at the points Tj, j = 1, ...,m. Let

the sampling time points be denoted in ξ as: ξ = {T1, ..., Tm} where T1 < ... < Tm.

Generally, the samples can only be collected within specific time intervals. The sample

space from which the experimental settings can be chosen is called the design region.

In this section, we discuss how the choice of the experimental settings ξ, affects

the precision of the parameters in Ψ. We then briefly discuss the methods available

in the software PopED to design an optimal experiment for non-linear mixed effects

models. Firstly, we recall the notion of the Fisher information matrix and present

some of the commonly used criteria of optimality.

5.4.1 Fisher Information Matrix and Optimality Criteria

Most of the criteria of optimality for design of experiments are functions of the Fisher

Information Matrix (FIM).

Let Ψ = (ψ1, ..., ψk)
T be the vector of parameters which are to be estimated.

Given a random vector of observations y, which depends on the vector of parameters

Ψ having the likelihood function l(y; Ψ).

The score function, defined as the gradient of the log-likelihood with respect to Ψ,

is given as:

U(y; Ψ) =
∂ ln l(y; Ψ)

∂ΨT
=

(
∂ ln l(y; Ψ)

∂ψ1

, ... ,
∂ ln l(y; Ψ)

∂ψk

)T
.

Fisher Information Matrix (FIM) is defined as the covariance of this score function
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i.e.,

M(Ψ) = E(U(y; Ψ)UT (y; Ψ)). (5.29)

Let us first consider the simple linear models:

y = Fβ + ε, (5.30)

where

y is the vector of N observations;

ε = (ε1, ..., εN)T is the vector of random errors;

β is the p-dimensional vector of parameters;

F =


fT (x1)

.

.

.

fT (xN)

 =


f1(x1) f2(x1) ... fp(x1)

f1(x2) f2(x2) ... fp(x2)

. . . .

. . . .

f1(xN) f2(xN) ... fp(xN)


fT (x) = (f1(x), ..., fp(x));

fi is a known real-valued regression function, i = 1, ..., p;

xj is the jth experimental setting, j = 1, ..., N .

F is called the Design Matrix. For the above model, E(y) = Fβ and cov(y) =

cov(ε) = σ2IN . The distribution of y is given as NN(Fβ, σ2I).

The log-likelihood function is given as:

ln l(y;β) =
−N ln(2πσ2)

2
− 1

2σ2
(y − Fβ)T (y − Fβ).

Now, if a n× 1 vector X is a function of the vector α, we have

∂XTX

∂α
= 2XT ∂X

∂α
.

Thus, differentiating the log-likelihood function with respect to β we get:

U(y;β) =
∂ ln l(y;β)

∂βT
=
F T (y − Fβ)

σ2
=
F Tε

σ2
.
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Consequently, the FIM, M(β), is given as:

M (β) = E

(
F Tε

σ2
× ε

TF

σ2

)
=
F TF

σ2
.

It can be seen in the above expression that the expression for the FIM for a linear

model does not depend on the model parameters. However, it does depend on the

choice of the design matrix.

The design region, X , is the set which contains all the possible experimental set-

tings. For example, in a PK study, the design region could be (0, 12] h, which means

that a blood sample can be drawn at any time in this interval.

If m observations are to be made from a subject, they can all be taken from m

distinct points in X or from n(< m) distinct points by having replications at one or

more points.

Let us consider n distinct points in X . Then an approximate design can be repre-

sented by the measure ξ over X as follows:

ξ =

{
x1 x2 ... xn

w1 w2 ... wn

}
, xi ∈ X , wi ∈ [0, 1] and

n∑
i=1

wi = 1,

where xis represent the design points and wis the associated design weights, i =

1, ..., n. A design weight gives the number of replications at that design point, ex-

pressed as a fraction of m. If n = m, wi = 1/m ∀ i.

By dropping the constraint that mwi is an integer, approximate designs make the

process of design optimisation easier. Approximate designs were conceptualised by

Kiefer and Wolfowitz (1959).

We will see later that the FIM for non-linear models is a function of the model

parameters Ψ, as well as the experimental settings ξ. Hereafter, the FIM will be

represented as M (Ψ, ξ).

We can now recall the following optimality criteria:

• A design ξ∗ is called D-optimal if

ΦD(M (Ψ, ξ)) = − ln |M(Ψ, ξ)|

is minimised by ξ∗ or equivalently,

ln |M(Ψ, ξ∗)| ≥ ln |M (Ψ, ξ)|
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for all ξ ∈ Ξ, where Ξ is a set of feasible designs.

D-optimality is the most popular criterion and it was introduced by Wald (1943).

• A design ξ∗ is called G-optimal if

ΦG(M ) = max
x∈X

fT (x)M−1(Ψ, ξ)f(x)

is minimised by ξ∗ or equivalently,

max
x∈X

fT (x)M−1(Ψ, ξ∗)f(x) ≤ max
x∈X

fT (x)M−1(Ψ, ξ)f(x)

for all ξ ∈ Ξ.

One of the earliest papers on the theory of optimum designs, Smith (1918),

proposed the G-optimal designs. Kiefer and Wolfowitz (1960) later proved the

equivalence of G- and D-optimal designs.

• A design ξ∗ is called A-optimal if

ΦA(M (Ψ, ξ)) = tr(M−1(Ψ, ξ))

is minimised by ξ∗ or equivalently,

tr(M−1(Ψ, ξ∗)) ≤ tr(M−1(Ψ, ξ))

for all ξ ∈ Ξ.

The A-optimality criterion is due to Elfving (1952).

• If the interest in estimation of a linear function cTβ, where cT = (c1, ..., cp) is a

vector of constants, the c-criterion is the most appropriate. Let the generalized

inverse of M be denoted by M−.

A design ξ∗ is called c-optimal if

Φc(M ) = cTM−(Ψ, ξ)c

is minimised by ξ∗ or equivalently,

cTM−(Ψ, ξ∗)c ≤ cTM−(Ψ, ξ)c

for all ξ ∈ Ξ.

The theory of optimal experimental design for linear models has been extensively
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presented in several books: Fedorov (1972), Fedorov and Hackl (1997), Atkinson and

Donev (1992), Atkinson et al. (2007), Pukelsheim (1993), Pázman (1986), Shah and

Sinha (1989) are the major references.

Optimal Design for Non-linear Mixed Effects Models

The theory of optimum design for non-linear models is not as widely described as in

the linear models case. Atkinson et al. (2007) and Fedorov and Hackl (1997) include

some chapters on the non-linear models case. The recent book by Fedorov and Leonov

(2014) covers numerical procedures for both parameter estimation and construction

of optimal designs for the case of non-linear models with an explanation on using

these techniques for dose-finding, PK, PD and other biopharmaceutical applications.

In the last section, we discussed the individual design ξ, which gives the sampling

times for a single subject. However, in a clinical trial, treatments are often tested

on several groups of subjects. In such situations, a population design is used which

consists of individual designs ξ1, ..., ξg, along with the proportions p1, ..., pg of the

subjects of the sample population that are to be observed using these designs, where

g is the number of groups.

A population design is then given as

Ξ =

{
ξ1 ξ2 ... ξg

p1 p2 ... pg

}
, pi ∈ [0, 1] and

g∑
i=1

pi = 1.

For finding optimal population designs, one can use the same criteria as above, but

the FIM will be more complicated. If g = 1, that is, the subjects are studied under

the same design, the FIM for the population design will be the sum of individual

FIMs.

As discussed in Section 5.3.2, the approximate distribution of yi is Nm(Ei,Vi).

The approximate FIM for the non-linear models can be derived from this distribution

and the definition of the FIM. The parameter vector is Ψ = (βT ,λT )T where λ =

(ωT , σ2)T .

The log-likelihood of the vector of observations yi is given as:

ln li(Ψ|yi) ≈ −
m

2
ln(2π)− 1

2
ln |Vi| −

1

2
(yi −Ei)

TV −1
i (yi −Ei). (5.31)

Differentiating both sides of (5.31) with respect to βg, g = 1, ..., p, we get:
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∂ ln li(Ψ|yi)
∂βg

≈ (yi −Ei)
TV −1

i

(
∂Ei

∂βg

)
.

Consequently, for g, h = 1, ..., p, we have

E

[(
∂ ln li(Ψ|yi)

∂βh

)T
∂ ln li(Ψ|yi)

∂βg

]
≈
(
∂Ei

∂βh

)T
V −1
i

(
∂Ei

∂βg

)
,

since E[(yi −Ei)(yi −Ei)
T ] = Vi.

Next, let us differentiate (5.31) with respect to λj, j = 1, ..., p+ 1:

∂ ln li(Ψ|yi)
∂λj

≈ −1

2
tr

(
V −1
i

∂Vi
∂λj

)
+

1

2
(yi −Ei)

T

(
V −1
i

∂Vi
∂λj

V −1
i

)
(yi −Ei),

since,
∂ ln |Vi|
∂λj

= tr

(
V −1
i

∂Vi
∂λj

)
and

∂V −1
i

∂λj
= −V −1

i

∂Vi
∂λj

V −1
i .

Consequently,

E

[(
∂ ln li(Ψ|yi)

∂λk

)T
∂ ln li(Ψ|yi)

∂λj

]
≈ 1

4
tr

(
V −1
i

∂Vi
∂λk

)
tr

(
V −1
i

∂Vi
∂λj

)
−

1

4
tr

(
V −1
i

∂Vi
∂λj

)
E

[
(yi −Ei)

T

(
V −1
i

∂Vi
∂λk

V −1
i

)
(yi −Ei)

]
−

1

4
tr

(
V −1
i

∂Vi
∂λk

)
E

[
(yi −Ei)

T

(
V −1
i

∂Vi
∂λj

V −1
i

)
(yi −Ei)

]
+

1

4
E

[
(yi −Ei)

T

(
V −1
i

∂Vi
∂λj

V −1
i

)
(yi −Ei)(yi −Ei)

T

(
V −1
i

∂Vi
∂λk

V −1
i

)
(yi −Ei)

]
.

(5.32)

To evaluate the expectations of the above quadratic forms, we apply the following

results given in Magnus (1978):

For a symmetric matrix A and for εi ∼ Nm(0,Vi), where Vi is positive definite,

we have:

• E[εTi Aεi] = tr(AVi) and
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• If B is another symmetric matrix, then E[εTi Aεiε
T
i Bεi] = tr(AVi) tr(BVi) +

2 tr(AViBVi).

Using these results, the last term in (5.32) becomes:

1

4
tr

(
V −1
i

∂Vi
∂λj

)
tr

(
V −1
i

∂Vi
∂λk

)
+

1

2
tr

(
V −1
i

∂Vi
∂λj

V −1
i

∂Vi
∂λk

)
.

Thus,

E

[(
∂ ln li(Ψ|yi)

∂λk

)T
∂ ln li(Ψ|yi)

∂λj

]
≈ 1

2
tr

(
V −1
i

∂Vi
∂λj

V −1
i

∂Vi
∂λk

)
.

Finally, we have:

E

[(
∂ ln li(Ψ|yi)

∂βg

)T
∂ ln li(Ψ|yi)

∂λj

]
≈ E

[(
∂Ei

∂βh

)T
V −1
i (yi −Ei) ×{

−1

2
tr

(
V −1
i

∂Vi
∂λj

)
+

1

2
(yi −Ei)

T

(
V −1
i

∂Vi
∂λj

V −1
i

)
(yi −Ei)

}]

=
1

2
E

[(
∂Ei

∂βh

)T
V −1
i (yi −Ei)(yi −Ei)

T

(
V −1
i

∂Vi
∂λj

V −1
i

)
(yi −Ei)

]
.

The RHS of the above equation is a sum of terms of the type E[c(yij − Eij)(yik −
Eik)(yil − Eil)] for j, k, l = 1, ...,m where c is a term-specific constant.

Since (yi −Ei) ∼ Nm(0,Vi), according to Holmquist (1988):

E[(yi1 − Ei1)r1 ...(yim − Eim)rm ] = 0, if r1 + ...+ rm is odd.

Therefore,

E

[(
∂ ln li(Ψ|yi)

∂βg

)T
∂ ln li(Ψ|yi)

∂λj

]
≈ 0, for g = 1, ..., p and j = 1, ..., p+ 1.

Thus, the approximated FIM for the non-linear mixed effects models can be ex-

pressed as:

Mi(Ψ, ξi) ≈

(
Pi 0

0 Qi

)
, (5.33)
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where the matrices Pi (p× p) and Qi (p+ 1, p+ 1) are given as follows:

(Pi)g,h =

(
∂Ei

∂βh

)T
V −1
i

(
∂Ei

∂βg

)
for g, h = 1, ..., p

and

(Qi)g,h =
1

2
tr

(
V −1
i

∂Vi
∂λj

V −1
i

∂Vi
∂λk

)
for j, k = 1, ..., p+ 1.

The population FIM for the N individuals is given as the sum of individual FIMs:

MF (Ψ) =
N∑
i=1

Mi(Ψ, ξi). (5.34)

For a single group of N individuals with identical designs ξ, the population FIM

becomes:

MF (Ψ) = NM (Ψ, ξ). (5.35)

Unlike linear models, the FIM for non-linear models depends on the initial values

of the model parameters. As can be observed from Equation (5.33), the matrices Pi

and Qi depend on the values of the parameters contained in Ψ. We show this with

the help of an example.

Example

To show how the FIM can be computed for non-linear mixed effects models we consider

the model described in Section 5.3.2, that is:

C(t) =
de−Ket

V1

. (5.36)

The parameters of the ith subject are βi = (Kei, V1i)
T = (β1i, β2i)

T and the population

parameters are β = (Ke, V1)T = (β1, β2)T . Let m = 3 blood samples be collected per

subject. Then, for the ith subject, the sampling design is ξi = {Ti1, Ti2, Ti3}.

Assuming an exponential error structure, the Stage 1 model can be represented as:

yij =
de−β1iTij

β2i

exp(εij),

where εij ∼ N (0, σ2), i = 1, ...,M and j = 1, 2, 3.

Taking natural logarithm on both sides, the model becomes of the form of additive

118



Chapter 5. Non-linear Mixed Effects Models - Estimation and Design

errors model:

ln(yij) = ln

(
de−β1iTij

β2i

)
+ εij = ln d− β1iTij − ln β2i + εij.

Assuming exponential random effects, the Stage 2 model g(β, bi) can be expressed

as: (
β1i

β2i

)
=

(
β1 exp(b1i)

β2 exp(b2i)

)
,

where bi ∼ N 2(0, σ2Ω) and Ω = diag(ω1, ω2).

The regression function is:

η(Tij; g(β, bi)) = ln

(
de−β1 exp(b1i)Tij

β2 exp(b2i)

)
= ln d− β1e

b1iTij − ln β2 − b2i. (5.37)

Using the notation defined above, at the initial values of β and b equal to βo =

(βo1 , β
o
2)T and bo = (0, 0)T , we obtain the matrices Gi and Hi of the model approxi-

mation (5.24),

Gi =


−Ti1 −1

βo2

−Ti2 −1
βo2

−Ti3 −1
βo2

 and Hi =

 −β
o
1Ti1 −1

−βo1Ti2 −1

−βo1Ti3 −1

 .

Also, the dispersion matrix Vi of the linearised response (5.24) is

Vi = σ2


 1 0 0

0 1 0

0 0 1

+

 −β
o
1Ti1 −1

−βo1Ti2 −1

−βo1Ti3 −1

( ω1 0

0 ω2

)(
−βo1Ti1 −βo1Ti2 −βo1Ti3
−1 −1 −1

) .

⇒ Vi = σ2

 (βo1)2T 2
i1ω1 + ω2 + 1 (βo1)2Ti1Ti2ω1 + ω2 (βo1)2Ti1Ti3ω1 + ω2

(βo1)2Ti2Ti1ω1 + ω2 (βo1)2T 2
i2ω1 + ω2 + 1 (βo1)2Ti2Ti3ω1 + ω2

(βo1)2Ti3Ti1ω1 + ω2 (βo1)2Ti3Ti2ω1 + ω2 (βo1)2T 2
i3ω1 + ω2 + 1

 .

⇒ Vi = σ2(I3 + ω2131
T
3 + (βo1)2ω1TiT

T
i ),

where 13 = (1, 1, 1)T and Ti = (Ti1, Ti2, Ti3)T is the vector which contains the sampling

points for the ith subject.

Then, the FIM for the ith subject for Ψ = (βT λT )T where λ = (ω1, ω2, σ
2)T is

given by Equation (5.33).

The 2× 2 matrix Pi can be computed using the expressions for Gi and Vi above.
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To compute the matrix Qi, we need
∂Vi
∂λg

, g = 1, 2, 3, as shown below:

∂Vi
∂ω1

= σ2(βo1)2TiT
T
i ,

∂Vi
∂ω2

= σ2131
T
3 and

∂Vi
∂σ2

= σ−2Vi.

It can be seen from the above expressions that the FIM for the parameters Ψ is a

function of the sampling times, the variances of the random effects and the initial

values of the parameters.

Now we consider the case of multiple doses, where n doses of the drug are adminis-

tered. Using Equations (5.1) and (5.37), the jth observation from the ith subject can

be expressed as:

ln(yij) = ln

(
n∑
k=1

I{Tij≥tk}
dke
−β1 exp(b1i)(Tij−tk)

β2 exp(b2i)

)
+ εij. (5.38)

For the regression function in this model, the expression for the matrices Pi and Qi

will be complicated. We give below the expressions for the matrices Gi and Hi of

(5.24) from which the matrices Ei and Vi and subsequently the matrices Pi and Qi

can be computed.

Gi =

 e−η(Ti1;g(βo,0))
∑n

k=1 I{Ti1≥tk}dke
−βo1(Ti1−tk)(βo2)

−1
(tk − Ti1) −1/βo2

e−η(Ti2;g(βo,0))
∑n

k=1 I{Ti2≥tk}dke
−βo1(Ti2−tk)(βo2)

−1
(tk − Ti2) −1/βo2

e−η(Ti3;g(βo,0))
∑n

k=1 I{Ti3≥tk}dke
−βo1(Ti3−tk)(βo2)

−1
(tk − Ti3) −1/βo2

 ,

Hi =

 e−η(Ti1;g(βo,0))
∑n

k=1 I{Ti1≥tk}dke
−βo1(Ti1−tk)(βo1/β

o
2)(tk − Ti1) −1

e−η(Ti2;g(βo,0))
∑n

k=1 I{Ti2≥tk}dke
−βo1(Ti2−tk)(βo1/β

o
2)(tk − Ti2) −1

e−η(Ti3;g(βo,0))
∑n

k=1 I{Ti3≥tk}dke
−βo1(Ti3−tk)(βo1/β

o
2)(tk − Ti3) −1

 .

As can be seen from this example, the computation of the FIM even for a simple

compartmental model is a non-trivial problem and computationally expensive. The

optimisation of a function of the FIM is an even more difficult problem. However, a

variety of software are available for computation of the optimum design. The general

procedure in these software is to numerically approximate the FIM in each iteration

and then use special algorithms to find the design which will give a better value of the

objective function (the desired function of the FIM which is to be optimised) in the

next iteration. Such iterations continue until a user-specified convergence criterion has

been met. At the termination of the iterations, the software will report the optimum

design along with the optimised value of the objective function.
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The two software which are the most commonly used are PopED (Foracchia et al.

(2004)), a MATLAB R© based software and PFIM (Bazzoli et al. (2009)), an R based

package. Nyberg et al. (2015) compared these two software along with three others and

concluded that they give similar results. In this thesis, we use PopED for computation

of the optimal blood sampling points. For us, the choice of PopED was natural as

the ED algorithm had already been programmed in MATLAB R© and so it was easy to

embed the submodules of PopED in our master code. We briefly explain below some

nuances of PopED which will be useful for our work in this thesis.

5.5 PopED for Design Optimisation

In this section, we explain some of the features in PopED which are relevant to our

work in this thesis along with the underlying statistical theory. The material of this

section is adapted from Foracchia et al. (2004), the scientific paper associated with

PopED and PopED Manual (2012).

The FIM is computed by using Equation (5.29) and approximating the likelihood

function FO or FOCE methods. PopED provides options for optimising over several

variables, for example the number of samples per subject, sampling schedule or the

covariates. For our work, we only optimise the FIM with respect to the sampling

schedule, i.e., the sampling time points.

The derivatives are computed by PopED numerically. Two methods are available

for this: complex difference and central difference.

The complex difference method is the default method for finding derivatives in

PopED and is robust and faster than the central difference method. A prerequisite

for this method is that the model must be able to handle complex numbers. If h is

taken to be the step size, the complex derivative of a function F (x) at xo is defined

as:

F ′(xo) =
Im (F (xo + ih))

h
,

where Im(.) gives the imaginary part of the argument. The step h is generally taken

to be 10−8.

If the function is not amenable to complex numbers, then the central difference

method is used to find derivatives. This method is from the calculus of finite differ-

ences. If h is taken to be the uniform width of the abscissae, then the first derivative

of a function F (x) at xo is defined as:

F ′(xo) =
F (xo + h)− F (xo − h)

2h
.
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As mentioned earlier, for our work we are interested in finding D-optimal time

points to collect the blood samples. This consists in maximising the determinant or

the natural logarithm of the determinant of the FIM. The algorithms available in

PopED for searching for the best design, i.e. the ξ which maximises the objective

function are:

• Random Search : This method begins with a random search over the entire

search space but as soon as it finds a good objective function’s value, it collapses

to an Adaptive Narrowed Random Search. It will then search close to the

previous best objective function value. Thus, while the Random Search is global,

the Adaptive Narrowed Random Search is local.

• Stochastic Gradient: This is a local search method. For a D-optimal design,

this algorithm is simply the steepest descent algorithm.

• Line Search: Line search does a grid search in one dimension, i.e. over one

parameter at a time. It is a global search method but it alone does not converge

to the global optimum even if infinitely many grid points are taken. Therefore,

this method must be used in conjunction with a local search method.

• Modified Fedorov Exchange Algorithm: This method consists in searching

for that sample which changes the objective function’s value the most. That

sample is then exchanged into the current optimal design and the next iteration

is performed with the current optimal design. It terminates when the exchange

results in an increase in the objective function’s value which is less than a

threshold value. Ogungbenro et al. (2005) describe this method in detail.

• BFGS Minimizer (Broyden-Fletcher-Goldfarb-Shannon): This method

uses a quasi-Newton based method to do a local search. It is described in detail

in Battiti and Masulli (1990). It is an alternative to the stochastic gradient

method and so either of them can be used at a time.

The authors of PopED recommend that all the search types should be used to-

gether to obtain the best result with the exception of the modified Fedorov exchange

algorithm which does not work with other methods and has to be used alone. For our

work, we use the random search, the stochastic gradient and the line search methods

simultaneously.

For optimisation of the sampling time points, the following inputs are required to

be entered or selected by the user:

• The PK model and the variability models. The variability models consist of

the intra-individual variability and the inter-individual variability (the random
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effects). To specify the PK model, PopED comes with a library from which a

model can be selected. It also provides a feature for the user to specify a custom

model. In Chapter 6, we shall use this feature to define our own multiple dose

model described in Section 5.1. Similarly, the user can choose the error structure

from the options available or specify a custom model. The error models defined

in Section 5.2 are all available in PopED.

• As can be seen from Equation (5.34), the FIM depends on the parameter vector

Ψ. Therefore, initial values of the parameters contained in the vector Ψ need

to entered. The computation of the objective function’s value will be at these

parameter values.

• The optimality criterion (D-optimality for our work), the log-likelihood approx-

imation type and the search algorithm.

• PopED provides the option to optimise the FIM with respect to other design

variables e.g., the number of samples per subject, covariates and the dose sizes.

We do not use these features for our work.

• The design region for the m samples needs to be specified. Along with the

minimum and maximum values of time at which samples are permissible to be

collected, initial values for each of the samples needs to be specified to enable

PopED to compute the optimal values.

• Convergence settings of the search algorithms and FIM approximation can also

be changed by the user, if required.

Having discussed the methods and the software available for estimation of the pa-

rameters and for optimal design of the experiment for the case of non-linear mixed

effects models, we are now in a position to describe another feature of the ED al-

gorithm introduced in Chapter 4. In the next chapter, we show the applicability

of the ED algorithm when the parameters of the mechanistic model describing the

drug concentrations are unknown. This will be done in an adaptive setting where the

knowledge about the model is updated in each cohort, using the techniques of esti-

mation and optimal design. Based on this knowledge, the most efficient dose regimen

is administered to the next cohort with the help of the ED algorithm. PK samples

are then collected from this cohort and this data, along with the data collected from

previous cohorts are used to find the updated estimates of the parameters. This

procedure is continued until a stopping rule is applied.
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The Efficient Dosing Algorithm for

the Case of Unknown Parameters

The ED algorithm introduced in Chapter 4 to solve the problems described in Section

3.3 requires knowledge of the PK models and estimates of the model parameters. In

Chapter 4, we assumed that the estimated mean parameters are available before the

computation of the optimal dose regimen. In this chapter, we show that the ED

algorithm can be used in an adaptive setting to simultaneously optimise the dose

regimen for the population and estimate the unknown model parameters and their

variances. This chapter describes the methodology and an associated simulation study

for the problem of Type 1 for a single drug described in Section 3.3. The proposed

method can also be adapted for optimising Type 1 problem for combination therapies

and for Type 2 problems.

In adaptive clinical trials, data are analysed at interim stages and changes are

made in the trial so that it is more efficient (in terms of, e.g., shorter duration or

lesser number of volunteers enrolled) or is more informative (in terms of, e.g., exposing

broader dose-response relationship or demonstrating the efficacy of the test drug, if

it exists), FDA (2010). For these reasons, such trial designs are also referred to as

flexible. The advantages of adaptive designs include optimum utilisation of resources

which generally translates to improved economics and enhanced ethical standards

through quicker elimination of substandard treatments or dosages and reduction in

the sample size. A disadvantage of such designs is that the added complexity in the

trial protocol may be difficult to follow and may cause operational challenges. Chow

and Chang (2008) present a review of the types of adaptive designs, the practical

issues that are encountered in their application and some practical examples. The

setting in which we will study the ED algorithm in this chapter is adaptive in nature

since it will involve interim analyses on cohorts of patients and the results will be

used to decide the further course of the trial.
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In this chapter, we use the statistical models discussed in Chapter 5. The variability

in the PK parameters and the errors in the measured concentrations are also included

in the model. This differentiates such statistical models from the deterministic models

discussed in Chapter 4.

6.1 Dose Regimen Optimisation in an Adaptive

Trial

An adaptive approach is planned to ascertain the average PK parameters of the

drug in a population while minimising the desired objective function ϑ(R) defined

in Section 3.3. We start with initial values of the model parameters for the first

cohort and administer the optimised dose regimen to it. Based on the initial values

of the parameters, optimal time points are computed for collection of blood samples

from the subjects contained in the first cohort. PK sampling is then performed and

the collected samples are used to estimate the model parameters. This procedure is

repeated for the next cohort, using the parameter estimates obtained from the first

cohort. For each cohort, the estimates are based on the information contained in the

current as well as previous cohorts. To stop the adaptive procedure, different stopping

rules will be considered. The methodology is formally introduced below.

6.1.1 Notation

We consider the notation introduced in Chapter 5. The parameters of interest can be

put in vector form as: Ψ = (βT ,ωT , σ2)T . Furthermore, we introduce the following

symbols:

C: maximum number of cohorts in the adaptive procedure. Depending on a stop-

ping rule used the number of cohorts can be smaller than C;

c: number of subjects in each cohort;

m: number of PK samples per subject;

Ψ̂i: vector of estimates of the parameters updated at the ith cohort, i = 1, ..., C;

Ψtrue: the vector of true values of the parameters for the population (used for

simulation studies);

Ψo: the vector of values of the parameters which is available a priori (initial values);
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ξ∗i : set of optimal sampling time points for the ith cohort. ξ∗1 will be computed

using the initial values Ψo. Subsequent optimal sampling times will be computed

using the updated vector of parameters Ψ̂i for each cohort i, where i = 2, ..., C;

D∗i : the vector of doses optimising the objective function ϑ; the doses administered

to the ith cohort, where i = 1, ..., C.

6.1.2 The Adaptive Procedure

We now explain the steps of the methodology for optimisation of ϑ(Rn(D|n, t, T, θ),
defined in Section 3.3, for the objective of minimising the area around a pre-chosen

Ctgt. The methodology for optimisation of ϑ(Rn(D|n, t, T, θ) for maintenance of the

concentration between a therapeutic range, say, (C−tgt, C
+
tgt) will be the same with the

exception of the ED algorithm’s version that is used to find the efficient dose regimen

for each cohort.

The PK model followed by the drug’s concentrations is assumed to be known up

to the model parameters. The prefixed (given) number of doses and the dosing time

points are n and t respectively. Let the current cohort under study be number i,

i = 1, ..., C. The adaptive procedure is presented in the flowchart shown in Figure

6.1. The steps are further explained below.

Step 1. Optimisation of the dose regimen for cohort 1.

Initial values of the model parameters are available at this step. For cohort 1, these

will be contained in the vector of initial values Ψo. Using these values, the optimal

dose regimen D∗ is obtained by the ED algorithm and administered to each of the c

subjects in cohort 1 at the dosing time points t (pre-fixed).

Step 2. Computation of optimal PK sampling time points and collection

of samples.

Using Ψ̂i−1 and D∗i , ξ
∗
i is computed. ξ∗i contains the m population D-optimal blood

sampling time points for cohort i. From every subject in cohort i, m samples are

collected at the times contained in ξ∗i . Thus, we have c×m blood samples from this

cohort. From these samples, the drug’s concentrations at the time points contained

in ξ∗i are determined for each subject in the cohort.

Step 3. Computation of Ψ̂i.

The concentration values obtained from the previous step, together with the val-
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휉∗ for collecting PK samples from the ith 

cohort. 
 

Using the ED algorithm compute the best 
dose vector 푫∗ .  Administer 푫∗ . 
 

Set   
푖 = 푖 +  1. 

Figure 6.1: Flowchart explaing the methodology of using the ED algorithm in an
adaptive setting, serving the dual purpose - parameter estimation and dose regimen
optimisation to adhere to a desired target concentration or range of concentrations.

ues obtained from all the previous cohorts are now used to compute Ψ̂i, the updated

estimate of the model parameters. For estimation, any appropriate method, includ-

ing the ones mentioned in Section 5.3 can be used. For our work, we apply the LME

method which was discussed in Section 5.3.
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Step 4. Computation of D∗i+1 and stopping rule test

The ED algorithm is run to find D∗i+1 corresponding to the estimates contained in Ψ̂i.

At this step, it is examined if the condition of a stopping rule is met. If a stopping rule

applies at this cohort, the procedure is terminated with Ψ̂i being the best available

estimate of the parameters and D∗i+1 being the recommended optimal dose vector.

If no stopping rule is applied at this step, D∗i+1 is administered to the next cohort,

i.e., cohort i+ 1. We then go back to step 2 with i replaced with i+ 1.

These steps are repeated until a stopping rule terminates the procedure or the

maximum number of cohorts (C) have been analysed. The parameter estimates de-

rived from the cohort at which the stopping rule applies are denoted by Ψ̂. In this

chapter, unless explicitly mentioned otherwise, Ψ̂ will refer to the estimates obtained

by the application of SR1, i.e., when all the C cohorts available are analysed.

Thus, during the course of the iterations, the estimates are expected to improve be-

cause of the accumulating data while minimising the objective function ϑ(Rn(D|n, t, T, θ))
for the best available estimate of the vector of parameters.

As discussed previously, a stopping rule is required to terminate the adaptive pro-

cedure. We consider three stopping rules defined below.

6.1.3 Stopping Rules

We consider three stopping rules as discussed below:

SR1. The procedure is terminated when all the C cohorts have been analysed. This

is the most trivial rule.

SR2. The procedure is terminated at the ith iteration if,

|1TnD∗i+1 − 1TnD
∗
i |

1TnD
∗
i

≤ .05,

where 1n is a column vector of order n. In other words, the procedure is terminated

when the cumulative dose for the current cohort differs from the cumulative dose of

the previous cohort by less than 5% of the latter. This stopping rule should perform

well when the elements of D are almost of the same magnitude. However, if e.g., the

loading dose is quite large as compared to the maintenance doses, SR2 will be dom-

inated by the larger dose and therefore, a stricter stopping rule should be enforced,

such as the one given below.
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SR3. Terminate the procedure at the ith iteration if

n⋂
j=1

{
|d∗(i+1)j − d∗ij|

dkij
≤ .05

}
is a true event,

where d∗ij is the jth dose in the dose vector D∗i , i ∈ {1, ..., C} and j = 1, ..., n. That

is, the procedure is terminated when every element of the optimal dose vector D∗i+1

for the (i+ 1)th cohort differs from the corresponding elements of D∗i by not more

than 5% of the latter. SR3 is a stricter rule than SR2, as when SR3 gets triggered,

that will imply that the condition of SR2 has also been met. It may be noted here

that since the stopping rule can become effective before the last cohort is analysed,

the actual number of cohorts which are involved in the adaptive procedure can be less

than C.

6.2 Simulation Studies

To explain the above methodology, we use an example. The example is for a hypo-

thetical drug, for which the mechanistic model which describes the concentration-time

relationship is known, but the model parameters Ψ are unknown. However, initial

values of the parameters, Ψo, are available.

The code for this simulation study is given in Appendix D.4 and was implemented

in MATLAB R©. The studies were run on a PC with Intel R© Core i5-4210U CPU @ 1.70

GHz. The poped submodule which computes the D-optimal sampling time points for

given values of D and Ψ has been adapted from PopED software, Foracchia et al.

(2004). The estimation of parameters was carried out using the in-built libraries of

MATLAB R© software. The ED algorithm was used for dose regimen optimisation.

The objective is to determine and estimate Ψ and to find a dose vector D∗ such

that ϑ(Rn|n, t, T, θ) is minimised. In the problem considered in this chapter, ϑ will

correspond to the case of maintenance of target concentration. That is, to minimise

the deviations about a pre-chosen Ctgt. This will be solved using the methodology

described earlier in the chapter. We firstly define the PK model for our study.
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6.2.1 Example and the Simulation Study Set-up

The concentration-time curve is given by the one compartment first order absorption

given in Equation (2.3) and recalled here:

C(t) =
dKai

V (Kai −Kei)
(e−Kei t − e−Kai t). (6.1)

To handle the population PK sampling described in the above methodology, we use

the theory of non-linear mixed effects models described in Chapter 5. Also, since

multiple doses of the drug are administered, we use Equation (5.1) to express the

drug’s concentration in a sample collected at time Tj.

Let βi = (Kai, Kei, Vi)
T be the vector of PK parameters of the ith individual and

β = (Ka, Ke, V )T be the vector of mean PK parameters for the population. The

model for the random effects is:Kai

Kei

Vi

 =

Ka exp(b1i)

Ke exp(b2i)

V exp(b3i)

 , (6.2)

where bi = (b1i, b2i, b3i)
T is a vector of random effects such that bi ∼ N (0,Ω). In

this thesis, we assume Ω to be a diagonal matrix. Let ω = (ω1, ω2, ω3)T represent the

three diagonal elements of Ω.

Then the multiple dose model of observations can be expressed as a non-linear

mixed effects model shown below:

yij =
n∑
k=1

I{Tj≥tk}
dkKae

b1i

V eb3i(Kaeb1i −Keeb2i)

(
e−Kee

b2i (Tj−tk) − e−Kaeb1i (Tj−tk)
)
eεij , (6.3)

where yij is the jth sample from the ith subject at time Tj, where i = 1, ..., c and

j = 1, ...,m.

The random errors, εij, are normally distributed, that is εij ∼ N (0, σ2) and they

are assumed to be independent of the elements in bi’s. The vector of parameters for

this model is given by: Ψ = (βT ,ωT , σ2)T = (Ka, Ke, V, ω1, ω2, ω3, σ
2)T .

For simulation purposes, we assume that the true values of the parameters are:

Ψtrue = (.85, .15, 17, .1, .1, .1, .1)T . (6.4)

The variance 0.1 (i.e. standard deviation of about 0.32) of the random effects of bi

amounts to approximately 32% coefficient of variation (CV) in the PK parameters

in βi in log scale. In Appendix C this relationship between the normal and the
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lognormal distributions is explained. We shall see later in Figure 6.5 that this choice

of variance produces a reasonable degree of inter-individual variability in the simulated

population.

Figures 6.2 and 6.3 show how the distributions of subjects’ PK parameters de-

pend on the variance parameters ω. As expected, the spread in the simulated dis-

tributions increases with the increase in variance of the random effects. Also, if

X ∼ logN (µ, σ2), the skewness in X is given as skew(X) = (eσ
2

+ 2)
√
eσ2 − 1, Weis-

stein (2016). Thus, a higher variance results in greater skewness, as can be seen from

these figures. For our study, we choose the following values:

(a) Kai (b) Kei (c) Vi

Figure 6.2: Simulated distributions of elements of βi using the Stage II model ex-
pressed in Equation (6.2). The mean PK parameters are βtrue = (.85, .15, 17)T and
ω = (.01, .01, .01)T .

(a) Kai (b) Kei (c) Vi

Figure 6.3: Simulated distributions of elements of βi using the Stage II model ex-
pressed in Equation (6.2). The mean PK parameters are βtrue = (.85, .15, 17)T and
ω = (.1, .1, .1)T .

n: the number of doses, is taken to be 5.

t: the dosing time points are t = (0, 8, 16, 24, 32)T h.

The target concentration Ctgt = 5 mg/L is to be maintained for T = 40 hours.

c: the cohort size is 10 subjects. Although we consider cohorts of equal sizes, the

algorithm permits the use of unequal cohort sizes.

m: the number of PK samples per patient is taken to be 3. As there are three fixed

effects in the model, for estimation of Ψ, at least three samples are required to be

collected from each subject. Although we consider equal number of blood samples

per patient for all the cohorts, the algorithm permits the use of unequal number of

samples.

C: the number of cohorts is 10. We consider some other values of C in the section on
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sensitivity analysis.

κ: the discretised version of the ED algorithm is used with κ = 10. This means that

the dose sizes can only be in multiples of 10. The resolution can also be chosen as δ

if the doses are permitted to be real numbers. We consider discretised doses to fasten

the convergence of the algorithm.

dmax = 200 mg is the maximum dose which can be administered.

The initial dose sets for the ED algorithm are taken as Lki = {20, 100, 200}.
The design region for the purpose of PK sampling is taken to be [.1, 48] h. For rea-

sons of practicality, a minimum gap of 0.25 h is enforced between any two successive

sampling time points.

The initial values of the parameters available before a simulation is commenced

are: Ψo = (1, .1, 20, .05, .15, .05, .15)T . Each of the Nsim simulations starts with these

initial values.

Based on βtrue = (.85, .15, 17)T and κ = 10, the ϕA-efficient dose vector is D∗ =

(140, 90, 90, 100, 90)T and the associated efficiency measure is ϕA(∆∗|κ = 10) =

7.1561. Since we retain the same resolution in this chapter, ϕA(∆∗|κ = 10) is written

as just ϕA for convenience. This is the ideal dose regimen which should be adminis-

tered to the population. It will be unknown in practice but in a simulation study, it

can be used as a benchmark to evaluate the performance of our methodology.

For Ψtrue given in (6.4) and the chosen design region [.1, 48], the three D-optimal

points are: ξ∗ = {.1, 6.60, 48}.

Figure 6.4 shows the concentration profile generated by βtrue and D∗. Also plotted

on the same graph are the D-optimal time points ξ∗ for the vector of parameters Ψtrue

and the model (6.3).

Figure 6.4: Concentration profile for the population parameters βtrue and dose regi-
men D∗, along with the three D-optimal PK sampling time points.
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To give an idea of the inter- and intra-individual variability generated in the

concentration-profiles by Ψtrue, we simulated some profiles as shown in Figure 6.5.

The range of the simulated profiles is quite wide. For example, the lowest Cmax value

is around 2 mg/L while the highest is around 20 mg/L in Figure 6.5a. Note that the

simulated profiles in Figure 6.5a are smooth as they are obtained by setting the resid-

ual error variance to 0, i.e., σtrue = 0. On the other hand, the profiles in Figure 6.5b

are obtained by setting σtrue = .1. The inclusion of this intra-individual variability

makes the simulated profiles fuzzy.

(a) σtrue = 0 in Ψtrue (b) σtrue = 0.1 in Ψtrue

Figure 6.5: Simulated PK profiles for model (6.3) for parameters Ψtrue. (a): 1000
profiles were generated. (b): 50 profiles were generated (to keep the figure compre-
hensible).

It is important at this stage to differentiate between ‘an iteration’, ‘a simulation’

and ‘a simulation study’ in the context of our work. An iteration refers to a single

cohort and is defined as the process of collection of blood samples at optimal time

points, estimation of the model parameters (from all available data) and optimisation

of the dose regimen to be applied in the next iteration.

On the other hand, by a simulation we mean the complete adaptive procedure

starting from cohort 1 to the last cohort used in the trial. Therefore, a simulation

will consist of maximum C iterations.

A number of simulations should be performed so that the aggregated data can

offer more insights into the performance of the algorithm by averaging out random

variations. A simulation study consists of Nsim simulations. To determine an appro-

priate value of Nsim for our work, we ran many test simulation studies. We observed

that while there was variability in the parameter estimates in the beginning of each

study, they stabilised around the 600th simulation. We therefore decided to take

Nsim = 1000.

In step 3 of the methodology described in Section 6.1.2, we mentioned about

analysing the PK samples collected from the cohort in step 2. For the simulation

study we use the assumed true values of the model parameters and simulate the sam-

ples at the required optimal time points. Using normrnd function in MATLAB,
R©
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the random vector (r1, r2, r3)T is generated from N (0,Ω), where Ω = diag(.1, .1, .1)

and r4 is independently generated from N (0, σ2), where σ2 = 0.1.

Then the jth observed concentration for subject i at time Tj is simulated as:

yij =
n∑
k=1

I{Tj≥tk}
dkKae

r1

V er3(Kaer1 −Keer2)

(
e−Kee

r2 (Tj−tk) − e−Kaer1 (Tj−tk)
)
er4 , (6.5)

where D = (d1, ..., d5)T = (140, 90, 90, 100, 90)T , t = (t1, ..., t5)T = (0, 12, 24, 36, 48)T ,

Ka = 0.85, Ke = 0.15, V = 17, j = 1, 2, 3, i = 1, ..., 10 and n = 5.

These concentration values are simulated in every iteration of all the simulations

in the study.

In every simulation, D∗1 and ξ∗1 are computed using the initial values Ψo. We use

the same initial values in every simulation.

At the end of the simulation study, the data generated from the Nsim simulations

need to be analysed to test the validity of our methodology. This is done by examining

the convergence of the estimated vector of parameters Ψ and the performance of the

stopping rules.

For the simulation study, we define the following metrics to accomplish the above:

• We define the average stopping cohort number (ACN) for the jth stopping rule

as:

C̄j =
1

Nsim

Nsim∑
k=1

C
(k)
j ,

where C
(k)
j denotes the cohort number at which SRj is applied, j = 2, 3 and

k = 1, ..., Nsim.

If in a simulation the respective conditions of SRj are not met even after the

last, i.e., the Cth cohort has been analysed, we let C
(k)
j = C for j = 2, 3. For

SR1, by definition, the stopping rule is applied at cohort C.

By definition of SR1, C̄1 = C and C̄j ≤ C̄1, for j = 2, 3. Also, as indicated

previously, C̄2 ≤ C̄3.

• The final estimated vector of parameters is obtained by averaging Ψ̂(k) over the

Nsim simulations:

¯̂
Ψ =

1

Nsim

Nsim∑
k=1

Ψ̂(k),

where Ψ̂(k) is defined as the estimate of Ψ obtained in the kth simulation. As

mentioned earlier, Ψ̂(k) corresponds to the case when SR1 is used to terminate
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the simulation, unless mentioned otherwise.

• The mean administered dose regimen is obtained by averaging D∗
(k)

over the

Nsim simulations:

D∗ =
1

Nsim

Nsim∑
k=1

D∗
(k)

,

where D∗
(k)

is defined as the dose regimen computed by the ED algorithm for

the vector of parameters Ψ̂(k). Like Ψ̂(k), D∗
(k)

refers to the case when SR1 is

used to terminate the simulation, unless mentioned otherwise.

• The average ϕA-efficiency measure is obtained by averaging ϕ
(k)
A over the Nsim

simulations:

ϕ̄A =
1

Nsim

Nsim∑
k=1

ϕ
(k)
A ,

where ϕ
(k)
A is the ϕA-efficiency of D∗

(k)
.

An estimate of the bias of estimator Ψ̂ is given as:

b̂ias
(
Ψ̂
)

= Ê
(
Ψ̂
)
−Ψtrue =

1

Nsim

Nsim∑
k=1

Ψ̂(k) −Ψtrue =
¯̂
Ψ−Ψtrue.

Since the parameters differ substantially in their magnitude, the bias for a parameter

can also be reported in a more useful way by expressing it as a percentage of the

corresponding true parameter value. For example, the estimated percentage bias in
¯̂
Ka is:

¯̂
Ka −Katrue

Katrue

× 100.

An estimate of the mean squared error (mse) of the estimator Ψ̂ is given as:

m̂se
(
Ψ̂
)

= diag
(

Ê
[
(Ψ̂−Ψtrue)(Ψ̂−Ψtrue)

T
])

= diag

(
1

Nsim

Nsim∑
k=1

(Ψ̂(k) −Ψtrue)(Ψ̂
(k) −Ψtrue)

T

)
.

var(Ψ̂) can be estimated by replacing Ψtrue with
¯̂
Ψ in the above formula.

Furthermore,
¯̂
Ψ and v̂ar(Ψ̂) can be used to find the coefficients of variations (CV)

of the parameters as:

CV(K̂a) =

(√
v̂ar(K̂a)× 100

)
÷ ¯̂
Ka.
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6.2.2 Results of the Simulation Studies

The study described above was carried out for Nsim = 1000 simulations and the results

are summarised below. We examine the performances of the three stopping rules, the

distributions of the estimated parameters, the distributions of the D-optimal sampling

time points and the efficiencies of the administered dose regimens.

Stopping Rules

The average cohort number (ACN) for SR2 was computed as C̄2 = 3.81 and for

SR3, it was C̄3 = 7.52. Table 6.1 shows the percentage distribution of C
(k)
j , j = 2, 3,

for the two stopping rules. As expected, SR2 tends to get applied earlier than SR3

because of the way they have been defined. It can be inferred from the table that the

probabilities that the adaptive trial is terminated at the 5th cohort or earlier according

to the two stopping rules are about 0.86 and 0.28. The high percentage for cohort

10 for the case of SR3 is due to the fact that it includes both - simulations in which

SR3 was actually applied and the simulations in which SR3 did not apply but the

maximum number of cohorts (C = 10) was reached.

