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Abstract

Although the study of the initial value problem in General Relativity started in the
decade of 1950 with the work of Foures-Bruhat, addressing the problem of global
non-linear stability of solutions to the Einstein field equations is in general a hard
problem. The first non-linear global stability result in General Relativity was ob-
tained for the de-Sitter spacetime by means of the so-called conformal Einstein field
equations introduced by H. Friedrich in the decade of 1980. The latter constitutes
the main conceptual and technical tool for the results discussed in this thesis. In
Chapter 1 the physical and geometrical motivation for these equations is discussed.
In Chapter 2 the conformal Einstein equations are presented and first order hyper-
bolic reduction strategies are discussed. Chapter 3 contains the first result of this
work; a second order hyperbolic reduction of the spinorial formulation of the confor-
mal Einstein field equations. Chapter 4 makes use of the latter equations to give a
discussion of the non-linear stability of the Milne universe. Chapter 5 is devoted to
the analysis of perturbations of the Schwarzschild-de Sitter spacetime via suitably
posed asymptotic initial value problems. Chapter 6 gives a partial generalisation of
the results of Chapter 5. Finally a result relating the Newman-Penrose constants at
future and past null infinity for spin-1 and spin-2 fields propagating on Minkowski
spacetime close to spatial infinity is discussed in Chapter 7 exploiting the framework
of the cylinder at spatial infinity. Collectively, these results show how the conformal
Einstein field equations and more generally conformal methods can be employed
for analysing perturbations of spacetimes of interest and extract information about
their conformal structure.
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1 Introduction

1.1 General Relativity

The General theory of Relativity is the most successful theory of gravity. Since
its birth in 1916, starting with the prediction of the redshift effect, the bending of
light rays and explaining the perihelion of Mercury, General Relativity has passed
numerous observational tests. More recently, in February 2016, the detection of
Gravitational waves originating from a pair of merging black holes announced by
the LIGO Scientific Collaboration confirms the validity of General Relativity not
only in the regime of weak gravitational fields but situations where both strong
and dynamical gravitational fields interact. In contrast with Newtonian gravity
where the gravitational field is encoded in one single scalar, in General Relativity
the gravitational field is encoded in 10 quantities corresponding to the components
of a Lorentzian metric. This issue in conjunction with the fact that the equations
governing the gravitational field in the theory —the Einstein field equations— are a
coupled system of nonlinear second order partial differential equations for the metric
components makes very difficult to obtain information about the behaviour of the
spacetime in realistic scenarios such as the one described above. Despite the com-
plexity of the Einstein field equations it was very rapidly realised that under suitable
assumptions representing idealised physical scenarios one can find explicit solutions
to the Einstein field equations. The paradigmatic example is the Schwarzschild so-
lution representing the exterior gravitational field of a spherically symmetric and
static configuration of matter. The study of exact solutions showed unexpected fea-
tures of the theory such as the existence of black holes and singularities. At first
instance some of these features may look as merely artefacts of the high symmetry
which one would expect to disappear once one is confronted with more realistic sit-
uations i.e., less symmetric and dynamical. Nevertheless, singularities in General
Relativity are ubiquitous and, as shown by R. Penrose and S. Hawking in their
singularity theorems, if a trapped surface (a 2-surface for which the null expansions
0. are negative) exists and suitable energy conditions are satisfied the solutions to
the Einstein field equations will be geodesically incomplete —see [1, 2]. In some
cases the latter can be interpreted as an indication of the presence of a curvature
singularity. Whether or not this is generically the case is still a research question

—see for instance Conjecture 17.2 in [3]. Additionally, the study of exact solutions
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shows that in several situations, when present, the curvature singularity is hidden
by a event horizon so that it is causally disconnected from the rest of the spacetime,
i.e., singularities could not be seen from distant observers. The latter constitutes
the so-called weak cosmic censorship conjecture. Despite the fact that great insight
is gained from the study of exact solutions they do not exhaust all the space of
solutions to the Einstein field equations. Consequently, if a deeper analysis of the
generic properties of the solutions of the Einstein field equations is in order, one
requires a more systematic approach to explore the space of solutions of the theory.
Moreover, to understand the relevance and physical significance of these explicit
solutions it is necessary to analyse their stability. In other words, to investigate the
general behaviour of perturbed solutions to the Einstein field equations which are in
some sense close to a reference solution. The latter could help to distinguish those
properties and structures which are preserved in more realistic situations from those
which only arise in idealised scenarios. The most systematic way to approach this

problem is through suitable posed initial value problems.

1.2 The Cauchy problem in General Relativity

The initial value problem in General Relativity started with the seminal work of
Foures-Bruhat [4] in which it was shown that, if the gauge is fixed appropriately, the
equations governing General Relativity split into constraint and evolution equations.
To see this in more detail recall that the Einstein field equations in vacuum with
vanishing cosmological constant, }éw, =0, in local coordinates (z*) read

N 1 L
R, :—ig aA@ngJrv r, —}-g,\pgﬂf‘ (L2, 42T %07 Go(ul)’r =0,

where

v 1 ~v ~ ~ ~
L) = 59 P(Ougpr + OrGup — OpGur)

and F T o' are the so-called contracted Christoffel symbols. Define H L Via

H,, =R, — =S,

1
9
where

S’W = auf,, + 8,,1~“M.

A computation shows that the contracted Christoffel symbols are associated to the
choice of coordinates since

Ozt = T,
where 00 = V¥V,,. Notice that the principal part of H w coincides with that of E@W.

With these definitions introduced and observations made, one of the main ideas in
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the work of Foures-Bruhat is to consider a Cauchy problem for the reduced Finstein
field equations
H,, =0, (1.1)

which constitute a system of wave equations for the metric components g,,. Let
S denote a spacelike hypersurface with normal 7#. The equation (1.1) is then

supplemented with data

satisfying
Tus=0, 7"9,T,|s=0, (1.2)

where fLW is a 3-dimensional Riemannian metric and K w18 a symmetric tensor on
S. A calculation using the contracted second Bianchi identity shows that fﬂ satisfy
a system of homogeneous linear wave equations, hence, the conditions (1.2) ensure
that fu = 0. The latter, in turn, implies that H v and RW coincide. The conditions
(1.2) are associated to the Hamiltonian and momentum constraints —see [4, 5] for
a comprehensive discussion. In this formulation of General Relativity, the initial
data corresponds to a triple (5~' h, K ) where S denotes a 3-dimensional manifold,
h a Riemannian metric and K a symmetric tensor. One of the most important
results in this regard was proved by Choquet-Bruhat and Geroch in [6] where it was
shown that associated to each triple (S’ , il, K ) satisfying the constraint equations
there exists a unique maximal globally hyperbolic development (M, g). In other
words, S is a spacelike hypersurface of M, h is the induced metric of gonS and K
is associated with the extrinsic curvature. The adjective hyperbolic makes reference
to the fact that the evolution equations obtained in this formulation of the Einstein
field equations are hyperbolic. This property is fundamental from the physical point
of view as it is closely related to the notion of causality and to the finite speed of

propagation of signals.

Remark 1. Despite the fact that, Foures-Bruhat’s approach leads naturally to the
analysis of wave equations, one can study the Cauchy problem in General Relativity
via first order symmetric hyperbolic systems. To see this, assume that a local system
of coordinates (') on M has been fixed such that 72 = 8,0 = 8 is the normal vector

to a spacelike hypersurface S. Now, consider the wave equation

Ou = F(x,u,0u), (1.3)

where u is a scalar function on M, F is a smooth function of its arguments and du

denotes, collectively, the first derivatives of u. Introduce a new variable w, = d,u.
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Then,
— 0wy — 2§0“8uw0 = §"ow, + F(z,u,w,), (1.4)
g‘“’@owu = g‘”’(‘)“wg, (15)
(%u = Wy, (16)

with initial data (u,w,)|s satisfying

wyls = (Ouu)ls, (1.7)

is a symmetric hyperbolic system for (u,w,) —see [7] for further discussion.

1.3 Conformal methods in General Relativity

Although the study of the initial value problem in General Relativity started in the
decade of 1950 with the work of Foures-Bruhat, addressing the problem of global
non-linear stability of solutions to the Einstein field equations is in general a hard
problem. In fact, the first global non-linear stability result in General Relativity had
to wait until the decade of 1980 when in [8] and [9] H. Friedrich proved the semi-global
non-linear stability of the Minkowski spacetime and the global non-linear stability of
the de-Sitter spacetime. A proof of the full non-linear stability of the Minkowski
spacetime using vector field methods has been given in [10]. One of the essential
ideas in [8] and [9] was the use of the so-called conformal Einstein field equations
—introduced in [11]— to pose an initial value problem. As the name suggests, the
central concept in these equations is that of a conformal transformation. Conformal
transformations have a long tradition in General Relativity going back at least to
the decade of 1960. R. Penrose introduced the concept of conformal rescalings for
the study of asymptotics —the study of the behaviour of gravitational fields for
large distances and late times. In his proposal one starts with a physical spacetime
(M, g) where M is a 4-dimensional manifold and g is a Lorentzian metric which is

a solution to the Einstein field equations
g 1~ 3 8
Ry — §Rgab + )\gab = Taln (18)

where Ry, and R are the Ricci tensor and Ricci scalar of §g, respectively, X is the
cosmological constant and Ty, is the energy momentum tensor. Notice that, in

vacuum 7T, = 0, the Einstein field equations (1.8) reduce to

Rab = )\gab- (19)
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Then, one introduces a unphysical spacetime (M, g) into which (M, g) is confor-

mally embedded. Accordingly, there exists an embedding ¢ : M — M such that

*

¥ g =

(1]

%g. (1.10)

The scalar function = is the so-called conformal factor. By suitably choosing = the

metric g may be well defined at the points where = = 0. The set

S ={peM | E(p)=0, d=(p) # 0}

is called the conformal boundary. The set of points where the conformal factor
vanishes is at infinity from the physical spacetime perspective. More precisely, if §

and s denote, g-affine and g-affine parameters of a null geodesic v C M, then

consequently,
1
5:/:2@13. (1.11)

Since = = 0 and d= # 0 on .# then one can choose s to vanish at .# and set
= = O(s*) with @ > 1 then it follows from equation (1.11) that § - coc as = — 0
—see [12, 13] for further discussion. Thus, .# can be identified with the collection
of endpoints —on (M, g)— of null geodesics of (M, g).

Definition. A conformal extension of a spacetime (/\?l,g) satisfying the vacuum
Einstein field equations (1.8) consists on a manifold M equipped with a metric g,

a smooth conformal factor = and a diffeomorphism ¢ : M — U € M, such that:

*

= =%g is well defined at = =0,
0 in U,
=0 and d=#0 on JU.

[ s
Vo Q

(1]

The set & = 0U is called conformal boundary. Since every point in .# can be
identified with the endpoint of a null geodesics of (M,g) the set £+ denoting
the portion of .# corresponding to future endpoints of null geodesics will be called
future conformal boundary. Similarly, the set .#~ denoting the portion of .# corre-

sponding to past endpoints of null geodesics will be called past conformal boundary.

Remark 2. Observe that the latter definition does not require that every null
geodesic acquires two distinct endpoints at .. In particular, it leaves the possibility

for the existence of null geodesics that do not reach .#.

The relevance of this construction goes beyond the study of asymptotics and iso-

lated gravitational systems since the unphysical metric g contains the same causal
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information as the physical metric g. In this framework, a natural question that
arises is, how do the Einstein field equations behave under a conformal transforma-
tion of the metric? A straightforward computation using the conformal transforma-
tion laws for the curvature tensors shows that, in the vacuum case with A = 0, the

Einstein field equations imply
1
Rab — §Rgab = — E’l(VaVbE — VCVCEgab) — 3E’2VCVCEgab, (112)

where R,,, R and V, are the Ricci tensor, Ricci scalar and Levi-Civita connection of
the unphysical metric gq,. From the last equation one immediately observes that the
Einstein field equations are not conformally invariant. Moreover, equation (1.12) is
formally singular at the conformal boundary. To have a satisfactory equation for the
unphysical metric it is necessary to derive a regular version of equation (1.12). An
approach to deal with this problem was given in [11] where a regular set of equations
for the unphysical metric was derived. These equations are known as the conformal
FEinstein field equations. The crucial property of these equations is that they are
regular at the points where = = 0 and a solution thereof implies whenever = # 0
a solution to the Einstein field equations. At its core, the conformal Einstein field
equations constitute a system of differential conditions on the curvature tensors and
the conformal factor.

There are two versions of these equations: the standard conformal Einstein field
equations and the extended conformal Einstein field equations. In the former, these
differential conditions are expressed in terms of the Levi-Civita connection of g,
while in the latter the conditions are expressed in terms of Weyl connections. Addi-
tionally, the standard conformal Einstein field equations can be expressed in three
different formulations: the metric, frame and spinorial formulations. In the metric
formulation, the unphysical metric g is part of the unknowns while in the frame
version one introduces a g-orthonormal frame with respect to which all the geomet-
ric quantities are expressed. The frame formulation of the equations leads naturally
to a spinorial description which exhibits in a clearer way the algebraic structure of
the equations. In particular, this algebraic structure can be exploited to construct
alternative representations of these equations —see [14] for a discussion of a rep-
resentation of the spinorial conformal Einstein field equations as wave equations.
In the case of the extended conformal Einstein field equations one has frame and
spinorial formulations as well. These conformally invariant representations of the
Einstein field equations are not only advantageous from the purely theoretical point
of view but also for applications since the conformal framework allows to recast

global problems in (M, §) as local problems in (M, g).
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1.4 Results obtained in this thesis

Similar to the case of the Einstein field equations, a problem that one has to face
when dealing with the analysis of the conformal Einstein field equations is the issue
of gauge freedom. In the classical treatment of the Cauchy problem in General Rel-
ativity —see [4]— a judicious choice of coordinates allows to reduce the equations to
a system of wave equations for the metric components. Interestingly, in the original
treatment of the conformal Einstein field equations the hyperbolic reduction strate-
gies used lead to a first order system of equations —see [11, 13, 15-17]. In the case of
the spinorial formulation of the standard conformal Einstein field equations the use
of gauge source functions and the space spinor formalism renders a first order system
of symmetric hyperbolic evolution equations. In the case of the extended confor-
mal Einstein field equations the gauge fixing is performed exploiting a congruence
of curves with special conformal properties: conformal geodesics. This hyperbolic
reduction strategy leads to a first order system of symmetric hyperbolic equations
as well. In [18] a second order hyperbolic reduction of the metric formulation of
the standard conformal Einstein field equations has been obtained and used for the
analysis of the asymptotic characteristic problem on a cone —see [19]. In Chapter
3, a second order hyperbolic reduction of the equations for the spinorial formulation
of the standard conformal Einstein field equations is obtained. The spinorial formu-
lation is advantageous as the algebraic structure of the equations is simpler when
expressed in spinorial form and the construction of the wave equations can be done
in a systematic way. In particular, the equation for the rescaled Weyl spinor, which
can be considered as the central object in the discussion of the conformal Einstein
field equations, becomes particularly simple. Additionally, the use of spinors gives
access to a wider set of gauge source functions than those available in the metric
formulation. As an application of the analysis in Chapter 3, a discussion of the
non-linear stability of the Milne spacetime is given in Chapter 4. This spacetime is
a spatially flat Friedman-Lemaitre-Robertson-Walker solution to the Einstein field
equations with vanishing cosmological constant —see e.g. [20]. Moreover, the Milne
Universe can be seen to be a part of the Minkowski spacetime written in comoving
coordinates adapted to the worldline of a particle. In this chapter, perturbations
of exact initial data —for the wave equations derived in Chapter 3— corresponding
to the Milne Universe are considered. Then the theory of symmetric hyperbolic
systems contained in [21] is used to obtain a non-linear stability result for small

perturbations of the Milne Universe.

A common feature that is exploited in the the analysis of constant curvature
spacetimes by means of conformal methods (the Minkowski, de-Sitter and anti de-
Sitter spacetimes) is that they can be conformally embedded in the Einstein cylinder
—see [8, 9, 22]. The latter is convenient as, an explicit solution to the conformal

Einstein field equations can be identified. In other words, most of the existence and
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stability results using the conformal Einstein field equations have been restricted to
the analysis of perturbations of conformally flat spacetimes. Therefore, an interest-
ing question is whether the conformal Einstein field equations can be exploited in
the analysis of global properties of non-conformally flat spacetimes and, in particu-
lar, in the stability the analysis black hole spacetimes. On the other hand, from a
physical point of view, observations have established that the universe is expanding.
Therefore, spacetimes describing isolated systems embedded in a de-Sitter universe
constitute a class of physically relevant spacetimes to be analysed. In view of these
remarks, in Chapter 5 the Schwarzschild-de Sitter spacetime is analysed using the
extended conformal Einstein field equations. The presence of a cosmological con-
stant with a de-Sitter like value —see Section 1.6 for definitions— is of importance
as it implies that the conformal boundary is spacelike. The use of conformal meth-
ods in this setting is natural as the conformal Einstein field equations allow to
discuss asymptotic initial value problems: initial value problems for which the ini-
tial hypersurface corresponds to the conformal boundary. Moreover, the conformal
constraint equations acquire a particular simple form at the conformal boundary so
that the asymptotic initial data is encoded essentially in the induced metric at the
conformal boundary h;; and the electric part of the rescaled Weyl tensor d;;. As
discussed in detail in Chapter 5, the induced metric at the conformal boundary for
the Schwarzschild-de Sitter spacetime is conformally flat. Furthermore, there exists
a conformal representation in which the initial data for the rescaled Weyl tensor
is regular and homogeneous so that one can integrate the extended conformal Ein-
stein field equations along single conformal geodesics. This is not directly evident
since, as discussed in detail in Chapter 5, there are conformal representations in
which the initial data for the rescaled Weyl tensor becomes singular at the asymp-
totic points @ and Q' —corresponding to the region in the Penrose diagram of the
Schwarzschild-de Sitter spacetime where the horizons of the spacetime appear to
meet the conformal boundary. The insight gained from the analysis of the evolution
of the exact asymptotic initial data corresponding to the Schwarzschild-de Sitter
spacetime is used to discuss non-linear perturbations of this exact data by exploit-
ing the theory of symmetric hyperbolic systems contained in [23]. The spacetimes
constructed in this way can be regarded as perturbations of the asymptotic region of
the Schwarzschild-de Sitter spacetime. Moreover, they serve as non-trivial examples

of the theory of asymptotics for de Sitter-like spacetimes given in [24].

Notice that, despite the fact that the global non-linear stability of the Kerr-de
Sitter spacetime has been addressed in the recent work [25], the discussion given
in [25] is restricted to the black hole exterior region. In view of the domain of
dependence property of solutions to the Einstein field equations, the stability of the
black hole exterior can be analysed independently of the asymptotic region —see

[26] for further discussion. In the asymptotic initial value problem considered in
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Chapter 5, the domain of influence of the initial data is contained in the region
corresponding to the asymptotic region of the Schwarzschild-de Sitter spacetime.
The question whether the analysis given in Chapter 5 for the Schwarzschild-de Sitter
spacetime can be generalised to the case of the Kerr-de Sitter spacetime is explored
in Chapter 6. In this chapter, in particular, asymptotic initial data for the Kerr-de
Sitter spacetime is obtained and a local existence result for spacetimes arising from

asymptotic initial data close to that of the Kerr-de Sitter spacetime is obtained.

The singular behaviour of the asymptotic initial data for the rescaled Weyl tensor
at the asymptotic points @ and Q' of the Schwarzschild-de Sitter spacetime is not
completely unexpected. Actually, one of the main difficulties in establishing a global
result for the stability of the Minkowski spacetime using conformal methods lies on
the fact that the initial data for the conformal Einstein field equations are not smooth
at i°. In [11] the initial data are not prescribed on a Cauchy hypersurface but on
a hyperboloid H whose conformal extension in M intersects .#. In the case of the
problem of spatial infinity ¢°, a milestone in the resolution of this problem is the
construction, originally introduced in [27], of a new representation of spatial infinity
known as the cylinder at spatial infinity. With this motivation in mind, and the fact
that the analysis of conserved quantities at null infinity —the so-called Newman-
Penrose constants— has gained some interest recently due to the discussion given
n [28], in Chapter 7, the framework of the cylinder at spatial infinity is exploited
for the analysis of the Newman-Penrose constants. More specifically, the framework
of the cylinder at spatial infinity is used to clarify the correspondence between
data on a spacelike hypersurface for the spin-1 and spin-2 fields —representing the
Maxwell spinor and the linearised gravitational field, respectively— propagating
on a Minkowski background and the value of their corresponding Newman-Penrose
constants at future and past null infinity. In particular, it was shown that the
electromagnetic NP constants at future and past null infinity case, are related to

each other as they arise from the same terms in the initial data.

Collectively, these results show how the conformal Einstein field equations and
more generally conformal methods can be employed for analysing perturbations of

spacetimes of interest and extract information about their conformal structure.

1.5 Structure of this thesis

In Chapter 2 the conformal Einstein equations are presented and first order hy-
perbolic reduction strategies are discussed. Chapter 3 contains the first result of
this thesis, a second order hyperbolic reduction of the spinorial formulation of the
conformal Einstein field equations —see Proposition 1 and 2. Chapter 4 makes use
of the latter equations to give a discussion of the non-linear stability of the Milne

universe —see Main Result 1. Chapter 5 is devoted to the analysis of perturba-
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tions of the Schwarzschild-de Sitter spacetime via suitably posed asymptotic initial
value problems —see Main Result 2. Chapter 6 provides with a generalisation of
the results of Chapter 5, more specifically, an existence result for perturbations of
the Kerr-de Sitter spacetime is given —see Theorem 4. Finally a result relating the
Newman Penrose constants at future and past null infinity for spin-1 and spin-2
fields propagating on Minkowski spacetime close to spatial infinity is discussed in
Chapter 7 exploiting the framework of the cylinder at spatial infinity —see Main
Result 3.

1.6 Notation and Conventions

The signature convention for (Lorentzian) spacetime metrics is (4, —, —, —). In these
conventions the cosmological constant A of the de Sitter spacetime takes negative
values. Cosmological constants with negative (positive) values will be said to be
de Sitter-like (anti-de Sitter-like). In what follows, the Latin indices 4, 4,, ... are
used as abstract tensor indices while the boldface Latin indices 4, p,¢, ... are used
as spacetime frame indices taking the values 0,...,3. In this way, given a basis
{ea}, a generic tensor is denoted by Ty, while its components in the given basis are
denoted by Tpp = Topeaes’. The indices ;, j» k»- . are reserved to denote frame
spatial indices respect to an adapted frame taking the values 1, 2, 3. Round and
square brackets enclosing a group of indices (abstract or frame) will be used to

denote symmetrisations and antisymmetrisations respectively, so that

1 1
Tar)y = §(Tab + Tha), Tay) = §(Tab — Tha)-

In addition the curly brackets will be used to denote the tracefree part of tensors,
e.g.,

1
T{ab} =T — ZTgab

where T = ¢®T,,. Similar definitions hold for higher order tensors. For spinorial
expressions the conventions and notation of Penrose & Rindler [29] will be used.
In particular, 4, g, ¢,... are abstract spinorial indices while 4, B, ¢,... will de-
note frame spinorial indices with respect to some specified spin dyad {e4*}. The

conventions for the curvature tensors will be fixed by the relation
(VoVy — ViV u¢ = Regapv?.

Although index notation will be preferred, for clarity some expressions will be writ-
ten in index free notation, in this regard the conventions used in this thesis are the
following: covectors will be denoted with bold Greek letters while vectors with bold

Latin letters. Similarly a covector w € T%|,(M) acting on a vector v € T|,(M) is
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denoted by (w,v) € R. If a metric g is provided then the symbols b and § (mu-
sical isomorphisms) are used to denote the action of rise or lower indices in index
free notation. Namely, v* € T*|,(M) represents the index free version of g,v® and
w? € T|,(M) represents the index free version of g*w,. Given a map ¢ : U — V
and w € TV the pull-back of this covector to T, o1 18 denoted by ¢*w. Similarly,
given a vector v € T,U the push-forward of this vector to T,V is denoted by ¢, v.
Nevertheless, in a slight abuse of notation ¢(U) and V will be frequently identified
and the map ¢ will be omitted. In addition, D" (A), H"(A), J*(A) and I7(A)
will denote the future domain of dependence, the future Cauchy horizon, causal
and chronological future of A, respectively. The past counterparts will be denoted

changing 4+ by — in the above notation —see [2, 30].



2 The conformal Einstein field

equations

2.1 The standard conformal Einstein field

equations

As previously discussed, the are three formulations of the standard conformal Ein-
stein field equations; the metric, frame and spinorial one. Despite being equivalent,
each formulation is better suited depending on the problem that one is to analyse.
The standard conformal Einstein field equations were originally introduced in [11].
In this section the conformal Einstein field equations are presented and the rela-
tion between the three different formulations briefly discussed —see [11, 31, 32] for
derivations and further discussion. These formulations of the conformal Einstein
field equations are well suited to analyse non-vacuum spacetimes with trace-free
matter content, i.e., T, =0 —e.g., electrovacuum spacetimes. Nevertheless, as all
the applications of these equations discussed in this thesis are restricted to vacuum
spacetimes, in the following, the vacuum Einstein field equations (1.9) will be simply

referred as the Einstein field equations.

2.1.1 Conformal rescalings

Two spacetimes (M, g) and (M,g) are said to be conformally related if g and g

are related as in equation (1.10). In a slight abuse of notation ¢(M) and M\.# are
identified and the mapping ¢ : M — M will be omitted. Consistently one writes

—_9 ~
Gab = = Gab-

For the subsequent discussion it is necessary to introduce some notation first. The

physical Schouten tensor Ly is defined as follows

iab Rab - 7R§ab7 (21)

18
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where R, and R represent, respectively, the Ricci tensor and Ricei scalar of §gp.

The unphysical Schouten tensor L, is defined in analogous way

1 1
Ly =- - — . 2.2
ab 2Rab 12Rgab ( )

Notice that using expression (2.1) the Einstein field equations (1.9) can be rewritten

in terms of the physical Schouten tensor as

~ 1. .
Lab = 6)\9,11;. (23)

Remark 3. The motivation for the introduction of the Schouten tensor will be
clarified when discussing the conformal Einstein field equations in the remainder of
this chapter. Despite that in the conformal Einstein field equations one could replace
the Schouten tensor by the Ricci tensor and the Ricci scalar, the Schouten tensor

appears naturally in the equations due to its conformal transformation properties.

2.1.2 Frame formulation of the standard conformal

Einstein field equations

Let {es} denote a set of frame fields on M and let {w®} be the associated coframe.
Accordingly, one has that (w®, ep) = 0p® One defines the frame metric as gqap =
g(eq,ep) —in abstract index notation gap = e."ep’gep. In the subsequent dis-
cussion only orthonormal frames will be considered, so that ga, = 745, Where
Nap = diag(1,—1,—1,—1). The metric g is then expressed in terms of the coframe
{w*} as

g = Napw® ® w?.

The connection coefficients facb of a connection V —which is not assumed to be
the Levi-Civita connection of g— with respect to the frame {e,} are defined via the
relation

N .
Vaeb - 1—‘a bEec,

where \Va = eaava denotes the covariant directional derivative in the direction of
eq. The torsion 3 of V can be expressed in terms of the frame {e,} and the

connection coefficients I',%, via
e e .
2a b€c = [ea7eb] - (Fa b — Fb a)ec-

Since different connections will be used, all the geometrical objects derived from
each connection will carry a symbol over the kernel letter to denote the connection
from which they were defined. The symbols V and V will be reserved for the Levi-
Civita connection of the metrics g and g. Consistent with this notation one has

that 3, = 0. The connection coefficients of ¥V and V are related to each other
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through the expression
Ta% = Lo + Sap“*Ya, (2.4)

where
Sade = (5ac(5bd + 5b05ad — nabncd and Ta = E_IVGE.
In particular, observe that the 1-form Y = T,w? is exact.

Let R%cq denote the geometric curvature of V. —that is, the expression of the
Riemann tensor of V written in terms of derivatives of the connection coefficients
Facbi

R%ca = €q(I'vaq) — en(l'aa) + chd(rbfa - Fafb) + bedFaCf - Fafdrbcf-
The expression of the irreducible decomposition of Riemann tensor R%.q given by
p bed = =d%eq + QSb de (2.5)

will be called the algebraic curvature. In the last expression Lg, denotes the Schouten

tensor of g and d%.q represents the so-called rescaled Weyl tensor, defined as
d%ed = Z7' C%%eas

where C%,.q is the conformally invariant Weyl tensor (Cmbcd = (C%cq). Despite
the fact that the definition of the rescaled Weyl tensor may look singular at the
conformal boundary, it can be shown that under suitable assumptions the tensor
d%eq 1s regular even when = = 0 —see Remark 4. Finally, let s —the so-called

Friedrich scalar— denote the scalar field defined as

o |

Va V“:+ RH,

where R is the Ricci scalar of g. Using the above definitions one can write the frame

version of the conformal Einstein field equations as

20 =0, E%ab =0, Zap = 0, Zq =0, (2.6a)
Aabc - 07 Aabc - 07 Z = O, (26b)

where the so-called, zero-quantities are defined via

Yabec = [€as €] — (I'ab — Tb%)ee, )
Eab = Rabd — P abd; )

ab = VaVZ= + ELab — STab, (2.7¢)
Zao =Vas+ LaVZE, (2.7d)
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Abed = Vad®bed, (2.7¢e)
Acab = VeLap — VaLey — VaZ=d%ped, (2-7f)
Z =625 — 3Va=EVIE — A\ (2.7g)

The starting point for the derivation of the conformal Einstein field equations is
similar to that leading to the singular equation (1.12) of Chapter 1; one writes
the conformal transformation law for the Schouten tensor and uses the Einstein
field equations as written in equation (2.3) to replace the physical Schouten tensor.
This equation is encoded in the zero-quantity Z,,. The main conceptual difference
with respect to the formally singular equation (1.12) is that the equation Zgp = 0
is read not as an equation for the metric but as an equation for the conformal
factor =Z. The appearance of the scalar field s in the equation Z,;, = 0 requires the
construction of a suitable equation for this field. Considering V®Z4, = 0, commuting
covariant derivatives and using the contracted second Bianchi identity renders such
an equation. This equation has been encoded in the zero-quantity Z,. In the frame
version of the conformal Einstein field equations, the metric is not an unknown of the
system, instead, equations for the frame e, need to be incorporated. The equation
for the frame is encoded in >, = 0 which describes the fact that the connection
V is torsion-free. Consistent with this spirit, the appearance of the Schouten tensor
in equation Z, is not seen as representing second order derivatives of the metric
but as an unknown which has to satisfy an equation of its own. Such equations for
the curvature tensors are the content of the zero-quantities Agpe, Apeq and Zgpe.
In particular, equations Acqgp = 0 and Apeg = 0 encode the contracted second
Bianchi identity. The equation =%,.q = 0 expresses that the algebraic and geometric
curvature coincide. The equation Z = 0 encodes the fact that A is a constant. It is
sufficient to demand that this equation holds only at one point p € M since, the rest
of the equations in (2.6a)-(2.6b) imply that V,Z = 0. Finally, observe that once the
conformal factor = and frame e, are determined, one can obtain the corresponding
dual coframe w® —provided that det(n%®eq, @ €p) # 0— and the physical metric g

can be reconstructed as g = 2 2n,w? ® wP.

Lemma 1. Let

— c a
{E, €ea,5,Ta, Lab, A%bea }

denote a solution to the frame conformal Einstein field equations with "%, satisfying

the metric compatibility condition
Fa,dbndc + Fa.dcnbd =0

and such that
=#£0, det(n®e, ® ep) # 0,

in an open set U C M. Then the metric § = Z 2 ngpw® @ w® where w® is the dual
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frame to eq, is a solution to the Finstein field equations (1.9) on U.

A detailed proof of this Lemma can be found in [11] and [13]. The proof of
this Lemma exploits the geometrical significance that the conformal Einstein field
equations encode. In particular, if £, = 0 then I',®. correspond to the connection
coefficients with respect of {e,} of the Levi-Civita connection of g = n,pw® ® wb.
Equations =€.pq = 0, Apeq = 0 and Agpg = 0 ensure that Lgp and C%eq = Zd%peq
are the components of the Schouten and Weyl tensors of V respect to the frame
{eq}. Finally, equations Zgp, = 0 and Z, = 0 imply that g = Z72ggs satisfy the

Einstein field equations —expressed as in equation (2.3)— on U.

2.1.3 The metric conformal Einstein field equations

The derivation of the equations (2.7¢)-(2.7g) can be done in formally identical way
in abstract index notation i.e., without making reference to a frame e,. In other

words, in the metric formulation one considers the following zero-quantities:

Zap = VoVp=Z + 2Ly — SGap, (2.8a)
Zo=Vas+ L, V°E, (2.8b)
Apea = Vad®ed, (2.8¢)
Ay = VeLlay — VaLey — Va=dpea, (2.8d)
Z =6Zs —3V,=2Vi=E - A\ (2.8¢)

The main conceptual difference is that in this formulation the Cartan structure
equations for the frame e, encoded in the zero-quantities (2.7a) and (2.7b) are
not required. In this formulation, however, one needs to supplement the system
encoded in the zero-quantities (2.8a)-(2.8¢) with an equation for the unphysical
metric. To do so, one considers equation (2.2) expressed in some local coordinates
(z*). Recalling that, in local coordinates the components of the Ricci tensor can be
written as second order derivatives of the metric one obtains the required equation
for the unphysical metric. In concrete applications the choice of coordinates is
a subtle point since not every choice would lead to an equation of recognisable
form. An additional complication of this strategy is that for applications one has
to analyse a system of mixed order. This approach is closer in spirit to the classical
treatment of the Cauchy problem in General Relativity in [4]. Nevertheless, in view
of the applications discussed in this thesis, the frame and spinorial versions of the

conformal Einstein field equations will be preferred.
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2.1.4 Spinorial formulation of the standard conformal

Einstein field equations

A spinorial version of the extended conformal Einstein field equations (2.6a)-(2.6b)
is readily obtained by suitable contraction with the Infeld-van der Waerden symbols
0% 4 4. Given the components T,,¢ of a tensor T,,° respect to a frame e, field, the

components of its spinorial counterpart are given by

TaapeCC = Tawoanopp®oCC .,
where
1 10 1 01
o _ 1
oAapa = —F4= ) oA = —= ) 2.9a
Al 2 <0 1) a4 V2 <1 0) (2.92)
1 0 —1 1 1 0
2 _ 3 _
g ’ = —= s g ’ = — y 29b
A4 2 <1 0) a4 V2 <0 —1) (2.9b)
and

01

(1 O) : (2.9¢)
1 0

(0) om

In particular, the spinorial counterpart of the frame metric gqp = 71qp is given by
JaA'BB = €aB€ap- In turn, the frame e, and coframe w® imply a spinorial frame

eaa and a coframe w?4 such that
Q(GAA'7 eBB') = €ABCA'B’-

If one denotes with the same kernel letter the unknowns of the frame version of
the conformal Einstein field equations one is lead to consider the following spinorial

zero-quantities:

Yaa?? gpego = lepp, ean] — (FAA’CC/BB’ - 1ﬂ).f;).fzfccl,ax,af) ecc, (2.10a
=°C ppaasp = R ppaase — p°C poaass, (2.10b
ZaaBB =VaaVepZ+ELaa BB — S€AB€A'B/, (2.10c
Zaa =Vaas+ Laace' VOOE, (2.10d

_ — JAA
AccppBe = Vee Lppee — Voo LeoBe —VaaZd™” gpcoppr, (2.10e
AA/
Apccpp =Vaad™ Becopp, (
— —_ -
Z =625 — 3V A4 EVAYZ — ). (2.10g
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In terms of these zero quantities, the spinorial formulation of the standard conformal

FEinstein field equations can be succinctly expressed as

cc . _ =cc’ _ _
Yaa"" Bp =0, =% ppaaBp =0, Zaasp =0, (2.11a)

Aaaspcc =0, AaaBBcc =0, Zaa =0, Z =0. (2.11b)

In the spinorial formulation one can exploit the symmetries of the relevant fields
to obtain expressions in terms of lower valence spinors. In particular one has the

following irreducible decompositions:

PAA/BB/CC/ = FAA/Bc€C/B, + FAA/BICIECB7 (212&)
daa'BB'CC'DD = —PABCDEA'B€C'D — DA'B'C'D'EABECD- (2.12b)
In the last decomposition papcp = ¢aBcp) represent the components of the

rescaled Weyl spinor. Namely, dapcp = ='W apcp where ¥ pep is the confor-

mally invariant Weyl spinor.

Remark 4. In the classical theory of asymptotics as discussed in [12, 33] it is shown
that if W 4pep is smooth at . and Tab = O(=?) where Tab is the physical energy
momentum tensor, then ¥ apcp = O(Z) —see Theorem 3.5.3 in [12] and Theorem
10.3 in [13]. As mentioned previously, in the applications of the conformal Einstein

field equations discussed in this thesis Tab = 0.

In addition, TyaBc = %FAA/BQ/CQ/ denote the reduced connection coefficients.

Likewise, the geometric and algebraic curvature spinors can be decomposed as

cc’ _ pC c | pC’ c

R*% ppraaBp = R"paaBpep™ + R paaBp€D", (2.13a)
cc’ _ C c | =C c

P~ DD'AA'BB’ = P DAA'BB'€D'~ + 0 D'AA'BB€D , (2.13b)

where
1 / 1 /
c _ c _
R paaBp = iR Q DQ'AA'BB'; PABCC'DD’' = §PAQ BQ'CC'DD’ -

Explicitly, in terms of the unknowns of the conformal Einstein field equations, the

reduced geometric and algebraic curvature spinors are given by

c c c
R°paase =eaa (T'epp) —esn (Taap)
c F c & F c F
—1I're"Dl'aa” B—TI'Br " Dl'aa” B +1Tra bl A
c v F c E c E
+lar“pl'ee” 4 +Taa“El'e”p — BB " Elaa " D, (2.14a)

paBcc' DD = —=¢aBcpéc'n + LBeppéca — LBpccépa.  (2.14D)
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Similarly, the zero-quantities can be decomposed as

ACC’DD’BB’ = ACDBB’GC’D’ + AC’D’BB'GCDa

ABB’CC’DD’ = ABB’CDEC’D’ + AB’BC”D’ECD;

where
1 / 1 ,
AcpBp = §ACQ’D BB/, Apcp = §ABB’CQ’D .

Consequently one defines the following reduced spinorial zero-quantities

—

=C — RC C
— DAA'BB' = DAA'BB’ — P DAA'BB/’;

Acpep = Vc? Lpygse + Ve EdcpBo,
Aspep = V9B oBCDG,

With these definitions, the spinorial extended conformal Einstein field equations can

be alternatively written as

cc —C _ _
Yaa"" B =0, =paaBp =0, Zaasp =0, (2.15a)

Acpep =0, Appcp =0, Zaa =0 Z =0. (2.15Db)

The last set of equations is completely equivalent to the equations in (2.11a)-(2.11b).
Moreover, since the equations (2.11a)-(2.11b) are equivalent to (2.6a)-(2.6b) an anal-

ogous result to Lemma 1 follows:
Lemma 2. Let
{E,5,eaq, FAA’CB; LaaBp,®aBcD}

represent a solution to (2.11a)-(2.11b) with U' aaBc satisfying the metric compati-
bility condition

l'aaBc = Taaseo)

and such that

=Z#0 and det(eABeA,B,eAA/ ® epp') # 0,
i an open set U C M. Then the metric

~ —_— ’ ’
g==c= 2€AB€A'B/wAA ® wbB

AA'

where w is the dual coframe to e ar, s a solution to the Finstein field equations

(1.9) on U.
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2.2 The extended conformal Einstein field

equations

In this section the necessary notation for discussing the extended conformal Einstein
field equations will be presented. In particular, the notion of a Weyl connection \Y
and the relevant transformation formulae between Weyl connections and the Levi-
Civita connection will be discussed. The extended conformal Einstein field equations

were originally introduced in [22] —see also [13, 27, 34-36].

2.2.1 Weyl connections

A Weyl connection V is a torsion-free connection satisfying the property

@agbc = _Qfagbca (216)

where f, is an arbitrary 1-form —thus, V is not necessarily metric. Property (2.16)
is preserved under the conformal rescalings (1.10) as it can be verified that @agbc =
-2 fagbc where fa = f, + Y,. The connection coefficients of V are related to those
of V through the relation

A

Facb = 1—‘a,cb + Sadefd- (217)

A Weyl connection is a Levi-Civita connection of some element of the conformal
class [g] if and only if the 1-form f, is exact —compare with equation (2.4). The

Schouten tensors of the connections V and V are related to each other by
T 1 cd
Lab - Lab = vafb - 5 ab fcfd (218)

Notice that, in general, Lap #+ ﬁ(ab).

2.2.2 Frame formulation of the extended conformal Einstein

field equations

From now on, Weyl connections V related to a conformal metric g as in equation
(2.16) will be considered. Let R%%.q denote the geometric curvature of V —that
is, the expression of the Riemann tensor of V written in terms of derivatives of the

connection coefficients I',%:

A A

R%%ea = €a(T%a) — es(T'aa) + Tpa(Def o — Tofs) + TpfalaCs — Tafalps. (2.19)
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The expression for the algebraic curvature, namely the irreducible decomposition of

Riemann tensor, is given by
P"bed = Zd%ped + QSb[cafib]fa (2.20)

where d%p.q is the rescaled Weyl tensor defined as before d%p.q = = 1C%cq. Notice
that the Weyl tensor C'%,.4 with respect to the Weyl connection V coincides with
the Weyl tensor of any element of the conformal class [g]. Finally, one introduces a
1-form d defined by the relation

[1]

de =Zfa + Vo=

With the above definitions one can write the extended conformal Einstein field equa-

tions as
S0 =0, = %ed = 0, Acap =0, Apea =0, (2.21)
where
Savee = [€q, €] — (Ta® — [vCa)ee, (2.22a)
E%ed = R%%ed — P%bed, (2.22b)
Acav = Veloa — VaLep — dad®vea, (2.22c)
Aved = Vad®ped — fad®ped. (2.22d)

The fields i]acb, é“bcd, Acdb and Abcd encoding the extended conformal Einstein
field equations will be called again zero-quantities. The geometric meaning of the
extended conformal field equations is completely analogous to the standard con-
formal Einstein field equations. Nevertheless, observe that, in contrast with the
formulation of the standard conformal Einstein field equations there is no differen-
tial condition for neither the 1-form d nor the conformal factor =. In Section 2.3 it
will be discussed how to fix these fields by adapting the gauge to a congruence of
curves with special conformal properties: conformal geodesics. In order to relate the
extended conformal Einstein equations field equations (2.21) to the Einstein field

equations (1.9) one has to introduce the constraints—see Remark 5
0g =0, Yab = 0, Cab = 0. (2.23)
encoded in the supplementary zero-quantities

0g = dg — Efq — V4E, (2.24a)

A 1 A
Yab = Lap + 6/\5‘2%,, — Vao(E7 ) — 2728 %, dy, (2.24b)

Cab = Liat) — Viafo)- (2.24c¢)
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Equation (2.24a) encodes the definition of the 1-form d,; equation (2.24b) arises
from the transformation law between the Schouten tensor I:ab of V and the physical
Schouten tensor Lgp determined by the Einstein field equations as expressed in
equation (2.3); finally, equation (2.24c) relates the antisymmetry of the Schouten

tensor ﬁab to derivatives of the 1-form f,.

Remark 5. The supplementary zero-quantities (2.24a)-(2.24c) are regarded as con-
straints in the sense that they are propagated by conformal evolution equations
extracted from (2.22a)-(2.22d) —see Lemma 8. In other words, it is only required

that (2.24a)-(2.24c) are satisfied on a spacelike hypersurface S.

The precise relation between the extended conformal Einstein field equations and

the Einstein field equations is given by the following lemma:

Lemma 3. Let (ea,fabc,iab,dabcd) denote a solution to the extended conformal
Finstein field equations (2.21) for some choice of gauge fields (Z,dg) satisfying the

constraint equations (2.23). Assume, further, that
Z£0 and det(n™eq @ €p) # 0

on an open subset U C M. Then

where {w®} is the coframe dual to {eq} is a solution to the Finstein field equations

(1.9) on U.

The proof of this lemma can be found in [13, 37].

2.2.3 Spinorial formulation of the extended conformal

Einstein field equations

Proceeding in a similar way as in Section 2.1.4 one can rewrite every frame expression
in spinorial form by contracting with the Infeld-van der Waerden symbols. Denoting
with the same kernel letter the unknowns of the extended conformal Einstein field

equations one has the following zero-quantities

s _ NNele 5 oo

Yaap =leaa,epp| — (Taa™" Bp — ™" aa)ecc, (2.25a
f ! _ Rccl ~ C/

=" DD AA'BB = DD'AA'BB’ — [ DD'AA'BB'; (

/

)
2.25Db)
Accepp e = Veo Lppss — Voo Leoss — daad*® pocpp, (2.25¢)

)

A — v AA’ AA’
ABB’CC’DD’ = VAA’d BB'CC'DD’ — fAA’d BB'CC'DD’- (225d
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The spinorial version of the extended conformal Einstein field equations are then
succinctly written as
ZAA/QQIBB/BQQ/ = 0, = /DD’AA’BB/ = O, (226&)

ACC/DD/BB/ — 0, ABB/CC/DD/ = O (226b)

As discussed for the frame formulation, in order to relate the extended conformal
Einstein field equations to the Einstein field equations one has to introduce the

constrains

6AA’ :0, ’)/AA/BB/ :O’ CAA’BB’ :0, (227)

where 044/, 7aa'Bp and (44 g’ denote the spinorial counterpart of the supple-
mentary zero-quantities given in equations (2.24a)-(2.24c).

As discussed in Section 2.1.4, one of the advantages of the spinorial formulation
is that one can exploit the symmetries to express dA gpcopp and I A4 BB oo

in terms of the lower valence spinors

t. B
®ABCD, AA C,

satisfying formally identical expressions of those of equations (2.12a)-(2.12b). Due to
the fact that V is not metric, the reduced connection coefficients does not necessarily
posses the symmetry I'yarcp = I'aa/(cp) which holds for the reduced connection
coefficients of a Levi-Civita connection. Observe that a Weyl connection V reduces
to the Levi-Civita connection of an element in the conformal class [g] if and only if
the 1-form f is exact. In addition, notice that the transformation formula for the
connection coefficients given in (2.17) is simpler in spinorial notation. In fact one

has that
l'ccraB =Tl'ccaB — €acfBo
The expressions for geometric and algebraic curvature can be decomposed in a anal-

ogous way as in equation (2.13a) and (2.13b) The reduced geometric and algebraic

curvature read

~

c 5 C 5 C
RCpaase =ean (U'ep®p) —esp (Iaa’p)

e c T F e Cc T F e c T F
—I're " Dl'aa" B—1IBr Dl'aa” B +1T'ra " pDl'Bp A
= Cc T F o c T E = c 7 E
+lar Dl A +1Taa"El'Be" D — BB " El'AA " D,

paBcc'DD' = —=¢aBcpDec'D’ + LBpccéepa — LBc'ppeca.

From the last expressions one can notice that, in contrast with the Levi-Civita case,

the contractions

~

RPgaa B = Vaafep—Vepfaa, pPocopp =Leopp—Lppcoc, (2.28)
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do not necessarily vanish. Accordingly, one defines the following reduced zero-

quantities
=Cpaase = R°paasp — i°paass, (2.29)
Acppp = @(CQ/[AJD)Q'BBf +d%°p dcpBq, (2.30)
Aspep = V9épepe — s dBcpa. (2.31)

Henceforth, the spinorial extended conformal Einstein field equations will be alter-

natively written as
Yaa®Ypp =0, E°paasp =0, Acpes =0, Appcp=0. (2.32)

The last set of equations is completely equivalent to the equations (2.26a)-(2.26b). In
turn, equations encoded in (2.26a)-(2.26b) are equivalent to the frame formulation of
the extended conformal Einstein field equations given in equation (2.21). Therefore,

a result analogous to Lemma 3 can be formulated:

Lemma 4. Let

(eAA’a 11AA’BCa LAA’BB’: ¢ABCD)

denote a solution to the spinorial formulation of the extended conformal Finstein
field equations (2.32) for some choice of gauge fields (Z,daar) satisfying the con-
straint equations (2.27). Assume further that

Z#0 and det(eABeA,B,eAA/ ® epp’) # 0,

on an open subset U C M. Then

- =2 AA BB’
g == "€EABEA'B'W Qw= T,

AA’

where w is the dual coframe to ex s, is a solution to the Einstein field equations

(1.9) on U.

2.3 Conformal geodesics and conformal Gaussian

systems

In this section the notion of conformal geodesics and conformal Gaussian systems
is introduced. Additionally, it is discussed how to exploit the conformal geodesic
equations to fix the gauge in the extended conformal Einstein field equations. Then,
using the space spinor formalism, also briefly discussed in this section, it is shown
how to extract a system of first order evolution equations from the extended con-

formal Einstein field equations. A discussion of the propagation of the constraints
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is also provided.

2.3.1 Conformal Geodesics

The following definitions are important for the subsequent discussion.

Definition. A conformal geodesic on spacetime (M, §) consist of a pair (z(7), B(7)),
where z(7) is a curve on M, 7 € I C R with tangent & and 8 is a 1-form defined

along x(7), satisfying the equations
iV = —i Sy By (2.33a)
PV eBa = 23°Sea™ByBa + Lea® (2.33b)

where Zab denotes the Schouten tensor of V and S’ encodes the tensor introduced
in Section 2.1.2.

Definition. A frame e, on M is said to be Weyl propagated along a conformal
geodesic (z(7),B(7)) if it satisfies

e a a d:.c
i°Veeg” = —S.a e, T°py.

The motivation for considering curves satisfying equations (2.33a)-(2.33b) is un-
derstood when one observes their behaviour under conformal transformations and
transitions to Weyl connections. Given an arbitrary 1-form fconsider its associated
Weyl connection v i.e., such that ?agbc = —Qﬂgbc. Then, defining B =0- fthe
pair (z(7), B(r)) will satisfy the equations

iV i = —2%3° Sy By,

jjcvcﬁa = %jjcscabdﬁbﬂd + Lcajjca

where Eab is the Schouten tensor of V. Notice that if one chooses a Weyl connection
V whose defining 1-form f coincides with the 1-form 3 of the V-conformal geodesic

equations (2.33a)-(2.33b), then the conformal geodesic equations reduce to
i°Vei® =0,  Lgi® =0. (2.34)
Similarly, the Weyl propagation of the frame becomes
i°V,eq® = 0. (2.35)

The conformal geodesics equations admit more general reparametrisations than
the usual affine parametrisation of metric geodesics. This is summarised in the

following lemma:
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Lemma 5. The admissible reparametrisations mapping (non-null) conformal geodesics
into (non-null) conformal geodesics are given by fractional transformations of the

form
at + b

ct +d

T
where a,b,c,d € R.

The proof of this lemma can be found in [37] —see also [13, 38].

2.3.2 Conformal Gaussian systems

Besides their conformal invariance a major motivation for the introduction of con-
formal geodesics in the analysis of spacetimes by means of the extended conformal
Einstein field equations is that they provide a geometric way for fixing the gauge
fields (£, d) of Lemma 4. Assume that an open set U C M of a spacetime (M, g)
can be covered by non-intersecting congruence of conformal geodesics. If one identi-
fies the timelike leg of the tetrad {e,} with the tangent to the curves, eq = @, then

one can single out a conformal factor © by requiring

g(@,a)=1, g=0%. (2.36)

The last equation states that the parametrisation of the curve x(7) is chosen so
that the tangent vector @ is g-normalised. It follows from the condition (2.36) by
successive application of V; —a derivative in the direction of x, e.g., 0=V,0—
and using the conformal geodesic equations (2.33a)-(2.33b) that the conformal factor
O satisfies

O = 3,i"O, (2.37)
é - %@(gabftaj:b) (QCdﬁch) + @[N/abj:aj;bv (238)
6 = (Va(Lapi"d") + (LapG"Bei®) (Gpgd”i?) + Bei Lapd*i*)O.  (2.39)

Moreover one can verify that

Vi(garea'er’) = 0.

Therefore, if the frame {e,} is orthogonal at one point of the conformal geodesic it
will remain orthonormal along the conformal geodesic. If (M, g) is a solution to the
vacuum Einstein field equations one can use equation (2.3) to show that the right
hand side of equation (2.39) vanishes. This observation is contained in the following

key result:

Lemma 6. Let (M,g) be a spacetime where g s a solution to the vacuum Finstein
field equations (1.9). Moreover, let (x(7), B(7)) satisfy the conformal geodesic equa-
tions (2.33a)-(2.33b), let 7, € R be an arbitrary constant defining the value of T at
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a fiduciary point on the conformal geodesic and let {e,} denote a Weyl propagated

g-orthonormal frame along x(7) with
g =07,
such that
g(xz,z) = 1.

Then the conformal factor © is given, along x(7), by

O(T) =0, +O,(r—7.) + ;é*(f - 7)% (2.40)

where the coefficients ©, = O(1,),0, = O(r,) and O, = O(r,) are constant along

the conformal geodesic and satisfy the constraints
) ‘ . 1., 1
O, = (Bs, )0, 0.0, =39 (B., By) + o (2.41)
Moreover, along each conformal geodesic
Oy = O, Of; = 0.,

where fq = (B, €q)-

Finally the gauge field d can be specified via d = ©3. The constraints for the

initial data for © can then be written in terms of d as
@* = <d*, w*>, 6*@* = 59 (d*7 d*) + 6)\

The proof of this Lemma and a further discussion of the properties of conformal

geodesics can be found in [13, 22].

For spacetimes with a spacelike conformal boundary the relation between metric
geodesics and conformal geodesics is particularly simple. This observation is the

content of the following:

Lemma 7. Any conformal geodesic leaving S (£~ ) orthogonally into the past
(future) is up to reparametrisation a timelike future (past) complete geodesic for the
physical metric g. The reparametrisation required is determined by

dr 1

&= 80 (2.42)

where T is the g-proper time and T is the g-proper time and g = ©2g.

The proof of this Lemma can be found in [39].
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Conformal Gaussian systems

Assume, as before, that there exists a region U of the spacetime (M, g) which can
be covered by non-intersecting conformal geodesics. Furthermore, suppose that the
tangent vector &, = #(7) is orthogonal to some spacelike hypersurface Scu
determined locally by the condition 7 = 7,. The conformal factor is determined
by equation (2.39) and specification of the initial data ©,, O, and ©, on S. As
discussed in the previous section on the construction of a conformal Gaussian system
one identifies the tangent to the conformal curve (z(7),3(7)) with the time leg of
the g-orthonormal tetrad {e,} —i.e. one sets eg = @. This gauge choice can be
specialised further by using the parameter 7 along the conformal geodesics as a time

coordinate so that
€9 — 3T. (243)

To construct a spacetime system of coordinates consider some local (spatial) co-
ordinates (z®) on S which are extended off the initial hypersurface S by requir-
ing them to remain constant along a conformal geodesic. Namely, if a conformal
geodesic intersects S at a point p with coordinates () then the points in the con-
formal geodesic will have coordinates (7, x$). With the above prescription (7, 2%)
constitute a conformal Gaussian coordinate system on U. This choice of gauge
naturally leads to consider a 143 decomposition of the field equations. Another
advantageous feature of considering a conformal Gaussian system is that the the
conformal geodesic equations, as written in equations (2.34) and (2.35) imply the

gauge conditions
Do% =0, Loa=0, fo=0. (2.44)

2.3.3 The g-adapted equations

In the last section it was shown that imposing that 7 corresponds to the g-proper
time readily selects a representative of the conformal class. However, for some appli-
cations it is more convenient to consider parametrisation of the conformal geodesics
in terms of the (physical) g-proper time 7. To reexpress the conformal geodesic
equations in terms of the physical proper time consider the parameter transforma-
tion 7 = 7(7) given by

. T ds

T=7+ . 8(s)’ (2.45)

with inverse 7 = 7(7). In what follows let Z(7) = x(7(7)). It can then verified that

o,
=

& =—- =01, (2.46)

o,
2N

and that
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so that 7 is the g-proper time of the curve Z(7). In order to write the equation for

the curve Z(7) in a convenient way, one considers the split
B =p+wi’, (2.47)

where the 1-form 3 satisfies

g'(8.8) = (B,%)* + ¢"(8, B).
Moreover, one can verify that,
g@,x)=0"% (8,i)=0"'0 w=00 (2.48)

In terms of these objects the g-adapted equations for the conformal curves are given
by

@j/j, = Bﬁ, (249&)
VB = 33", (2.49D)
where 32 = —gﬁ(é, ,[:3) is constant along a given conformal geodesic.

2.4 Conformal evolution equations and

hyperbolic reduction strategies

In view of the tensorial nature of the conformal Einstein field equations, to make
assertions about the existence and properties of their solutions, it is necessary to
derive from them a suitable evolution system to which the theory of hyperbolic par-
tial differential equations can be applied. This procedure is known as a hyperbolic
reduction. Part of the hyperbolic reduction procedure consists of a specification of
the gauge inherent to the equations. A systematic way of proceeding to the specifi-
cation of the gauge is through so-called gauge source functions. These functions are
associated to derivatives of the field unknowns which are not determined by the field
equations. This idea can be used to extract a first order symmetric hyperbolic sys-
tem of equations for the field unknowns for the metric, frame and spinorial versions

of the standard conformal Einstein field equations.

In the other hand, the extended conformal Einstein field equations are expressed
in terms of Weyl connections and, thus, contain a bigger gauge freedom than the
standard conformal equations. This opens the possibility of an alternative approach
to gauge fixing; adapting the gauge to a congruence of conformal geodesics —see
[37, 39]. As previously discussed, this is advantageous since, in vacuum, conformal

geodesics allow to fix the conformal freedom by selecting a canonical representative
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of the conformal class [g]. In this manner, one gains a priori knowledge of the

conformal boundary of the spacetime.

Remark 6. The conformal factor given in Lemma 6 is canonical in the sense that
if g is a vacuum solution to the Einstein field equations and g = ©2g then requiring
g(@&(7), (7)) = 1 fixes the form of the conformal factor © to be a quadratic function

of 7.

2.4.1 Space spinor formalism

In what follows, let the Hermitian spinor 744" denote the spinor counterpart of the
vector v/2eo®. In addition, let {e44} with eg® = 0%, ;4 = 14 denote a spinor dyad

such that
TAA/ = EOAE()/A/ + €1A€1/A/. (250)

AA

. . / . . .
The normalisation 77 744 = 2, has been chosen in accordance with the conventions

of [17]. In what follows let 744" denote the components of 744" respect to {eA4}.

AA

The Hermitian spinor 744" can be used to perform a space spinor split of the frame

! .
{eaa} and coframe {w?4’}. Namely, one can write

1 / o1 / /
€Aap = §TAA€—TBA/€AB, UJAA = §TAA(.U+TCA wCA, (251)
where
/ / / /
BETPP epp/, GABE’T(AP EB)p/7 UJE’TPPIUJPP, UJAB:—T(APIUJB)P.

In this formalism one defines the spatial Infeld-van der Waerden symbols by o ag* =
( e B) 4t A direct computation shows that the components of the Infeld-van der

Waerden symbols can be read from the matrices

L1 (=10 , 1 (i 0 s 1 (01
o = — , O — , O — ,
AB \/5 0 1 AB \/5 0 i AB \/5 10

1 -1 0 1 (-1 0 1 0 1
AB _ | gAB = , oAB — . (2.52

It follows from the space spinor split of the frame encoded in equation (2.51) that

the metric g admits the split

1
g= iw ® w + hapepw?B @ wP

where

haBcp = g(ean,ecp) = —€acep)B-
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Similarly, any general connection V can be split as

v 1 o
VAA’ = iTAA’P — TAIQDAQ, (253)

where
_ _AA'E N — A&
P:T VAA’ and DAB:T(B VA)A’,

Al

denote, respectively, the derivative along the direction given by 744" and Dap is

the Sen connection of V relative to 744,

A I

The Hermitian spinor 744" induces a notion of Hermitian conjugation: given an

arbitrary spinor with components p4p its Hermitian conjugate has components
:uTCD = TCA 7-DB HAB = 7—C'A TDB ﬁA’B’? (254)

where the bar denotes complex conjugation. In a similar manner, one can extend
the definition to contravariant indices and higher valence spinors by requiring that
(71'/,1,)T = niuf. As a consequence of this definition, for a spinor u A A,..A, With a

string of n indices, one has that

NulAg...An = (_1)nMA1A2...An-

Additionally, the Hermitian conjugation operation allows to introduce the notion of

real and imaginary spinors. If a spinor pa, p,..a, B, With 2n indices satisfies

T _ n
HA,B,..A.B, — <_1) HA;B;..A,By>

it will be said to be real, while if it satisfies

t o n+1
HA,B,..A,B, — (=1)"" 1A, B,..A,.B,

it will be said to be imaginary.

2.4.2 First order hyperbolic reduction for the standard

conformal Einstein field equations

In [17] it was shown that introducing gauge source functions and exploiting the
so-called, space spinor formalism one can extract from (2.10a)-(2.10g) a symmetric
hyperbolic system of evolution equations. In this section the notion of gauge source
functions is reviewed. For conciseness of the presentation, the hyperbolic reduction
procedure is only sketched by means of a model equation —see [11, 13, 15-17] for a
comprehensive discussion of the space spinor formalism and gauge source functions.

To illustrate the general strategy of the hyperbolic reduction procedure consider the
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model equation

Vaayep — Vep¥vaa = Gaapp. (2.55)
Recall that, in general, one can decompose a spinor with the index structure of
GAA’BB’; as follows

1 | 1 /
GaaBp = G(AB)(A/B')+§€A’B/G(A|Q’\B)Q +§€ABGQ(A/QB’)+Z€ABEA’B/GQQ’QQ :

Observe from equation (2.55) that Gaa' s = —GBp aa - Exploiting this antisym-
metry one can show that the first and last term in the last decomposition vanish.
Now, define

/

1
GaBk = §G(A|Q’\B)Q ;

and observe that . )
Gapk = ié(A’\QIB’)Q = §GQ(A’QB’)‘

Thus, the irreducible decomposition of Gaagp’ is

GaaBp =€aBGap +€aBGap.

In other words, the information of Gaa/gp’ is encoded in the reduced spinor G ap
—this is analogous to the irreducible decomposition relating the Faraday tensor in
terms of the Maxwell spinor as discussed in [12, 40]. Consequently, one can rewrite
the model equation as

Q

V(A\Q’HOB) / = GAB- (256)

Notice that one has performed an irreducible decomposition of the spinors in equa-
tion (2.55), therefore equation (2.56) contains the same information as equation
(2.55). Additionally, observe that

1

Vages®? =Vagen® + §€ABVQQI<PQQ/- (2.57)

From the last expression one concludes that equation (2.56) does not contain infor-
mation about the full derivative V 4q/¢ 8% but only about its symmetrised part. In
other words, equation (2.56) leaves the divergence VQQ/@QQ/ completely unspeci-
fied. This observation leads to the notion of gauge source functions. Let F'(z) be
an arbitrary smooth function of the coordinates. The divergence in equation (2.57),
encoding the freedom left in the equation (2.56), will be generically called gauge
source function. Using equation (2.56) and taking the above considerations into

account one can construct the following equation for the unknown ¢gax

/ 1
VAQ“PBQ =GaB + §€ABF(5U)- (2.58)

The key observation is that one can extract a symmetric hyperbolic system of
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evolution equations from equation (2.58). This procedure can be generalised for an

equation containing higher valence spinors with similar index structure as the simple

model equation discussed above. The conformal Einstein field equations encoded in

the zero-quantities (2.10a)-(2.10g) have a similar structure to that of the model

equation and an analogous reduction procedure can be implemented. In the rest of

this subsection the gauge source functions defined for the hyperbolic reduction of

the conformal Einstein field equations are listed:

(i)

(i)

The coordinate gauge source function is defined as
Fe(z) = V¥¥9%qq",

where €®4 4/ are the so-called frame coefficients defined via eq4 = €44/ %Cq
where {c,} is a smooth frame field on M and e 44 is a g-orthonormal frame.
The coordinate gauge source function can be succinctly written in terms of

the frame coefficients and spin coefficients using that

Vaaesp® =ean(ep®) —Taa®segp® —Tan? pepg®. (2.59)
The frame gauge source function is defined as
Fap(z) = V99T g0 aB, (2.60)

where I'ggrap are the reduced connection coefficients. Similarly, the frame
gauge source function can be succinctly written in terms of the frame coeffi-

cients and the spin coefficients via

Vepl'rraB = eprp (FFF’AB> - FEE’QFFQF’AB

—Tep?rTroaB —Tep%alrro — Tep®Blrrag. (2.61)

The conformal gauge source function is given by the Ricci scalar R(z) of g.
This gauge source function fixes the freedom in choosing a representative from
the conformal class [g]. The relation between = and R can be understood in
terms of the conformal transformation law for the Ricci scalar since the latter
implies a wave equation for the conformal factor = where R acts as a source
term —see [16] for further discussion of the role played by the conformal gauge

source function in the formulation of the conformal Einstein field equations.
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2.4.3 First order hyperbolic reduction for the extended

conformal Einstein field equations

The space spinor formalism leads to a systematic split of the extended conformal
Einstein field equations (2.32) into evolution and constraint equations. To this end,
one performs a space spinor split for the fields ega/, faar, La e [aaBe. The
frame coefficients eaa/® satisfy formally identical splits to those in (2.51), where
eaa = eancy with ¢, € {9:,¢;} represent a fixed frame field —the latter is not
necessarily g-orthonormal. Observe that, in terms of tensor frame components, the
gauge condition (2.43) implies that ep® = §p®. The gauge conditions (2.44) and

(2.43) are rewritten as
7-AA,eAA’ = \/587, TAA/f‘AA/BC = 0, TAA,[:AA/BB/ = 0. (2.62)
In addition, one defines

2 _ At A A
I'abep =78" Taacp, Tabep =78 Taacp, faB =78 faa, (2.63a)

Lasep = 8% 0% Laaco, ©apop = Lapep) ©ap = Lap®. (2.63b)

Recalling equation (2.2.3) one obtains

/

a A
l'aBep =TaBep —ecafpats™,

where Tapep = 782 Taacp. This relation allows to write the equations in terms
of the reduced connection coefficients of the Levi-Civita connection of g instead
of the reduced connection coefficients of V. Only the spinorial counterpart of the
Schouten tensor of the connection V will not be written in terms of its Levi-Civita

counterpart. Exploiting the notion of Hermitian conjugation given in equation (2.54)

one defines
XABCD = L (Tasep + Tipen) §aBcD = 1 (Tasep — Thpep)
\/5 BCD) » \/5 BCD)»
Observe that x% pop = xaBep while €4 pop = —€apep. Consequently X apep is

real and £4pcp is imaginary—see Section 2.4.1 for the notion of real and imaginary

spinors. Notice that, consistent with these definitions, I'4pep can be written as as

1

F'aBep = ﬁ(fABCD — XABCD)- (2.64)

One proceeds with the rescaled Weyl spinor defining

1

3 (¢aBcD + Papep) - ftapcp = —=i(dapcep — dpep) -

NABCcD = 5
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Observe that nLBCD = Napcp and ,LLLBCD = papcp so that both napep and

apep are real spinors. Consequently, one has

¢aBCD = NABCD + ilABCD (2.65)

The latter implies that napcp and papep can be interpreted as the electric and
magnetic parts of the rescaled Weyl spinor. Observe that the split (2.64) is not an
electric-magnetic decomposition as that of equation (2.65). The gauge conditions

(2.62) can be rewritten in terms of the spinors defined in (2.63a) as
faB = faB), I'q®ap = —faB, Lo@ap =0. (2.66)

The last condition implies the decomposition

Lapep = OaBep + §€CD@AB7

for the components of the spinorial counterpart of the Schouten tensor of the Weyl

connection where © sgpcp = f;(AB)(CD) and O = fLABQQ.

The fields defined in the previous paragraphs allows to derive from the expressions

AA’ PP _ LCC'Z -
Yaa' " Bpepp® =0, ZaBcc'pp =0, (2.67a)

AAA’BB’CC’ - 0 T(A A|A'|BCD) = O, (2.67b)

AA’

as a set of evolution equations for the fields

0 i
XaBcD; {ABcD; €aB , €aB's faB, ©aBcp, ©aB, PaBcD.

Explicitly, one has that

PQ@pQO — fAB; (268&)

OreaB’ = —xap ?epq’, (2.68b)

dreaB’ = —X(aB)

1
O.€aBcp = —X(aB) %pgcep + %(EACX(BD)PQ + eBpX(ac)pq)fT9,(2.68¢)

1 .
—\/EXAB(CEfD)E - 2 (EAc@BD + €BD@AC) —iOuaBep, (2-68d)

O fas = —XaB) Cfpro + \}ﬁ@AB’ (2.68e)
- X(AB)CD = —xaBT %X pPocp — ©aBcD + Onanep, (2.68f)
0:©aBcD = —X(AB PQLpgcp) — Onapep + id? (AB)CDP; (2.68g)
0-948 = —X(aB) " Opr + V2d"naBPq, (2.68h)

0-6aBcp — V2D4%BCD)g = 0. (2.681)
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The following proposition relates the discussion of the conformal evolution equa-

tions and the full set of extended conformal field equations given by (2.21):

Lemma 8 (propagation of the constraints and subsidiary system). Let
(M,g) be a spacetime where g is a solution to the vacuum Einstein field equations.
Assume that an open set U C M can be covered by a non-intersecting congruence
of conformal geodesics and that the evolution equations extracted from equations
(2.67a)-(2.67b) and the conformal Gauss gauge conditions (2.66) hold on U. Then,
the components of the zero quantities

/ ~

S BB = A A
EAA’ cc’, Z~ABCC'DD’, AAA’BB’CC’a AAA’BC 5AA’a YAA'BB’, CAA’,

which are not determined by the evolution equations or the gauge conditions, satisfy
a first order symmetric hyperbolic system of equations (subsidiary system) whose

lower order terms are algebraic and homogeneous in the zero-quantities on U.

The proof of Lemma 8 can be found in [13, 22, 27] —see also [36] for a discussion

of these equations in the presence of an electromagnetic field.

The most important consequence of Lemma 8 is that if the zero-quantities vanish
at some initial hypersurface and the evolution equations (2.68a)-(2.68h) are satisfied,
then the full extended conformal Einstein field equations encoded in (2.26a)-(2.26b)
are satisfied in the development of the initial data. This is a consequence of the

standard uniqueness result for homogeneous symmetric hyperbolic systems.

Remark 7. The evolution equations (2.68a)-(2.681) are extracted from equations
(2.67a)-(2.67b). In tensorial notation these correspond to the following components
of the zero-quantities (2.22a)-(2.22d):

~

iocb = O, éca()b = 0, AObc = 07 A(a|0|b) = 07 A>(ka\0\b) = Oa

where Azcd = %ecdeff&bef and the frame indices a, b, c take values 0,1,2,3. The
components of the zero-quantities (2.22a)-(2.22d) which are not determined by the

evolution equations correspond to

~

2% =0, Z°%p =0, Ape=0, AOij =0, Agio=0, (2.69)

with 2,7 = 1,2,3. The lower order terms in the first symmetric hyperbolic system
(subsidiary system) referred in Lemma 8 consist of algebraic expressions containing
the zero-quantities in equation (2.69). The subsidiary system is not given explicitly
in this thesis for conciseness. A detailed derivation of the subsidiary system and a

comprehensive discussion can be found in [13, 22, 27] —see also [36].
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Controlling the gauge

The derivation of the conformal evolution equations (2.68a)-(2.68h) is based on the
assumption of the existence of a non-intersecting congruence of conformal geodesics.

To verify this assumption one has to analyse the deviation vector of the congruence.

Let z denote the deviation vector of the congruence. One has then that
[®,2z] =0. (2.70)

Now, let 244" denote the spinorial counterpart of the components z% of z respect to
a Weyl propagated frame {e,}. Following the spirit of the space spinor formalism
one defines zap = 784 244+. This spinor can be decomposed as

1
ZAB = §Z€AB + 2AB)-

The evolution equations for the deviation vector can be readily deduced from the
commutator (2.70). Expressing the latter in terms of the fields appearing in the

extended conformal field equations one obtains

0,2 = fapzAP), (2.71a)

Or-2aB) = XCD(AB)Z(CD). (2.71b)

The congruence of conformal geodesics is non-intersecting as long as zapy # 0.
Once one has solved equations (2.68a)-(2.681) one can substitute fap and xaBcp
into equations (2.71a)-(2.71b) and analyse the evolution of the deviation vector —for

further discussion see [41].

2.5 The conformal constraint equations

The conformal constraint equations encode the set of restrictions induced by the
zero-quantities on the various fields on spacelike hypersurfaces of the unphysical
spacetime (M, g). In what follows, one consider the setting where the 1-form f
vanishes on one of these hypersurfaces, which is regarded as the initial hypersurface.
Accordingly, the initial data for the extended conformal evolution equations (2.68a)-
(2.68h) and those implied by the hyperbolic reduction of the standard conformal
Einstein field equations using gauge source functions —see Section 2.4.2— are the
same. Now, let S denote a 3-dimensional spacelike submanifold of M. The metric §
induces a 3-dimensional metric b = @*g on S, where ¢ : S — M is an embedding.
Similarly, one can consider a 3-dimensional submanifold S of M with induced metric
h = p*g, such that

h = Q%h, (2.72)
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where 2 denotes the restriction of the conformal factor to the initial hypersurface
S —in Section 2.3.2 this restriction is denoted by ©,.

Let n, and n, with n, = Qn, be, respectively, the g-unit and g-unit normals, so
that n®n, = nn, = 1 —in accordance with the signature conventions introduced
in Section 1.6 of Chapter 1 for a spacelike hypersurface. With these definitions,
the second fundamental forms y., = h,*Ven, and Yo = ﬁac@cﬁb are related by the
formula

Xab = Q(Xab + Shas) (2.73)

where X = n®V,.

The conformal constraint equations are conveniently expressed in terms of a frame
{e;} adapted to the hypersurface S —that is, the vectors e; span T'S and, thus, are
orthogonal to its normal. All the fields appearing in the constraint equations are

expressed in terms of this frame. The conformal constraint equations are then given

by:

D;Dj$d = —=Xxi5 — QLij + shij, (2.74a)
DY = xi*DpQ — QL;, (2.74b)
Djs = —L;¥ — QL;, (2.74¢)
D;Lj, — DjLi, = —Sdij + digi; D'Q — (xanLj — Xjn L)

—(xieLj — XjiLi), (2.74d

D;iLj — DjLi = digg D'Q + xi* Ly, — x;* L,

)

)
DFdyi; = x*idjr, — X*;dix, 2.74f)
Didi; = x*d;jp, (2.74g)
Djxki — Drxji = Qdiji + hijLi — hix Lj, (2.74h)
lij = Qdij + Lij — xa" (xij — ixhij> + XkiX;" — ixzdxklh,-j, (2.74i)
A = 6Qs — 352 — 3D, QD*Q, (2.747)

where D is the Levi-Civita connection on (S, h), l;; is the associated Schouten
tensor of D, diji = diojk, dij = diojo, Li = Lo; and s is the Friedrich scalar field on

S.
Definition. A solution to the conformal constraint equations on S is given by a

collection u, = (2,3, s, €;,Vi*;, Xij, Lij, Li, dij, dijr) satisfying (2.74a)-(2.74j).

2.5.1 The Hamiltonian and momentum constraint equations

An alternative point of view for discussing the conformal constraint equations is

to start with the usual Hamiltonian and momentum constraints in the physical



2.5: The conformal constraint equations 45

representation (S, h)

F+ %2 — YapX™ = 2, (2.75a)
D%y — DuX = 0, (2.75D)

where 7 is the Ricci scalar of h, ) is the Cosmological constant. Considering the
conformal rescaling h = QQiLab, and an adapted frame e; as in Section 2.5, a direct
computation using equations (2.75a)- (2.75b) gives the so-called conformal Hamil-

tonian and momentum constraints:

20D;D*Q — 3D;QD*Q + $0%r — 357
—102(x® — xijX7) +205x = A, (2.76a)
QDO i) — QUDix — 207" DX) = 0, (2.76D)

where 7 is the Ricci scalar of h. The relation between the conformal Hamiltonian
and momentum constraint equations (2.76a)-(2.76b) and the conformal constraint
equations (2.74a)-(2.74j) is the content of the following:

Lemma 9. A solution (S, u,) to the conformal constraint equations (2.74a)-(2.74j)
implies a solution to the conformal Hamiltonian and momentum constraints (2.76a)-
(2.76b). Conversely, a solution (S,h,x,, %) of (2.76a)-(2.76b) gives rise to a
solution to (2.74a)-(2.74j) on the points of S for which Q # 0.

Remark 8. If one is to formulate a Cauchy problem for the conformal Einstein
field equations, by prescribing initial data on a 3-dimensional manifold & in which
2 # 0, Lemma 9 suggests to use equations (2.76a)-(2.76b) to determine initial data

for the conformal evolution equations.
Lemma 9 and Remark 8 motivate the following definitions.

Definition (basic initial data set). A collection (S, h, x, (2, 3) where S denotes
a 3-dimensional manifold, h a Riemannian 3-metric, x a symmetric rank-2 tensor,
2 and ¥ scalar functions on § satisfying equations (2.76a)-(2.76b), will be called a

basic initial data set.