Cohort C
(k)
2 C

(k)
3

1 0.0 0.0
2 19.5 0.0
3 36.3 6.8
4 20.0 11.0
5 10.5 10.2
6 5.5 8.7
7 3.1 8.0
8 1.7 7.8
9 1.9 9.3
10 1.5 38.2

Table 6.1: Percentage distributions of the cohort number at which stopping rules SR2
and SR3 were applied. For example, at cohort number 3, SR2 was applied 36.3% of
the times while SR3 was applied just 6.8% of the times.

As mentioned before, if the condition of a stopping rule is not met even at the last

available cohort, then the trial stops. Therefore, the numbers shown in the table for

the 10th cohort are the percentage of the simulations for which the conditions of SR2

and SR3 were not met at the preceding nine cohorts.
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Estimates of the Model Parameters

The parameters’ estimates were computed for each cohort for Nsim = 1000 simu-

lations. Table 6.2 presents the estimates at each cohort, averaged over the Nsim

simulations and Figure 6.6 shows the distributions of the estimated parameters for

the three stopping rules.

Cohort
¯̂
Ka

¯̂
Ke

¯̂
V ¯̂ω1

¯̂ω2
¯̂ω3

¯̂σ
2

1 0.8479 0.1551 16.8318 0.1013 0.0884 0.0939 0.0876

2 0.8029 0.1657 15.6445 0.0932 0.0861 0.1082 0.0990

3 0.8053 0.1643 15.3679 0.0884 0.0887 0.1124 0.1021

4 0.8101 0.1619 15.4250 0.0856 0.0903 0.1122 0.1038

5 0.8145 0.1604 15.6578 0.0874 0.0918 0.1119 0.1042

6 0.8167 0.1595 15.9801 0.0868 0.0928 0.1124 0.1044

7 0.8180 0.1588 16.3427 0.0865 0.0933 0.1136 0.1049

8 0.8173 0.1587 16.6338 0.0871 0.0938 0.1149 0.1048

9 0.8185 0.1583 16.8809 0.0866 0.0937 0.1158 0.1049

10 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

Table 6.2: Average estimates of the model parameters over the course of the adaptive
procedure, derived at each of the C cohorts. The assumed true values are Ψtrue =
(.85, .15, 17, .1, .1, .1, .1)T and the initial values are Ψo = (1, .1, 20, .05, .15, .05, .15)T .

The boxplots that we present in this thesis have the box made up of the 3rd and

1st quartile, i.e., Q3 and Q1 with the median as the red line in the middle of the box.

The length of each of the two whiskers is 1.5(Q3−Q1).

It seems from Figure 6.6 that bias is present in most of the estimates, since most

of the distributions are not centred around the true values. For the stopping rule

SR1, which entails evaluation of all the cohorts, the biases in general are smaller as

compared to scenarios in which the trial is terminated early due to application of

stopping rules SR2 and SR3.

As expected, the spread for SR1 is the smallest for all the seven parameters, since

maximum information is utilised. By the same logic, the spread in the distributions

when SR2 is used is largest since, on an average, lesser number of cohorts are analysed.

Further, as can be seen from Table 6.3, the precision of the estimated parameters is

highest for SR1 followed by SR3 and then SR2.

Figure 6.7 shows the distributions for the parameter estimates obtained in the

simulations. It can be observed from the figure that bias is present in most of the

estimates, since the distributions are generally not centred around the true values.
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(a) K̂a (b) K̂e

(c) V̂ (d) ω̂1

(e) ω̂2 (f) ω̂3

(g) σ̂2

Figure 6.6: Simulated distribution of the estimated parameters for the three stopping
rules, averaged over the Nsim simulations. For each of the seven parameters, the
spread is least when SR1 is used.

It seems from Tables 6.2 and 6.3 that an increase in the number of cohorts does

not necessarily lead to a proportionate improvement in the quality of the parameters’

estimates (as measured by the associated bias and the mse). Indeed, considering

the factors of cost and patient inconvenience, it might be sensible to work with a

fewer number of cohorts. Or it might be more informative to have fewer cohorts but

138



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

Ka Ke V ω1 ω2 ω3 σ2

SR1 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050
¯̂
Ψ SR2 0.8062 0.1628 15.3183 0.0892 0.0878 0.1117 0.1029

SR3 0.8162 0.1593 16.2209 0.0863 0.0927 0.1159 0.1049

SR1 -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0

B̂ias(Ψ̂) SR2 -5.1 8.5 -9.9 -10.8 -12.2 11.7 2.9

p.c. SR3 -4.0 6.2 -4.6 -13.7 -7.3 15.9 4.9

SR1 0.0047 0.0013 7.7326 0.0018 0.0003 0.0014 0.0004

m̂se(Ψ̂) SR2 0.0107 0.0017 8.9386 0.0049 0.0009 0.0031 0.0010

SR3 0.0060 0.0014 8.1502 0.0025 0.0005 0.0019 0.0006

Table 6.3: Average estimated model parameters for the three stopping rules and their
properties.

larger in sizes. We explore such ideas later, in the section on sensitivity analysis.

The quality of the estimates is better for SR3 as compared to SR2. The reason for

this is the stricter convergence criteria for SR3 which results in higher average cohort

number (ACN) of 7.52 as compared to 3.81 for SR2. The extra information utilised

in SR3 improves the statistical properties of the estimates. Given the fact that, on

average, SR2 requires about 38% and SR3 75% of the C cohorts, the two stopping

rules certainly improve the cost effectiveness of the trial.

D-optimal time points

Table 6.4 shows the D-optimal sampling time points for the different cohorts, av-

eraged over the Nsim simulations. The D-optimal points corresponding to Ψtrue

are ξ∗true = {.10, 6.60, 48.00} and the optimal points corresponding to Ψo are ξ∗o =

{.10, 5.42, 48.00}. The optimal sampling points for each cohort are derived from the

estimated Ψ using the information collected from all the preceding cohorts.

There are no significant changes in the optimal sampling times from the third

cohort. Since the optimal sampling times are a function of the parameters’ values,

this can be attributed to the relative stability in the parameter estimates from that

cohort onward. The two points on the boundary of the design region i.e., [.1, 48] are

stable throughout.
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(a) K̂a (b) K̂e

(c) V̂ (d) ω̂1

(e) ω̂2 (f) ω̂3

(g) σ̂2

Figure 6.7: Simulated distribution of the mean parameters computed at the last, i.e.,
the Cth cohort, averaged over the Nsim simulations. The distributions seem to be
symmetric, although not centered at the true values of the parameters owing to the
presence of bias.

Dose Regimen

Using the vector of parameter estimates
¯̂
β derived from the C cohorts, the opti-

mal ϕA-efficient dose vector is computed in each simulation using the ED algorithm.
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Cohort T1 T2 T3

1 0.10 5.42 48.00
2 0.38 7.40 47.47
3 0.10 6.72 47.99
4 0.10 6.79 47.99
5 0.10 6.76 48.00
6 0.10 6.72 48.00
7 0.10 6.74 48.00
8 0.10 6.74 48.00
9 0.10 6.75 48.00
10 0.10 6.75 48.00

Table 6.4: D-optimal sampling points for the C = 10 cohorts, averaged over the
Nsim = 1000 simulations. The D-optimal sampling times corresponding to Ψtrue are
ξ∗true = {.10, 6.60, 48.00}.

Averaging over the Nsim simulations, we obtained the average dose regimen admin-

istered to the last cohort as D∗ = (145.58, 92.79, 97.02, 96.67, 97.02)T with ϕ̄A =

8.5577. The optimal dose regimen corresponding to the true PK parameters Ψtrue is

D∗ = (140, 90, 90, 100, 90)T and the associated efficiency measure is ϕA = 7.1561. Ta-

ble 6.5 presents the average ϕA-efficient dose regimen for each cohort in the adaptive

procedure. As far as ϕ̄A values are concerned, there is no clear advantage of having

a larger number of cohorts. We look into this aspect later in the chapter. Since in

each simulation the first cohort receives the dose regimen which is based on the fixed

initial values Ψo, cohort 1 receives the same dose regimen in all the Nsim simulations.

Hence, the average dose regimen for cohort 1 is equal to D∗1.

Figure 6.8 presents the variability in D∗ across the Nsim = 1000 simulations. The

medians of the doses d∗1, d∗2 and d∗4 coincide with their true values of 140, 90 and 100

respectively. The distributions for d∗3, d∗4 and d∗5 are quite similar to each other. The

coefficients of variation for all the five doses were found to be approximately 16%,

whereas the assumed inter-individual variability in the true PK parameters is around

32%.

We also study the distributions of ϕA for the three stopping rules to compare their

performances. Figure 6.9 shows the distribution of ϕA for the three stopping rules.

The median value of ϕA is lowest for SR1, which is expected since more information

is utilised. The spread of ϕA is smallest for SR1 for the same reason. However, no

significant difference is observed between the boxplots for SR2 and SR3. Furthermore,

ϕ̄A for SR2 is 8.8241 and for SR3 it is 8.9036. Thus, SR2 and SR3 have similar

performances in determining the ϕA-efficient dose regimens.
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Cohort d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

1 150.00 70.00 80.00 70.00 80.00 9.0129

2 143.80 90.43 94.79 94.12 94.82 8.4296

3 137.76 89.08 93.58 92.86 93.59 8.7375

4 135.00 87.02 91.32 90.56 91.32 8.5854

5 134.59 86.20 90.52 89.91 90.52 8.3465

6 135.97 86.63 91.15 90.44 91.16 8.2156

7 138.53 88.17 92.44 91.95 92.44 8.2484

8 141.27 89.86 94.39 93.54 94.39 8.3576

9 143.64 91.55 95.86 95.37 95.86 8.4805

10 145.58 92.79 97.02 96.67 97.02 8.5577

Table 6.5: ϕA-efficient dose vector for the C = 10 cohorts, averaged over the Nsim

simulations along with the corresponding average ϕA values. D∗ corresponding to
βtrue is (140, 90, 90, 100, 90)T with ϕA = 7.1561.

Figure 6.8: Distribution of D∗ across the Nsim = 1000 simulations. The individ-
ual doses are more or less symmetrically distibuted around their corresponding true
values.

6.2.3 Distributions of the Simulations

To facilitate a better understanding of the simulation study, it is important to

evaluate the extent of variability that is induced in the simulated data. This is

important not just for assessing the overall performance of the methodology but also

for conducting sensitivity analysis in Section 6.3.

In this simulation study, two kinds of data were simulated. The first is the vector

βi of PK parameters of a patient i, as described in Equation (6.2) and the second is
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Figure 6.9: Distribution of the values of ϕA efficiency measure for the dose regimens
according to the three stopping rules SR1, SR2 and SR3.

the response yij, as described in Equation (6.3).

Simulations of Parameters

Each study consists of Nsim = 1000 simulations of C = 10 cohorts of size c = 10

patients. Therefore, in one simulation study, we simulate 100,000 vectors of βi, as

explained in Equation (6.5).

As shown in Section 5.2, the distributions of the PK parameters for the model

defined in this example are lognormal. Here we assumed that Kai ∼ lnN (ln(.85), 0.1),

Kei ∼ lnN (ln(.15), 0.1) and Vi ∼ lnN (ln(17), 0.1). The distributions of the simulated

profiles are shown in Figure 6.10.

(a) Kai (b) Kei (c) Vi

Figure 6.10: Simulated distributions of the parameters contained in βi.

The histograms indicate that the distributions are positively skewed, which is con-

sistent with the fact that they are lognormally distributed.

Table 6.19 compares the statistics derived from the simulated distributions of the

three parameters with their theoretical values. They are observed to be in good

agreement. This supports our previous assessment that Nsim = 1000 is a sufficient

number of simulations which should be run in a study.
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Statistic Distribution Ka Ke V

Mean Theoretical 0.8936 0.1577 17.8716

Simulated 0.8931 0.1577 17.8947

Median Theoretical 0.8500 0.1500 17.0000

Simulated 0.8500 0.1500 17.0313

IQR Theoretical 0.3654 0.0645 7.3071

Simulated 0.3659 0.0651 7.2641

Table 6.6: Comparison of statistics related to the simulated distribution of the three
PK parameters with the values obtained from their theoretical distributions.

Simulation of Responses

In the context of this study, a response refers to the concentration of the drug measured

in the blood sample collected from a subject. The subjects’ responses are central to the

adaptive procedure as they give insights into the physiological profile of the subject.

In the adaptive procedure, at the time points contained in ξi, m = 3 concentration

values (response) were simulated from each patient in the ith cohort, as explained

in Equation (6.5). Since in the adaptive procedure the sampling time points can be

different for each of the C cohorts, in order to correctly study the distribution of the

responses, it is imperative that the responses for the cohorts are simulated at the

same time points.

Therefore, for the parameters simulated in the study, the responses at the time

points ξ∗ = {.10, 6.60, 48} are recorded for each of the 100,000 subjects. Figure 6.11

presents the distributions of the response at the three sampling time points and Table

6.7 presents the statistics related to these distributions.

Figure 6.11: Distributions of the response at the sampling points ξ∗ = {.10, 6.60, 48}.

From the figure, it seems that the variability in the response depends on its magni-
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tude, which is expected since the error structure in the model used in Equation (6.3)

is proportional to the response.

Statistic yi1 yi2 yi3

Mean 0.7697 4.0412 1.1962

Median 0.6601 3.5484 0.8289

IQR 0.5069 2.5786 1.1277

Table 6.7: Mean, median and inter-quartile range of the simulated responses at the
three sampling points.

The data from the table also confirm this observation. A large mean or median

concentration is associated with a large value of the inter-quartile range. Overall, the

variability in the response has been assumed to be moderately large in the simulation

study.

In Section 6.3, where we analyse the sensitivity of the algorithm to changes in the

inputs, we re-examine the distributions of the response whenever there is a change in

the assumed model or the model parameters. For example, in Section 6.3.5, where we

study the effect of misspecification of the PK model on the performance of the adaptive

procedure, we compare the distributions of the simulated responses and the simulated

parameters for the assumed and the true models. Similarly, when we study the effect

of the error variance on the quality of the parameters’ estimates in Section 6.3.7,

the distributions of the response shed more light on the scale of variability induced

by the magnitude of error variance. As mentioned before, studying the distribution

of the response is important for gaining better insights into the performance of the

methodology.

6.2.4 Distinction Between Population and Individual Dosing

Risk

In Section 4.4.1, we explored how misspecification of the PK model affects the

efficiency of the administered dose regimen. The dose regimen computed by the ED

algorithm is a function of the vector of model parameters, β. In most practical situa-

tions, this vector is unknown and has to be estimated. Any deviation of the estimated

parameters’ values from the true values may, therefore, result in a suboptimal dose

regimen.

The extent of this suboptimality can be quantitatively assessed at two levels.

Firstly, at the population level, where the estimated vector of mean PK parame-

ters, β̂, is used to compute the optimal dose regimen for the entire population instead

145



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

of the true PK parameters β. Secondly, at the individual level, such that the ith

individual in the cohort having PK parameters βi, i = 1, ..., c, is administered a dose

regimen based on β̂.

In this section, we highlight the difference between error in dosing at the population

level and at an individual level. At the population level, the error is measured around

the optimal dose regimen based on the mean PK parameters. At the individual level,

the error is measured around the optimal dose regimen based on the subject’s own

PK parameters.

Population Level

Consider a population having vector of mean PK parameters β. The ED algorithm

can be used to find the optimal dose regimen D∗(β) = (d1(β), ..., dn(β))T . This

notation emphasizes the dependence of the optimal dose regimen on β. As mentioned

above, usually an estimate β̂ is used to compute an estimate of the optimal dose

regimen, D∗(β̂) = (d1(β̂), ..., dn(β̂))T .

We define the Dosing Risk at the population level as the root mean squared error:

R (β) =

(√
E
(
d1(β̂)− d1(β)

)2

, ...,

√
E
(
dn(β̂)− dn(β)

)2
)T

.

An estimate of the dosing risk, using estimated values from the simulation study, β̂(k),

k = 1, ..., Nsim, can be obtained as:

R̂ (β) =


√√√√ 1

Nsim

Nsim∑
k=1

(
d1(β̂(k))− d1(β)

)2

, ...,

√√√√ 1

Nsim

Nsim∑
k=1

(
dn(β̂(k))− dn(β)

)2

T

.

Since the square root is computed over addition of squared numbers, the dosing

risk is always real. It follows from the definition that a large spread in the distribution

of β̂ will generally result in increased dosing risk.

For the simulation study described in Section 6.2.1, β = (.85, .15, 17)T and the

optimal dose regimen based on β is D∗(β) = (140, 90, 90, 100, 90)T .

Using the estimated values β̂(k) from each of the Nsim = 1000 simulations in Section

6.2.1, we ran the ED algorithm to find the optimal dose regimen D∗(β̂(k)). Figure

6.12 presents the distribution of di(β̂
(k))− di(β), i = 1, ..., n and k = 1, ..., Nsim. The

deviations are centred around zero, apart from the cases of doses 3 and 5.

It can be seen from the figure that for doses 1, 2 and 4, the chance of over-exposure
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Figure 6.12: Distributions of di(β̂
(k))− di(β), i = 1, ..., 5 and k = 1, ..., 1000.

is the same as of under-exposure since the median of the deviations is zero. For doses

3 and 5, the chances of over- and under-exposure are 75% and 25% respectively. The

estimated dosing risk at the population level was found in the simulation study to

be R̂ (β) = (23.20, 15.08, 16.76, 15.70, 16.76)T . The larger value of the dosing risk

for the first dose is consistent with the larger spread inherent in its deviations with

d1(β), as can be observed in Figure 6.12. The first dose, being the loading dose is

relatively more affected by the variability in the parameters’ estimates, as was also

seen in Figure 6.8.

The analysis presented above is at the population level, that is, the deviations were

measured from the dose regimen which was optimised for the population parameters.

Next, we assess the dosing risk at the individual level. That is, the deviation between

the optimal dose regimen a subject should be administered and the dose regimen that

is actually administered.

Individual Level

In the adaptive procedure described in this chapter, each of the c subjects in a cohort

are administered the dose regimen D∗(β̂), where the estimate β̂ is derived from the

data collected from all the previous cohorts.

However, for the subjects individually, the optimal dose regimen is the one based on

their own PK parameters, i.e., βi and not β̂, where βi is the vector of PK parameters

for the ith subject in a cohort of the adaptive trial, i = 1, ..., c.

As a measure of this discrepancy, we define the dosing risk for the ith subject as
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the root mean squared error:

R (βi) =

(√
E
(
d1(β̂)− d1(βi)

)2

, ...,

√
E
(
dn(β̂)− dn(βi)

)2
)T

,

for i = 1, ..., c.

The dosing risk for a subject will increase with the deviation between the admin-

istered dose regimen D∗(β̂) from the optimal dose regimen D∗(βi). If the magnitude

of the random effects is large, the spread in the distribution of βi will be large and

consequently, the dosing risk for the subjects in the trial will be high.

The risk can be evaluated by a simulation study, where we obtain an estimate of

the dosing risk for the ith subject using estimates β̂
(k)
i . That is,

R̂ (βi) =

(√
1

Nsim

∑Nsim
k=1

(
d1

(
β̂(k)

)
− d1

(
β̂

(k)
i

))2

, ...,

√
1

Nsim

∑Nsim
k=1

(
dn

(
β̂(k)

)
− dn

(
β̂

(k)
i

))2
)T

.

As mentioned in Section 5.3.2, values β̂
(k)
i can be computed by applying the esti-

mated fixed effects and the estimated random effects in the original Stage II model.

That is, β̂(k) and random effects b̂
(k)
i are applied back into Equation (6.2) to get

vectors of individual parameters for each patient:

K̂
(k)
ai

K̂
(k)
ei

V̂
(k)
i

 =

K̂
(k)
a exp(̂b

(k)
1i )

K̂
(k)
e exp(̂b

(k)
2i )

V̂ (k) exp(̂b
(k)
3i )

 , (6.6)

for i = 1, ..., c and k = 1, ..., Nsim.

For example, let us consider the last, that is, the Cth cohort of the trial. The distri-

butions of the individual parameters for the c = 10 subjects contained in this cohort

were found to be broadly similar. For example, Figure 6.13 presents the distributions

of K̂
(k)
ai , K̂

(k)
ei and V̂

(k)
i for subjects 1, 5 and 10 only as they well represent all the

subjects.

The respective medians of the individual parameters are approximately equal to

the respective population values which, as discussed in Section 6.2.3, is expected.

Table 6.8 presents the estimated dosing risk R̂(βi) for subjects 1, 5 and 10.

In comparison to the estimated dosing risk at the population level R̂(β), the esti-

mated dosing risk for a subject is much higher. This is on account of the fact that the
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(a) K̂
(k)
ai = K̂

(k)
a exp(̂b

(k)
1i ) (b) K̂

(k)
ei = K̂

(k)
e exp(̂b

(k)
2i )

(c) V̂
(k)
i = V̂ (k) exp(̂b

(k)
3i )

Figure 6.13: Distributions of K̂
(k)
ai , K̂

(k)
ei and V̂

(k)
i for subjects 1, 5 and 10, k =

1, ..., Nsim.

Subject d1 d2 d3 d4 d5

1 39.51 41.90 40.16 40.31 40.12

5 40.34 41.03 39.54 39.47 39.51

10 37.91 38.18 36.58 36.40 36.65

Table 6.8: Estimated dosing risk, R̂(βi), for the three subjects in the terminal cohort.

random effects that influence the PK parameters at the individual level are absent

at the population level. This additional variability induced by the random effects

predisposes the subjects to a higher chance of being administered a substandard dose

regimen. The dosing risk for a subject is expected to increase with an increase in

inter-individual variability, although, as discussed in Section 4.4.1, the net effect of

variation in the PK parameters on the efficiency of the administered dose regimen can

sometimes balance out.

Since the distributions of the parameters for the three subjects are mostly similar,

the distributions of the deviations dj

(
β̂(k)

)
− dj

(
β̂

(k)
i

)
, j = 1, ..., 5 are also similar.

Figure 6.14 presents the distribution of the deviations for subjects 1, 5 and 10 in the

cohort. The distributions are centred around zero.

From the figure, it can be seen that the chance of over- and under-exposure for

each of the five doses is 50%. Furthermore, the spread in the distribution for the first

(loading) dose is the largest. This was also observed for the case of dosing risk at the
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(a) Subject 1 (b) Subject 5

(c) Subject 10

Figure 6.14: Distributions of dj

(
β̂(k)

)
− dj

(
β̂

(k)
i

)
, k = 1, ..., Nsim and j = 1, 5 and

10. The distribution of the deviations for each dose is centred at 0.

population level. Similar conclusions can be made for all other seven patients in the

cohort.

One way to reduce the dosing risk of a subject is to administer an individualised

dose regimen. This can be achieved when the optimisation of the dose regimen is

performed by using the individual PK parameters of the subject as inputs to the ED

algorithm. We present a methodology to accomplish this in Section 7.1.

If individualisation of the dose regimen is not an option, another way of reducing

the dosing risk for a subject could be to include relevant covariates in the PK model.

Covariates could explain some of the inter-individual variability in the subjects which

may result in a reduction of an individual’s dosing risk. This is discussed briefly in

Section 7.1.4.

The ability of the adaptive methodology outlined in this chapter to ascertain the

population PK parameters while administering the efficient dose regimen to patients

in each cohort is established. Optimisation of the number of cohorts, cohort sizes

and other design variables could improve the quality of the inferences drawn from the

trial, as well as it could be useful in enhancing the ethical standards and the cost

effectiveness. Although we do not attempt formal optimisation of these variables in

this thesis, in the next section we discuss some scenarios in which the effect of the

variables’ choices is studied. We also study the performance of the methodology in

the presence of some practical issues such as model misspecification, missing data and
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non-compliance with the recommended dose regimen.

6.3 Sensitivity Analysis

Sensitivity analysis, in the context of a simulation study, entails measuring the un-

certainty in the output of a model that can be attributed to the uncertainty in the

input of the model, Saltelli et al. (2008). As mathematical modelling is an attempt to

imitate the real world, there will be departures from the assumptions made during the

modelling process, and the ability of the model to withstand them is what is called

its robustness. In the context of our work, it is the uncertainty in the initial values of

the PK parameters which is of concern since most estimation methods for non-linear

mixed effects models are sensitive to the initial values. Cohort size, number of cohorts

and number of PK sampling times are design variables and can be optimised. We

plan to extend the algorithm for this optimisation. For now, however, the procedure

does not include this option and so we examine the effect of changing these numbers

on the outcome in the simulation studies.

While conducting sensitivity analysis, the researcher needs to be sensible in varying

the input variables as a large change might introduce so much variability in the output

that it ceases to be discernible while a small change may not produce any noticeable

difference in the output. The econometrician Edward E. Leamer has well articulated

this balance in Leamer (1983):

I have proposed a form of organized sensitivity analysis that I call

‘global sensitivity analysis’ in which a neighbourhood of alternative as-

sumptions is selected and the corresponding interval of inferences is iden-

tified. Conclusions are judged to be sturdy only if the neighbourhood of

assumptions is wide enough to be credible and the corresponding interval

of inferences is narrow enough to be useful.

In this section, we shall explore the effects of varying some inputs on the results

produced by our methodology, while keeping the other inputs unchanged. We firstly

study the effect of using different cohort sizes and the number of cohorts on the

performance of the algorithm.
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6.3.1 Dependence on the Cohort Size and the Number of

Cohorts

Cohort size, c, is a design variable which is entangled with the number of cohorts, C.

In the original simulation study, we took (c, C) = (10, 10). Table 6.9 presents the data

obtained by re-running the simulation study Nsim = 1000 times for different pairs of

(c, C) for the stopping rule SR1. The data corresponding to the original run with (10,

10) have been inserted to facilitate comparisons. The number in bold in the percentage

bias row is the average absolute percentage bias, computed by taking average of the

absolute values of the bias for the seven parameters estimates. Similarly, the bold

number in the CV row is the average CV per parameter estimate. Figure 6.15 plots

the percentage bias and CV of the seven parameters. In general, the bias and the

(a) Percentage bias (b) CV

Figure 6.15: Variation of the percentage bias and CV of each of the seven parameters
for the seven scenarios of the choice of pair (c, C): 1. (5, 5), 2. (10, 5), 3. (5, 10), 4.
(10, 10), 5. (10, 20), 6. (20, 10), 7. (20, 20).

variability in the estimated parameters decrease with increase in the cohort size and

the number of cohorts. However, the percentage bias is more effectively reduced by

taking a larger cohort size rather than having more cohorts. This can be inferred by

noticing in Table 6.9 that the magnitude of the decrease in the absolute bias is larger

when c is increased keeping C fixed than the other way around. For example, keeping

C fixed at 10 cohorts, the average percentage biases for c = 5, 10 and 20 subjects

are 12.1, 7.1 and 5.7. However, keeping c fixed at 10 subjects, the average percentage

biases for C = 5, 10 and 20 subjects are 9.4, 7.1 and 7.4.

The average CV also appears to follow a similar relationship with (c, C). The dose

vector administered to the last cohort, D∗, tends to get closer to the true optimal

dose vector as the bias decreases, which is also supported by the simulated data.

ϕ̄A values for the seven scenarios also support the idea of preferring larger cohort

sizes to having more cohorts. For fixed C, ϕ̄A decreases with higher c but this is not

always true when C is increased keeping c fixed.
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Further, Figure 6.16 shows that the spread of the distribution of ϕA for the seven

scenarios also follows the pattern exhibited by ϕ̄A. Comparing scenarios 2 and 3, 5

and 6, it can be seen that the spread in ϕA is curbed by having larger cohort sizes

rather than more cohorts. Furthermore, the similarity between the distributions for

scenarios 2 and 4, 4 and 5 and 6 and 7 shows that no significant benefit is accrued by

having a larger number of cohorts without increasing the cohort size.

Figure 6.16: Distibution of ϕA in the Nsim = 1000 simulations for each of the seven
scenarios of the choice of pair (c, C): 1. (5, 5), 2. (10, 5), 3. (5, 10), 4. (10, 10), 5.
(10, 20), 6. (20, 10), 7. (20, 20).

Thus, the data suggest that for a given number of subjects available for the adaptive

trial, it may be better to divide them into fewer but larger cohorts to get the maximum

information. However, a potential disadvantage of having large cohorts is that more

subjects will get under- or overexposed to the drug before more credible parameters

are derived from the subsequent cohorts. One possible remedy could be to start with

a small cohort size and increase it during the trial.
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c C Ka Ke V ω1 ω2 ω3 σ2

5 5 0.7920 0.1799 15.3946 0.0889 0.0875 0.1269 0.1033

10 5 0.8098 0.1614 15.6219 0.0824 0.0918 0.1130 0.1063

5 10 0.7945 0.1778 16.4839 0.0877 0.0932 0.1333 0.1044
¯̂
Ψ 10 10 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

10 20 0.8201 0.1565 16.5505 0.0876 0.0955 0.1200 0.1048

20 10 0.8203 0.1556 16.9598 0.0879 0.0949 0.1090 0.1058

20 20 0.8237 0.1548 16.4561 0.0888 0.0953 0.1102 0.1052

5 5 -6.8 20.00 -9.4 -11.1 -12.5 26.9 3.3 [10.3]

10 5 -4.7 7.6 -8.1 -17.6 -8.2 13.0 6.3 [9.4]

5 10 -6.5 18.5 -3.0 -12.3 -6.8 33.3 4.4 [12.1]

B̂ias(Ψ̂) 10 10 -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0 [7.1]

p.c. 10 20 -3.5 4.3 -2.6 -12.4 -4.5 20.0 4.8 [7.4]

20 10 -3.5 3.8 -0.2 -12.1 -5.1 9.0 5.8 [5.7]

20 20 -3.1 3.2 -3.2 -11.2 -4.7 10.2 5.2 [5.8]

5 5 19.5 61.8 23.7 90.2 41.7 53.7 34.2 [46.4]

10 5 9.9 22.7 14.0 67.0 26.4 39.1 25.7 [29.2]

5 10 17.3 65.0 25.2 65.7 28.8 40.5 27.2 [38.6]

CV 10 10 7.5 22.5 16.3 45.8 17.90 29.0 19.1 [22.6]

10 20 5.6 18.6 16.0 32.3 13.1 21.0 13.2 [17.1]

20 10 4.3 3.3 11.6 32.3 13.4 20.7 13.5 [14.1]

20 20 3.26 2.48 11.65 22.32 8.83 15.18 9.42 [10.4]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

5 5 135.37 86.69 90.94 90.33 90.94 9.0909

10 5 135.16 86.85 91.28 90.53 91.29 8.2798

5 10 144.16 92.14 96.22 95.90 96.22 9.5193

D∗ 10 10 145.58 92.79 97.02 96.67 97.02 8.5577

10 20 143.66 90.47 95.43 94.64 95.43 8.4487

20 10 144.16 92.14 96.22 95.90 96.22 7.8798

20 20 142.81 89.55 94.17 93.16 94.17 7.8876

C̄2 C̄3

5 5 3.70 4.83

10 5 3.42 4.72

5 10 4.47 8.15

ACN 10 10 3.81 7.52

10 20 3.88 9.50

20 10 3.43 6.90

20 20 3.35 7.49

Table 6.9: Summary of the statistics related to the simulation studies for different
values of the cohort size (c) and the number of cohorts (C). For each case, the
numbers in the bold are the average absolute percentage bias and the average CV of
the parameter estimates.
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By definition, the average cohort number (ACN) is the average cohort at which

the stopping rule applies. Higher variability in the simulated distributions of the PK

parameters would lead to increased variability in the efficient dose regimens computed

at each iteration. This would lead to a delay in the application of SR2 or SR3, and

consequently would lead to an increased ACN . Therefore, as the average CV of the

simulated parameters decreases, generally ACNs C̄2 and C̄3 for the two stopping rules

also decrease. However, in Table 6.9, the low ACN values for the two cases of C = 5

are due to the fact that if in a simulation the condition of SRj (j = 2, 3) was not met,

Cj was assigned the maximum possible value of 5. For this reason, the ACN for small

values of C will be smaller in spite of the large underlying variability. In general, the

ACNs of any two or more scenarios should only be compared if they have the same

cohort sizes.

Figure 6.17 presents the distributions of the cohorts at which SR2 and SR3 are

applied. Since the cohort sizes used in the seven scenarios are different, we need to

(a) SR2 (b) SR3

Figure 6.17: Distributions of the ratio C
(k)
2 /C for SR2 and C

(k)
3 /C for SR3, for the

seven scenarios of the choice of pair (c, C): 1. (5, 5), 2. (10, 5), 3. (5, 10), 4. (10,
10), 5. (10, 20), 6. (20, 10), 7. (20, 20).

standardise the cohort sizes to make comparisons between the scenarios. In each of

the 1000 simulations, we divide the cohort number at which SR2 was applied by the

maximum number of cohorts (C) in that scenario. For example, for scenarios 1 and

2, the cohort numbers were divided by 5 while for 3, 4 and 6, they were divided by

10. The distribution of this statistic is shown in Figure 6.17a. Similar distributions

are plotted for SR3 in Figure 6.17b. We can see from the figures that, in general,

higher values of c result in lower ACN and lesser spread of the distribution. For SR3,

for the first 2 scenarios, the distributions show that in most of the 1000 simulations,

all 5 cohorts had to be analysed. The ACN for SR3 tends to be greater than SR2.

This is ascribable to the more stringent criterion for application of SR3. Also, the

distributions for SR3, in general, have greater spread than that of SR2. This can also

be attributed to the same reason as it makes the stoppage of the trial more dependent

on the underlying variability in the estimated parameters.
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6.3.2 Dependence on the Number of PK Samples per Subject

Collecting more blood samples per subject (m) should give more information about

the model parameters. We explore this conjecture by repeating the original simulation

study which hadm = 3 with three other values ofm: {4, 5, 6}. The same design region

of [.10, 48] h is used for finding the D-optimal sampling time points. For reasons of

practicality, a minimum gap of 0.25 h is ensured between any two successive sampling

time points. Nsim = 1000 simulations are performed for each of these three values

and the performance metrics for the stopping rule SR1 are summarised in Table 6.10.

ξ∗C is defined as the optimal sampling times computed using the parameter estimates

from the last cohort, i.e., Ψ̂. The results pertaining to the original run with m = 3

observations per subject are added in the table for the purpose of making comparisons.

Figure 6.18 plots the average percentage bias and CV of the parameters for the four

values of m.

(a) Percentage bias (b) CV

Figure 6.18: Variation of the percentage bias and CV of the seven parameters for the
four different values of m: 3, 4, 5 and 6.

The results suggest that in general, collection of more blood samples per subject

leads to a reduction in the average absolute bias and the coefficient of variation of the

parameter estimates. However, the gain in precision has to be weighed against the

loss in economy with respect to the added costs and patient inconvenience. m = 4

seems to be a good trade-off between precision and economy.

A noteworthy point in the presented data is that the magnitude of decrease, in

the average CV per parameter when m = 4 samples are taken instead of m = 3, is

considerably higher than the pairs of m = 5 and m = 4 and also when comparing

the outputs for m = 6 and m = 5. The explanation for this can be traced to the

theory of optimal designs of experiments. We compare the values of the optimised

determinants of the Fisher information matrices (i.e. the objective function values)

corresponding to the D-optimal designs for the four values of m and the parameters
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m Ka Ke V ω1 ω2 ω3 σ2

3 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050
¯̂
Ψ 4 0.8131 0.1560 16.9007 0.0897 0.0944 0.1191 0.1014

5 0.8254 0.1550 17.2243 0.0892 0.0945 0.1152 0.1015

6 0.8352 0.1536 17.1299 0.0909 0.0973 0.1144 0.1004

3 -3.6 5.3 .3 -13.0 -6.0 16.5 5.0 [7.1]

B̂ias(Ψ̂) 4 -4.3 4.0 -0.6 -10.3 -5.6 19.1 1.4 [6.5]

p.c. 5 -2.9 3.4 1.3 -10.8 -5.5 15.2 1.5 [5.8]

6 -1.7 2.4 0.8 -9.0 -2.7 14.4 0.4 [4.5]

3 7.5 22.5 16.3 45.8 17.90 29.0 19.1 [22.6]

CV 4 6.1 4.3 15.1 34.2 18.1 26.6 11.6 [16.6]

5 4.9 4.2 13.9 31.7 17.7 24.0 8.8 [15.0]

6 5.0 4.0 13.3 30.6 17.3 23.3 8.0 [14.5]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

3 145.58 92.79 97.02 96.67 97.02 8.5577

D∗ 4 144.55 91.56 96.24 95.58 96.24 8.4742

5 146.30 92.63 97.22 96.75 97.23 8.3155

6 145.67 92.00 96.43 95.96 96.43 8.1781

T ∗1 T ∗2 T ∗3 T ∗4 T ∗5 T ∗6

3 .10 6.75 48.00

ξ∗C 4 .11 0.36 6.81 48.00

5 .10 .35 6.28 7.35 48.00

6 .10 .35 5.83 6.04 47.71 48.00

C̄2 C̄3

3 3.81 7.52

ACN 4 3.69 7.44

5 3.64 7.35

6 3.59 7.23

Table 6.10: Comparison of statistics related to the simulation studies for different
values of m.

Ψtrue, as shown in Table 6.11.

From the table, it can be seen that the percentage increase in the optimum deter-

minant value is much higher when 4 samples are collected per subject as compared

to the other two cases. Also, from Table 6.10, the reduction in the CV from taking

6 instead of 5 samples is considerably smaller, just like the comparatively smaller
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m ξ∗ |M(Ψtrue, ξ
∗)| %-age increase in |M (Ψtrue, ξ

∗)|
3 {.1, 6.60, 48} 2.96× 106 -

4 {.1, .35, 6.67, 48} 2.45× 107 727.7

5 {.1, .35, 6.51, 6.95, 48} 9.88× 107 303.3

6 {.1, .35, 5.63, 6.95, 47.75, 48} 2.62× 108 165.2

Table 6.11: The optimal sampling time points and the optimal objective function
value for the different values of m. The values in the last column are the percentage
increases in |M (Ψtrue, ξ

∗)| when m samples are collected instead of m−1, m = 4, 5, 6.

increase in the optimum value of the determinant of the corresponding FIMs.

The pattern exhibited by the average CVs is also reflected in the two average cohort

numbers for the different values of m as presented in Table 6.10. This seems reason-

able, in the light of the argument made in the previous section that larger variability

in the simulated parameters leads to higher ACNs for stopping rules SR2 and SR3.

A decrease in variability in the estimated parameters results in earlier application of

the two stopping rules which decreases their ACNs. Therefore, the ACNs for the

two stopping rules decrease as m increases, although the reduction is very small.

Regarding the effect on the average efficiency of the dose regimens administered to

the final cohort, ϕ̄A decreases as m increases. Figure 6.19 presents the distributions

of ϕA values for the four values of m. The distributions are similar, although the

median of ϕA slightly improves (i.e. decreases) as m increases.

Figure 6.19: Distribution of ϕA values associated with D∗ in the Nsim = 1000 simu-
lations for each of the four values of m.

An interesting observation can be made regarding the D-optimal sampling times

ξ∗C . As m increases, the optimal points tend to be around the points contained in ξ∗C
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for m = 3. It seems that there are only three informative sampling time points and

any new points would be close to one of these three points.

We conclude from our analyses that although taking m = 4 might improve the

bias and the CV of the estimated parameters to some extent, there is no strong

justification for selecting higher values of m than 4. However, from practical point of

view, m = 3 could be more suitable as it may be difficult to collect blood samples

within 15 minutes.

6.3.3 Sensitivity to the Initial Values

In the original simulation study, the true values of the parameters were taken to be

Ψtrue = (.85, .15, 17, .1, .1, .1, .1)T and the initial values were taken as

Ψo = (1, .1, 20, .05, .15, .05, .15)T . We now examine if the choice of the initial values

has any bearing on the performance of the methodology.

We showed in Section 5.2 that for the model given in Equation (6.2), the standard

deviation of Kai is given by Ka

√
eω1(eω1 − 1). For Ψtrue, this is computed as 0.29.

Similarly, the standard deviations of Kei and Vi are computed as 0.05 and 5.80. If

we consider intervals around the true values of Ka, Ke and V , of width equal to two

standard deviations of the corresponding random effect, then the intervals around Ka,

Ke and V are given as: (.56, 1.14), (.1, .2) and (11.2, 22.8). To see the effect of initial

values on our algorithm, we consider six new scenarios as described below.

In the first, we take the upper limits of these intervals as the initial values of the

parameters and keep the initial values of the variance parameters unchanged, that

is, as in Ψo . In the second, we choose the lower limits of these intervals as the

initial values of the parameters and keep the initial values of the variance parameters

unchanged.

For the variance parameters (ω1, ω2, ω3, σ
2), since true value of each is 0.1, we

consider intervals of (.01, .5) for all the four parameters. For the third scenario, we

keep the three PK parameters as they were in the original simulation study and assign

the value 0.01 to all the variance parameters. In the fourth scenario, we keep the three

PK parameters as they were in the original simulation study and assign the value 0.5

to all the variance parameters. As discussed in Section 6.2.1, the variances of .01 and

.5 are approximately equivalent to CVs of 10% and 70%.

We also explore the performance of the method when the initial values are very

close or coincide with the true parameter values contained in Ψtrue. In all, we run six
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scenarios which have the following vectors as the initial values of the parameters:

Ψo1 = (1.14, .2, 22.8, .05, .15, .05, .15)T ,

Ψo2 = (.56, .1, 11.2, .05, .15, .05, .15)T ,

Ψo3 = (1, .1, 20, .01, .01, .01, .01)T ,

Ψo4 = (1, .1, 20, .50, .50, .50, .50)T ,

Ψo5 = (.9, .13, 18, .12, .12, .12, .12)T ,

Ψo6 = Ψtrue.

Through these six vectors, we want to see the effect of using vague initial values on

the performance of our algorithm. In fact, the above vectors of initial values roughly

cover the boundaries of the simulated parameters’ distributions depicted in Figure

6.6.

The results from the simulation studies for these six scenarios are presented in

Tables 6.12 and 6.13. The data corresponding to the initial values in the original

study (Ψo) are re-presented for making comparisons.

The values in Table 6.12 suggest that the choice of the initial values does not

significantly affect the variability in the simulated distributions, as evidenced by the

nearly same CVs of the parameters for the different initial values.

The biases in the estimated parameters also seem to be invariant to the choice of

the initial values of the variance parameters. This can be observed from the data

corresponding to the initial values Ψo3 and Ψo4. However, for Ψo1 and Ψo2, the

biases seem to be correlated with the corresponding initial values, especially for the

parameters V and ω3. Selection of initial values close to the true values do not seem to

yield any additional significant benefit in reducing the bias and the variability. This

is evident from the insignificant difference between the data corresponding to Ψo, Ψo5

and Ψo6.

The D-optimal sampling times ξ∗true corresponding to the true parameters Ψtrue

are {.10, 6.60, 48.00}. The mean D-optimal sampling times ξ∗ over the C cohorts for

the considered seven scenarios are presented in Figure 6.20.

The first and third sampling times converge after cohort 4 to 0.10 and 48. This

behaviour of the border points was observed in the original simulation study as well.

The second sampling times, also stabilise from cohort 4 to values around 6.60. Since

no variability in the first and third sampling times was observed in the simulations

at cohort C, we explore the distributions of the second sampling time for the five
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Ka Ke V ω1 ω2 ω3 σ2

Ψo 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

Ψo1 0.8273 0.1542 18.9483 0.0856 0.0977 0.1441 0.1039

Ψo2 0.8177 0.1572 15.1813 0.0851 0.0949 0.1276 0.1045
¯̂
Ψ Ψo3 0.8175 0.1580 16.9072 0.0835 0.0945 0.1182 0.1059

Ψo4 0.8117 0.1612 17.1278 0.0835 0.0934 0.1193 0.1066

Ψo5 0.8248 0.1557 16.5119 0.0872 0.0948 0.1173 0.1050

Ψo6 0.8232 0.1552 16.3992 0.0851 0.0964 0.1161 0.1052

Ψo -3.6 5.3 .3 -13.0 -6.0 16.5 5.0 [7.1]

Ψo1 -2.7 2.8 11.5 -14.4 -2.3 44.1 3.9 [11.7]

B̂ias(Ψ̂) Ψo2 -3.8 4.8 -10.7 -14.9 -5.1 27.6 4.5 [10.2]

p.c. Ψo3 -3.8 5.4 -.5 -16.5 -5.5 18.2 6.0 [8.0]

Ψo4 -4.5 7.5 .75 -16.5 -6.6 19.3 6.6 [8.8]

Ψo5 -3.0 3.8 -2.9 -12.8 -5.2 17.3 5.0 [7.1]

Ψo6 -3.1 3.5 -3.5 -14.9 -3.6 16.1 5.2 [7.1]

Ψo 7.5 22.5 16.3 45.8 17.90 29.0 19.1 [22.6]

Ψo1 6.5 13.5 14.8 46.2 18.4 29.2 19.4 [21.2]

Ψo2 7.1 19.3 16.0 47.0 18.6 28.4 19.3 [22.2]

CV Ψo3 7.5 24.1 15.9 47.7 18.9 30.9 18.1 [23.3]

Ψo4 9.0 35.4 17.6 50.1 19.1 29.8 18.5 [25.6]

Ψo5 7.2 18.0 15.9 46.4 18.8 28.1 18.5 [21.9]

Ψo6 6.8 12.2 15.3 46.6 17.9 28.3 18.5 [20.8]

Table 6.12: Comparison of statistics related to different vectors of initial values. For
each case, the numbers in the bold are the average absolute percentage bias and the
average CV of the parameter estimates.

scenarios.

In Figure 6.21, we present the distribution of T ∗2 , the second element of ξ∗C , for the

seven scenarios.

The spreads of the distributions are not very different but the median does seem

to be influenced by the choice of the initial values of the PK parameters in the second

and third scenarios. Overall, we do not see a large effect of the choice of initial values

on the D-optimal sampling points, however, the second sampling points for the cases

of Ψo1 and Ψo2 are slightly different from each other.

An apparently counter-intuitive observation from Table 6.13 is the relatively higher

values of the ACNs for Ψo1 and Ψo2 despite no significantly larger variability in
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d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

Ψo 145.58 92.79 97.02 96.67 97.02 8.5577

Ψo1 156.28 98.88 103.43 102.75 103.43 8.7446

D∗ Ψo2 134.18 84.56 89.41 88.45 89.42 8.9229

Ψo3 144.73 92.02 96.29 95.74 96.30 8.5012

Ψo4 146.34 93.36 97.51 97.01 97.53 8.6045

Ψo5 141.42 89.43 93.67 93.22 93.69 8.5684

Ψo6 140.61 88.80 93.21 92.80 93.22 8.4978

T ∗1 T ∗2 T ∗3

Ψo .10 6.75 48

Ψo1 .10 6.89 48

ξ∗C Ψo2 .10 6.84 48

Ψo3 .10 6.74 48

Ψo4 .10 6.75 48

Ψo5 .10 6.72 48

Ψo6 .10 6.74 48

C̄2 C̄3

Ψo 3.81 7.52

Ψo1 5.38 7.90

ACN Ψo2 4.97 8.31

Ψo3 3.73 7.60

Ψo4 3.83 7.65

Ψo5 3.74 7.44

Ψo6 3.56 7.35

Table 6.13: Comparison of statistics related to different vectors of initial values.

the estimated parameters (as measured by the CV). To understand this anomaly,

we examined the distributions for the two stopping rules for Ψoi, i = 1, ..., 6 and

compared them with the original run with Ψo. Figure 6.22 presents the percentage

distribution of the cohort number at which the two stopping rules SR2 and SR3 apply.