Definition (standard initial value problem for the conformal Einstein
field equations). The Cauchy problem for the evolution equations implied by the
conformal Einstein field equations provided with a basic initial data set (S, h, x, 2, %)

will be called a standard initial value problem.

Remark 9. Observe that, in contrast with the conformal constraint equations
(2.76a)-(2.76b), the conformal Hamiltonian and momentum constraint equations

(2.76a)-(2.76b) are not formally regular at 2 = 0 in the sense that they contain
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terms involving Q7! and Q72. Consequently, for a Cauchy problem for the confor-
mal Einstein field equations for which Q(p) = 0 for all p € S —see definition of
asymptotic initial value problem given below— equations (2.76a)-(2.76b) are not

suitable to define initial data for this type of problems.
The last remark motivates the following definition:

Definition (asymptotic initial value problem for the conformal Einstein
field equations). The Cauchy problem for the evolution equations implied by the
conformal Einstein field equations provided with initial data consisting of (S, u,)
where S denotes a 3-dimensional manifold and w, is a solution to the conformal
constraint equations on S for which Q = 0, will be called a asymptotic initial value

problem.

2.5.2 The vacuum conformal constraint equations at the

conformal boundary

In the last section it was pointed out the difficulty in obtaining initial data sets for
an asymptotic initial value problem using (2.76a)-(2.76b). Nevertheless, in contrast
with equations (2.76a)-(2.76b), the conformal constraint equations (2.74j)-(2.74;j) are
regular even when €2 = 0. Moreover, the conformal constraint equations simplify
considerably on spacelike hypersurfaces for which 2 = 0. In this case equations

(2.74a)-(2.741) reduce to

shij = Exij, (2.77a)
D;¥ =0, (2.77h)
Dis = —L;%, (2.77¢)
D;Lji — DjLi, = —Ydijre — (XakLj — Xjrls), (2.77d)
D;Lj — DjLi = xi* Ly — X5" Lik, (2.77e)
D¥dyiz = x*idj — X" jdin (2.77f)
A= —3%% (2.77g)
Didij = x*dju, (2.77h)
Djxki — DrXji = hijLi — haeLj, (2.771)
lij = Lij — x(Xa5 — lehij) + XkiXj" — ixmx’“hij. (2.77j)

In [9, 22] a procedure for obtaining solutions for these equations has been given.
The main idea is to identify as free specifiable data the 3-metric h and a smooth
function k at & —encoding, essentially, the Friedrich scalar s at S. Then, the
remaining fields comprising a solution u, are derived from h and x as follows:

Al

Y= ?7 2 =0, s=2Xk, Xij = lihij, L; = —D;k, (2.78&)
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1 _
Lij = lij + §I€2hij, dijk: = —), 1yijk, (278b)
where y;;5, denotes the components of the Cotton tensor of the metric h. The only
differential condition that has to be solved to obtain a full solution to the conformal

constraint equations is

Did;; =0, (2.78c¢)

where d;; is a symmetric transverse-tracefree tensor encoding the initial data for
the electric part of the rescaled Weyl tensor. This procedure is summarised in the

following Lemma:

Lemma 10. Given a Riemannian 3-metric h;j, a smooth scalar function k and
a h-divergence-free symmetric tracefree tensor d;; on S, the tensor fields xi;, Li,
L;; and d;j; defined as in equations (2.78a)-(2.78b) constitute a solution u, to the

conformal constraint equations with € = 0.

Remark 10. Observe in Lemma 10 that the choice of x is irrespective of h;; and
d;j.

Remark 11. Given a 3-metric h there is, in general, not a unique solution to
D'd;; = 0. In other words, using Lemma (10), given (h,k) one can construct
several solutions to the conformal constraint equations u, with {2 = 0 by considering
different solutions to the equation D'd;; = 0. For instance, if h is conformally flat,
the analysis given in [42] shows that all smooth solutions to D'd;; = 0, can be
parametrised by four constants A, @), P, J and an arbitrary function Ay of spin-weight
two. Therefore, in the conformally flat case one can construct different solutions to
D'd;; = 0 considering different values for A, Q, P, J or choosing different functions
Ag.



3 Second order hyperbolic

reductions

3.1 Introduction

The first order hyperbolic reduction of the conformal Einstein field equations using
gauge source functions, as briefly discussed in Chapter 2, was originally introduced
in [15] —see also [17] for the hyperbolic reduction of the conformal Einstein-Yang-
Mills equations. Additionally, in Chapter 2 the first order hyperbolic reduction of
the extended conformal Einstein field equations employing conformal Gaussian sys-
tems was discussed. The latter hyperbolic reduction strategy was first introduced in
[22] —see also[27]. Nevertheless, more recently, it has been shown that gauge source
functions can be used to obtain, out of the metric conformal field equations, a sys-
tem of quasilinear wave equations —see [18]. This particular construction requires
the specification of a coordinate gauge source function and a conformal gauge source
function and is close, in spirit, to the classical treatment of the Cauchy problem in
General Relativity in [4] —see also [43]. Although, in principle, of general applica-
bility, the construction of wave equations for the metric conformal field equations
has been used, so far, only in the discussion of the asymptotic characteristic problem

on a cone —see [19].

The discussion given in this chapter is based on the second order hyperbolic

reduction procedure introduced in:

Gasperin E. and Valiente Kroon J.A., “Spinorial wave equations and stability
of the Milne spacetime,” Classical and Quantum Gravity 32 (Sept., 2015) 185021,
arXiv:1407.3317 [gr-qc].

In the latter reference it is shown how to deduce a system of quasilinear wave
equations for the unknowns of the spinorial (standard) conformal Einstein field
equations and its relation to the original set of field equations is analysed. The
use of the spinorial formulation of the conformal Einstein field equations (or, in
fact, the frame formulation of the conformal Einstein field equations) gives access to
a wider set of gauge source functions consisting of coordinate, frame and conformal
gauge source functions. Another advantage of the spinorial version of the conformal
Einstein field equations is that they have a much simpler algebraic structure than the

metric equations. To discuss this point let V 44 denote the spinorial extension of the

48
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Levi-Civita covariant derivative V, of the unphysical metric g. One of the features of

the spinorial formalism simplifying the analysis is the use of the symmetric operator
DAB = VQ/(AVB)QI

instead of the usual commutator of covariant derivatives [V,, Vp]. As shown in this
chapter, the use of spinors allows a more unified and systematic discussion of the
construction of the wave equations and the so-called subsidiary system —needed
to show that under suitable conditions a solution to the wave equations implies a
solution to the conformal Einstein field equations. As already mentioned, in the
spinorial formulation of the conformal Einstein field equations the metric is not part
of the unknowns. This observation is important since, whenever the wave operator
V.V® is applied to any tensor of non-zero rank, there will appear derivatives of
the connection which, in terms of the metric, represent second order derivatives.
Thus, if the metric is part of the unknowns, the principal part of the operator V,V*
is altered by the presence of these derivatives. This is an extra complication that
needs to be taken into account in the analysis of [18]. The use of a spinorial frame
formalism allows to exploit the algebraic properties of the conformal field equations
in a more systematic manner —as it will be seen in the sequel the construction of
evolution and subsidiary equations becomes almost algorithmic. In addition, the
use of a spinorial version of the equations allows the use of more general classes of
gauges and may be more amenable to the inclusion of matter.

In view of the use of spinors, the wave equations considered in this chapter are

expressed in terms of the spinorial extension of V,V® —see [29]. Namely, one has
0= Vau VA

The operator [J acting on spinors of non-zero rank will rise to terms involving frame
derivatives of the spin connection coefficients. The operator [ is the 2-spinor version
of the square of the spin-Dirac derivative operator —see e.g. [44].

The construction of wave equations for the fields appearing in the conformal
Einstein field equations gives access to a set of methods of the theory of partial
differential equations alternative to that used for first order symmetric hyperbolic
systems —see e.g. [7] for a discussion on this. For example, the discussion given
in [18] is motivated by the analysis of the characteristic problem on a cone for
which a detailed theory is available for quasilinear wave equations. An analogous
construction of wave equations for the Dirac field on a curved spacetime using the 2-
spinors formalism has been given in [45]. It is also worth mentioning that a similar
construction of wave equations can be readily implemented for the Maxwell and
Yang-Mills fields.
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3.2 The spinorial wave equations

In this section a set of wave equations is derived from the spinorial version of the
conformal Einstein field equations as given in Chapter 2. Since the approach for ob-
taining the equations is similar for most of the zero-quantities, a general discussion
of the procedure is provided first. In the subsequent parts of this section the pecu-
liarities of each equation are addressed. The results of this section are summarised
in Proposition 1. Throughout this chapter only the standard formulation conformal
Einstein field equations encoded in equations (2.11a)-(2.11b) of Chapter 2 are used.
Therefore for conciseness, when referring to the conformal Einstein field equations
it will be understood the standard (vacuum) conformal Einstein field equations. Af-
ter the discussion of the model equation of Section 3.2.1, the impatient reader may

jump to Section 3.2.7 for a summary of the results.

3.2.1 General procedure for obtaining the wave equations

Before deriving each of the wave equations it is illustrative to outline the general

procedure with a model equation. To this end consider an equation of the form
VP A'Ngax =0, (3.1)

where Ngax = V(EB/M Ak and g is an arbitrary string of spinor indices. The
symmetries of the relevant quantities can be exploited using the following decom-

position of a spinor of the same index structure
Tpax = Tpayx + epaTo%,
and recast Ngax as

! 1 ’
Ngax = VE® Mapx + §€EAVQB Mgpix.

Remark 12. The model equation (3.1) determines the symmetrised derivative

V(EB'MA)B/,C, while the divergence VQB'MQB/,C can be freely specified.

In view of the last remark let Fic(z) = V@B Mgp be a smooth but otherwise
arbitrary spinor. This spinor, encoding the freely specifiable part of Ngax, is the
gauge source function for the model equation. Taking this discussion into account,

the model equation can be reexpressed as

! ]. !
VP 4 Ngax = VP aVE® Mapik + §VAA’FIC(5U) = Ve Ve PMA®

/ / 1
+ %EA/B/VEQ/VEQ MAB K + §VAA/F]C(J,‘) =0 (32)
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where after the second equality sign, the decomposition of a 2-valence spinor in its
symmetric and trace parts has been used. Finally, recalling the definition of the
operators

O=VaaV*,  Oap=VeuVp?,

equation (3.2) is rewritten as
DMAA/}C—QDA/B/MAB,IC_VAA’FIC(ZE) =0. (33)

The spinorial Ricci identities can be used to rewrite [] A" Mapc in terms of the
curvature spinors —namely, the Weyl spinor VY sgpcp = Z¢apcp, the Ricci spinor

CI)ABA’BU and the Ricci scalar and MAB’IC~

Remark 13. It is customary when using the spinorial Ricci identities to denote the
Ricci scalar using the symbol A —see [12, 29]. More precisely, in accordance with

the conventions used in this thesis one has that A = —24R.

In the rest of the section, it is discussed how to derive the particular wave equations
implied by each of the zero-quantities following an analogous procedure as the one

used for the model equation.

3.2.2 Wave equation for the frame (no-torsion condition)

The zero-quantity X 499 gp encodes the no-torsion condition. The equation
(2.10a) can be conveniently rewritten introducing an arbitrary frame {c,}, which
allows to write eqa = eg4/%c, . Taking this into account one rewrites the zero-

quantity for the no-torsion condition as

QQ

Yaa®? gpeoo® = Vep(ean®) — Vaalesp®) — Cobeanenn’, (3.4)

where C,¢, are the commutation coefficients of the frame, defined by the relation
[Cas Cb] = Cqce. In the last expression V g4aepp/© is to be interpreted as a short-
hand for the longer expression given in equation (2.59). Using the irreducible de-

composition of a spinor representing an antisymmetric tensor one obtains that
EAA/QQ BB’eQQ’c = GABSA/B/c—f-EA/B/EABc (35)

where

c

Y4B’ = ;X0 %9 B eqo

DN | —

is a reduced zero-quantity which can be written in terms of the frame coefficients

using equation (3.4) as

D'a

YaB = V(ADleB)D’C + %G(A eB)D’bCacb-
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Using the decomposition of a valence-2 spinor in the first term of the right-hand

side renders

D

c __ D’ c 1 PD’ c 1 ‘a b c
YA =Va epp®+5€aBV " epp©+ 3¢ “eByp Cap.

Introducing the coordinate gauge source function F¢(x) = VPP epp/©, a wave equa-

tion can then be deduced from the condition
VAR Y apt = 0.

Observe that this equation is satisfied if X 45¢ = 0 —that is, if the correspond-
ing conformal Einstein field equation is satisfied. Adapting the general procedure

described in Section 3.2.1 as required, one obtains

/

D@BE/C — QDElDleBDIC - VBE/FC<JB) — VAE/ (e(AD aeB)D,bCacb> =0.

Finally, using the spinorial Ricci identities and rearranging the last term one finds

the wave equation

/

D'a brA c
€B)D’ V2 Ca

— QCach(ADlavA‘EqQB)D/b — VBE/FC<I'> = O (36)

DGBE/C - 2€QDIC(I)QBE/DI + 6A €BEIC - e(A

3.2.3 Wave equation for the connection coefficients

The spinorial counterpart of the Riemann tensor can be decomposed as
RaaBpccpp = RaBce'ppépa + RapoccppeBa,

where the reduced curvature spinor Rapcc'pps is expressed in terms of the spin
connection coefficients as

Q

/
Rapcopp +Ycc®? ppTogas =Veel'ppas — Voo oo an

+Tco®slppga — oo ®slocqa. (3.7)

In the last equation, Vpp/I'ccrap has been introduced for convenience as a short-
hand for the longer expression given in equation (2.61). Observe that the zero
quantity Zapccopp’ defined in equation (2.10b) has the symmetry Zapccpp =
ZB)co'pp’ = —Z(aB)pD'cc’- Exploiting this fact, the reduced spinors associated
to the geometric and algebraic curvatures Rapce'pp’ and papcco'pp’ can be split,

respectively, as

Rapccpp = €cpRaep +€ecplRaBeps
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PABcc'DD' = €c'D'PABCD T €CDPABC'D',

where
!

1 E 1 E
RaBcep = 5RaBciE D) RaBc'p = 5RABE(C D)5

are the reduced geometric curvature spinors. Analogous definitions are introduced
for the algebraic curvature. Observe that in contrast with the split (3.5) used for
the no-torsion condition, the reduced spinors Rapcp and Rapc/pr are not com-
plex conjugate of each other. Together, these two reduced geometric and algebraic

curvature spinors give the reduced zero quantities

ZaBcp = RaBcp — paBeD, ZaBc'p = Rapc'p — paBc'D-

Remark 14. Observe that although Rapcp and Rapep are independent, their

derivatives are related through the second Bianchi identity, which implies that
Vb Rapep = VY pRascp.

This observation is also true for the algebraic curvature as a consequence of the
conformal field equations Acpgp = 0 and A gep = 0 since they encode the
second Bianchi identity written as differential conditions on the spinorial counterpart
of the Schouten tensor and the Weyl spinor. To verify the last statement, recall that
the equation for the Schouten tensor encoded in Acppp = 0 corresponds to the
spinorial counterpart of the frame equation (2.7f). Using equation (2.7e), the latter

can be rewritten as

VG,C(a'bcd = Vchb - vchln

which corresponds to the second Bianchi identity written in terms of the Schouten
and Weyl tensors. This can be easily verified, as the last equation is obtained from
the substitution of the expression for the Riemann tensor in terms of the Weyl and
Schouten tensors (i.e. the algebraic curvature) in the second Bianchi identity. This
means that, as long as the conformal field equations Acppp = 0 and Ag.gecp =0

are satisfied one can write
VCD'pABCD = VC,DIOABC’D’-

Therefore, the reduced quantities Zapcp and Zacc/pr are related via
VCDpZasep = VC pEaBop

Now, one has to compute explicitly the reduced geometric and algebraic curvature.

Recalling the definition of papce'ppr in terms of the Weyl spinor and the spinorial
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counterpart of the Schouten tensor as given in equation (2.14b) it follows that

pascp = Vapep + Lee® co)a

or, equivalently

paBcD = Z¢aBcpD + 2MA(epBeéca + €cBEDA)-

Similarly,
paBc'p = Papcp- (3.8)

A computation using the reduced version of the geometric curvature from expression
(3.7) renders

Rapcp = _%E(C|E/|QQ/D)E,FQQ’AB + VeI as +Ticp 8D ga, (3.92)

RABC’D’ = —%EE(C/QQ/ED/)FQQ/AB + VE(C/FD/)EAB + FE(C’Q\B\FED/)QA- (39b)

If the no-torsion condition (3.4) is satisfied, then the first term in each of the last
expressions vanishes. In this manner one obtains an expression for the reduced
geometric curvature purely in terms of the reduced connection coefficients and, in
turn, a wave equation from either V€ p/Zapep or V¢ pEapop. In what follows,
for concreteness only

VY pEapcop =0,
is considered. Adapting the procedure described in Section 3.2.1 and taking into

account equations (3.8) and (3.9a) one obtains

Ul'bpraB — 2DDEFED’AB - VD/DFAB(I)

+ 2V pT e BT pyga = 2V pPapcrp. (3.10)

The gauge source function Fapg(x) that appears in the last expression is the frame
gauge source function as defined in equation (2.60). Using the spinorial Ricci
identities to replace Opgl'Pp ap in equation (3.10) and exploiting the symmetry

¥ pag =TFpiap) gives

Opel'fpap = —3ATppap + TP 45®pupE

+2Z2¢peaAl "0 B) — 2T (Aip'DIB) — 2T P D' E(BED|A)- (3.11)

Substituting the last expression into (3.10) one finds the wave equation

Cppa — 20P7 45®pwpe — 3ATpprap + 2Z¢praal ? D" B)
— 2T aip'piB) — 2L D/ E(BED|A)) + QVC/DFE(C’Q\B|FED’)QA

—2VY p®pacin — Vo pFap(xz)=0.
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3.2.4 Wave equation for the Ricci spinor

The zero-quantity defined by equation (2.10e) is expressed in terms of the spinorial
counterpart of the Schouten tensor. The spinor Laa/pp can be decomposed in

terms of the Ricci spinor @44/ and A as

LAA’BB’ —q)AA’BB’_AeABGA’B’ (312)

—see Appendix 3.4 for more details. In the context of the conformal Einstein field
equations the field A can be regarded as a gauge source function. Thus, in what
follows the equation Acapp = 0 is regarded as an expression encoding differential
conditions on ®44/pp/. In order to derive a wave equation for the Ricci spinor
consider

VCeAcprr = 0.

Proceeding, again, as described in Section 3.2.1 and using that Vg dcppg = 0
—that is, assuming that the equation encoded in the the zero-quantity Ac'ppgq is

satisfied— gives
OLpees — 20q Lo 5 — Vo VP9 Leg s — 20008V R VIR E = 0.
Using the decomposition (3.12) and symmetrising in ¢p one further obtains that

0®ppes — 20mqe®pe? B — V(D|E’VEQ/LEQ/|B)B’ —2¢0cpBVCeRVeR = =0.

(3.13)
To find a satisfactory wave equation for the Ricci tensor it is necessary to rewrite
the last three terms of equation (3.13). To compute the third term observe that the
second contracted Bianchi identity as in equation (3.39) of Appendix 3.4 and the

decomposition of the Schouten spinor given by equation (3.12) imply
VE? Lpope = VP¥Opopp — eppegn VEY A = —4VppA.
Therefore, one finds that
VeV Leg s = —4VemVesA. (3.14)

This last expression is satisfactory since, as already mentioned, the Ricci scalar R (or
equivalently A) can be regarded as a gauge source function —the so-called conformal
gauge source function [15]. In order to replace the last term of equation (3.13) one
exploits the field equation encoded in Zaa g = 0 and the decomposition (3.12),

to obtain

¢cpBeVe VOB E = —Z¢cpBeLl e = —Z0cpBeP B p (3.15)
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Finally, computing Jgq®pp? 5 and substituting equations (3.14) and (3.15) gives

U®pBeB — 4(DP(BQ/\B’\(I)D)PE’Q’ +6A®ppE B — QECEE’Q’B’H’(DDBQIH/

+ 4A(I)DBQ/(E’€Q’)B’ + 2¢CDBQ(I)CE/QB’ + 4VE’(DVB)B’A =0. (316)

3.2.5 Wave equation for the rescaled Weyl spinor

Proceeding as in the previous subsections, consider the equation
VoZ Appac =0. (3.17)

Observe that in this case a gauge source function is not required since in the defini-
tion of Ag'gac one already has a unsymmetrised derivative. Following the procedure

described in Section 3.2.1 renders

O¢asep — 20pgdapc® = 0.

Thus, to complete the discussion its necessary to compute Opgdapc®. Using the

spinorial Ricci identities renders

Opodasc® = Zoroapdsc’® + Zbéropedac™™® + Zorocpdan’ @ — 6Adapco

The symmetries of ¢ 4pcp simplify the equation since

Oipidaipic® = 326" ? (apdcpirg — 6A¢ancD.

Taking into account the last expression one obtains the following wave equation for

the rescaled Weyl spinor

Oéapcp — 62079 apdop)rq + 12Adacp = 0. (3.18)

Observe that the wave equation for the rescaled Weyl spinor is remarkably simple.

3.2.6 Wave equation for the Friedrich scalar and the

conformal factor

Since s is a scalar field, the general procedure described in Section 3.2.1 does not
provide any computational advantage. The required wave equation is derived from

considering

VAY Z 4aa = 0.
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Explicitly, the last equation can be written as
Os + VAYD 4040 VEOE + B poa e VAYVECE = 0.

Using the contracted second Bianchi identity (3.39) to replace the second term and
the conformal field equation encoded in Z44/gp = 0 along with the decomposition

(3.12) to replace the third term one obtains
Os — E@ACA/C/(I)ACAIC, — 3VCC/AVCC/E =0.

Finally, notice that a wave equation for the conformal factor follows directly from

the contraction Z4 444 and the decomposition (3.38):

OZ =4 (s+ AZ).

3.2.7 Summary of the analysis

The results of this section are summarised in the following proposition:

Proposition 1. If the conformal Einstein field equations (2.11a)-(2.11b) in vacuum,
are satisfied on U C M, and

Fe(x), Fap(x), A(x)
are smooth functions on M such that
V00 =F%z), V9 Togap=Fapx) V¥ Qbpopo =—-3VppA(x).
then one has that

D'a

Oepp® — 2e2P “®oppp + 6A epm® — e(a” *epyp VA B Co%

- QCacbe(AD,aVAmqu)D:b —Vee F¢(z) =0, (3.19a)

Coprag — 207 ap®piape — 3ATppran

+ 2E<25DEH(AFE|D/|HB) —2I'aip'D|B) — 2FED'1~J(B€|D|A))

+ QVC/DFE(C’Q|B|FED’)QA — 2V b®pacp — VopFap(r) =0, (3.19b)
U®pprB — 4q)P(BQI|B’|<I)D)PE/Q’ +6APpprp — 250w Ppe? T
+ 4A(DDBQ,(E’EQ’)B’ + 4VE’(DVB)B’A + 2¢CDBQ®CE’QB/ = 07 (319C)

Os — EP gcacr PACAY — 3V AVEC'E = 0, (3.19d)
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O¢ascp — 62679 aBdcp)rg + 12A¢apcp = 0, (3.19)
0= — 4 (s + AZ) = 0, (3.19f)
hold on U.

Remark 15. The unphysical metric is not part of the unknowns of the system of
equations of the spinorial version of the conformal Einstein field equations. This
observation is of relevance in the present context because when the operator [J is
applied to a spinor Nx of non-zero rank one obtains first derivatives of the con-
nection —if the metric is part of the unknowns then these first derivatives of the
connection representing second derivatives of g would enter into the principal part
of the operator [J. Therefore, since in this setting the metric is not part of the
AB_A'B'

unknowns, the principal part of the operator [ is given by € €AAEBB .

Remark 16. In the sequel let {e, I', ®, ¢} denote vector-valued unknowns encoding
the independent components of {eaa'¢, T'ccaB, PaaBp, Papcp} and let u =
(e, I, @, ¢, s, Z). Additionally, let du denote collectively the derivatives of u. With
this notation the wave equations of Proposition 1 can be recast as a quasilinear wave

equation for u having, in local coordinates, the form
g"(u)9,0,u + F(x;u,0u) = 0, (3.20)

where F' is a vector-valued function of its arguments and ¢g"” denotes the compo-
nents, in local coordinates, of contravariant version of a Lorentzian metric g. In
accordance with the current notation g"¥ = n®ey"e,” where, in local coordinates,

one writes e, = €,"0,,.

3.3 Propagation of the constraints and the

derivation of the subsidiary system

The starting point of the derivation of the wave equations discussed in the previous
section was the conformal Einstein field equations. Therefore, any solution to the
conformal Finstein field equations is a solution to the wave equations. It is now
natural to ask: under which conditions a solution to the wave equations (3.19a)-
(3.19f) will imply a solution to the conformal Einstein field equations? The general
strategy to answer this question is to use the spinorial wave equations of Proposition
1 to construct a subsidiary system of homogeneous wave equations for the zero-
quantities and impose vanishing initial conditions. Then, using a standard existence

and uniqueness result for wave equations, the unique solution satisfying the data
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will be given by the vanishing of each zero-quantity. This means that under certain
conditions (encoded in the initial data for the subsidiary system) a solution to the
spinorial wave equations will imply a solution to the original conformal Einstein
field equations. The procedure to construct the subsidiary equations for the zero
quantities is similar to the construction of the wave equations of Proposition 1.
There is, however, a key difference: the covariant derivative is, a priori, not assumed
to be a Levi-Civita connection. Instead, one assumes that the connection is metric
but not necessarily torsion-free. This derivative will be denoted by V. Therefore,
whenever a commutator of covariant derivatives appears, or in spinorial terms the
operator 0 AB = ﬁc'( AﬁB)C’, it is necessary to use the ?—spinorial Ricci identities
involving a non-vanishing torsion spinor —this generalisation is given in Appendix
3.4 and is required in the discussion of the subsidiary equations where the torsion

is, in itself, a variable for which a subsidiary equation needs to be constructed.

Remark 17. The introduction of a connection V which is not torsion-free is nec-
essary for the discussion of the subsidiary system as the torsion ¥ 4g¢ is part of the

zero-quantities to be propagated.

As in the previous section, the procedure for obtaining the subsidiary system is
similar for each zero-quantity. Therefore, a general outline of the procedure is given

in the next section.

3.3.1 General procedure for obtaining the subsidiary

system and the propagation of the constraints

In the general procedure described in Section 3.2.1, the spinor Ngax played the role
of a zero-quantity, while the spinor M4 g/ played the role of the variable for which
the wave equation (3.3) was to be derived. In the construction of the subsidiary
system one is not interested in finding an equation for Mg/ but in deriving an
equation for Ngax under the hypothesis that the wave equation for Mg/ is sat-
isfied. As already discussed, since the connection is not assumed to be torsion-free

the equation for Ngax has to be written in terms of the metric connection V.

Before deriving the subsidiary equation a couple of observations are in order. In
Section 3.2.1 the quantity Ngax = V(EB/MA)B/,C was defined. Then, decomposing

this quantity as usual one obtained
Ngax = VE® Mapi + %EEAVQB Mgpx.

At this point in the discussion of Section 3.2.1 a gauge source function VP M PQK =

Fy was introduced. Consequently, instead of directly deriving an equation for Ngax
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one has derived an equation using the modified quantity
Npax = VE? Mapik + sepaFi.

Accordingly, the wave equations discussed in Section 3.2 can be succinctly written
as VEA/]/V\EA;C = 0. Later on, one has to show that, in fact, ]/V\EA,C = Ngag if the
appropriate initial conditions are satisfied. In addition, observe that V4 ¢ N, EAK can
be written in terms of the connection V by means of a transition spinor QaaBc —

see Appendix 3.5 for definitions. Using equation (3.50) of Appendix 3.5 one obtains

VAcNaprx = VAo Napx — Q4o a™ Nupx
- QAC’BICH]/\?AHIC — = QAC/KH]/\?AB...H (3.21)

where g is the last index of the string x. For a connection which is metric, the

transition spinor can be written entirely in terms of the torsion as
QAA’BC = _QEBAA’C — 22A(C|A’\B) — 2SA’(C|Q’Q/€A|B)- (322)

If the wave equation for Mg encoded in VAC/]/V\ aBrx = 0 is satisfied, the first
term of equation (3.21) vanishes. Therefore, the wave equation discussed in Section

3.2.1 can be written in terms of the connection V as

_

VAc' Napk = Waerk, (3.23)
where
Waox = —Qca® Nupx — Q4o 8™ Nank — ... — Q' k™ Nap. 1.

The subsidiary system

In this section it is shown that by setting the appropriate initial conditions, if the
wave equation for M4 encoded in VAE/]/V\AB;C = 0 holds then ]/V\AB;C = (0. The
strategy will be to obtain an homogeneous wave equation for N agx written in terms

of the connection V. First, observe that v p]/\/\ aBk can be decomposed as
V?pNagk = V9 pNaysr + 2epaVe eNE gy (3.24)

Replacing the second term using equation (3.23) —i.e. using that the wave equation

for Mapg/x encoded in VA E/]/V\ aBi = 0 holds— renders

V?pNapr = VY pNaysi + 2epaW? i
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Applying VP ¢ to the previous equation and expanding the symmetrised term in

the right-hand side one obtains

VP V9 pNapx = WPy (VQ pNapx + V9 ANPBIC) + %VAQ/WQ BK
= —10Napk — Vo Ve AN e + iV Ao W9 Br,

= —%GNABK - % (ﬁPANPBIC + %EPAﬁNPBIC> + %VAQ'WQ/B/C-
From this expression, after some rearrangements one concludes that
ONapk = 20pac NP g — 2V 4 WY
ABK PAKIN” Bk AQ BK-

It only remains to reexpress the right-hand side of the above equation using the V-
spinorial Ricci identities. This can be computed for each zero-quantity using the
expressions given in Appendix 3.4. Observe that the result is always a homogeneous
expression in the zero-quantities and its first derivatives. The last term also shares
this property since the transition spinor can be completely written in terms of the
torsion, as shown in equation (3.22), which is one of the zero-quantities. Finally,

once the homogeneous wave equation is obtained one sets the initial conditions
NaBxkls =0 and (Ve Napk)|ls =0

on a spacelike hypersurface S, and using standard existence and uniqueness results
for wave equations it follows that the unique solution satisfying this data is given
by N ABK — 0.

Remark 18. The crucial step in the last derivation was the assumption that the

equation VAE/]/V\AB,C = 0 is satisfied —i.e. the wave equation (3.3) for Mapk.

Initial data for the subsidiary system

In this section the relations between the initial conditions

Nagxls =0, (Ver Nagr)|s = 0.

are analysed. Additionally, in the subsequent discussion it is shown how to use these
conditions to construct initial data for the wave equations of Proposition 1. More
concretely, the main purpose of this section is to show that only N, aBK|s = 0 is
essential, while ?EEJV aBls = 0 holds by virtue of the condition vAA' N aBxc = 0.
To do so, first observe that as the spatial derivatives of N Bk can be determined
from ]/V\AB;CIS = 0. Then, it follows that (ﬁEE’NABICMS = 0 is equivalent to only
specifying the derivative along the normal to the initial hypersurface S.

Let 744" be an Hermitian spinor corresponding to a timelike vector such that

AA'

TAAIIS is the normal to §. The spinor 7 can be used to perform a space spinor
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split of the derivative Vaa as discussed in Section 2.4.1 of Chapter 2. Using the
split of V as in equation (2.53) and Nagpxl|s = 0 it follows that

Ve Napxls = %(TEEfP]/V\AB/c) |s.

Therefore, requiring Ve N aBls = 0 is equivalent to ('P]/V\ aBK)|s = 0 as previ-
ously stated. Observe that the wave equation VAA'N aBk = 0 or, equivalently,
VAA N g = WA g implies (?AA/]/\?AB,C)]S = WA/B;CLS —recall that WA/B;C\S
is given entirely in terms of zero-quantities since the transition spinor can be writ-
ten in terms of the torsion. Therefore, assuming that all the zero-quantities vanish
on the initial hypersurface S it follows that (?AAIZ/V\ aBr)|s = 0. Using, again,
the space spinor decomposition of Vaa and considering N, aBk|s = 0 one obtains
(TAY PN spr)|s = 0 which also implies that (PN agk)|s = 0.

Summarising, the only the condition that is needed is that all the zero-quantities
vanish on the initial hypersurface S since the condition (?E 2 Na Br)|s = 0is always

satisfied by virtue of the wave equation VAA N aBre = 0.

Propagation of the constraints

To close the argument one has to show that N, aB = Nap. To do so, one writes

N 1
Napx — Napk = 5€aBUxk;

where Q) encodes the difference between N, aBk and Napr. Computing the trace
of the last equation and taking into account the definition of N 4pi one finds that
NA ax = Q. Invoking the results derived in the last subsection it follows that if
the wave equation V4 E,ﬁ aBx = 0 is satisfied and all the zero-quantities vanish
on the initial hypersurface S then N, aBik = 0. This observation also implies that if
N4 akls = 0 then N4 ax = 0. The later result, expressed in terms of (Qx means that
if Qx|s = 0 then Qx = 0. Therefore, requiring that all the zero-quantities vanish
on § and that the wave equation VAA' N, g = 0 holds everywhere, is enough to

ensure that

Napx = Nagxk

everywhere. Moreover, N ik = 0 implies that Ngapx = 0 and the gauge conditions
hold. Namely, one has that

VAB/MAB/;C = FK(I)

3.3.2 Subsidiary system and propagation of the constraints

The essential ideas of the Section 3.3.1 can be applied to every single zero-quantity.

One only needs to take into account the particular index structure of each zero-
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quantity encoded in the string of spinor indices x. The problem then reduces to the

computation of
OpaNF gy, Vae W sk,

the result of which is to be substituted into
ONapk = 20paNT g — 2V W2 pi. (3.25)

The latter can be succinctly computed using the equations (3.46a)-(3.46d) in Ap-
pendix 3.4. The explicit form can be easily obtained and renders long expressions
for each zero-quantity. The key observation from these computations is that (3.25)
leads to an homogeneous wave equation. The explicit form is given in Appendix 3.6.

These results can be summarised in the following proposition:

Proposition 2. Assume that the wave equations (3.19a)-(3.19f) of Proposition 1

encoded in
A © c c =
VepXae® =0, V™ pEascp =0,
C AN B’
V~eAcpep =0, Ve  ApBac =0,
! !
VaaZ4 =0, Zaa™ =0,

are satisfied on U C M. Then the zero-quantities satisfy the homogeneous wave

equations
0% ap® — 20paXF B¢ + 2V W[E]? B¢ =0, (3.26)
E/E\ABC’D’ — Qﬁprcl/E\ABPlD/ + 2$CIQW[E]QABD/ =0, (327)
OAP pes — 20pcAP pep + 2V oo WIA]? peE = 0, (3.28)
GAB’BAC — ZSPIB/AP/BAC + 2$B/QW[A]QBAC - 07 (329)
Van ZAY —W[Z1AY 4a =0, (3.30)
where
WE9 = V25, WE“4sp = Ve Eas” b
W[A}QIDBB/ = ﬁQIFEFDBBH W[A]QBAC = ﬁE’QAE/BACH
WI[ZJAY g0 = VAY Zaar,
onlU.

In the following, the set of equations (3.26)-(3.30) given in Proposition 2 will be
referred to as the subsidiary system. It should be noticed that the terms of the
form GPAZ/V\ P and W g can be computed using the V-Ricci identities and
the transition spinor Qg4 a'gc respectively. Using the subsidiary equations from the

previous proposition one readily obtains the following reduction lemma:
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Lemma 11. If the initial data for the subsidiary system of Proposition 2 is given

by
iABC|S =0, /E\ABC’D"S =0, 3ABCC/\S =0, ApBacls=0, Zaals=0,

where S is a spacelike hypersurface and the wave equations of Proposition 2 are
satisfied everywhere, then one has a solution to the vacuum conformal Einstein field

equations —in other words
Ya®=0, ZaBcp =0, Aapcc =0, Appac=0, Zaa =0,

in D(S). Moreover, whenever = # 0, the solution to the conformal Einstein field

equations implies a solution to the vacuum Einstein field equations.

Proof. 1t can be verified, using the V-Ricci identities given in the Appendix 3.4,
that the equations of Proposition 2 are homogeneous wave equations for the zero-
quantities. Notice, however, that the equation for Z 4 4/ is not a wave equation but
of a first order homogeneous equation. Therefore, if the zero-quantities vanish on
an initial spacelike hypersurface § then by the homogeneity of the equations one
has that

2aB°=0, Zapcp =0, Aapcc =0, Appac=0, Zaa =0,

everywhere on D(S). Moreover, since initially SABS =24 BS, = ABC'D' = ZABC'D’
and EABCC/ = Aapccr, one has that ¥ 45° =0, Zapep = 0, Aapce = 0 on
D(S). In addition, using that a solution to the conformal Einstein field equations
implies a solution to the Einstein field equations whenever = # 0 [15], it follows
that a solution to the wave equations of Proposition 1 with initial data consistent
with the initial conditions given in Lemma 11 will imply a solution to the vacuum
Einstein field equations whenever = # 0.

]

Remark 19. It is noticed that the initial data for the subsidiary equations give
a way to specify the data for the wave equations of Proposition 1. This observa-
tion is readily implemented employing a space spinor formalism which mimics the
hyperbolic reduction process to extract a first order hyperbolic system out of the
conformal Einstein field equations —see e.g. [17]. In the following, to illustrate this
procedure, initial data for the rescaled Weyl spinor encoded in Aagepls = 0 is

considered.
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Initial data for the rescaled Weyl spinor

A convenient way to specify the initial data

daBcDls, Poasepls-

is to use the space spinor formalism to split the equations encoded in Ay gcp = 0.
From this split, a system of evolution and constraint equations can be obtained.
Recall that Aagep = V9 ar »aBcq- Making use of the the decomposition of Vap =

784V a4/ in terms of the operators P and Dyp one obtains

Aapep = —iPéasep + P2 adsepao.

Evolution and constraint equations are obtained, respectively, from considering

EABCD = _2AABCD = ,P(bABCD - QDQ(A¢BCD)Q = 0, (eVOIHtiOIl equation)

OCD = AQQCD = DPqupQCD =0. (COHStI‘&iDt equation).

Restricting the last equations to the initial hypersurface S it follows that the initial
data ¢pocep|s must satisty Copls = 0 and the initial data for (P¢pgep)|s can be

read fOl"IIl EABCD|S = 0 1.e. (P¢PQCD)|S = 2DQ(A¢BCD)Q|S~

The procedure for the other equations is analogous and can be succinctly obtained
by revisiting the derivation of the first order hyperbolic equations derived from
the conformal Einstein field equations using the space spinor formalism —see for

instance [17].

Remark 20. The hyperbolic reduction given in [18] makes use of the metric version
of the conformal Einstein field equations, consequently, since in this formulation the
metric is part of the unknowns one has to append an equation for the metric. To do
so, one follows the discussion given in Section 2.1.3 of Chapter 2. In other words one
uses equation (2.2) and one considers Ry, in local coordinates (z#) as an expression
involving second order derivatives of the metric components. However, the princi-
pal part of Ru[g], seen as an expression involving second order derivatives of the
metric components, is not necessarily hyperbolic. To recast the system of second
order equations (3.2)-(3.4) and (3.8)-(3.9) given in [18] it is necessary to impose
the appropriate gauge condition. In [18] the gauge is fixed imposing a generalised

wave-map gauge.

One of the advantages of deriving wave equations using the spinorial version of
the conformal Einstein field equations is that the metric is not part of the unknowns
so that the principal part of [ is always hyperbolic. In this case, instead of writing

an equation for the metric one has to write equations for the frame and connection
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coefficients denoted by e4sa/® and I'ga B¢ respectively. Another difference to be
emphasised is that, in the spinorial approach put forward in this thesis, the algebraic
structure of the spinorial version of the conformal Einstein field equations can be
exploited to derive the wave equations in a systematic way. This can be noticed for
instance in the derivation of the wave equation for the rescaled Weyl spinor ¢ apcp

in comparison with that for the rescaled Weyl tensor d%.q.

3.4 Appendix: Spinorial relations

In this appendix several relations and identities that are used repeatedly throughout
this chapter are recalled —see Sections 4.6, 4.7, 4.9 and 4.10 of [29]. In addition,
using the remarks made in [46] a generalisation of the spinorial Ricci identities for

a connection which is metric but not necessarily torsion-free is obtained.

3.4.1 The Levi-Civita case

In this section some well-known relations satisfied by the curvature spinors of a Levi-
Civita connection are revisited. The discussion of this section follows [29], Sections

4.9 and 4.11. First recall the decomposition of a general curvature spinor
RaaBBcc'pp' = RaBcc'ppépa + RapccppeBa.
In addition, the reduced spinor Rapcc'pp’ can be decomposed as

Rapcc'pp = Xasepeo'p +Yase'peep,

where
!

\ _ 17 E > _ 17 E
XaBcep = 3RaB(c|E D) YaBcp = 5RaBE(C’” D)

In the above expressions the symbol " over the kernel letter indicates that this
relation is general —i.e. the connection is not necessarily neither metric nor torsion-

free. The spinors X sgcp and Yapep are not necessarily symmetric in »2p.

It is well known that if that the connection is metric, then the spinors X ABCD

and }A/A Bc'p have the further symmetries:

_

Xapop = X(AB)CD; Yapop = Yo (3.31)

—_

The symbol " is written over the kernel letter to denote that only the metricity
of the connection is being assumed. If the connection is not only metric but, in

addition, is torsion free (i.e. it is a Levi-Civita connection) then the first Bianchi
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identity Rappeq) = 0 can be written equivalently as
R ap® =0, (3.32)

where R* qped = %ecd‘“’f Rapes and €gpeq is the totally antisymmetric Levi-Civita ten-
sor. Notice that equation (3.32) can be written in spinorial terms as —see equations

(4.6.7) and (4.6.14) of [29]

CB'BC'
RaaBp = 0.

The last equation in turn implies that Xgp®F = XgpSF and Yapas = Yap an.
Accordingly Xgp®F is a real scalar and Yagasg is a Hermitian spinor which, fol-
lowing the notation of [29], will be denoted by ® apa'p' = ®arprap. Collecting all
this information and decomposing in terms of irreducible components one obtains

the usual decomposition of the curvature spinors

XaBep = VYapep + AMeppeca + €cBépa), Yapc'p = PaBc'p,

where U pep is the Weyl spinor and ® 4gc/pr is the Ricci spinor. The latter
is the spinorial counterpart of a world tensor (because of its Hermiticity which is
consequence of the first Bianchi identity) and A is a real scalar (consequence of the
first Bianchi identity again). Additionally, observe that X A(BC)A = 0. This is a
consequence of the symmetry under the interchange of pairs Rgped = Redap Of the
Riemann tensor of a Levi-Civita connection. For a general connection the right hand
side of last equation is not necessarily zero —the reason is that the interchange of
pairs symmetry is a consequence of the antisymmetry in the first and second pairs
of indices and the first Bianchi identity which for a general connection involves the

torsion and its derivatives.

In the Levi-Civita case, the spinorial Ricci identities are the spinorial counterpart
of
[VaVp|ve = RCeqpv®.

These identities are given in terms of the operator Uap = Vg4V B)Ql. The spino-

rial Ricci identities are given in a rather compact form by

OalC = X%,  Dapt€ = dap©ee, (3.33)

Oaéc = —Xapc®% o, Dapéc=—-Papc%%o. (3.34)

It is useful to combine these identities with the decomposition of X 4pcp to obtain
a more detailed list of relations. The following expressions are repeatedly used in

this chapter:

Oagéc = Vapct? — 20 acp)c, Oséo) = Vapcoé?, (3.35)
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Oapt® = —3A¢a, Dapéc =E%%gcan. (3.36)

Using these relations and the Jacobi identity (e -identity) the second Bianchi identity

can be expressed in terms of spinors as
A Al
V% Xapcp = V" BPcpap-

For completeness, the relation between ® 4p4-p and the Ricci tensor and between

R and A is given explicitly:
Rac — RAA’CC’ = zq)AC’A’C’ — 6A€AC€A’C’7 R = —24A. (337)

From the above expressions it follows that 2® g 4/p/ is the spinorial counterpart
of the trace-free Ricci tensor Riqpy = Rap — %Rgab. From this last observation, it
follows that the spinorial counterpart of the Schouten tensor can be rewritten in
terms of ®q4/pp and A. Recalling the definition of the 4-dimensional Schouten

tensor Lgp = %Rab — %Rgab and equation (3.37) one gets

Lapas = Pacacr — Aeacearc. (3.38)
The second contracted Bianchi identity can be recast in terms of these spinors as

VEY®epap +3Vpe A =0. (3.39)

3.4.2 Spinorial Ricci identities for a metric connection

It this section the case of a connection V which is metric but not torsion-free is
considered. First, one needs to obtain a suitable generalisation of the operator
Oap. In order to achieve this, observe that the relation [V, VpJu® = R qpu valid

for a Levi-Civita connection extends to a connection with torsion as
- d od c co . d
[Vaa vb]u =R cabll” + Za bvcu .

Another way to think the last equation is to define a modified commutator of co-

variant derivatives through
[[vaa vb]]ud = <[va7 Vb] - Eacbvc> ud-
In this way one can recast the Ricci identities as

[[?a, ?b]]ud = }A%dcabuc.
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This observation leads to an expression for the generalised operator
ﬁAB = $C’(A$B)C/-
The relation between this operator and the commutator of covariant derivatives is
[ﬁAAH?BB’] = eapDan +eaplap.

One cannot directly write down the equivalent spinorial Ricci identities simply by
replacing X and Y by X and Y because of appearance of the term Zacbﬁcud in the
commutator of the covariant derivatives. A way to get around this difficulty is to
define a modified operator Hap formed using the modified commutator of covariant
derivatives instead of the usual commutator. In this way, one can directly translate
the previous formulae simply by replacing X and Y by X and Y . The relation

between 5 ap and m aB can clarified observing that

e H$CCH $DD']]
' ([$CCH$DD’] - ZCC'EE/DD'$EE')

(?D/C$DD, + ?D/Dﬁcl), - ECD/EE,DDlﬁEE/) . (340)

Hep =

N[= N[= N

Using the antisymmetry of the torsion spinor one has the decomposition

/

! !/
Saa““ B =€asZa" 5 +teantal p, (3.41)

EFE'

where the reduced spinor is given by X o *¥ g = %E( A‘Q/|EE/ B)Ql. Using this decom-

position and symmetrising expression (3.40) in the indices ¢p one obtains
Bep = VoeVp? — 2% pVew = Ocp — 2 pVEp.

Therefore
Oap =B +Za%F 5VEp. (3.42)

In order to compute explicitly how = AB acts on spinors it is sufficient to compute

the generalised spinors X apcp and ®aperpr.

As discussed in previous paragraphs, the fact that the connection is not torsion free
is reflected in the symmetries of the curvature spinors. Notice that, the symmetries
in equation (3.31) still hold due to the metricity of V. Nevertheless, the interchange
of pairs symmetry of the Riemann tensor, the reality condition on X, sp°F and the
Hermiticity of ) aBc'p do not longer hold as these properties rely on the the cyclic

identity Rgpabe) = 0. In fact, the first Bianchi identity is, in general, given by

Rd[abc] + v[azbdc] + Z[a,ebzc]de = 0.
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It follows that X, A( BC)A does not necessarily vanish and, generically, it will depend
on the torsion and its derivatives as can be seen from the last equation. Nonetheless,

one labels, as usual, the remaining non-vanishing contractions of X sgcp

_

Xap“? =64, Xacp) = Yapcp Xamoy* = Hpe,

where Hpc is a spinor which, as discussed previously, depends on the torsion and
its derivatives. The explicit form of Hge will not be needed. Finally, recall the

general decomposition in irreducible terms of a 4-valence spinor éapep:

éaBep = &asep) + 2ampt + 36pF cpjean + 1p Q% anecn

+3eacép)B + s€B(céD)A — 3€a(CED)BE-

where
§aB = fQ(AB)Q7 §= fPQPQ-

Using the above formula one obtains the following expressions for the irreducible

decomposition of the curvature spinor X agcp:

Xapep = Vapep + A (eacesp + capese) + teacHpys + seBcHpya. (3.43)
In order to ease the comparisons with the Levi-Civita case let

YaBc'p = Pacp- (3.44)
Observe that, in contrast with the case of a Levi-Civita connection, A is not real

and ® aBc'p' is not Hermitian. In other words, one has that
A=K #0, o — Pamop # 0, Hap # 0. (3.45)

In fact, the right hand side of the previous equations depends on the torsion and
its derivatives —see [46]. However, its explicit expression is not required in the
discussion of this chapter. Having found the curvature spinors, one can derive
the spinorial Ricci identities. As discussed in the previous paragraph, the modified
operator = ap formed from the modified commutator of covariant derivatives satisfies
a version of the spinorial Ricci identities which is obtained simply by replacing the
curvature spinors X gspcp and ® 4pcps by the spinors X aBcp and ) aBc'p - The

Ricci identities with torsion are then given by
Oapé€ = Xapo®e? +ZaP 5Vpp i,

DA/Blgc = @A/B/chQ + EA/PP Blvpplgc’

Oapéc = _)A(ABCQfQ“‘EAPP/B?PP’fCa
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Oapéc = —Papc% g +2a"" 5 Vppiéc,

with )A(ABCD and gABC/D/ given by equations (3.43) and (3.44). The primed version
of the last expressions can be readily identified. More importantly, the detailed

version (in terms of irreducible components) of the spinorial Ricci identities become

Oaptc = $ABCQ€Q - 2Kf(AEB)c + Uapcgé? + Y APP 5Vppitc, (3.46a)
Oaée) = Vapcat? + 2P 5V prfo), (3.46b)
Oapt® = —3Aéa + Hapt® + 24P 5Vpp B, (3.46¢)
ﬁA/B'fC = fQiQCA/B/ + iA’PP/B’ﬁpP’SC- (3.46d)

The above identities are supplemented by their complex conjugated version —
keeping in mind the non-Hermiticity of ) aBc'p and the non-reality of A as stated

in expression (3.45). In the last list of identities the quantity Uapcp is defined as
Uagcp = seaccHpys + 3¢B(cHp)a. (3.47)

The Levi-Civita case can be readily recovered by setting £ 4P 5 = 0 since in such
case, the spinors Hap and Uapep also vanish. Moreover, the pair interchange

symmetry is recovered and the expressions in (3.45) become equalities.

3.5 Appendix: The transition tensor and the

torsion tensor

In this appendix the transition spinor relating a Levi-Civita connection V with a
connection V which is metric but not necessarily torsion-free is discussed. The
general strategy behind this discussion can be found in [29]. Given two general

connections V and V one has that
(\Va - va)gb = QabC£c

where Q42 is the transition tensor. It is well known that for the case of a Levi-Civita

connection V and a metric connection V one has

Eov.cb = _2Q[acb] Qabc = Qa[bc]- (348)

Therefore, the spinorial counterpart of the transition tensor can be decomposed as

Qaaspcc = Qaapcepc + Qaapcepc (3.49)
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where
/!

Qaabe = 2Qani10)? -

This expression allows to translate expressions containing the covariant derivative

V to expressions containing V and the transition spinor ) 4a'gc as follows:
Vaa® =Vaac® +Qan’qt?, Vaabe =Vaakc — Qaacéq. (3.50)

These expressions can be extended in a similar manner to spinors of any index

structure. Now, from the equations in (3.48) it follows that

QaCb - _Ea[cb] - %Ecab- (351)
Using the above equation along with the decompositions (3.49) and (3.41) gives

Q

Qaasc = —2YBjaaic) — 28 aclaB) — 2Zaclo® €aB)-

3.6 Appendix: Explicit expressions for the

subsidiary equations

In Section 3.3.2 it was shown that the generic form of the equations in the subsidiary
system is
ONapx = 20paNF g — 2V 240 W9 Bk

In this section results of Appendices 3.4 and 3.5 are used to compute explicitly the
terms UpaNF g and W< gi for every zero-quantity. A direct computation using

Appendices 3.4 and 3.5 render

OpaXfp® = —3AXap° + HpaXF g + UpapelFC e - 2K§P(PCEA)B
+UPABQ§P(PC€A)B + QZPQQ/AﬁQQ’E\PBca

= = P’ = P = = 5 = = P’
Upc'z=aB™ p = HQB pPqapc + EP'QQ cVQQEaB ¢
= P = = 5 = = 2%
+549 pPagprc + S p 99 cVooZas ¢
A QQ’

r— I = P’ S - _ P’
—AZaBc'p + Hpc'ZaB™ D +Xp~" V@@ =aB D'

+$P’C’D’Q’/E\ABP,Q, - K/E\ABP,(P’EC/)D’ + UP’C’D’Q’/E\ABP/QI

+iP’QQ/C’$QQ’/::ABP,D’ )

OpcAP ppr = —3AAcppr + Hpe AP pppr + EPQQIC§QQ/£PDBB'
+@PCDQ3PQBB/ - 2K3P(P\DBB'\EC)D + UPCDQEPQBB/
+2PQQIC$QQ'3PDBB' + @PCBQKPDQB’ - QKEPD(P\B’\EC)B
+UPCBQ3PDQBB’ + EPQQ/CﬁQQ’KPDBB’ + KPDBngQ’B’PC
+2PQQIC$QQ'£PDBB',
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Op AP Bac = AP,QAcéQBP/B’ + SP’QQ/B’ﬁQQ’AP/BAC — 3AApBac
+Hpp AP Bac + 2P/QQ/B/ﬁQQ//\PlJE;A(J + AP,BQ(J%QAP/B/
+SP’QQ/B’$QQ’AP/BAC + AP/BAQ(I)QCP’B’
+3p99 5 Voo AT Bac.

Moreover, one has that

WS? ¢ = Q9 52 S F ¢ — Q9 PSP e,

W(=E9asp = ~Q% a"Zre" b — Q9T Ear® b + Q%2 rZas" b
~Q%wp"Ea" F,

WIAI? b = Q¥ eA  ppp — Q¥ Ep AP ppp — Q¥ e AP prp

R F'YE
_QQ EB’ A DBF',

_ G F\E ~ GE \F G F\E
WA®Bac = Qe AP pac + Qe F p A" pac — Qe A" AP Brc
FAE
—Qe%cFAF gar,
! / — !/ !
W22 pa = —Qan?5ZFY — Qaa™ g Z2FF,

where the transition spinor is understood to be expressed in terms of the reduced

torsion spinor which is, in itself, a zero-quantity —see equation (3.22).



4 Non-linear stability of the Milne

spacetime

In this chapter an analysis of the non-linear stability of the Milne spacetime is given.
This discussion is an application of the hyperbolic reduction procedure put forward

in Chapter 3. The discussion given in this chapter is based on:

Gasperin E. and Valiente Kroon J.A., “Spinorial wave equations and stability
of the Milne spacetime,” Classical and Quantum Gravity 32 (Sept., 2015) 185021,
arXiv:1407.3317 [gr-qcl.

The Milne Universe is a Friedman-Lemaitre-Robertson-Walker (FLRW) solution
to the Einstein field equations with vanishing Cosmological constant and negative
spatial curvature —see e.g. [20]. The Milne Universe can be seen to be a part of
the Minkowski spacetime written in comoving coordinates adapted to the world-
line of a particle. Accordingly, analysing the non-linear stability of the Milne Uni-
verse is essentially equivalent to obtaining a proof of the semiglobal stability of the
Minkowski spacetime —see [8]. The analysis of the semiglobal non-linear stability of
the Minkowski spacetime given in [8] makes use of the standard conformal Einstein
field equations and the first order hyperbolic reduction discussed in Section 2.4.2 of
Chapter 2. Nevertheless, in principle, one could recover some of the classical results
by H. Friedrich —say [8, 9]— using the system of wave equations discussed in Chap-
ter 3 instead. With this motivation in mind, the Milne spacetime was chosen for
analysis in this chapter to show how to use the system of wave equations of Chapter
3 on a specific application.

In the analysis of this chapter, the stability result follows from the general theory
of quasilinear wave equations, in particular the property of Cauchy stability, as given
in [21]. In broad terms, this stability result for the Milne Universe can be phrased

as:

Main Result 1. Initial data for the conformal wave equations close enough to the
data for the Milne Universe give rise to a solution to the Einstein field equations
which exist globally to the future and has an asymptotic structure similar to that of

the Milne Universe.

As in the case of first order hyperbolic reductions of the conformal Einstein field

equations —see e.g. [17]— some of the methods discussed in this chapter are not

74
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Figure 4.1: Penrose Diagram for the Milne Universe. The diagram for the Milne
Universe corresponds to a portion (shaded area) of the Penrose diagram of the
Minkowski spacetime. The boundary HT U H~ corresponds to the limit of the region
where the coordinates (t, x) are well defined. The region of spacetime obtained from
evolving hyperboloidal initial data, as discussed in this chapter, does not correspond
to all the shaded area in this diagram —compare with Figure 4.2.

only applicable to the Milne spacetime but more generally to spacetime manifolds
whose spatial sections are orientable compact manifolds. For this, one makes use the
localisability property of solutions to hyperbolic equations —see e.g. [3] for further

discussion on this type of constructions.

4.1 Basic properties of the Milne Universe

The Milne Universe is a Friedman-Lemaitre-Robinson-Walker vacuum solution to
the Einstein field equation with vanishing Cosmological constant, energy density
and pressure. In fact, it represents a flat spacetime written in comoving coordinates
of the worldlines starting at t = 0 —see [20]. This means that the Milne Universe can
be seen as a portion of the Minkowski spacetime, which in turn can be conformally
related to the Einstein Cosmos, (Mg = R x S?,g) (sometimes also called the
FEinstein cylinder) —see Figure 4.1. The metric é of the Milne Universe is given in

comoving coordinates (¢, x, 0, ) by
g=dt®dt—1? (dx ® dx + sinh? y (dQ ® df + sin? dyp @ d<p)) (4.1)

where
te (—O0,00), X € [0700)7 0 € [07,”]7 ¢€ [0727r)

In fact, introducing the coordinates

7 = tsinh y, t = tcoshy
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the metric reads
g=di®di —dr®dr —*(df ® df + sin*0dp @ dy) .

Therefore, 2 — #? > 0, and the Milne Universe corresponds to the interior of the
light cone through the origin in the Minkowski spacetime as shown in the Penrose
diagram of Figure 4.1. As already discussed, this metric is conformally related to

the metric g of the Einstein Cosmos. More precisely, one has that

o

[1]

§-%%

where the metric of the Einstein cylinder, g, is given by
g=d7T ®dT — b,

with A denoting the standard metric of S?

h=dy ®dy + sin? vdf ® db + sin® ¢ sin® dyp @ de.

The conformal factor relating the metric of the Milne Universe to metric of the

Einstein Universe is given by
==cosT + cos 1,
and the coordinates (7', 1) are related to (¢,7) via
T = arctan(t + 7) + arctan(t — 7), 1 = arctan(t 4+ 7) — arctan(t — 7).
Equivalently, in terms of the original coordinates ¢ and x one has
sin v [cos ) — cosT
XZMCtan(sinT) , t= m.

Therefore, the Milne Universe is conformal to the domain

M={peMglO<t<m v—n<T<rm—1, [T|>u}

4.2 The Milne Universe as a solution to the wave

equations of Proposition 1

Since the Milne Universe is a solution to the the Einstein field equations, it follows
that the pair (g, E) implies a solution to the conformal Einstein field equations which,

in turn, constitutes a solution to the wave equations of Proposition 1. Following the
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discussion of Sections 2.1.2 and 2.1.4, this solution consists of the frame fields
{€a® Tale, Labs A*beds Xa, E, 5}
or, equivalently, the spinorial fields
{ean.Taa®c,Paasp,dascp, Saa, S, 2, s}

where one writes X, = Vo= and V442 = Y24 as a shorthand for the derivative

of the conformal factor.

For later use, notice that in the Einstein Cosmos (Mg, g) one has

Weyl[g] = 0, R[g] = —6, Schouten[g] = 5 (dT ® dT + h) .

1
2
The spinorial version of the above tensors can be more easily expressed in terms of
a frame. To this end, now consider the class of geodesics on the Einstein Cosmos
(M. §) given by

z(r) = (1,24), TER,

where z, € S? is fixed. Using the congruence of geodesics generated by varying x,
over S? one obtains a Gaussian system of coordinates (7, 2%) on the Einstein cylinder
R x S? where (2) are some local coordinates on S*. In addition, in a slight abuse of
notation the standard time coordinate T on the Finstein cylinder is identified with

the parameter T of the geodesic.

4.2.1 Frame expressions

A globally defined orthonormal frame on the Einstein Cosmos (Mg, g) can be con-

structed by first considering the linearly independent vector fields in R*

I
8
|
|
|
+
|
|

Ci
Q=W =Yg T 25 — T

C3 = W——

where (w,,y,2) are Cartesian coordinates in R*. The vectors {c;} are tangent
to S* and form a global frame for S* —see e.g. [8]. This spatial frame can be
extended to a spacetime frame {€,} by setting €9 = 0, and é; = ¢;. Using this
notation one observes that the components of the basis respect to this frame are
given by é, = d,%cp, = é.%cp,. Respect to this orthogonal basis the components of
the Schouten tensor read )

iab = 5(1050.0 - §nab-



4.2: The Milne Universe as a solution to the wave equations of Proposition 1 78

so that the components of the traceless Ricci tensor are given by

. 1
R{ab} = 25a05b0 - 577@1)

where the curly bracket around the indices denote the symmetric trace-free part of
the tensor. In addition,

o

dabcd =0
since the Weyl tensor vanishes.

Let #;9% denote the connection coefficients of the Levi-Civita connection D of
h with respect to the spatial frame {c;}. Observe that the structure coefficients

defined by [e;, ¢;] = Ci¥;cx are given by C;*; = 2¢;;%, and, consequently

'OYikj = _Ez’kj
where €;*; is the 3-dimensional Levi-Civita totally antisymmetric tensor. Taking

into account that €9 = 9, is a timelike Killing vector of g, one can readily obtain
the connection coefficients f‘abc, of the Levi-Civita connection V of the metric g,

with respect to the basis {€,}. More precisely, one has that
I‘a,bc = _GOabc-
For the conformal factor and its concomitants one readily obtains

Y=Y =—sinT, ¥ = ¢(2), § = —1(cosT + cos ).

4.2.2 Spinorial expressions

In order to obtain the spinor frame form of the last expressions let 744" denote the
spinorial counterpart of the vector V28, so that 74474 = 2. With this choice,
consider a spinor dyad {e44} = {0?,:4} adapted to 744" —i.e. a spinor dyad such

/
AA" can be used to

that 744" can be written as in equation (2.50). The spinor 7
introduce a space spinor formalism similar to the one discussed in Section 2.4.1 of

Chapter 2. One directly finds that in the present case
éAA/b = O'AA/aéab = O'AA/b. (42)

where 0 44/% denotes the Infeld-van der Waerden symbols given in equations (2.9a)-
(2.9b). Now, decomposing é44:® as in equation (2.51) and comparing with equation
(4.2) one readily finds that the components of the space spinor split of the frame,

¢® and €%, are given by

50 s 0
0 =2, eap =0,
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o1 ° i 3
€ :O, €AB — O0OAB .

where 0 45° are the spatial Infeld-van der Waerden symbols given in equation (2.52).
These expressions provide a direct way of recasting the frame expressions of Section
4.2.1 in spinorial terms. Denoting by 2d aa'p’ the spinorial counterpart of }?{ab}

one obtains
‘i)AA'BB/ = %UAA’GUBB’bé{ab} = UAA’OUBB’O - ieABeA’B’-
From equation (2.50) one sees that 744 = v/2044/°. Accordingly,
‘i)AA/BB/ = %TAA/TBB’ - iGABﬁA/B/-

To obtain the reduced spin connection coefficients one proceeds as follows: let
I aaBB oo denote the spinorial counterpart of [pl.. Since I'g®e = —coa’e, One
can compute its spinorial counterpart by recalling the spinorial version of the vol-

ume form

€AA'BB'CC'DD’ — i(EACEBDEA/D/EB/C/ - 6ADEBCEA/CIEB/D/)-

It follows then that

cc’ 1. AA cc’ ’

’ __1.cC c c'_ cC
I'ep DD’ = — /5T €AA'BB’ DD/——W(T D€BDEB’” — TD" €B €BD!).

Combining the last expression with the definition of the reduced spin connection

. ° ° / .
coefficients ' 44 = 1’449 B one obtains

FBB'CD = —T\l/g(TCQ'EBmSB/Q - TDQ EB’Q’(SBC) = —ﬁ(GBDTcB' + TDB/5BC)-
Thus, one concludes that
F'aaBc = _%ﬁA(CTB)A/-

Finally, for the rescaled Weyl spinor one has
$ancp = 0.

Gauge source functions for the Milne spacetime

The expressions for fabc and é,* derived in the previous sections allow to readily
compute the gauge source functions associated to the conformal representation of

the Milne Universe under consideration. Regarding €,® as the component of a
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contravariant tensor one computes
ﬁbéba - ncz)%céba - UCb(éc(éba) - fcebéea)
where e, = ¢.°c.. Using that in this case €,* = %, one obtains
Vbép® = =12 = n%®ege®s = 0.
Therefore, the coordinate gauge source function vanishes. That is, one has that
}%a(x) = %AAICSAA/G =0.

The frame gauge source function can be obtained as follows

%afabc - nda%dfabc - nda (éd<fabc) + 19‘dbef‘aec - 19‘deaf‘ebc - ICi‘decf‘eba>

da 2 d da b e da e b da e b
=N ed(‘SOa c) +77 €od e€0a ¢ — 1 €od a€e ¢ — 17 €od c€oe a

ab e b ae
= €0 e€0a c — €0a ef0 ¢ = 0.

. . . .. © ’ . >
Therefore, using the irreducible decomposition of I'y /B8 c¢ in terms of ['qa B

given in (2.12a), one concludes that

o

I%AB(x) == VQQ/FQQ/AB = 0.

Finally, the conformal gauge source function is determined by the value of the Ricci
scalar, in this case R = —6. It follows then that

A=

P

Summary

The main results of this section are collected in the following proposition:

o

Proposition 3. The fields (2,5, %3, §, €% T'a®e, Lab, d%ed) given by

= =cosT + cos, Y = —sinT, i = ¢i(2), €a? = 047, d%peq = 0,

N b b o 050 _ 1 o 1
I'2’c = —€0a’es Lab = 204°06° — 37ab, § = —5(cosT + cos1p),
or, alternatively, in spinorial terms, the fields
o .. be B s .
(E,X44,5,€a4",Taa"c,PaaBp, PaBcD)

with = and s as above and

b

0 b - 1
€aa’” =0a4", F'aaBc = ——

— 5EABTO)A'; ¢aBcp =0,
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. . ) . -
®aa'BB = 5TAATBB' — [€ABEAC, Yaar = 044%q(2),

defined on the Einstein cylinder R x S® constitute a solution to the conformal Ein-
stein field equations representing the Milne Universe. The gauge source functions

associated to this representation are given by

F(z) =0, Fap(z) =0, A=

1
1

The solution is smooth on M as defined Section 4.1. Moreover, one can smoothly

extend this solution to the Einstein cylinder R x S3.

Initial data for the Milne spacetime

The expressions in Proposition 3 readily imply initial data for the wave equations
(3.19a)-(3.19f) on the hyperboloids

H={peRxS*|7(p) =1, cosT, +costp(p) > 0}, T € [3m, ). (4.3)

By construction, the development of this data is (a portion of) the Milne Universe.

In what follows, for simplicity, the discussion will be restricted to the initial data

on the so-called standard hyperboloid
He = {p eR xS | 7(p) = im, cos(p) > 0}.

Nevertheless, this analysis can be readily extended to any of the hyperboloids H
defined in expression (4.3). The intersection of the standard hyperboloid with the

conformal boundary .# 7 is given by
Z, = {p e H.| cosyp(p) =0}.

Restricting the expressions of Proposition 3 to H,, one obtains the following initial

data for the wave equations of Proposition 1:

i

=l — s bl _ b T _
Ely, =costp, éaa’ln, =oaa”’, Taasclu. = V2EABTC)A

(i)AA’BB"H* = %TAA’TBB/ - iEABGAC, EAA"H* = O-AAaca(é)”H*7
Sly, = —2costp, PEly, =3lu, = —3, Péaallu. =0, dapeplu, =0,
Plaasclu, =0, POaapplu, =0,

Péapcpln. =0, Psly, = isinT..
Observe that the above data is, in fact, smooth on the whole of the hypersurface

S*E{pERXS3|T(p):%7T}DH*
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of the Einstein cylinder. In what follows, the set S, will be the paradigmatical
hypersurface on which initial data for the wave equations (3.19a)-(3.19f) will be

prescribed.

4.2.3 Perturbation of initial data

To discuss the stability of the Milne Universe it is necessary to parametrise pertur-
bations of initial data close to the data for the exact solution. To do so, consider
a basic initial data set for the conformal field equations in vacuum and vanishing
Cosmological constant, namely a collection (S, h, K, €, 3) —here K is used instead
of x to avoid confusion with the coordinate y in equation (4.1)— satisfying (2.76a)-
(2.76b) with A = 0.

Hyperboloidal initial data

Motivated by the prototypical example of the Milne Universe, in what follows solu-
tions to the conformal constraint equations (2.76a)-(2.76b) corresponding to hyper-
boloidal data will be considered. A solution (S, h, K,2,Y) to equations (2.76a)-
(2.76b) will be said to be hyperboloidal data if there exists a 3-dimensional manifold
H C S with boundary Z, such that

Q>0 on intH,
Q=0, dQ2 # 0, Y <0, on Z=0H~S%

The construction of hyperboloidal initial data has been analysed in [47, 48]. To
discuss this point in more detail recall from Section 2.5 of Chapter 2 that a physical
initial data set (5‘, h, K) is related to an unphysical data set (S, h, K,Q, ) via

where ¥ = n*V,Q and n, = Qn, denote the g-unit and g-unit normals to the
initial hypersruface. Now, consider initial data sets for which the physical second

fundamental form is pure trace:

Then, as a consequence of the momentum constraint (2.75b), K is constant and the
problem reduces to the analysis of the the Hamiltonian constraint. Observe that, in

this case, equation (2.76a) reduces to

40D, D'Q — 6DQDIQ + 20%r = K2, (4.4)



4.2: The Milne Universe as a solution to the wave equations of Proposition 1 83

Let o be a smooth function on § such that

olas =0, dolas # 0.

The function p is regarded as a boundary defining function. Consider the Ansatz
Q = pd~2 with ¥ > 0 on S. With this Ansatz, equation (4.4) implies an elliptic
equation for ¥ which is singular at dS. This equation has been analysed in [47].

The conclusion of such analysis is the content of the following

Lemma 12. Let (S, h) be a smooth Riemannian manifold with boundary OS. Then,
there exist a unique positive solution 9 to the equation implied by (4.4) with Q =

p9~2. Moreover, the following are equivalent

(i) The function ¥ and the tensors

1 1 2
1 1
dij = @D{iDj}Q + ﬁ?‘{ij} (4.6)

determined on S by h and Q = p0~2 extend smoothly to S.
(i) The Weyl tensor C%.q computed from data on S vanishes on 0S.

(111) The conformal class [h] is such that the extrinsic curvature of OS with respect

to its embedding in (S, h) is pure trace.

The expressions for L;; and d;; in Lemma 12 correspond to the spatial part of
the (4-dimensional) Schouten tensor L, and electric part of the rescaled Weyl ten-
sor d%.q as determined by the conformal constraint equations (2.74a)-(2.74j). The
latter theorem has been extended to include more general forms of physical second
fundamental forms K;; in [48, 49].

Remark 21. Despite the fact that the Milne spacetime corresponds to the region of
the Einstein cylinder denoted by M —as given in Section 4.1— one can extend the
fields describing the Milne solution in Proposition 3 to the whole Einstein cylinder
R x S3. In particular, the coordinate 7 can be extended to 7 € R. Additionally,
although the standard hyperboloid H, on the Milne spacetime —see expression 4.3—
is completely contained in a hemisphere of S* one can extend the data on H, to data
on all S* —see Remark 22. Observe that, in the case of the exact Milne spacetime,

the 3-metric in the initial data corresponds to the standard metric on S3.

Motivated by observations in Remark 21, to study perturbations of exact Milne
data, we will consider 3-manifolds S which are topologically (but not metrically)
S? —that is, S ~ S3. Accordingly, one considers a diffeomorphism ¢ : & — S3.

This diffeomorphism and its inverse can be used to pull-back coordinates (z®), the
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frame fields {c;} and associated coframe fields {a’} on S? to fields on S. In a slight
abuse of notation the coordinates, vector and covector fields on S are denoted again
by (%), {c;} and {a?}. Observe that while {c;} are orthonormal with respect to
the standard metric of S*, they will not be orthonormal, in general, with respect
to the metric h obtained from the solution to the conformal constraint equations
(2.76a)-(2.76b).

The inherent freedom in the choice of the diffeomorphism v can be exploited to
make 1 a harmonic map and the correspondence between coordinates of S* and S

the identity —see [17] for further details on this construction.

Parametrising the initial data

Assume one is given a hyperboloidal solution (S, h, K, €, 3) to the conformal con-
straint equations (2.76a)-(2.76b) defined on a H C S. Let {e;} denote a h-
orthonormal frame over S and let {w®} be the associated cobasis. Assume that
there exist vector fields {é;} such that an h-orthonormal frame {e;} is related to
an h-orthonormal frame ¢; through e; = ¢; + €;. This last requirement is equivalent

to introducing coordinates on S such that
h=h+h=h+h. (4.7)

Notice that the notation ° is used to denote the value in the exact (background)

solution while ” is used to denote the perturbation.

To measure the size of the perturbed initial data, one introduces Sobolev norms
defined for any spinor quantity Nx with x being an arbitrary string of frame spinor
indices, as

||N/C||Hm = ; ||NIC||Hm

where Y, is the sum over all the frame spinor indices encoded in x and

m 3 1/2
||NK||H,m=<Z > A(aal...aalzv,c)2du> .

=0 a1,...,a

where dy denotes the volume element associated to the standard metric on S3.
Observe that since the indices in x are frame indices, the quantities Ny are scalars.
Notice, also that as S ~ S?, then H can be regarded as a region of S?. Consistent
with the split (4.7), one makes use of the above expressions to consider perturbations
of the initial data for the Milne Universe on the standard hyperboloid H, of the form

Ely = E|7—L + 2, ean®ly = éan®ln + éan’lu,
FaaBeln = f‘AA’BC|7-l + fAA’BC|H7 Paapp | = (i)AA’BB’|7-l + (i)AA’BB’ H,

daBcD|u = QZABCD|H7 Slu = slu + 8lu,
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Yaaly = XOJAA’l’H +Yaar|n

together with

Slu =Sl + 39 Peaa®ln = Péaa®lu,
PT aaBcly = PLaase|u, POansp |y =PPaanss|n
Péapepln = Pdapeplu, Ps|y = Ps|y + Ps|n.

Recall from the discussion of the space spinor formalism given in Section 2.4.1 of
Chapter 2 that P = 744V 44 = v/28,. Additionally observe that, by assumption,
the above fields are solutions to the equations implied by the initial data for the
subsidiary system given in Proposition 2. Thus, in particular, they ensure that the
initial data for the subsidiary equations vanish. The above data will be collectively
denoted by

w, = (u,, 0-uy).

The parametrisation into background and perturbed parts will be written as
u, = u, + u,, o,u, = 0,u, + 0,u,.

The perturbation part of the initial data (0, 0,0, ) is only defined in the region H of
S. To apply the theory of quasilinear wave equations as described in Appendix 4.4,
one needs data on the whole of S ~ S®. The initial data can be extended invoking

the Fxtension Theorem which states that there exists a linear operator
E:H™(H,CN) = H™(S,CN)
such that if w, € H™(H,C") then Ew,(z) = w,(z) almost everywhere in H and
NEW[m.s < KWl [ma

where K is a universal constant for fixed m —see e.g. [50]. Hence, using equation
(4.12), one can make ||EwW, || s small as necessary by making ||w,||,,» small —that
is, the size of the extended data is controlled by the data on the initial hypersurface
H. Therefore, the extended data will be given by

Eu, =u,+&u,  E0ru, =0u, + E0-u,
which are well defined on H™(S,C"). Therefore, if one assumes that

Hﬁ*HS,m + Ha'rﬁ*H&m <eE.
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then
||gﬁ*HH,m + ||587ﬁ*||7-£,m < Ke.

Remark 22. The fact that the extension of the data obtained in the previous para-
graph is not unique and it does not necessarily satisfy the constraints of Proposition

11 is not a problem in this analysis since
DYH)NTT(S\H) =0

where DT denotes the domain of dependence and I the chronological future of
achronal sets —see [30] for a detailed discussion of these causal concepts. The proof
of the last statement follows by contradiction. Let ¢ € D (H) N IT(S\H). Then,
on the one hand, one has that ¢ € IT(S\H), so that it follows that there exists a
future timelike curve v from p € S\H to ¢. On the other hand ¢ € D*(H) which
means that every past in extendible causal curve through ¢ intersects H, therefore

p € H. This is a contradiction since p € S\H.

4.2.4 Construction of perturbed solutions

In this section a discussion of the construction of solutions to the wave equations

(3.19a)-(3.19f) describing non-linear perturbations of the Milne Universe is provided.