For SR2, the distributions for Ψo1 and Ψo2 seem to be slightly shifted to the right,

as compared with the other five vectors of initial values.

The explanation for this behaviour can be traced to the starting dose regimen

D∗1 which is administered to cohort 1 using the given initial values. For Ψo, D
∗
1

for cohort 1 was found to be (150, 70, 80, 70, 80)T . This is the same regimen which

162



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

(a) T ∗1 (b) T ∗2

(c) T ∗3

Figure 6.20: Average D-optimal sampling times over the course of the trial for the
seven scenarios consisting of choice of the initial values: Ψo and Ψoi, i = 1, ..., 6 over
the Nsim = 1000 simulations. The first and the third sampling times stabilise to the
values of .10 and 48 from cohort 4, which are at the boundary of the design region
while the second sampling times stabilise to around 6.60, which is the second sampling
time in ξ∗true.

Figure 6.21: Distribution of T ∗2 , the second element of ξ∗C for the seven scenarios
consisting of choice of the initial values: Ψo and Ψoi, i = 1, ..., 6 over the Nsim = 1000
simulations.

is administered to cohort 1 when Ψo3 and Ψo4 are used as initial values since the

ED algorithm is not dependent on the variance parameters. However, for Ψo1 and

Ψo2 the corresponding D∗1 are (200, 160, 160, 160, 160)T and (110, 50, 60, 60, 60)T .

Now, for the vector of true parameters Ψtrue, the true dose regimen D∗1 is given as
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(a) SR2 (b) SR3

Figure 6.22: Percentage distribution for the two stopping rules SR2 and SR3 for the
seven scenarios consisting of choice of the initial values: Ψo and Ψoi, i = 1, ..., 6.

(140, 90, 90, 100, 90)T . For Ψo (as well as for Ψo3 and Ψo4), since the starting dose

regimen is closer to the true dose regimen, the conditions of the stopping rules are

met sooner. For example, for SR2, it can be seen from the figure that in about 60%

of the simulations the trial is terminated at cohort 2 or 3 for scenarios 1, 4 and 5.

However, for scenarios 2 and 3, the corresponding percentages are approximately 3

and 15. Because of this, the ACNs for scenarios 2 and 3 get shifted towards the latter

cohorts.

For SR3, the distributions for Ψo1 and Ψo2 are mostly similar except that in a

higher percentage of the simulations, the trial is terminated at cohort 10. For the

same reason as above, scenarios 2 and 3 have higher percentages of simulations in

which the trial is stopped at the last cohort that is cohort 10.

The same argument can be used to explain the low ACN values for scenario 7, i.e.,

for the case of Ψo6. Since the initial values are equal to the true parameter values, the

starting dose regimen D∗1 coincides with the ϕA-efficient dose regimen corresponding

to Ψtrue. The proximity of D∗1 to the true dose regimen results in earlier application

of the stopping rules SR2 and SR3. In fact, the ACN values for this scenario are

the lowest. Furthermore, since Ψo5 and Ψo6 are closest to Ψtrue, it can be seen from

Figure 6.22 that in around 30% of the simulations, SR2 is applied at cohort 2 for

these two scenarios compared to around 20% for scenarios 1, 4 and 5 and almost nil

for scenarios 2 and 3. This implies that the closer the initial values are to the true

values, the trial will, on average, terminate earlier.

As can be seen in Table 6.13, ϕ̄A values are relatively larger for scenarios 2 and 3.

This is on account of the deviation of the final administered dose regimens in these

scenarios from the true optimal dose regimen,D∗ = (140, 90, 90, 100, 90)T . Figure 6.23

presents the distribution of ϕA corresponding to D∗ at cohort C over the Nsim = 1000

simulations. The distributions are mostly similar, however, the spread is relatively

larger for the second and the third scenario. Also, ϕ̄A and the median of ϕA values

are larger for these two scenarios. A higher spread of ϕA values means that a greater
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number of subjects in a simulation study are administered sub-optimal dose regimens.

No significant differences are observed in the other five scenarios, though the ϕ̄A value

for the case of Ψo6 is the lowest.

Figure 6.23: Distribution of ϕA for the seven scenarios consisting of choice of the
initial values: Ψo and Ψoi, i = 1, ..., 6.

We conclude from our analyses that while vague initial values for the variance

parameters do not significantly affect the outcome, vague initial values of the PK

parameters can amplify the bias and variability in the parameter estimates, lead

to inefficient dose regimens (evident from the higher values of ϕ̄A) and can delay

the termination of the trial (evident from the higher ACNs). Initial values of the

mean PK parameters should therefore be closer to the true values to minimise these

departures. In the next section, we examine the performance when the initial values

have a stronger deviation from the true values.

6.3.4 Stronger Deviation of the Initial Values

In the original simulation study in Section 6.2.1, the true values of the parameters

were taken to be Ψtrue = (.85, .15, 17, .10, .10, .10, .10)T and the initial values were

taken as Ψo = (1, .10, 20, .05, .15, .05, .15)T . In the previous section, we studied the

effect of using different vectors of initial values on the performance of our methodology.

The initial values we assumed previously were within the distance of two standard

deviations from the mean taken to be the true parameter value.

In this section, we evaluate the case when the initial values are substantially dif-

ferent from the true values. The difference is expressed in two contexts. The first

is the difference between the true values and the initial values. The second is the

deviation of the ratios of the true parameters from the ratios of the initial values.

This is discussed below.
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Difference between parameters’ values

Using a trial and error approach, the algorithm was run for several vectors of initial

values which were quite distant from the true values. In many cases, for large devi-

ations of the initial values from the true values, the algorithm terminated abruptly

due to computational problems. The maximum workable deviation for a parameter

was determined to be about 3 times of the respective true value on the higher side

and about (1/3) times on the lower side. Let us consider the following two vectors as

the initial values of the parameters:

Ψo− = (.30, .05, 6, .02, .02, .02, .03)T ,

Ψo+ = (2.60, .50, 51, .50, .30, .30, .30)T .

In terms of standard deviations, the initial values in Ψo+ are about 5 standard de-

viations more than the corresponding true values of the PK parameters whereas the

initial values in Ψo− are about 2 standard deviations less than the corresponding

true values. Taking initial values of these parameters outside the interval (Ψo−,Ψo+)

generally causes the algorithm to terminate unsuccessfully. The simulation study de-

scribed in Section 6.2.1 is now run for these two vectors of initial values. The results

from the simulation studies for these two vectors are presented in Table 6.14. The

data corresponding to the initial values in the original study (Ψo) are re-presented

for making comparisons.

The biases in the estimates for the initial values Ψo− and Ψo+ are larger only for

some parameters as compared to when the initial values are Ψo. Parameters like V ,

ω1 and ω3 are more severely affected than the other parameters. The increase in the

variability of the simulated parameters, as measured by their CV, is also significant

for some of the parameters. Overall, quality of the estimates of most parameters

deteriorates when the initial values are strongly deviated from the true values.

As can be seen in Table 6.14, the average dose regimens administered to the last

cohort for the initial values Ψo− and Ψo+ are quite different from the optimal D∗true.

Consequently, the associated ϕ̄A values are quite large for Ψo− and Ψo+ as compared

to when Ψo is used as initial values. The reason that the average recommended doses

for the initial values Ψo− and Ψo+ are large is the overestimation of the parameter V

in these two scenarios. Since V appears in the denominator of the assumed compart-

mental model, the ED algorithm compensates for the large values of this parameter

by increasing the magnitude of the administered doses.

Figure 6.24 presents the distribution of ϕA over the course of C = 10 cohorts for

the three vectors of initial values.
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Ka Ke V ω1 ω2 ω3 σ2

Ψo− 0.8578 0.1475 20.7526 0.0716 0.1096 0.4990 0.1102
¯̂
Ψ Ψo 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

Ψo+ 0.8235 0.1522 19.3055 0.0843 0.0986 0.1563 0.1054

Ψo− 0.9 -1.7 22.1 -28.4 9.6 398.9 10.2 [67.4]

B̂ias(Ψ̂) Ψo -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0 [7.1]

p.c. Ψo+ -3.1 1.5 13.6 -15.7 -1.4 56.3 5.4 [13.9]

Ψo− 6.8 5.2 20.2 67.8 17.8 31.9 21.2 [24.4]

CV Ψo 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

Ψo+ 6.1 5.1 21.2 84.0 18.6 34.4 20.8 [27.2]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗true 140.00 90.00 90.00 100.00 90.00 7.1561

Ψo− 30.00 10.00 10.00 10.00 10.00 33.6442

D∗ Ψo 150.00 70.00 80.00 70.00 80.00 9.0129

Cohort 1 Ψo+ 200.00 200.00 200.00 200.00 200.00 31.0280

Ψo− 177.85 119.40 121.23 121.00 121.28 11.7678

D∗ Ψo 145.58 92.79 97.02 96.67 97.02 8.5577

Last cohort Ψo+ 157.84 99.75 103.84 103.81 103.83 12.2722

Ψo− 170.00 110.00 110.00 110.00 110.00 8.7036

D∗(Ψ̂) Ψo 150.00 90.00 100.00 100.00 100.00 7.2585

Recommended Ψo+ 170.00 100.00 110.00 110.00 110.00 8.3987

T ∗1 T ∗2 T ∗3

Ψo− .10 6.94 48.00

ξ∗C Ψo .10 6.75 48.00

Ψo+ .10 6.98 48.00

C̄2 C̄3

Ψo− 4.76 5.38

ACN Ψo 3.81 7.52

Ψo+ 5.64 8.10

Table 6.14: Comparison of the data related to the three vectors of initial values: Ψo−,
Ψo and Ψo+.

The ranges of the distributions for Ψo− and Ψo+ are quite large as compared to the

case of Ψo. This implies that substantially suboptimal dose regimens are administered

in a number of simulations, with some values of ϕA being about four times of the

optimal value of ϕ∗A = 7.16. Therefore, large deviations of the initial values from the

true values can result in significant levels of under- and over-exposure experienced by
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Figure 6.24: Distribution of ϕA for the three vectors of initial values of the parameters.

the subjects over the course of the trial.

A few more observations can be made from Table 6.14. Firstly, the dose regimens

that are administered to the first cohort for the vectors Ψo− and Ψo+ are significantly

different from the optimal dose regimen D∗true = (140, 90, 90, 100, 90)T . As a result,

the subjects in the first cohort in both the cases are administered unethical dose levels.

However, towards the end of the trial, the administered dose regimens are closer to

the optimal dose regimen. Moreover, the recommended dose regimens for Ψo− and

Ψo+, based on the final parameters’ estimates obtained from the trial, are not very far

from the one corresponding to Ψo. This points to an advantage of using the adaptive

procedure which is discussed in more detail in Section 6.4.

The ACN values are, in general, higher for vectors Ψo− and Ψo+ as compared

to Ψo. Again, as explained in Section 6.3.3, this is attributable to the fact that the

starting dose regimens for these vectors of initial vectors are significantly different

from the optimal dose regimen which delays the application of the stopping rule.

Figure 6.25 presents the distribution of the cohorts at which the two stopping rules,

SR2 and SR3, were applied for the three vectors of initial values.

(a) SR2 (b) SR3

Figure 6.25: Percentage distribution for the two stopping rules SR2 and SR3 for the
three scenarios.

168



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

An interesting observation can be made from Figure 6.25b. The value of C̄3 and

the spread of C3 for this vector of initial values is the lower than even the case of Ψo

when the initial values are moderately close to the true values. This seems counter-

intuitive since a larger deviation from the true values would have caused delay in the

application of the stopping rules which would have resulted in a larger value of C̄3.

To explore this anomaly, we compare the modal dose regimens administered to each

of the ten cohorts for the three vectors of initial values. These data are presented in

Table 6.15 and Figure 6.26.

Ψo− Ψo Ψo+

Cohort d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

1 30 10 10 10 10 150 70 80 70 80 200 200 200 200 200
2 140 90 90 90 90 130 90 90 90 90 140 90 90 90 90
3 200 200 200 200 200 130 80 90 90 90 120 70 80 70 70
4 200 200 200 200 200 130 80 90 90 90 110 70 70 70 70
5 200 200 200 200 200 130 80 90 90 90 110 70 70 70 70
6 200 200 200 200 200 130 90 90 90 90 120 70 80 80 80
7 200 200 140 140 140 130 90 90 90 90 130 80 80 80 80
8 200 120 130 130 130 130 90 90 90 90 140 80 90 90 90
9 200 120 120 120 120 140 90 90 90 90 140 90 90 90 90
10 200 110 110 110 110 130 90 100 90 100 150 100 100 100 100

Table 6.15: Modal dose regimens at each of the ten cohorts for the three sets of the
initial values.

Figure 6.26: Plot of the modal dose regimens at each of the ten cohorts for the three
sets of the initial values: Ψo+, Ψo+ and Ψo+

From the data, it can be seen that for the vector Ψo−, the modal dose regimens

administered to cohorts 3, 4, 5 and 6 consist of the maximum permissible dose size,

dmax = 200. This consistency in the modal dose regimens for these successive four

cohorts results in early application of the stopping rule SR3 that is reflected in the

lowest C̄3 value for Ψo− followed by the one corresponding to Ψo and then to Ψo+.
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This stability in the dose regimens of the successive cohorts triggers application of

both stopping rules SR2 and SR3 which results in similar distributions of SR2 and

SR3 for Ψo−.

Furthermore, the large dose sizes make the dose regimens administered to these

cohorts highly suboptimal that results in large values of ϕA for Ψo−. On the other

hand, the dose regimens administered to the cohorts for initial values Ψo and Ψo+ are

relatively closer to the true optimal dose regimen D∗ resulting in relatively smaller

spread in the distribution of ϕA.

To understand the reason behind the large dose sizes corresponding to Ψo−, we

also explored the distribution of the estimated parameters for each cohort. Table 6.16

presents the mean estimators at each cohort for the vectors Ψo−, Ψo and Ψo+.

¯̂
Ka

¯̂
Ke

¯̂
V

Cohort Ψo− Ψo Ψo+ Ψo− Ψo Ψo+ Ψo− Ψo Ψo+

1 0.9557 0.8479 0.8365 0.1398 0.1551 0.1550 15.0157 16.8318 16.7674
2 0.8416 0.8029 0.8465 0.1683 0.1657 0.1414 32.2667 15.6445 14.3686
3 0.8097 0.8053 0.8448 0.1800 0.1643 0.1431 36.5948 15.3679 13.4200
4 0.7942 0.8101 0.8383 0.1797 0.1619 0.1460 32.2973 15.4250 13.5122
5 0.8171 0.8145 0.8304 0.1686 0.1604 0.1485 28.6288 15.6578 14.2044
6 0.8345 0.8167 0.8278 0.1601 0.1595 0.1499 26.4795 15.9801 15.2269
7 0.8440 0.8180 0.8266 0.1545 0.1588 0.1508 24.9094 16.3427 16.4234
8 0.8519 0.8173 0.8263 0.1507 0.1587 0.1512 23.5405 16.6338 17.6276
9 0.8577 0.8185 0.8250 0.1483 0.1583 0.1517 22.1858 16.8809 18.6269
10 0.8578 0.8192 0.8235 0.1475 0.1580 0.1522 20.7526 17.0449 19.3055

Table 6.16: Averaged estimated parameters at each cohort for the three vectors of
initial values.

It can be seen from the table that for the initial values Ψo−, the estimated values

of the parameter V for cohorts 2 to 5 are very large. This leads to choice of the

maximum permissible doses for cohorts 3 to 6. For Ψo and Ψo+, the average estimated

parameters for any cohort do not take such extreme values and so the administered

dose regimens are closer to the optimal dose regimen.

In conclusion, large deviation of the initial values from the true values can result

in significant increase in bias in some of the estimated parameters. This may lead to

administration of inefficient dose regimens to some of the cohorts. Therefore, it may

be sensible to impose an upper limit which is not too high on the dose sizes, as we

did in this study by having dmax = 200. This protects the subjects from potentially

experiencing significant levels of over-exposure to the drug.

Furthermore, for Ψo− and Ψo+, the dose regimens administered to cohort number

10 are significantly more efficient than the ones administered to cohort number 1.

Also, as can be observed from Table 6.16, the mean estimated parameters generally
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improve over the course of the adaptive trial. Therefore, when the initial values are

not known with reasonable confidence, it is better to evaluate all the cohorts in the

trial rather than using a stopping rule to terminate the trial early. This, as discussed

above, will lead to a good estimate of the optimal dose regimen towards the end of

the trial.

Difference between parameters’ ratios

In Section 4.4.1, we demonstrated that the efficiency of the administered dose regimens

depends not only on the degree of misspecification but also on which parameters are

misspecified. Since the dose regimen administered to the first cohort depends on the

initial values of parameters, we further explore this idea here.

Let us consider the following two vectors as the initial values of the parameters:

Ψor− = (1.5, .1, 6, .05, .15, .05, .15)T ,

Ψor+ = (.5, .1, 30, .05, .15, .05, .15)T .

Let us consider the ratio Rp = V/Ka. As can be seen from the model defined

in Equation (6.1) that keeping other parameters fixed, a large V is associated with

smaller values of the concentration whereas increasing Ka results in larger values of

the concentration. Therefore, other factors held fixed, the larger the ratio Rp is, the

lower is the exposure to the drug.

Now, the true values of V and Ka are 17 and 0.85, that is, Rp = 20. Previously, for

the initial values Ψo− and Ψo+, the values of this ratio were 20 and 19.6 respectively

which are almost the same as the ratio of the true values of the parameters, despite

the initial values themselves being far-off from the true values.

For the vectors Ψor− and Ψor+ we have defined above, the value of this ratio is

6/1.5 = 4 and 30/.5 = 60 respectively. These values have a large deviation from 20,

the ratio’s value for the true parameters. For the values contained in Ψor−, the first

cohort is expected to be severely over-exposed to the drug because of small value of

Rp. Similarly, the first cohort is expected to be under-exposed to the drug for the case

of Ψor+. The performance of the adaptive procedure at these two vectors of initial

values is studied in this section.

The results from the simulation studies for these two vectors are presented in

Table 6.17. The data corresponding to the initial values in the original study (Ψo)

are re-presented for making comparisons.

171



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

Ka Ke V ω1 ω2 ω3 σ2

Ψor− 0.8264 0.1550 19.2341 0.0833 0.0916 0.1508 0.1056
¯̂
Ψ Ψo 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

Ψor+ 0.8484 0.1473 17.3552 0.0879 0.1036 0.3319 0.1040

Ψor− -2.8 3.4 13.1 -16.7 -8.4 50.8 5.6 [14.4]

B̂ias(Ψ̂) Ψo -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0 [7.1]

p.c. Ψor+ -0.2 -1.8 2.1 -12.1 3.6 231.9 4.0 [36.5]

Ψor− 6.1 4.5 15.1 48.8 17.5 46.8 19.0 [22.5]

CV Ψo 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

Ψor+ 6.8 5.1 15.5 53.2 18.4 14.4 19.3 [19.0]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗true 140.00 90.00 90.00 100.00 90.00 7.1561

Ψor− 40.00 20.00 30.00 20.00 20.00 30.6532

D∗ Ψo 150.00 70.00 80.00 70.00 80.00 9.0129

First cohort Ψor+ 200.00 120.00 120.00 110.00 120.00 11.0700

Ψor− 158.63 101.26 105.80 105.19 105.80 9.0313

D∗ Ψo 145.58 92.79 97.02 96.67 97.02 8.5577

Last cohort Ψor+ 158.76 97.99 102.73 102.11 102.73 8.4055

Ψor− 170.00 100.00 110.00 110.00 110.00 8.3987

D∗(Ψ̂) Ψo 150.00 90.00 100.00 100.00 100.00 7.2585

Recommended Ψor+ 150.00 90.00 90.00 100.00 90.00 7.1708

T ∗1 T ∗2 T ∗3

Ψor− .10 6.94 48

ξ∗C Ψo .10 6.75 48

Ψor+ .10 7.07 48

C̄2 C̄3

Ψor− 5.13 8.04

ACN Ψo 3.81 7.52

Ψor+ 6.27 8.43

Table 6.17: Comparison of the data related to the three vectors of initial values: Ψor−,
Ψo and Ψor+.

As far as bias is concerned, the parameter ω3 is most adversely affected. Except

ω3, there is no large effect on quality of the parameters’ estimates.

As can be seen in Table 6.17, ϕ̄A values for the last cohort are not very large for

Ψor− and Ψor+ as compared to when Ψo is used as the vector of initial values. In this

case, therefore, the effect on the terminal cohorts’ subjects is less adverse as compared
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to when Ψo− and Ψo+ were used as the initial values (Table 6.14). Furthermore, the

average recommended dose regimens corresponding to Ψor− and Ψor+ are also closer

to the true optimal dose regimen, D∗true. This shows that towards the end of the trial,

the procedure is able to approximately determine the optimal dose regimen for the

initial values Ψor− and Ψor+.

Figure 6.27 presents the distribution of ϕA over the course of C = 10 cohorts for

the three vectors of initial values.

Figure 6.27: Distribution of ϕA over the course of the adaptive trial for the three
vectors of initial values: Ψor−, Ψo and Ψor+.

The range of the distribution for Ψor+ is larger than that for Ψo, however, for Ψor−

the spread is extraordinarily large. To explore this further, we compare the modal

dose regimens administered to each of the ten cohorts for the three vectors of initial

values. These data are presented in Table 6.18.

Ψor− Ψo Ψor+

Cohort d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

1 40 20 30 20 20 150 70 80 70 80 200 120 120 110 120
2 140 90 90 90 90 130 90 90 90 90 150 90 90 100 90
3 200 200 200 200 200 130 80 90 90 90 120 80 80 80 80
4 200 200 200 190 200 130 80 90 90 90 110 70 80 70 80
5 200 160 160 160 160 130 80 90 90 90 110 70 80 70 80
6 200 130 140 140 140 130 90 90 90 90 120 80 80 80 80
7 200 120 130 130 130 130 90 90 90 90 120 80 80 80 80
8 200 120 120 120 120 130 90 90 90 90 140 90 90 90 90
9 170 110 110 110 110 140 90 90 90 90 150 90 100 100 100
10 150 100 100 100 100 130 90 100 90 100 150 100 100 100 100

Table 6.18: Modal dose regimens at each of the ten cohorts for the three sets of the
initial values.

As mentioned previously, a small value of Rp is associated with over-exposure to

the drug. As a result, to counterbalance this effect, the dose regimen computed by

the ED algorithm for the first cohort consists of small dose sizes for the initial values
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contained in Ψor−. By the same argument, since value of Rp is large for the initial

values contained in Ψor+, the dose regimen computed by the ED algorithm for the

first cohort consists of large doses to offset the potential under-exposure.

To determine the average under- and over-exposure experienced by the subjects in

each of the C = 10 cohorts, Figure 6.28 presents the average values of ϕA for each of

the ten cohorts corresponding to the three vectors of initial values.

Figure 6.28: Average values of ϕA over the course of the trial for the three vectors of
initial values of the parameters: Ψor−, Ψo and Ψor+.

From the figure, it can be observed that the average ϕA value for the first cohort

for the set of initial values Ψor− is quite large. Also, there is large variation in the

average ϕA value over the course of the trial for this vector of initial values. This

explains the large spread in the distribution of ϕA observed for Ψor− in Figure 6.27.

The ACN values for the vectors Ψor− and Ψor+ are larger as compared to those

for the vector Ψo. This was also observed previously when Ψo− and Ψo+ were used

as initial values. Imprecise initial values, therefore, delay the application of the two

stopping rules thereby diminishing the chance of an early termination of the trial.

In any case, as observed from Tables 6.15 and 6.18, the administered dose regimens

get closer to the optimal dose regimen D∗true towards the last cohort of the trial.

Therefore, if the available information about the initial values is not reliable, early

stoppage of the trial should be avoided and all the cohorts should be evaluated.

In conclusion, some of the parameters’ estimates are significantly affected when the

initial values are strongly deviated from the true values. Estimates of the variance

parameters seem to be affected more than that of the PK parameters. However, since

the ED algorithm is a function of only the PK parameters and not the variance pa-

rameters, the procedure is able to approximately determine the optimal dose regimen

towards the end of the trial. Therefore, if reliable information about the initial values
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is not available, it is advisable that all the available cohorts are evaluated and the

trial is not terminated early.

The observations made in this section underpin the advantage of carrying out

this procedure in an adaptive setting rather than having a single cohort. If there

is a strong deviation from the initial values, the subjects in the first cohort may

be exposed to highly unethical dose regimens. However, the accumulating data and

the interim analyses provide an opportunity of course-correction following starting on

initial values that have a large deviation from the true values. This point is expounded

in Section 6.4 where we make a comparison between the adaptive and non-adaptive

approach to achieving the objectives of PK estimation and dose regimen optimisation.

Furthermore, if there is little information about the possible values of the parameters,

it is prudent to evaluate all the available cohorts and not to terminate the trial earlier.

6.3.5 Misspecification of the PK Model

In the original simulation study, we considered the one-compartment PK model

and assumed that it was the true underlying model. However, in reality, the assumed

model may not be correct and the true model could be different. It is pertinent

to study the performance of the methodology in such situations, that is when the

assumed and the true underlying models can, possibly, differ.

Let us consider an example in which the assumed model for conducting the adaptive

trial is the one-compartment model, as described in Equation (6.1) but the true,

underlying model is the two-compartment model, as described in Equation (2.7).

That is, the assumed model is given as

C(t) =
dKa

V (Ka −Ke)
(e−Ket − e−Kat),

whereas the true model is

C(t) = Ae−λt +Be−µt − (A+B)e−Katt,

where A, B, λ and µ are functions of the PK parameters CL, V1, Kat, Q and V2,

as shown in Equation (2.7). To distinguish from the absorption rate constant of the

assumed one-compartment model, we use Kat for the true model.

Let the true values of these parameters be β′t = (CL, V1, Kat, Q, V2)T = (2, 20, 1, 1, 10)T .

For comparing the concentration profiles generated by the respective population

parameters of the assumed and the true models, βt and β′t, Figure 6.29 plots them

for the dose regimen D∗ = (140, 90, 90, 100, 90)T previously determined to be optimal
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for the assumed model with parameters βt = (.85, .15, 17)T .

Figure 6.29: Comparison of the assumed model (in red) and the correct model (in
green). It appears that the dose regimen D∗, optimised for the assumed model, is
suboptimal for the true model.

From the figure, it seems that D∗ is not optimal for the true (two-compartment)

model, which is not unexpected as D∗ has been optimised by the ED algorithm for

the assumed model. Later in this section, we will compute D
′∗, the ϕA-efficient dose

regimen for the true model.

For the assumed model, the random effects for the parameters are as defined in

Equation (6.2). For the two-compartment model (true model), let the random effects

be given as: 
CLi

V1i

Kati

Qi

V2i

 =


CL exp(b1i)

V1 exp(b2i)

Kat exp(b3i)

Q exp(b4i)

V2 exp(b5i)

 , (6.7)

where bi = (b1i, b2i, b3i, b4i, b5i)
T is a vector of random effects such that bi ∼ N (0,Ω′).

As before, we assume Ω′ is a diagonal matrix. Let ω′ = (ω′1, ω
′
2, ω

′
3, ω

′
4, ω

′
5)T represent

the five diagonal elements of this matrix. For the purpose of simulation, we choose

the following values for the variance parameters: ω′ = (.2, .5, .2, .5, 1)T . The error

structure for this model is assumed to be exponential, i.e., the same as it was chosen

for the assumed (one-compartment) model. The value of the error variance is also

taken to be the same as before, i.e., σ2 = .10. Figure 6.30b presents 1000 simulated

concentration profiles from the two-compartment model and compares them with

profiles from the assumed one-compartment model in Figure 6.30a.

As discussed in Section 2.1.3, the two-compartment model displays biphasic be-

haviour. That is, the decline in concentration in the central department after reaching
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(a) One-compartment model (assumed)

(b) Two-compartment model (true)

Figure 6.30: 1000 concentration profiles simulated from the assumed and the true
PK models. The PK parameters of the assumed model are βt = (Ka, Ke, V )T =
(.85, .15, 17)T and the parameters of the true model are β′t = (CL, V1, Kat, Q, V2)T =
(2, 20, 1, 1, 10)T .

Cmax is initially rapid but then reduces to zero gradually. This generally leads to a

longer retention or accumulation of the drug in the body. This behaviour can be

observed in Figure 6.30b. On the other hand, concentration profiles in Figure 6.30a

decrease gradually after achieving their respective Cmax values after a dose is admin-

istered.

As before, the goals of our adaptive procedure are to estimate the PK parameters

of the underlying model and to maintain the concentration profile of the average

subject in the cohort around some target value. Here we choose Ctgt = 5 mg/L to be
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maintained for T = 40 h. However, as in this case the underlying PK model is the

two-compartment model, the estimated parameters of the assumed one-compartment

model will not correspond to the true ones.

Furthermore, the dose regimen optimisation and the computation of the D-optimal

sampling points will be based on the assumed one-compartment model instead of the

true model. It will be of interest to see the deviation of the optimal dose regimen

and the D-optimal sampling points based on the assumed model (which are used in

practice in the trial) from the corresponding values based on the true values (which

should have been used in the trial). Based on the two-compartmental model, the D-

optimal sampling times are ξ∗
′

= {0.53, 23.23, 47.76}. In comparison, the D-optimal

time points for the assumed one-compartment model are ξ∗ = {0.10, 6.60, 48.00}.

It may be recalled here that D∗ = (140, 90, 90, 100, 90)T was determined to be

ϕA-efficient for the assumed (one-compartment) model in the original study with

ϕA = 7.1561. As can be seen in Figure 6.29, D∗ does not seem optimal for the

true (two-compartment) model. The ϕA-efficient dose regimen for the two com-

partmental model at resolution κ = 10 was computed by the ED algorithm to be

D
′∗ = (160, 90, 80, 80, 80)T with ϕ′A = 5.8352. Figure 6.31 compares the concentra-

tion profiles of the two models, based on their fixed parameters and the respective

optimal dose regimens. The D-optimal sampling time points are also shown.

(a) Assumed: one-compartment model (b) True: two-compartment model

Figure 6.31: D-optimal sampling times ξ∗ and ξ′∗ and the concentration profiles gen-
erated from the respective optimal dose regimens, D∗ and D

′∗, for the assumed and
the true models.

It can be observed from the figure that the areas of under-exposure for the two-

compartment model are smaller than the corresponding areas for the one-compartment

model which is on the account of more gradual elimination of the two-compartment

model. This explains why ϕ′A is smaller than ϕA.

In Section 6.2.3, we discussed the distributions of the simulated parameters and

response from the one-compartment model. We now present these distributions for

the two-compartment model, taken as the true model in this study.
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Each simulation study consists of Nsim = 1000 simulations and each simulation

consists of C = 10 cohorts, each of size c = 10 patients. Therefore, in one simulation

study, we simulate 100,000 vectors of β′.

As shown in Section 5.2, the distribution of the PK parameters for the model de-

fined in Equation (6.7) is lognormal. That is, CLi ∼ lnN (ln(2), .2), V1i ∼ lnN (ln(20), .5),

Kati ∼ lnN (ln(1), .2), Qi ∼ lnN (ln(1), .5) and V2i ∼ lnN (ln(10), 1). Table 6.19 com-

pares the statistics derived from the simulated distributions of the five parameters with

their theoretical values. They are observed to be in good agreement.

Statistic Distribution CL V1 Kat Qi V2

Mean Theoretical 2.2103 25.6805 1.1052 1.2840 16.4872

Simulated 2.2047 25.7813 1.1008 1.2795 16.5340

Median Theoretical 2.0000 20.0000 1.0000 1.0000 10.0000

Simulated 1.9838 19.8110 0.9970 0.9921 9.9193

IQR Theoretical 1.2249 19.8090 0.6125 0.9904 14.5361

Simulated 1.2211 20.2069 0.5955 0.9900 14.6514

Table 6.19: Comparison of statistics related to the simulated distribution of the five
PK parameters with the values obtained from their theoretical distributions.

To compare the responses from the one-compartment model (assumed) and the

two-compartment model (true), we simulate responses from both the models at the

time points ξ∗ = {.10, 6.60, 48} and for dose regimen D∗. For the purpose of com-

parison, the time points and the dose regimen have to be the same for both the

models. Figure 6.32 presents the distributions of the response at the three sampling

time points and Table 6.20 presents the statistics related to these distributions.

(a) Assumed: one-compartment model (b) True: two-compartment model

Figure 6.32: Distribution of the simulated responses for the assumed and the true
models.

From the table and the figure, it can be seen that the inter-individual variabil-

ity assumed in the two-compartment model is larger than that assumed in the one-

compartment model. This is clear from the higher IQR values and a large number
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Assumed Model True Model

Statistic yi1 yi2 yi3 yi1 yi2 yi3

Mean 0.7697 4.0412 1.1962 1.3165 4.3092 2.6002

Median 0.6601 3.5484 0.8289 0.8976 3.8113 2.0938

IQR 0.5069 2.5786 1.1277 1.1244 2.7464 2.5060

Table 6.20: Distribution of the simulated responses from the assumed and the true
models.

of outliers in the case of the two-compartment model. The mean (or the median)

simulated response at the third sampling point, i.e., yi3 for the the two-compartment

model is more than twice of the corresponding value for the one-compartment model.

As explained before, this is on account of the property of the two-compartment model

which postulates slower elimination or longer retention of the drug in the body. The

median response at the first time point, yi1, for the two models is similar but the

mean response and the IQR value for the two-compartment model are almost twice

of the corresponding values for the one-compartment model. This is on account of

the larger variability assumed in the two-compartment model which results in a large

number of outliers at this point.

Let us now study the effect on the methodology’s performance when a wrong model

is assumed to be true. The original simulation study described in Section 6.2 is now

run with the change that the responses are simulated from a two-compartment model

but computation of the optimal dose regimen and D-optimal sampling points are

based on the one-compartment model, which is assumed to be true.

Table 6.21 compares the following two scenarios: first, in which the assumed and

the true models are same, i.e., the one-compartment model (original study). Sec-

ond, the assumed model is a one-compartment model and the true model is a two-

compartment model, as defined above.

The estimated parameters in the second scenario have a large deviation from the

true parameters, Ψtrue, of the one-compartment model (given in Equation (6.4)) since

the underlying model is altogether different. Also, the variability in the estimated

parameters is larger in the second scenario.

For the two-compartment model, the optimal D-sampling time points were deter-

mined to be ξ
′∗ = {0.53, 23.23, 47.76}, as mentioned before. For the scenario, where

a wrong model is assumed to be true, the average sampling points for the last co-

hort were found to be {0.10, 3.52, 47.18}. Table 6.22 presents the average D-optimal

sampling time points for the second scenario.
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True model Ka Ke V ω1 ω2 ω3 σ2

¯̂
Ψ One-comp. 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

Two-comp. 1.1502 0.0952 21.0931 0.5903 0.1439 0.0469 0.0954

CV One-comp. 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

Two-comp. 16.3 12.4 23.5 28.3 30.9 115.8 36.0 [37.6]

d∗1 d∗2 d∗3 d∗4 d∗5

D∗ One-comp. 145.58 92.79 97.02 96.67 97.02 ϕ̄A = 8.5577

Two-comp. 152.01 72.58 76.31 76.10 76.33 ϕ̄′A = 8.6600

T ∗1 T ∗2 T ∗3

ξ∗C One-comp. .10 6.75 48.00

Two-comp. .10 3.52 47.18

C̄2 C̄3

ACN One-comp. 3.81 7.52

Two-comp. 4.04 8.71

Table 6.21: Comparison of statistics related to the simulation studies for the two
underlying models. The assumed model in both scenarios is the one-compartment
model.

Cohort T1 T2 T3

1 0.10 5.42 48.00
2 0.35 6.47 45.08
3 0.13 5.10 46.45
4 0.11 4.67 46.97
5 0.10 4.44 46.97
6 0.10 3.89 46.99
7 0.10 3.83 47.15
8 0.10 3.60 47.27
9 0.10 3.66 47.33
10 0.10 3.52 47.18

Table 6.22: D-optimal sampling points for the C = 10 cohorts, averaged over the
Nsim = 1000 simulations. The D-optimal sampling times corresponding to Ψtrue are
ξ
′∗ = {0.53, 23.23, 47.76}.

The larger ACN values for the second scenario mean that assuming a wrong PK

model could cause a delay in the termination of the trial when the stopping rules SR2

and SR3 are used instead of complete examination of C cohorts.

The average optimal dose regimen in the second scenario is computed as

(152.01, 72.58, 76.31, 76.10, 76.33)T = D̄∗II (say). Given the fact that this is computed

on the fallacious assumption of the true model, this is quite close to the true optimal

dose regimen for D
′∗ = (160, 90, 80, 80, 80)T . In this case, the adaptive procedure
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shows a good degree of robustness being able to approximately determine the optimal

dose regimen for the population.

To explore this further, we compare in Figure 6.33 the ‘ideal’ concentration profile

generated by the true parameters of the two-compartment model, β′t, and the dose

regimen D
′∗ with the ‘in-practice’ average concentration profile generated by the one-

compartment model with dose regimen D̄∗II and parameters
¯̂
βII , where

¯̂
βII represents

the average estimated parameters from the last cohort in the second scenario. From

Table 6.21,
¯̂
βII = (1.1502, .0952, 21.0931)T .

Figure 6.33: Comparison of the average concentration profiles: the ideal (in green)
and the one actually achieved (in blue).

It can be seen from this figure that the two concentration profiles are quite close to

each other, especially for the duration of 40 h for which it is desired to maintain Ctgt.

This shows that even if the assumed model is different from the underlying model,

the estimated parameters of the assumed model ‘adapt’ to the response in such a way

that the concentration profile generated by them resembles the true concentration

profile. Comparing Figures 6.29 and 6.33, it can be concluded that despite assuming

a wrong PK model, the adaptive procedure is able to approximately determine the

optimal dose regimen on the strength of the subjects’ response data.

However, this inference is based only on the average concentration profiles. The

robustness of the adaptive procedure can be established when the variability in the

estimated parameters and its effect on the variability of the performance are also

taken into account. For this, we use the measure defined in Section 4.4.1 where

we introduced the notion of relative efficiency of a dose regimen which is actually

administered to the dose regimen which should have been administered.
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Specifically, for this problem, we use

ϕref =
ϕt(D

′∗)

ϕt(D∗II)
× 100,

where the function ϕt measures the average over- and under-exposure of a dose regi-

men when the underlying model is the two compartment model. ϕref represents the

relative efficiency of D∗II , the dose regimen which is administered to the dose regimen

which should have been administered, i.e., D
′∗. The range of ϕref is [0, 100]. A value

of ϕref close to 100 signifies that the administered dose regimen was not very inferior

to the optimal dose regimen. As mentioned before, ϕt(D
′∗) = 5.8352.

Figure 6.34 presents the distribution of ϕref of the recommended dose regimens in

the 1000 simulations.

Figure 6.34: Distribution of ϕref for the 1000 simulations.

From the figure, it can be seen that about 47% of the recommended dose regimens

are at least 80% as efficient as the ideal dose regimen. About 16% of the recommended

dose regimens are at most 50% as efficient. The remaining 37% of the recommended

dose regimens are of intermediate efficiency - between 50% and 80%. The mean

efficiency, ϕref was computed as 73.9%, median efficiency, ∼ϕref , as 79% and the IQR

as 35.2%. Given that the assumed and the true models in this study were two different

compartmental models, these data show that methodology performed reasonably well

in estimating the concentration-time relationship which resulted in the recommended

dose regimens to be of a high degree of efficiency, despite being based on a wrong PK

model.

In conclusion, the adaptive procedure described in this chapter is reasonably robust

against misspecification of the underlying PK model. In the next section, we explore

how assuming a wrong error structure affects the methodology’s performance.
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6.3.6 Deviation from the Assumed Error Structure

In the original simulation study, the model assumed in Equation (6.3) consisted

of an exponential error structure. Since the concentration values are always non-

negative, the exponential error structure is suitable for such data. We defined two

other error structures in Section 5.2, additive and proportional. For these error struc-

tures, the response can take negative values as well.

In this section, we explore the performance of the methodology when an incorrect

error structure is assumed to be the true one. Suppose the true underlying model is

the proportional error model, but the exponential error model is believed to be true.

That is, the assumed model is as given in Equation (6.3) but the true model is

yij =
n∑
k=1

I{Tj≥tk}
dkKae

b1i

V eb3i(Kaeb1i −Keeb2i)

(
e−Kee

b2i (Tj−tk) − e−Kaeb1i (Tj−tk)
)

(1 + ε′ij),

(6.8)

where yij is the jth sample from the ith subject at time Tj, where i = 1, ..., c and

j = 1, ...,m. The random errors, ε′ij, are normally distributed, that is ε′ij ∼ N (0, σ
′2)

and they are assumed to be independent of the elements in bi’s.

The problem is to see the effect of this wrong assumption on the performance of the

methodology. To examine in a simulation study the effect of assuming a wrong error

structure, it is important to keep similar the magnitude of variability in the response

induced by the assumed and the true error models. This is to avoid confounding the

effects of a different error structure with the effects of difference in variability. We

separately explore how the magnitude of the error variance affects the performance of

the methodology in Section 6.3.7. The effect of assuming a different magnitude of the

variability, i.e., taking initial values of the error variance significantly different from the

true value, was discussed in Sections 6.3.3 and 6.3.4. It was observed that, in general,

if the difference between the initial value and the true value of the variance parameter

is not very large, there is no significant effect on the performance of the methodology.

However, significant deviation may result in large bias in some parameters.

For the assumed model, that is the exponential error model given in Equation

(6.3), the vector of initial values of the parameters Ψ = (Ka, Ke, V, ω1, ω2, ω3)T was

chosen to be Ψo = (1, .1, 20, .05, .15, .05, .15)T . The vector of parameter values for the

true model, that is the proportional error model given in Equation (6.8), is chosen to

be Ψtrue = (.85, .15, 17, .1, .1, .1, .05)T , i.e., σ
′2 = .05.

For comparing the variability generated by the assumed and the true models,

Figure 6.35 presents the distributions of simulated response at three points {.10, 6.60,

48.00}. Table 6.23 presents the data related to these responses. As explained before,
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the variability induced by the two error models has been deliberately kept similar.

For the chosen value of σ
′2, no negative value of the response were observed in the

Nsim = 1000 simulations.

(a) Assumed error structure (Exponential) (b) True error structure (Proportional)

Figure 6.35: Distribution of the simulated responses for the two error structures.

Assumed Error Model True Error Model

Statistic yi1 yi2 yi3 yi1 yi2 yi3

Mean 0.7697 4.0412 1.1962 0.7922 4.1419 1.2502

Median 0.6601 3.5484 0.8289 0.6833 3.6732 0.8554

IQR 0.5069 2.5786 1.1277 0.5599 2.8723 1.2318

Table 6.23: Mean, Median and IQR of the 1000 simulated responses from the assumed
and the true error models.

Now, assuming the exponential model to be true when, in fact, the true model is the

proportional model, a simulation study with Nsim simulations was run. The data from

the study are presented in Table 6.24. Data related to the original simulation study,

when the assumed and the true error models are the same, i.e., the exponential error

model, have been re-presented to compare with the effect of the erroneous assumption.

From the table, it can be seen that barring the optimal sampling time points

ξ∗C , there is no significant effect on other aspects of the adaptive methodology. The

explanation for this is as follows. Since the variability induced in the response by

the two models is similar and the two models differ only with respect to their error

structure, excepting the estimate of the error variance, other parameters’ estimates

do not differ significantly in the two situations. The error variance for the exponential

model (assumed error model) is σ2 = .10 whereas it is σ
′2 = .05 for the proportional

model (true error model). The estimate of σ
′2 is found to be .0624 which is reasonably

close to the true value of .05, given that a different error model was assumed to be

true.

Regarding the optimal dose regimens, it may be recalled here that the ED algorithm

uses only the PK parameters as inputs and does not involve any of the variance
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True model Ka Ke V ω1 ω2 ω3 σ2

¯̂
Ψ Exponential 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

Proportional 0.8295 0.1541 17.5501 0.0857 0.0940 0.1154 0.0624

B̂ias(Ψ̂) Exponential -3.6 5.3 .3 -13.0 -6.0 16.5 5.0 [7.1]

p.c. Proportional -2.4 2.7 3.2 -14.3 -6.0 15.4 24.7 [9.8]

CV Exponential 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

Proportional 5.3 3.7 13.7 39.4 16.4 26.5 23.4 [18.3]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗ Exponential 145.58 92.79 97.02 96.67 97.02 8.5577

Proportional 149.08 94.25 98.80 98.00 98.80 8.5367

T ∗1 T ∗2 T ∗3

ξ∗C Exponential .10 6.75 48.00

Proportional .10 7.38 48.00

C̄2 C̄3

ACN Exponential 3.81 7.52

Proportional 3.77 7.45

Table 6.24: Comparison of statistics related to the simulation studies for the two
underlying models. The assumed model in both scenarios is the exponential error
model.

parameters in computation of the optimal dose regimen. As a result, the optimal

dose regimens are similar as in the original case even though the assumed error model

is different from the true error model. By the same argument, ϕ̄A values and the ACN

values are similar to each other in both cases. Figure 6.36 presents the distribution

of ϕA for the two scenarios.

Figure 6.36: Distribution of ϕA for the two underlying error models. The assumed
model in both cases is the exponential error model.

The distributions are similar which shows that the degree of over- and under-
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exposure experienced by the subjects will not be very different even if an incorrect

error model is used, provided that variability induced in the response is similar by

both.

Next, let us consider the D-optimal sampling time points. Based on Ψtrue, the D-

optimal sampling time points for the proportional error model are ξ∗ = {.10, 7.90, 48.00}.
In comparison, the D-optimal points for the exponential error model in the original

simulation study were ξ∗ = {0.10, 6.60, 48}. In the original simulation study, ξ∗C , the

D-optimal dosing time points of the terminal, i.e., the Cth cohort were found to be

ξ∗C = {.10, 6.75, 48}. In the current study, when the underlying error model is propor-

tional, ξ∗C = {0.1, 7.38, 48} which is reasonably close to ξ∗ = {.10, 7.90, 48}.

For the current simulation study, Table 6.25 shows the D-optimal sampling time

points for the different cohorts, averaged over the Nsim = 1000 simulations.