Consistent with the discussion of the previous subsection, the unknowns in the
wave equation (3.19a)-(3.19f) will be split into a background and a perturbation

part. More precisely one writes

; Yaa = Xaa +2aa, ean’ =éan® +éaa®, §=25+5,

[1]c

o
—_

— -

— -

(11

5 & B N e .
F'aa”c=Taa"c+Taa"c, PaaBp = Paap +Paass,

®»ABCD = QABCD-

Following the notation used in Remark 16, the independent components of the
unknowns as a single vector-valued variable are collected in a vector-valued unknown

u. Consistent with this notation one has
u=u-+u.

The components of the contravariant metric tensor ¢"”(x,u) in the vector-valued
wave equation (3.20) can be written as the metric for the background solution u

plus a term depending on the unknown u

g" (z;u) = ¢"(x; 1) + " (x; u). (4.8)
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The latter can be expressed, alternatively, in spinorial terms as

AA' BB’ AA' BB’ 5 o v
g (x;u) = e " eqatepp” = € €77 (éant'épp” + Eanteépp”). (4.9)

Substituting the split (4.8) into equation (3.20) one obtains,
(¢" (z;a) + ¢"(2;0))0,0, (0 + 1) + F(x;u,0u) = 0.
Noticing that 1 is, in fact, a solution to
g" (x;1)0,0,0 + F(x;u,00) = 0,
it follows then that
g" (z;0)0,0,0 + ¢" (x;u)0,0,0 + ¢ (x; u)0,0,u + F(z;u,0u) — F(z;u,0u) = 0.

Finally, since the background solution u is known then the last equation can be

recast as
(g™ () + ¢" (x;1))0,0,0 = F(x;a,0u0). (4.10)

The above equation is in a form where the local existence and Cauchy stability
theory of quasilinear wave equations as given in, say, [21] can be applied. Notice
that g(x) is Lorentzian since it corresponds to the metric of the background solution
—i.e. the metric of the Einstein Cosmos. Now, consider initial data (u,, dyu,) close

enough to initial data (10, 0yu,) for the Milne Universe —that is, take
(u,, 0pu,) € B.(uy,0m,), (4.11)
where the notion of closeness is encoded in
B.(u,,v.) = {(wi,wp) € H™(S,CY)xH™(S,C") | || wi—u, [lsn + [| Wo—v. [[s,m< €}
Additionally, given § > 0 define
Ds = {(Wl,Wg) € H™(S,CN) x H™(S,CN) | § < \detg,w(wl)|}.

Using that u = 1 + u, the requirement (4.11) is equivalent to say that the initial

data for the perturbation is small in the sense that
||ﬁ*||8,m+ ||8Tf1*||3,m <e. (412)

With this remark in mind and recalling that u is explicitly known, observe that from
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equation (4.8) it follows that

Since the variable 1, is a vector-valued function collecting the independent com-
ponents of the conformal fields, and in particular (€44/")s, it follows that for suf-
ficiently small initial @, the perturbation ¢"* will be small. Therefore, choosing
e small enough one can guarantee that the metric ¢"(z) + ¢"(x;0,) is initially

Lorentzian.

To state the main result of this section, it will be convenient to shift the time
coordinate 7 by an amount of %7?, namely 7 = 7 — %W so that the location of the
standard hyperboloid of the Milne Universe is given by 7 = 0. At this point one is
now in position to make use of a local existence and Cauchy stability result adapted

from [21] —see Appendix 4.4 | to establish the following theorem:

Theorem 1 (Existence and Cauchy stability). Let (u,,0.u,) = (0,40, 0,0+
0-0,) be hyperboloidal initial data for the conformal wave equations on an 3-dimensional
manifold H where (0, 0-0,) denotes initial data for the Milne Universe. Let (Euy, E0;u,)
denote the extension of these data to S ~ S*. Then, for m > 4 and Ty > %71’ there

exist an € > 0 such that:

(1) For ||Q||mm + ||0-0||m < €, there ezist a unique solution u =0+ 1 to the
wave equations of Proposition 1 with a minimal existence interval [0,7,] and

ue Cm2(0,7] x S,CN).

(ii) Given a sequence (', v{") € B.(u,,v,) N Ds such that
| u™ —u, ||lsm— 0, | v — v, [|sm— O, as  m — 00,
then for the solutions u™ with u™ = u{™ and ou™(0,-) = vi" it holds that
| u™(7,-) —u(r,-) |lsm— 0 as n — 0o

uniformly in T € [0,7,) as n — oo.

(111) The solution u = u + 0 is unique in DT (H) and implies, wherever = # 0, a
C™=2 solution to the Einstein vacuum equations with vanishing Cosmological

constant.

Proof. Points (i) and (ii) are a direct application of Theorem 2 given in Appendix
4.4. The wave equation (4.10) is of the form covered by equation (4.17): the condi-
tion ensuring that g(x)+ g(z;u) is Lorentzian is encoded in the requirement of the

perturbation for the initial data being small as discussed in Section 4.2.4; moreover,
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the coefficients in equation (4.10) are smooth functions of their arguments. No-
tice that the background conformal representation of the Milne Universe, as given
in Proposition 3, is a smooth solution to the wave equations of Chapter 3 on the
Einstein cylinder R x S3. Thus, w is smooth on the time coordinate 7 € R. In
particular, the solution u exist up to a time 7, > %7?. The theory contained in [21]
—see also Appendix 4.4— ensures then, that the perturbations @ have the same
existence time 7, as the reference solution .

The statement of point (7ii) follows from the discussion of Section 3.3 for the prop-
agation of the constraints and the subsidiary system as summarised in Proposition
1 and Lemma 11. In particular, in this section it was shown that a solution to the
spinorial wave equations is a solution to the conformal Einstein field equations if
initial data satisfies the appropriate conditions. As exemplified in Section 3.3.2 for
the rescaled Weyl spinor, requiring the zero-quantities to vanish in the initial hyper-
surface renders conditions on the initial data. Finally, recall that a solution to the
conformal Einstein field equations implies a solution to the Einstein field equations
wherever = # 0 —see [15].

]

Remark 23. The localisability property of solutions to wave equations allows to
apply the methods leading to Theorem 1 to discuss the non-linear perturbations of
background solutions whose spatial sections are orientable compact manifolds. For
this one consider a finite cover of the base manifold. Solutions are then obtained on
the Cauchy development of each of the elements of the cover. These solutions are
then patched together to obtain a global in space solution. The geometric uniqueness
of the setting ensures that solutions on the overlapping regions are compatible. The
details of this well-known construction can be found in [3]. A discussion of the

patching method for (first order) symmetric hyperbolic systems can be found in
[17].

Remark 24. Point (7i) in the Theorem establishes the stability of the background
(Milne) solution —i.e. the fact that the development of data close to Milne data

will be, in a suitable sense, close to the Milne solution.

Remark 25. Observe that 3 < 0 for 7 € (0, 1) and Y >0for7e (37, 37). Thus,
recalling that ¥ = % + 3 then ¥ < 0 for 7 € (0, i) and X > 0 for 7 € (L7, 37) for
¢ small enough, therefore there is at least one point where ¥ = 0. This fact will be

used in the analysis of the conformal boundary given in the next section.

4.2.5 Structure of the conformal Boundary

In this section Theorem 1 is complemented by showing that the conformal boundary

# coincides with the Cauchy horizon of H. The argument of this section is based
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on analogous discussion in [8]. Since the Cauchy horizon H(H) = 9(D*(H)) is
generated by null geodesics with endpoints on Z the null generators of H(H) —i.e
the null vectors tangent to H(H)— are given at Z by ¥,|z. One defines two null
vectors (mn,l) on Z by setting

lax = Yalz, n, L Z, gn,l,)=1 on Z. (4.13)

These pair of null vectors {l,, n, }, where l, is tangent to H(H) on Z and n, is normal
to Z is complemented with a pair of complex conjugate vectors m, and m, tangent
to Z such that g(m,, m,) = 1, so as to obtain the tetrad {l,, n,, m,, m,}. In order
to obtain a Newman-Penrose frame {l,n,m,m} off Z along the null generators of

H(H) one propagates them by parallel transport in the direction of I by requiring
1°Val® =0, 1°Ven® =0, 1°VomP=0. (4.14)

Now, suppose that one already has a solution to the conformal wave equations.
Using the result of Lemma 11, one knows that the solution will also satisfy the con-
formal Einstein field equations. In this section the conformal Einstein field equations
are employed to study the conformal boundary. From the tensorial (frame) version
of the conformal Einstein field equations in vacuum as given in Section 2.1.2 of
Chapter 2, one notices the subset of equations formed by equations (2.7¢), (2.7d)

and the definition of ¥, as the gradient of the conformal factor:

vaE - Za, (415&)
VaEb = SGab — ELab, (415b)
Vs = —LapXl. (4.15¢)

Transvecting the first two equations, respectively, with [, [%I® and [*mP® renders

9V, 2 = 7%,
19V (I1°%p) = —ELapl*1,

19V o(mPSy) = —ELgpl*mb,

where equation (4.14) and the fact that I is null and orthogonal to m have been used.
The latter equations can be read as a system of homogeneous transport equations
along the integral curves of I for a vector-valued variable containing as components

=, Yal® and X,m®. Written in matricial form one has

(1]

= 0 10
Vil ol | =| —Leal€® 0 0 Sale | (4.16)

Dam® —Legl®m® 0 0 Yam®
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Observe that the column vector shown in the last equation is zero on Z, since =|z
=0, (I%a)|z = (I*la)|z = 0 and (Xam®)|z = (lam®)|z = 0 which follows from
(4.13) and (4.14). Since equation (4.16) is homogeneous and it has vanishing initial
data on Z one has that =, ¥,[* and X,m® will be zero along [ until one reaches
a caustic point. Consequently, one concludes that the conformal = factor vanishes
in the portion of H(H) which is free of caustics. Thus, this portion of H(H) can
be interpreted as the conformal boundary of the physical spacetime (/\?l,g). In
addition, notice that from the vanishing of the column vector of equation (4.16)
it follows that ¥,0* = ¥,m* = 0 on H(H). Therefore, the only component of
Y that can be different from zero is X,n®. Accordingly, 3¢ is parallel to [* and
X% = (Xn)l*. Moreover, since g(n,,l,) = 1 it follows that (X,n%)|z = 1 —this
can also be shown by noticing that (n®%)|z = (n%ly)|z = 1.

Now, in order to extract the information contained in ¥,n% one transvects (4.15b)

with (%ny, to obtain
19V o (n®2) = 59apl®n® — ELgpl*n®.
Using that g(I,n) = 1 and that = vanishes on H () one concludes that
Vi(Een®) =s  on H(H).
One can obtain a further equation transvecting (4.15¢) with [®
19V o5 = —Lapl®S0 = —Lapl®Spnf1® on H(H).

It follows then that one has the system

v Yagn®\ 0 1 Yan®
: s B —Leglél® 0 s '

Since (¥4n%)|z =1 (i.e. non-vanishing), the solution for the column vector formed

by s and ¥,n® cannot be zero. Accordingly, s and ¥,n® cannot vanish simultane-

b

ously. Finally, transvecting equation (4.15b) with m®m® one gets

memlV,Sp = —Em®m®Lap + sgabm“mb.
Using that g(m,m) = 1 and restricting to H(H) where = = 0 renders

mPmeV,Sp =s  on H(H).

Using g(m, 1) = 0 it follows that the left hand side of the last equation is equivalent
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to
m*mPV Sy = mmPV e (Lently)
= memPYen’V lp + membly Ve Sen®
= Y.nmemiV 1.
Finally, recalling the definition of the expansion p = —m®mPV I, (in the Newman-

Penrose notation [12]) one finally obtains
Yan®p=—s  on H(H).

Since the only possible non-zero component of the gradient of = is ¥,n® and it
cannot vanish simultaneously with s, one has that d= = 0 implies p — oo on H(H).
To be able to identify the point i* where d= = 0 with timelike infinity one needs
to calculate the Hessian of the conformal factor. Observe that this information is
contained in the conformal field equation (2.7c). Considering this equation at H(H),

where it has already been shown that the conformal factor vanishes, one gets

Now, as it has been shown that s and X,n® (or, equivalently, d=) do not vanish
simultaneously one concludes that s # 0 and that V,V= is non-degenerate. Thus,
the point it on H(H) where both = and d= vanish can be regarded as representing

future timelike infinity for the physical spacetime (M, §).

Remark 26. Observe that the construction discussed in the previous paragraphs
crucially assumes that =, is zero on the boundary Z of the initial hypersurface H.
This construction cannot be repeated if one were to take another hypersurface H’
with boundary Z” where the conformal factor does not vanish. This is the case of an
initial hypersurface that intersects the cosmological horizon, where for the reference

solution the conformal factor does not vanish —see Figure 4.2.

The results of the analysis of this section are summarised in the following:

Proposition 4. (Structure of the conformal boundary) Let u denote a solu-
tion to the conformal wave equations equations constructed as described in Theorem
1. Then, there exists a point it € H(H) where =]+ = 0 and d=|;+ = 0 but the
Hessian V oVp=Z|+ is non-degenerate. In addition, d= # 0 on S = H(H) \ {i*}.
Moreover DY (H) = J~(iT).

Proof. From the conclusions of Theorem 1 and the discussion of Section 4.2.5 it
follows that if one has a solution to the conformal wave equations which, in turn

implies a solution to the conformal field equations, then there exists a point i* in
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Z’O

Figure 4.2: Portion of the Penrose diagram of the Milne Universe showing the
initial hypersurface H where the the hyperboloidal data is prescribed. At Z the
conformal factor vanishes and the argument of Section 4.2.5 can be applied. The
dark grey area represents the development of the data on H. Compare with the case
of the hypersurface H' which intersects the horizon at Z' where the argument cannot
be applied. Analogous hypersurfaces can be depicted for the lower diamond of the
complete diagram of Figure 4.1.

H(#H) where both the conformal factor and its gradient vanish but V,V,Z is non-
degenerate. This means that T can be regarded as future timelike infinity for the
physical spacetime. In addition, null infinity #* will be located at H(H)\{i"}

where the conformal factor vanishes but its gradient does not. O]

Remark 27. Inspection of the argument leading to Proposition 4 requires two
continuous derivatives of the conformal fields involved. This is precisely the minimal

regularity provided by Theorem 1.

4.3 Conclusions

The discussion given in this chapter shows how the wave equations derived in Chap-
ter 3 can be employed to study the semiglobal non-linear stability of the Milne
Universe. This analysis, in particular, exemplifies how the extraction of a system
of quasilinear wave equations out of the conformal Einstein field equations allows
to readily make use of the general theory of partial differential equations to ob-
tain non-trivial statements about the global existence of solutions to the Einstein
field equations. The analysis of Chapter 3 has been restricted to the vacuum case.
However, a similar procedure can be carried out, in the non-vacuum case, for some
suitable matter models with trace-free energy-momentum tensor —see e.g. [17].

In addition, this analysis has been restricted to the case of the so-called stan-
dard conformal Einstein field equations. Nevertheless, as discussed in Chapter 2,
there exists a more general version of the conformal Einstein field equations, the so-

called, extended conformal Einstein field equations in which the various equations
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are expressed in terms of a Weyl connection.

The hyperbolic reduction procedures for the extended conformal Einstein field
equations available in the literature do not make use of gauge source functions.
Instead, one makes use of conformal Gaussian systems based on the congruence of
privileged curves known as conformal geodesics to extract a first order symmetric
hyperbolic system. It is an interesting open question to see whether it is possible to
use conformal Gaussian systems to deduce wave equations for the conformal fields
in the extended conformal Einstein field equations. Nevertheless, the latter will not

be pursued in this thesis.

4.4 Appendix: Basic existence and stability

theory for quasilinear wave equations

In this appendix an adapted version of a theorem for quasilinear wave equations
given in [21] is given. The particular formulation has been chosen so as to simplify
comparison with an analogous result for first order symmetric hyperbolic as given

in [8] —see Theorem 3.1 in that reference.

In what follows, one will consider open, connected subsets Y C M7 =[0,7) x S
for some T' > 0 and S ~ S* an oriented, compact 3-dimensional manifold. On U
one can introduce local coordinates z = (z#) = (¢,2%). Given a fixed N € N, in
what follows, let u : My — CV denote a CV-valued function. The derivatives of u
will be denoted, collectively, by du. The discussion will be restricted to quasilinear

wave equations of the form
g"(x;u)0,0,u = F(z;u,0u), (4.17)

where ¢g"”(x;u) denotes the contravariant version of a Lorentzian metric g, (z;u)
which depends smoothly on the unknown u and the coordinates  and F is a smooth
C¥-valued function of its arguments. Separating the fields into real and imaginary
parts one can regard u as a R*V-valued function.

In order to formulate a Cauchy problem for equation (4.17) it is necessary to
supplement it with initial data corresponding to the value of u and O;u on the
initial hypersurface S. For simplicity, choose coordinates such that S is described
by the condition ¢ = 0. Given two functions u,, v, € H™(S,CN), m > 2, one

defines the ball of radius e centred around (u,,v,) as the set

B.(u,,v,) = {(Wl,wg) c H™(S,CMYxH™(S,CY) | || wi—u, lsm + || Wa—Vi [lsm< 5}.
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Also, given § > 0 define
Dy = {(w1,wa) € H™(S,CN) x H™(S,CN) | § < | det g, (w1)|}.

The basic existence and Cauchy stability theory for equations of the form (4.17)
has been given in [21]. The following theorem is based on Theorem III of the later

reference —the presentation follows Theorem 3.1 of [8]:

Theorem 2. Given an orientable, compact, 3-dimensional manifold S ~ S?, con-

sider the the Cauchy problem

g"(z;u)0,0,u = F(z;u, 0u),
u(0,7) = u,(r) € H™(S,C"),
ou(0,z) = v,(z) € H™(S,C"), m >4,

and assume that g,,(x;u,) is a Lorentzian metric such that (., v.) € Ds for some
6 >0. Then:

(1) There exists T > 0 and a unique solution to the Cauchy problem defined on
[0,T) xS such that
uec C™"%[0,T) x S,CN).

Moreover, (u(t,-),0pu(t,-)) € Ds fort € [0,T).

(i) There is a € > 0 such that a common ezistence time T can be chosen for all

initial data conditions on Be(uy,v,) N Ds.

(111) If the solution w with initial data u, exists on [0, T) for some T > 0, then the
solutions to all initial conditions in B.(u,,vy) N Dy exist on [0,T] if € > 0 is

sufficiently small.

(iv) Ife and T are chosen as in (i) and one has a sequence (u,(kn)7 V&")) € B.(u,,vy)N

Djs such that
| ul —u, [|s;m— 0, | v — v, [lsm— O, as  n — oo,

then for the solutions u™(t,-) with u™(0,-) = u!” and O,u™ 0,) = v it
holds that
| u™(t,-) —u(t,") |lsm— 0 as n — 0o

uniformly in t € [0,t) as n — oo.
Remark 28. The particular formulation of the theorem has been chosen to ease

the comparison with Theorem 3.1 of [8] where an analogous existence and Cauchy

stability result for first order symmetric hyperbolic systems is given.
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Remark 29. The hypotheses of Theorem III in [21], on which Theorem 2 is based,
require the positivity away from zero of the coefficients of the second derivatives
with respect to time in the wave equations. It also requires that the second order
spatial partial derivatives give rise to a strongly elliptic system. These requirements
are satisfied for equation (4.17) if the matrix g,, is a non-degenerate Lorentzian
metric. This requirement is encoded in the set Ds. The regularity requirements of
the coefficients in the quasilinear wave equations with respect to their arguments
required by Theorem IIT in [21] are satisfied by the smoothness assumptions on the

functional form of equation (4.17).

Remark 30. Theorem IIT in [21] establishes the well-posedness of the Cauchy prob-
lem for quasilinear wave equations of the form (4.17). It contains two main state-
ments. The first establishes the local existence and uniqueness of solutions to initial
value problem —this is essentially the content of point (i) in Theorem 2. The second
statement asserts the continuous dependence of solutions and existence times with
respect to the initial data. In particular, if a known solution to the initial value prob-
lem has a minimal existence time 7', then any initial data sufficiently close to the
reference solution will have the same existence time —this is essentially the state-
ment in points (i) and (i) of Theorem 2. The non-existence of nearby data with
solutions having the same existence time would be in contradiction with the uniform
continuity of the map relating initial data and solutions. The dependence of the so-
lutions on the initial data is continuous in the topology of H™*! x H™ uniformly
in the common existence interval —this is the statement in point (iv) of Theorem
2. Notice that this is expressed, for concreteness, in terms of the convergence of a

sequence.

Remark 31. In view of the applications of the Theorem, the regularity of the
solutions has been expressed in terms of standard derivatives rather than Sobolev

spaces —see also, the remarks after Theorem 3.1 in [§].

Remark 32. The regularity in both the hypothesis and conclusions of the Theorem

are not optimal. The reader interested is referred to [51-54].

Remark 33. Alternatively, rewriting equation (4.17) as a first order symmetric
hyperbolic system, one can obtain Theorem 2 from Theorem 3.1 of [8]. Similar
ideas have been used in [55, 56].

Remark 34. Using the method of patching solutions, Theorem III can be extended

to any compact orientable 3-manifold S —see e.g. the discussion in [17].



5 Perturbations of the asymptotic
region of the Schwarzschild-de

Sitter spacetime.

5.1 Introduction

The stability of black hole spacetimes is, arguably, one of the outstanding problems
in mathematical General Relativity. The challenge in analysing the stability of black
hole spacetimes lies in both the mathematical problems as well as in the physical
concepts to be grasped. By contrast, the non-linear stability of Minkowski spacetime
—see e.g. [8, 10]— and de Sitter spacetimes —see [8, 9]— are well understood.
The results in [8, 9] show that conformal Einstein field equations are a powerful
tool for the analysis of the stability and global properties of vacuum asymptotically
simple spacetimes —see (8, 9, 11, 57]. In particular, the analysis given in [8, 9],
makes use of the standard conformal Einstein field equations. More recently, in [41],
it was shown that the extended conformal field equations can be used to obtain an
alternative proof of the semiglobal non-linear stability of the Minkowski spacetime
and of the global non-linear stability of the de-Sitter spacetime —see [41]. In view
of these results, a natural question is whether conformal methods can be used in the
global analysis of spacetimes containing black holes. The discussion in this chapter

is based on

Gasperin E. and Valiente Kroon J.A., “Perturbations of the asymptotic region
of the Schwarzschild-de Sitter spacetime,” Annales Henri Poincaré (2017) 1-73.
http://dx.doi.org/10.1007/s00023-016-0544~-z.

where a first step in this direction is given by analysing certain aspects of the con-
formal structure of the Schwarzschild-de Sitter spacetime using conformal methods.
The current approaches for analysing stability properties of black hole spacetimes
do not make use of conformal formulations of the Einstein field equations, conse-
quently, the use of conformal methods for the stability analysis of solutions of the
Einstein field equations represents a new and unexploited venue. Despite the fact
the result obtained in this chapter does not fully address the outstanding stability

of the Schwarzschild-de Sitter, the constructed class of solutions is non-trivial. In
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addition, as previously mentioned, it does represent a first step in implementing

conformal methods for the the analysis of black hole spacetimes.

5.1.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime is a spherically symmetric solution to the
vacuum Einstein field equations with Cosmological constant. It depends on two
parameters: the Cosmological constant A and the mass parameter m. The as-
sumption of spherical symmetry almost completely singles out the Schwarzschild-de
Sitter spacetime among the vacuum solutions to the Einstein field equations with
de Sitter-like Cosmological constant. The other admissible solution is the so-called
Nariai spacetime. This observation can be regarded as a generalisation of Birkhoff’s
theorem —see [58] for a modern discussion on this classical result. For small val-
ues of the area radius r, the solution behaves like the Schwarzschild spacetime and
for large values its behaviour resembles that of the de Sitter spacetime. In the
Schwarzschild-de Sitter spacetime the relation between the mass and Cosmological
constant determines the location of the C'osmological and black hole horizons.

The presence of a Cosmological constant makes the Schwarzschild-de Sitter solu-
tion a convenient candidate for a global analysis by means of the extended conformal
Einstein field equations —see Section 2.2 in Chapter 2— as the solution is an exam-
ple of a spacetime which admits a smooth conformal extension towards the future
(respectively, the past) —see Figures 5.3, 5.4 and 5.5 in this chapter. This type
of spacetimes are called future (respectively, past) asymptotically de Sitter —see
Section 5.2.1 for definitions and [59, 60] for a more extensive discussion. As the
Cosmological constant takes a de Sitter-like value, the conformal boundary of the
spacetime is spacelike and, moreover, there exists a conformal representation in
which the induced 3-metric on the conformal boundary .# is homogeneous. Thus, it
is possible to integrate the extended conformal field equations along single conformal
geodesics.

In this chapter the Schwarzschild-de Sitter spacetime as a solution to the extended
conformal Einstein field equations is analysed. The insights thus obtained are used
to discuss non-linear perturbations of the spacetime. A natural starting point for
this discussion is the analysis of conformal geodesic equations on the spacetime. The
results of this analysis can, in turn, be used to rewrite the spacetime in the confor-
mal gauge associated to these curves. However, despite the fact that the conformal
geodesic equations for spherically symmetric spacetimes can be written in quadra-
tures [37], in general, the integrals involved cannot be solved analytically. In view of
this difficulty, in this chapter the conformal properties of the exact Schwarzschild-de
Sitter spacetime are analysed by means of an asymptotic initial value problem for the
conformal field equations. Accordingly, initial data implied by the Schwarzschild-de

Sitter spacetime on the conformal boundary is obtained and used to analyse the
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a)
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s ¢

Figure 5.1: Schematic depiction of the Main Result 2. The dark grey area in
panels a) b) and c) illustrates the region covered by the development of asymptotic
iiatial data close to that of the Schwarzschild-de Sitter spacetime —in the global
representation— for the subextremal, extremal and hyperextremal cases respectively.
The light grey area represents the exact Schwarzschild-de Sitter spacetime. For the
exact Schwarzschild-de Sitter spacetime the initial metric is h, the standard metric
on S®, and the asymptotic points Q and Q' are excluded (denoted by empty circles
in the diagram). See also Figures 5.3, 5.4 and 5.5.

—0 (0. ¢]

Figure 5.2: Schematic depiction of the Main Result 2. Development of asymptotic
initial data close to that of the Schwarzschild-de Sitter spacetime in the representa-
tion in which Theorem 3 is obtained. For the exact Schwarzschild-de Sitter spacetime
the initial metric is h, the standard metric on R x S?, and the asymptotic points Q
and Q' are at infinity with respect to h —since h and h are conformally flat one has
h = w?h. The initial data for the subextremal, extremal and hyperextremal cases is
formally identical. For small enough perturbations the development have the same
asymptotic structure as the reference spacetime

behaviour of the conformal evolution equations. An important property of these
evolution equations is that their essential dynamics is governed by a core system
of equations. Consequently, an important aspect of this discussion consists of the
analysis of the formation of singularities in the core system. This analysis is irre-
spective of the relation between A # 0 and m. This allows to formulate a result
which is valid for the subextremal, extremal and hyperextremal Schwarzschild-de
Sitter spacetime characterised by the conditions 0 < 9m?|A| < 1, 9m?|\| = 1 and
9m?|A| > 1 respectively.

5.1.2 The main result

The analysis of the conformal properties of the Schwarzschild-de Sitter spacetime
allows to formulate a result concerning the existence of solutions to the asymptotic
initial value problem for the Einstein field equations with de Sitter-like Cosmological

constant which can be regarded as perturbations of the asymptotic region of the
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Schwarzschild-de Sitter spacetime —see Figures 5.1 and 5.2. The existence result

proven in this chapter can be stated as:

Main Result 2 (asymptotically de Sitter spacetimes close to the asymp-
totic region of the SdS spacetime). Given asymptotic initial data which is
suitably close to data for the Schwarzschild-de Sitter spacetime there exists a solu-
tion to the Einstein field equations which exists towards the future (past) and has an
asymptotic structure similar to that of the Schwarzschild-de Sitter spacetime —that

is, the solution is future (past) asymptotically de Sitter.

Remark 35. A detailed formulation of the Main Result of this chapter can be found

in Section 5.4.4 —see Theorem 3.

The analysis of the conformal evolution equations governing the dynamics of the
background solution given in this chapter provides explicit minimal existence in-
tervals for the solutions. These intervals are certainly not optimal. An interesting
question related to this class of solutions to the Einstein field equations is to obtain
their maximal development. To address this problem one requires different methods
of the theory of partial differential equations and it will be discussed elsewhere. A

schematic depiction of the Main Result is given in Figure 5.1.

Part of the analysis of the background solution requires deriving asymptotic ini-
tial data for the Schwarzschild-de Sitter spacetime. The construction of this initial
data allows to study in detail the singular behaviour of the conformal structure of
the family of background spacetimes at the asymptotic points Q and Q', where the
horizons of the spacetime meet the conformal boundary. As a consequence of the
singular behaviour of the asymptotic initial data, the discussion of the asymptotic
initial value problem has to exclude these points. In view of this, it turns out that a
more convenient conformal representation to analyse the conformal evolution equa-
tions for both the exact Schwarzschild-de Sitter spacetime and its perturbations is
one in which the the conformal boundary is metrically R x S? rather than S3\{Q, O’}

so that the problematic asymptotic points are sent to infinity —see Figure 5.2.

5.1.3 Related results

The properties of the Schwarzschild-de Sitter spacetime have been systematically
probed by means of an analysis of the solutions of the scalar wave equation using
vector field methods —see [61]. This type of analysis requires special care when
discussing the behaviour of the solution close to the horizons. In the asymptotic
initial value problem considered in this chapter, the domain of influence of the
initial data is contained in the region corresponding to the asymptotic region of the

Schwarzschild-de Sitter spacetime.
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The properties of the Nariai spacetime —the other solution appearing in the
generalisation of Birkhoft’s theorem to spacetimes with a de Sitter-like Cosmological
constant— have been analysed by means of both analytic and numerical methods
in [62, 63]. In particular, in the former reference it is shown that the Nariai solution
does not admit a smooth conformal extension —see also [57]. Thus, it cannot be

obtained from an asymptotic initial value problem.

Finally, it is pointed out that the singularity of the Schwarzschild-de Sitter space-
time is not a conformal gauge singularity since ClpeqC — 00 as 7 — 0. Accord-
ingly, theory of the extendibility of conformal gauge singularities as developed in
[64] cannot be applied in the case analysed in this chapter. For any of the possible
conformal gauges available, one either has a singularity of the Weyl tensor arising
at a finite value of the parameter of a conformal geodesic or one has an inextendible

conformal geodesic along which the Weyl tensor is always smooth.

5.2 The asymptotic initial value problem in

General Relativity

In this section the notion of asymptotically de Sitter spacetimes is revisited —see
[2, 59, 60]. In particular, it is discussed how to use the conformal field equations
expressed in terms of a conformal Gaussian system —recall the conformal evolution
and constraint equations discussed in Sections 2.4.3 and 2.5 of Chapter 2— to set
up an asymptotic initial value problem for a spacetime with a spacelike conformal
boundary. This section concludes with a discussion of the structural properties
of the conformal evolution equations in the framework of the theory of symmetric

hyperbolic systems contained in [23].

5.2.1 Asymptotically de Sitter spacetimes

The following definition of future asymptotically de Sitter spacetimes will be fre-

quently used in this chapter.

Definition. A spacetime (M,Q) satisfying the vacuum Einstein field equations

Rab - Agaba (51)

is future asymptotically de Sitter if there exist a spacetime with boundary (M,g), a
smooth conformal factor = and a diffeomorphism ¢ : M —U C M, such that:

=>0 mn U,
E=0 and d=Z#0 on ST =0U,
I s spacelike —i.e.  g(d=,d=) > 0 on San
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It lies to the future of M —i.e. I+t C IT(M).

Observe that this definition does not restrict the topology of .#*. In particular,
it does not have to be compact —see [60]. The notion of past asymptotically de
Sitter is defined in analogous way. Additionally, (M, g) is asymptotically de Sitter
if it is future and past asymptotically de Sitter. Notice that a spacetime which
is asymptotically de Sitter is not necessarily asymptotically simple —see [2] for a
precise definition of asymptotically simple spacetimes. In the following, in a slight
abuse of notation, the mapping ¢ : M — U C M will be omitted in the notation

so that one writes

(1]

g="2% (5.2)

Furthermore, the term asymptotic region will be used to refer to the set J~(.#7) of

a future asymptotically de Sitter spacetime or J*(.# ) of a past asymptotically de

Sitter spacetime.

5.2.2 The formulation of an asymptotic initial value

problem

In this section it is shown how the conformal Gaussian gauge can be used to formu-
late an asymptotic initial value problem for the extended conformal Einstein field
equations. Thus, in the sequel an initial hypersurface on which the conformal fac-
tor vanishes, so that it corresponds to the conformal boundary of a hypothetical

spacetime, is considered. Accordingly, this initial hypersurface will be denoted by

.

The conformal boundary

Following Lemma 6 one can set, without loss of generality, 7, = 0 on .. Moreover, it
will be assumed that f, vanishes initially. Accordingly, one has the initial condition
B, = ©71dO,. Recalling that d = ©3, and g¢ = ©2g*, and using the constraints
in equation (2.41) of Lemma 6 it readily follows, for the asymptotic initial value
problem (in which ©, = 0), that
: A
O, =1/—.
3
Moreover, using again that d = O3 and requiring @, to be orthogonal to .# (so
that &, = eg), one obtains dy, = 9*. Consequently
A

d()* = ?
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The coefficient ©, is fixed by the requirement s = ¥x on % —sce [65]. From the
definition of s and ¥, = V,0 it follows that

1 1 1 1
S, = (vava@ + R@) = —(ea2%), + ~ (%20,
4 24 . 4 4 (5.3)

1 1.
= Znab(eaeb@)* + Z@*( aao)*-

Taking into account that © and ; vanish at .# one has that n%(e,€,0), = o,.
Using the solution to the constraints given in equations (2.78a)-(2.78b) of Chap-
ter 2 and exploiting the properties of the adapted orthonormal frame one obtains
(Ta%)x = (Ti%0)x = (Xi%)x = kd;* = 3k. Substituting into equation (5.3) and using
that s, = @*H one gets
O, = O,k.

Summarising, for an asymptotic initial value problem the conformal factor implied
by the conformal Gaussian gauge is given by
o(r) = wT(l + 1f<a7'). (5.4)
3 2
The conformal factor given by equation (5.4) is, in a certain sense, universal —see
Remark 37. It does not encode any information about the particular details of the
spacetime to be evolved from .#. As such, it can be used to analyse any spacetime
with de Sitter-like Cosmological constant as long as the spacetime has at least one
component of the conformal boundary. If x # 0 the conformal boundary has two
components located at
7=0 and 7= _3
K
The first zero corresponds to the initial hypersurface .#. The physical spacetime
corresponds to the region where © # (0. Therefore, the roots of © render two
different regions of (M, g) corresponding to two different conformal representation
of (M, g). One of these representations corresponds to the region covered by the
conformal geodesics with 7 € [-2/|k|,0] or 7 € [0,2/|k|] and other corresponds
to the region covered by the conformal geodesics with 7 € [0,00) or 7 € (—o00, 0]

depending on the sign of .

Remark 36. The discussion of the previous paragraphs is formal: the compo-
nent of the conformal boundary given by 7 = —2/k may not be realised in a spe-
cific spacetime. This is, in particular, the case of the extremal and hyperextremal
Schwarzschild-de Sitter spacetimes in which the singularity precludes reaching the

second conformal infinity —see Figure 5.4.

Remark 37. The expression (5.4) is universal in the sense that it is the conformal

factor singled out by a congruence of conformal geodesics starting orthogonally
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from .#—see Section 2.3.2 in Chapter 2. Observe that the location of the conformal
boundary is known apriori in the sense that the values of 7 for which the conformal
factor of Lemma 6 vanishes can be written in terms of ©,, O, and O,. Furthermore,
notice that the values of O, @* and é)* are fixed by the value of A and x in the

asymptotic initial value problem.

Exploiting the conformal gauge freedom

The conformal freedom of the setting allows us to further simplify the solution to
the conformal constraint equations at .#. Given a solution to the conformal Einstein
field equations associated to a metric g, it follows from the conformal covariance of
the equations and fields that the conformally related metric g’ = 92g for some 9 is
also a solution. On an initial hypersurface S the latter implies implies b’ = 9¥2h.
From the definition of the Friedrich scalar s —see Section 2.1.2 in Chapter 2— and

the conformal transformation rule for the Ricci scalar one has that
s =191 s, +9.3(VD),(VO),.

Thus, the condition ' = 0 can be solved locally for ¢,. Accordingly, one chooses 1,
so that x = 0. In this gauge xj; and L; vanish and Lj; = [;; at .#. In addition, the

conformal factor reduces to

In this representation © has only one zero and the second component of the confor-
mal boundary (if any) is located at an infinite distance with respect to the parameter

T.

5.2.3 The general structure of the conformal evolution

equations

One of the advantages of the hyperbolic reduction of the extended conformal Ein-
stein field equations by means of conformal Gaussian systems is that it provides
a priori knowledge of the location of the conformal boundary of the solutions to
the conformal field equations —see Remark 37. Following the discussion in Section
2.3.2 of Chapter 2, the conformal geodesics fix the gauge through equations (2.44)
and (2.43). The last condition corresponds to the requirement on the spacetime
to possess a congruence of conformal geodesics and a Weyl propagated frame —i.e.
equations (2.34) and (2.35) are satisfied. As already mentioned, the system of evo-
lution equations (2.68a)-(2.68h) constitutes a symmetric hyperbolic system. This is
the key property for analysing the existence and stability of perturbations of suitable

spacetimes using the extended conformal Einstein field equations.