Cohort T1 T2 T3

1 0.10 5.42 48.00
2 0.85 8.76 47.04
3 0.11 7.62 47.99
4 0.10 7.54 47.99
5 0.10 7.43 47.99
6 0.10 7.47 47.99
7 0.10 7.36 47.99
8 0.10 7.35 48.00
9 0.10 7.34 48.00
10 0.10 7.38 48.00

Table 6.25: D-optimal sampling points for the C = 10 cohorts, averaged over the
Nsim = 1000 simulations. The D-optimal sampling times corresponding to Ψtrue are
ξ∗true = {.10, 7.90, 48.00}.

Since the D-optimal sampling points for the first cohort are based on the initial

values, Ψo = (1, .1, 20, .05, .15, .05, .15)T , these sampling points are the same as that

for the first cohort when both - the assumed and the true models - are same, as can

be observed in Table 6.4. However, from the second cohort onwards, the sampling

time points, especially the second point, take different values. This difference is

attributable to the fact that in the current study, exponential error model with error

variance σ2 = .10 is assumed whereas the true model is the proportional error model

with error variance σ
′2 = .05. Because of this difference, the estimates of σ2 at each

cohort in the current study are different from the estimates in the original study.

Therefore, the difference in the assumed and the true error structures can make the

supposedly optimal sampling points suboptimal for collection of the blood samples.

Furthermore, the bias in the estimate of the error variance can be significantly larger

since the underlying error structure is different from the assumed error structure.
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As the ED algorithm does not require the error variance as an input, the optimal

dose regimens and the associated ϕA values are not directly affected by assuming

an incorrect error model. Therefore, for similar levels of variability, the adaptive

procedure is observed to be reasonably robust against deviation from an assumed

error structure.

6.3.7 Effect of Error Variance on the Parameters’ Estimates

In the original simulation study, the true value of the error variance was taken to

be σ2
true = .10 and the initial value was taken as σ2

o = .15.

In this section, we study how the magnitude of the error variance influences the

distribution of the estimated parameters. We assume five different true values of the

error variance, much smaller than 0.10 and much larger than this value. That is, we

assume : σ2
true = .02, .05, .25, .40 and .60.

We consider two scenarios for this problem: (a) The initial values for the error

variance are in the same proportion to σ2
true as they were in the original study, that

is, the corresponding initial values are σ2
oa = .03, .075, .38, .60 and .90 and (b) the

initial values have the same difference (σ2
o−σ2

true) as in the original study. That is, the

corresponding initial values are σ2
ob = .07, .10, .30, .45 and .65. The other parameters

in Ψtrue and Ψo remain unchanged in both scenarios.

Before studying the effect of the error variance on the bias of the estimators, it will

be useful to analyse the distributions of the simulated responses for different values

of the error variance. In Section 6.2.3, we presented the distribution of the responses

at the time points ξ∗ = {.10, 6.60, 48} for the case when σ2
true was taken to be 0.1.

Figures 6.37, 6.38 and 6.39 present the distribution of the simulated responses

for different values of the true error variance, σ2
true at each of the three time points

contained in ξ∗. The previously considered case of σ2
true = .10 is added for comparison.

Table 6.26 presents the statistics related to the simulated responses.

The mean response increases with increase in the error variance while the median

response decreases, at the three time points. As the distribution of the response

is approximately lognormal (as shown in Section 5.3.2) and since the skewness of

lognormal distribution is a function of the error variance (discussed in Section 6.2.1),

this is related to increase in the skewness of the distribution. The IQR and the CV

of the distributions increase with an increase in the magnitude of the error variance,

which is expected since a higher variance induces more variability in the response.

The range of variabilities induced by the different values of σ2
true is quite large. For
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Figure 6.37: Box-plots of the simulated response at the first sampling time point, yi1,
for the six values of the true error variance, σ2

true, labelled as 1, ..., 6 for σ2
true = .02,

.05, .10, .25, .40 and .60 respectively.

Figure 6.38: Box-plots of the simulated response at the second sampling time point,
yi2, for the six values of the true error variance, σ2

true, labelled as 1, ..., 6 for σ2
true =

.02, .05, .10, .25, .40 and .60 respectively.

example, the maximum simulated response at yi2 for σ2
true = 0.60 is nearly 5 times

of the maximum response for σ2
true = .02. Furthermore, the number of outliers (in

this case, excessively large values) in the responses increase with increasing σ2
true. The

values of σ2
true considered here, therefore, cover a large range of values of the response.

The bias and the CV of the estimated parameters for different values of σ2
true and

Scenarios (a) and (b) are presented in Tables 6.27 and 6.28. The data corresponding

to σ2
true = 0.10 have been inserted to facilitate comparisons.

From the tables, it can be seen that while bias for most parameters in general

increases with an increase in the magnitude of the error variance, the effect is more

pronounced for some parameters. The parameter most adversely affected by the mag-

nitude of the error variance is the variance of random effect acting on the parameter
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Figure 6.39: Box-plots of the simulated response at the third sampling time point,
yi3, for the six values of the true error variance, σ2

true, labelled as 1, ..., 6 for σ2
true =

.02, .05, .10, .25, .40 and .60 respectively.

Statistic σ2
true yi1 yi2 yi3

.02 0.7542 (0.6702) 3.9774 (3.6200) 1.1794 (0.8438)

.05 0.7610 (0.6692) 3.9981 (3.6010) 1.1902 (0.8469)

Mean (Median) .10 0.7697 (0.6601) 4.0412 (3.5484) 1.1962 (0.8289)

.25 0.8158 (0.6432) 4.3005 (3.4468) 1.2867 (0.8090)

.40 0.8624 (0.6253) 4.5338 (3.3556) 1.3963 (0.7875)

.60 0.9296 (0.6140) 4.9376 (3.2539) 1.5139 (0.7892)

.02 0.4502 (51.89) 2.2755 (47.70) 1.1099 (95.74)

.05 0.4645 (54.11) 2.3740 (50.08) 1.1134 (97.67)

.10 0.5069 (60.06) 2.5786 (56.60) 1.1277 (101.84)

IQR (CV) .25 0.6217 (78.61) 3.2485 (75.22) 1.2196 (118.10)

.40 0.7241 (96.52) 3.8298 (92.55) 1.3242 (138.12)

.60 0.7950 (114.50) 4.2117 (113.72) 1.4051 (165.01)

Table 6.26: Four statistics, mean, median in the brackets, interquartile range and
coefficient of variation in the brackets of the simulated responses for the six values of
the true error variance, σ2

true.

V , i.e, ω3. Large σ2
true seriously increases bias in ω3 and it is worse with less accu-

rate σ2
o . As seen in Table 6.26, the variability in the simulated responses increases

with the error variance. Since the parameter V acts as a scaling parameter in the

compartmental model, a possible reason for the large positive bias in ω3 could be

the overestimation of the inter-individual variability in the parameter V . It may be
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σ2
true Ka Ke V ω1 ω2 ω3 σ2

.02 0.8297 0.1533 17.3693 0.0879 0.0931 0.1137 0.0236

.05 0.8293 0.1539 17.1974 0.0873 0.0933 0.1178 0.0543

.10 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050
¯̂
Ψ .25 0.7997 0.1607 17.0928 0.0802 0.0897 0.1427 0.2594

.40 0.8092 0.1644 21.3341 0.0625 0.0810 0.5984 0.4149

.60 0.8094 0.1670 20.6649 0.0565 0.0765 0.6313 0.6031

.02 -2.4 2.2 2.2 -12.1 -6.9 13.7 18.0 [8.2]

.05 -2.4 2.6 1.2 -12.7 -6.7 17.8 8.6 [7.4]

B̂ias(Ψ̂) .10 -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0 [7.1]

p.c. .25 -5.9 7.1 0.5 -19.8 -10.3 42.7 3.7 [12.9]

.40 -4.8 9.6 25.5 -37.5 -19.0 498.4 3.7 [85.5]

.60 -4.8 11.3 21.6 -43.5 -23.5 531.3 0.5 [90.9]

.02 4.9 4.0 13.4 27.4 15.3 24.1 29.2 [16.9]

.05 5.0 4.1 14.5 33.8 16.6 24.4 21.2 [17.1]

.10 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

CV .25 8.7 5.6 22.9 81.1 21.3 84.1 16.0 [34.3]

.40 13.8 11.0 69.9 121.6 50.0 69.7 14.8 [50.1]

.60 15.8 11.1 75.8 150.1 61.2 66.7 14.2 [56.4]

Table 6.27: Comparison of statistics related to different values of the error variance
with corresponding initial values, σ2

oa = .03, .075, .15, .38, .60 and .90 (Scenario I).
The vector of true parameters is Ψtrue = (.85, .15, 17, .1, .1, .1, .1)T .

useful, therefore, to include appropriate covariates in the model which could perhaps

reduce the variability in the parameters’ estimates to some extent. The parameter σ2

seems well estimated in all cases.

Interestingly, the percentage bias in the estimates of σ2 decreases with an increase

in the magnitude of the error variance. The reduction in the percentage bias is due

to the larger value of σ2
true which is in the denominator of the percentage bias. The

absolute bias in σ2 is similar across the different values considered.

The variability in the estimates generally increases with an increase in the mag-

nitude of the error variance. This is shown by the CVs of the estimated parameters.

The CVs of the variance parameters i.e., ω1, ω2 and ω3 are relatively more affected

by the magnitude of the error variance than other parameters in Ψ.

Comparing Tables 6.27 and 6.28, it can be seen that, in general, bias is larger in

Scenario I than in Scenario II. The difference in the estimates between the two set
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σ2
true Ka Ke V ω1 ω2 ω3 σ2

.02 0.8302 0.1532 17.2464 0.0895 0.0940 0.1121 0.0238

.05 0.8284 0.1539 17.2801 0.0866 0.0929 0.1140 0.0543

.10 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050
¯̂
Ψ .25 0.8037 0.1602 17.1423 0.0837 0.0890 0.1364 0.2564

.40 0.7833 0.1648 17.3461 0.0875 0.0841 0.1847 0.4063

.60 0.7716 0.1693 18.0542 0.0870 0.0842 0.2454 0.5959

.02 -2.3 2.1 1.4 -10.5 -6.0 12.1 19.2 [7.7]

.05 -2.5 2.6 1.2 -13.4 -7.1 14.0 8.7 [7.1]

B̂ias(Ψ̂) .10 -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0 [7.1]

p.c. .25 -5.4 6.8 0.8 -16.3 -11.0 36.4 2.5 [11.3]

.40 -7.8 9.8 2.0 -12.5 -15.9 84.7 1.6 [19.2]

.60 -9.2 12.9 6.2 -13.0 -15.8 145.4 -.70 [29.0]

.02 4.9 3.9 13.6 27.6 15.3 22.3 28.0 [16.5]

.05 5.0 4.1 14.5 33.8 16.6 24.4 21.2 [17.1]

.10 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

CV .25 9.0 5.6 21.2 74.5 20.4 70.9 15.9 [31.0]

.40 11.4 6.9 34.2 94.0 25.9 99.2 15.3 [41.0]

.60 13.6 7.8 42.1 112.0 32.0 102.0 13.9 [46.2]

Table 6.28: Comparison of statistics related to different values of the error variance
and the corresponding initial values, σ2

ob = .07, .10, .15, .30, .45 and .65 (Scenario II).
The vector of true parameters is Ψtrue = (.85, .15, 17, .1, .1, .1, .1)T .

of initial values is particularly prominent for larger values of σ2
true, i.e., .40 and .60.

The reason for this is that the initial values in σ2
oa are farther away from the true

values than the initial values in σ2
ob, particularly for larger values of σ2

true. This is

consistent with the observations made in Section 6.3.4 that when the initial values

are significantly deviated from the true values, the bias in the estimates tends to be

large.

In conclusion, large values of the error variance can have an adverse effect on the

quality of estimates of some parameters. As the parameters’ estimates drive the ED

algorithm in computation of the optimal dose regimen, it is important to control the

magnitude of the error variance as much as possible. Inclusion of relevant covariates

in the model, ensuring that the assumed model is a good fit to the response data and

reducing observational error are some of the steps that can be taken to reduce the

intra-individual variability in the response. Although we do not work with covariates

192



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

in this thesis, a brief discussion is given in Section 7.1.4.

6.3.8 Robustness to Design Implementations

The adaptive method described in this chapter may suffer from some procedu-

ral imperfections when it is implemented in practice. These imperfections may arise

primarily from two sources: missing data and subjects’ non-compliance with the rec-

ommended dose regimen. In this section, we explore how prevalence of such factors

influence the performance of the adaptive procedure.

Missing Data

The problem of missing data is widespread in clinical research and can compromise

the conclusions drawn from the trial, as discussed in Dziura et al. (2013). Missing

data are defined by Little et al. (2012) as values that are not available and that would

have been meaningful for analysis if they could have been observed.

Missing data have been broadly classified by Little and Rubin (2002) into three

categories on the basis of how they are generated. One of the most basic missing

data mechanisms is ‘missing completely at random’ (MCAR), Little (2013). Under

this mechanism, the probability of an observation being missing is the same across

the data irrespective of factors such as patients’ covariates. The data points could be

missing due to factors such as equipment failure or subjects dropping out at random

during the study.

The second mechanism is called ‘missing at random’ (MAR). This is when the

probability of missing data are related to observed variables but not to the unobserved

ones. For example, in a clinical trial study, males may have a higher dropout rate

as compared to females but all males have an equal chance of dropping out and all

females have an equal chance of dropping out, Dziura et al. (2013). That is, the

chance of a male dropping out from the study does not depend on the variable of

interest in the clinical trial. In such a case, the missing data are referred to as MAR.

The third mechanism is termed as ‘missing not at random’ (MNAR). In this case,

the chance of an observation being missing depends on the unobserved variables in

the study. For example, in a weight-loss clinical trial, morbidly obese patients may

have a higher dropout rate as compared to the other participants in the trial. In

such cases, the mere presence of missing data points may indicate information about

response.

In the context of the current simulation study, since the only data which are col-

lected from the subjects are the response data about the drug’s concentrations, we
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assume that the missing data are generated by the MCAR mechanism.

There are various methods available for handling missing values in a study. The

appropriate method to be used also depends on the underlying mechanism which

generates the missing data, if known.

The most trivial method is the ‘complete-case analysis’ which simply ignores all

the subjects for which one or more values are missing and analyses data from only

those subjects for whom complete information is available. For example, in the adap-

tive procedure, if ms (≥ 1) of the m concentration values were not collected from

a subject, the (m −ms) non-missing values from this subject are also ignored from

consideration in the analysis. This procedure is straightforward but may lead to sig-

nificant underutilisation of the collected data since some observations are excluded

from the analysis.

Missing values are frequently handled by using one of the ‘imputation’ techniques,

which involve replacement of the missing values with imputed values derived from

the available data. One of the methods that could be considered is ‘last observation

carried forward’ (LOCF). In this method, a missing value is replaced with the subject’s

last recorded observation. For example, suppose a subject drops out after the second

observation yi2 has been collected. That is, the last observation, yi3, is missing. In

this case, the LOCF method sets yi3 = yi2. This method can introduce serious bias

in the parameters’ estimates and is not suitable for the MCAR mechanism.

One of the most commonly used imputation techniques is the mean imputation.

It consists of replacing the missing values of the variable with the simple mean of the

available values for that variable. Although it ignores information from other vari-

ables in the study, the mean imputation method generally provides valid estimates

for the MCAR mechanism, Dziura et al. (2013). Since we have not considered co-

variates or other response variables in our example, let us explore the performance

of the procedure when the missing values of the response are handles using the mean

imputation technique.

Let the blood samples {yi1j, yi2j, yi3j} from the ith subject in the jth cohort be

collected at time points ξ = {T1j, T2j, T3j}, i = 1, ..., c and j = 1, ..., C.

Then, the imputed values to replace the missing observations in the data can be

computed in the following way. Suppose in the jth cohort, only one observation of one

subject, say, yi1j is missing. Then, the mean of the available observations at T1j for

the other 9 subjects in the cohort can be used to impute for the missing value. If two

subjects have missing values at T1j, then the mean of the observations collected from

the other 8 subjects can be imputed for the two missing values. Similarly, missing

values for the variables yi2j and yi3j can be imputed by the respective means based
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on the available observations.

Since our methodology is adaptive in nature, it is pertinent to consider whether

data collected from the previous cohorts can be utilised for computing the imputed

values. That is, whether the observations collected from the subjects contained in

the previous (j − 1) cohorts can be used for computing the mean for imputation for

the missing values in the jth cohort, j = 2, ..., C. That way, the mean is expected

to be a better representative of the underlying process. However, the information

from previous cohorts can not be used because of two reasons: the dose regimens

administered to the cohorts are different as the estimated parameters from each cohort

are different. Secondly, the D-optimal sampling times, which are also functions of the

estimated parameters, are different for every cohort. Because of these two reasons, the

values of the response in the previous cohorts, being collected at different experimental

settings, can not be directly used for imputation in the current cohort. Therefore, for

our work, we compute the mean based only on the observations collected from the

current cohort. We describe the procedure below.

In the adaptive methodology described in Section 6.2.1, m = 3 blood samples are

collected from each of the c×C = 100 subjects for measuring the concentration of the

drug. Thus, a total of m × c × C = 300 blood samples are collected in the trial. So

far, in every scenario considered by us, all of these 300 response points were assumed

to be available for analysis.

Let q be the probability with which an observation may be missing. This proba-

bility is assumed to be independent of factors such as the magnitude of the response,

subject’s ID and the cohort number. Therefore, in a simulation, the expected number

of missing values of the response is q × c× C ×m. Under this set-up, a subject can

have more than one missing value and more than one subject in the trial can have

missing values. Furthermore, the probability of each of the m = 3 observations to be

missing is the same, that is, q.

To implement this in the computer code, we replace the simulated responses in

the current cohort with ‘NaN’ (not-a-number) having probability q, where NaN in

MATLAB R© denotes a missing or an unavailable data point. That is, from a cohort

of c = 10 subjects each contributing m = 3 concentration values, the expected num-

ber of NaN values is 30q. Thereafter, each of these NaN values are replaced by the

corresponding mean values, which are computed as explained above. After this re-

placement, the model parameters for this cohort are estimated using the completed

dataset of 30 observations. The other steps of the adaptive procedure remain the

same.

We consider three values of probability q, that is q = .02, .10, .25. Simulation

195



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

studies were run according to these values and the results are presented in Table

6.29. The data related to the original simulation study when there are no missing

observations, that is when q = 0, have been re-presented to facilitate comparisons.

q Ka Ke V ω1 ω2 ω3 σ2

.00 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050
¯̂
Ψ .02 0.8241 0.1556 17.0919 0.0820 0.0898 0.1134 0.1098

.10 0.8276 0.1541 17.3150 0.0598 0.0842 0.1007 0.1247

.25 0.8456 0.1518 17.2170 0.0426 0.0739 0.0737 0.1372

.00 -3.6 5.3 0.3 -13.0 -6.0 16.5 5.0 [7.1]

B̂ias(Ψ̂) .02 -3.0 3.7 0.5 -18.0 -10.2 13.4 9.8 [8.4]

p.c. .10 -2.6 2.7 1.9 -40.2 -15.8 0.7 24.7 [12.6]

.25 -0.5 1.2 1.3 -57.4 -26.1 -26.3 37.2 [21.4]

.00 7.5 22.5 16.3 45.8 17.90 29.0 19.1 [22.6]

CV .02 6.3 4.5 14.8 50.0 18.1 33.7 18.7 [20.8]

.10 7.2 4.9 16.2 67.3 19.2 50.2 19.2 [26.3]

.25 8.2 5.8 18.4 94.8 22.6 59.3 19.2 [32.6]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

.00 145.58 92.79 97.02 96.67 97.02 8.5577

D∗ .02 145.75 92.70 97.00 96.81 97.01 8.2282

.10 146.65 92.70 97.33 96.70 97.34 8.7061

.25 144.33 90.80 95.45 94.38 95.45 9.3376

T ∗1 T ∗2 T ∗3

.00 .10 6.75 48.00

ξ∗C .02 .10 6.68 48.00

.10 .10 6.45 48.00

.25 .10 6.12 48.00

C̄2 ϕ̄A(C2) C̄3 ϕ̄A(C3)

.00 3.81 8.8241 7.52 8.9036

ACN .02 3.80 9.2114 7.67 9.4253

.10 3.93 9.5173 7.63 9.7214

.25 4.05 9.7459 7.82 10.1241

Table 6.29: Comparison of data related to the simulation studies when some obser-
vations are missing.

From the table, it can be observed that the adaptive procedure is quite robust

in situations in which the percentage of missing values is mild, i.e., up to 2%. The

bias and the CV of the estimated parameters are similar to the case when no missing
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values are present. Furthermore, the ϕA values, average D-optimal sampling times ξ∗C
and the ACNs for q = .00 and q = .02 are very similar. The distributions of ϕA for

the four values of q are presented in Figure 6.40.

Figure 6.40: Distribution of ϕA for the four values of q: .00, .02, .10 and .25.

The distributions of ϕA for q = 0 and q = .02 are also quite similar. Therefore, no

significant effect is observed on the performance of the adaptive procedure even when

about 2% of the responses are missing.

For q = .10, the adverse effects of missing observations begin showing-up in the

simulated data. The bias and the CV of the estimated parameters increase, although

the increase is proportionally not as large as the increase in the value of q. The ϕ̄A

value increases which implies that the dose regimen administered to the last cohort

is, on average, inferior to the case when missing values are not present. The increase

in the variability of the estimated parameters also results in larger ACN values which

means that, on average, there is a delay in the termination of the trial according to

the two stopping rules. Also, as can be seen in Figure 6.40, for some cohorts, ϕA is

significantly larger for q = .10 as compared to q = .00 and q = .02.

Finally, for q = .25 when, on average, one out of every four observations is missing,

the bias and the variability in some of the parameters’ estimates increase significantly.

Also, ϕ̄A and the spread in the distribution of ϕA are larger. This shows that in the

presence of a large number of missing values, some cohorts may be administered dose

regimens which are significantly inefficient. Furthermore, the ACN values in this case

are larger which means that presence of missing values may delay the termination of

the trial according to the defined stopping rules.

A noteworthy observation that can be made from the simulated data is the un-

derestimation of the variance parameters, ω1, ω2 and ω3 for relatively larger values of

q. This indicates a potential disadvantage of the imputation technique used in this

example. Single imputation methods such as the mean imputation technique treat

the imputed values as if they were observed and do not account for the uncertainty
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associated with the missing response values, Ravina et al. (2012). Since the ED al-

gorithm does not require the variance parameters as inputs, this disadvantage of the

mean imputation procedure does not affect the performance of the methodology sig-

nificantly. Although mean imputation works reasonably well for this example, other

methods could be used to improve the estimates of the variance parameters.

For example, the method ‘multiple imputation’ described in Rubin (1987) is able

to overcome to some extent the problem of under-representation of uncertainty associ-

ated with the single imputation methods. The multiple imputation procedure consists

of three steps: Firstly, the missing values in the dataset are replaced with imputed

values not just once but a number of times, say, M(≥ 2) to create M completed

datasets. These imputed values are drawn from specified distributions which can be

different for each of the missing value. In the second step, each of these M datasets

are analysed which results in M analyses. Finally, these analyses are pooled together

to compute statistics such as the mean and the variance for the variable of interest.

In conclusion, the adaptive procedure outlined in this chapter is reasonably robust

when a small percentage of the response values are missing. Increase in the proportion

of missing values can result in administration of inefficient dose regimens and deteri-

oration in the quality of some of the parameters’ estimates. Inclusion of covariates in

the PK model could lead to further explorations into the robustness of the procedure

under the MAR and MNAR mechanisms.

Non-compliance with the Recommended Dose Regimen

Another possible obstacle in proper implementation of the adaptive procedure is

non-compliance of the subjects to the recommended dose regimen. Non-compliance

is a significant medical challenge with rates of non-compliance being as much as 25%

for some short-term therapies, Jin et al. (2008). The most common actions that

constitute non-compliance are: not following the prescribed interval between two

successive doses and omission of the recommended doses. Some drugs are ‘forgiving’,

that is, their duration of therapeutic action is more than double of the time interval

between two successive doses, which gives them a certain degree of robustness against

non-compliance of the subjects towards the prescribed dose regimen, Urquhart (1996).

But even for such drugs, a large degree of non-compliance may lead to therapeutic

failure. Below we explore the effect of non-compliance on the adaptive procedure

described in this chapter.

In the original simulation study, the dosing time points were t = (t1, ..., t5)T =

(0, 8, 16, 24, 32)T . That is, there was a uniform time interval of 8 h between any two

successive doses. Let the ith dosing interval be τi = ti+1−ti, i = 1, ..., 4. Then, the time
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intervals can be expressed in the form of a vector as τ = (τ1, ..., τ4)T = (8, 8, 8, 8)T .

When the method is implemented in practice, it is unreasonable to expect that all

c×C subjects participating in the study will follow the prescribed dosing time points

perfectly. As a result, the time interval between two successive doses will generally

be a random variable centred around 8 h.

Regarding skipping of dose, there are a total of n×c×C = 5×10×10 = 500 doses

administered in a single trial. Let a dose be skipped by a subject with the probability

pd. Then, the expected number of skipped doses during the trial is 500pd. Under this

set-up, the subjects are assumed to be equally non-compliant, that is, the chance of

skipping a dose is the same irrespective of the subject and is equally probable for any

of the n = 5 doses administered to a subject. The probability of a subject missing at

least one dose out of the administered dose regimen of n = 5 doses can be obtained

by subtracting from 1 the probability of not missing any of the n doses. That is, the

probability of a subject following an incomplete dose regimen is 1− (1− pd)n.

To evaluate the effect of non-compliance on the adaptive method, we define three

scenarios:

(I) The vector of time intervals for a subject is defined as τu = (u1, u2, u3, u4)T ,

where uis, i = 1, ..., 4, are drawn independently from uniform distribution on interval

[7,9] for the subject. The mean of U[7,9] distribution is 8, so these random intervals

are centred around the original time interval of 8 h. Consequently, the corresponding

dosing time points are t =
(
0, u1,

∑2
i=1 ui,

∑3
i=1 ui,

∑4
i=1 ui

)T
. As a result, the dosing

schedules for the subjects are slightly different from each other. To implement this

in our MATLAB R© code, the random dosing time points as defined above are applied

in Equation (6.5) to simulate yij, the jth response from the ith subject at time Tj,

j = 1, 2, 3 and i = 1, ..., c. This is done for each of the C cohorts.

(II) The vector of time intervals for a subject is defined as τv = (v1, v2, v3, v4)T , where

vis, i = 1, ..., 4 are drawn independently from N(8,1) distribution for the subject. As

compared to Scenario I, this scenario assumes a higher degree of non-compliance of

the subjects to the recommended dose regimen. For U[7,9] distribution, 100% of the

dosing intervals lie within the interval [7, 9]. However, in this scenario, by definition of

the normal distribution, 32% of the dosing intervals lie outside the interval [7,9] since

for a N(µ, σ2) distribution, 68% of the area lies between [µ − σ, µ + σ] and the rest

32% outside this interval. In this scenario, therefore, the dose schedules followed by

some subjects will be significantly non-compliant to the recommended dose schedules.

(III) In this scenario, we consider the case of dose omission, i.e., inadvertent skipping

of one or more doses by the subjects. Let pd, the probability of a subject missing a

199



Chapter 6. The Efficient Dosing Algorithm for the Case of Unknown Parameters

dose, be 0.5%. The expected number of doses missed randomly in a trial consisting

of c× C = 100 subjects is 2.5. For an individual, the probability of not ingesting all

the prescribed n doses is 1 − (1 − pd)n = 2.47%. To implement this in MATLAB R© ,

we equate the value of the kth dose, dk, to zero in Equation 6.5 with probability pd,

k = 1, ..., n.

For each of these these three scenarios, the simulation studies were run and the

data are presented in Table 6.30. Data pertaining to the original run, denoted by

Scenario ‘O’, when perfect compliance was assumed, have been re-presented to facil-

itate comparison. Figure 6.41 presents the distribution of ϕA for the three scenarios

described in this section and the original run.

Figure 6.41: Distribution of ϕA for the three scenarios considered in this section and
the original study.

It can be seen from the table that in Scenario I the parameter estimates are only

mildly affected when the dosing intervals are drawn from U[7,9] distribution. Other

performance indicators of the procedure such as the average optimal dose regimen,

ACN , ϕ̄A and the spread in ϕA are also not much different from the case when each

subject in the trial takes the drug strictly every 8 h. This shows that the adaptive

procedure is robust when the deviation from the prescribed dosing interval is not more

than 1 hour on either side.

The adaptive procedure does not seem quite robust for Scenario II, when about

32% of the dosing intervals have a deviation of more than 1 hour from the prescribed

interval of 8 h. The parameters have, in general, larger bias and variability. The

parameters which are most adversely affected by the variability in the dosing time

points are ω1, ω3 and σ2. The value of ϕ̄A is larger which means that on average, the

subjects in the last cohort experience a higher degree of under- and over-exposure.

The values of ϕ̄A(C2) and ϕ̄A(C3), i.e., the average values of under- and exposure

experienced by the subjects when the trial is stopped according to SR2 and SR3 are

also large which shows that it will be imprudent to terminate the trial early in such a
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Ka Ke V ω1 ω2 ω3 σ2

O 0.8192 0.1580 17.0449 0.0870 0.0940 0.1165 0.1050

I 0.8059 0.1558 16.7899 0.0710 0.0966 0.1192 0.1206
¯̂
Ψ II 0.7727 0.1572 15.5259 0.0446 0.1050 0.1112 0.1519

III 0.7814 0.1598 17.7924 0.2882 0.0901 0.1967 0.1985

O -3.6 5.3 .3 -13.0 -6.0 16.5 5.0 [7.1]

I -5.1 3.8 -1.2 -30.0 -3.4 19.2 20.6 [11.8]

B̂ias(Ψ̂) II -9.1 4.8 -8.7 -55.4 5.0 11.2 51.9 [20.9]

p.c. III -8.1 6.6 4.7 188.2 -9.9 96.7 98.5 [58.9]

O 7.5 22.5 16.3 45.8 17.9 29.0 19.1 [22.6]

I 8.8 5.6 17.6 59.8 17.8 40.0 18.8 [24.1]

CV II 11.2 7.1 19.4 89.5 16.9 43.3 20.1 [29.6]

III 10.4 6.0 26.3 140.1 27.4 141.8 70.5 [60.4]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

O 145.58 92.79 97.02 96.67 97.02 8.5577

I 142.29 90.09 94.57 93.98 94.57 8.3045

D∗ II 132.84 83.58 88.25 87.56 88.26 9.0544

III 149.54 99.69 103.20 102.83 103.23 10.3046

T ∗1 T ∗2 T ∗3

O .10 6.75 48.00

I .10 6.79 48.00

ξ∗C II .10 6.90 48.00

III .10 6.11 48.00

C̄2 ϕ̄A(C2) C̄3 ϕ̄A(C3)

O 3.81 8.8241 7.52 8.9036

I 3.88 9.1568 7.59 9.2746

ACN II 3.98 9.8442 7.56 10.4362

III 3.97 10.1534 7.61 10.5003

Table 6.30: Comparison of the data from simulation studies when some subjects are
non-compliant to the treatment regimen.

scenario. Also, as can be seen in Figure 6.41, the spread of ϕA is larger for the cohorts

in this scenario as compared to Scenarios I and to the case of perfect compliance. As

a result, when implemented in practice, it should be endeavoured that the subjects

comply with the prescribed dosing intervals as far as possible. The mean D-optimal

sampling time points do not seem to be significantly affected in any of the scenarios.
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For Scenarios I and II, the distributions of the simulated dosing time points are

presented in Figure 6.42. The simulated dosing time points are centred around the

planned time points t = (0, 8, 16, 24, 32)T . As discussed before, the spread for case

of the normal distribution is larger than that for the uniform distribution. Also, the

variability increases with the index of the dosing time point ti since the variances

associated with the previous dosing time points add up in the variance of the current

time point.

(a) Scenario I: time intervals are drawn from uniform distribution.

(b) Scenario II: time intervals are drawn from normal distribution.

Figure 6.42: Distribution of the simulated dosing time points t for Scenarios I and II.
The prescibed dosing time points (perfect compliance) are t = (0, 8, 16, 24, 32)T .

Figure 6.43 presents concentration profiles corresponding to ten vectors of the

simulated dosing time points t, as an example. The departure from the prescribed

dosing time points is larger in Figure 6.43b since the assumed variability in the dosing

time points is larger in this case, as discussed above.

In Scenario III, when the dose is missed by a subject with probability pd = .005, the

effect on the performance of the methodology is severe. The bias and the variability in

the estimates, especially for the variance parameters, is significantly large. The value
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(a) Scenario I: time intervals are drawn from uniform distribution.

(b) Scenario II: time intervals are drawn from normal distribution.

Figure 6.43: Concentration profiles corresponding to the simulated dosing time points
t for Scenarios I and II. The prescibed dosing time points (perfect compliance) are
t = (0, 8, 16, 24, 32)T .

of ϕ̄A is quite large which means that even in the terminal cohort, the subjects, on

average, experience excessive over- and under-exposure to the treatment drug. This

shows that the adaptive procedure is quite sensitive to omission of the prescribed

doses by the subjects, even when only about 2 to 3 doses, on average, are skipped

in a trial which involves c × C = 100 subjects. For values of pd greater than .005,

estimation problems arose and the algorithm terminated abruptly. As a result, when

carried out in practice, it should be ensured as much as possible that the subjects

do not skip the prescribed doses. If any concentration value is measured to be too

low, it should be checked, if possible, from the concerned subject that whether a dose

was missed. If so, the affected response value could be treated as a missing value

and imputed with the series mean for which, as shown previously, the algorithm is
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reasonably robust.

In conclusion, the adaptive procedure is found to be reasonably robust for mild to

medium deviations from the planned design, except that care must be exercised that

the prescribed doses are not missed by the subjects. The procedure is quite sensitive

to the instances of dose omission. Therefore, if a measured concentration value is

observed to be suspicious, or is out-of-sync from the other values collected from that

subject, it might be sensible to investigate, if possible, whether a dose was missed.

Inclusion of covariates could further increase the robustness of the procedure as that

information could be utilised for computing the imputed value in case of missing

values. Covariates’ data could also be useful for validating the measured responses

and for detecting if doses have been missed during the trial.

6.4 Comparison with a Non-adaptive Approach

As explained at the beginning of this chapter, our methodology for ascertaining

the PK parameters and optimisation of the dose regimen is adaptive in nature. The

expected benefits of the adaptive design are: fewer patients to be administered sub-

optimal dose regimen as the parameters’ estimates and the dose regimens should

improve over the course of the adaptive trial on account of accumulating data and

possibility of an early termination of the trial. That is, what we expect from adaptive

designs are higher economy and ethical standards with at least as good outcomes as

from the traditional approach.

However, the logistics of such trials can be complicated and so clinicians may be

discouraged from applying them. A question then arises whether we can achieve

similar properties from non-adaptive designs, which by definition are simpler. The

objectives, as before, are PK estimation and dose regimen optimisation. We compare

the performance of non-adaptive approach with the adaptive one with the help of

simulation studies.

To make a fair comparison between the two approaches, it is important to keep

the total number of subjects equal in both. We consider two cases: when the total

number of subjects is 50 and when it is 200. For the adaptive case, we consider two

pairs of values of (c, C): (5, 10) and (20, 10) such that the number of cohorts in both

pairs is equal, i.e., C = 10. For the non-adaptive approach, which involves only one

cohort, the two scenarios can be expressed as (c, C) = (50, 1) and (c, C) = (200, 1).

Furthermore, as seen in the previous sections, the choice of initial values has impor-

tant implications on the quality of the parameters’ estimates and the dose regimen.
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We therefore consider three vectors of initial values: initial values very close, moder-

ately close and far-off from the true values. These cases are described below.

Initial Values Very Close to the True Values

The vector of initial values is taken to be Ψoa = (.9, .13, 18, .12, .12, .12, .12)T .

The true values used in the simulations are Ψtrue = (.85, .15, 17, .1, .1, .1, .1)T . That

is, here we consider a very good guess. We repeat the original study using these initial

values and taking four pairs of the cohort size and number of cohorts.

Table 6.31 presents the data related to the four scenarios of (c, C): 1. (5, 10), 2.

(50,1), 3. (20, 10) and 4. (200,1).

As far as quality of the estimates is concerned, it is clear that most of the estimates

in Scenarios 2 and 4, i.e., for the case of non-adaptive approach, have lower bias and

variability. However, the overall bias in the estimates for a cohort of size 50 is almost

as much as that for a cohort of size 200, although, a reduction in variability of the

estimates is observed in the latter case.

As explained in Section 6.3.3, the dose regimen administered to the first cohort in

a simulation study is the same across all Nsim simulations since the inputs to the ED

algorithm are the initial values of the parameters. Since the assumed initial values

are very close to the true values, the dose regimen administered to the first cohort is

quite close to the optimal dose regimen, as can be seen in the table and, accordingly,

the corresponding ϕA value is also close to the optimal value ϕ∗A.

Since there is only one cohort in the non-adaptive method, the ϕA value for this

cohort is the same in all the Nsim simulations, irrespective of the cohort size. There-

fore, the ϕA values for scenarios 2 and 4 are equal and there is no variability in their

distributions. This can also be observed in Figure 6.44, which plots the distribution

of ϕA for these four and other scenarios which we discuss later.

In general, the non-adaptive approach performs better than the adaptive approach

on this count as well, since ϕ̄A values for the adaptive approach are larger than the ϕA

values of the non-adaptive approach. ϕ̄A is the average value of ϕA for the subjects

in the last, i.e., the Cth cohort of the trial. As ϕA measures average over- and under-

exposure to the drug, its low, constant value in the non-adaptive case means that

all the patients are treated with good doses during the trial thereby enhancing the

ethical standards. Furthermore, as can be seen in Figure 6.44, the large spread in the

distribution of ϕA for Scenarios 1 and 3 shows that a large number of patients are

exposed to suboptimal dose regimens over the course of the trial, although it is better

for Scenario 3 which consists of cohorts of larger sizes. Overall, the non-adaptive

method has superior ethical standards when the initial values are very close to the
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c C Ka Ke V ω1 ω2 ω3 σ2

5 10 0.8244 0.1548 16.9025 0.0825 0.0917 0.1352 0.1058
¯̂
Ψ 50 1 0.8319 0.1543 16.5268 0.0894 0.0922 0.0988 0.1022

20 10 0.8245 0.1542 16.4614 0.0883 0.0923 0.1100 0.1042

200 1 0.8264 0.1542 16.4937 0.0900 0.0931 0.0991 0.1051

5 10 -3.0 3.2 -0.6 -17.5 -8.3 35.3 5.8 [10.5]

B̂ias(Ψ̂) 50 1 -2.1 2.9 -2.8 -10.6 -7.8 -1.3 2.2 [4.2]

p.c. 20 10 -3.0 2.8 -3.2 -11.7 -7.7 10.0 4.2 [6.1]

200 1 -2.8 2.8 -3.0 -10.0 -6.9 -0.9 5.1 [4.5]

5 10 8.8 6.3 21.4 67.7 26.9 55.8 25.4 [30.3]

CV 50 1 8.8 5.5 7.4 60.0 24.0 38.8 25.6 [24.2]

20 10 4.4 3.4 11.3 32.0 12.9 21.2 13.2 [14.0]

200 1 3.9 2.8 3.6 31.5 12.0 18.8 13.6 [12.3]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗true 140.00 90.00 90.00 100.00 90.00 7.1561

D∗ (cohort 1) 140.00 80.00 90.00 90.00 90.00 7.2888

5 10 144.40 91.91 96.49 95.85 96.51 9.6096

D∗ 50 1 140.00 80.00 90.00 90.00 90.00 7.2888

Last cohort 20 10 141.15 89.04 93.71 92.75 93.71 7.8883

200 1 140.00 80.00 90.00 90.00 90.00 7.2888

5 10 150.00 90.00 100.00 90.00 100.00 7.1916

D∗(Ψ̂) 50 1 140.00 90.00 90.00 100.00 90.00 7.1561

Recommended 20 10 140.00 90.00 90.00 100.00 90.00 7.1561

200 1 140.00 90.00 90.00 100.00 90.00 7.1561

C̄2 ϕ̄A(C2) C̄3 ϕ̄A(C3)

5 10 4.40 (22) 10.1464 8.04 (40.2) 10.0027

ACN (AN) 50 1 1 (50) 7.2888 1 (50) 7.2888

20 10 3.11 (62.2) 7.9284 6.63 (132.6) 7.9034

200 1 1 (200) 7.2888 1 (200) 7.2888

Table 6.31: Data related to the simulation studies for the four scenarios: 1. (5, 10),
2. (50,1), 3. (20, 10) and 4. (200, 1), when the initial values of the parameters, Ψoa,
are very close to the true values.

true values.

One of the objectives of conducting the trial is to recommend a dose regimen for

the future based on the best available estimates of the model parameters,
¯̂
Ψ. Using

¯̂
Ψ, the recommended dose regimen for the population is computed in each simulation

and the averages for each of the four scenarios are presented in the table. The average

recommended dose regimens for both adaptive and non-adaptive are reasonably close

to the true optimal dose regimen. Except Scenario 1 for which the recommended dose

regimen is quite close to the optimal dose regimen, the recommended dose regimens

for the other three scenarios are exactly the same as the optimal regimen. Therefore,

when initial values are very close to the true values, both adaptive and non-adaptive
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Figure 6.44: Distribution of ϕA over the course of the trial for the twelve scenarios
considered in this section: (1 - 4 ) Ψoa very close to Ψtrue, (5 - 8 ) Ψob moderately
close to Ψtrue and (9 - 12 ) Ψoc far from Ψtrue.

procedures are successful in determination of the appropriate dose regimen for the

population.

The average stopping cohort number (ACN) for a non-adaptive approach is always

1 as there is only one cohort in the trial. The average number of subjects utilised

in a trial, denoted by AN , has been presented for each scenario in the table where

AN = ACN × c. Let us consider scenarios 3 and 4. The ACN value according to

the second stopping rule, SR2, for scenario 3 is 3.11. Since there are c = 20 subjects

in a cohort, this means that on average, 3.11× 20 ≈ 63 subjects are examined before

the trial is terminated. The average ϕA value at the cohort number at which SR2

applies, i.e., ϕ̄A(C2) is about 7.93. In scenario 4, the ϕA value for the only cohort

of 200 subjects is about 7.29. This shows that for similar values of ϕA, it might be

possible to stop the trial early, resulting in significant savings in cost. This feature of

the adaptive approach is absent in the non-adaptive method.

It can be concluded that when the initial values of the parameters are very close

to the true values, the non-adaptive approach is better than the adaptive approach,

although, it may be possible to accrue some savings by adaptation when the cohort

size is reasonably large, as we see here for c = 20.

Next, we make this comparison between the two approaches when the initial values

of the parameters are moderately close to the true values.
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Initial Values Moderately Close to the True Values

The vector of initial values is now taken to be Ψob = (1, .1, 20, .05, .15, .05, .15)T .

We repeat the original study using these initial values and taking four pairs of the

cohort size and number of cohorts, (c, C): 5. (5, 10), 6. (50,1), 7. (20, 10) and 8.

(200,1). Table 6.32 presents the data related to these four scenarios, obtained for Ψob.

c C Ka Ke V ω1 ω2 ω3 σ2

5 10 0.8293 0.1562 17.1534 0.0859 0.0907 0.1355 0.1062
¯̂
Ψ 50 1 0.8343 0.1532 16.6336 0.0896 0.0911 0.0987 0.1030

20 10 0.8201 0.1553 17.0027 0.0866 0.0908 0.1105 0.1058

200 1 0.8348 0.1530 16.6458 0.0912 0.0930 0.1014 0.1026

5 10 -2.4 4.1 0.9 -14.1 -9.3 35.5 6.2 [10.4]

B̂ias(Ψ̂) 50 1 -1.9 2.1 -2.2 -10.4 -8.9 -1.3 3.0 [4.2]

p.c. 20 10 -3.5 3.6 0.1 -13.4 -9.2 10.5 5.8 [6.6]

200 1 -1.8 2.0 -2.1 -8.8 -7.0 1.4 2.6 [3.7]

5 10 8.8 6.1 21.2 67.8 25.0 49.7 26.6 [29.3]

CV 50 1 8.7 5.6 7.1 63.5 23.3 38.8 26.8 [24.8]

20 10 4.3 3.3 11.7 32.1 12.5 21.3 12.8 [14.0]

200 1 4.0 2.7 3.5 30.9 11.9 18.3 13.4 [12.1]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗true 140.00 90.00 90.00 100.00 90.00 7.1561

D∗ (cohort 1) 150.00 70.00 80.00 70.00 80.00 9.0129

5 10 145.63 93.50 97.59 96.90 97.59 9.6302

D∗ 50 1 150.00 70.00 80.00 70.00 80.00 9.0129

Last cohort 20 10 144.46 91.64 95.99 95.49 95.99 7.9568

200 1 150.00 70.00 80.00 70.00 80.00 9.0129

5 10 150.00 90.00 100.00 100.00 100.00 7.2585

D∗(Ψ̂) 50 1 140.00 90.00 90.00 100.00 90.00 7.1561

Recommended 20 10 150.00 90.00 100.00 90.00 100.00 7.1916

200 1 140.00 90.00 90.00 100.00 90.00 7.1561

C̄2 ϕ̄A(C2) C̄3 ϕ̄A(C3)

5 10 4.51 (22.6) 9.7706 8.18 (40.9) 9.9511

ACN (AN) 50 1 1 (50) 9.0129 1 (50) 9.0129

20 10 3.40 (68) 7.8890 6.83 (136.6) 7.8701

200 1 1 (200) 9.0129 1 (200) 9.0129

Table 6.32: Data related to the simulation studies for the four scenarios: 5. (5, 10),
6. (50,1), 7. (20, 10) and 8. (200, 1), when the initial values of the parameters, Ψob,
are moderately close to the true values.

As far as quality of the estimates is concerned, the results are quite similar to the

previous case, when the initial values were taken to be close to the true values. That

is, the quality of the parameters’ estimates in the non-adaptive approach is overall

better than in the adaptive approach.
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As compared to the previous case, the dose regimen administered to the first cohort

is farther from the optimal dose regimen. This is expected since a larger deviation

from the true values will generally increase the extent of sub-optimality of the dose

regimen computed by the ED algorithm resulting in larger ϕA values. Only in some

special cases when some misspecified parameter values cancel the effects of other

misspecified parameter values the resulting exposure to the drug may not change

much. Such issues were discussed in Section 4.4.1.

The ϕ̄A value associated with this dose regimen is about 9.01 whereas the optimal

value is 7.16. All the patients in Scenarios 6 and 8 (non-adaptive approach) are

administered this dose regimen. ϕ̄A in case of the non-adaptive approach is, therefore,

higher than when the initial values were closer to the true values.

A distinct advantage of the adaptive approach becomes apparent here. While in

Scenarios 6 and 8, all the 50 and 200 subjects are administered suboptimal dose

regimens resulting in ϕ̄A value of about 9.01, in scenario 7, which represents the

adaptive approach, the ϕ̄A for the last, i.e., the 10th cohort is about 7.96. By utilising

the accumulating data, improved dose regimens are administered to successive cohorts

in an adaptive trial which results in lower values of ϕA.

Furthermore, in Scenario 7, the average stopping cohort number (ACN) according

to SR2 is 3.40 and the average value of ϕA when the trial is stopped is about 7.89.

This shows that the adaptive approach also enables possible early termination of the

trial without a significant decrease in efficiency, as compared to the non-adaptive

approach in which the entire cohort of 200 patients is used.

The above two features contribute in improving the ethical standards of the adap-

tive approach as compared to the non-adaptive method and lead, on average, to a

better recommendation of dose regimen. This is more evident in the case of larger

cohort size. Figure 6.44 shows that for Scenario 7 even the upper quartile of ϕA is

below the value of ϕA achieved in Scenario 8.

Although the ethical standards of the adaptive procedure are superior in this case,

the non-adaptive approach, on the strength of superior parameters’ estimates, has

an edge in determination of the recommended dose regimen. As can be seen from

the table, the non-adaptive procedure is able to exactly determine the optimal dose

regimen, D∗true. Even the adaptive approach is fairly successful in recommending a

dose regimen which is reasonably close to D∗true.

Next, we take initial values significantly farther from the true values.
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Initial Values Far-Off from the True Values

The vector of initial values is now taken to be Ψoc = (2.60, .50, 51, .3, .3, .3, .3)T .

These initial values have a stronger deviation from the true values of the parameters.

As before, we repeat the original study using these initial values and taking four pairs

of the cohort size and number of cohorts, (c, C): 9. (5, 10), 10. (50,1), 11. (20,

10) and 12. (200,1). Table 6.33 presents the data related to these four scenarios and

Figure 6.44 plots the distribution of ϕA.

The parameter estimates’ in Scenarios 10 and 12, i.e., for non-adaptive approach,

do not seem to be affected by the stronger deviation of the initial values from the true

values. In fact, the bias and CV for the estimated parameters, for the non-adaptive

approach in Scenarios 2, 6, 10 and Scenarios 4, 8, 12 are quite similar. This shows

that from the parameter estimates point of view, the non-adaptive approach has a

certain degree of robustness against the choice of initial values.

The dose regimen administered to the first cohort is highly suboptimal with ϕA =

31.03. This means that the first cohort in the adaptive method and all the patients

in the non-adaptive scheme are exposed to such dose regimens.

However, the non-adaptive approach is not without a major drawback. As can

be seen in the table, the ϕA value for Scenarios 10 and 12 is about 31.03, which is

quite large. Also, based on the initial values, the recommended dose regimen for these

two scenarios consists of the maximum permissible dose. And since the procedure is

non-adaptive, all the subjects in the cohort are administered a highly inefficient dose

regimen.

On the other hand, in Scenarios 9 and 11, the ϕ̄A values for the last cohort are not

much larger than when the initial values are closer to the true values. As compared

to the adaptive procedure in Scenario 11 for which ϕ̄A for the last cohort is 8.21,

the non-adaptive procedure administers a dose regimen to the entire cohort which is

almost four times inefficient than the one administered by the adaptive procedure. As

mentioned before, the adaptive procedure, by utilising accumulating data at interim

stages is able to arrive closer to the optimum dose regimen already during the trial.

Figure 6.44 which presents the distribution of ϕA over the course of the trial for these

four scenarios shows that for scenarios 9 and 10 related to adaptive procedure protect

patients from wrong dose regimens much more effectively than in Scenarios 10 and

12.

Therefore, the adaptive procedure in this case is decidedly more ethical than the

non-adaptive one. However, as mentioned previously, the parameter estimates are of

a higher quality from the non-adaptive procedure. The recommended dose regimen,
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c C Ka Ke V ω1 ω2 ω3 σ2

5 10 0.8291 0.1531 19.1731 0.0819 0.0968 0.1811 0.1046
¯̂
Ψ 50 1 0.8257 0.1543 16.5247 0.0899 0.0898 0.1026 0.1010

20 10 0.8233 0.1522 19.0746 0.0866 0.0991 0.1452 0.1040

200 1 0.8224 0.1545 16.4081 0.0897 0.0937 0.1006 0.1032

5 10 -2.5 2.0 12.8 -18.1 -3.2 81.1 4.6 [17.8]

B̂ias(Ψ̂) 50 1 -2.9 2.9 -2.8 -10.1 -10.2 2.6 1.0 [4.6]

p.c. 20 10 -3.1 1.4 12.2 -13.4 -0.9 45.2 4.0 [11.5]

200 1 -3.3 3.0 -3.5 -10.3 -6.3 0.6 3.2 [4.3]

5 10 9.1 6.3 20.2 70.3 25.1 79.0 26.7 [33.8]

CV 50 1 8.7 5.6 7.1 62.1 27.1 35.8 25.6 [24.6]

20 10 4.4 3.2 12.3 34.2 12.1 25.2 13.2 [15.0]

200 1 4.4 2.8 3.9 30.9 12.4 19.5 13.7 [12.5]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗true 140.00 90.00 90.00 100.00 90.00 7.1561

D∗ (cohort 1) 200.00 200.00 200.00 200.00 200.00 31.0280

5 10 156.90 101.18 104.90 104.48 104.90 9.7594

D∗ 50 1 200.00 200.00 200.00 200.00 200.00 31.0280

Last cohort 20 10 156.55 98.40 102.89 102.40 102.89 8.2128

200 1 200.00 200.00 200.00 200.00 200.00 31.0280

5 10 160.00 100.00 110.00 110.00 110.00 8.1225

D∗(Ψ̂) 50 1 140.00 90.00 90.00 100.00 90.00 7.1561

Recommended 20 10 160.00 100.00 110.00 100.00 110.00 7.8896

200 1 140.00 90.00 90.00 90.00 90.00 7.1744

C̄2 ϕ̄A(C2) C̄3 ϕ̄A(C3)

5 10 5.95 (29.8) 11.5632 8.40 (42) 10.4853

ACN (AN) 50 1 1 (50) 31.0280 1 (50) 31.0280

20 10 5.24 (104.8) 10.1026 7.58 (151.6) 9.1337

200 1 1 (200) 31.0280 1 (200) 31.0280

Table 6.33: Data related to the simulation studies for the four scenarios: 9. (5, 10),
10. (50,1), 11. (20, 10) and 12. (200, 1), when the initial values of the parameters,
Ψoc, are far-off from the true values.

which is a function of the final parameters’ estimates is, therefore, closer to the true

optimal dose regimen, D∗true. As can be seen from the table, the ϕA values for the

recommended dose regimens corresponding to the adaptive procedure are higher than

those associated with the non-adaptive procedure. Since the parameters’ estimates

and the recommended dose regimen for non-adaptive approach are observed to be of

good quality in all the three cases of different initial values, it can be said that the

non-adaptive method is much more robust against the choice of initial values than

the adaptive one.

While the adaptive procedure is found to be more ethical, the non-adaptive one is

more effective in achieving the trial’s objectives of determination of the correct dose
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regimen. However, the large ϕA value of 31.02 for the non-adaptive procedure, which

is more than 4 times the optimal value, could be unacceptable to be experienced by a

single large cohort of patients. On the other hand, efficient determination of the best

dose regimen for the population, could be of paramount importance. A middle path

between the adaptive and the non-adaptive procedure could be to follow a two-stage

design which incorporates the ethics of the adaptive procedure and the precision of

the non-adaptive procedure. This is explored later.

To summarise, the non-adaptive approach is superior to the adaptive procedure in

estimation of the parameters and seems to be robust against deviation of the initial

values from the true values. Good parameters’ estimates also lead to recommendation

of the correct dose regimen for the population. However, since the first dose regimen

is administered to the subjects using the initial values of the parameters as inputs

to the ED algorithm, the dose regimen administered to the cohort in a non-adaptive

setting can be significantly unethical resulting in excessive over- and under-exposure

to the subjects of the trial. Thus, the non-adaptive procedure can be significantly

unethical. On the other hand, the parameters’ estimates in the adaptive approach,

are relatively more affected by the choice of initial values. However, even for large

deviation of the initial values, the nature of the adaptive approach makes it possible

to apply the optimal dose regimen during the course of the trial. The advantage of

this is at least double-fold: first of all, patients taking part in the trial are more likely

to be treated with the right dose regimen; second, some information on the response

at these doses can already be gathered at the trial. This can be very useful for further

investigations of the drug’s efficacy and toxicity.

Therefore, if initial values are known to be very close to the true values, non-

adaptive approach is superior. In case there is a wide difference between them, the

non-adaptive approach, although still effective, may be significantly unethical as com-

pared to the adaptive method.

The difference between the initial values and the true values will generally be not

known in advance. A practical approach could be, therefore, to divide a given number

of subjects into a small number of large cohorts in the trial. This is consistent with the

conclusion we made in Section 6.3.1. Motivated by this observation, we next evaluate

the performance of a two-stage design, i.e., an adaptive design in which all subjects

are divided between only two cohorts.

A Two-Stage Design

For a two-stage design, C = 2, we denote the cohort sizes by c1 and c2 so that

c1 + c2 = c. For the total number of available subjects equal to 50 and 200, we
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consider the following six scenarios of pairs of (c1, c2): 1. (5, 45), 2. (10, 40), 3.

(25, 25), 4. (10, 190), 5. (40, 160) and 6. (100, 100). We expect that such designs

should benefit from both approaches: the adaptive and non-adaptive. The first cohort

is a learning one and we would like it to be small. The second cohort will use the

information gathered in the first stage and so the study for this one should be better

informed than in a non-adaptive case. Setting up these scenarios we investigate what

division of the cohort sizes is most beneficial.

The original simulation study described in Section 6.2.1 is run for these six pairs

of cohort sizes and the results are presented in Table 6.34. The initial values for

these scenarios were taken to be Ψoc = (2.60, .50, 51, .3, .3, .3, .3)T , i.e., the initial

values are assumed to be far-off from the true values and the true parameter values

were Ψtrue = (.85, .15, 17, .1, .1, .1, .1)T . The maximum dose level was assumed to be

dmax = 200.

As was seen previously, since the initial values are far from the true values, the

dose regimen administered to the first cohort, that is, at stage 1 is highly suboptimal

with a large value of ϕA. In all the six scenarios, the patients in the first cohort are

exposed to this dose regimen.

From the data presented in the table, it can be seen that, indeed, the two-stage

design combines to a certain degree the advantages of both: the non-adaptive ap-

proach and the adaptive one. Let us consider, for example, the pairs (c, C) = (200,

1) and (c, C) = (20, 10) in Table 6.33 and the pair (c1, c2) = (10, 190) in Table 6.34.

The quality of the estimates is best for the pair (200, 1) and it is marginally lower

for the pair (10, 190). However, for the pair (200, 1), the average value of ϕA for the

200 subjects in the cohort is 31.03 which is quite high. For the pair (10, 190), the

average ϕA value for the first cohort of 10 subjects is the same at 31.03, but for the

190 subjects in the second cohort it is 8.68. Thus, for a marginal loss in the quality

of the estimates, substantial gains can be made in enhancing the ethical standards of

the trial. Similarly, the quality of the estimates for the pair (20, 10) is slightly lower

than that for the pair (c1, c2) = (200, 1) but only the first cohort of 20 subjects has

the average ϕA value as high as 31.03. As compared to (20, 10), the variability in

the estimates is higher for the pair (10, 190), although the bias is lower for the latter

case.

This shows that a two-stage design, by exposing only a small number of subjects in

the first cohort to suboptimal dose regimen, is able to efficiently determine parameters’

estimates and the recommended dose regimen on the strength of the large size of

the second cohort. This feature makes the two-stage design more ethical than the

non-adaptive approach and more efficient from the estimation point of view as well

as simpler to implement than the adaptive approach which has a large number of
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c1 c2 Ka Ke V ω1 ω2 ω3 σ2

5 45 0.8688 0.1536 15.6565 0.0897 0.0996 0.1315 0.1034

10 40 0.8406 0.1480 15.5650 0.0881 0.1052 0.1370 0.1043
¯̂
Ψ 25 25 0.8507 0.1402 14.2366 0.0834 0.1169 0.1431 0.1036

10 190 0.8538 0.1537 16.0727 0.0933 0.0956 0.1120 0.1038

40 160 0.8327 0.1484 15.4728 0.0841 0.1060 0.1275 0.1047

100 100 0.8470 0.1408 14.1543 0.0845 0.1163 0.1392 0.1053

5 45 2.2 2.4 -7.9 -10.3 -0.4 31.5 3.4 [8.3]

10 40 -1.1 -1.3 -8.4 -11.9 5.2 37.0 4.3 [9.9]

B̂ias(Ψ̂) 25 25 0.1 -6.5 -16.3 -16.6 16.9 43.1 3.6 [14.7]

p.c. 10 190 0.4 2.4 -5.5 -6.7 -4.4 12.0 3.8 [5.0]

40 160 -2.0 -1.1 -9.0 -15.9 6.0 27.5 4.7 [9.5]

100 100 -0.4 -6.1 -16.7 -15.5 16.3 39.2 5.3 [14.2]

5 45 88.2 11.9 38.5 76.6 33.5 72.6 25.6 [49.5]

10 40 11.1 6.9 10.6 120.4 27.3 75.5 28.3 [40.0]

CV 25 25 11.6 7.6 13.2 70.2 27.1 42.6 26.4 [28.4]

10 190 61.5 8.8 13.7 73.9 16.3 30.0 13.9 [31.1]

40 160 5.1 3.4 6.2 35.4 13.7 22.8 13.9 [14.4]

100 100 8.6 5.0 9.5 36.9 13.5 24.4 14.6 [16.1]

d∗1 d∗2 d∗3 d∗4 d∗5 ϕ̄A

D∗true 140.00 90.00 90.00 100.00 90.00 7.1561

D∗ (cohort 1) 200.00 200.00 200.00 200.00 200.00 31.0280

5 45 141.05 89.45 93.71 92.90 93.70 10.1707

10 40 142.52 89.14 93.67 92.96 93.65 8.5599

D∗ 25 25 141.38 89.23 93.30 93.20 93.30 7.7924

cohort 2 10 190 142.48 89.40 94.10 93.30 94.11 8.6754

40 160 140.85 88.98 92.99 92.54 92.99 7.4371

100 100 141.10 88.84 93.33 92.94 93.33 7.3418

5 45 130.00 90.00 90.00 90.00 90.00 7.3132

10 40 130.00 80.00 90.00 80.00 90.00 7.6863

D∗(Ψ̂) 25 25 120.00 70.00 70.00 80.00 70.00 10.8063

Recommended 10 190 140.00 90.00 90.00 90.00 90.00 7.1744

40 160 130.00 80.00 90.00 80.00 90.00 7.6863

100 100 120.00 70.00 70.00 80.00 70.00 10.8063

Table 6.34: Data related to the simulation studies for the six pairs of values of (c1, c2):
1. (5, 45), 2. (10, 40), 3. (25, 25), 4. (10, 190), 5. (40, 160) and 6. (100, 100), when
the initial values of the parameters, Ψoc, are far-off from the true values.

cohorts.

An important question that arises in planning the two-stage design is how should

the total number of subjects be divided between the first and the second cohort. This
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can be answered by examining the data in Table 6.34 along with Figure 6.45 which

presents the distribution of ϕA for the second cohort in the six scenarios.

Figure 6.45: Distribution of ϕA for the second cohort in the six scenarios consisting
of different pairs of (c1, c2): 1. (5, 45), 2. (10, 40), 3. (25, 25), 4. (10, 190), 5. (40,
160) and 6. (100, 100).

The advantages of having the first cohort of a smaller size are that fewer subjects

are administered suboptimal dose regimens and the large size of the second cohort

reduces the bias in the estimates. Good quality of the parameters’ estimates translates

to recommendation of a dose regimens which is closer to the optimal dose regimen.

As can be seen from the table, the recommended dose regimens and the associated

ϕA values are closest to their optimal values for Scenarios 1 and 4 in which the sizes

of the first cohort have been taken to be small.

On the other hand, a larger first cohort enables better estimation of the parameters

in the first stage and thus, the average ϕA values for the second cohort are significantly

lower in Scenarios 3 and 6. Also, it can be seen in the figure that when the two

cohorts are of same sizes, the spread in the distribution of ϕA for the second cohort

is much lower. However, this is at the cost of exposing an equally large number of

subjects to suboptimal dose regimen in the first stage. Furthermore, the variability

in the estimates derived from the second cohort is lower when the two cohorts are of

identical sizes.

However, in recommendation of a dose regimen for the population, the dose regimen

determined by the pair (10, 190) is closest to the optimal dose regimen. Therefore,

considering the higher ethical standards and correct recommendation of the dose

regimen associated with this pair, it is better to have a small first cohort and a larger

second cohort.

In conclusion, the non-adaptive procedure works best when the initial values of the
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parameters are close to their respective true values. However, for initial values far-

off from the true values, the ethical standards of the non-adaptive procedure can be

significantly inferior to the adaptive method. The ethical standards associated with a

two-stage design may be superior than that of a non-adaptive design. Also, the two-

stage design could be easier to implement than an adaptive design which has a large

number of cohorts, without compromising on the precision of the estimates and the

recommended dose regimen. Choice of a small first cohort and a much larger second

cohort was found to be ethical as well as effective in achieving the trial’s objectives.

6.5 Conclusions

In this chapter we were able to demonstrate that the ED algorithm can find the

optimal dose regimens without assuming that the PK parameters are precisely known,

although, initial values are needed to initiate the procedure. The features of the

proposed method to analyse interim data and decide about the further course of the

trial make it an adaptive design.

In Section 6.2, we presented a simulation study to evaluate the adaptive procedure.

The stopping rules make it possible to terminate the trial without making use of the

maximum number of cohorts (C). SR2 can be used for drugs which have a broader

therapeutic index while SR3 could be more suited to drugs for which it is critical to

maintain the concentration in a narrow range. This can lead to more savings in cost

and time and make the trial more ethical.

The example we discussed in this chapter had equal cohort sizes (c) for every

cohort and the same number of blood samples per subject (m). However, it is not

necessary to impose these constraints. Indeed, as mentioned before, these variables,

along with the number of cohorts (C) are design variables which can be optimised

for every cohort in the trial. The optimisation would further improve the trial’s cost

effectiveness.

We have used the ϕA criterion to find the efficient dose regimens for each cohort.

Other efficiency criteria introduced in Chapter 4 such as ϕG or ϕC could be used if

the loading and the maintenance doses are to be assigned different importance in the

optimisation process. Optimality criteria for finding the blood sampling times other

than the D-optimality criterion could also be explored to find the sampling times for

each cohort. In particular, c-optimality for minimising the variance of the estimate

of AUC would also be an appropriate criterion.

The adaptive procedure is successful in estimation of the PK parameters and de-

termination of efficient dose regimens. Section 6.3 revealed some interesting relation-
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ships between some of the inputs and the outcomes from the algorithm. Given a fixed

number of volunteers who can be enrolled in the trial, we found that it is statistically

better to form larger cohorts than have a greater number of cohorts. However, for

drugs whose safety profile has not been fully established, having larger cohorts ex-

poses more volunteers to the risk of toxicity, especially at the start of the trial. A

possible remedy could be to start with small cohort sizes and make them larger during

the course of the trial. Collection of more blood samples per subject improves the

bias and the variability in the parameters’ distributions to some extent. However, the

gains are capped and we found that taking excessive number of blood samples may

be an unnecessary cost and inconvenience to the volunteers.

We have used the LME algorithm of Lindstrom and Bates (1990) for estimation

of parameters in this chapter. Other methods of estimation can be explored to see

the effect on estimated parameters’ bias and sensitivity to initial values. As pointed

out by Mentré and Lavielle (2008), some of the other methods of estimation such

as FO, FOCE and Laplace approximation (discussed in Section 5.3) also suffer from

the problem of sensitivity to the initial values. Since the efficient dose regimen com-

puted by the ED algorithm is a function of the estimated PK parameters, any gains

in bias reduction are accrued in enhancement of the efficiency of the recommended

dose regimen. Nevertheless, this simulation study establishes the ability of the pro-

posed method for simultaneous estimation of the parameters and optimisation of dose

regimen.

The PK model we used in the example did not include patient covariates. As

discussed in Section 2.3, inclusion of covariates in the PK model can mitigate residual

variability and improve the model fitness. Although in this thesis we have not carried

out a simulation study with a PK model that contains covariates, we plan to take it

up in the future. This is discussed in some detail in Section 7.1.4.

The example in this chapter specifically dealt with the case of maintenance of

serum concentration around a pre-determined target level. An extension of the ED

algorithm - optimisation for a therapeutic range - can also be accomplished in this

adaptive setting.

For optimisation of combination ratios and fixed dose combinations, the problem

can be solved using this adaptive procedure, although there are some challenges which

need to be dealt with. Since two PK models will be involved, the computation of

design points need to be informative for both the models. For example, Almohaimeed

and Donev (2014) present methods for design optimisation in combination studies for a

variety of statistical models and error distributions. Also, estimation of the parameters

of the two PK models has to be done simultaneously. There is always a possibility

of two drugs interacting with each other and this interaction can significantly affect
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their PK and PD. The interaction needs to be considered carefully as it might lead to

revision of the respective target concentrations of the two drugs and some additional

constraints on the dose regimens. This is briefly discussed in Section 8.2.

In the next chapter, we discuss some other potential applications of the ED algo-

rithm.
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Potential Applications of the ED

Algorithm

In this chapter, we present two other potential applications of the ED algorithm. The

first application illustrates the possible use of the algorithm for dose individualisation.

In the second application, we use a pharmacodynamic (PD) model to optimise the

dose regimen for anti-infective drugs, where instead of aiming for a target concentra-

tion, we optimise the dose regimen for a target reduction in the microbial load. This

illustrates the use of the algorithm for achieving a PD target.

7.1 The ED Algorithm as a Dose Individualisation

Tool

In Section 3.1.2, we introduced the concept of dose individualisation and briefly dis-

cussed the capabilities of dose individualisation software for estimation of a patient’s

parameters and dose adjustment. In this section, we show that the ED algorithm can

also be considered as one of the tools for individualisation of the dose regimen. We

take a step further to not just optimise the dose regimen but also quantify the compli-

ance with the target concentration or a range of concentrations for every individual.

We explain this in the procedure outlined below.

7.1.1 Procedure

We assume that the mechanistic model followed by the drug’s concentration is known

along with an estimate of the population PK parameters. Let the parameters be

219



Chapter 7. Potential Applications of the ED Algorithm

contained in the vector Ψ = (βT ,ωT , σ2)T . These parameters are for the general

population and are a priori available from previous trials. In standard dose individ-

ualisation software, this information is available for a number of drugs. The problem

is to find the best dose regimen for a patient which launches the drug quickly into its

steady state and maintains it in the desired target range in that subject. Let c be the

number of subjects for whom the dose regimen is to be individualised. We assume

that c > 1. These c subjects form a group in the context of this problem.

We use the known population parameter estimates of Ψ as initial values in our

procedure and we denote them by Ψo = (βTo ,ω
T
o , σ

2
o)
T . Ψ̂ = (β̂T , ω̂T , σ̂2)T denotes

the vector of estimated mean parameters for the specific group of c subjects under

study. Ψ̂ has to be computed from these subjects.

The ED algorithm can be used here through the following steps:

• Based on βo, the optimum dose vector Do = (do1, ..., don)T is computed using

the ED algorithm and everyone in the group of c subjects is administered the

first no(< n) doses from Do, i.e. the doses do1, ..., dono .

• Based on the initial population parameters’ values Ψo, we compute D-optimal

sampling time points for collection of m blood samples from the subjects in this

group. As in Chapter 6, we use PopED for this.

• Based on the collected c×m blood samples, we estimate the parameters β of the

cohort. We accomplish this with the help of the LME procedure of Lindstrom

and Bates (1990) which also enables estimation of the individual vector of the

random effects bi. The procedure is available in the MATLAB R© module nlmefit.

• The estimated vectors of fixed effects β̂ and random effects b̂i are applied back

into the original stage II model to get vectors of individual parameters for each

patient. For example, if the stage II model was defined as in Equation (6.2),

the estimated individual parameters would be :K̂ai

K̂ei

V̂i

 =

K̂a exp(̂b1i)

K̂e exp(̂b2i)

V̂ exp(̂b3i)

 (7.1)

• Using the estimated individual PK parameters, the ED algorithm is re-run to

obtain the updated dose vectors D∗i for each of the c patients. These c dose

vectors will have the initial no doses common, but the n− no subsequent doses

will be individualised to the patients. For the ED algorithm to compute these

n− no doses, the first no dose levels are restricted to the administered doses so

that the algorithm optimises the remaining n− no doses. Ideally, no should be
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as small as possible so that the doses are individualised to the subjects as soon

as possible.

7.1.2 Example

We consider a group of size c = 10 subjects. For every subject in this group, indi-

vidualised dose regimens are to be determined for a drug which is known to follow a

one compartmental model described in Equations (6.1), (6.2) and (7.2). The target

concentration is Ctgt = 5 mg/L which is desired to be maintained in every patient in

the group for the treatment duration T = 60 h. We take n = 5 and the dosing time

points as: t = (0, 12, 24, 36, 48)T . The number of PK blood samples per subject is

taken to be m = 3. The maximum dose which can be administered at an occasion is

dmax = 300 mg.

We describe the simulation study through the following steps:

Step 1 - Definition of the model and the model parameters Ψ

As mentioned above, the PK model followed by the drug is assumed to be known

along with an estimate of the population model parameters Ψ. This is a standard

assumption in all dose individualisation software.

For this example, we assume that the one compartment first order absorption

model explains the concentration-time relationship of the drug. As before, let yij be

the jth sample from the ith subject at time Tj, where i = 1, ..., c and j = 1, ...,m.

We use the model given in Equation (6.3):

yij =
no∑
k=1

I{Tj≥tk}
dkKae

b1i

V eb3i(Kaeb1i −Keeb2i)

(
e−Kee

b2i (Tj−tk) − e−Kaeb1i (Tj−tk)
)
eεij , (7.2)

where εij ∼ N (0, σ2) and b ∼ N 3(0,Ω). The matrix Ω is assumed to be diagonal.

The vector of parameters for this model is

Ψ = (βT ,ωT , σ2)T = (Ka, Ke, V, ω1, ω2, ω3, σ
2)T .

The values of the vector Ψo for the general population (known before the individ-

ualisation is started) are: Ψo = (.85, .15, 17, .1, .1, .1, .1)T . These values are the same

as those used in Chapter 6.

221



Chapter 7. Potential Applications of the ED Algorithm

Step 2 - Computation of Do and optimal sampling points ξo based on Ψo

The ED algorithm is used for the vector of parameters Ψo to find the optimal dose

vector Do. We use the discretised version of the ED algorithm with κ = 2 to get

the optimal dose vector as: Do = (158, 126, 128, 126, 128)T with ϕA(∆o|κ = 2) =

17.81.

We take no = 1, i.e., the first dose from Do is administered at t = 0 to every

subject in the group. The remaining n− no = 4 doses are to be individualised to the

subjects, after estimating their PK parameters. So, each of the 10 subjects will be

administered the dose do1 = 158 mg at time t1 = 0.

Using Ψo and do1 and the model in Equation (7.2), D-optimal design ξo is obtained

for collection of blood samples using PopED as it was done in Chapter 6. The design

region for the PK sampling is chosen to be [.1, 10] h. The optimal design was found

to be ξo = {.1, 3.66, 10}.

Figure 7.1 plots the D-optimal points ξo and the concentration-time curve gener-

ated by βo, do1 = 158 in the interval [0, 12] h.

Figure 7.1: The concentration-time curve generated by the dose do1 for the model
defined in (7.2) for b = 0, along with the m = 3 D-optimal sampling times ξo as
computed by PopED.

Step 3 - Simulation of c×m blood concentrations at ξo

If this procedure was carried out in real life, m = 3 blood samples would have been

collected at the time points ξo found in the previous step and the drug’s concentrations

would have been determined by assay.

For our study, we simulate these c ×m = 30 observations using the vector of pa-

rameters Ψo, Equation (7.2) and the model assumptions. Taking no = 1 in Equation
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(7.2), we simulate the observation yij at a given time Tj ∈ ξo as follows:

yij =
dkKae

r1

V er3(Kaer1 −Keer2)

(
e−Kee

r2Tj − e−Kaer1Tj
)

exp(r4),

where (r1, r2, r3)T and r4 are random numbers drawn from N 3(0,Ω) and N (0, σ2)

distributions respectively using the normrnd function in MATLAB R© . Thus, at each

of the m sampling times contained in ξo, c observations of the concentration values

are simulated.

A data file is created at this step whose first column represents the subject number,

the second column represents the times of sampling and the third column represents

the simulated observations. There would be m entries against every subject number.

Step 4 - Estimation of Ψ and bi

The data file generated in Step 3 is then fed into the MATLAB R© module nlmefit

for the computation of Ψ̂. Other function inputs are the model specified in Equation

(7.2), the initial values and the selection of a method for estimation. As mentioned in

Chapter 5, this module offers four methods from which we choose the LME method

as it enables computation of not just Ψ̂ but also b̂i, i = 1, ..., c.

Step 5 - Computation of β̂i and D∗i

The vectors β̂ and b̂i found in the previous step are then applied back into the Stage

II model to get the subject specific PK parameters β̂i. This is given in Equation (7.1).

The c vectors of parameters β̂i are then used as inputs to the ED algorithm. The

algorithm is run c times, once for each subject, to get the individualised dose regimens

for the subjects. In each run of the algorithm, the first dose level is restricted to the

optimum level found in Step 2. Thus, corresponding to every subject, we have the

individualised dose regimen.

The MATLAB R© code for implementing this methodology is given in Appendix

D.5. The ED algorithm given in Appendix D.1 is used as a submodule in this code.

The submodule is called to determine the optimum initial dose d∗1 and then, after

determination of individual PK parameters, c times to compute the individualised

dose regimens.

7.1.3 Results

The above steps were carried out and the output is summarised in Table 7.1 and

Figures 7.2 and 7.3. Subjects’ PK parameters were obtained by applying formula (7.1)
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with the estimated mean PK parameters for the group and the estimated individual

random effects. The ϕA values for each subject are computed as described in Section

4.2. Subject-specific parameters β̂i are used for this computation.

The second optimal dose d∗2 is considerably higher than d∗1 for subjects 6 and 10

while it is lower for all other subjects. The doses d∗i , i = 2, ..., 5 which are administered

to subjects 6 and 10 are almost of the maximum size which is 300 mg. The reason for

this is that the estimated volume parameter, V̂i, for these two subjects is very large:

41.6 L and 35.3 L. As can be seen in Equation (7.2), the concentration of the drug,

C(t), is inversely proportional this parameter. Also, it seems from Figure 7.2 that

subjects 6 and 10 are highly under-dosed. Therefore, to maintain the concentration

profile around Ctgt, the ED algorithm computes large doses for these two subjects.

Similarly, subjects 2, 4 and 9 seem to be significantly over-dosed in Figure 7.2. As

a result, the subsequent doses for these two subjects have been substantially reduced

by the algorithm.

The reason subject 6 appears under-dosed even after the optimised dose regimen

is administered is because of the upper constraint of dmax = 300 mg on the dose sizes.

The revised doses of subject 6 are all equal to 300 mg which are still inadequate for

the subject, as can be seen from the figure.

The ϕA values for the subjects depend on their PK parameters and the initial

dose administered. For example, a higher value of the elimination rate constant Ke

generally results in greater under-exposure between the dosing time points which is

reflected in an increased ϕA, as in the fitted concentration profiles of subjects 2 and

5. An inappropriate initial dose can also result in greater deviations from Ctgt which

gets reflected in increased ϕA, as can be seen for subjects 6 and 10. The deviations

from Ctgt are measured by the ∆-functions defined in Section 4.1.

It may appear counter-intuitive at first glance that the ϕA values for some subjects

are even lower than the value ϕA(∆o|κ = 2) = 17.81 corresponding to the initial

optimum dose regimen Do derived for the general population. However, it must be

remembered that the PK parameters used to compute the values for the subjects

differ from the population parameters. The ϕA value computed by the ED algorithm

is conditioned on the given value of the PK parameters β. Thus, 17.81 is the lowest

value of ϕA(∆o|κ = 2) when the PK parameters are βo.

The larger ϕA values for the other subjects are due to the initial under- and over-

dosing experienced by these subjects, which contributes to the deviations from Ctgt.

It can be observed from Figure 7.3 that there is a good compliance with Ctgt in

every subject from the second dose onwards.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Subject Simulated concentrations b̂i β̂i ϕA−efficient dose regimen

No T ∗1 = .1 T ∗2 = 3.66 T ∗3 = 10 b̂1i b̂2i b̂3i K̂ai K̂ei V̂i do1 d∗2 d∗3 d∗4 d∗5 ϕA(∆∗|κ = 2)

1 0.65 7.62 1.35 -0.06 .19 -.03 0.83 0.20 17.02 158 154 154 154 154 21.95

2 1.58 11.55 2.10 0.16 0.19 -0.51 1.04 0.20 10.57 158 86 94 92 92 24.60

3 1.45 4.99 2.84 .31 -0.04 -0.15 1.21 0.16 15.20 158 110 114 114 114 20.33

4 0.88 6.50 5.14 -0.11 -0.24 -0.26 0.79 0.13 13.56 158 80 90 90 90 16.09

5 1.84 6.03 1.42 0.41 0.27 -0.25 1.34 0.21 13.67 158 120 124 122 124 26.28

6 0.17 2.04 1.15 -0.42 -0.04 0.86 0.58 0.16 41.58 158 300 300 300 300 21.84

7 0.77 5.79 3.18 -0.06 -0.12 -0.08 0.84 0.14 16.21 158 114 118 118 118 17.17

8 0.61 5.19 3.14 -0.15 -0.15 0.01 0.76 0.14 17.82 158 128 128 128 128 16.23

9 0.91 7.50 4.44 -0.09 -0.18 -0.29 0.81 0.14 13.17 158 82 92 92 92 17.00

10 0.38 2.12 0.92 0.01 0.11 0.70 0.89 0.18 35.32 158 300 300 298 298 24.56

Initial parameters βo and Do for the general population 0.85 0.15 17.00 158 126 128 126 128 17.81

β̂ and D∗ for the group of c = 10 subjects 0.89 0.16 17.59 166 136 138 136 138 19.04

Table 7.1: The data pertaining to the ten subjects whose concentrations were simulated at the times given in ξo. Columns 2 - 4 give the
simulated concentrations. Columns 5 - 7 are the estimated random effects, obtained from the LME method. As explained before, columns 8 - 10
are obtained by multiplying the exponential of the estimated random effects with the estimated mean PK parameters of the group of c patients.
Columns 11 - 15 give the individualised dose regimens and column 16 shows the efficiency measures computed by the ED algorithm for each
subject using the parameter estimates given in columns 8 - 10.
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Figure 7.2: The solid curve represents the population concentration profile generated by the PK parameter values βo and do1 = 158 mg. The
dotted curves represent the concentration profiles fitted for the c = 10 subjects on the basis of m = 3 blood samples collected at times ξo. The
line parallel to the time axis represents the target concentration, Ctgt. Subjects 2 and 9 appear to be overdosed while subjects 6 and 10 appear
to be underdosed. The purpose of our methodology is to correct this in the subsequent doses.
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Figure 7.3: The curves represent the concentration profiles for the c = 10 subjects when administered the dose regimen D∗i , i = 1, ..., 10. There is
a good compliance with Ctgt from the second dose onwards in every subject. The subjects under- or overdosed in the initial dose are subsequently
given the appropriate doses.
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7.1.4 Covariates and the ED Algorithm

The idea of covariates was introduced in Section 2.3. Covariates such as bodyweight,

height and age can be used in the PK model to account for the inter-individual

variability, thus leading to a reduction in the residual variability.

For example, the parameter V could be related to the bodyweight of the individ-

ual and thus inclusion of bodyweight as a covariate in the PK model can lead to a

reduction in inter-individual variability in V .

Consider the second stage model defined in Equation (6.2). Suppose the weight of

the ith subject is denoted by Wi, i = 1, ..., c. This equation can then be re-written as:

Kai

Kei

Vi

 =

 Ka exp(b1i)

Ke exp(b2i)

V exp(b3i)(Wi/Wstd)
α

 ,

where Wstd is the standard weight of an adult which is often taken to be 70 Kg. For

weights above and below the standard weight, the V parameter is scaled accordingly

depending on the parameter α. The overall model in the standard notation can then

be found from Equation 6.3 as:

yij =
n∑
k=1

I{Tj≥tk}
dkKae

b1i

(
e−Kee

b2i (Tj−tk) − e−Kaeb1i (Tj−tk)
)
eεij

V (Wi/Wstd)αeb3i(Kaeb1i −Keeb2i)
. (7.3)

The parameters of interest for this model are Ψ = (Ka, Ke, V, α, ω1, ω2, ω3, σ
2)T .

Inclusion of covariates can have favourable effects on the performances of the adap-

tive procedure described in Chapter 6 and the dose individualisation method described

in this section. In the adaptive procedure, we compute the best dose regimen for a

cohort based on the current estimate of the vector of parameters, Ψ̂, using the ED

algorithm. Because of the inter-individual variability, the concentration profiles for

the subjects in the cohort will deviate from the mean concentration profile. Therefore,

including covariates in the PK model will lead to decreased inter-individual variabil-

ity which will further enhance the efficiency of the dose regimen for the individual

subjects in that cohort.

For example, for the model given in (7.3), the ED algorithm will be run (according

to step 4 in Section (6.1.2) for each subject in the cohort using the subject’s weight

Wi and the vector Ψ̂ to find the efficient dose regimen. This will result in more

personalised dose regimens in the cohort as compared to every subject getting the
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same dose regimen. By the same argument, for the problem of dose individualisation

discussed in this section, inclusion of covariates in the model will increase the efficiency

of the individualised dose regimens for each of the subjects.

Generally, in real life situations, there are several biologically plausible covariates

available for inclusion in the model. However, having an excessive number of covariates

increases the model’s complexity and make it expensive especially when the clinical

data are sparse. Statistically significant covariates are selected in the model using

procedures such as stepwise model building, Wählby et al. (2002) and hierarchical

Bayes modelling, George and McCulloch (1993).

7.1.5 Conclusions

In this section, we presented a new method which can be considered for individualisa-

tion of dose regimens. If the treatment duration T is large, the procedure can be split

into daily or weekly schedules. For example, if T = 6 weeks, this procedure can be

applied six times to update the individualised dose regimens at the beginning of each

week. This can be done by collecting PK samples at the beginning of each week and

using the observed concentrations, find the updated PK parameters for each subject

and the individualised dose regimens.

The methodology is not necessarily an alternative to the well developed proce-

dures of therapeutic drug monitoring and target concentration intervention discussed

in Section 3.1.2 but it can also play a supplemental role to these methodologies. We

discuss these two separate scenarios and our method’s merits and drawbacks below:

As an individualisation method in its own right

In the example, we demonstrated the use of the method to individualise the dose

regimens to patients’ physical characteristics. The method is amenable to inclusion

of covariates in the PK model, as discussed in Section 7.1.4. Inclusion of covariates

will lead to decreased residual variability for every subject and will result in even more

accurate subject-specific dose regimens. In therapeutic drug monitoring, samples are

drawn at designated intervals of time to update the next dose. The same approach

can be followed for our methodology, with the additional advantage of the use of an

optimal design for blood sampling. Whenever a new sample is collected for a subject,

the PK parameters can be updated and the ED algorithm re-run to get the next set

of optimal doses.

The main disadvantage of our methodology is that it requires a group of subjects

for estimation of the individualised PK parameters. As discussed in Section 3.1.2,
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standard dose individualisation software can individualise the loading dose and the

maintenance doses for a single patient using the patient’s covariates and the sampled

concentration values. This disadvantage can limit the use of our method in a hospital

setting where generally the individualisation is done for a single patient at a time.

However, for individualisation in a clinical trial setting, the method could be used

as the new treatment is generally tested on a group of volunteers. In early phase tri-

als, where the PK parameters are not precisely known and the toxicity limit has not

been fully established, this methodology can be combined with the adaptive scheme

introduced in Chapter 6. The method would then be to individualise the dose reg-

imens to the subjects in every cohort and update the information on the mean PK

parameters from the samples collected from the current cohort. This would continue

until the stopping rules are applied. This is in contrast to the available individuali-

sation software which work only for commercially available drugs and not for a test

drug under study. Our individualisation method can work for any medicinal product

for which an analytical or numerical model is known. The features of the ED algo-

rithm, such as computation of the optimal ratio for combination drugs, the choice of

dose discretisation, measuring the degree of compliance with Ctgt or (C−tgt, C
+
tgt) and

having a choice of objective functions ϑ(R) which can be optimised, are applicable to

this method as well. To the best of our knowledge, these features are currently not

available in the commonly used individualisation software.

Supplemental to the standard individualisation software

Even if the complete methodology described above is not applied, a part of it can

still be useful, when used in conjunction with a standard individualisation software.

The software can find the individualised PK parameters for the patient and then the

ED algorithm can be used to find the individualised dose regimen. As pointed above,

the additional features of the ED algorithm should widen the scope of the computation

of the individualised dose regimen.

As mentioned previously, inclusion of covariates in our method can enhance the

degree of personalisation of the dose regimens. In the future, we intend to conduct

simulation studies to understand the effect of covariates on the performance of our

methodology.
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7.2 The ED Algorithm for a Pharmacodynamic

Target

This application illustrates a possible solution to the Type 2 problem proposed in

Section 3.3. Here we optimise the objective function ϑ(R|θ, t) with respect to the

dose vector D, the treatment duration T and the number of doses n. This is done in

the context of anti-infective drugs whose pharmacodynamic action is elimination of

parasitical load from the body.

To illustrate the idea, we firstly describe the PK-PD model given in Czock and

Keller (2007). It models the number of parasites or microbes in the body as a function

of the concentration of an anti-infective drug. The usual unit for measuring the

parasite population is the colony-forming unit (CFU) per mL, which is an approximate

number of bacterial cells which have the ability to multiply under controlled conditions

in 1 mL of the sample.

The most common mechanistic model of antimicrobial effects is given by the dif-

ferential equation:

dN(t)

d t
= KroEr(C(t))N(t)−KdoEd(C(t))N(t), (7.4)

where

N(t) is the number of microbes at time t (assumed to be a differentiable function

of time) (CFU/ml),

Kro is the replication-rate constant of the microbes (without drug) (h−1),

Kdo is the death-rate constant of the microbes (without drug) (h−1),

C(t) is the serum concentration of the drug at time t,

Er(C(t)) is the fractional decrease in the replication rate,

Ed(C(t)) is the fractional increase in the death rate.

For inhibition of rate of replication of the microbes, we use the sigmoid Emax model,

introduced in Section 2.2,

Er(C(t)) = 1− ImaxC
H(t)

ICH
50 + CH(t)

,

where Imax is the maximum inhibition, IC50 is the concentration which results in

half of the maximum inhibition and the Hill coefficient H describes the sigmoidicity.
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Similarly, the increase in the rate of death of the microbes can be expressed as

Ed(C(t)) = 1 +
EmaxC

H(t)

ECH
50 + CH(t)

, (7.5)

where Emax is the maximum stimulation of the death rate, EC50 is the concentration

which results in half of the maximum increase and the Hill coefficient H describes the

sigmoidicity.

It is difficult to separate the effects of replication inhibition and death stimula-

tion. A more practicable form of the model can be obtained by assuming constant

replication rate of the microbes (i.e. ignoring the effect of replication inhibition), as

explained below.

Enhanced-Death Constant-Replication Model

Assuming a constant replication rate, Equation (7.4) becomes

dN(t)

dt
= KroN(t)−KdoEd(C(t))N(t).

Letting Kg = Kdo −Kro and the maximum kill rate Kkmax = KdoEmax,

dN(t)

dt
= KgN(t)−Kkmax

CH(t)

ECH
50 + CH(t)

N(t). (7.6)

This model has an explicit solution for the one compartment model with zero order

absorption as shown in, for example, Lipsitch and Levin (1997).

Kill Rate Curve

Using Equation 7.5, the death rate Kd(C(t)) can be expressed as

Kd(C(t)) = KdoEd(C(t)).

To describe the effect of the anti-microbial, it is more intuitive to use the kill rate,

Kk(C(t)) = Kd(C(t))−Kdo which works out to be

Kk(C(t)) = Kkmax
CH(t)

ECH
50 + CH(t)

. (7.7)

The area under the curve given in Equation 7.7 denoted by AUCK(T ), represents the

total number of parasites killed in the interval [0, T ] by the treatment drug.
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7.2.1 Efficient Dose Regimens for a PD target

We now extend the theory of efficient dose regimens for the models described above.

So far, dose regimens were optimised for a given target concentration. Now, we

find efficient dose regimens for a PD target. A standard approach in designing anti-

infective drugs is to target the worst-case scenario which is to assume a total parasite

burden that has to be eliminated. For example, for the malarial parasite Plasmodium

falciparum, the worst case scenario is a parasite load of 1012 or 12 log10 units at time

zero in an adult, Simpson et al. (2000). The treatment goal is the reduction of 12

log10 units i.e., from a load of 1012, reduction to 100. We consider the case of this

parasite to illustrate our methodology.

In case of anti-infectives, there are usually some constraints for the concentration

of the drug. The concentrations should not exceed a toxic level, say, C+
tgt but should

be above a threshold, say, C−tgt for inhibition of the growth of parasites. As described

in Section 3.2, the treatment duration is denoted by T . We will be optimising T

simultaneously with the dose vector D and the number of doses n. For computational

reasons, we impose a constraint on T as T ≤ Tmax, where Tmax is the maximum allowed

treatment duration.

Let Tcure(D, n) be the time point at which the total number of parasites killed is

12 log10 units i.e., ∫ Tcure(D,n)

0

Kk(C(t)) d t = 1012. (7.8)

For simplicity, we refer to Tcure(D, n) as Tcure.

The Problem: We assume that the estimates of the PK and PD parameters are

available. The drug’s concentration is to be restricted within the therapeutic range

(C−tgt, C
+
tgt) as much as possible while eliminating the maximum possible parasitical

load of 12 log10 units. The number of doses n should be minimised and the individual

constraints on the doses are to be strictly imposed. As before, we impose the limit

dmax on the maximum dose that can be administered to a subject. Finally, once the

parasitical load has been eliminated, the exposure to the drug should be minimised

as well.

In other words,D∗, n∗ and T ∗cure need to be found such that the following objectives

are achieved simultaneously:

• any concentration C(t) outside the range (C−tgt, C
+
tgt) is minimised,

• the time at which 12 log10 units of parasites are obliterated is achieved as soon as

possible and the number of doses n is minimal, and
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• once 12 log10 units of the parasites have been eliminated, the exposure to the drug

is minimal.