To discuss the structure of the conformal evolution system in more detail, let e
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denote the components of the frame e g, I' the independent components of x agcp
and £apep, and ¢ the independent components of the rescaled Weyl spinor ¢ apep.-

Then the evolution equations (2.68a)-(2.68h) can be written as

0,v =Kv+ Q(I')v + L(x)¢, (5.5a)
I+ Ae€))0-¢ + A"0;¢p = B(T), (5.5b)

where v represents the independent components of the spinors in the conformal
evolution equations except for the rescaled Weyl spinor whose components are rep-
resented by ¢. In addition, I is the 5 x 5 identity matrix, K is a constant matrix,
Q, A% A% and B are smooth matrix valued functions of its arguments and L(x)
is a matrix valued function depending on the coordinates. To have an even more
compact notation let u = (v, ¢p). Consistent with this notation, let i denote a solu-
tion to the evolution equations (5.5a)-(5.5b) arising from data 1, prescribed on an
hypersurface S. The solution u will be regarded as the reference solution. Consider

a general perturbation succinctly written as u = u + u. Equivalently, one considers
e=é+é, TI=I+T, o¢=0¢+¢. (5.6)

Recalling that 1 is a solution to the conformal evolution equations (5.5a)-(5.5b) and

making use of the split (5.6) one obtains that

0,0 =Ko + QI +I)o + QI)0 + L(z)d, (5.72)
(I+A%&+¢€))0r¢ + (I+ A(é + )0, + AL(é + &)Did +
Ai(é+¢)0;¢p =BT +1)¢p +B(I +1)o. (5.7b)

Equations (5.7a) and (5.7b) are read as equations for the components of the per-
turbed fields © and qvb These equations are in a form where the theory of first
order symmetric hyperbolic systems in [23] can be applied to obtain a existence
and stability result for small perturbations of the initial data u,. This requires
however, the introduction of the appropriate norms measuring size of the perturbed
initial data u,. This general discussion will not be developed further, instead, the
discussion will be particularised in Section 5.4.3 introducing the appropriate norms
required to analyse the Schwarzschild-de Sitter spacetime as an asymptotic initial

value problem.
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5.3 The Schwarzschild-de Sitter spacetime and its

conformal structure

In this section the general properties of the Schwarzschild-de Sitter spacetime that

will be relevant for the main analysis are briefly reviewed.

5.3.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime is the spherically symmetric solution to the
Einstein field equations (5.1) with, in the signature conventions used in this thesis,

a negative Cosmological constant given in static coordinates (t,r,0,¢) by
gsis = F(r)dt @ dt — F(r)'dr @ dr — r’o, (5.8)

where the function F(r) is given by

2m 1
F(ry=1- "=+ -\r? 5.9
(r) g (5.9)

and o is the standard metric on the 2-sphere S?
o =df ®df + sin® fdy @ dep,

with ¢t € (—o00,00), 7 € (0,00), 6 € [0,7], ¢ € [0,27). This solution reduces to the

de Sitter spacetime when m = 0 and to the Schwarzschild solution when A = 0.

Remark 38. In the following, only the case m > 0 will be considered. Furthermore,

it will be always assumed a de Sitter-like value for the Cosmological constant .

The location of the roots of the polynomial r — 2m + %)\r?’ are determined by
the relation between m and \; whenever 0 < 9m?|\| < 1 this polynomial has two

distinct positive roots 7y, 7. and a negative root r_ located at

2 o A4
T, = \/Wcos<3+3>7
= o5
Te o cos\3 )
2 a 2w
= \TM cos (3 + 3) ,
where cosa = —3m\/m . The positive roots 0 < r, < r. correspond, respectively,

to a black hole-like horizon and a Cosmological-like horizon. One can classify this
2-parameter family of solutions to the Einstein field equations depending on the

relation between the parameters m and A . The subextremal Schwarzschild-de Sitter
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Figure 5.3: Penrose diagram for the subextremal Schwarzschild-de Sitter spacetime.
The excluded points @, Q' represent asymptotic regions where the Cosmological hori-
zon appear to meet &. As discussed in Section 5.3.1 this region of the spacetime
does not belong to & .

spacetime arises when the relation between m and \ satisfies
0 < 9Im?\ < 1. (5.10)

If condition (5.10) holds, one can verify that F(r) > 0 for r, < r < r. while
F(r) < 0 in the regions 0 < r < r, and r > r.. Consequently, the solution is
static for r, < r < r. —see [66]. The extremal Schwarzschild-de Sitter spacetime is
obtained by setting

A\ = 1/9m>. (5.11)

If the extremal condition (5.11) holds, then the black hole and Cosmological horizons
degenerate into a single Killing horizon at r = 3m. Moreover, one has that F(r) < 0
for 0 < r < oo so that the hypersurfaces of constant coordinate r are spacelike while
those of constant ¢ are timelike and there are no static regions. In the extremal case

the function F'(r) can be factorised as

(r —3m)2(r + 6m)

F(r)y=— 5.12
(r) 27m?2r ( )
In the hyperextremal Schwarzschild-de Sitter spacetime one considers

Im?\| > 1. (5.13)

In this case one has again F(r) < 0 for 0 < r < oo so that similar remarks as those
for the extremal case hold. The crucial difference with the extremal case is that in
the hyperextremal case there are no horizons. Finally, at » = 0 it can be verified
that the spacetime has a curvature singularity irrespective of the relation between
m and A —in particular, the scalar C’abcdé’“de, with C’“bcd the Weyl tensor of the

metric ggqs, blows up.
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Figure 5.4: Penrose diagrams for the extremal Schwarzschild-de Sitter spacetime.
Case (a) corresponds to a white hole which evolves towards a de Sitter final state
while case (b) is a model of a black hole with a future singularity. The continuous
black line denotes the conformal boundary; the serrated line denotes the location
of the singularity; the dashed line shows the location of the Killing horizons H at
r = 3m . The excluded points Q, Q' and P represent asymptotic regions of the
spacetime that do not belong to & or the singularity r = 0.

5.3.2 The S*\{Q, Q'}-representation

The basic conformal structure of the subextremal and extremal Schwarzschild-de
Sitter spacetimes has already been discussed in [66, 67] and [68] respectively. Coor-
dinate and Penrose diagrams have been also provided in [69] for the subextremal,
extremal and hyperextremal cases. This section provides a concise discussion,
adapted to the conventions used in this thesis, of the conformal structure of the
Schwarzschild-de Sitter spacetime in the subextremal, extremal and hyperextremal
cases. In this section the discussion starts showing that irrespective of the relation
of m and A the induced metric at the conformal boundary for the Schwarzschild de
Sitter spacetime can be identified with the standard metric on S?. As discussed in
more detail in Section 5.3.3, this construction depends on the particular conformal
representation being considered. In the subextremal case one cannot obtain simul-
taneously an analytic extension regular near both r;, and r.—see [67]. Since one is
interested only in the asymptotic region, in this section only the region r > r, is
considered. For the extremal and hyperextremal cases such considerations are not
necessary.

In the following the null coordinates

u= VRt =1),  v= A+,
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Figure 5.5: Penrose diagram for the hyperextremal Schwarzschild-de Sitter space-
time. The singularity is of spacelike nature. Dotted lines at 45 ° and 135 ° have
been included for visualisation. Case (a) corresponds to a white hole which evolves
to a final de-Sitter state. Case (b) corresponds to a black hole with a future spacelike
singularity.

are introduced, where v is a tortoise coordinate given by

tE/P%ﬂW. (5.14)

This integral can be computed explicitly —see [66, 67]. The particular form of ¢

depends on the relation between A and m. As discussed in [66, 68] the integration
constant can always be chosen so that v — 0 as r — oo. Defining tanU = u,tanV =

v, with U,V € [-7, 7] one gets the line element

1F
QMSZQ‘x%%%h%%qu®dv+dV®de—ﬁa. (5.15)

As discussed in [66, 67], one can construct Kruskal type coordinates covering the
black hole horizon by choosing appropriately the integration constant in equation
(5.14). Analogously, choosing a different integration constant, one can construct
Kruskal type coordinates covering the cosmological horizon. Nevertheless in the
subextremal case, as emphasised in [67], it is not possible to construct Kruskal
type coordinates covering simultaneously both horizons. To construct the Penrose
diagram for this spacetime, one considers as building blocks the Penrose diagrams
for the regions 0 < r < 1y, 1, < r < r. and r. < r < oo which are then glued
together using the corresponding Kruskal type coordinates to cross each horizon
—see [67, 69] for a detailed discussion on the construction the Penrose diagram and
Kruskal type coordinates in the Schwarzschild-de Sitter spacetime. Consistent with
the above discussion and given that one is only interested in the asymptotic region,

the analysis is restricted, in the subextremal case, to r > r.. In the extremal case



5.3: The Schwarzschild-de Sitter spacetime and its conformal structure 110

one has, however, that r, = r. = 3m and one can verify that

where C' # 0 is a constant depending on m and the integration constant chosen
in the definition of v. Consequently, in the extremal case, the metric (5.15) is well
defined for the whole range of the coordinate r: 0 < r < oo —see [68]. Introducing
the coordinates (U, V) defined via

™ U T V
tan U = Intan (4 + 2), tanV = Intan (4 + 2>

one obtains

1 F(r
gsds = 5 ‘;’)Sec Usec V (dU ® dV +dV @ dU) — r’o.
Recalling that in the subextremal case F(r) < 0 for r > r. while for the extremal
and hyperextremal cases F(r) < 0 for 0 < r < oo, one identifies the conformal

factor
-2 __ ’)\|

T |F()

Therefore, one obtains the conformal metric ggqg = Z2gsqs with

cosUcosV.

1, - _ _ _ 2 _ _
gsis = —= (AU ®dV +dV ®dU) — Alr cosUcosVo. (5.16)
2 [F(r)]
Introducing the coordinates
T=U+V, v=V-U,
one gets
L aw e dv - dT o dT) - A cos L 1wy cos L (1 — w)
S — — cos — cos—(T'-V)o
9945 = 4 Fy] %2 >

The analysis in [67] shows that the conformal factor = tends to zero as r — oo.
Hence, to identify the induced metric at .# it is sufficient to analyse such limit.
Noticing that

Tt =

1 ( - (tan(w/él—i— V))
——(v—u
2¢/|\| 21/ tan(mw/4 4+ U)
and recalling that

lim v =0,
r—00

one concludes that r — oo implies ¥ = 0 as long as U # :t%ﬂ' and V # :E%?T. Using
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equation (5.9) one can verify that

LTS
111 =
TR

Consequently, the induced metric on .# is given by
1 T
h = _ZdT @ dT — cos? 50’
which can be written in a more recognisable form introducing & = %(T + 7) so that
h=—dé ® dé —sin® o (5.17)

The metric A is the standard metric on S®. Observe that the excluded points in
the discussion of this section (U, V) = (£3m, +4m) correspond to £ =0 and § =7
—the North and South poles of S*. The Penrose diagrams of the subextremal,
extremal and hyperextremal Schwarzschild-de Sitter spacetime are given in Figures
5.3, 5.4 and 5.5. The conformal boundary .# of the (subextremal, extremal and
hyperextremal) Schwarzschild-de Sitter spacetime, defined by the condition = = 0,
is spacelike consistent with the fact that the Cosmological constant of the spacetime
is de Sitter-like —see e.g. [12, 70]. Moreover, the singularity at » = 0 is of a
spacelike nature —see [68, 69]. As pointed out in [20, 67|, the Schwarzschild-de
Sitter spacetime can be interpreted as the model of a white hole singularity towards

a final de Sitter state. Alternatively, making use of a reflection
U — —u, v =,

one obtains a model of a black hole with a future singularity —see Figures 5.3, 5.4
and 5.5.

In what follows, the white hole point of view for the extremal and hyperextremal
cases will be adopted so that .# corresponds to future conformal infinity and one will
consider a backward asymptotic initial value problem. Consistent with this point of
view, for the subextremal case we consider asymptotic initial data on .#* and study
the development of such data towards the curvature singularity located at r = 0

—see Figure 5.1.

5.3.3 The R x S*-representation

In Section 5.3.2 it was shown that there exist a conformal representation in which
the induced metric on the conformal boundary corresponds to the standard metric
on S3. A quick inspection shows that the metric (5.17) is conformally flat. In
this section this observation is put in a wider perspective and it is shown how

this follows as a consequence of the the spherical symmetry of the spacetime. In
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addition, a conformal representation in which the induced metric at the conformal
boundary corresponds to the standard metric on R x S? is discussed. This conformal

representation will be of particular importance in the subsequent analysis.

The conformal boundary of spherically symmetric and asymptotically

de Sitter spacetimes

Following an argument similar to the one given in [71] one has the following con-
struction for a spherically symmetric spacetime with spacelike conformal boundary:
if a spacetime (M, g) is spherically symmetric then the metric g can be written in

a warped product form
§=4-po, (5.18)

where 4 is the 2-metric on the quotient manifold Q@ = M/SO(3), o is the standard
metric of S? and p : Q — R. If g and g are conformally related, g = ©24, then the
spherical symmetry condition for g is translated into the requirement that g can be

written in the form

g=v-ro,
where v = ©4 and p = ©p, where © does not depend on the coordinates on S, Near
& one introduces local coordinates (©, ) on the quotient manifold @ = M /SO(3)
so that © = 0 denotes the locus of .#. Since the conformal boundary is spacelike
one has that g(d©,d®) > 0. Therefore, the metric induced on .# by g is of the

form

h=-A{Y)dy @ dY — p*(¢)o,

where A(%)) is a positive function. Redefining the coordinate ) one can rewrite h as

h=—p*(¢)(d ® dY + o),

It can be readily verified —say, by calculating the Cotton tensor of h— that the
metric h is conformally flat. In Section 5.3.4 it will be shown that, in view of the
conformal freedom of the setting, a convenient choice is to consider a conformal

representation in which the the 3-metric on .# is given by
h=-dy®dy —o. (5.19)

This metric is the standard metric of the cylinder R x S? with ¢ € (—o0,00). It
can be verified that this conformal representation is related to the one discussed in
Section 5.3.2 via h = w?h, where the conformal factor w and the relation between

the coordinates are given by

$(€) = v —InfescE +cot],  w(é) = esclé). (5.20)
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Equivalently, one has that

() =arccos | o= |, W) =5 (e +e™),

where 1), is a constant of integration. Observe that in this representation £ = 0 and

¢ = m correspond to 1y = —oo and ¥ = o0, respectively.

The extrinsic curvature of the conformal boundary in the R x S?

representation

A particularly simple conformal representation for the Schwarzschild-de Sitter space-
time can be obtained using the discussion of Section 5.3.3. Accordingly, take the
metric of the Schwarzschild-de Sitter spacetime as written in equation (5.8) with
F(r) as given by the relation (5.9) and consider the conformal factor = = 1/r.
Introducing the coordinates o = 1/r and ¢ = \/mt, the conformal metric

§ = =%gsas
is given by
- 3 (5 g 1 2 ;3 1 !
g—w(g — 9mp —§|)\\)d§“®d§“—<g —9mo —§M|> do®do—o.

—
—_
—
—

The induced metric on the hypersurface described by the condition
by

= ( is given

h=-d(®d(-o.

It can be verified that g satisfies a conformal gauge for which the conformal boundary

has vanishing extrinsic curvature. To see this, consider a g-orthonormal coframe
{w?*} with

; . 12 1 ~1/2
W’ = m <g2 —2mo® — 3|/\|> dg, w’ = <Q2 — 2mg® — 3’)‘|> do,

and {w', w?} a o-orthonormal coframe. Denote by {e,} the corresponding dual
frame. Using this frame one can directly compute the Friedrich scalar s = %fV\C/V\CfE\—i—

1 p= . . .
572 =. The computation of the Ricci scalar yields

R = —12mp. (5.21)
A direct calculation using

V. V'E = ——=0,(\/—det g §"0,E)
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shows that V,V°Z = 6mo? — 20. Consequently, the scalar 5 vanishes at the hy-
persurface defined by == o0 = 0. Contrasting this result with the solution to the
conformal constraints given in equations (2.78a)-(2.78b) of Chapter 2 one concludes
that in this representation the hypersurface described by = = 0 has vanishing ex-

trinsic curvature as claimed.

Remark 39. Notice that, in this representation the curvature singularity, located
at r = 0, corresponds to o = oo. Consequently, the singularity is at an infinite

distance from the conformal boundary.

Observe that, the components of the Weyl tensor with respect to the orthonormal

frame {e,} as described above are given by
Ci212 = —2my, Ciz13 = mg, Cio10 = —mpo, Cazaz = mo, Cono = —me, Csp30 = 2myp.

This information will be required in the discussion of the initial data for the rescaled
Weyl tensor —see Section 5.3.4. Using now that d%eq = = 1C%eq with == o and
exploiting the fact that the computations have been carried out in an orthonormal

frame so that C%..q = n%f Ctbed, One gets
di212 = —2m, diz13 =m, digio = —m, dazaz =m, da =—m, dsz0 = 2m.
Finally, considering d;; = d;oj0 one obtains

dll = —m, d22 = —m, d33 = 2m. (522)

5.3.4 Identifying asymptotic regular data

As discussed in Section 5.3.1, there is a conformal representation in which the in-
duced metric on the conformal boundary of the Schwarzschild-de Sitter is the stan-
dard metric A on S?. Nevertheless, the asymptotic points Q and Q', as depicted in
the Penrose diagram of Figure 5.3, are associated to the behaviour of those time-
like geodesics which never cross the horizon —see Appendix 5.6. Despite that,
from the point of view of the intrinsic geometry of .# these asymptotic regions —
corresponding to the North and South poles of S3>— are regular, from a spacetime
point of view they are not. This issue will be further discussed in this section. In
particular, it will be shown that the initial data for the electric part of the rescaled
Weyl tensor is singular at @ and Q'. Fortunately, as exposed in Sections 5.2.2 one
can exploit the inherent conformal freedom of the setting to select any representa-
tive of the conformal class [A] to construct a solution to the conformal constraint
equations —see Section 2.5 of Chapter 2. Taking into account the previous remarks

it will be convenient to choose the conformal representation discussed in Section
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5.3.3, h = w?h with w and h given in equations (5.19) and (5.20), in which the
points @ and Q' are at infinity respect to the metric h.

A frame for the induced metric at .

Consistent with the discussion of the last section, on .# one considers an adapted

frame {l, m,m} such that the metric (5.19) can be written in the form
h=—-(1l®l+o0)

where

1
[ =dvy, a:§(m®m+7h®m).

In terms of abstract index notation one has
hij = —=lil; — 2mmy). (5.23)
The frame {l, m,m} satisfies the pairings
LU =-1, mm’ =-1,  Lm’ =Lm’ =mym’ =m;m’ =0. (5.24)

Initial data for the rescaled Weyl tensor

The procedure for the construction of a solution to the conformal constraints at the
conformal boundary requires, in particular, a solution to the divergence equation
(2.78¢) for the electric part of the rescaled Weyl tensor —see Section 2.5.2 in Chap-
ter 2. The requirement of spherical symmetry of the spacetime can be succinctly
incorporated using the results in [72]. If the unphysical spacetime (M, g) possesses
a Killing vector X then the initial data encoded in the symmetric tracefree tensor
d;; must satisfy the condition

Lxd;; =0, (5.25)

where £ x denotes the Lie derivative in the direction of X on the initial hypersurface.

If d;; is to be compatible with the symmetries of R x S? then it is of form
1

where ¢ = d;;I'l’. The most important property of the geometry of the conformal
boundary of the Schwarzschild-de Sitter spacetime is the fact that it is conformally
flat. The latter is particularly convenient as the general form of symmetric, tracefree
and divergence-free tensors (i.e. T'T-tensors) in a conformally flat setting are well-
known —see e.g. [42, 73]. This opens the possibility of determining the required d;;
not only in the R x S%:-representation but to explore solutions to equation (2.78¢c) in

other conformal representations which will be relevant for the subsequent discussion.
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TT-tensors on R3. For convenience of the reader, in this short paragraph, the
conventions and discussion of TT-tensors on Euclidean space given in [42, 73] are

adapted to the present setting. The general solutions to the equation
Did; =0, (5.27)

where h = —4 is the flat metric has been given in [42]. One can introduce Cartesian
coordinates (%) with the origin of R? located at a fiduciary position O. Addition-
ally, polar coordinates defined via p? = dagr®xP are introduced. The flat metric in
these coordinates reads

h = —dp®dp — p’o. (5.28)

Using this notation and taking into account the requirement of spherical symmetry

encoded in equation (5.25) the flat space counterpart of the required solution is
LA, X
d=— <3dp®dp+h),
p

where A, is a constant. In order to obtain an analogous solution in conformally
related 3-manifolds one can exploit the conformal properties of equation (5.27) using

the following:

Lemma 13. Let cL-j be a tracefree symmetric solution to D’Jij = 0 where D is
the Levi-Civita connection of h. Let h = w*h, then d;; = w™d;; is a symmetric

tracefree solution to D'd;; = 0 where D is the Levi-Civita connection of h.

This lemma can be found in [42]. Here the statements have been adapted to agree

with the conventions of this thesis.

TT-tensors on S and RxS?. One can exploit Lemma 13 to derive spherically sym-
metric solutions of the divergence equation (5.27) in conformally flat 3-manifolds.
In particular, the metrics /i and h as given in equations (5.17) and (5.28) are related
via

h= UJQiL,

where

p(§) = cot(§/2),  w(§) = 2sin’(¢/2), (5.29)

The coordinate transformation p(§) corresponds to the stereographic projection in
which the origin O of R? is mapped to the South pole on S3. Alternatively, one can

also derive

pl€) = tan(¢/2),  w(€) = 2cos’(¢/2), (5.30)

corresponding to the stereographic projection in which the origin of R? is mapped to
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the North pole of S®. Using Lemma 13 with equations (5.29) or (5.30) one obtains

Ay
d= m (Bdé¢ @ dE+ h). (5.31)
Observe thatd;; is singular when w(§) = 1 which corresponds to { =0 and { =7
according to equations (5.29) and (5.30), respectively. Therefore, in this conformal
representation the electric part of the rescaled Weyl tensor is singular at the North
and South poles of S3. Proceeding in a analogous way as in the previous paragraphs
one can observe that the metrics b and h given in equations (5.19) and (5.28) are

related via
where

A straightforward computation using Lemma 13 renders
d=A,(3dy®dy+h). (5.32)

Moreover, one can verify that £xd;; = 0. Finally, comparing expression (5.32) with
equation (5.22) one can recognise that A, = m. Observe that this identification is
irrespective of the extrinsic curvature of .# since the latter is fixed by x which does
not play a role in the determination of a solution to D'd;; = 0 —see Lemma 10 and
Remark 10.

5.3.5 Asymptotic initial data for the Schwarzschild-de

Sitter spacetime
In the last section it was shown that the R x S2-conformal representation leads to
regular asymptotic data for the rescaled Weyl tensor. In this section the discussion
of the asymptotic initial data for the Schwarzschild-de Sitter spacetime is completed
for this conformal representation. To do so, one makes use of the procedure to solve

the conformal constraints at the conformal boundary, as discussed in Section 2.5.2

of Chapter 2, and the specific properties of the Schwarzschild-de Sitter spacetime.

Initial data for the Schouten tensor

Computing the Schouten tensor Schlh] of h one obtains

1 1
Schlh] = —dv @ dy + o
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Equivalently, in abstract index notation one writes

Thus, recalling the solution to the conformal constraints given in equation (2.78b)
of Chapter 2, one gets
Lij = —lzlj — *(1 — /12)]%']'.

Initial data for the connection coefficients

In order to compute the connection coefficients associated with the coframe {w;}
recall that w® = dy and {w', w?} are o-orthonormal. Equivalently, one has that
{e;} = {0y, e1,ex} with

61:7<m+m)7 €2 =

V2
where 0 = m ® m + m ® m, so that

2 3

h=-wow —wow —w oo

The connection coefficients can be obtained using the first structure equation
(5.88a) given in Appendix 5.8.1. Proceeding in this manner, by a straightforward
computation, one can show that the only non-zero connection coefficient is v52;. In
terms of the Ricci-rotation coefficients, the latter corresponds to 2v/2 Re(a,) where
@, = —1m*dm, in the standard NP notation —see [12]. Therefore, the only no-

trivial initial data for the connection coefficients is
Vo2 = \/5(04* + ay).

Remark 40. The frame over the cylinder R x S? introduced in this section is not
a global one. Nevertheless, it is possible to construct an atlas covering R x S? such

that one each of the charts one has a well defined frame of the required form.
Spinorial initial data

In this section the spinorial counterpart of the asymptotic initial data computed in
the previous sections is discussed.

Spin connection coefficients

The spinorial counterpart of the asymptotic initial data constructed in the previous
sections is readily obtained by suitable contraction with the spatial Infeld-van der

Waerden symbols —see Appendix 5.8.3. Following the discussion of Section 5.3.5,
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let w?® = dy and let {w!, w?} denote a o-orthonormal coframe. Using equations

(5.95b) of Appendix 5.8.3 one has that the spinorial coframe is given by
wAB — O’iABwi — (yAB + ZAB)wl + i(yAB . ZAB)w2 . l’ABwS. (533)
Alternatively, one has that the spinorial frame is given by

€AB = TABC, Oy + \/ﬁyABeyth +V2245e. M’

® e,T, e,” denote the only non-vanishing frame coefficients. Equation

where e,
(5.33) allows to compute the reduced connection coefficients y4Zcp using the first
Cartan structure equation (5.94a) in Appendix 5.8.3. Alternatively, one can use the

results of Section 5.3.5 and the spatial Infeld-van der Waerden symbols to compute

cD i CD k
YAB T EF = Vi’k0AB'0 " jORF",
where
i 2¢ 52 1 2¢ 1.2
Vilk = 0;°017 0k Y2 2 4 0;°027 0 Y271,

with
Yo'y = —\/E(Oé* + a,), Yol = \/§(oz* + ay).

Using the identities (5.95a)-(5.95b) in Appendix 5.8.3 one obtains

’YABCDEF = 2\/5(04* + o) (yaB — ZAB)(QEFZCD — yCDZEF)-

Thus, the reduced connection coefficients are given by

1

Ya"F = §’YABCDCD = (o + @)z p(yaB — 2aB). (5.34)

By computing the spinor version of the connection form vPp = yap®? pwA4E

using
equations (5.34) and (5.33) one can readily verify that the first structure equation
is satisfied. Additionally, using the reality conditions,
f=_ f= f= 5.35

TAB TAB, YaB ZAB) ZAB YaB (5.35)
one can verify that yapep is an imaginary spinor —as is to be expected from
the space spinor formalism. The field y4pcp represents the initial data for the field
£acp —the imaginary part of the reduced connection coefficient I'ygep. The real
part of I'apep corresponds to the Weingarten spinor x 4pep which, in accordance

with equation (2.78a) of Chapter 2, is given initially by

XaBcD = Khapeb.
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Rewriting the reduced connection coefficients (5.34) in terms of the basic valence-4
spinors as defined in Appendix 5.8.2 one obtains for {apep = YaBcp the explicit

expression

aep = —(au + @*)(ElABCD + 63ABCD)

1 1
+——(a, + Oy )€ 4+ z + —(a, + Oy )€ +z .
2\/5( * *) Ac(yBD BD) 2\/5( * *) BD(yAC AC)

Spinorial counterpart of the Schouten tensor

The spinorial counterpart of the Schouten tensor /;; can be directly read from the

AB

expressions in Section 5.3.5. Observe that the elementary spinor ' corresponds

to the components of [; with respect to the coframe (5.33) since

wABr A = — 0B pw’ = WP = dy =1.

Replacing h;; by its space spinor counterpart hapcp one obtains

1

lij = laBcD = —TABTCD — ihABCD-

Equivalently, recalling that the space spinor counterpart of the tracefree part of a
tensor g = li; — élhij corresponds to the totally symmetric spinor l(apcp) it

follows then from |
lij = liigy + glhij,

that
1

laBcp = l(aBcD) + glhABCD~

Using that | = h%l;; = %r, where r is the Ricci scalar of h, and that for the

metric (5.19) one has r = —2 it follows that [ = —%. Exploiting that l(acp) =
—Z(ABTCD) = —264pop One obtains
9 1
laBcD = —2€“ABCD — éhABCD- (5.36)

Finally, recalling the expressions for the components of the spacetime Schouten

tensor, as given in equation (2.78b) of Chapter 2, one concludes

Lapcp = —2¢2aBcD — 6(1 — 3k*)haBCD-

Initial data for the rescaled Weyl spinor

Following the approach employed in last section, the spinorial counterpart of ex-

pression (5.32) is given by

dapep = Ax(3laBlep + hasebp)-



5.4: The solution to the asymptotic initial value problem for the Schwarzschild-de
Sitter spacetime and perturbations 121

However, the trace-freeness condition simplifies the last expression since d?; = 0
implies that dij = d{ij}. Therefore dABCD = d(ABCD) = 3A*Z(ABZCD)- As the
elementary spinor x4p can be associated to the components of I respect to the

coframe (5.33) one gets that

daBcp = 3A.T(ABTCD)-

This last expression can be equivalently written in terms of the basic valence-4 space

spinors, defined in Appendix 5.8.2, as

2
$»aBcpD = 6me” aBcD.

where, in the absence of a magnetic part, one has identified ¢ 4pcp initially with
dacp. Observe that A, = m has been set, consistent with the discussion of Section

5.3.4.

5.4 The solution to the asymptotic initial value
problem for the Schwarzschild-de Sitter

spacetime and perturbations

As already discussed in the introductory section, recasting explicitly the Schwarzschild-
de Sitter spacetime as a solution to the system of conformal evolution equations
(2.68a)-(2.681) of Chapter 2 requires solving, in an explicit manner, the conformal
geodesic equations. This, as discussed in Appendix 5.6.2, is not possible in general.
Instead, an alternative approach is to study directly the conformal evolution equa-
tions (2.68a)-(2.681) making explicit the spherical symmetry of the solution and the
asymptotic initial data corresponding to the Schwarzschild-de Sitter spacetime. This
approach does not only extract the required information about the reference solution
—in the conformal Gaussian gauge— but, in addition, is a model for the general
structure of the conformal evolution equations. The relevant analysis is discussed
in Sections 5.4.1 and 5.4.2. As a complementary analysis, the formation of singu-
larities in the evolution equations is also studied. In order to have a more compact
discussion leading to the Main Result of this chapter, the analysis of the formation
of singularities is presented in Appendix 5.7. Finally, in Section 5.4.3, the theory
of symmetric hyperbolic systems contained in [23] is used to obtain a existence and
stability result for the development of small perturbations to the asymptotic initial

data of the Schwarzschild-de Sitter spacetime.
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5.4.1 The spherically symmetric evolution equations

Hitherto, the discussion of the extended conformal Einstein field equations and the
conformal constraint equations has been completely general. Since one is interested
in analysing the Schwarzschild-de Sitter spacetime as a solution to the conformal
field equations it is necessary to incorporate specific properties of this spacetime.
The most important assumption for this analysis is that of the spherical symme-
try of the spacetime. As mentioned before, under this assumption, a generalisation
of Birkhoft’s theorem for vacuum spacetimes with de Sitter-like Cosmological con-
stant shows that the spacetime must be locally isometric to either the Nariai or the
Schwarzschild-de Sitter solutions —see [58]. As the Nariai solution is known to not
admit a smooth conformal boundary [57, 62|, then the formulation of an asymptotic

initial value problem readily selects the Schwarzschild-de Sitter spacetime.

To incorporate the assumption of spherical symmetry into the conformal field
equations encoded in the spinorial zero-quantities (2.25a)-(2.25d) of Chapter 2 one
has to reexpress the requirement of spherical symmetry in terms of the space spinor
formalism. In order to ease the presentation one can simply introduce a consistent
Ansatz for spherical symmetry —a similar approach has been taken in [71]. More

precisely, one sets

$aBCD = 02 € ABCD; (5.37a)
©ap = V20, 145, (5.37b)
1
©apcp = 62" € apep + g@hS hagcp: (5.37c)
1

EaBep =& EIABCD + & EQABCD +&3 €3ABCD + gfh haBcp

+£($BD€AC + TaceBD) + %(QBDEAC + YaceBD)

+\€/Z§(ZBD€AC + zac€BD), (5.37d)
XABCD = X2 €apep + 3 Xn hagcp, (5.37e)
"ap =€lrap, €hp=cTap, €hp=¢€, Yap, eap=c; zap,(5.37f)
faB = f:raB, (5.37g)
dap = d; zaB. (5.37h)

The elementary spinors Tap, Yap, 4B, capcp and hapcep used in the above
Ansatz are defined in Appendix 5.8.2. For further details on the construction of
a general spherically symmetric Ansatz see [27, 74]. Alternatively, one can follow
a procedure similar to that of Section 5.3.5 —by writing a consistent spherically
symmetric Ansatz for the orthonormal frame one can identify the non-vanishing
components of the required tensors. The transition to the spinorial version of

such Ansatz can be obtained by contracting appropriately with the Infeld-van der
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Waerden symbols taking into account equations (5.95a)-(5.95b), (5.92a)-(5.92d) and
(5.93b)-(5.93g) of Appendices 5.8.2 and 5.8.3.

The Ansatz for spherical symmetry encoded in equations (5.37a)-(5.37h) combined
with the evolution equations (2.68a)-(2.681) leads, after suitable contraction with the

elementary spinors of Appendix 5.8.2, to a set of evolution equations for the fields

T S S 0 3 -
¢2, @x P @2 5 @h 7617 §3a gwa €y7 §Z7 €ry €1y €j76y7 faﬁ

This lengthy computation has been carried out using the suite xAct for tensor
and spinorial manipulations in Mathematica —see [75]. At the end of the day one

obtains the following evolution equations:

-0 = txaed — Ixnel — fo, (5.38)
O-€; = 5X2€; — 5XnCh, (5.38b)
Orey = —§X2€y — 3Xn€y (5.38¢)
Ore; = —§Xa2€s — 3XhEs (5.38d)
Orfo = 3x2fo — $X0fu + OF, (5.38¢)
Orx2 = X3 — 2x2xn — 05 — O¢y, (5.38f)
Orxh = —£X3 — 35X — O, (5.38¢)
0-& = 5X28 — Xn€s — 3X2&y, (5.38h)
Ir& = 15x261 — 3xné1 — 526z, (5.381)
0:6 = —5Xafe — O; — §X2&0 — 5Xnas (5.38j)
06y = —3x263 + 13X26y — 3Xnby, (5.38k)
0rE. = —gx2€1 + 15X — SXnés, (5.381)
0:0; = 3x20; — xnO; + 3dua, (5.38m)
.05 = éX29§ - éxh@f - %Xz@f + O¢s, (5.38n)
0-05 = —1x205 — tx10;, (5.380)
Or g = —%X2¢2 — Xn2- (5.38p)

The results of the analysis of Section 5.3.5 provide the asymptotic initial data for
the above spherically symmetric evolution equations. The resulting expressions are

collected in the following lemma:

Lemma 14. There exists a conformal gauge in which asymptotic initial data for the
Schwarzschild-de Sitter spacetime can be expressed, in terms of the fields defined by
the Ansatz (5.37a)-(5.37h), as

1
By =6m, 0,7 =0, 0,5 = -2, 0,° = — 5(1 — 3k%),
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_ _ 1 i 1 ~
G=—lwra),  G=—(ata), &=jrplata)  &=gple.ta)
1

, =——=(0x + ay), =0, =3k, + =0,
3 2\/5( ) X2 Xh X
e =0, e =1, el =1, e, =1,
fz =0.

5.4.2 The Schwarzschild-de Sitter spacetime in the

conformal Gaussian gauge

In this section the spherically symmetric evolution equations derived in the previous
section is analysed in some detail. In particular, it is shown that there is a subsystem
of equations that decouples from the rest —which will be called the core system—
and controls the essential dynamics of the system (5.38a)-(5.38p).

As the Schwarzschild-de Sitter spacetime possesses a curvature singularity at r =
0, one expects, in general, the conformal evolution equations to develop singularities.
To explain this in more detail observe that if Schwarzschild-de Sitter spacetime
metric were written in conformal Gaussian coordinates the curvature singularity
located at r = 0 would be reached at a certain value of the unphysical proper time
T = 74. Since the conformal evolution equations (5.38a)-(5.38p) with the initial
data of Lemma 14 describe the Schwarzschild-de Sitter spacetime in the conformal
Gaussian gauge, then, the existence of a singularity at 7, should be already encoded
in equations (5.38a)-(5.38p) with the initial data of Lemma 14. Moreover, since
the two essential parameters appearing in the initial data given in Lemma 14 are
m and k —the function a, only encodes the connection on S*>— one expects, in
general, that the congruence of conformal geodesics reaches the curvature singularity
at 7 = 7,(m, k). Nevertheless, numerical evaluations suggest that for k = 0 the
core system does not develop any singularity —observe that this is consistent with
Remark 39. Furthermore, an estimation for the time of existence 74 of the solution
to the conformal evolution equations (5.38a)-(5.38p) with initial data in the case
k = 0 is given. A discussion of the mechanism for the formation of singularities in

the core system (x # 0) and the role of the parameter & is given in Appendix 5.7.

The core system

Inspection of the system (5.38a)-(5.38p) reveals that there is a subsystem of equa-
tions that decouples from the rest. In the sequel these equations will be referred as
the core system. Defining the fields

1/1 1/1
(X2 + Xh); = _3<2@2S + @hs), O = = o, (5.39)

Wl =

X=313
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the system (5.38p)-(5.38a) can be shown to imply the equations

¢ = —3x0, (5.40a)
X=-xX"+L- ;Gaﬁ, (5.40b)
L=—yL- ;éqﬁ, (5.40c)

where the overdot denotes differentiation with respect to 7 and
A 1 . A
O(r) = |3|T <1+2/<;7'), 0= |3|(1—|—/W).
The initial data for this system is given by

(0) = 2m, 2(0) = k. L(0) = ;(1 ~@). (541)

As it will be seen in the remainder of this chapter, equations (5.40a)-(5.40c) with
initial data (5.41) govern the dynamics of the complete system (5.38a)-(5.38p). The
evolution of the remaining fields can be understood once the core system has been

investigated.

Analysis of the Core System

This section will be concerned with an analysis of the initial value problem for the
core system (5.40a)-(5.40c) with initial data given by (5.41). As it will be seen in
the following, the essential feature driving the dynamics of the core system (5.40a)-
(5.40c) is the fact that the function y satisfies a Riccati equation coupled to two
further fields. One also has the following:

Observation 1. The core equation (5.40a) can be integrated to yield

(1) = 2mexp (—3 /OT X(s)ds> : (5.42)
Hence, ¢(7) > 0 if m # 0.

In the remaining of this section, the behaviour of the core system is analysed in

the case where the extrinsic curvature of .¢ vanishes.

As discussed in Section 5.2.2 in the case k = 0 the conformal factor reduces to
O(7) = 4/|\|/37 —thus, one has only one root corresponding to the initial hyper-
surface .#. To simplify the notation recall that ©, = \/m so that O(1) = ©,7.
Accordingly, the core system (5.40a)- (5.40c) can be rewritten as

¢ = —3x0, (5.43a)
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) 2 1.
X=-x"+L-— 59*7'(;5, (5.43b)
) 1.
L=—xL— 5@@. (5.43c)

Moreover, the initial data reduces to
x(0)=0,  L(0) = ¢(0) = 2m.

Observation 2. A direct inspection shows that equations (5.43a)-(5.43c) imply
that

x(7) = 7L(7).

This relation can be easily verified by direct substitution into equations (5.43b)
and (5.43c). Observe that L(7) = x(7)/7 is well defined at .# where 7 = 0 and
x(0) = 0 since the initial conditions ensure that

lim X(7) = 1
2

T—=0 T

Taking into account the above observation the core system reduces to

. 1.
L=—-7L%—- 5640, (5.44a)
¢ = —37Lo, (5.44b)
with initial data .
LO)=5,  (0)=2m. (5.45)

Observation 3. One can integrate (5.44b) to

(1) = 2mexp (— /T sL(s)ds) (5.46)

0

and conclude that ¢(7) > 0 for 7 > 0.

To prove the boundedness of the solutions to the core system one starts by proving

some basic estimates:

Lemma 15. If k = 0, then the solution of (5.40a)-(5.40c) with initial data (5.41)
satisfies the bound

L(t) > ¢(1) (47171 — ;(;)*7'> for 7> 0.

Proof. Using equations (5.44a) and (5.44b) the following expression is derived

. : 1. 1.
¢L — Lo = 21L%¢p — 5@@2 > —§®*¢2 for  7>0. (5.47)
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Since ¢(7) > 0 one can consider the derivative of L/¢. Notice that

4 ()-otrs

This observation and inequality (5.47) gives

d (L 1.
- ( ) 29* for T>0

Integrating the last differential inequality from 7 = 0 to 7 > 0 taking into account

the initial conditions leads to

]

Observe that the last estimate ensures that L(7) is non-negative for 7 € [0, 8m/0,].

It turns out that finding an upper bound for L(7) is relatively simple:

Lemma 16. If k = 0 then, for the solution of (5.40a)-(5.40c) with initial data

(5.41), one has that
2

T2+ 4

L(r) <

Proof. Assume 7 > 0. Using that ¢(7) > 0 and equation (5.44a) one obtains the

differential inequality

for T2>0.

L(t) < —7L*(7).

Using that L(7) > 0 for 7 > 0 one gets

L(r)
L2(7)

< —T.

The last expression can be integrated giving an upper bound for L(7):

2
T2 44

L(r) <

A simple bound on a finite interval can be found for the field ¢(7) as follows:

Lemma 17. If kK = 0 then, for the solution of (5.40a)-(5.40c) with initial data
(5.41) and for 0 <7 < 1/(2y/0,m), the field ¢(t) satisfies
2m

¢(1) < -

~1-0,mm
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Proof. Assume 7 > 0. From the estimate of Lemma 15 one has that
L>-1¢ b
=75 *TQ.
Therefore 5
—37L¢ < 5@*7%2.

Using equation (5.44b) one obtains the differential inequality
. 3.
¢ < §@*T2¢2-

Since ¢(7) > 0 the last expression can be integrated to yield,

2m

< — .
¢lr) < 1—06,m73

Therefore, for 0 < 7 < 1/v/©,m, the field, ¢(7) is bounded by above. Consequently,

one can take 0 < 7 < 1/(2v/0,m). O

The results of Lemmas 15, 16 and 17 can be summarised in the following:

Lemma 18. The solution to the core system (5.40a)-(5.40c) with initial data (5.41),

in the case k =0, is bounded for 0 < 7 < 7,, where

(5.48)

Te = min {8—m $}
T @* 7 2\3/ @*m .
Remark 41. A plot of the numerical evaluation of the solutions to the core system
(5.40a)-(5.40c) with initial data (5.41) in the case k = 0 is shown in Figure 5.6.

Behaviour of the remaining fields in the conformal evolution equations

In this section the analysis of the conformal evolution equations is completed. In
particular, it is shown that the dynamics of the whole evolution equations is driven

by the core system. To this end, the following fields are introduced

(03 —03).

_ 1
(XQ_Xh>7 L= g

Wl =

X =
The evolution equations for these variables are

X=x—L — 00, (5.49a)
L =L+ 09, (5.49D)

with initial data
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0.54,
04f %

0.3

\~~~
~—_
'l ......

Lr N S T e ————
0.17, .
L1
lr
]

1

e
~
~
.
~
~
~.an

Figure 5.6: Numerical solution of the core system in the k = 0 case with |A\| = 3
and m = 1/3\/3. The solid line corresponds to ¢, the dashed line to x and the
dotted line to L. Observe that in contrast to the Kk > 1 and Kk < —1 cases, numeric
evaluations suggest that in the case k = 0 the fields of the core system are bounded
for all times —see Figures 5.11 and 5.12 of Appendiz 5.7.

Notice that despite these equations resembling those of the core system, the field ¢
is not determined by the equations (5.49a)-(5.49b) —thus, this subsystem will be
called the supplementary system. Once the core system has been solved, ¢ can be
regarded as a source term for the system (5.49a)-(5.49b). If ¥ and L are known
then one can write the remaining unknowns in quadratures —the analysis of the

supplementary system (5.49a)-(5.49b) will be given later in this section. Defining

1 _ 1
gj?, = gy + 7637 €y3 = gy - 7537
2 2
1 _ 1
Z_lzfz_‘_igla Szlzfz_iglv

one finds that the equations for these fields can be formally solved to give

B0 =&h e (= [ x@as), g =g e (- [ xs)ds)

A =hen (- [xds) . g =en (- [ xs)ds).
The role of the the subsystem formed by ©F, f, and €3 is analysed in the following
result.

Lemma 19. Given asymptotic initial data for the Schwarzschild-de Sitter spacetime,
if Opk =0 on & then

fo(T) = e,%(1) = 8,7 (1) = 0.
Proof. This result follows directly from equations (5.38a), (5.38¢), (5.38m) and the

initial data given in Lemma 14. To see this, first recall that

d, = xABeABiei(@) =¢,0,0 + ¢,20;0.
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Assuming then that es(x) = 0 one has that e3(©) = 0 and therefore
d, = \/ﬁexoé).

Observing that equations (5.38a), (5.38¢) and (5.38m) form an homogeneous sys-
tem of equations for the fields e,°, f,, ©,7 with vanishing initial data then, using a
standard existence and uniqueness argument for ordinary differential equations, it

follows that the unique solution to this subsystem is the trivial solution, namely

]

Using the result of Lemma 19 one can formally integrate equation (5.38j) to yield

&(r) = &) exp (= [ x(s)ds).

The frame coefficients can also be found by quadratures

) =20 exp ([ Ks)as), e (1) = efO)exp (— [ x(s)as).

Since one can write

X2 =2(X + X); Xh =2X — X; 05 =2(L-1), ©]=-L-2L,

gy :}( ;r?, + 5;3)7 52 :}( z+1 + 5;1)7 51 :2(5,?1 - 5;1)7 53 :2(5;3 - 51;)

2 2

then, it only remains to study the behaviour of Y and L to completely characterise

the evolution equations (5.38a)-(5.38p).

Remark 42. In the analysis of the core system of Appendix 5.7 the mechanism for
the formation of singularities at finite time in the case xk # 0 is identified. Since ¢
acts as a source term for the supplementary system (5.49a)-(5.49b) one expects the
solution to this system to be singular at finite time if the solutions to the core system
develop a singularity. Clearly, the behaviour of the core system is independent from
the behaviour of the supplementary system. Observe that, nevertheless, L and y
could blow up earlier than ¢. The analysis of the supplementary system and an

estimation of a existence time is given later on in this section.

Deviation equation for the congruence

As discussed in Section 2.4.3 of Chapter 2, the evolution equations (2.68a)-(2.68h)

are derived under the assumption of the existence of a non-intersecting congruence
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of conformal geodesics. In this section the solutions to the deviation equations are

analysed.

As a consequence of Lemma 19 one has f4g = 0. Following the spirit of the space
spinor formalism, the deviation spinor z4p can be written in terms of elementary

valence 2 spinors as

2(AB) = 22X AB T 2yYAB + 2:2AB-

Substituting expression (5.37¢) into equation (2.71b) of Chapter 2 and using the
identities given in equation (5.93g) of Appendix 5.8.2 one obtains
1 1

0,2, = 0, 0;z, =0, 0-2y = —EXQZy — éxhzy.

One can formally integrate these equations to obtain

)= )= a0 = seen (5 [ x(s)ds)).

In the last equation, z,4, 2, and z, denote the initial value of z,(7), z,(7) and z,(7)
respectively. It follows that the deviation vector is non-zero and regular as long as
the initial data 2.y, 2,. and z,, are non-vanishing and x(7) is regular. Accordingly,

the congruence of conformal geodesics will be non-intersecting.

Analysis of the supplementary system

As in the case of the core system, the supplementary system is simpler in the gauge
in which x = 0. In such case, direct inspection shows that equations (5.49a)-(5.49b)
imply

X = —7L.

This can be verified by direct substitution into equations (5.49a) and (5.49b). Notice
that L(7) is well defined at .# where 7 = 0 and y(0) = 0 since the initial conditions
ensure that -

x(r) _ 1

lim &—% = —.
—0 T 2

Taking into account this observation, the system (5.49a)-(5.49b) reduces to the
equation
L=—7L?+6,¢, (5.50)

with initial data
L(0) = —=. (5.51)

Using that ¢ is only determined by the core system, together with the analysis of
the core system given in the beginning of Section 5.4.2 one obtains the following

result:
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Lemma 20. The solution to equation (5.50) with initial data (5.51) is bounded for
0 <71 <715 with

- 1.
To = mz’n{To,T.}, where To = \/G)* 1/2 (;T + 2arctan (2@* 1/2>> (5.52)

Proof. To prove that L(7) is bounded from above one proceeds by contradiction.
Assume that L — oo for some finite 7, € [0, 7], then L — oo at 7,. Now, equation
(5.50) can be rewritten as

E +7L% = @*¢.

Therefore, since 7 > 0, the last expression implies that ¢ — oo at 7,. However,
in the analysis of the core system in Section 5.4.2 it was shown that ¢ is finite for
7 € [0,7.]. This is a contradiction, and one cannot have L — oo at 7, € [0, 7).
Consequently L(7) is bounded from above for 0 < 7 < 7,. To show that L(7) is
bounded from below, for 0 < 7 < 7, with 7, as given by relation (5.52), observe that
¢(1) > —7 for 7 > 0 since ¢(7) > 0. Using this observation, equation (5.50) implies
the differential inequality

L>-7m(I2+06,).

Since ©, > 0 one has that (L? 4+ ©,) > 0. Thus, one can rewrite the last inequality

as

L
- = < Z
(L2 +0,)
which can be integrated using the initial data (5.51) to give

—\/@>*tan< Vo, +arctan<2\r>>

Since the function tan is bounded if its argument lies in [0, 7/4] one concludes that

_7'7

L(7) is bounded from below for 0 < 7 < 7,. Finally, taking the minimum of 7, and

7, one obtains the result. O

Remark 43. Numerical evaluations of the solutions to the supplementary system
show that it should be possible to improve Lemmas 18 and 20 and conclude that the
solutions do not blow up in finite time. These results, however, will not be required
to formulate the Main Result of this thesis.

5.4.3 Perturbations of the Schwarzschild-de Sitter
spacetime
In the sequel, one will consider perturbations of the Schwarzschild-de Sitter space-

time which can be covered by a congruence of conformal geodesics so that Lemma

6 of Chapter 2 can be applied. In particular, this means that the functional form
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of the conformal factor is the same for for both the background and the perturbed
spacetime.

The discussion of Section 5.3.4 brings to the foreground the difficulties in setting
up an asymptotic initial value problem for the Schwarzschild-de Sitter spacetime in
a representation in which the initial hypersurface contains the asymptotic points Q
and @’: on the one hand, the initial data for the rescaled Weyl tensor is singular
at both @ and Q’; and, on the other hand, the curves in a congruence of timelike
conformal geodesics become asymptotically null as they approach Q and Q' —see
Appendix 5.6.

Consistent with the above remarks, the analysis of the conformal evolution equa-
tions (2.68a)-(2.68h) has been obtained in a conformal representation in which the
metric on .# is the standard one on R x S2. In this particular conformal represen-
tation the asymptotic points @ and Q' are at infinity respect to the 3-metric of .
and the initial data for the Schwarzschild-de Sitter spacetime is homogeneous. In
this section non-linear perturbations of the Schwarzschild-de Sitter spacetime are
analysed by means of suitably posed initial value problems. More precisely, one is
interested in analysing the development of perturbed initial data close to that of the
Schwarzschild-de Sitter spacetime in the above described conformal representation.
Then, using the conformal evolution equations (2.68a)-(2.68h) and the theory of first
order symmetry hyperbolic systems contained in [23] one can obtain a existence and
stability result for a reference solution corresponding to the asymptotic region of

the Schwarzschild-de Sitter spacetime —see Figure 5.1.

Perturbations of asymptotic data for the Schwarzschild-de Sitter

spacetime

In what follows, let S denote a 3-dimensional manifold with S ~ R x S?. By
assumption, there exists a diffeomorphism 1 : § — R x S? which can used to pull-
back a coordinate system z = (%) on R x S? to obtain a coordinate system on S
—i.e. ¥ = Y*r = x o). Exploiting the fact that ¢ is a diffeomorphism one can
define not only the pull-back ¢* : T*(R x S?) — T*S but also the push-forward of
its inverse (1), : T(R x S$?) — T'S. Using this mapping, one can push-forward
vector fields ¢; on T(R x S?) and pull-back their covector fields a? on T*(R x S?)
via

&= e @ =val,

In a slight abuse of notation, the fields ¢; and a® will be simply denoted by ¢; and

a’L

In the following, all the fields discussed previously for the exact Schwarzschild-de
Sitter spacetime will be referred as the background solution. This fields will be dis-

tinguished with a " over the Kernel letter —e.g. h will denote the standard metric
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on R x §? given in equation (5.19). Similarly, the perturbation to the corresponding
field will be identified with a ~ over the Kernel letter. Notice that although the
frame {¢;} is iL—orthonormal, it is not necessarily orthogonal respect to the intrinsic

3-metric h on S.

Let {e;} denote a h-orthonormal frame over T'S and let {w®} be the associate
cobasis. Assume that there exist vector fields {€;} such that an h-orthonormal

frame {e;} is related to an h-orthonormal frame {¢;} through the relation
e; =c; + é;.
This last requirement is equivalent to introducing coordinates on S such that
h=h+h. (5.53)
Now, consider a solution
(hija Xig> Li, Lij, dijr, dij)

to the asymptotic conformal constraint equations (2.77a)-(2.771) of Chapter 2 which
is, in some sense to be determined, close to initial data for the Schwarzschild-de

Sitter spacetime so that one can write

hijls = iLij|S + 71ij|& Xijls = Xijls + Xijls, Lils = Lils + Li|s
Lijls = [D/ij|5 + Eij|$a dijls = Ciijk|s + Ciijk:|87 dijls = d)ij|8 + Jij|$-

A spinorial version of these data can be obtained using the spatial Infeld-van der

Waerden symbols. Accordingly, one writes

naBcpls = NaBep|s + MaBebls, paBepls = flaepls,  (5.5da
(

)

Lagepls = Lasepls + Lasepls, £asepls = 5ABCD|3 + £aBepls,(5.54b)
Lagls = Lasls, XaBcD|s = XaBebpls + XaBebls, (5.54c)

)

eABls = €aBl|s + €aBls, faBls = faBls. (5.54d

Observe that all the objects appearing in expressions (5.54a)-(5.54d) are scalars.
Using the notation introduced in Section 5.2.3, the initial data (5.54a)-(5.54d) can
be compactly denoted by

U|S = ’l?l,|3 + 'li|3
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Figure 5.7: Schematic depiction of the extended data. The perturbed initial data @®
coincides with @, on Sy. In the transition region, Zy \ Sy, 4° is extended smoothly
until it vanishes on S\ Zy. The domain of dependence of the original data on Sy is
represented by the shaded area while the domain of dependence of the extended data

on Zy corresponds to the outer dashed triangle.

The basic cylinder

Consider the following countable covers of R x S? with sets of the form I,, = [—%T@ +

TToN, 3To + 3Ton] X S? and Y, = [—7o + 376N, To + 37en] X S? with n € Z:

RxS* = ]I, =Y.

neL neL
Additionally, notice that I, C Y,,. In the sequel, the sets Iy = [—%T@, %T@] x S? and
Yy = [~7s, To] X S? will be called the basic cylinder and the extended basic cylinder,

respectively. The diffeomorphism ¢ : & — R x S? of last subsection allow us to
define the collection of sets Z, = ¢~ 1(Y,) and S,, = ¢~(I,,) which can be used to

obtain countable covers of S:

To have a more compact notation let u,,u, and @, represent uls, tt|s and @|s so

that given perturbed initial data on S one can write

u, = U, + U,.

Now, define
up = u, +u,
with
Uy reS,,
;= qh(r)a, x€2,\S,, (5.55)
0 reS\Z,

where h(z) is smooth function such that h(z) = 1 for x € 9S,, and h(z) = 0 for
x € 0Z,. Notice that on S, the initial data u? satisfies the conformal constraint
equations while it does not in Z, \ S,. However, due to the finite speed of propa-
gation property the corresponding solution arising from this data on the domain of

dependence of S, is not influenced by the extended data on Z, \ S,.
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Observe that (R x S?, h) possesses a translation symmetry that can be exploited
to regard initial data on each Z, as initial data on Z,;. To see this more clearly,
notice that Y, can be obtained by translation of the extended basic cylinder Yj.
Consequently, for each Y, there exist a bijection ¥" : Y, — Y,. Moreover, the
diffeomorphism ¢ : S — R x S?, in turn, induces a bijection ©" : Z; — Z,. Thus,
one can exploit ¢™ to pullback initial data on Z, to Zy. In other words, ¢?(@}) can

be taken as a collection of perturbed initial data on Z.

Controlling the size of the perturbation

In this subsection the necessary notions and definitions to measure the size of the
perturbation of the initial data are introduced. The discussion will be given for initial
data on Z =~ Y for conciseness. Nevertheless, as discussed above, any perturbation
on Z, can be pulled-back to Z,. Let A= {(¢4,Us), (¢, U-)} with ¢, : U — R?
and ¢_ : U_ — R3 be an atlas for Y. Let V, C U,, V_ C U_ be closed sets such
that Yy C V, UV_. In addition, define the functions

@y =1 TENW) ot e )
0 xe€ R3/¢1(V+) 0 xe€ Rg/ng(V_)

Observe that any point p € Z is described in local coordinates by z, = (¢ o 1)(p)
with z;, € ¢(U) where ¥ : § — R x S? is the diffeomorphism of the last subsection
and (¢,U) € A. Consequently, any smooth function @Q : Zy — C¥ can be regarded
in local coordinates as Q(z) : p(U) — CV. Let Q;(x) denote the restriction of Q(z)
to one the open sets ¢;(U;) for i = +, —. Then, we define the norm of @) as

I Q llzom=I 7+ (2)Q+(2) llrsm + | n-(2)Q-(2) llrsm

where
1/2
1Qln (35 3 [ 0nau0rn)
=0 a1,...,«¢
where dy is the volume form associated to the Euclidean metric § on R3. Now, one
can use these notions to define Sobolev norms for any quantity Qx with x being an

arbitrary string of frame spinor indices as
I Qkc [l so.m= Z I Qr [l 2om

In the last expression m is a positive integer and the sum is carried over all the

independent components of QQx which have been denoted by Q).



5.4: The solution to the asymptotic initial value problem for the Schwarzschild-de
Sitter spacetime and perturbations 137

Formulation of the evolution problems

Consistent with the split (5.54a)-(5.54d) for the initial data, one looks for solutions

to the conformal evolution equations (5.5a)-(5.5b) of the form

NABCD = 1ABCD + 11ABCD; HABCD = [LABCD; (5.57a)
Lapep = Lapep + Laseb, €apep = apop +éasep,  (5.57b)
Lap = Las, XABCD = XABCD + XABCD; (5.57c)

€AB = CAB t €4B, fap = fab. (5.57d)

Following with the notation introduced before, the perturbed initial data @ in 2,
—as given in equation (5.55)— will be represented as @’ and the development of
such data will be denoted by @°. Now, let

|00 || zom=| XaBcD ||zom + || €aBeD ll2om + || Lagep |zom + || Las |l zom

+ || €éas llzgm + | faB | z.m + |l daBcD |l zo.m -

Perturbations on the extended basic cylinder

The main analysis of the background solution in Section 5.4.2 was performed in
a conformal representation in which the asymptotic initial data is homogeneous
and the extrinsic curvature of .# vanishes —i.e. k = 0. The general evolution
equations (5.5a)-(5.5b) consist of transport equations for v coupled with a system
of partial differential equations for ¢. However, as shown in Section 5.4.2, the
assumption of spherical symmetry implies that the only independent component of
the spinorial field ¢apcp is ¢2. Consequently, the system (5.5a)-(5.5b) reduces,
for the background fields u = (0, ¢), to a system of ordinary differential equations.
The Piccard-Lindelof theorem can be applied to discuss local existence of the latter
system. However, one does not have, a priori, control on the smallness of the
existence time. To obtain statements concerning the existence time of the perturbed
solution, one recalls that the discussion of the evolution equations of Section 5.4.2
shows that the components of solution u are regular for 7 € [0, 75] with 7, as given

in equation (5.52), so that the guaranteed existence time is not arbitrarily small.

The analysis of the core system in Section 5.4.2 was restricted to the case k = 0,
in which the conformal boundary has vanishing extrinsic curvature. In this case, an
explicit existence time 75 for the solution to the conformal evolution equations was
obtained. In contrast, the analysis given in Appendix 5.7 shows that in general, for
k # 0, the core system develops a singularity at finite 7,. Since the results given
in Section 5.4.2 for the conformal deviation equations hold not only for x = 0, but
for any & as long as dyx = 0, one has that the congruence of conformal geodesics is

non-intersecting in the x # 0 case as well. This shows that, the singularities in the
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core system in the case k # 0 are not gauge singularities.

In this section it is shown how one can exploit these observations, together with
the theory for symmetric hyperbolic systems, to prove the existence of solutions
to the general conformal evolution equations with the same existence time 75 for
small perturbations of asymptotic initial data close to that of the Schwarzschild-de
Sitter reference solution. By construction, the development of this perturbed data
will be contained in the domain of influence which corresponds, in this case, to the

asymptotic region of the spacetime —see Figure 5.9.

Taking into account the above remarks and using the theory of symmetric hy-
perbolic systems contained in [23] on Z; —see Figure 5.8— one can formulate the

following lemma

Lemma 21 (existence and Cauchy stability for perturbations of asymp-
totic initial data for the Schwarzschild-de Sitter spacetime on the ex-
tended basic cylinder). Let u, = u, + 0, denote asymptotic initial data for the
extended conformal Einstein field equations on a 3-dimensional manifold S ~ R x S?
where 0, denotes the asymptotic initial data for the Schwarzschild-de Sitter space-
time (subextremal, extremal and hyperextremal cases) with £ = 0 in which the
asymptotic points Q and Q' are at infinity —~ encodes the trace of the extrinsic
curvature of S. Let ¢ : & — R x S? be a diffeomorphism and define the sets
Iy = [—370,576) X $?, Yy = [—76,7e] x S%. Additionally, let Sy = ~*(Iy) and
Zo =Y 1Y) and u® = u, + ud with @¥ as in equation (5.55). Then, for m > 4

and T as given in equation (5.52), there exists € > 0 such that:

(i) for ||[02|zo.m < €, there exist a unique solution u° to the conformal evolution

equations (5.7a)-(5.7b) with a minimal existence interval [0, 75| and
1w’ € C™72([0, 7o) x Zy,CN),

and the associated congruence of conformal geodesics contains no conjugate

points in [0, Ts);

(i1) given a sequence of perturbed data {0} such that
1™ @0 ||z, m— 0 as  m— 00,

then the corresponding solutions {™u°} have a minimum ezistence interval
[0,75] and it holds that

1™ @° ||z, m— O as  n— oo

uniformly in T € [0,75] as n — oo.
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Proof. Points (i) and (ii) are a direct application of the theory contained in [23]
where it is used that the background solution u is regular on 7 € [0, 75]. The initial
data for the Schwarzschild-de Sitter spacetime encoded in u, is in a representation in
which the points @ and Q' are at infinity. Observe that the asymptotic initial data,
as derived in Section 5.3.5, for the subextremal, extremal and hyperextremal cases
are formally the same —in particular, notice that the initial data for the electric
part of the rescaled Weyl tensor contains information about the mass m while the
conformal factor © carries information about A\. The arguments in the analysis of
Section 5.4.2 are irrespective of the relation between A and m. The key observation
in the proof is that one can apply the general theory of symmetric hyperbolic systems
of [23] for each open set and chart of an atlas for Y. Then, these local solutions can
be patched together to obtain the required global solution over [0, 7] X Zy —it is
sufficient to cover Y, with two patches as discussed in previous subsections. Details

of a similar construction in the context of characteristic problems can be found in
[17]. m

5.4.4 Main result

As briefly mentioned in Section 5.4.3 the translation invariance of (R x S%, h) allow
us to define a bijection ¢" : Zy — Z,, and regard ¢7(u?) as initial data on 2. In
addition, due to the coordinate invariance, the conformal evolution equations when
acted by the pullback ¢” can be shown to coincide with the evolution equations
over Z, as there is no explicit spatial coordinates in the equations and the partial
derivatives are invariant when considering the change of coordinates induced by ¢,,.
Therefore, the restriction of the initial value problem on Z,, induces an initial value

problem on Z; with initial data @I (a?).

Remark 44. Notice that, in general, ¢7 (@) do not coincide with each other as

they represent general perturbations of the initial data.

Observe that one can follow the discussion of Section 5.4.3 to define the norm
|| @ ||s.m, by replacing Z, and Y by S and R x S?, respectively. In addition, notice
that

“ '11* ||S,m< g,

for ¢ > 0, implies that there exist some 0 < &’ < & such that
Il f|zpm< <"

With the last observation one can then apply the theory of symmetric hyperbolic
systems contained in [23] to obtain an analogous result to that of Lemma 21 for each
elu”. Let w™ denote the corresponding developments of the perturbed initial data

Yy

erul on Z,. The theory of symmetric hyperbolic systems of [23] ensures that these
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Figure 5.8: Schematic depiction of the sets S, C Z,, and their corresponding do-
mains of dependence. The translation invariance of (R x S? k) can be exploited
to regard each Y, as a copy of the Yy. Theory of symmetric hyperbolic systems of
[23] can be applied to Zy exploiting the minimal existence time 7o to obtain a local
solution u°. Moreover, each of the developments ™ share the same existence time
of u°. To obtain a global solution depending on the original initial data given on
each S, one has to consider a smaller time of ewxistence 0 < 1, < 75. Removing
the overlapping regions appropriately, these local solutions can be patched together
to obtain a global solution .

developments share a minimal existence time 7, —see proof of Lemma 21. In order
to recast the solution w™ as a solution on [0, 75] x Z,, define ¢? : [0,75] X Zp —
[0, 7] X Z, by requiring that the action of ¢" to remain constant along conformal
geodesics. Then, one can use the pullback of the inverse of ¢” to define a solution

on [0, 76] x 2, as 4" = (7)) (w").

Remark 45. Recall that S = |J,ez Sy, s0 one can construct a solution depending
only on data given in S, by removing the part of the solution determined by the
extended data in Z, \ S,. Notice that, this may require shrinking the time of

existence to some 7, with 0 < 7, < 75.

Remark 46. Observe that the initial data ¢"a"! and ¢"a” coincide on

Qn = Sn mSnJrla

therefore, as a consequence of the uniqueness property for symmetric hyperbolic
system one has that the developments " and %" coincide in the corresponding

domain of dependence of @,.

Remark 46 shows that if one is to construct a a global solution by adding each
individual contribution @™ one has to excise not only the part of the solution arising

"1 in the domain of

from the extended data given on Z,\ S,, but also the solution @
dependence of @,,. To do so, let J, = (—iT@ + %T@n, iT@ + %T@TL) x S? and consider

the sets J, = ¢'(J,). Then the global solution over [0, 7] x S is given by

a=> p'(z) (5.58)
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where

p(x) = W welDmhx g (5.59)
0 20,7 x T

The above discussion leads to the following theorem:

Theorem 3 (existence and Cauchy stability for perturbations of asymp-
totic initial data for the Schwarzschild-de Sitter spacetime). Let u, =
u, + u, denote asymptotic initial data for the extended conformal Einstein field
equations on a 3-dimensional manifold S ~ R x S? where 0, denotes the asymp-
totic initial data for the Schwarzschild-de Sitter spacetime (subextremal, extremal
and hypereztremal cases) with k = 0 in which the asymptotic points Q and Q' are
at infinity —~r encodes the trace of the extrinsic curvature of S. Then, for m > 4
and for some 0 < 1, < T with Ts as given in equation (5.52), there exists € > 0
such that:

(1) for ||0.||s.m < €, there exist a unique solution U to the conformal evolution

equations (5.7a)-(5.7b) with a minimal existence interval [0, and
i€ 0" 2([0,7] x S,CN),
and the associated congruence of conformal geodesics contains no conjugate
points in [0, 7y);
(ii) given a sequence of perturbed data {™Mu,} such that

%

1) @, || sm— 0 as n — oo,

then the corresponding solutions {™Mu} have a minimum ezistence interval
[0, 7] and it holds that

||(”) u|lsm— 0 as n — 00

uniformly in 7 € [0, 7] as n — oo;

(ii) the solution u = u+ 0 is unique in [0,7] X S and implies a C™ 2 solution

(M, g) to the Einstein vacuum equations with the same de Sitter-like Cos-

mological constant as the background solution where
M., =(0,7) x S.

Moreover, the hypersurface & = {0} x S represents the conformal boundary

of the spacetime.

Proof. To prove points (i) and (ii) observe that the smallness assumption on the

initial data || @, ||sm< € ensures in particular that there exist 0 < ¢’ < ¢ such that
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| ol ||z,m< €. Then, one can apply the theory contained in [23] to obtain an
analogous result to that of Lemma 21 for a collection of perturbed initial data ¢la”
on Zy. The theory of [23] ensures that the corresponding developments w™ share
the same minimal existence time 7, —see the proof and previous discussion leading
to Lemma 21. The previously defined map ¢” : [0,75] X Zy — [0,75] X Z,, can be
used to recast the corresponding developments w” in [0, 75| X Zj as solutions %" on
[0, 7] X Z,. Observe that one can remove the part of the solution arising from the
extended data on Z, \ S, considering the solution on [0, 7] x S, for some 7, with
0 < 7 < 7s . Then a global solution depending only on the original data , can
be constructed. In order to obtain the required global solution over [0,7,] x S one
defines @ adding each individual contribution @" as in equation (5.58). The function
p™(z) has a double purpose, in the one hand, it removes the part of the solution
arising from the extended data on Z, \ S, and, in the other hand, it ensures that
the solution is not added more than once in the overlapping regions. The resulting

solution will belong to H;. for fixed 7 and as a consequence of Sobolev embedding

loc

theorems
e 0™ 2([0,7) x S, C).

Given a sequence {1, } one can identify sequences {( (o7 @)} with n,n’ € Z.
Then, one can apply the theory of [23] as it was done in Lemma 21. The global
solutions {(™a} are constructed as in equation (5.58). To prove point (i) first
observe that from Lemma 8 of Chapter 2 the solution to the conformal evolution
system (5.7a)-(5.7b) implies a solution u = u+1 to the extended conformal Einstein
field equations on [0, 7] X S if u, = @, + U, solves the conformal constraint equa-
tions on the initial hypersurface. This solution implies, using Lemma 3 of Chapter
2, a solution to the Einstein field equations whenever the conformal factor is not
vanishing. General results of the theory of asymptotics implies then that the ini-
tial hypersurface S can be interpreted as the conformal boundary of the physical
spacetime (MTh,g) —see [12, 13]. O
Remark 47. An explicit class of perturbed asymptotic initial data sets can be
constructed, keeping the initial metric fixed to be standard one on R x S?, using the
analysis of [42] as follows: introduce Cartesian coordinates (z®) in R? with origin
located at a fiduciary position Q and define a polar coordinate via p? = dagr*2P.
Let I = 2'/p and denote by m' and m" a pair of complex null vector such that the
flat metric on R? reads

f/Lij = —lllj — meﬁj

The general solution of the equation
Dzd,w - 0,

where D' is the Levi-Civita connection of the flat metric on R3, can be parametrised
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Figure 5.9: Schematic depiction of the development of perturbed initial data for the
Schwarzschild-de Sitter spacetime and the congruence of conformal geodesics. In (a)
the evolution of asymptotic initial data is depicted in the conformal representation
in which the asymptotic points @ and Q' are at a finite distance respect to the metric
on & . Figure (b) shows a schematic depiction of the evolution of asymptotic initial
data in the conformal representation in which Theorem & has been formulated. In
contrast to the conformal representation leading to Figure (a) , the initial data is
homogeneous and formally identical for the subextremal, extremal or hyperextremal
cases. In both diagrams, the dashed line corresponds to the location of a hypothetical
Cauchy horizon of the development.

as
p3d/ij = £<3lzlj + flz]) + \/57]1[(,‘77?,]‘) + \/§’f_]1l(zmj) + ﬂgmimj + /Lgmimj (560)
with
N2\ R 1
£ =0\ +A+pQ+;P,

_ _ 1
m = —2pd, 0\ + 0N + pdQ — ;6P +1i0.J,

Mo = 2,03,)(,03,))\5') — 25 +00); — pap)‘£~

where A, P, Q, J are arbitrary constants, A\Y¥ = Re(Ay(z%)) and M\ = ilm(\y(2%))
with A\y(z%) representing a smooth function of spin-weight 2 —see [42] for a detailed
derivation and [12] for definitions of the & and O operators. Let dEJ’\) denote the
part of dw associated with Ay —mamely setting A = @ = P = 0 in equation
(5.60). Observe that dz(;‘) can have, in general, any behaviour near @ —see [42].
However, setting Ay = O(p™) with n > 3 the term dg;\) is regular near Q. Using the
frame version of the conformal transformation rule of Lemma 13 and either equation
(5.29) or (5.30) one can verify that the corresponding term in the S3-representation
is dﬁ;\) = O(p"™3). Similarly, using the conformal transformation formulae, given
in Section 5.3.3, relating the S® and R x S?-representations of the initial data, one
obtains dg;‘) = O(p"*9). Observe that regular behaviour of perturbed initial data in
the R x S%-representation does not necessarily correspond to regular behaviour in

the S3-representation nor in the R3-representation.
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5.5 Conclusions

This chapter contains an analysis of the Schwarzschild-de Sitter family of space-
times as a solution to the extended conformal Einstein field equations expressed in
terms of a conformal Gaussian system. Given that, in principle, it is not possible
to explicitly express the spacetimes in this gauge, an alternative strategy has been
adopted; formulating an asymptotic initial value problem for a spherically symmet-
ric spacetime with a de Sitter-like Cosmological constant. The generalisation of
Birkhoft’s theorem to vacuum spacetimes with Cosmological constant then ensures
that the resulting solutions are necessarily a member of the Schwarzschild-de Sitter
spacetime.

As part of the formulation of an asymptotic initial value problem for the Schwarzschild-
de Sitter spacetime it was necessary to specify suitable initial data for the conformal
evolution equations. The rather simple form that the conformal constraint equa-
tions acquire in the framework considered in this chapter allows to study in detail
the conformal properties of the Schwarzschild-de Sitter spacetime at the conformal
boundary and, in particular, at the asymptotic points where the conformal bound-
ary meets the horizons. The key observation from this analysis is that the conformal
structure is singular at these points and cannot be regularised in an obvious manner.
Accordingly, any satisfactory formulation of the asymptotic initial value problem will
exclude these points.

An interesting property of the conformal evolution equations under the assump-
tion of spherical symmetry is that the system reduces to a set of transport equations
along the conformal geodesics covering the spacetime. The essential dynamics, and
in particular the formation of singularities in the solutions to this system, is gov-
erned by a core system of three equations —one of them a Riccati equation. As
discussed in Appendix 5.7, this core system provides a mechanism for the formation
of singularities in the exact solution. The analysis of the core system allows not
only to study the properties on the Schwarzschild-de Sitter spacetime expressed in
terms of a conformal Gaussian gauge system, but also to understand the effects that
the gauge data has on the properties of the conformal representation arising as a
solution to the conformal evolution equations. Despite the fact that the core system
discussed in this chapter is related to the spherical symmetry assumption, it is of
interest to explore the whether or not the exist an analogous structure in the general
equations —without spherical symmetry.

The conformal representation of the Schwarzschild-de Sitter spacetime obtained
in this chapter has been used to show that it is possible to construct, say, future
asymptotically de Sitter solutions to the Einstein vacuum Einstein with a minimum
existence time —as measured by the proper time of the conformal geodesics used to
construct the gauge system— which can be understood as perturbations of a mem-

ber of the Schwarzschild-de Sitter family of spacetimes. As already mentioned in
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the main text, it is an interesting problem to determine the maximal Cauchy devel-
opment to these spacetimes. In order to obtain the maximal Cauchy development of
suitably small perturbations of asymptotic data for the Schwarzschild-de Sitter one
would require the use of more refined methods of the theory of hyperbolic partial
differential equations as one is, basically, confronted with a global existence prob-
lem for the conformal evolution equations. In this respect, it could be conjectured
that the time symmetric conformal representation in which x = 0 together with the
global stability methods of [76] should allow to make inroads into this issue. Closely
related to the construction of the maximal development of perturbations of asymp-
totic initial data of the Schwarzschild-de Sitter spacetime is the question whether
there is a Cauchy horizon associated to the boundary of this development. If this
is the case, one would like to investigate the properties of this horizon. Intuitively,
the answer to these issues should depend on the relation between the asymptotic
points @ and Q' and the conformal structure of the spacetime. In particular, one
would like to know whether the singularities of the rescaled Weyl tensor at these
points generically propagate along the boundary of the perturbed solution —notice,
that they do not for the background solution. If one were able to use the R x S*-
representation of the conformal boundary of perturbations of asymptotic initial data
for the Schwarzschild-de Sitter to construct a maximal development and to gain suf-
ficient control on the asymptotic behaviour of the various conformal fields, one could
then rescale this solution to obtain a representation with a conformal boundary of
the form S® \ {Q, Q'}. As discussed in the main text, in this representation some
fields are singular at @ and Q’. This observation suggests that this construction
could shed some light regarding the propagation (or lack thereof) of singularities

near the asymptotic points Q and Q'.