Figure 7.4 illustrates the problem to be solved.

Figure 7.4: The problem is to find the dose regimen which minimises the area lying
outside the constraints and the area beyond the cure point Tcure.

Here we define the objective function as

ϑ(R|θ, t) = ϕ(∆±) + AUC∆ +HIK , (7.9)

where the three components of this function are explained below:

• ϕ(∆±) measures the area lying outside the two constraints C+
tgt and C−tgt. It is

the same as what was defined in Section 4.4.3 with the only difference that in

this case we do not compute the average area by dividing by the number of doses

administered. We just compute the total area lying outside the constraints in the

time interval [0, Tcure], i.e.,

ϕ(∆±) = ν

∫ Tcure

0

max(0, C−tgt−C(t,D)) d t+(1−ν)

∫ Tcure

0

max(0, C(t,D)−C+
tgt) d t,

where C(t,D) is the concentration profile associated with the administered dose

vector D. As before, ν can be used to adjust the relative importance of the upper

and the lower constraint.

• AUC∆ is the area under the concentration-time curve C(t,D) over the interval

[Tcure, Tmax].

Inclusion of this term is necessary to minimise the exposure to the drug once the

goal of 12 log10 units has been achieved. It will also be computationally useful for

selection of the number of doses required for treatment. This will be explained in

the computational aspects of the minimisation algorithm.
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• HIK is a penalising function. H is a large positive number and IK is an indicator

variable such that,

IK =

1 if AUCK(T ) < 1012

0 AUCK(T ) ≥ 1012,
(7.10)

where AUCK(T ) is the area under the curve given in Equation 7.7.

Its role in the objective function is to reject those dose vectors D for which Tcure 6∈
[0, Tmax]. For such dose vectors, IK will be 1 and the associated penalty will make

the dose regimen ineligible to be considered any further.

The objective function ϑ(R|θ, t) for this problem is denoted by Υ(D) and the cor-

responding efficiency criterion is defined below:

Definition 6 (Υ-efficiency). A dose regimen R is called Υ-efficient if the function

Υ(D) = ϕ(∆±) + AUC∆ +HIK

is simultaneously minimised by n∗ for all n ∈ N , D∗ for all D ∈ [0, dmax]
n∗ and T ∗cure

for all Tcure ∈ [0, Tmax].

7.2.2 The Optimisation Algorithm

The ED algorithm can be readily adapted for solving this problem. As before, tj is

the dosing time point for the jth dose, where j = 1, ..., n and t1 = 0. These time

points are contained in the vector t. Also, τj = tj+1 − tj, j = 1, ..., n− 1, is the time

interval between two successive doses. As it is a multiple dose problem, we apply

Equation 5.1 to determine the concentration at any time t.

To start the algorithm, an initial value of n, say no, needs to be specified. We

discuss the appropriate choice of no later. The optimisation algorithm for this prob-

lem is run in two stages. In the first stage, an approximation of D∗ is found using

the discretised version of the ED algorithm. The optimal number of doses n∗ is also

computed at this stage. In the second stage, the approximate solution found in the

first stage is refined to find the optimal D∗. This is explained below.

Stage I

In Stage I, the ED algorithm is run in the discretised doses version having resolution

κ. The objective function for the ED algorithm is defined in Equation (7.9). The

first term in this equation has already been explained and handled in Chapter 4. The

second and third terms depend on the time of parasite clearance, Tcure which requires

a method for its numeric computation which is explained later. In each iteration
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of the ED algorithm, the dose vector D which minimises the objective function in

Equation (7.9) is selected to form the dose sets for the next iteration using κ, as ex-

plained in Section 4.3. The objective function has been formulated in such a way that

any excess doses will cause it to increase (because of the over-exposure, as measured

by ϕ(∆±) and AUC∆) while insufficient doses will lead to the rejection of that dose

vector because of the indicator function IK .

The discretised version of the ED algorithm will determine thatD which minimises

Υ(D) at that iteration. During the course of the iterations, the unnecessary doses

are driven to 0 by subtraction of κ from them in each iteration. This is the reason

of taking the resolution κ at this stage and not δ as in the latter case the doses are

multiplied and divided by δ and driving them to 0 is mathematically not possible.

Once the algorithm converges at the discrete resolution κ, no(≥ 0) doses would

have been driven to 0 by the algorithm. Let the number of non-zero doses be denoted

by n∗. This is the optimal number of doses required for the problem. Thus, at the end

of stage I, n∗ is already available. The optimal dose vector at this stage will be given

by D = (d1, ..., dn∗)
T , with the n− n∗ doses removed from the vector. The algorithm

now switches into stage II.

Stage II

In stage II, the dose vector D = (d1, ..., dn∗)
T is further refined using the ED algo-

rithm when doses are allowed to be real numbers. The resolution δ is used to form

dose sets, as explained in Chapter 4. Stage II is essentially repeating stage I with this

change. Stage II is terminated when the ED algorithm has converged according to

the resolution δ. The dose vector associated with the minimum value of the objective

function is denoted as D∗ which consists of n∗ doses. The optimal time of parasite

clearance associated with this dose vector is denoted by T ∗cure. The optimised value

of the objective function is denoted as Υ(D∗|κ, δ).

Computation of Tcure

In both stages of the above optimisation algorithm, the ED algorithm determines

the best dose vector in each iteration - the one associated with the least value of

Υ(D). This requires the computation of the Tcure values associated with all the ln

dose vectors in stage I and all the ln
∗

dose vectors in stage II, where l is the size of

the dose set.

For the purpose of determining Tcure, we divide the interval [0, Tmax] into a grid

of step size 0.1. For example, for Tmax = 120 h, 1200 points are considered in the

interval [0,120]. We compute AUCK for each of these points and we deem a point as
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Tcure as shown below:

∫ u

0

Kk(C(t)) d t =

< 1012 if u ∈ [0, Tcure)

≥ 1012 if u ∈ [Tcure,∞).
(7.11)

Thus, the smallest point in the interval [0, Tmax] at which the reduction in the par-

asitical load is at least 12 log10 units, is designated as Tcure. By constructing a grid

of step size 0.1, we manage to remain computationally efficient while restricting the

maximum error in the true treatment time to less than 6 minutes (1 hour/10 points

= 6 minutes per point). The step size can be further decreased if more precision is

required.

Given the current value of Tcure, AUC∆ can be computed by integrating C(t,D)

over the interval [Tcure, Tmax].

Choice of no and Tmax

As mentioned before, no, the initial number of doses needs to be provided. The ED

algorithm is able to drive the unnecessary doses to 0 and eventually find the optimal

number of doses n∗(≤ n). However, if no happens to be smaller than n∗, no cannot be

increased in the course of the algorithm to reach n∗. For this reason, it is advisable to

take a reasonably large value of no so that any excess doses are driven to zero. If it is

found at the end that n∗ = no and any of the n∗ optimal doses in D∗ are computed

as dmax, it indicates that a better solution can be obtained by increasing no. In that

case, the algorithm should be run again with a higher value of no.

By the same argument, the maximum treatment time allowed, Tmax, should be

chosen to be a reasonably large number. The algorithm will not work if Tcure /∈
[0, Tmax].

The MATLAB R© code for implementing this methodology is given in Appendix D.6.

7.2.3 Example

We consider the concentration profile given by the one-compartmental model:

C(t, d) =
FdKa

V (Ka −Ke)
(e−Ket − e−Kat) , (7.12)

where Ka denotes the absorption rate constant, Ke denotes the elimination rate con-

stant, V is the volume of distribution and F is the bioavailability.
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For the calculations we take the following values of the PK parameters as their

estimates: K̂a = .46 h−1, K̂e = 0.17 h−1, V̂ = 14 L and F̂ = .95.

We assume that the maximum dose which can be administered at an occasion is

dmax = 250 mg. no is taken to be 6 and the dosing time points are t = (0, 12, 24, 36, 48, 60)T .

The concentration profile of this drug is desired to be maintained between the range

(C−tgt, C
+
tgt) = (3, 8) mg/L. Equal importance is attached to both the constraints in

the range, i.e., ν = 0.5. The maximum treatment time allowed is Tmax = 120 h.

The estimates of PD parameters are ÊC50 = 3.6 mg/L and Ĥ = 1; we consider

three different values of the maximum rate of killing parasites, K̂kmax.

We consider dose sets of size l = 3 and take the three starting values for the dose

sets as {40, 120, 250}. At κ = 5 and δ = 0.99, we obtained Υ(D∗|5, 0.99) and Tcure

for different values for K̂kmax. The optimisation algorithm was run as described above

and Tcure was found by dividing the interval [0,120] h into a grid of step size 0.1 h.

The results are summarised in Table 7.2.

Υ−efficient dose regimen

K̂kmax n∗ T ∗cure D∗ Υ(D∗|5, 0.99)

1010.34 6 86.40 (207.90, 168.35, 170.00, 170.00, 171.72, 168.30)T 3.90

1010.50 4 62.80 (212.12, 168.30, 171.72, 173.25, 0.00, 0.00)T 3.90

1010.70 3 44.60 (204.06, 168.30, 49.50, 0.00, 0.00, 0.00)T 3.94

Table 7.2: Comparison of optimal dose regimens computed for different values of
K̂kmax.

The output from the optimisation algorithm for these cases is shown in Figures

7.5, 7.6 and 7.7. In these graphs, the green coloured line perpendicular to the time

axis is where T ∗cure occurs. The shapes of the concentration-time curve and the kill

rate curve are similar because of the nature of their relationship defined in Equation

(7.7).

As expected, a higher value of K̂kmax, the maximum rate of killing parasites per

hour, results in lower values of n∗ and Tcure. The simultaneous optimisation of the

objective function defined in (7.9) enables obliteration of the target microbial load

while using minimum number of doses and maintaining the blood concentration of

the drug within the desired therapeutic range.
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(a) The Concentration-time graph (b) The kill curve and AUCK resulting from D∗

(c) Convergence of D∗ = (d1, ..., d6)T (d) Convergence of Υ(D∗|5, 0.99)

Figure 7.5: Output from the algorithm for K̂kmax = 1010.34. The algorithm converged at the 22nd iteration but was allowed to run for another
10 iterations to demonstrate convergence. The line perpendicular to the time axis represnts T ∗cure.
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(a) The Concentration-time graph (b) The kill curve and AUCK resulting from D∗

(c) Convergence of D∗ = (d1, ..., d6)T
(d) Convergence of Υ(D∗|5, 0.99)

Figure 7.6: Output from the algorithm for K̂kmax = 1010.50. The algorithm converged at the 26th iteration but was allowed to run for another 10
iterations to demonstrate convergence. The last 2 doses got driven to 0, thus, only 4 doses would suffice for a successful treatment, i.e. n∗ = 4.
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(a) The Concentration-time graph (b) The kill curve and AUCK resulting from D∗

(c) Convergence of D∗ = (d1, ..., d6)T
(d) Convergence of Υ(D∗|5, 0.99)

Figure 7.7: Output from the algorithm for K̂kmax = 1010.70. The algorithm converged at the 40th iteration but was allowed to run for another 10
iterations to demonstrate convergence. The last 3 doses got driven to 0, thus, only 3 doses would suffice for a successful treatment, i.e., n∗ = 3.
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7.2.4 A Note on Optimisation of Antibiotics’ Dose Regimens

Here we consider the three types of antibiotics discussed in Section 3.1.1. The prob-

lem is to optimise the dose regimens for drugs of each of these three types. Let n and

T be pre-fixed and consider a single drug therapy so that θ = 0. We briefly discuss

these types one by one:

Type 1

As the objective is to maximise the peak concentration, Cmax, it is obvious that

that the optimal dose vector D∗ should consist of the maximum possible doses which

can be administered to the subject. The optimal dosing time points t∗ should be as

close as practically possible to each other. This can also been seen, for example, from

Equations (2.6) and (2.9). As the steady-state concentration is a decreasing function

of the dosing interval (τ), a smaller value of τ ensures that higher concentrations are

achieved.

Type 2

For antibiotics of Type 2, the goal is to maximise the time for which the concen-

tration remains above the MIC. By the same argument as given above, the optimal

dosing time points t∗ should be as close as practically possible to each other. How-

ever, if t is fixed, the optimal dose vector D∗ and the number of doses n∗ can be

computed using the methodology described in this section. For this, C−tgt can be set

to the MIC and C+
tgt can be taken as the toxicity constraint (or as∞, if there is none).

The weight ν should be taken to be close to 1 to ensure maximisation of the time the

concentration remains above the MIC, unless it is equally important to restrict the

concentration below C+
tgt. If the concentration profile resulting from the optimised

dose vectors is not found to be satisfactory, the dosing time points contained in t

can be adjusted using a trial and error approach. The proper way to do it would be

simultaneous optimisation of t and D which is beyond the scope of the current work.

Type 3

For this class of antibiotics, the treatment goal is to maximise the AUC. Like the

Type 1 antibiotics, the optimal dose vector D∗ is given by the maximum doses which

can be administered to the patient. The total area under the curve corresponding

to D, however, is invariant with respect to the dosing time points t. This is proved

below.
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Property 2. Let AUC∞ be the total area under the curve corresponding to the dose

vector D = (d1, ..., dn)T which is administered at times t = (0, t2, ..., tn)T and AUC∞i

be the total area under the curve corresponding to the single dose di, i = 1, ..., n.

Then AUC∞ does not depend on t and it can be expressed as AUC∞ =
∑n

i=1AUC
∞
i .

Proof. The total AUC∞ corresponding to the dose vector D is computed as:

AUC∞ =

∫ ∞
T=0

C(T ;D) dT.

Consider the multiple dose model given in (5.1) for the ith subject. Dropping the

argument β and the subscripts i and j for the sake of convenience, we get the con-

centration at time T as:

C(T ;D) =
n∑
k=1

I{T≥tk}C(T − tk; dk). (7.13)

Therefore,

AUC∞ =

∫ ∞
T=0

(
n∑
k=1

I{T≥tk}C(T − tk; dk)

)
dT =

n∑
k=1

(∫ ∞
T=0

I{T≥tk}C(T − tk; dk)
)

dT.

The integration and the summation operators in the above equation are interchange-

able since the n integrands are all positive. This follows from the Fubini-Tonelli

theorem presented in, for example, Howard (2015) which says that if fn(x) ≥ 0 for all

n and x, then
∑∫

fn(x) dx =
∫ ∑

fn(x) dx.

The integral on the RHS can be split using the definition of the indicator function

as:

AUC∞ =

∫ ∞
T=0

C(T ; d1) dT +

∫ ∞
T=t2

C(T − t2; d2) dT + ...+

∫ ∞
T=tn

C(T − tn; dn) dT

or,

AUC∞ =
n∑
i=1

AUC∞i .

Note that this property holds only when the total AUC is considered, that is, the

limits of the integral are [0,∞).

Thus, the area under the concentration-time curve for multiple doses is a function

of the dose vector D only and not of the dosing time points t. However, it may still be

necessary to keep the dosing time points close to each other to prevent development

of resistance to the drug and recrudescence of the infection.
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7.2.5 Conclusions

In this section, we provided a solution to the Type 2 problem proposed in Section 3.3.

We showed that the ED algorithm can be adapted for optimising the dose regimen

for a target reduction in the microbial load, given the population mean PK and PD

parameters. Knowledge of the therapeutic range, (C−tgt, C
+
tgt), and the target parasite

load is also assumed.

Other features of the ED algorithm, as described in Chapter 4, such as discreti-

sation of doses, optimisation of the combination ratio (the EED algorithm) can be

considered for this case also.

If the PK or PD parameters are unknown, an adaptive scheme can be used, as

described in Chapter 6. In that case, blood samples need to be collected not just

for measuring the drug’s concentration but also to measure the parasite population

for estimation of PK as well as PD parameters. Nielsen et al. (2007) and Tam et al.

(2005), for example, discuss fitting of PK-PD models for antibacterial therapies.

For some drugs, a PK parameter is found to be a function of a component of the

dose regimen. For example, Plaisance et al. (1987) found that bioavailability of the

antibiotic ciprofloxacin varies with the size of the administered dose. For accurate

optimisation of dose regimens of such drugs, it is important that such relationships

are incorporated in the optimisation procedure.

In the model described in this example, we have ignored the aspect of drug resis-

tance. Resistance is generally modelled by assuming that subpopulations of microor-

ganisms have different grades of susceptibility and resistance to the anti-infective and

these are then expresses using separate functions, Czock and Keller (2007). The opti-

misation algorithm proposed by us is expected to work when resistance is taken into

account in the PD model although some modifications may be necessary. We intend

to take up this work in future.
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Discussion

The components of a dose regimen determine the drug’s concentration in the body.

The pharmacological action of the drug is a function of the concentration and the

time for which the therapeutic levels are sustained. The choice of the dose regimen

is therefore critical to derive the maximum benefit from the therapy. In statistical

literature, dose regimens are usually optimised for a specific drug or a class of drugs

and for a narrow, problem-specific criterion. Our approach to the problem is mathe-

matically formal, it is for a general criterion and can be applied to any drug for which

the mechanistic model is known. The main objective of our research has been two-

fold. Firstly, to develop a theoretical base for formulating the problem of optimisation

mathematically so that the performance of competing dose regimens can be quanti-

fied according to the desired criterion. Secondly, to develop a general algorithm for

solving the so-formulated optimisation problem. Our methodology can be instrumen-

tal in designing dose regimens which could achieve the best balance between efficacy

and safety. The algorithm can also be used to conduct simulation studies to see how

different components of the dose regimen influence the objective function. It can also

be used to evaluate what-if scenarios to study how patient non-compliance with the

recommended dose regimen can affect the treatment’s outcome.

8.1 Conclusions

In Chapter 3, we expounded the need for optimisation of dose regimens. Optimisation

may be required at the individual level of a patient, or it could be required for a typical

person in the population or a subpopulation. To attempt the problem of optimisation

at the various levels, we first expressed the notion of a dose regimen mathematically

in Section 3.2 as R = {n,D, t, T, θ}. This is helpful in formulating the optimisation

problem for a general criterion. The dose regimens which optimise the given objective
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function are called efficient and the value of the optimised objective function is called

the efficiency.

Two specific types of problems are derived from the general optimisation problem

described in Section 3.3. Type 1 problem entails minimisation of ϑ(R|n, t, T ), i.e.,

minimisation with respect to the dose vector D and the combination ratio θ (in

case of combination therapies) keeping n, t and T fixed. Type 2 problem is about

minimisation of ϑ(R|t, θ), i.e., with respect to D, n and T keeping t and θ fixed.

The ED algorithm in Chapter 4 was developed to solve optimisation problems of

Types 1 and 2. It is an iterative algorithm converging to the efficient dose regimen

in successive iterations and, as shown in Theorem 1, to the optimal regimen when

the resolution tends to one. The algorithm requires the knowledge of the mechanistic

model followed by the drugs’ concentrations. The doses can be either permitted to be

real numbers or they can be enforced to take integer values. The criteria we discussed

in this chapter were about minimising overexposure and underexposure to the drug by

maintenance of the concentration around a target level or within a therapeutic range.

Furthermore, we extend the ED algorithm to find the optimal combination ratio and

the efficient dose vector of a fixed dose combination unit so that a linear combination

of the objective functions for the two drugs can be optimised. In general, the algorithm

is reasonably robust for mild misspecification in the model. For moderate to severe

misspecification, the administered dose regimen could be much less efficient. We also

found that in some cases, misspecified parameters can balance out each others’ effect

resulting in minimal decrease in the efficiency of the dose regimen or they can reinforce

their effects and seriously decrease the efficiency. Thus, the effects of misspecification

are also dependent on which parameters are misspecified and in which direction. This

chapter presents our contribution to the subject of dose regimen optimisation. The

algorithm is programmed in MATLAB R© and the codes are given in Appendices D.1,

D.2 and D.3.

There is some scope to improve the computational performance of the ED algo-

rithm. To speed up the convergence of the algorithm, the resolution can be chosen

to be adaptive in nature. We demonstrated in Section 4.4 that, in case of real doses,

setting the resolution δ closer to 1 leads to an increased number of iterations before

convergence is obtained and an improved value of ϕ. Therefore, the ED algorithm

can be programmed in such a way that in the initial iterations, δ is small so that the

dose sets move towards the optimal doses quickly and in the latter iterations, δ can

be set closer to 1 to obtain precise values of D∗. For the same reason, for the case of

discretised doses, the resolution κ could be large in the initial iterations and as small

as permitted in the final iterations.

The non-linear mixed effects models described in Chapter 5 are used to extend
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the scope of the ED algorithm in finding the efficient dose regimen when the model

parameters are not known and are treated as random variables to account for the

population variability. This is done in an adaptive setting wherein blood samples are

collected from the cohorts at optimal sampling time points and the mean model pa-

rameters and their variances are estimated. The computation of population D-optimal

sampling times is done using PopED software. The adaptive setting is presented in

Chapter 6.

The simulation studies confirmed the effectiveness of our methodology in achieving

the twin objective of PK estimation and dose regimen optimisation simultaneously.

We also concluded from our study that given a fixed number of volunteers in a trial,

it is better to have larger cohorts rather than a greater number of smaller cohorts.

However, if the safety profile of the drug is not fully established, a better approach

could be to start with smaller cohorts and increase the cohort size progressively.

We proposed three stopping rules to terminate the adaptive procedure. SR1 utilises

all the available cohorts in the trial, while SR2 and SR3 terminates the trial according

to two differently defined stability properties in the optimised dose vectors for the

successive cohorts. SR2 terminates the trial when the cumulative dose for the current

cohort differs from the cumulative dose of the previous cohort by less than 5% of

the latter, whereas for SR3, this condition is applied on every dose contained in the

dose regimen individually. According to the problem at hand, other stopping rules

could be more relevant. For example, when optimising the combination ratio and

dose regimen of a fixed dose combination unit, the stopping rule should also consider

value of the ratio.

The adaptive procedure described in this thesis may suffer from some procedu-

ral imperfections when implemented in practice. These imperfections are primarily

missing response data and non-compliance to the recommended dose regimen by the

subjects in the trial. Examples of non-compliance that we considered are not following

the prescribed dosing schedule and skipping of the prescribed doses by the patients.

The procedure was found to be moderately robust against missing response data and

non-compliance to dosing schedules. However, the methodology was found to be quite

sensitive to the instances of dose skipping. Therefore, avoidance of dose omission is

critical to the success of the methodology. Furthermore, we found that large values of

the error variance can have an adverse effect on the quality of some of the parameters’

estimates.

Another important aspect for making the methodology successful is the choice

of initial values. While we found that mild deviations from the initial values do not

significantly affect the performance, very strong deviations may introduce serious bias

in some of the parameters’ estimates. However, the accumulating data and the interim
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analyses provide an opportunity of course-correction and the adaptive procedure is

able to approximately determine the optimal dose regimen towards the end of the

trial. If reliable information about the initial values is not available, evaluation of all

the available cohorts is recommended instead of early termination of the trial.

The adaptive procedure was determined to be reasonably robust against misspec-

ification of the underlying PK model by approximately determining the correct dose

regimen over the course of the trial. We observed in the simulation study that the

estimated parameters of the assumed model ‘adapt’ to the response in such a way that

the concentration profile generated by them resembles the true concentration profile.

The adaptive procedure was also observed to be reasonably robust against deviation

from the assumed error structure, although there could be large bias in the estimate

of the error variance.

The difference between error in dosing at the population level and for an individual

was highlighted in Section 6.2.4. At the population level, the error is measured around

the optimal dose regimen based on the mean PK parameters. At the individual level,

the error is measured around the optimal dose regimen based on the subject’s own

PK parameters.

The adaptive methodology was also compared with a non-adaptive approach. We

found that if the initial values of the model parameters are very close to the true values,

the non-adaptive approach is superior. In case there is a wide difference between them,

the adaptive approach seems to be more ethical to use. We also evaluated a two-stage

design which was found to be a good balance between the adaptive and non-adaptive

approaches. Choice of a small first cohort and a much larger second cohort was found

to be ethical as well as effective in achieving the trial’s objectives.

As mentioned before, combination therapies are highly efficacious for certain dis-

eases and our methodology can help in determination of the optimal ratio and the

optimum dose regimen during the course of the trial. Pre-requisites of the adaptive

procedure are: knowledge of the PK and PD models, availability of initial values

of the parameters and correct choice of the targets in the objective function. The

methodology may not be suitable in cases where the target concentration levels have

not been established.

Chapter 7 presented two of many other possible applications of the ED algorithm.

In the first, we showed how the algorithm can be used for dose individualisation by

administering a single dose to every subject in the cohort and revising the subsequent

doses with the help of the ED algorithm. In contrast to the standard dose individ-

ualisation software which only individualise a limited number of drugs, our method

can work for any drug for which the mechanistic model is known. A possible disad-
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vantage of our method is that it requires a cohort of subjects to be treated at the

same time. This may be feasible in cases of diseases such as malaria, where the num-

bers of affected people are large. Our method can also be useful for the randomised

concentration-controlled trials (RCCTs) which entail random assignment of the vol-

unteers to predetermined levels of a target concentration. This is achieved in practice

by an individualised PK controlled dosing scheme, Sanathanan and Peck (1991). Our

methodology can help in this assignment by individualising the dose regimen for every

volunteer in the group.

In the second application in the chapter, we presented one possible solution to

the Type 2 problem. For treatment of infectious diseases, maintenance of the drug’s

concentration above a certain threshold level is critical to prevent recrudescence and

resistance. We demonstrated the use of the algorithm for optimising the dose regimen

for obliteration of a predefined level of bacterial load while keeping the concentration

profile within a therapeutic range. We hope that this method can be used to design

dose regimens for anti-microbial drugs. However, if the PK or PD parameters are not

known, an adaptive scheme as explained in Chapter 6 may have to be considered.

In summary, we present a method for computer assisted dose finding by explicit

optimisation of a target criterion. This approach is likely to supersede ‘brute force’

techniques based exclusively on simulation. To the best of our knowledge, there does

not exist a flexible and universal method for explicit optimisation of dose regimens,

which computes the best values of dose vectors and the combination ratios and also

quantifies the degree of deviation from the desired PK or PD targets. By flexible we

mean that the method suits different medical criteria and should be able to reconcile

with the practical constraints that confront dose administration, e.g., skipped doses.

By universal, we imply the ability of the method to compute optimised dose regimens

for any drug, irrespective of the kind of PK/PD model followed by it. Our work is a

step towards filling these gaps. Furthermore, we extend the problem of optimisation

to combination therapies.

We think that our algorithm and the associated methodology could make the

following contribution to the science of finding the best dose regimen:

• In early phase clinical trials, when PK information tends to be sparse, the algo-

rithm can aid pharmaceutical companies in estimation of the mean PK param-

eters while administering the optimum dose regimen to the cohorts of patients.

The adaptive procedure can be extended for clinical trials which involve com-

bination therapies so that the optimal ratio can also be determined during the

course of the trial.

• For drugs for which reliable PK estimates are already available, the ED algo-
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rithm can be used to for conducting ‘what-if’ analyses which help in the quan-

titative assessment of the adherence of different dose regimens and combination

ratios to the desired criteria. Furthermore, the algorithm can be used to quan-

tify the effect of patient non-compliance with the prescribed dose regimen on the

objective function. Patient’s non-compliance is a significant medical challenge

with rates of non-compliance being about 45% for long-term and about 25% for

short-term therapies, Jin et al. (2008). Scenarios such as skipping doses, taking

incomplete doses and overdosing can be quantitatively analysed.

• For dose individualisation: Apart from individualising a dose regimen of a single

drug, our method comes with an additional feature of individualising the optimal

combination ratio for combination therapies. This ensures that the partner

drugs’ concentrations are maintained in the desired ranges. Also, our method

can be applied for any drug for which the mechanistic model is available in

numerical or analytic form and is therefore not restricted to any library of a few

selected drugs. As mentioned before, the individualisation method can also be

applied in RCCTs to allocate volunteers to levels of target concentration.

8.2 Future Work

In the future, we would like to further develop our research from both perspectives -

academic interest and clinical applications. This is discussed below.

An assumption of the ED algorithm that the mechanistic model followed by the

drug is known to the user can be prohibitive in certain cases. Since the ED algo-

rithm optimises an objective function of the model, the accuracy of the algorithm

is dependent on the goodness of fit of the model to the actual data. As mentioned

in Section 2.1, non-compartmental analysis does not require development and vali-

dation of a model. In the future, we would like to develop the algorithm such that

optimisation of dose regimens can be done without assuming an underlying mecha-

nistic model for the concentration values. Furthermore, the examples in this thesis

used compartmental models which have a closed-form solution. It would be useful

to make the algorithm work when the concentrations are expressed through a system

of differential equations, as most industry-standard models are mathematically more

sophisticated and do not have a closed form solution, for example, the PBPK models

described in Section 2.1.

The ED algorithm can be developed further to make it amenable to some of the

practical challenges. For instance, for optimisation of the combination ratio, drug-

drug interactions can be incorporated into the Extended ED algorithm. Interactions
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between drugs can be synergistic - the net PD effect is increased, or antagonistic

- the net PD effect is subdued. In some cases, a new effect may occur which is

produced by neither of the drugs in isolation. Models are available to explain such

interactions, for example, in Fahmi and Ripp (2010). They can be used to jointly

model the concentrations of drug A with that of drug B and the EED algorithm can

be applied to optimise the combination ratio of such drugs. An important goal to

accomplish would be to optimise the dose regimens and the combination ratio when

the PK parameters of the models are not known. This can also be done in an adaptive

setting as it was done for a single drug in Chapter 6.

Furthermore, as already discussed in Section 7.1.4, inclusion of covariates is im-

portant to improve the performance of the methodology. Inclusion of covariates in

the assumed model is expected to reduce the inter-subject variability. The potential

benefit of this is not only enhancement of the efficiency of the computed dose regimen

for the population but as discussed in Section 6.3 could also mitigate to some extent

the adverse effect of departure from the model assumptions. We plan to do more

research in this direction in the future.

The ED algorithm computes the optimum dose regimen conditional on the mean

PK parameters as inputs. By using the variance parameters of the model, inter-

individual variability can be simulated to generate distributions of the PK parame-

ters, as we did in the simulation study of Chapter 6. Distributions of the covariates

can be simulated as well using data from past surveys. For example, Kuczmarski

et al. (2002) present bodyweight distributions at different ages of the American chil-

dren. For each simulated vector of parameters and the simulated vector of covariates,

the ED algorithm can be run to obtain distribution of the optimum dose regimen

for the population. This distribution can be useful in dividing the population into

subpopulations based on covariates such as bodyweight or body surface area.

In this thesis, we solved Type 1 problem which consists of optimisation of ϑ as a

function of R with respect to D and θ and Type 2 problem in which ϑ was optimised

with respect to n, D and T . It would be interesting to study other cases of the

general optimisation problem. For example, optimisation of ϑ not only with respect

to D and θ but also some other design variable, such as the dosing time points t.

This would be challenging, but a simpler problem to consider might be to optimise

ϑ(R|n,D, T, θ). Just like dose sets were created in each iteration to drive the ED

algorithm for solving for the optimal dose vector D∗, time sets can possibly be used

to find the optimal dosing time points t∗. However, a potential problem that may arise

is that the compartmental models are generally nonlinear functions of time in contrast

with dose, which occurs linearly in these models. Because of the nonlinearity, a change

in value of time will not be proportionally reflected in the value of concentration. It

will be interesting to study the behaviour of the algorithm in this case.
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The criteria considered by us in this thesis were deterministic in nature. It would

be interesting to explore whether the ED algorithm can optimise an objective func-

tion which consists of random variables. For example, instead of maintenance of the

concentration within a therapeutic range, a composite criterion can be used which

enforces the concentration to remain above a lower limit and minimises the likelihood

of toxicity.

This PhD project was co-sponsored by Novartis Pharma AG and in our interac-

tions with their staff, we discussed the applicability of the algorithm on real-world

models and parameters. It is envisioned that the MATLAB R© programs, presented

in Appendices D.1 - D.6 for implementing the ED algorithm and its extensions, will

be developed into a software tool which can be leveraged by clinicians and pharma-

ceutical companies to design dose regimens for single and combination therapies on

stronger quantitative grounds.

Our joint publication, Soeny et al. (2016), is primarily based on Chapter 4. At the

moment three more manuscripts are being developed from this thesis for publication:

• Simultaneous PK estimation and dose regimen optimisation in clinical trials.

This manuscript will be mainly based on Chapter 6.

• A novel method of individualisation of dose regimens. This will be based on

Section 7.1.

• Optimisation of dose regimens of anti-microbials for a target load. This will be

developed from Section 7.2.

The form of the optimisation problem we proposed in Chapter 3, the ED algorithm

introduced in Chapter 4, expression of the multiple dose model in Equation (5.1)

and the theory of non-linear mixed effects models in Chapter 5 will be useful in

supplementing the above manuscripts with the necessary theoretical base.
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Appendix A

Multiple Dose Formula for One

Compartment Model

Let an individual be given a dose d at times t = 0, τ, 2τ, ..., (n−1)τ . Thus, n doses are

administered at an interval of τ units. We are interested in finding the concentration

of the drug at time t after the nth dose is administered. For the model defined in

(2.4), the concentration at time t after the nth dose is given as (by the principle of

superposition):

C(t; τ, n) = C1(t+ (n− 1)τ) + C2(t+ (n− 2)τ) + ...+ Cn−1(t+ τ) + Cn(t),

where Ci(.) is the concentration of the drug in blood plasma contributed by the ith

dose.

⇒ C(t; τ, n) =
FdKa

V1(Ka −Ke)

(
e−Ke(t+(n−1)τ) − e−Ka(t+(n−1)τ

)
+ . . . +

FdKa

V1(Ka −Ke)

(
e−Ke(t+τ) − e−Ka(t+τ)

)
+

FdKa

V1(Ka −Ke)

(
e−Ket − e−Kat.

)
⇒ C(t; τ, n) =

FdKa

V1(Ka −Ke)

(
e−Ket(e−Ke(n−1)τ + e−Ke(n−2)τ + ...+ e−Keτ + 1)

− e−Kat(e−Ka(n−1)τ + e−Ka(n−2)τ + ...+ e−Kaτ + 1)

)
.

Now, the sum of n terms of a geometric progression with first term a and common

ratio r is a+ ar + ar2 + ...+ arn−1 = a(1− rn)/(1− r).

Using the above formula, the final expression of the concentration at time t after

the nth dose is administered is,

C(t; τ, n) =
FdKa

V1(Ka −Ke)

(
1− e−nKeτ

1− e−Keτ
e−Ket − 1− e−nKaτ

1− e−Kaτ
e−Kat

)
. (A.1)
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Appendix B

Two Compartment Model With

First Order Absorption

B.1 Derivation of the Model for Single Dose

Here, we provide the proof to the model stated in Equation (2.7). In this model,

the dose d is absorbed into the central compartment at the rate of Ka. The drug

gets absorbed into the peripheral compartment from the central compartment at the

rate of K12 and it gets re-absorbed from the peripheral compartment to the central

compartment at the rate of K21. The drug can be eliminated from the body only

through the central compartment which takes place at the rate of Ke. Let the volume

of the central and the peripheral compartments be V1 and V2 respectively. X1(t), X3(t)

and X2(t) are respectively the amounts of drug in the central compartment, peripheral

compartment and not yet absorbed in the central compartment at time t.

The differential equations describing the process can be written as:

d

d t
X1(t) = KaX2(t) +K21X3(t)− (K12 +Ke)X1(t), (B.1)

d

d t
X2(t) = −KaX2(t), (B.2)

d

d t
X3(t) = K12X1(t)−K21X3(t) (B.3)

with the initial conditions X1(0) = 0, X3(0) = 0 and X2(0) = d.

Solving Equation (B.2) and plugging it in Equation (B.1) we get a system of

simultaneous differential equations.
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Letting D ≡ d
d t

, the system can be written as,

(D +K12 +Ke)X1(t)−K21X3(t) = dKae
−Kat, (B.4)

(D +K21)X3(t)−K12X1(t) = 0. (B.5)

Eliminating X3(t) from Equations B.4 and B.5 and solving simultaneously we get,

f(D)X1(t) = dKa(K21 −Ka)e
−Kat. (B.6)

The auxiliary equation is, f(m) = 0 where,

m2 +m(K12 +K21 +Ke) +KeK21 = 0. (B.7)

The roots of this quadratic equation are given as,

m =
−(K12 +K21 +Ke)±

√
(K12 +K21 +Ke)

2 − 4KeK21

2
. (B.8)

Let S = K12 + K21 + Ke and R =
√
S2 − 4K21Ke. Then the roots of Equation

(B.7) are given by −λ and −µ where, λ = 1
2
(S +R) and µ = 1

2
(S −R).

The complimentary function (CF) is therefore, CF = c1e
−λt+c2e

−µt, where c1 and

c2 are constants to be determined.

The particular integral (PI) is given as: PI = 1
f(D)

dKa(K21 −Ka)e
−Kat.

This is of the form 1
f(D)

eat. The solution is given as 1
f(a)

eat provided f(a) 6= 0.

Therefore,

PI =
1

f(−Ka)
dKa(K21 −Ka)e

−Kat =
dKa(K21 −Ka)e

−Kat

(Ka − λ)(Ka − µ)
.

The general solution can now be written as

X1(t) = c1e
−λt + c2e

−µt +
dKa(K21 −Ka)e

−Kat

(Ka − λ)(Ka − µ)
. (B.9)

Using the initial condition X1(0) = 0,

c1 + c2 = − dKa(K21 −Ka)

(Ka − λ)(Ka − µ)
. (B.10)
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From Equation (B.1) we have,

X ′1(0) = KaX2(0) +K21X3(0)− (K12 +Ke)X1(0) = dKa,

where X ′1(0) is the first derivative of X1(t), evaluated at t = 0.

Also, from Equation (B.9),

X ′1(0) = −λc1 − µc2 −
dK2

a(K21 −Ka)

(Ka − λ)(Ka − µ)
.

This gives,

λc1 + µc2 = −dKa −
dK2

a(K21 −Ka)

(Ka − λ)(Ka − µ)
. (B.11)

Solving Equations (B.10) and (B.11) we get,

c1 =
FdKa(K21 − λ)

(Ka − λ)(µ− λ)
and c2 =

FdKa(K21 − µ)

(Ka − µ)(λ− µ)
.

To find the concentration C(t) at time t, we divide by the volume of the compartment

V1 to get

C(t) = Ae−λt +Be−µt − (A+B)e−Kat, (B.12)

where

A =
FdKa(K21 − λ)

V1(Ka − λ)(µ− λ)
and B =

FdKa(K21 − µ)

V1(Ka − µ)(λ− µ)
.

B.2 Derivation of Multiple Dose Formula

Let a subject be given n doses of size d at times t = 0, τ, ..., (n−1)τ . We are interested

in finding the concentration of the drug at time t after the nth dose is administered.

For the model defined in Equation (B.12), the concentration at time t after the nth

dose is given by the principle of superposition as:

C(t; τ, n) = C1(t+ (n− 1)τ) + C2(t+ (n− 2)τ) + ...+ Cn−1(t+ τ) + Cn(t).

where Ci(.) is the concentration of the drug in blood plasma contributed by the ith

dose.

Analogously to the derivation shown in Appendix (A), we get the expression as

C(t; τ, n) = A
1− e−nλτ

1− e−λτ
e−λt +B

1− e−nµτ

1− e−µτ
e−µt − (A+B)

1− e−nKaτ

1− e−Kaτ
e−Kat. (B.13)
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Appendix C

Expressing Variability in PK

Parameters as Coefficients of

Variation

It is a standard practice to express the variability in the PK parameters of a population

as coefficients of variation (CV) instead of the variance or the standard deviation.

The reason for this stems from the relationship between the normal and the lognormal

distributions. Owing to the positivity and the skewed distributions of PK parameters,

they are generally assumed to have a lognormal distribution. We now prove that the

standard deviation of the logarithm of a PK parameter is approximately equal to its

coefficient of variation in the original scale.

Let X ∼ logN(µ, σ2) where logN denotes lognormal distribution.

Then y = log(X) ∼ N(µ, σ2).

The rth central moment of X is given by mr = E[Xr].

Since X = eY we have,

mr = E[ery] = exp

{
µr +

σ2r2

2

}
,

where the function on the R.H.S. is the moment generating function of a normally

distributed variable.

Therefore,

E[X] = m1 = eµ+σ2

2 ,

E[X2] = m2 = e2µ+2σ2

,

258



Chapter C. Expressing Variability in PK Parameters as Coefficients of Variation

Var[X] = E[X2]− E[X]2 = e2µ+σ2
(
eσ

2 − 1
)
.

The coefficient of variation (CV) of X is given as:

CV =

√
Var(X)

E[X]
=
√
eσ2 − 1 ≈ σ,

with the approximation holding well only for a certain range of values of σ.

Figure C.1 plots the relationship between the standard deviation σ and CV =√
eσ2 − 1.

Figure C.1: Plot showing the range of values over which the coefficient of variation is
a good approximation of σ.

It can be observed from the figure that a standard deviation of 0.70 or less of

the logarithm of a PK parameter can be reasonably approximated by the CV of the

parameter in original scale. Beyond this range, σ significantly underestimates the CV.

Therefore, in a certain range, the standard deviation of a normal variate is approx-

imately equal to the CV of the corresponding log-normal variate.
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Appendix D

MATLAB
R©

Programs

D.1 The ED Algorithm for a Ctgt

f unc t i on main

% PK parameters

Ka = . 3 7 ; Ke = 0 . 2 ; V = 24 ; F = . 9 5 ;

C tgt = 3 ; %Spec i f y Ctgt here

D MAX = 250 ; %the maximum dose that can be g iven

e p s i l o n = . 9 9 ; %the r e s o l u t i o n

kappa = 5 ; %f o r d i s c r e t i s e d doses

% Dose opt ions

D = ones (7 , 3 ) ;

D( : , 1 ) = 40 ;

D( : , 2 ) = 120 ;

D( : , 3 ) = 240 ;

d o s e s e t = [ 0 ∗ ones (7 , 1 ) , 8 ∗ ones (7 , 1 ) ,D( : , 1 ) ,D( : , 2 ) ,D( : , 3 ) ] ;

compare = 10000 ;

% Dosing I n t e r v a l

time = 6 ; %equal dose i n t e r v a l

t cure = 42 ; %T

n = 7 ; %number o f doses

l a s t t i m e = tcure −(n−1) ∗ time ;

h i s t o r y = ones (10000 ,7) ;

varphi = ones (10000 ,1) ;

x=1;

stop = 0 ;

whi l e ( x <10000 && stop < 7)

stop = 0 ;
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l im = s i z e (D( 1 , : ) , 2 ) ;

f o r i = 1 : l im

conc1 = @( t ) abs ( fterm (D(1 , i ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) )

− C tgt ) ;

obj1 ( i ) = i n t e g r a l ( conc1 , 0 , time , ’ AbsTol ’ ,10ˆ −2 , ’ RelTol ’

,10ˆ −2) ;

data1 ( i , : ) = [D(1 , i ) obj1 ( i ) ] ;

end

gr id2 = cartprod (D( 1 , : ) , D( 2 , : ) ) ;

l im2 = s i z e ( gr id2 , 1 ) ;

f o r i =1: l im2

conc2 = @( t ) abs ( fterm ( gr id2 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( time + t

) )−exp(−Ka ∗ ( time + t ) ) )+fterm ( gr id2 ( i , 2 ) ) ∗ ( exp(−Ke ∗ t )

−exp(−Ka∗ t ) )−C tgt ) ;

obj2 ( i ) = i n t e g r a l ( conc2 , 0 , time , ’ AbsTol ’ ,10ˆ −2 , ’ RelTol ’

,10ˆ −2) ;

end

gr id3 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) ) ;

l im3 = s i z e ( gr id3 , 1 ) ;

f o r i =1: l im3

conc3 = @( t ) abs ( fterm ( gr id3 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time +

t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id3 ( i , 2 ) ) ∗ (

exp(−Ke ∗ ( time + t ) )− exp(−Ka ∗ ( time + t ) ) ) + fterm (

gr id3 ( i , 3 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj3 ( i ) = i n t e g r a l ( conc3 , 0 , time , ’ AbsTol ’ ,10ˆ −2 , ’ RelTol ’

,10ˆ −2) ;

end

gr id4 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) ) ;

l im4 = s i z e ( gr id4 , 1 ) ;

f o r i =1: l im4

conc4 = @( t ) abs ( fterm ( gr id4 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t

) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) )+ fterm ( gr id4 ( i , 2 ) ) ∗ ( exp(−

Ke ∗ ( 2 ∗ time + t ) )− exp(−Ka ∗ ( 2 ∗ time + t ) ) )+fterm ( gr id4 ( i

, 3 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) )+fterm (

gr id4 ( i , 4 ) ) ∗ ( exp(−Ke ∗ t )−exp(−Ka∗ t ) )−C tgt ) ;

obj4 ( i ) = i n t e g r a l ( conc4 , 0 , time , ’ AbsTol ’ ,10ˆ −2 , ’ RelTol ’

,10ˆ −2) ;

end

gr id5 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) ) ;

l im5 = s i z e ( gr id5 , 1 ) ;

f o r i =1: l im5
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conc5 = @( t ) abs ( fterm ( gr id5 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 4 ∗ time +

t ) ) − exp(−Ka ∗ ( 4 ∗ time + t ) ) )+ fterm ( gr id5 ( i , 2 ) ) ∗ ( exp

(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) ) + fterm (

gr id5 ( i , 3 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time

+ t ) ) )+ fterm ( gr id5 ( i , 4 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) −

exp(−Ka ∗ ( time + t ) ) ) + fterm ( gr id5 ( i , 5 ) ) ∗ ( exp(−Ke ∗ t )

− exp(−Ka∗ t ) ) − C tgt ) ;

obj5 ( i ) = i n t e g r a l ( conc5 , 0 , time , ’ AbsTol ’ ,10ˆ −2 , ’ RelTol ’

,10ˆ −2) ;

end

gr id6 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) , D

( 6 , : ) ) ;

l im6 = s i z e ( gr id6 , 1 ) ;

f o r i =1: l im6

conc6 = @( t ) abs ( fterm ( gr id6 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 5 ∗ time

+ t ) ) − exp(−Ka ∗ ( 5 ∗ time + t ) ) )+ fterm ( gr id6 ( i , 2 ) ) ∗ (

exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗ time + t ) ) ) +

fterm ( gr id6 ( i , 3 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka

∗ ( 3 ∗ time + t ) ) )+ fterm ( gr id6 ( i , 4 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time

+ t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id6 ( i , 5 ) ) ∗

( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) ) + fterm

( gr id6 ( i , 6 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj6 ( i ) = i n t e g r a l ( conc6 , 0 , time , ’ AbsTol ’ ,10ˆ −2 , ’ RelTol ’

,10ˆ −2) ;

end

gr id7 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) , D

( 6 , : ) ,D( 7 , : ) ) ;

l im7 = s i z e ( gr id7 , 1 ) ;

f o r i =1: l im7

conc7 = @( t ) abs ( fterm ( gr id7 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 6 ∗ time + t ) )

− exp(−Ka ∗ ( 6 ∗ time + t ) ) )+ fterm ( gr id7 ( i , 2 ) ) ∗ ( exp(−Ke

∗ ( 5 ∗ time + t ) ) − exp(−Ka ∗ ( 5 ∗ time + t ) ) ) + fterm ( gr id7 ( i

, 3 ) ) ∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗ time + t ) ) )+

fterm ( gr id7 ( i , 4 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka ∗ ( 3 ∗

time + t ) ) ) + fterm ( gr id7 ( i , 5 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) −

exp(−Ka ∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id7 ( i , 6 ) ) ∗ ( exp(−Ke ∗ (

time + t ) ) − exp(−Ka ∗ ( time + t ) ) ) + fterm ( gr id7 ( i , 7 ) ) ∗ (

exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj7 ( i ) = i n t e g r a l ( conc7 , 0 , l a s t t im e , ’ AbsTol ’ ,10ˆ −2 , ’

RelTol ’ ,10ˆ −2) ;
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j = mod( i , l im ) ; i f ( j ==0)

j = lim ;

end

k = mod( i , l im2 ) ; i f ( k ==0)

k = lim2 ;

end

l = mod( i , l im3 ) ; i f ( l ==0)

l = lim3 ;

end

m = mod( i , l im4 ) ; i f (m ==0)

m = lim4 ;

end

n = mod( i , l im5 ) ; i f (n ==0)

n = lim5 ;

end

p = mod( i , l im6 ) ; i f (p ==0)

p = lim6 ;

end

tp = [ obj1 ( j ) , obj2 ( k ) , obj3 ( l ) , obj4 (m) , obj5 (n) ,

obj6 (p) , obj7 ( i ) ] ;

cum = mean( tp ) ; %\ varphi A c r i t e r i o n

data7 ( i , : ) = [ g r id7 ( i , 1 ) obj1 ( j ) g r id7 ( i , 2 ) obj2 ( k )

g r id7 ( i , 3 ) obj3 ( l ) g r id7 ( i , 4 ) obj4 (m) gr id7 ( i , 5 )

obj5 (n) g r id7 ( i , 6 ) obj6 (p) g r id7 ( i , 7 ) obj7 ( i ) cum

] ;

end

s o r t d a t a = sort rows ( data7 , 15) ;

s o r t 2 = s o r t d a t a ( 1 , : ) ;

reg = so r t 2 ( : , [ 1 , 3 , 5 , 7 , 9 , 1 1 , 1 3 ] )

h i s t o r y (x , : ) = reg ;

i f x>1

f o r i =1:7

i f abs ( reg ( i ) − h i s t o r y (x−1 , i ) )== 0

stop = stop + 1 ; %Checking f o r convergence

end ;

end ;

end ;

%i f doses are not d i s c r e t i s e d , use the block below

f o r i = 1 : s i z e ( reg , 2 )

i f reg ( i ) == D( i , 1 )

D( i , : ) = min (D MAX, [D( i , 1 ) ∗ eps i l on ,D( i , 1 ) , D( i , 1 ) ∗ (1/
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e p s i l o n ) ] ) ;

e l s e i f reg ( i ) == D( i , 2 )

D( i , : ) = min (D MAX, [D( i , 2 ) ∗ eps i l on ,D( i , 2 ) , D( i , 2 )

∗ (1/ e p s i l o n ) ] ) ;

e l s e i f reg ( i ) == D( i , 3 )

D( i , : ) = min (D MAX, [D( i , 3 ) ∗ eps i l on ,D( i , 3 ) , D( i , 3 )

∗ (1/ e p s i l o n ) ] ) ;

end

end

%i f doses are d i s c r e t i s e d , i n s t ead o f above , use the one

below .

% f o r i = 1 : s i z e ( reg , 2 )

% i f reg ( i ) == D( i , 1 )

% D( i , : ) = max(0 , min (D MAX, [D( i , 1 ) − kappa , D( i , 1 ) , D

( i , 1 ) + kappa ] ) ) ;

% e l s e i f reg ( i ) == D( i , 2 )

% D( i , : ) = max(0 , min (D MAX, [D( i , 2 ) − kappa ,D( i , 2 ) , D

( i , 2 ) + kappa ] ) ) ; %%%% Di s c r e t e

% e l s e i f reg ( i ) == D( i , 3 )

% D( i , : ) = max(0 , min (D MAX, [D( i , 3 ) − kappa , D( i , 3 ) ,

D( i , 3 )+ kappa ] ) ) ;

% end

% end

compare = s o r t d a t a (1 , 15 )

varphi ( x ) = compare ;

x=x+1;

end

end

func t i on f t = fterm (D)

Ka = . 3 7 ; Ke = 0 . 2 ; V = 24 ; F = . 9 5 ;

f t = (F∗D∗Ka) /(V∗ (Ka − Ke) ) ;

end
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D.2 The EED Algorithm for Combination Thera-

pies

f unc t i on FINAL Coartem uneq tau

%%% PK parameters Drug A

Ka = . 3 7 ; Ke = 0 . 8 2 9 ; V = 217 ; F = . 7 ;

%%% PK parameters Drug B

CL = 15 ;

V1 = 215 ;

ka = . 1 3 ;

Q = 1 3 . 4 ;

V2 = 1043 ;

%Computed Parameters

k12 = Q/V1 ;

k21 = Q/V2 ;

ke = CL/V1 ;

summ = k12 + k21 + ke ;

root = s q r t (summˆ2 − 4 ∗ ke ∗ k21 ) ;

alpha = (summ+root ) ∗ 0 . 5 ;

beta = (summ− root ) ∗ 0 . 5 ;

e p s i l o n = . 9 9 ;

C tgt A = . 0 3 7 ;

C tgt B = 1 . 1 4 ;

w = 0 . 5 ;

dmax = 1000 ;

dmax B = 1000 ;

% Dosing I n t e r v a l s

time1 = 8 ; time2 = 16 ; time3 = 12 ; time4 = 12 ; time5 = 12 ; t cure =

168 ;

time6 = tcure − ( time1+time2+time3+time4+time5 ) ;

compare = 10000 ; c u r r e n t l d = 1000 ; l d f i n a l = 1000 ;

D = ones (6 , 3 ) ;D( : , 1 ) = 40 ;D( : , 2 ) = 60 ;D( : , 3 ) = 80 ;LD =

[ 7 , 8 , 9 ] ;

h i s t o r y = ones (10000 ,6) ;

varphi = ones (10000 ,1) ;

com = 10000∗ ones (1 , s i z e (LD, 2 ) ) ;

mu = 10000;

y=1

reg = ones ( s i z e (LD, 2 ) ,6 ) ;

whi l e (mu>0)
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f o r I = 1 : s i z e (LD, 2 )

x=1;

stop = 0 ;

whi l e ( x <10000 && stop < 6)

stop = 0 ;

l im = s i z e (D( 1 , : ) , 2 ) ;

f o r i = 1 : l im

conc1 = @( t ) abs ( fterm (D(1 , i ) ) ∗ ( exp(−Ke ∗ t ) −

exp(−Ka∗ t ) ) − C tgt A ) ;

conc1b = @( t ) abs (Alum(LD( I ) ∗D(1 , i ) ) ∗ exp(− alpha

∗ t ) + Blum(LD( I ) ∗D(1 , i ) ) ∗ exp(−beta ∗ t ) − (Alum

(LD( I ) ∗D(1 , i ) ) + Blum(LD( I ) ∗D(1 , i ) ) ) ∗ exp(−ka ∗

t ) − C tgt B ) ;

obj1a ( i ) = quadl ( conc1 , 0 , time1 , . 1 ) ;

obj1b ( i ) = quadl ( conc1b , 0 , time1 , . 1 ) ;

end

gr id2 = cartprod (D( 1 , : ) , D( 2 , : ) ) ;

l im2 = s i z e ( gr id2 , 1 ) ;

f o r i =1: l im2

conc2 = @( t ) abs ( fterm ( gr id2 ( i , 1 ) ) ∗ . . .

( exp(−Ke ∗ ( time1 + t ) ) − exp(−Ka ∗ ( time1 + t ) )

) + fterm ( gr id2 ( i , 2 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−

Ka∗ t ) ) − C tgt A ) ;

conc2b = @( t ) abs (Alum(LD( I ) ∗ gr id2 ( i , 1 ) ) ∗ exp(−

alpha ∗ ( time1+t ) ) + Blum(LD( I ) ∗ gr id2 ( i , 1 ) ) ∗ exp(−

beta ∗ ( time1+t ) ) − (Alum(LD( I ) ∗ gr id2 ( i , 1 ) )+Blum

(LD( I ) ∗ gr id2 ( i , 1 ) ) ) ∗ exp(−ka ∗ ( time1 + t ) ) +

Alum(LD( I ) ∗ gr id2 ( i , 2 ) ) ∗ exp(− alpha ∗ t ) + Blum(LD(

I ) ∗ gr id2 ( i , 2 ) ) ∗ exp(−beta ∗ t ) − (Alum(LD( I ) ∗ gr id2

( i , 2 ) )+Blum(LD( I ) ∗ gr id2 ( i , 2 ) ) ) ∗ exp(−ka ∗ t ) −

C tgt B ) ;

obj2a ( i ) = quadl ( conc2 , 0 , time2 , . 1 ) ;

obj2b ( i ) = quadl ( conc2b , 0 , time2 , . 1 ) ;

end

gr id3 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) ) ;

l im3 = s i z e ( gr id3 , 1 ) ;

f o r i =1: l im3

conc3 = @( t ) abs ( fterm ( gr id3 ( i , 1 ) ) ∗ ( exp(−

Ke ∗ ( time1+time2 + t ) ) − exp(−Ka ∗ ( time1+

time2 + t ) ) ) + fterm ( gr id3 ( i , 2 ) ) ∗ ( exp(−Ke

∗ ( time2 + t ) ) − exp(−Ka ∗ ( time2 + t ) ) ) +
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f term ( gr id3 ( i , 3 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t

) ) − C tgt A ) ;

conc3b = @( t ) abs ( Alum(LD( I ) ∗ gr id3 ( i , 1 ) ) ∗

exp(− alpha ∗ ( time1+time2 + t ) ) + Blum(LD( I )

∗ gr id3 ( i , 1 ) ) ∗ exp(−beta ∗ ( time1 + time2 + t )

)− (Alum(LD( I ) ∗ gr id3 ( i , 1 ) )+Blum(LD( I ) ∗

gr id3 ( i , 1 ) ) ) ∗ exp(−ka ∗ ( time1 + time2 + t ) )

+ Alum(LD( I ) ∗ gr id3 ( i , 2 ) ) ∗ exp(− alpha ∗ ( time2

+ t ) ) + Blum(LD( I ) ∗ gr id3 ( i , 2 ) ) ∗ exp(−beta

∗ ( time2 + t ) )− (Alum(LD( I ) ∗ gr id3 ( i , 2 ) ) +

Blum(LD( I ) ∗ gr id3 ( i , 2 ) ) ) ∗ exp(−ka ∗ ( time2 + t

) ) + Alum(LD( I ) ∗ gr id3 ( i , 3 ) ) ∗ exp(− alpha ∗

t ) + Blum(LD( I ) ∗ gr id3 ( i , 3 ) ) ∗ exp(−beta ∗ t ) −

(Alum(LD( I ) ∗ gr id3 ( i , 3 ) )+Blum(LD( I ) ∗ gr id3 (

i , 3 ) ) ) ∗ exp(−ka ∗ t ) − C tgt B ) ;

obj3a ( i ) = quadl ( conc3 , 0 , time3 , . 1 ) ;

obj3b ( i ) = quadl ( conc3b , 0 , time3 , . 1 ) ;

end

gr id4 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) ) ;

l im4 = s i z e ( gr id4 , 1 ) ;

f o r i =1: l im4

conc4 = @( t ) abs ( fterm ( gr id4 ( i , 1 ) ) ∗ ( exp(−

Ke ∗ ( time1+time2+time3 + t ) ) − exp(−Ka ∗ (

time1+time2+time3 + t ) ) )+ fterm ( gr id4 ( i , 2 )

) ∗ ( exp(−Ke ∗ ( time2+time3 + t ) ) − exp(−Ka ∗ (

time2+time3 + t ) ) ) + fterm ( gr id4 ( i , 3 ) ) ∗ (

exp(−Ke ∗ ( time3 + t ) ) − exp(−Ka ∗ ( time3 + t )

) ) + fterm ( gr id4 ( i , 4 ) ) ∗ ( exp(−Ke ∗ t ) − exp

(−Ka∗ t ) ) − C tgt A ) ;

conc4b = @( t ) abs ( Alum(LD( I ) ∗ gr id4 ( i , 1 ) ) ∗

exp(− alpha ∗ ( time1+time2+time3+t ) ) + Blum(

LD( I ) ∗ gr id4 ( i , 1 ) ) ∗ exp(−beta ∗ ( time1+time2+

time3+t ) )− (Alum(LD( I ) ∗ gr id4 ( i , 1 ) )+Blum(LD

( I ) ∗ gr id4 ( i , 1 ) ) ) ∗ exp(−ka ∗ ( time1+time2+

time3 + t ) ) + Alum(LD( I ) ∗ gr id4 ( i , 2 ) )

∗ exp(− alpha ∗ ( time2+time3+t ) ) + Blum(LD( I ) ∗

gr id4 ( i , 2 ) ) ∗ exp(−beta ∗ ( time2+time3+t ) )− (

Alum(LD( I ) ∗ gr id4 ( i , 2 ) )+Blum(LD( I ) ∗ gr id4 ( i

, 2 ) ) ) ∗ exp(−ka ∗ ( time2+time3 + t ) ) +

Alum(LD( I ) ∗ gr id4 ( i , 3 ) ) ∗ exp(− alpha ∗ ( time3+t

) ) + Blum(LD( I ) ∗ gr id4 ( i , 3 ) ) ∗ exp(−beta ∗ (
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time3+t ) )− (Alum(LD( I ) ∗ gr id4 ( i , 3 ) )+Blum(LD

( I ) ∗ gr id4 ( i , 3 ) ) ) ∗ exp(−ka ∗ ( time3 + t ) ) +

Alum(LD( I ) ∗ gr id4 ( i , 4 ) ) ∗ exp(− alpha ∗ t ) +

Blum(LD( I ) ∗ gr id4 ( i , 4 ) ) ∗ exp(−beta ∗ t ) − (

Alum(LD( I ) ∗ gr id4 ( i , 4 ) )+Blum(LD( I ) ∗ gr id4 ( i

, 4 ) ) ) ∗ exp(−ka ∗ t ) − C tgt B ) ;

obj4a ( i ) = quadl ( conc4 , 0 , time4 , . 1 ) ;

obj4b ( i ) = quadl ( conc4b , 0 , time4 , . 1 ) ;

end

gr id5 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D

( 5 , : ) ) ;

l im5 = s i z e ( gr id5 , 1 ) ;

f o r i =1: l im5

conc5 = @( t ) abs ( fterm ( gr id5 ( i , 1 ) ) ∗ ( exp(−Ke ∗ (

time1+time2+time3+time4 + t ) ) − exp(−Ka ∗ ( time1+

time2+time3+time4 + t ) ) )+ fterm ( gr id5 ( i , 2 ) ) ∗ (

exp(−Ke ∗ ( time2+time3+time4 + t ) ) − exp(−Ka ∗ (

time2+time3+time4 + t ) ) ) + fterm ( gr id5 ( i , 3 ) ) ∗

( exp(−Ke ∗ ( time3+time4 + t ) ) − exp(−Ka ∗ ( time3+

time4 + t ) ) )+ fterm ( gr id5 ( i , 4 ) ) ∗ ( exp(−Ke ∗ (

time4 + t ) ) − exp(−Ka ∗ ( time4 + t ) ) ) + fterm (

gr id5 ( i , 5 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) −

C tgt A ) ;

conc5b = @( t ) abs ( Alum(LD( I ) ∗ gr id5 ( i , 1 ) ) ∗ exp(−

alpha ∗ ( time1+time2+time3+time4 + t ) ) + Blum(LD

( I ) ∗ gr id5 ( i , 1 ) ) ∗ exp(−beta ∗ ( time1+time2+time3+

time4 + t ) )− (Alum(LD( I ) ∗ gr id5 ( i , 1 ) )+Blum(LD( I

) ∗ gr id5 ( i , 1 ) ) ) ∗ exp(−ka ∗ ( time1+time2+time3+

time4 + t ) ) + Alum(LD( I ) ∗ gr id5 ( i , 2 ) ) ∗ exp

(− alpha ∗ ( time2+time3+time4+t ) ) + Blum(LD( I ) ∗

gr id5 ( i , 2 ) ) ∗ exp(−beta ∗ ( time2+time3+time4 + t ) )

− (Alum(LD( I ) ∗ gr id5 ( i , 2 ) )+Blum(LD( I ) ∗ gr id5 ( i

, 2 ) ) ) ∗ exp(−ka ∗ ( time2+time3+time4 + t ) ) +

Alum(LD( I ) ∗ gr id5 ( i , 3 ) ) ∗ exp(− alpha ∗ ( time3+time4

+t ) ) + Blum(LD( I ) ∗ gr id5 ( i , 3 ) ) ∗ exp(−beta ∗ ( time3

+time4+t ) )− (Alum(LD( I ) ∗ gr id5 ( i , 3 ) )+Blum(LD( I )

∗ gr id5 ( i , 3 ) ) ) ∗ exp(−ka ∗ ( time3+time4 + t ) ) +

Alum(LD( I ) ∗ gr id5 ( i , 4 ) ) ∗ exp(− alpha ∗ ( time4+t ) ) +

Blum(LD( I ) ∗ gr id5 ( i , 4 ) ) ∗ exp(−beta ∗ ( time4+t ) )−

(Alum(LD( I ) ∗ gr id5 ( i , 4 ) )+Blum(LD( I ) ∗ gr id5 ( i , 4 ) )

) ∗ exp(−ka ∗ ( time4 + t ) ) + Alum(LD( I ) ∗ gr id5 ( i , 5 )
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) ∗ exp(− alpha ∗ t ) + Blum(LD( I ) ∗ gr id5 ( i , 5 ) ) ∗ exp(−

beta ∗ t ) − (Alum(LD( I ) ∗ gr id5 ( i , 5 ) )+Blum(LD( I ) ∗

gr id5 ( i , 5 ) ) ) ∗ exp(−ka ∗ t ) − C tgt B ) ;

obj5a ( i ) = quadl ( conc5 , 0 , time5 , . 1 ) ;

obj5b ( i ) = quadl ( conc5b , 0 , time5 , . 1 ) ;

end

gr id6 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D

( 5 , : ) , D( 6 , : ) ) ;

l im6 = s i z e ( gr id6 , 1 ) ;

f o r i =1: l im6

conc6 = @( t ) abs ( fterm ( gr id6 ( i , 1 ) ) ∗ ( exp(−Ke ∗ (

time1+time2+time3+time4+time5 + t ) ) − exp(−Ka

∗ ( time1+time2+time3+time4+time5 + t ) ) )+ fterm

( gr id6 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( time2+time3+time4+

time5 + t ) ) − exp(−Ka ∗ ( time2+time3+time4+

time5 + t ) ) ) + fterm ( gr id6 ( i , 3 ) ) ∗ ( exp(−Ke ∗ (

time3+time4+time5 + t ) ) − exp(−Ka ∗ ( time3+time4

+time5 + t ) ) )+ fterm ( gr id6 ( i , 4 ) ) ∗ ( exp(−Ke ∗ (

time4+time5 + t ) ) − exp(−Ka ∗ ( time4+time5 + t ) )

)+ fterm ( gr id6 ( i , 5 ) ) ∗ ( exp(−Ke ∗ ( time5 + t ) ) −

exp(−Ka ∗ ( time5 + t ) ) ) + fterm ( gr id6 ( i , 6 ) ) ∗ (

exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt A ) ;

conc6b = @( t ) abs ( Alum(LD( I ) ∗ gr id6 ( i , 1 ) ) ∗ exp(−

alpha ∗ ( time1+time2+time3+time4+time5+t ) ) +

Blum(LD( I ) ∗ gr id6 ( i , 1 ) ) ∗ exp(−beta ∗ ( time1+time2+

time3+time4+time5+t ) )− (Alum(LD( I ) ∗ gr id6 ( i , 1 ) )

+Blum(LD( I ) ∗ gr id6 ( i , 1 ) ) ) ∗ exp(−ka ∗ ( time1+time2+

time3+time4+time5 + t ) ) + Alum(LD( I ) ∗

gr id6 ( i , 2 ) ) ∗ exp(− alpha ∗ ( time2+time3+time4+

time5+t ) ) + Blum(LD( I ) ∗ gr id6 ( i , 2 ) ) ∗ exp(−beta ∗ (

time2+time3+time4+time5+t ) )− (Alum(LD( I ) ∗ gr id6

( i , 2 ) )+Blum(LD( I ) ∗ gr id6 ( i , 2 ) ) ) ∗ exp(−ka ∗ ( time2+

time3+time4+time5 + t ) ) + Alum(LD( I ) ∗

gr id6 ( i , 3 ) ) ∗ exp(− alpha ∗ ( time3+time4+time5+t ) )

+ Blum(LD( I ) ∗ gr id6 ( i , 3 ) ) ∗ exp(−beta ∗ ( time3+

time4+time5+t ) )− (Alum(LD( I ) ∗ gr id6 ( i , 3 ) )+Blum(

LD( I ) ∗ gr id6 ( i , 3 ) ) ) ∗ exp(−ka ∗ ( time3+time4+time5

+ t ) ) + Alum(LD( I ) ∗ gr id6 ( i , 4 ) ) ∗ exp(− alpha ∗ (

time4+time5+t ) ) + Blum(LD( I ) ∗ gr id6 ( i , 4 ) ) ∗ exp(−

beta ∗ ( time4+time5+t ) )− (Alum(LD( I ) ∗ gr id6 ( i , 4 ) )

+Blum(LD( I ) ∗ gr id6 ( i , 4 ) ) ) ∗ exp(−ka ∗ ( time4+time5
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+ t ) ) + Alum(LD( I ) ∗ gr id6 ( i , 5 ) ) ∗ exp(− alpha ∗ (

time5+t ) ) + Blum(LD( I ) ∗ gr id6 ( i , 5 ) ) ∗ exp(−beta ∗ (

time5+t ) )− (Alum(LD( I ) ∗ gr id6 ( i , 5 ) )+Blum(LD( I ) ∗

gr id6 ( i , 5 ) ) ) ∗ exp(−ka ∗ ( time5 + t ) ) + Alum(LD( I

) ∗ gr id6 ( i , 6 ) ) ∗ exp(− alpha ∗ t ) + Blum(LD( I ) ∗ gr id6

( i , 6 ) ) ∗ exp(−beta ∗ t ) − (Alum(LD( I ) ∗ gr id6 ( i , 6 ) )+

Blum(LD( I ) ∗ gr id6 ( i , 6 ) ) ) ∗ exp(−ka ∗ t ) − C tgt B )

;

obj6a ( i ) = quadl ( conc6 , 0 , 1 2 , . 1 ) ;

obj6b ( i ) = quadl ( conc6b , 0 , time6 , . 1 ) ;

j = mod( i , l im ) ;

i f ( j ==0)

j = lim ;

end

k = mod( i , l im2 ) ;

i f ( k ==0)

k = lim2 ;

end

l = mod( i , l im3 ) ;

i f ( l ==0)

l = lim3 ;

end

m = mod( i , l im4 ) ;

i f (m ==0)

m = lim4 ;

end

n = mod( i , l im5 ) ;

i f (n ==0)

n = lim5 ;

end

tpa = [ obj1a ( j ) , obj2a ( k ) , obj3a ( l ) ,

obj4a (m) , obj5a (n) , obj6a ( i ) ] ;

tpb = [ obj1b ( j ) , obj2b ( k ) , obj3b ( l ) , obj4b

(m) , obj5b (n) , obj6b ( i ) ] ;

cuma = 1000∗mean( tpa ) ;

cumb = mean( tpb ) ;

cumab = w∗cuma + (1−w) ∗cumb ;

data7 ( i , : ) = [ g r id6 ( i , 1 ) obj1a ( j ) g r id6 ( i

, 2 ) obj2a ( k ) g r id6 ( i , 3 ) obj3a ( l ) g r id6

( i , 4 ) obj4a (m) gr id6 ( i , 5 ) obj5a (n)
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gr id6 ( i , 6 ) obj6a ( i ) cumab ] ;

end

s o r t d a t a = sort rows ( data7 , 13) ;

s o r t 2 = s o r t d a t a ( 1 , : ) ;

reg ( I , : ) = so r t 2 ( : , [ 1 , 3 , 5 , 7 , 9 , 1 1 ] ) ;

reg ( I , : ) = min (dmax , reg ( I , : ) ) ;

reg B ( I , : ) = min (dmax B ,LD( I ) ∗ reg ( I , : ) ) ;

varphi = so r t 2 (1 , 13 )

h i s t o r y (x , : ) = reg ( I , : ) ;

i f x>1

f o r i =1:6

i f abs ( reg ( I , i ) − h i s t o r y (x−1 , i ) ) == 0

stop = stop + 1 ;

end ;

end ;

end ;

f o r i = 1 : s i z e ( reg , 2 )

i f reg ( I , i ) == D( i , 1 )

D( i , : ) = max(0 , min (dmax , [D( i , 1 ) ∗ eps i l on , D( i

, 1 ) , D( i , 1 ) / e p s i l o n ] ) ) ;

e l s e i f reg ( I , i ) == D( i , 2 )

D( i , : ) = max(0 , min (dmax , [D( i , 2 ) ∗ eps i l on ,D( i

, 2 ) , D( i , 2 ) / e p s i l o n ] ) ) ;

e l s e i f reg ( I , i ) == D( i , 3 )

D( i , : ) = max(0 , min (dmax , [D( i , 3 ) ∗ eps i l on , D(

i , 3 ) , D( i , 3 ) / e p s i l o n ] ) ) ;

end

end

compare = s o r t d a t a (1 , 13 ) ;

varphi ( x ) = compare ;

x=x+1

end

com( I ) = compare ;

end

[ a , b ] = min (com) ;

i f y>1

h i s t p h i = [ h i s t p h i a ]

e l s e

h i s t p h i = a

end
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i f y>1

h i s t l d = [ h i s t l d LD(b) ] ;

e l s e

h i s t l d = LD(b) ;

end

h i s t l d

mu = abs ( c u r r e n t l d − LD(b) ) ;

c u r r e n t l d = LD(b)

LD = [LD(b) ∗ eps i l on ,LD(b) ,LD(b) / e p s i l o n ] ;

y = y+1;

end

doseregA = reg (b , : ) ; doseregB = reg B (b , : ) ;

end

func t i on f t = fterm (D)

Ka = . 3 7 ; Ke = 0 . 8 2 9 ; V = 217 ; F = . 7 ; f t = (F∗D∗Ka) /(V∗ (Ka −

Ke) ) ;

end

func t i on f t = Alum(D)

CL = 15 ;V1 = 215 ; ka = . 1 3 ;Q = 1 3 . 4 ; V2 = 1043 ; f = 1 ; k12 = Q/V1

; k21 = Q/V2 ;

ke = CL/V1 ; sum = k12 + k21 + ke ; root = s q r t (sumˆ2 − 4 ∗ ke ∗ k21 )

;

alpha = (sum+root ) ∗ 0 . 5 ; beta = (sum− root ) ∗ 0 . 5 ;

f t = ( f ∗D∗ ka ∗ ( k21 − alpha ) ) /(V1 ∗ ( ka − alpha ) ∗ ( beta −alpha ) ) ;

end

func t i on f t = Blum(D)

CL = 15 ;V1 = 215 ; ka = . 1 3 ;Q = 1 3 . 4 ; V2 = 1043 ; f = 1 ; k12 = Q/V1

; k21 = Q/V2 ;

ke = CL/V1 ; sum = k12 + k21 + ke ; root = s q r t (sumˆ2 − 4 ∗ ke ∗ k21 )

;

alpha = (sum+root ) ∗ 0 . 5 ; beta = (sum− root ) ∗ 0 . 5 ;

f t = ( f ∗D∗ ka ∗ ( k21 − beta ) ) /(V1 ∗ ( ka − beta ) ∗ ( alpha − beta ) ) ;

end
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D.3 The ED Algorithm for Therapeutic Windows

% PK parameters

Ka = . 3 7 ; Ke = 0 . 2 ; V = 24 ; F = . 9 5 ;

C t g t l = 2 . 5 ;% Lower Ctgt

C tgt h = 3 . 5 ;% Upper Ctgt

nu = . 9 5 ; % nu

D MAX = 250 ;

D = ones (7 , 3 ) ;

D( : , 1 ) = . 1 ∗D MAX∗D( : , 1 ) ;D( : , 2 ) = . 5 0 ∗D MAX∗D( : , 2 ) ;D( : , 3 ) =

D MAX∗D( : , 3 ) ;

compare = 10000 ;

time = 6 ;

h i s t o r y = ones (10000 ,7) ; varphi = ones (10000 ,1) ;

x=1; stop = 0 ;

whi l e ( x <10000 && stop < 7)

stop = 0 ;

l im = s i z e (D( 1 , : ) , 2 ) ;

f o r i = 1 : l im

conc1 = @( t ) nu ∗max(0 , C t g t l − f term (D(1 , i ) ) ∗ (

exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) ) + (1−nu) ∗max(0 , fterm (D

(1 , i ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) )−C tgt h ) ;

obj1 ( i ) = quad ( conc1 , 0 , time ) ;

data1 ( i , : ) = [D(1 , i ) obj1 ( i ) ] ;

end

gr id2 = cartprod (D( 1 , : ) , D( 2 , : ) ) ;

l im2 = s i z e ( gr id2 , 1 ) ;

f o r i =1: l im2

conc2 = @( t ) nu ∗max(0 , C t g t l − ( fterm (

gr id2 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−

Ka ∗ ( time + t ) ) ) + fterm ( gr id2 ( i , 2 ) ) ∗ (

exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) ) ) + (1−nu) ∗max

(0 , fterm ( gr id2 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( time + t )

) − exp(−Ka ∗ ( time + t ) ) ) + fterm ( gr id2 ( i

, 2 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt h )

;

obj2 ( i ) = quad ( conc2 , 0 , time ) ;

end

gr id3 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) ) ;

l im3 = s i z e ( gr id3 , 1 ) ;

f o r i =1: l im3
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conc3 = @( t ) nu ∗max (0 , C t g t l − ( fterm (

gr id3 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp

(−Ka ∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id3 ( i , 2 ) ) ∗ (

exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) )

+ fterm ( gr id3 ( i , 3 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−

Ka∗ t ) ) ) ) + (1−nu) ∗max (0 , fterm ( gr id3 ( i

, 1 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka

∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id3 ( i , 2 ) ) ∗ ( exp

(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) ) +

fterm ( gr id3 ( i , 3 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗

t ) ) − C tgt h ) ;

obj3 ( i ) = quad ( conc3 , 0 , time ) ;

end

gr id4 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) ) ;

l im4 = s i z e ( gr id4 , 1 ) ;

f o r i =1: l im4

conc4 = @( t ) nu ∗max(0 , C t g t l − ( fterm ( gr id4

( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka

∗ ( 3 ∗ time + t ) ) )+ fterm ( gr id4 ( i , 2 ) ) ∗ ( exp(−

Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) )

+ fterm ( gr id4 ( i , 3 ) ) ∗ ( exp(−Ke ∗ ( time + t ) )

− exp(−Ka ∗ ( time + t ) ) ) + fterm ( gr id4 ( i , 4 )

) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) ) ) + (1−nu) ∗

max(0 , fterm ( gr id4 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time

+ t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) )+ fterm (

gr id4 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp

(−Ka ∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id4 ( i , 3 ) ) ∗

( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) )

) + fterm ( gr id4 ( i , 4 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−

Ka∗ t ) )−C tgt h ) ;

obj4 ( i ) = quad ( conc4 , 0 , time ) ;

end

gr id5 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) ) ;

l im5 = s i z e ( gr id5 , 1 ) ;

f o r i =1: l im5

conc5 = @( t ) nu ∗max(0 , C t g t l − ( fterm ( gr id5 ( i , 1 ) )

∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗ time + t ) )

)+ fterm ( gr id5 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) −

exp(−Ka ∗ ( 3 ∗ time + t ) ) ) + fterm ( gr id5 ( i , 3 ) ) ∗ (

exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) )+

fterm ( gr id5 ( i , 4 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−
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Ka ∗ ( time + t ) ) ) + fterm ( gr id5 ( i , 5 ) ) ∗ ( exp(−Ke ∗ t )

− exp(−Ka∗ t ) ) ) ) + (1−nu) ∗max(0 , fterm ( gr id5 (

i , 1 ) ) ∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗ time

+ t ) ) )+ fterm ( gr id5 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t )

) − exp(−Ka ∗ ( 3 ∗ time + t ) ) ) + fterm ( gr id5 ( i , 3 ) ) ∗

( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) )

+ fterm ( gr id5 ( i , 4 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp

(−Ka ∗ ( time + t ) ) ) + fterm ( gr id5 ( i , 5 ) ) ∗ ( exp(−Ke ∗

t ) − exp(−Ka∗ t ) ) −C tgt h ) ;

obj5 ( i ) = quad ( conc5 , 0 , time ) ;

end

gr id6 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) , D

( 6 , : ) ) ;

l im6 = s i z e ( gr id6 , 1 ) ;

f o r i =1: l im6

conc6 = @( t ) nu ∗max(0 , C t g t l − ( fterm ( gr id6 ( i , 1 ) ) ∗ (

exp(−Ke ∗ ( 5 ∗ time + t ) ) − exp(−Ka ∗ ( 5 ∗ time + t ) ) )+

fterm ( gr id6 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka

∗ ( 4 ∗ time + t ) ) ) + fterm ( gr id6 ( i , 3 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗

time + t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) )+ fterm ( gr id6 ( i

, 4 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) )

)+ fterm ( gr id6 ( i , 5 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−Ka

∗ ( time + t ) ) ) + fterm ( gr id6 ( i , 6 ) ) ∗ ( exp(−Ke ∗ t ) − exp

(−Ka∗ t ) ) ) ) + (1−nu) ∗max(0 , ( fterm ( gr id6 ( i , 1 ) ) ∗ ( exp

(−Ke ∗ ( 5 ∗ time + t ) ) − exp(−Ka ∗ ( 5 ∗ time + t ) ) )+ fterm (

gr id6 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗

time + t ) ) ) + fterm ( gr id6 ( i , 3 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time +

t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) )+ fterm ( gr id6 ( i , 4 ) ) ∗ (

exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) )+

fterm ( gr id6 ( i , 5 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ (

time + t ) ) ) + fterm ( gr id6 ( i , 6 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−

Ka∗ t ) ) )−C tgt h ) ;

obj6 ( i ) = quad ( conc6 , 0 , time ) ;

end

gr id7 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) , D

( 6 , : ) , D( 7 , : ) ) ;

l im7 = s i z e ( gr id7 , 1 ) ;

f o r i =1: l im7

conc7 = @( t ) nu ∗max(0 , C t g t l − ( fterm ( gr id7 ( i , 1 )

) ∗ ( exp(−Ke ∗ ( 6 ∗ time + t ) ) − exp(−Ka ∗ ( 6 ∗ time + t

) ) )+ fterm ( gr id7 ( i , 2 ) ) ∗ ( exp(−Ke ∗ ( 5 ∗ time + t ) )
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− exp(−Ka ∗ ( 5 ∗ time + t ) ) ) + fterm ( gr id7 ( i , 3 ) ) ∗

( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗ time + t ) ) )

+ fterm ( gr id7 ( i , 4 ) ) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) −

exp(−Ka ∗ ( 3 ∗ time + t ) ) )+ fterm ( gr id7 ( i , 5 ) ) ∗ ( exp

(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) ) +

fterm ( gr id7 ( i , 6 ) ) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−

Ka ∗ ( time + t ) ) ) + fterm ( gr id7 ( i , 7 ) ) ∗ ( exp(−Ke ∗ t

) − exp(−Ka∗ t ) ) ) ) + (1−nu) ∗max(0 , ( fterm (

gr id7 ( i , 1 ) ) ∗ ( exp(−Ke ∗ ( 6 ∗ time + t ) ) − exp(−Ka

∗ ( 6 ∗ time + t ) ) )+ fterm ( gr id7 ( i , 2 ) ) ∗ ( exp(−Ke

∗ ( 5 ∗ time + t ) ) − exp(−Ka ∗ ( 5 ∗ time + t ) ) ) +

fterm ( gr id7 ( i , 3 ) ) ∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp

(−Ka ∗ ( 4 ∗ time + t ) ) )+ fterm ( gr id7 ( i , 4 ) ) ∗ ( exp(−

Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) )+

fterm ( gr id7 ( i , 5 ) ) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp

(−Ka ∗ ( 2 ∗ time + t ) ) ) + fterm ( gr id7 ( i , 6 ) ) ∗ ( exp(−

Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) ) + fterm (

gr id7 ( i , 7 ) ) ∗ ( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) )−

C tgt h ) ;

obj7 ( i ) = quad ( conc7 , 0 , time ) ;

j = mod( i , l im ) ; i f ( j ==0)

j = lim ;

end

k = mod( i , l im2 ) ; i f ( k ==0)

k = lim2 ;

end

l = mod( i , l im3 ) ; i f ( l ==0)

l = lim3 ;

end

m = mod( i , l im4 ) ; i f (m ==0)

m = lim4 ;

end

n = mod( i , l im5 ) ; i f (n ==0)

n = lim5 ;

end

p = mod( i , l im6 ) ; i f (p ==0)

p = lim6 ;

end

tp = [ obj1 ( j ) , obj2 ( k ) , obj3 ( l ) , obj4 (m) , obj5 (

n) , obj6 (p) , obj7 ( i ) ] ;

cum = mean( tp ) ;
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data7 ( i , : ) = [ g r id7 ( i , 1 ) obj1 ( j ) g r id7 ( i , 2 ) obj2

( k ) g r id7 ( i , 3 ) obj3 ( l ) g r id7 ( i , 4 ) obj4 (m)

gr id7 ( i , 5 ) obj5 (n) g r id7 ( i , 6 ) obj6 (p) gr id7 ( i

, 7 ) obj7 ( i ) cum ] ;

end

s o r t d a t a = sort rows ( data7 , 15) ;

s o r t 2 = s o r t d a t a ( 1 , : ) ;

reg = so r t 2 ( : , [ 1 , 3 , 5 , 7 , 9 , 1 1 , 1 3 ] )

h i s t o r y (x , : ) = reg ;

i f x>1

f o r i =1:7

i f abs ( reg ( i ) − h i s t o r y (x−1 , i ) ) < .01

stop = stop + 1 ;

end ;

end ;

end ;

e p s i l o n = . 9 9 ;

f o r i = 1 : s i z e ( reg , 2 )

i f reg ( i ) == D( i , 1 )

D( i , : ) = min (D MAX, [D( i , 1 ) ∗ eps i l on ,D( i , 1 ) , D( i , 1 )

∗ (1/ e p s i l o n ) ] ) ;

e l s e i f reg ( i ) == D( i , 2 )

D( i , : ) = min (D MAX, [D( i , 2 ) ∗ eps i l on ,D( i , 2 ) , D( i , 2 )

∗ (1/ e p s i l o n ) ] ) ;

e l s e i f reg ( i ) == D( i , 3 )

D( i , : ) = min (D MAX, [D( i , 3 ) ∗ eps i l on ,D( i , 3 ) , D( i , 3 )

∗ (1/ e p s i l o n ) ] ) ;

end

end

compare = s o r t d a t a (1 , 15 ) ; varphi ( x ) = compare ;

x=x+1;

end
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D.4 The ED Algorithm in an Adaptive Trial

f unc t i on m a s t e r b i g p i c t u r e d e s i g n n o c o v

N SIMUL = 1000 ;

ncohorts = 10 ;

rows = N SIMUL∗ ncohorts ;

s r r e c o r d = ones (N SIMUL, 4 ) ;

b e ta r e co rd = ones ( rows , 8 ) ;

d o s e r e g r e c o r d = ones ( rows , 6 ) ;

sam time record = ones ( rows , 4 ) ;

ph i r e co rd = ones ( rows , 2 ) ;

f o r i = 1 :N SIMUL

s t a r t = t i c ;

[ b e ta e s t , sam time , dose reg , phi , s r ] = s imula to r (

ncohorts ) ;

b e ta r e co rd ( [ 1 + ( i −1) ∗ ncohorts : i ∗ ncohorts ] , : ) = [ i ∗ ones (

ncohorts , 1 ) b e t a e s t ] ;

d o s e r e g r e c o r d ( [ 1 + ( i −1) ∗ ncohorts : i ∗ ncohorts ] , : ) =

[ i ∗ ones ( ncohorts , 1 ) do s e r eg ] ;

sam time record ( [ 1 + ( i −1) ∗ ncohorts : i ∗ ncohorts ] , : ) = [ i ∗

ones ( ncohorts , 1 ) sam time ] ;

ph i r e co rd ( [ 1 + ( i −1) ∗ ncohorts : i ∗ ncohorts ] , : ) = [ i ∗ ones (

ncohorts , 1 ) phi ] ;

s r r e c o r d ( i , : ) = [ i s r ] ;

t ime to comp = toc ( s t a r t ) ;

end

save ( ’ b igp icnocovrnd ’ ) ;

end

func t i on [ be ta e s t , sam time , dose reg , phi , s r ] = s imula to r

( ncohorts )

ndose = 5 ; %%%% No . o f doses

mi = 3 ; %%% Number o f ob s e rva t i on s per sub j e c t

N = 10 ; %number o f s u b j e c t s per cohort

s r = ncohorts ∗ ones (1 , 3 ) ;

f i d = fopen ( ’ PK samples .m’ , ’w ’ ) ;

s r f l a g = ze ro s (1 , 3 ) ;

%%% PK parameters

%%% Pr io r va lue s o f the parameters

Ka = 1 ; Ke = . 2 ; V = 20 ; omega1 = . 0 5 ; omega2 = . 1 5 ; omega3 =

. 0 5 ; sigma = . 1 5 ;

% True va lue s o f the parameters
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tr Ka = . 8 5 ; tr Ke = . 1 5 ; tr V = 1 7 ; ; tr omega10 = . 1 ; tr omega20

= . 1 ; tr omega30 = . 1 ; t r s i gma0 = . 1 ;

true params = [ tr Ka , tr Ke , tr V , tr omega10 , tr omega20 ,

tr omega30 , t r s i gma0 ] ;

do s e r eg = ze ro s ( ncohorts , ndose ) ;

phi = ze ro s ( ncohorts , 1 ) ;

b e t a e s t = ze ro s ( ncohorts , 7 ) ;

sam time = ze ro s ( ncohorts , mi ) ;

c t r = 0 ;

f o r i = 1 : ncohorts

[ no need dose r eg ( i , : ) ] = ED algorithm (Ka, Ke ,V,

do s e r eg ( i , : ) , 0 ) ;

[ phi ( i ) no need2 ] = ED algorithm ( tr Ka , tr Ke , tr V

, do s e r eg ( i , : ) , 1 ) ;

ph i and dose reg = [ phi do s e r eg ] ;

f i d t p= fopen ( ’C : \ Users \Kabir . Soeny \Desktop \PHD\

B i g p i c t u r e \ cu r r en t do s e .m’ , ’w ’ ) ;

f p r i n t f ( f i d t p , ’%f %f %f %f %f ’ , do s e r eg ( i , : ) ) ;

f c l o s e ( f i d t p ) ;

%%% Stopping r u l e 1 %%

i f i >1 && s r f l a g (1 ) == 0

i f abs (sum( dose r eg ( i , : ) ) − sum( dose r eg ( i −

1 , : ) ) ) /sum( dose r eg ( i − 1 , : ) ) <= .05

s r (1 ) = i ;

s r f l a g (1 ) = 1 ;

end

end

%%% Stopping r u l e 2 %%%

i f i >1 && s r f l a g (2 ) == 0

i f abs ( ( do s e r eg ( i , : ) ) − ( do s e r eg ( i − 1 , : ) ) )

<= . 0 5 ∗ dose r eg ( i − 1 , : )

s r (2 ) = i ;

s r f l a g (2 ) = 1 ;

end

end

%%% Find D − optimal sampling time po in t s %%%%%%

[ popedOutput , g l oba lS t ruc tu r e , strRunDirectoryName ]=

poped ( i n p u t e d a l g o ( do s e r eg ( i , : ) ,Ka , Ke ,V, omega1

, omega2 , omega3 , sigma ,N) ) ;

sam time ( i , : ) = s o r t ( popedOutput . xt )

draw samples ( do s e r eg ( i , : ) , i , sam time ( i , : ) ) ;
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[ Ka , Ke ,V, omega1 , omega2 , omega3 , sigma ] = PK estimates (

do s e r eg ( i , : ) ,Ka , Ke ,V, omega1 , omega2 , omega3 , sigma ,

i ) ;

b e t a e s t ( i , : ) = [ Ka, Ke ,V, omega1 , omega2 , omega3 , sigma

] ;

end

f c l o s e a l l ;

end

func t i on [ compare do s e r eg ] = ED algorithm (Ka, Ke ,V, f i x ed do s e

, measure )

C tgt = 5 ;

D MAX = 200 ;

ndose = 5 ;

e p s i l o n = . 9 9 ;

kappa = 10 ;

D = ones ( ndose , 3 ) ;

D( : , 1 ) = . 1 ∗D MAX∗D( : , 1 ) ;

D( : , 2 ) = . 5 0 ∗D MAX∗D( : , 2 ) ;

D( : , 3 ) = D MAX∗D( : , 3 ) ;

i f measure ==1

kappa = 0 ;

f o r m = 1:5

D(m, : ) = f i x e d d o s e ( : ,m) ;

end

end

compare = 10000 ;

time = 8 ;

h i s t o r y = ones (10000 ,5) ;

varphi = ones (10000 ,1) ;

x=1;

stop = 0 ;

whi l e ( x <10000 && stop < ndose )

stop = 0 ;

l im = s i z e (D( 1 , : ) , 2 ) ;

f o r i = 1 : l im

conc1 = @( t ) abs ( f t e rm b ig (D(1 , i ) ,Ka , Ke ,V) ∗ (

exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj1 ( i ) = quadl ( conc1 , 0 , time ) ;

end

gr id2 = cartprod (D( 1 , : ) , D( 2 , : ) ) ;

l im2 = s i z e ( gr id2 , 1 ) ;
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f o r i =1: l im2

conc2 = @( t ) abs ( f t e rm b ig ( g r id2 ( i , 1 ) ,Ka , Ke ,V) ∗ ( exp

(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) ) +

f t e rm b ig ( g r id2 ( i , 2 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ t ) − exp(−

Ka∗ t ) )− C tgt ) ;

obj2 ( i ) = quadl ( conc2 , 0 , time ) ;

end

gr id3 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) ) ;

l im3 = s i z e ( gr id3 , 1 ) ;

f o r i =1: l im3

conc3 = @( t ) abs ( f t e rm b ig ( g r id3 ( i , 1 ) ,Ka , Ke ,V) ∗ ( exp

(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) ) +

f t e rm b ig ( g r id3 ( i , 2 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ ( time + t ) )

− exp(−Ka ∗ ( time + t ) ) ) + f t e rm b ig ( g r id3 ( i , 3 ) ,Ka ,

Ke ,V) ∗ ( exp(−Ke ∗ t )− exp(−Ka∗ t ) ) − C tgt ) ;

obj3 ( i ) = quadl ( conc3 , 0 , time ) ;

end

gr id4 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) ) ;

l im4 = s i z e ( gr id4 , 1 ) ;

f o r i =1: l im4

conc4 = @( t ) abs ( f t e rm b ig ( g r id4 ( i , 1 ) ,Ka , Ke

,V) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka ∗ ( 3 ∗

time + t ) ) )+ f t e rm b ig ( g r id4 ( i , 2 ) ,Ka , Ke ,V)

∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time

+ t ) ) ) + f t e rm b ig ( g r id4 ( i , 3 ) ,Ka , Ke ,V) ∗ (

exp(−Ke ∗ ( time + t ) )− exp(−Ka ∗ ( time + t ) ) )

+ f t e rm b ig ( g r id4 ( i , 4 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗

t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj4 ( i ) = quadl ( conc4 , 0 , time ) ;

end

gr id5 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) ) ;

l im5 = s i z e ( gr id5 , 1 ) ;

f o r i =1: l im5

conc5 = @( t ) abs ( f t e rm b ig ( g r id5 ( i , 1 ) ,Ka ,

Ke ,V) ∗ ( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka

∗ ( 4 ∗ time + t ) ) )+ f t e rm b ig ( g r id5 ( i , 2 ) ,Ka ,

Ke ,V) ∗ ( exp(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka

∗ ( 3 ∗ time + t ) ) ) + f t e rm b ig ( g r id5 ( i , 3 ) ,Ka ,

Ke ,V) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka

∗ ( 2 ∗ time + t ) ) ) + f t e rm b ig ( g r id5 ( i , 4 ) ,Ka ,
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Ke ,V) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time

+ t ) ) ) + f t e rm b ig ( g r id5 ( i , 5 ) ,Ka , Ke ,V) ∗

( exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj5 ( i ) = quadl ( conc5 , 0 , time ) ;

j = mod( i , l im ) ; i f ( j ==0)

j = lim ;

end

k = mod( i , l im2 ) ; i f ( k ==0)

k = lim2 ;

end

l = mod( i , l im3 ) ; i f ( l ==0)

l = lim3 ;

end

m = mod( i , l im4 ) ; i f (m ==0)

m = lim4 ;

end

tp = [ obj1 ( j ) , obj2 ( k ) , obj3 ( l ) , obj4 (m) ,

obj5 ( i ) ] ;

cum = mean( tp ) ;

data7 ( i , : ) = [ g r id5 ( i , 1 ) obj1 ( j ) g r id5 ( i , 2 )

obj2 ( k ) g r id5 ( i , 3 ) obj3 ( l ) g r id5 ( i , 4 )

obj4 (m) gr id5 ( i , 5 ) obj5 ( i ) cum ] ;

end

s o r t d a t a = sort rows ( data7 , 11) ;

s o r t 2 = s o r t d a t a ( 1 , : ) ;

reg = so r t 2 ( : , [ 1 , 3 , 5 , 7 , 9 ] ) ;

h i s t o r y (x , : ) = reg ;

i f x>1

f o r i =1:5

i f abs ( reg ( i ) − h i s t o r y (x−1 , i ) )== 0

stop = stop + 1 ;

end ;

end ;

end ;

f o r i = 1 : s i z e ( reg , 2 )

i f reg ( i ) == D( i , 1 )

D( i , : ) = max(0 , min (D MAX, [D( i , 1 ) − kappa , D( i , 1 ) , D( i

, 1 ) + kappa ] ) ) ;

e l s e i f reg ( i ) == D( i , 2 )

D( i , : ) = max(0 , min (D MAX, [D( i , 2 ) − kappa ,D( i , 2 ) , D( i

, 2 ) + kappa ] ) ) ; %%%% Di s c r e t e
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e l s e i f reg ( i ) == D( i , 3 )

D( i , : ) = max(0 , min (D MAX, [D( i , 3 ) − kappa , D( i , 3 ) , D(

i , 3 )+ kappa ] ) ) ;

end

end

compare = s o r t d a t a (1 , 11 ) ;

varphi ( x ) = compare ; x=x+1;

end

dose r eg = reg ;

end

func t i on f t = f t e rm b ig (D, Ka, Ke ,V)

f t = ( (D∗Ka) /(V∗ (Ka − Ke) ) ) ;

end

func t i on draw samples ( dose , cohor t id , sampl ing t ime )

%%% True PK parameters %%%%

ka = . 8 5 ; ke = . 1 5 ; v = 17 ; phi = [ ka , ke , v ] ;

N = 10 ;

tau = 8 ;

varcov = [ . 1 0 0 ;

0 . 1 0 ;

0 0 . 0 1 ] ;

sigma = . 0 5 ;

sampl ing t ime = sampling t ime ’ ;

n = s i z e ( sampling time , 1 ) ;

t o t p a t = N∗n ;

phi mat = repmat ( phi , to t pat , 1 ) ;

s igma sq = s q r t ( sigma ) ;

no dose = s i z e ( dose , 2 ) ;

f o r i = 1 :N

rnd = mvnrnd ( [ 0 , 0 , 0 ] , varcov ) ;

f o r j =1:n

b rnd ( ( i −1) ∗n + j , : ) = rnd ;

end

end

sam time = repmat ( sampling time ,N, 1 ) ;

ph i rand = phi mat . ∗ exp ( b rnd ) ;

s im conc = ze ro s ( tot pat , 1 ) ;

pa r f o r k = 1 : t o t p a t

concn = 0 ;

f o r j =1: no dose

tp1 = ( phi rand (k , 3 ) ∗ ( phi rand (k , 1 ) − phi rand (k

283



Chapter D. MATLAB
R©

Programs

, 2 ) ) ) ;

tp2 = ( dose ( j ) ∗ phi rand (k , 1 ) ) ;

tp = tp2/ tp1 ;

concn = concn + ( ( sam time ( k ) >=(( j −1) ∗ tau ) ) ) ∗

. . .

( tp ∗ ( exp(− phi rand (k , 2 ) ∗ abs ( sam time ( k ) −( j

−1) ∗ tau ) ) − . . .

exp(− phi rand (k , 1 ) ∗ abs ( sam time ( k ) −( j −1) ∗ tau )

) ) ) ;

end

s im conc ( k ) = concn ∗ exp ( normrnd (0 , s igma sq ) ) ; % For

p r op o r t i o na l e r r o r model

%sim conc ( k ) = concn + normrnd (0 , sigma ) ; % For a d d i t i v e

model

end

sub j e c t = ( cohor t id −1) ∗N + 1 ;

pa r f o r i = 1 :N

f o r j = 1 : n

i f ( i ==1 && j==1)

cont inue ;

e l s e

sub j e c t = [ sub j e c t ( cohor t id −1) ∗N + i ] ;

end

end

end

sub j e c t = subject ’ ;

data = [ sub j e c t sam time sim conc ] ;

f i d = fopen ( ’C : \ Users \Kabir . Soeny \Desktop \PHD\ B i g p i c t u r e \

PK samples .m’ , ’ a ’ ) ;

f p r i n t f ( f i d , ’%d %8.4 f %8.4 f \n ’ , data ( : , 1 : 3 ) ’ ) ;

end

func t i on [ Ka, Ke , V, omega1 , omega2 , omega3 , sigma ] =

PK estimates ( dose , Ka , Ke ,V, omega1 , omega2 , omega3 , sigma ,

c o h o r t i d )

phi0 = [ Ka, Ke , V ] ;

phi0 = log ( phi0 ) ;

tau = 8 ;

N = 10 ;

n = 3 ;

mod conc1 = @( phi , t ) ( ( dose (1 ) ∗ phi (1 ) ) /( phi (3 ) ∗ ( phi (1 ) − phi

(2 ) ) ) ) ∗ ( exp(−phi (2 ) ∗ t ) − exp(−phi (1 ) ∗ t ) ) + ( t >= tau )
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. ∗ ( ( ( dose (2 ) ∗ phi (1 ) ) /( phi (3 ) ∗ ( phi (1 ) − phi (2 ) ) ) ) ∗ ( exp

(−phi (2 ) ∗ ( t−tau ) ) − exp(−phi (1 ) ∗ ( t−tau ) ) ) ) + ( t>= (2 ∗ tau ) )

. ∗ ( ( ( dose (3 ) ∗ phi (1 ) ) /( phi (3 ) ∗ ( phi (1 ) − phi (2 ) ) ) ) ∗ ( exp(−

phi (2 ) ∗ ( t −2∗ tau ) ) − exp(−phi (1 ) ∗ ( t −2∗ tau ) ) ) ) + ( t >=3∗ tau )

. ∗ ( ( ( dose (4 ) ∗ phi (1 ) ) /( phi (3 ) ∗ ( phi (1 ) −phi (2 ) ) ) ) ∗ ( exp(−phi

(2 ) ∗ ( t −3∗ tau ) ) − exp(−phi (1 ) ∗ ( t −3∗ tau ) ) ) ) + ( t >=4∗ tau ) . ∗

( ( ( dose (5 ) ∗ phi (1 ) ) /( phi (3 ) ∗ ( phi (1 ) − phi (2 ) ) ) ) ∗ ( exp(−phi

(2 ) ∗ ( t −4∗ tau ) ) − exp(−phi (1 ) ∗ ( t −4∗ tau ) ) ) ) ;

t p l o t = 0 : 0 . 0 1 : 8 0 ;

load C: \ Users \Kabir . Soeny \Desktop \PHD\ B i g p i c t u r e \PK samples .

m;

sub j e c t = PK samples ( : , 1 ) ;

time = PK samples ( : , 2 ) ;

conc = PK samples ( : , 3 ) ;

dp = [ sub j e c t conc ] ;

P = [ 1 0 0 ;0 1 0 ;0 0 1 ] ;

xform = [ 1 1 1 ] ;

opt i ons = s t a t s e t ( ’ n lm e f i t ’ ) ;

opt i ons = s t a t s e t ( opt ions , ’TolX ’ ,1 e −8 , ’ FunValCheck ’ , ’ Off ’ ) ;

s e t ( gcf , ’ v i s i b l e ’ , ’ o f f ’ )

[ phi , PSI , s t a t s , b ] = n l me f i t ( time , conc , sub ject , [ ] , mod conc1 ,

phi0 , ’ REParamsSelect ’ , [ 1 2 3 ] , ’ CovPattern ’ ,P, ’ ErrorModel ’

, ’ exponent i a l ’ , ’ ParamTransform ’ , xform , ’ Options ’ , opt ions , ’

ApproximationType ’ , ’LME’ )

s e t (0 , ’ D e f a u l t F i g u r e V i s i b l e ’ , ’ o f f ’ ) ;

Ka = exp ( phi (1 ) ) ;

Ke = exp ( phi (2 ) ) ;

V = exp ( phi (3 ) ) ;

sigma = s t a t s . mse ;

end

%%% Adapted from PopED so f tware %%%%

func t i on [ popedInput ] = i n p u t e d a l g o ( dose , Ka , Ke ,V, omega1 ,

omega2 , omega3 , sigma , Nc)

popedInput . strPopEDVersion=’ 2 .13 ’ ; popedInput . ng=3; popedInput .

nbpop=3; popedInput . nb=3;

popedInput . ndocc =0; popedInput . nx=0; popedInput . na=0;

popedInput .NumOcc=0; popedInput .m=1; popedInput . maxni=3;

popedInput . minni =3; popedInput . des ign . g roups i z e=Nc ;

popedInput . des ign . maxgroupsize=Nc ; popedInput . des ign .

mingroups ize=Nc ;

popedInput . des ign . maxtotgroups ize=Nc ; popedInput . des ign .
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mintotgroups i ze=Nc ;

popedInput . d switch =1; popedInput . iApproximationMethod =0;

popedInput . iFOCENumInd=1000; popedInput . iEDCalculationType =0;

popedInput . bUseRandomSearch=1; popedInput .

bUseStochast icGradient =1;

popedInput . bUseLineSearch =1; popedInput . bUseExchangeAlgorithm

=0;

popedInput . bUseBFGSMinimizer=0; popedInput . o f v c a l c t y p e =1;

popedInput . p r i o r f i m=ze ro s (1 , 0 ) ’ ; popedInput . optsw=[ 0 1 0 0

0 ] ;

popedInput . l i n e o p t a=ze ro s (1 , 0 ) ’ ; popedInput . l i n e o p t x=ze ro s

(1 , 0 ) ’ ;

popedInput . dSeed=−1;popedInput . des ign . g roups i z e =1; popedInput .

des ign . maxgroupsize =1;

popedInput . des ign . mingroups ize =1; popedInput . des ign .

maxtotgroups ize =0;

popedInput . des ign . mintotgroups i ze =0; popedInput . des ign . sigma=[

sigma 0 ;0 . 0 0 0 0 1 ] ;

popedInput . des ign . bpop=[ 0 Ka 0 ; 0 Ke 0 ; 0 V 0 ] ;

popedInput . des ign . d=[ 0 omega1 0 ;0 omega2 0 ; 0 omega3 0 ] ;

popedInput . des ign . covd=[ 0 0 0 ] ; popedInput . des ign . docc=ze ro s

(3 , 0 ) ’ ;

popedInput . des ign . covdocc=ze ro s (0 , 1 ) ’ ;

popedInput . des ign . n i =3; popedInput . des ign . xt =[ 1 20 4 0 ] ;

popedInput . des ign . maxxt=[ 42 42 4 2 ] ; popedInput . des ign . minxt=[

. 1 . 1 . 1 ] ;

popedInput . des ign . x=ze ro s (0 , 1 ) ’ ; popedInput . des ign . d i s c r e t e x=

c e l l ( 0 , 1 ) ’ ;

popedInput . des ign . a=ze ro s (0 , 1 ) ’ ; popedInput . des ign . maxa=ze ro s

(0 , 1 ) ’ ;

popedInput . des ign . mina=ze ro s (0 , 1 ) ’ ; popedInput . des ign .

model switch =[ 1 1 1 ] ;

popedInput . not f ixed bpop =[ 1 1 1 ] ; popedInput . no t f i x ed d =[ 1 1

1 ] ;

popedInput . no t f i x ed covd =[ 0 0 0 ] ;

popedInput . no t f i x ed doc c=ze ro s (0 , 1 ) ’ ; popedInput .

no t f i x ed covdocc=ze ro s (0 , 1 ) ’ ;

popedInput . no t f i x ed s i gma =[ 1 0 ] ; popedInput . not f i xed covs igma

=0;

popedInput . bUseGrouped xt =0; popedInput . des ign .G=[ 1 2 3 ] ;

popedInput . bUseGrouped a=0; popedInput . des ign .Ga=ze ro s (0 , 1 ) ’ ;
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popedInput . bUseGrouped x=0; popedInput . des ign .Gx=ze ro s (0 , 1 ) ’ ;

popedInput . f f f i l e =’C: \ Users \Kabir . Soeny \Desktop \PHD\

B i g p i c t u r e \ m o d e l i n p u t b i g p i c t u r e .m’ ;

popedInput . f g f i l e=’C: \ Users \Kabir . Soeny \Desktop \PHD\

B i g p i c t u r e \ s f g .m’ ;

popedInput . f E r r o r f i l e=’C: \ Users \Kabir . Soeny \Desktop \PHD\

B i g p i c t u r e \ expo er ror mode l .m’ ;

popedInput . s t r U s e r D i s t r i b u t i o n F i l e=’ ’ ;

popedInput . strEDPenaltyFi le=’ ’ ;

popedInput . s t r A u t o C o r r e l a t i o n F i l e=’ ’ ;

popedInput . modtit=’ One comp mul dose ed algo ’ ;

popedInput . bShowGraphs=0; popedInput . u s e l o g f i l e =0;

popedInput . o u t p u t f i l e=’C: \ Users \Kabir . Soeny \Desktop \PHD\

B i g p i c t u r e \Poped \ output LS 2 . txt ’ ;

popedInput . o u t p u t f u n c t i o n f i l e=’ func t i on output ’ ;

popedInput . s t r I t e ra t i onF i l eName=’ ’ ;

popedInput . s t rRunFi le=’ ’ ; popedInput . m1 switch =0; popedInput .

m2 switch =0;

popedInput . h l e s w i t c h =0; popedInput . g r a d f f s w i t c h =0;

popedInput . g rad fg sw i t ch =0; popedInput . bLHS=0;

popedInput . ourzero=1e −001; popedInput . r s i t o u t p u t =100;

popedInput . s g i t o u t p u t =100; popedInput .hm1=0.001;

popedInput . h l f =0.001; popedInput . h lg =0.001;

popedInput .hm2=0.001; popedInput . hgd =0.001;

popedInput . h l e =0.001; popedInput . AbsTol=1e −01;

popedInput . RelTol=1e −01; popedInput . iD i f fSo lverMethod =0;

popedInput . bUseMemorySolver=0; popedInput . iFIMCalculationType

=0;

popedInput . r s i t =125; popedInput . s g i t =75; popedInput . i n t r s i t

=100; popedInput . i n t s g i t =50;

popedInput . maxr snu l l i t =100; popedInput . convergence eps=1e −001;

popedInput . r s l x t =4; popedInput . r s l a =4; popedInput . c f ax t =0.01;

popedInput . c f aa =0.01; popedInput . bGreedyGroupOpt=0; popedInput .

EACriter ia =1;

popedInput . EAStepSize =0.01; popedInput . EANumPoints=0;

popedInput . EAConvergenceCriter ia=1e −010;

popedInput . bEANoReplicates =0; popedInput .

BFGSConvergenceCriteriaMinStep=1e −001;

popedInput . BFGSProjectedGradientTol =0.0001;

popedInput . BFGSTolerancef =0.001; popedInput . BFGSToleranceg

=0.9 ;
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popedInput . BFGSTolerancex =0.1 ; popedInput . ED samp size =45;

popedInput . E D d i f f i t =30; popedInput . ED d i f f p e r c en t =10;

popedInput . l i n e s e a r c h i t =10; popedInput .

iNumSearchIterat ions I fNotLineSearch =10;

popedInput . Cr i t e r i onOpt ions . ds index =[ 0 0 0 0 0 0 0 ] ;

popedInput . p a r a l l e l S e t t i n g s . iCompileOption =−1;

popedInput . p a r a l l e l S e t t i n g s . iUsePara l l e lMethod =1;

popedInput . p a r a l l e l S e t t i n g s .

strAdditionalMCCCompilerDependencies=’ ’ ;

popedInput . p a r a l l e l S e t t i n g s . strExecuteName=’ c a l c f i m . exe ’ ;

popedInput . p a r a l l e l S e t t i n g s . iNumProcesses =2;

popedInput . p a r a l l e l S e t t i n g s . iNumChunkDesignEvals=−2;

popedInput . p a r a l l e l S e t t i n g s . s t rMatF i l e InputPre f i x=’

p a r a l l e l i n p u t ’ ;

popedInput . p a r a l l e l S e t t i n g s . s t rMatFi leOutputPre f ix=’

p a r a l l e l o u t p u t ’ ;

popedInput . p a r a l l e l S e t t i n g s . strExtraRunOptions=’ ’ ;

popedInput . p a r a l l e l S e t t i n g s . dPollResultTime =1.000000e −001;

popedInput . p a r a l l e l S e t t i n g s . strFunctionInputName=’

f u n c t i o n i n p u t ’ ;

popedInput . p a r a l l e l S e t t i n g s . bPara l l e lRS =0; popedInput .

p a r a l l e l S e t t i n g s . bParal le lSG =0;

popedInput . p a r a l l e l S e t t i n g s . bPara l l e lLS =0;

popedInput . p a r a l l e l S e t t i n g s . bParallelMFEA=0; popedInput .

u s e r data = { } ;

end
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D.5 Dose Individualization Using the ED Algo-

rithm

f unc t i on m a s t e r b i g p i c t u r e

c l e a r a l l ;

ndose = 5 ; % No . o f doses

mi = 3 ; % Number o f ob s e rva t i on s per sub j e c t

N = 10 ; % Group S i z e

% PK parameters

Ka = . 8 9 ; Ke = . 1 6 ; V = 1 7 . 5 9 ; omega1 = . 1 ; omega2 = . 1 ; omega3

= . 1 ; sigma = . 1 ;

do s e r eg = ze ro s (1 , ndose ) ;

b e t a e s t = ze ro s (2 , 7 ) ;

sam time = ze ro s (1 , mi ) ;

c t r = 0 ;

b e t a e s t ( 1 , : ) = [ Ka, Ke ,V, omega1 , omega2 , omega3 , sigma ] ;

[ do s e r eg ( : , : ) tp ] = ED algorithm (Ka, Ke ,V, 0 , 0 )

f i d t p = . . .

fopen ( ’C : \ Users \Kabir . Soeny \Desktop \PHD\ B i g p i c t u r e \

cu r r en t do s e .m’ , ’w ’ ) ;

f p r i n t f ( f i d t p , ’%f %f %f %f %f ’ , do s e r eg ( : , : ) ) ;

f c l o s e ( f i d t p ) ;

sam time ( : , : ) = [ . 1 3 .66 1 0 ] ;

draw samples ( do s e r eg ( : , : ) , 1 , sam time ( : , : ) ,Ka , Ke ,V) ;

[ Ka , Ke ,V, omega1 , omega2 , omega3 , sigma , PHI , c o l ] = . . .

PK estimates ( do s e r eg ( 1 , : ) ,Ka , Ke ,V, omega1 , omega2 , omega3 , sigma

, 1 ) ;

b e t a e s t ( 2 , : ) = [ Ka, Ke ,V, omega1 , omega2 , omega3 , sigma ]

f o r k = 1 :N

[ ind dose (k , : ) varphi ( k ) ] = ED algorithm (PHI(1 , k ) ,PHI(2 , k

) ,PHI(3 , k ) ,1 , do s e r eg (1 , 1 ) ) ;

end

out = [ ind dose varphi ’ ]

RES = ze ro s (mi ,N) ;

f i g u r e (2 )

t p l o t = 0 : 0 . 1 : 8 0 ;

tau = 12 ;

c tg t = 5 ;

f o r I = 1 :N

f i t t e d m o d e l = @( t ) ( ( ind dose ( I , 1 ) ∗PHI(1 , I ) ) /(PHI(3 , I ) ∗ (
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PHI(1 , I ) − PHI(2 , I ) ) ) ) ∗ ( exp(−PHI(2 , I ) ∗ t ) − exp(−PHI(1 ,

I ) ∗ t ) ) + ( t > tau ) . ∗ ( ( ( ind dose ( I , 2 ) ∗PHI(1 , I ) ) /(PHI(3 , I

) ∗ ( PHI(1 , I ) − PHI(2 , I ) ) ) ) ∗ ( exp(−PHI(2 , I ) ∗ ( t−tau ) )− exp

(−PHI(1 , I ) ∗ ( t−tau ) ) ) ) +(t >2∗ tau ) . ∗ ( ( ( ind dose ( I , 3 ) ∗PHI

(1 , I ) ) /(PHI(3 , I ) ∗ ( PHI(1 , I ) − PHI(2 , I ) ) ) ) ∗ ( exp(−PHI(2 , I

) ∗ ( t −2∗ tau ) ) − exp(−PHI(1 , I ) ∗ ( t −2∗ tau ) ) ) ) +(t >3∗ tau )

. ∗ ( ( ( ind dose ( I , 4 ) ∗PHI(1 , I ) ) /(PHI(3 , I ) ∗ ( PHI(1 , I ) − PHI

(2 , I ) ) ) ) ∗ ( exp(−PHI(2 , I ) ∗ ( t −3∗ tau ) ) − exp(−PHI(1 , I ) ∗ ( t

−3∗ tau ) ) ) ) +(t >4∗ tau ) . ∗ ( ( ( ind dose ( I , 5 ) ∗PHI(1 , I ) ) /(PHI

(3 , I ) ∗ ( PHI(1 , I ) − PHI(2 , I ) ) ) ) ∗ ( exp(−PHI(2 , I ) ∗ ( t −4∗ tau )

) − exp(−PHI(1 , I ) ∗ ( t −4∗ tau ) ) ) ) ;

subp lot (2 , 5 , I )

s e t ( gca , ’ XTick ’ , [ 0 : 1 2 : 7 2 ] , ’ f o n t s i z e ’ , 10)

hold a l l ;

p l o t ( tp lo t , f i t t e d m o d e l ( t p l o t ) , ’−− ’ , ’ Color ’ , c o l ( I , : ) , ’

l i n ew id th ’ , 2 . 5 )

p l o t ( [ 0 , 6 0 ] , [ ctgt , c t g t ] , ’ b ’ , ’ l i n ew id th ’ , 2 . 5 )

hold o f f

a x i s ( [ 0 80 0 1 8 ] )

x l a b e l ( ’Time ( hours ) ’ )

y l a b e l ( ’ Concentrat ion (mg/L) ’ )

l egend ( num2str ( I ) )

end

save ( ’ wrksp ’ ) ;

f c l o s e a l l ;

end

func t i on [ do s e r eg compare ] = ED algorithm (Ka, Ke ,V, f i t , d1 )

% Target Conc %

C tgt = 5 ;

% MAX DOSE and no . o f doses %

D MAX = 300 ;

ndose = 5 ;

% Reso lut ion %

e p s i l o n = . 9 9 ;

kappa = 2 ;

D = ones ( ndose , 3 ) ;

D( : , 1 ) = . 1 ∗D MAX∗D( : , 1 ) ;

D( : , 2 ) = . 5 0 ∗D MAX∗D( : , 2 ) ;

D( : , 3 ) = D MAX∗D( : , 3 ) ;

compare = 10000 ;

time = 12 ;
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h i s t o r y = ones (10000 ,5) ;

varphi = ones (10000 ,1) ;

x=1;

stop = 0 ;

whi l e ( x <10000 && stop < ndose )

stop = 0 ;

l im = s i z e (D( 1 , : ) , 2 ) ;

f o r i = 1 : l im

i f f i t == 1

D(1 , i ) = d1 ;

end

conc1 = @( t ) abs ( f t e rm b ig (D(1 , i ) ,Ka , Ke ,V) ∗ ( exp

(−Ke ∗ t )− exp(−Ka∗ t ) ) − C tgt ) ;

obj1 ( i ) = quad ( conc1 , 0 , time ) ;

end

gr id2 = cartprod (D( 1 , : ) , D( 2 , : ) ) ;

l im2 = s i z e ( gr id2 , 1 ) ;

f o r i =1: l im2

conc2 = @( t ) abs ( f t e rm b ig ( g r id2 ( i , 1 ) ,Ka , Ke ,V) ∗ . . .

( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t ) ) ) + . . .

f t e rm b ig ( g r id2 ( i , 2 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ t ) − exp(−Ka

∗ t ) ) . . .

− C tgt ) ;

obj2 ( i ) = quad ( conc2 , 0 , time ) ;

end

gr id3 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) ) ;

l im3 = s i z e ( gr id3 , 1 ) ;

f o r i =1: l im3

conc3 = @( t ) abs ( f t e rm b ig ( g r id3 ( i , 1 ) ,Ka , Ke ,V) ∗

( exp(−Ke ∗ ( 2 ∗ time + t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) )

+ f t e rm b ig ( g r id3 ( i , 2 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ ( time

+ t ) )− exp(−Ka ∗ ( time + t ) ) ) + f t e rm b ig ( g r id3 ( i

, 3 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ t )− exp(−Ka∗ t ) ) − C tgt ) ;

obj3 ( i ) = quad ( conc3 , 0 , time ) ;

end

gr id4 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) ) ;

l im4 = s i z e ( gr id4 , 1 ) ;

f o r i =1: l im4

conc4 = @( t ) abs ( f t e rm b ig ( g r id4 ( i , 1 ) ,Ka , Ke ,V) ∗ (

exp(−Ke ∗ ( 3 ∗ time + t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) )+

f t e rm b ig ( g r id4 ( i , 2 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ ( 2 ∗ time
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+ t ) ) − exp(−Ka ∗ ( 2 ∗ time + t ) ) ) + f t e rm b ig ( g r id4

( i , 3 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ ( time + t ) )− exp(−Ka ∗ (

time + t ) ) ) + f t e rm b ig ( g r id4 ( i , 4 ) ,Ka , Ke ,V) ∗ (

exp(−Ke ∗ t ) − exp(−Ka∗ t ) ) − C tgt ) ;

obj4 ( i ) = quad ( conc4 , 0 , time ) ;

end

gr id5 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D( 5 , : ) ) ;

l im5 = s i z e ( gr id5 , 1 ) ;

f o r i =1: l im5

conc5 = @( t ) abs ( f t e rm b ig ( g r id5 ( i , 1 ) ,Ka , Ke ,V) ∗

( exp(−Ke ∗ ( 4 ∗ time + t ) ) − exp(−Ka ∗ ( 4 ∗ time + t ) ) )+

f t e rm b ig ( g r id5 ( i , 2 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ ( 3 ∗

time + t ) ) − exp(−Ka ∗ ( 3 ∗ time + t ) ) ) + f t e rm b ig (

g r id5 ( i , 3 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ ( 2 ∗ time + t ) ) −

exp(−Ka ∗ ( 2 ∗ time + t ) ) ) + f t e rm b ig ( g r id5 ( i , 4 ) ,Ka

, Ke ,V) ∗ ( exp(−Ke ∗ ( time + t ) ) − exp(−Ka ∗ ( time + t )

) ) + f t e rm b ig ( g r id5 ( i , 5 ) ,Ka , Ke ,V) ∗ ( exp(−Ke ∗ t )

− exp(−Ka∗ t ) ) − C tgt ) ;

obj5 ( i ) = quad ( conc5 , 0 , time ) ;

j = mod( i , l im ) ; i f ( j ==0)

j = lim ;

end

k = mod( i , l im2 ) ; i f ( k ==0)

k = lim2 ;

end

l = mod( i , l im3 ) ; i f ( l ==0)

l = lim3 ;

end

m = mod( i , l im4 ) ; i f (m ==0)

m = lim4 ;

end

tp = [ obj1 ( j ) , obj2 ( k ) , obj3 ( l ) , obj4 (m) , obj5 ( i )

] ;

cum = mean( tp ) ;

data7 ( i , : ) = [ g r id5 ( i , 1 ) obj1 ( j ) g r id5 ( i , 2 ) obj2 ( k )

g r id5 ( i , 3 ) obj3 ( l ) g r id5 ( i , 4 ) obj4 (m) gr id5 ( i , 5 )

obj5 ( i ) cum ] ;

end

s o r t d a t a = sort rows ( data7 , 11) ;

s o r t 2 = s o r t d a t a ( 1 , : ) ;

reg = so r t 2 ( : , [ 1 , 3 , 5 , 7 , 9 ] ) ;
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h i s t o r y (x , : ) = reg ;

i f x>1

f o r i =1:5

i f abs ( reg ( i ) − h i s t o r y (x−1 , i ) )== 0

stop = stop + 1 ;

end ;

end ;

end ;

f o r i = 1 : s i z e ( reg , 2 )

i f reg ( i ) == D( i , 1 )

D( i , : ) = max(0 , min (D MAX, [D( i , 1 ) − kappa , D( i , 1 ) , D( i

, 1 ) + kappa ] ) ) ;

e l s e i f reg ( i ) == D( i , 2 )

D( i , : ) = max(0 , min (D MAX, [D( i , 2 ) − kappa ,D( i , 2 ) , D( i

, 2 ) + kappa ] ) ) ;

e l s e i f reg ( i ) == D( i , 3 )

D( i , : ) = max(0 , min (D MAX, [D( i , 3 ) − kappa , D( i , 3 ) , D( i

, 3 )+ kappa ] ) ) ;

end

end

compare = s o r t d a t a (1 , 11 ) ;

varphi ( x ) = compare ;

x=x+1;

end

dose r eg = reg ;

end

func t i on f t = f t e rm b ig (D, Ka, Ke ,V)

f t = ( (D∗Ka) /(V∗ (Ka − Ke) ) ) ;

end

func t i on draw samples ( dose , cohor t id , sampling t ime , ka , ke , v )

% True PK parameters %

phi = [ ka , ke , v ] ;

N = 10 ;

tau = 12 ;

varcov = [ . 1 0 0 ;

0 . 1 0 ;

0 0 . 1 ] ;

sigma = . 1 ;

sampl ing t ime = sampling t ime ’ ;

n = s i z e ( sampling time , 1 ) ;
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t o t p a t = N∗n ;

phi mat = repmat ( phi , to t pat , 1 ) ;

s igma sq = s q r t ( sigma ) ;

no dose = s i z e ( dose , 2 ) ;

f o r i = 1 :N

rnd = mvnrnd ( [ 0 , 0 , 0 ] , varcov ) ;

f o r j =1:n

b ( ( i −1) ∗n + j , : ) = rnd ;

end

end

sam time = repmat ( sampling t ime ,N, 1 ) ;

ph i rand = phi mat . ∗ exp (b) ;

s im conc = ze ro s ( tot pat , 1 ) ;

f o r k = 1 : t o t p a t

concn = 0 ;

f o r j =1: no dose

tp1 = ( phi rand (k , 3 ) ∗ ( phi rand (k , 1 ) − phi rand (k

, 2 ) ) ) ;

tp2 = ( dose ( j ) ∗ phi rand (k , 1 ) ) ;

tp = tp2/ tp1 ;

concn = concn + ( ( sam time ( k ) >=(( j −1) ∗ tau ) ) ) ∗ (

tp ∗ ( exp(− phi rand (k , 2 ) ∗ abs ( sam time ( k ) −( j −1) ∗

tau ) ) −exp(− phi rand (k , 1 ) ∗ abs ( sam time ( k ) −( j

−1) ∗ tau ) ) ) ) ;

end

s im conc ( k ) = concn ∗ exp ( normrnd (0 , s igma sq ) ) ;

% For p rop o r t i o na l e r r o r model ; For a d d i t i v e model use

s im conc ( k ) = concn + normrnd (0 , sigma ) ;

end

sub j e c t = ( cohor t id −1) ∗N + 1 ;

f o r i = 1 :N

f o r j = 1 : n

i f ( i ==1 && j==1)

cont inue ;

e l s e

sub j e c t = [ sub j e c t ( cohor t id −1) ∗N + i ] ;

end

end

end

sub j e c t = subject ’ ;
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data = [ sub j e c t sam time sim conc ] ;

f i d = . . .

fopen ( ’C : \ Users \Kabir . Soeny \Desktop \PHD\ B i g p i c t u r e \

PK samples .m’ , ’w ’ ) ;

f p r i n t f ( f i d , ’%d %8.4 f %8.4 f \n ’ , data ( : , 1 : 3 ) ’ ) ;

f c l o s e ( f i d ) ;

end

func t i on [ Ka, Ke , V, omega1 , omega2 , omega3 , sigma , PHI , c o l ] =

PK estimates ( dose , Ka , Ke ,V, omega1 , omega2 , omega3 , sigma ,

c o h o r t i d )

phi0 = [ Ka, Ke , V ] ;

phi0 = log ( phi0 ) ;

tau = 12 ;

N = 10 ;

n = 5 ;

mi = 3 ;

c tg t = 5 ;

mod conc1 = @( phi , t ) ( ( dose (1 ) ∗ phi (1 ) ) /( phi (3 ) ∗ ( phi (1 ) − phi

(2 ) ) ) ) ∗ ( exp(−phi (2 ) ∗ t ) − exp(−phi (1 ) ∗ t ) ) ;

t p l o t = 0 : 0 . 1 : 8 0 ;

load C: \ Users \Kabir . Soeny \Desktop \PHD\ B i g p i c t u r e \PK samples .

m;

sub j e c t = PK samples ( : , 1 ) ;

time = PK samples ( : , 2 ) ;

conc = PK samples ( : , 3 ) ;

dp = [ sub j e c t conc ] ;

P = [ 1 0 0 ;0 1 0 ;0 0 1 ] ;

xform = [ 1 1 1 ] ;

opt i ons = s t a t s e t ( ’ n lm e f i t ’ ) ;

opt i ons = s t a t s e t ( opt ions , ’TolX ’ ,1 e −9 , ’ FunValCheck ’ , ’ o f f ’ , ’

MaxIter ’ ,1000) ;

[ phi , PSI , s t a t s , b ] = n l me f i t ( time , conc , sub ject , [ ] , mod conc1 ,

phi0 , ’ REParamsSelect ’ , [ 1 2 3 ] , ’ CovPattern ’ ,P, ’ ErrorModel ’

, ’ exponent i a l ’ , ’ ParamTransform ’ , xform , ’ Options ’ , opt ions , ’

ApproximationType ’ , ’LME’ )

phi = exp ( phi ) ;

PHI = repmat ( phi , 1 ,N∗ c o h o r t i d ) . ∗ . . . %

Fixed e f f e c t s

[ exp (b ( 1 , : ) ) ; exp (b ( 2 , : ) ) ; exp (b ( 3 , : ) ) ] % Random

e f f e c t s

c o l o r s = rand (1 ,N) ;

295



Chapter D. MATLAB
R©

Programs

f o r I = 1 :N

f i t t e d m o d e l = @( t ) ( ( dose (1 ) ∗PHI(1 , I ) ) /(PHI(3 , I ) ∗ ( PHI

(1 , I ) −PHI(2 , I ) ) ) ) ∗ ( exp(−PHI(2 , I ) ∗ t ) − exp(−PHI(1 , I ) ∗

t ) ) ;

t I = time ( sub j e c t == I ) ;

c I = conc ( sub j e c t == I ) ;

subplot (2 , 5 , I )

c o l ( I , : ) = [ min (max( rand , . 1 ) , . 9 ) . . .

min (max( rand , . 2 5 ) , . 9 ) min (max( rand , . 2 ) , . 7 ) ] ;

s c a t t e r ( tI , cI , 5 0 , c o l ( I , : ) , ’ f i l l e d ’ )

hold a l l

p l o t ( tp lo t , f i t t e d m o d e l ( t p l o t ) , ’−− ’ , ’ Color ’ , c o l ( I , : ) , ’

l i n ew id th ’ , 2 . 5 )

p l o t ( tp lo t , mod conc1 ( phi , t p l o t ) , ’ k ’ , ’ l i n ew id th ’ , 1 . 5 )

p l o t ( [ 0 , 6 0 ] , [ ctgt , c t g t ] , ’ b ’ , ’ l i n ew id th ’ , 2 . 5 )

hold o f f

a x i s ( [ 0 40 0 1 8 ] )

x l a b e l ( ’Time ( hours ) ’ )

y l a b e l ( ’ Concentrat ion (mg/L) ’ )

l egend ( num2str ( I ) )

end

phi = log ( phi ) ;

Ka = exp ( phi (1 ) ) ;

Ke = exp ( phi (2 ) ) ;

V = exp ( phi (3 ) ) ;

sigma = s t a t s . mse ;

omega1 = PSI (1 , 1 ) ;

omega2 = PSI (2 , 2 ) ;

omega3 = PSI (3 , 3 ) ;

end
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D.6 The ED Algorithm for a PD Target

f unc t i on k i l l curve max d i f f eq method window n6

T = 120 ;

t imerange = 0 : . 1 :T;

i n i t i a l = [ 0 , 0 , 0 ] ;

tau = 12 ;

D MAX = 250 ;

ctgtp = 8 ;

ctgtm = 3 ;

e p s i l o n = . 9 9 ;

kappa = 5 ;

D = ones (6 , 3 ) ;

D( : , 1 ) = 250 ;

D( : , 2 ) = 120 ;

D( : , 3 ) = 40 ;

extend = 0 ; %i n d i c a t e s when to switch from the d i s c r e t i z e d to

the non− d i s c r e t i z e d doses during the run o f the a lgor i thm

ec50 = 3 . 6 ;

H = 1 ;

kki l lmax = 10ˆ10 . 34 ;

h i s t o r y = ones (10000 ,6) ;

varphi = ones (10000 ,1) ;

x=1;

stop = 0 ;

whi l e ( x < 1000 && extend < 12 )

stop = 0 ;

g r id2 = cartprod (D( 1 , : ) , D( 2 , : ) ) ;

g r id3 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) ) ;

g r id4 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) ) ;

g r id5 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D

( 5 , : ) ) ;

g r id6 = cartprod (D( 1 , : ) , D( 2 , : ) , D( 3 , : ) , D( 4 , : ) , D

( 5 , : ) , D( 6 , : ) ) ;

l im6 = s i z e ( gr id6 , 1 ) ;

f o r s =1: l im6

f o r l =1:6

DOSE( l ) = gr id6 ( s , l ) ;

end

opt ions = odeset ( ’ RelTol ’ ,1 e −5 , ’ Re f ine ’ , 1 ) ;

[ t , N] = ode45 ( @pd model k i l l , t imerange , i n i t i a l ,
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opt ions ,DOSE, tau ) ;

s i z e N = s i z e (N, 1 ) ;

f o r i = 1 : s i z e N

i f N( i , 1 ) >= 10ˆ12 %Determination o f the time

o f p a r a s i t e c l e a r a n c e

break ;

end

end

j=i ;

p a r a s i t e c l e a r t i m e = t ( j ) ;

f l a g = 0 ;

AUC kill = N( s ize N , 1 ) ;

deltapm = N( timerange == t ( j ) , 2 ) /6 ;

AUC conc = N( s ize N , 3 ) ;

AUC conc tgt = N( timerange == t ( j ) , 3 ) ;

de l taauc = AUC conc − AUC conc tgt ;

cono = ze ro s ( s i z e (N, 1 ) ,2 ) ;

f o r l =1: s i z e (N, 1 )

cono ( l , 1 ) = C( t ( l ) ,DOSE, tau ) ;

cono ( l , 2 ) = kki l lmax ∗ ( (C( t ( l ) ,DOSE, tau ) ˆH) /(

ec50 ˆH + C( t ( l ) ,DOSE, tau ) ˆH) ) ;

end

c r i t e r i a = deltapm + de l taauc + 100000000 ∗( AUC kill

<10ˆ12) ;

data6 ( s , : ) =[ g r id6 ( s , 1 ) g r id6 ( s , 2 ) g r id6 ( s , 3 ) g r id6

( s , 4 ) . . .

g r id6 ( s , 5 ) g r id6 ( s , 6 ) AUC kill

p a r a s i t e c l e a r t i m e c r i t e r i a ] ;

end

s o r t d a t a = sort rows ( data6 , 9) ;

s o r t 2 = s o r t d a t a ( 1 , : ) ;

reg = so r t 2 ( : , [ 1 , 2 , 3 , 4 , 5 , 6 ] )

p a r a s i t e c l e a r t i m e = so r t2 (1 , 8 )

h i s t o r y (x , : ) = reg ;

i f x>1

f o r l =1:6

i f abs ( reg ( l ) − h i s t o r y (x−1 , l ) ) == 0

stop = stop + 1 ;

end ;

end ;

end ;
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i f s top == 6

extend = extend + 1 ;

end

i f extend == 0

f o r l = 1 : s i z e ( reg , 2 )

i f reg ( l ) == D( l , 1 )

D( l , : ) = max(0 , min (D MAX, [D( l , 1 ) − kappa , D( l , 1 ) , D( l , 1 )

+ kappa ] ) ) ;

e l s e i f reg ( l ) == D( l , 2 )

D( l , : ) = max(0 , min (D MAX, [D( l , 2 ) − kappa ,D( l , 2 ) , D( l , 2 )

+ kappa ] ) ) ;

e l s e i f reg ( l ) == D( l , 3 )

D( l , : ) = max(0 , min (D MAX, [D( l , 3 ) − kappa , D( l , 3 ) , D( l , 3 )

+ kappa ] ) ) ;

end

end

end

i f extend == 1

f o r l = 1 : s i z e ( reg , 2 )

i f reg ( l ) == D( l , 1 )

D( l , : ) = min (D MAX, [D( l , 1 ) ∗ eps i l on ,D( l , 1 ) , D( l , 1 )

∗ (1/ e p s i l o n ) ] ) ;

e l s e i f reg ( l ) == D( l , 2 )

D( l , : ) = min (D MAX, [D( l , 2 ) ∗ eps i l on ,D( l , 2 ) , D( l , 2 )

∗ (1/ e p s i l o n ) ] ) ;

e l s e i f reg ( l ) == D( l , 3 )

D( l , : ) = min (D MAX, [D( l , 3 ) ∗ eps i l on ,D( l , 3 ) , D( l , 3 )

∗ (1/ e p s i l o n ) ] ) ;

end

end

end

compare = s o r t d a t a (1 , 9 )

varphi ( x ) = compare ; x = x+1;

end

DOSE = reg ;

f o r l =1: s i z e (N, 1 )

cono ( l , 1 ) = C( t ( l ) ,DOSE, tau ) ;

cono ( l , 2 ) = kki l lmax ∗ ( (C( t ( l ) ,DOSE, tau ) ˆH) /(

ec50 ˆH + . . .

C( t ( l ) ,DOSE, tau ) ˆH) ) ;
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end

end

func t i on c = C( t ,DOSE, tau )

F = . 9 5 ; ka = . 4 6 ; ke = . 1 7 ; v = 14 ; phi = [ ka ,

ke , v ] ;

no dose = s i z e (DOSE, 2 ) ;

c = 0 ;

f o r j =1: no dose

tp1 = ( phi (3 ) ∗ ( phi (1 ) − phi (2 ) ) ) ;

tp2 = (F∗DOSE( j ) ∗ phi (1 ) ) ;

tp = tp2/ tp1 ;

c = c + ( ( t >=(( j −1) ∗ tau ) ) ) ∗ ( tp ∗ ( exp(−phi (2 ) ∗ abs

( t −( j −1) ∗ . . .

tau ) ) − exp(−phi (1 ) ∗ abs ( t −( j −1) ∗ tau ) ) ) ) ;

end

end

func t i on pcount = p d m o d e l k i l l ( t ,N,DOSE, tau )

ec50 = 3 . 6 ;

H = 1 ;

kki l lmax = 10ˆ10 . 34 ;

nu = . 5 ;

c tgtp = 8 ;

ctgtm = 3 ;

pcount (1 ) = kki l lmax ∗ ( (C( t ,DOSE, tau ) ˆH) /( ec50 ˆH + C( t ,DOSE,

tau ) ˆH) ) ;

pcount (2 ) = (1 − nu) ∗max(0 ,C( t ,DOSE, tau ) − ctgtp ) + nu ∗max

(0 , ctgtm − C( t ,DOSE, tau ) ) ;

pcount (3 ) = C( t ,DOSE, tau ) ;

pcount = [ pcount (1 ) ; pcount (2 ) ; pcount (3 ) ] ;

end
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