5.6 Appendix: The asymptotic points Q and Q'
and conformal geodesics in the

Schwarzschild-de Sitter spacetime

5.6.1 Analysis of the asymptotic points Q and 9’

In Section 5.3.2 it was shown that there exist a conformal representation of the
Schwarzschild-de Sitter spacetime in which the metric at the conformal boundary
is h —i.e. the standard metric on S3. In addition, it was observed that the North
and South poles of S? correspond to special points in the conformal structure that
have been labelled as Q and Q'. These asymptotic regions are represented in the
Penrose diagram for the subextremal, extremal and hyperextremal Schwarzschild-de
Sitter spacetime as the points where the conformal boundary and the Cosmological

horizon, Killing horizon and singularity, respectively, seem to meet —see Figures 5.3
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and 5.4 and 5.5. As discussed in Section 5.3.2 these points correspond to (U, V) =
(£5,£7%) for which the tortoise coordinate t is not well defined. In Section 5.3.4 it
was shown that in the conformal representation in which the initial metric is A the
data for the electric part of the rescaled Weyl tensord;;, as given in equation (5.31),
is singular precisely at @ and Q'. Observe that written in spinorial terms the initial

data for the rescaled Weyl spinor in this conformal representation is given by

which is singular at both @ and Q’. This situation resembles that of the geometry
near spacelike infinity i° of the Minkowski spacetime and the construction of the
cylinder at infinity given in [27] which allows to regularise the data for the rescaled
Weyl spinor. However, some experimentation reveals that this type of regularisation
procedure (in contrast with the analysis of Schwarzschild spacetime given in [27])
cannot be implemented in the analysis of the Schwarzschild-de Sitter spacetime
without spoiling the regular behaviour of the conformal factor. Since the hyperbolic
reduction procedure for the extended conformal Einstein field equations is based
on the existence of a congruence of conformal geodesics in spacetime, the singular
behaviour of the initial data for the rescaled Weyl spinor suggest that the congruence
of conformal geodesics does not cover the region of the spacetime corresponding to
Q and Q. To clarify this point, in the remaining of this section the behaviour of

conformal geodesics as they approach the asymptotic points @ and Q' is analysed.

5.6.2 Geodesics in Schwarzschild-de Sitter spacetime

The method for the hyperbolic reduction for the extended conformal Einstein field
equations available in the literature requires adapting the gauge to a congruence
of conformal geodesics. The behaviour of metric geodesics in the Schwarzschild-
de Sitter spacetime has been already studied [77, 78] and an analysis of conformal
geodesics in Schwarzschild-de Sitter and anti-de-Sitter spacetimes is carried out in
[79]. In static coordinates (t,r, 0, ) the equation for radial timelike geodesics, (6 =

0., = @) with 0, and ¢, constant, are

dr dt v
/A2 F — = _ 5.62
e A (5.62)
The first equation can be formally integrated as
. r 1
T—T = / ——ds (5.63)
72 = F(s)

where T is the gggs-proper time and ~ is a constant of motion which can be identified

with the energy of a particle moving along the geodesic. The equation for ¢ can
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be solved once equation (5.63) has been integrated. As pointed out in [66, 68],
by choosing v = 1 one can explicitly solve this integral. However in general, for
arbitrary 7, the integral is complicated and cannot be written in terms of elementary
functions. A side observation is that if » # 7, and r # r. then the curves of constant
t correspond to geodesics with v = 0. Finally, its worth noticing that geodesics with

constant r are characterised by the condition
v — F(r) =0. (5.64)

This last type of curves, which will be called critical curves, are analysed in Section
5.6.4. In general, the properties of conformal geodesics differ from their metric coun-
terparts. However, in the case of an Einstein spacetime with spacelike conformal
boundary any conformal geodesic leaving .# orthogonally is, up to reparametrisa-

tion, a metric geodesic —see [39] and Lemma 7 of Chapter 2.

5.6.3 A special class of conformal geodesics in the

Schwarzschild-de Sitter spacetime

As briefly mentioned in Section 5.6.2 and pointed out in [66, 68], in general, the
integral (5.63) cannot be written in terms of elementary functions except for the

special case when v = 1 where it yields

r(7) = Ce” (1 — @7;) c3e3*>2/3 : (5.65)

where C is an integration constant. The last expression is valid irrespective of
the relation between m and A. One can also use this expression to integrate the
second equation in (5.62) to obtain the geodesic parametrised as (r(7),¢(7)). The
integration of ¢ will not be required for the purposes of the analysis of this section. A
complete analysis of conformal geodesics in the Schwarzschild-de Sitter and anti-de
Sitter spacetimes will be given in [79]. By virtue of Lemma 7 one can recast the
geodesic with v = 1 as a conformal geodesic by reparametrising it in terms of the
unphysical proper time as determined by equation (2.42) given in Lemma 7 and

equation (5.4) of Section 5.2.2 . A straightforward computation yields

3 T
N E N
T =\ “’2+m

Equivalently, assuming either k > 0 and 7 > 0 or k < 0 and 0 < 7 < —2/k one

ex mf'
7(7) = i p< 3 ) . (5.67)

1- /fexp( l;’%)

. (5.66)

obtains in both cases
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From the last expression one can verify that

%Er_nooT(%) =0, lim 7(7) = =2/,

as expected. Rewriting equation (5.65) in terms of the unphysical proper time one

obtains

rr) = L (MIACT = 62+ k7))
(m|A])>/3 Ct(T + 2kT) '

From the last expressions one can verify that one has r — oo as 7 — 0 and 7 —

(5.68)

—2/k. The location of the singularity r = 0 is determined by

2
(mIA)V/3C — K

Té:

Recalling that C is an integration constant which depends on the initial data for
the congruence, since the only freedom left in the conformal factor is encoded in k,
one realises that C = C(k). So one cannot draw any precise conclusion about the

location of the singularity unless one further identifies explicitly C(x). In particular,

(2241)

)13 for

considering constant x and setting C to be proportional to x, say C =

some proportionality constant s, one obtains

1
T, = —,
ET ok
which is in agreement the with the qualitative behaviour of the core system as
shown in Figures 5.6, 5.11, and 5.12. Notice, however, that the arguments of the
core system given in Section 5.4.2 and Appendix 5.7 do not rely on integrating (5.63)

explicitly.

5.6.4 Critical curves on the Schwarzschild-de Sitter

spacetime

In order to clarify the role of the asymptotic points, in this section it is shown that
there are not timelike conformal geodesics reaching Q and Q' orthogonally. More
precisely, it is shown that a timelike conformal geodesic becomes asymptotically
null as it approaches either Q or Q’. This is in stark tension with the conditions for
constructing a conformal Gaussian system of coordinates in the neighbourhood of
Q and Q.

As shown in the Penrose diagram of Figure 5.10 in the subextremal case the curves
of constant t = t, accumulate in the bifurcation spheres B and B’ while the curves
of constant r accumulate in the asymptotic points @ and Q'. By contrast, in the
extremal case the curves with constant ¢t = ¢, approach the asymptotic points Q and
Q' —see [69] for an extensive discussion on the Penrose diagram for Schwarzschild-

de Sitter spacetime. It follows from the geodesic equation (5.62) that the curves of
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Figure 5.10: Curves of constant r and t in the Schwarzschild-de Sitter spacetime.
a) Curves with constantt and r (red and blue respectively) are plotted on the Penrose
diagram of the Subextremal Schwarzschild-de Sitter spacetime. Curves of constant t
accumulate at the bifurcation spheres B, B' while the curves of constant r accumulate
at the asymptotic points Q and Q'. b) Curves with constant t and r (red and blue
respectively) are plotted on the Penrose diagram of the extremal Schwarzschild-de
Sitter spacetime. In contrast with the subextremal case, curves with constant t in
starting from some r, < 3m accumulate at the asymptotic points Q and Q' while
those starting from r, > 3m accumulate at P. The hyperextremal case is qualitatively
similar to the extremal one and has been omitted.

constant 7 correspond to geodesics whenever the condition (5.64) is satisfied, this

equation explicitly reads
IAr® 4 3(7* = 1)r + 6m = 0. (5.69)

Observe that for v = 1 the last condition reduces to |A|r® + 6m = 0 which cannot

be solved for positive 7.

In this section an analysis of the behaviour of the critical curves on the Schwarzschild-
de Sitter spacetime is performed. Notice that in the hyperextremal case the are no
timelike geodesics with constant r since for |A| > 1/9m? one has strictly F(r) < 0

so that the condition (5.64) can never be satisfied.

Critical curves in the extremal Schwarzschild-de Sitter spacetime

To start the analysis consider the simpler case in which |A\| = 1/9m? so that F(r)
is given as in equation (5.12) and the condition (5.64) reduces to considering r =
3m and 7 = 0. Observe that the curves with v = 0 and r # 3m correspond to
curves with constant ¢ = ¢, which, as discussed in previous paragraphs, approach
asymptotically the points Q and Q’. Notice that for v = 0 the expression (5.63) can
easily be integrated to yield

T—T.=3mIn(H(r)/H(r,)) (5.70)
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where

V3r+/r+6m
(V3r — 1+ 6m)(\/7 + /1 + 6m)2V3

Observe that equation (5.70), as pointed out in [68], implies that the geodesics with

H(r)=

v = 0 never cross the horizon since 7 — oo as r — 3m. For simplicity, let M, =
H(r,) + exp(7,/3m) with r, # 3m so that 7 = 3mIn |H(r)/M,|. Reparametrising
using equation (5.67) and that |[A\| = 1/9m? renders

2W (r)
"=

with W(r) = H(r)YV3. Using L'Hopital rule one can verify that 7 — —2/k as
r — 3m. To analyse the behaviour of these curves as they approach the points Q

and Q' one considers r such that » = 3m + ¢ . Then, one has for small ¢ > 0 that

m )Wg (Ol gy o - 3m)2)>

m  m?

wr) = (

r—3m

where C; and C5 are numerical factors whose explicit form is not relevant for the
subsequent discussion. Hence, to leading order W (r) = C/€” where C' is a non-zero

constant depending on m only and p = 1/v/3. Consequently, to leading order

dr pCrel™2 _ pCle
de  (MPer —kC) MPer — kC"

Therefore, since p < 2 one has that dr/de diverges as ¢ — 0 so that the curves
with v = 0 become tangent to the horizon as they approach Q@ or Q —that is,
they become null as they approach Q or @’. This is analogous to the behaviour
of the critical curve in the Schwarzschild spacetime pointed out in [35], and the
subextremal Reissner-Nordstrom spacetime in [80] —in contrast, in the extremal

Reissner-Nordstrom spacetime one has d7/de = 0 as € — 0 as discussed in [80] .

Critical curves in the subextremal Schwarzschild-de Sitter spacetime

For the subextremal case one could parametrise the roots of the depressed cubic
(5.69) using Vieta’s formulae and choose some v # 1 for which there is at least one
positive root. However, notice that fixing a value for v is equivalent to prescribe

initial data for the congruence:

dr
dr

- (57)

t7)=t.,,  r(7)=r, r F(r)

e dt
= "}/2 — F(T*), E

Tx

Restricting the analysis to the static region r, < r, < r. for which F(r,) > 0 and

setting
dr

= =0
dr ’

Tx
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one gets

and condition (5.64) is equivalent to
F(re) = F(r)

where Q(r) is the polynomial

om
|>‘|7“*.

Qry=r*+r.or—
Notice that Q(r) can be factorised as

Q(r) = (r — a(r))(r — ay(r)),

where

Al

*

\ 24
@gmﬁzg<—1i 1+ 7”).

In addition, observe that

Q(ry) > 0 for re < Ty < Te,
Q(r,) < 0, for Ty < Ty < T,
Q(r,) = 0, for Ty =T,

1/3
‘?7"‘"”) . In the extremal case one has r, = r. = ry = 3m. The curve

r = rg, as in the extremal case, will be called the critical curve. With the above

where rg = (

notation the integral (5.63) can be then rewritten as

B e =k o

To study the behaviour close to the critical curve consider r, = (1 + €)rg For small
e > 0 and considering s > r, one can expand the right hand side of equation (5.72)

in Taylor series as

S r S 1 37"%862
—Fo={ — ds + O(€). 5.73
T /r* s+ 2rg <s—7’® 2(5—7’@)3) s+0(€) (5:73)

Integrating one obtains

2 1
F—F = —ﬁarctanh <\/§ 3. 1 E) +2In (\/r®(1 +e)+\re(3+ e))
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2 3 3
_\/garctanh< +T >+21n(\/7+\/7’+2r®> —17@\/14—27"@(14—26)

T+ 2rg
2r — 2 )
_i%z T%%w@s)'

(7“@—7"

As € — 0 the last expression diverges —as is to be expected. The divergent term

)

can be expanded for small € > 0 as

1 1 6
arctanh <\/§ 312) = iln <‘—E +4+ % + O(€?)

and the second term can be expanded as

62

I (Ve (1 6) + VreB+ ) =In ((1+V3)y/ra) + 233 - 5750

Hence, to leading order one has

1

7(r) 7 Ine+ f(r)+ O(e)

where

f(r) =7+ 20 <(1 + ﬁ)\/@) B jgarctanh (T —f;r )

+2In (\/7_“—{— VT + 27’®) — 4317“@\/1 + 2rg.

Reparametrising respect to the unphysical proper time using (5.67) one gets

_ Zewp (VIN/3F(r) + O(e)) e
1 — Kkexp («/|>\\/3f(7") + O(e)) €p

with p = 1/\/§ Thus one gets

7(r)

dr  2pep (VIN/BF(r) + O(e)) 7!

de (1 — exp <\/|/\|/3f(r) + (’)(6)) fiep)Q'

Observe that since p < 1 then one has that dr/de diverges as ¢ — 0.

5.7 Appendix: The conformal evolution equations

in the case k # (0 and reparametrisations

In Section 5.4.2 the case k = 0 was analysed —this corresponds to a conformal
boundary with vanishing extrinsic curvature. Nevertheless, as discussed in Section

5.2.2, k is a conformal gauge quantity arising from the conformal transformation
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properties of the conformal field equations. Consequently, it is of interest to analyse
the behaviour of the core system in the case k # 0. For simplicity, in the remainder
of this section, x will be assumed to be a constant on the initial hypersurface cor-
responding to 7 = 0. In first instance, the analysis will be restricted to |x| > 1 and
then it will be discussed how to exploit the conformal covariance of the equations
to extend these results for x € [-1,0) U (0, 1].

5.7.1 Analysis of the core system with x > 1

To start the discussion of this case observe that, for £ > 1, one has that ©(7) > 0

and @(7) > 0 for 7 > 0. Using this simple observation and the core equations
(5.40a)-(5.40c) one obtains the following:

Lemma 22. For a solution to the core system (5.40a)-(5.40c) with initial data given
by (5.41) and k > 1 one has that L(T) <0 for T > 0.

Proof. One proceeds by contradiction. Assume that there exists 0 < 7, < oo such
that L(7) = 0. Without loss of generality one can assume that 7, corresponds to
the first zero of L(7). Since for x > 1 one has L(0) < 0 then by continuity it follows
that L(7,) > 0 —L(71,) cannot be negative since this would imply that L(7) crossed
the 7-axis at some time 7 < 77, but this is not possible since 7, is the first zero of
L(r). It follows then from equation (5.40c) that

0< L(ry) = —x(1)L(11) — ;@(TLW(TL)-

Since L(rz) = 0 and ©(7;) > 0, the last inequality implies that ¢(7,) < 0 but this
is a contradiction since it is already known from Observation 1 —which is valid for

any value of k— that ¢(7) > 0 for any 7. [

Observation 4. Using that ©(7) > 0 for x > 1 and 7 > 0 and that ¢(7) > 0 one

derives from equation (5.40c) the differential inequality

L(T) < —x(7)L(7).

Observing Lemma 22 one has that L(7) < 0. Thus, one can formally integrate

the last differential inequality and obtain
L(r) < LO)exp (~ / \(s)ds) (5.74)
0

With these observations one can show that the function y(7) which is initially

positive must necessarily have a zero.
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Lemma 23. For a solution to the core system (5.40a)-(5.40c) with initial data given
by (5.41) and Kk > 1 there exist 0 < 7,, < 0o such that x(7,) = 0.

Proof. One proceeds again by contradiction. Assume that x(7) never vanishes. Since
X(0) = k > 0 then x(7) > 0 for 7 > 0. From Lemma 22 it follows that L(7) < 0. In
addition, one knows that ©(7)¢(7) > 0. With these observations equation (5.40b)
gives

x(1) < =x*(r) for T>0.

Since one is assuming that y(7) never vanishes then

X(7)
X2(7)

Integrating from 0 to 7 > 0 and using the initial data (5.41) one gets

1
T+ 1/k

x(7) < for 7>0. (5.75)

In a similar way, one can consider equation (5.40b) and obtain the differential in-
equality
1
X(1) < —§@(T)¢(T) for 7>0.

Using now equation (5.42) one gets
X < —mO(T)exp <—3/ X(s)ds) for 7>0.
0

Integrating the from 0 to 7 > 0 renders

X(7) < Kk — m/OT O(s) exp (—3/0S X(s’)ds’) ds for 7>0. (5.76)

On the other hand, integrating expression (5.75) one has

/ X(s)ds < In(kT+1).
0
Consequently,

Al T(1+ 357)

—mO(7) exp (—B/OT X(S’)ds') < —-m ERIEYEE

Integrating one obtains

—m /OT O(s) exp <_3 /05 X(S')ds’) ds < —% |;\| ((/W—ll—l)Q +1In(kT +1) — 1) :
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Substituting the above result into the inequality (5.76) one obtains

m Al 1
<k——\=|——+1 H—-1).
X(T) < K 52\ 3 <(m7+ )2 +In(kT + 1) )
The right hand side of the last expression becomes negative for some sufficiently
large 7. This is a contradiction as it was assumed that y(7) never vanishes and
x(0) > 0. O

Observation 5. Combining Lemma 22 and Observation 1, one concludes that
L(7) < 0 and ©(7)¢(7) > 0 for 7 > 0. Using these properties in equation (5.40b)
renders

x(t) <0 for 72>0.

Thus, x(7) is always decreasing. From Lemma 23 one knows that there exists a
finite 7, > 0 such that x(7,) = 0. Then, by continuity, for any 7 > 7, one has that
Xx(1) <0 .

With this last observation one is in the position of proving the main result of this

section:

Proposition 5. There exists 0 < 7, < oo such that the solution of (5.40a)-(5.40c)
with initial data given by (5.41) and k > 1 satisfies

X — —o0o, L— —00, ¢—00 as T—Ty.

Proof. From Lemma 23 one knows that there exists a finite 7, for which x(7) van-
ishes. By Observation 5, one has that x(7,) < 0 for any 7, > 7. Let xo = x(7) < 0.
One can assume that y, is finite, otherwise there is nothing to prove. Now, using
Lemma 22 and that ©(7)¢(7) > 0 one obtains

X(1) < —X2(7') for 7>0.

Using that x(7) < 0 for any 7 > 7, one obtains

X(7)
X2(7)

Integrating the last expression form 7 = 7, to 7 > 7, renders

< —1.

1
7)< ———— for 7>71. 5.77
M) < ; (5.77)
From inequality (5.77) one can conclude that y(7) — —oo for some finite time

T, < Ty — 1/x0. Additionally, observe that 7o — 1/x¢ > 7 > 0 since xo < 0 .
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Figure 5.11: Numerical solutions of the core system (5.40a) -(5.40c) with initial
data given by (5.41) in the case k = 2 and |\ = 3, m = 1/3V/3. The solid line
describes the evolution of ¢, the dashed line that of x and the dotted line that of L.
One can observe the formation of a singularity at T ~ 2.6392.

Now, given that x — —oo as 7 — 7, it follows from equation (5.42) that ¢ — oo as
T — 74. Similarly, from inequality (5.74) and that L(0) < 0 it follows that L — —oo
as 7 — Ty. O]

Remark 48. A plot of the numerical evaluation of the solutions to the core system
(5.40a)-(5.40c) with initial data (5.41) in the case k > 1 can be seen in Figure 5.11.

5.7.2 Analysis of the core system with « < —1

In this section a similar approach to that followed in Section 5.7.1 is used to show that
the fields in the core system diverge for some finite time if kK < —1. An interesting
feature of this case is that, assuming one knows that there exists a singularity in the
development, there exists an a prior: upper bound for the time of its appearance
—namely, the location of second component of the conformal boundary at 7 = 2/|x|.
As a byproduct of the analysis of this section an improvement of this basic bound

is obtained.

An important remark concerning the case k < —1 is that if 7 € [0,1/|x|] then
both ©(7) and ©(r) are non-negative. Based on this observation the first result in

this section is:

Lemma 24. If k < —1 then the solution to the core system (5.40a)-(5.40c) with
initial data (5.41) satisfies L(1) < 0 for T € [0,1/|x]].

Proof. One proceeds by contradiction. Assume that there exists 0 < 7, < 1/|x|

such that L(7r;) = 0. Without loss of generality one can assume that 7, is the first

zero of L(7). Since L(0) < 0 for k < —1 then by continuity L(7z) > 0. Therefore,
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proceeding as in Lemma 22 one gets from equation (5.40c)

0< Ers) = —x(ru)Llrs) — 30(r)om) Tor 7€ [0.1/]x]

Since L(77) = 0 and ©(7) > 0 the last inequality implies that ¢(7,) < 0. This is a
contradiction since ¢(7) > 0 —cfr. Observation 1. O

Lemma 25. If kK < —1 then the solution to the core system (5.40a)-(5.40c) with
initial data (5.41) satisfies x(7) < 0 for 7 € [0,1/|k|].

Proof. Again, one proceeds by contradiction. Assume that there exists 0 < 7, <
1/|k| such that x(7,) = 0. Without lost of generality one can assume that 7, is
the first zero of x (7). Then, by continuity, one has that x(7,) > 0. Using equation
(5.40b) one has

0.< K1) = ~X(1) + L) — 50(r)(r) for 7€ [0,1/]a])

Therefore, since x(7,,) = 0 one has
1
L(ry) > 5@(TX)¢(TX) > 0.

This is a contradiction since by Lemma 24 one has that L(7) < 0 for 7 € [0,1/|k]].
[

Observation 6. Proceeding as in Observation 4 one readily has that for k < —1

L(7) < L(0) exp (— /OT X(s)ds) for 7€ (0,1/|x|].

This last observation is used, in turn, to prove the main result of this section:

Proposition 6. If k < —1, then for the solution of (5.40a)-(5.40c) with initial data
(5.41) there exists 0 < 7, < 1/|k| such that

X(17) = —o0, L(1) = —o0, and ¢(r) =00 as T —T;.

Proof. Consider equation (5.40b) on the interval 7 € [0,1/|x|]. Using Lemma 24
one knows that L(7) < 0. This observation and the fact that ¢(7) > 0 leads to the

differential inequality
X(r) < =x*(r) for 7e€[0,1/|x]].

Since by Lemma 25, one knows that x(7) # 0 for 7 € [0, 1/|x|] one can rewrite the
last expression as
X(7)
X3(7)

< -1 for 7€][0,1/]x].
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Figure 5.12: Numerical solution of the core system (5.40a)-(5.40c) with |A| = 3,
m = 1/3\/§ in the case k = —2. The solid line corresponds to ¢, the dashed line to
X and the dotted line to L. One can observe a singularity at 7 ~ 0.4203.

Integrating from 7 = 0 to 1/|x| and using the initial data (5.41) one gets

v <t L (5.78)

T sl
From inequality (5.78) one concludes that x(7) — —oo for some 0 < 7, < 1/|k].
Finally, using Observation 6 and Observation 1 one concludes that L(7) — —oo and

(1) = o0 as T — 14 for some 0 < 7, < 1/|K|. O

Notice that this upper bound for the location of the singularity is not trivial and
improves the basic bound 7 < 2/|k| given by the location of the second component

of the conformal boundary.

Remark 49. A plot of the numerical evaluation of the solutions to the core system
(5.40a)-(5.40c) with initial data (5.41) in the case k < —1 can be seen in Figure
5.12.

5.7.3 Exploiting the conformal gauge

In Lemma 19 it was shown that if J,x = 0 then the evolution equations imply, in
particular, f, = 0. Due to the spherical symmetry Ansatz, the component f, is
the only potentially non-zero component of f. Thus, one concludes that f = 0.
In Section this section this feature will be exploited to extract further information
about x and s. These results are then used to discuss the conformal gauge freedom
of the extended conformal field equations and the role played by reparametrisations

of conformal geodesics.

The relation between the Weyl and Levi-Civita connections

As discussed in Section 2.2.1 of Chapter 2, the Weyl connection v expressing the

extended conformal field equations is related to the Levi-Civita connection V of the
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unphysical metric g via the 1-form f. If f vanishes then V = V. Exploiting this

simple observation one obtain the following results:

Lemma 26. If f =0 then the conformal gauge conditions (2.34) and (2.35) imply

that s = ©. Moreover, s is constant along the conformal geodesics.

Proof. As discussed in Section 2.2.1 of Chapter 2, if f = 0 then ﬁab = L, and
facb = I'4%. Using the conformal gauge condition (2.34) it follows that Lgg = 0

and T'g% = 0. Now, the standard vacuum conformal field equations (2.7¢) and
(2.7d) render

VOVO@ + @LOO — SToo = 0, (579&)
Vos = —LopV°O. (5.79D)

Using Log = 0 and T'9%, = 0 in equation (5.79a) one concludes O = s. Similarly,
from equation (5.79b) one gets § = 0. Therefore s is constant along the conformal

geodesics. O]

Remark 50. In the asymptotic initial value problem the initial value of s is given

by s, = \/|A|/3k —see equation (2.78a). Thus, if f =0 then s = \/|\|/3k along the
conformal geodesics.

Finally, one has the following:

Lemma 27. In the asymptotic initial value problem, if f = 0, then the confor-
mal gauge conditions (2.34) and (2.35) together with the conformal FEinstein field

equations imply that e;(k) = 0 —that is, Kk is a constant.

Proof. Using f = 0 and the gauge conditions (2.34) one gets from the conformal
field equation (2.7g) that

60s — 307 + 36 e;0e;0 = \. (5.80)

Using Lemma 26 one has s = ©. Therefore, substituting ©(7) = ©,7(1 4 x7/2) into
equation (5.80) and recalling ©, = 1/|A|/3 one obtains

0% e;(k)ej(k) = 0.

Observe that the last equation is trivially satisfied on .# as 7 = 0. Off the initial

hypersurface, where 7 # 0, the last equation implies
§9e;(k)ej(k) = 0.

Therefore, one concludes that e;(x) = 0. O
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Changing the conformal gauge

The analysis of the core system given in Sections 5.7.1, 5.7.2 and Section 5.4.2
covers the cases for which || > 1 and k = 0. As a consequence of the conformal
covariance of the extended conformal Einstein field equations one has the freedom of
performing conformal rescalings and of reparametrising the conformal geodesics —
thus, effectively changing the representative of the conformal class [g] one is working
with. This conformal freedom can be exploited to extend the analysis given in
Sections 5.7.1 and 5.7.2 to the case where xk € [—1,0) U (0, 1].

Following the discussion in the previous paragraph, any two spacetimes (M, g)
and (M, g) with g = ©2g and g = ©2g representing two solutions to the extended
conformal Einstein field equations for different choices of parameter x are confor-

mally related. From Lemmas 5 and 6 of Chapter 2 one has that

o(r) = ’;\|T(1 + ;m>, o(7) = @r(l + ;m'>, (5.81)

ar
ct+d

The free parameter b in the fractional transformation of Lemma 5 has been set

with

(5.82)

Fo=

to b = 0 in order to ensure that © and © vanish at 7 = 0 and 7 = 0, respectively.
Thus, the conformal boundary .# is equivalently represented by the hypersurfaces

with 7 =0 or 7 = 0. As g and g are conformally related one can write
g=uw’g with w=060"1
Using equations (5.81) and (5.82) one obtains, after a calculation, that
(1 n arT )
a _ o
2(cT +d)
w(r) = :
1
((07' +d) <1 - 2/@7‘))

The conformal transformation law for the field s can be seen to be given by

(5.83)

1
s=wls+wV.wVeO + §w_3@vcwvcw.

As discussed in Section 5.7.3, in the analysis of the Schwarzschild-de Sitter space-
time one can assume that dyx = 0 and f = 0. Now, Lemmas 26 and 27 imply
that s = 1/|A|/3k and § = \/|\|/3k are constant. Exploiting this observation, the

transformation law for s can be read as an equation for w —mnamely

06? + 2wOw + w?s — w35 = 0. (5.84)
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Substituting expression (5.83) into equation (5.84) one gets the condition
2c+ak —drk = 0. (5.85)

One can read equation (5.85) as the transformation law for % so that

_ drk—2c
R = .
a

In order to have a meaningful transformation law between 7 and 7, neither a nor d
can vanish. Substituting equation (5.85) into the reparametrisation formula (5.82)
and expression (5.83) one can observe that a/d actually corresponds to w(0) = w,.

Therefore, one has that

4o,
w(T) = . 5.86
(7) ((w*/% — R)T — 2) ( )

2w, T

() = (W — k)T — 2’

From the last expression one can identify w, = w(0) = w,(w.k — k). In addition,
notice that 7 — oo and w — 0o as 7 — 2/(wk — k). Therefore, the hypersurface
defined by 7 = 2/(w.k — k) is at an infinite distance from the conformal boundary

as measured with respect to the g-proper time.

Remark 51. An alternative approach to deduce equations (5.85) and (5.86) is to
write O(7(7)) = w(7)O(7) and use equations (5.81) and (5.82) to identify x and w.

5.8 Appendix: Cartan’s structure equations and

space spinor formalism

In this appendix a brief discussion of Cartan’s structure equations and the space

spinor formalism is given.

5.8.1 Cartan’s structure equations in frame formalism

Consider a h-orthonormal frame {e;} with corresponding coframe {w®}. By con-
struction, one has (w® e;) = §;7. The connection coefficients of the Levi-Civita

connection D of h respect to this frame are defined as
(wj, Diek> = ”)/zgk

As a consequence of the metricity of D it follows that v;jx = —7ix;. The connection

form is accordingly defined as

Y=k AW (5.87)
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With these definitions, the first and second Cartan’s structure equations are, respec-

tively, given by

dw® = —~% AW, (5.88a)
d’yij = —")’ik, A ")/kj + Qij, (588b)

where Qij is the curvature 2-form defined as

Q' = RYjuwh At (5.89)

5.8.2 Basic spinors

In the space spinor formalism, given a spin basis {e AA} where g4—g1, any of the
spinorial fields appearing in the extended conformal Einstein field equations can be
decomposed in terms of basic irreducible spinors. The basic valence-2 symmetric
spinors are:

1 1
TAB = \/56(,4063)1, YAB = —EE(AIEB)I, ZAB = EE(AOEB)O. (5.90)

The basic valence 4 spinors are given by

€ACTBD + €BDTAC, €AcYBD + €BDYAC, €ac?BD + €BpDZac{5.91a)

haBcp = —€actp)B, e apcp = eaFepFecCep)ti. (5.91b)

(ABCD)i indicates that an 4 number of indices are set equal to

In the last expression
1 after symmetrisation. Any valence 4 spinor (4pcp with the symmetries (apycp)

can be expanded in terms of these basic spinors. One has the identities

1 1
TABYXCD = 2€2ABCD, YaBYcD = §€4ABCD> ZABXCD = §€0ABCD7(5-92a)
T =€ + ——(€ + € , 5.92b
ABYcD ABCD 5 \/5( ABYBD BDZUAC) ( )

1
TABZCD = €' — ——=(€aBZ?BD 1+ €BDZ? ) 5.92c
ABZCD ABCD 2\/5( ABZBD BD Ac) ( )
L 1 + P (5.92d)
YABZCD 5 ABCD 1 \/§ ABYTBD BDYAC 6 ABCD

Another set of identities used in the main text is given by

taprB =1, zay?B =0, (5.93a)
1
tapzd8 =0, 2245228 =0, yspz?B = ~5 (5.93b)
1 1
ZEAQxBQ = 5¢AB; yAQxBQ = TyABa (5.93¢)

2
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Q 1

FATIBQ = _ﬁZAB; ya®yBq =0, (5.93d)

1 1
B =-—F7= - Qpo =0 5.93
YA ZBQ 2\/§xAB + 4€ABa ZATZBQ ; ( e)
1 1

¢ipepr? = —37AB; ¢apcpy P = gYaB: (5.93f)
1

€apcp? P = 6B (5.93g)

These identities and a more exhaustive list has been given in [81].

5.8.3 Cartan’s structure equations in spinor form

The space spinor counterpart of coframe and connection coefficients can be ob-

tained succinctly by contraction with the spatial Infeld-van der Waerden sym-

bols —see equation (2.52) of Chapter 2, as w48 = w'0;48 and y4p“Prr =

vl ot ABJjCD o*gr. With these definitions the spinorial version of the Cartan

structure equations is given by

dw?B = —~A5 A WBE — ABp A wAP, (5.94a)
d"}’AB = —’7AE A ")/EB + QAB, (594b)
where 1
’YAB = §VCDAQBQWCD7

and Q4 p is the spinor version of the curvature 2-form, with

—_

A A CD EF
Q B:§T‘ BCDEFW N\ w .

In the last expression the spinor rapcper can be decomposed as

1 1 1 1
TABCDEF = §3ABCD - EThABCE €Epr + §5ABDF - EThABDF €ECE

where sapcp and r correspond to the space spinor version of the trace-free part of

the Ricci tensor and Ricci scalar of h, respectively.

To relate the previous discussion with the basic spinors xap, yap and zapg, ob-
serve that using equation (5.90) and the expression for the spatial Infeld-van der

Waerden symbols as given in equation (2.52) one obtains that

0AB' = —2aB —YaB, 0aB> =i(2aB —YaB), 0aB®=1aB, (5.95a)

UABl = ZAB + yAB, UABz = i(—ZAB + yAB), UAB3 = —iCAB. (595b)



6 Asymptotic initial data for the

Kerr-de Sitter spacetime

6.1 Introduction

In Chapter 5 the asymptotic initial value problem for the Schwarzschild-de Sitter
spacetime was studied. One of the main features that was exploited in this analysis
was the fact that, in the appropriate conformal representation the induced metric at
the conformal boundary is conformally flat. Despite the fact that in the representa-
tion in which the initial 3-metric h is the standard metric on S? the initial data for
the rescaled Weyl spinor is singular at the asymptotic points Q and Q' it was shown
that there exist a conformal representation in which the initial data for the rescaled
Weyl spinor is regular. In view of these remarks, it is natural to explore if one can
perform a similar analysis for the Kerr-de Sitter spacetime. In this short chapter this
question in explored. Therefore, this discussion represents a partial generalisation
of the analysis given in Chapter 5. In this chapter, in particular, asymptotic initial
data for the Kerr-de Sitter spacetime in a conformal representation for which this
initial data is regular is given. Then, using the theory on symmetric hyperbolic sys-
tems of [23] one obtains a local existence result of small perturbations of asymptotic
initial data close to the Kerr-de Sitter spacetime. Nevertheless, in contrast with the

analysis given in Chapter 5 an estimation of the time of existence is not given.

6.2 The Kerr-de Sitter spacetime and its

conformal structure

In this section, the general properties of the Kerr-de Sitter spacetime that will be

relevant for the main analysis of this chapter are discussed.

6.2.1 The Kerr-de Sitter spacetime

The Kerr-de Sitter spacetime is an axisymmetric solution to the vacuum Einstein
field equations —as given in equation (5.1)— with a de-Sitter like Cosmological

constant. The metric of the Kerr-de Sitter spacetime in Boyer-Lindquist-type coor-

164
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dinates (t,r,0, ) is described by the line element

A, 02 02
grds = A2 5 (dt — asin ngo) <dt — asin 0dg0> — A—dr ®dr — Ede ® df—

.2
AHAS;I;?@(adt - (" +a?)dp) © (adt - (1 + a?)dg). (6.)
A

where,

1
P =r’+a*cos’d, A, =+ az)(l - §|/\|r2) — 2mr,
1 1
Ag=1+ 5])\]@2 cos’d, Ay=1+ g])\\aQ,

with ¢ € (—o0,00), r € (0,00), 8 € [0,7], and ¢ € [0,27) —see [20, 82]. As in
the conventions used in this thesis A < 0 for a de-Sitter value of the Cosmological
constant the above expressions are written in terms of |A| to avoid confusion. This
solution reduces to the Schwarzschild-de Sitter spacetime when a = 0 and to the
de Sitter spacetime when m = 0 —see [82]. The location of the black hole and

cosmological horizons is determined by the condition
A=(r—ry)r—r_)(r—r)(r—rf) =0, (6.2)

where rL corresponds to the Kerr black hole horizons while r,. correspond to a
cosmological horizon. Additionally ry < 0 represents an additional cosmological
horizon. Notice, nevertheless, that the curvature singularity is located at r = 0
—see [82]. The principal null directions £ and 7 of the Kerr-de Sitter spacetimes
have been determined in [82]. In accordance with the signature conventions used in

this thesis, these vectors are given in Boyer-Lindquist coordinates by

f- LA B V Slop Lt 5 (o)
V2 VI 0 v2yIA o
2
= 1 A)\< +r )8 \/ 1 CLA)\ 8 (63b)

V2 iAo ﬂ@ BRVCN T

A direct computation using the metric (6.1) shows that one can complement {l~ , M},

as given above, with the following pair of complex null vectors

- 1 Ajasind i VA Ay

m = —78 + Y2, + 6.3¢
V2 VAo \/_ \/_\/_951119 (6.3¢)

- 1 A VA 1 A

7 = L Saasind V09, + — =25, (6.3d)

VAT 0 B A
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It can be verified that {é, 7, M, m} satisfies the pairings

mm, = mm, = —1, (6.4)
["Tg = Nyl = (6.5)

while all the other contractions vanish. Consequently, {é,'ﬁ, m,m} constitutes a
null tetrad adapted to the principal null directions of the Kerr-de Sitter spacetime.
With this information at hand one can compute the Weyl curvature components

using the NP formalism. A straight forward computation using that
1 . _
Wy = o Capea (IR — 7 i), (6.6)

renders

m

U, = (6.7)

(r —iacos )3’
while ¥y = U3 = U, = 0. This is consistent with the fact that the Kerr-de Sitter
spacetime is of Petrov type D. Moreover, ¥y as given in (6.7) coincides with the
corresponding expression for the Kerr spacetime. Observe that the information

about the Cosmological constant A is contained in the null tetrad as determined by
expressions (6.3a)-(6.3d).

6.3 The rescaled Weyl spinor for Petrov type D

spacetimes

Given a conformal rescaling

g="E2% (6.8)
and a spin dyad {€4“} associated to the physical null tetrad {l~, 7L, M, m} one can
define an unphysical spin dyad {ea”} via

A

eat = 272,44 (6.9)

Observe that this choice is not unique and equation (6.9) gives equal conformal
weight to the elements of the spin basis. The corresponding unphysical null tetrad

{l,n,m,m} is related to the physical null tetrad via
lo=2l,, Na=Che, Ma= Mg, M= CSm,. (6.10)

As in the case of the spin dyad, this choice is not unique but gives equal conformal

weight to both I and n —consistent with equation (6.9). If the spacetime (M, g)
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is of Petrov type D and the associated spin basis {4} correspond to the principal

null directions then the Weyl spinor can be expressed as
VU ascp = Y20(40BLctp). (6.11)

The Weyl spinor corresponds to the spinor counterpart of the anti-self dual Weyl

tensor Cuped
Cabed = Cabea +1C4 (6.12)

where, Cypeq is the Weyl tensor and CFy ., = S€a v O fed 1s the left-dual Weyl tensor.

Consequently, the tensor equivalent of equatlon (6.11) is given by
Cabcd = \P2<Vabﬁab + Uabf/cd + I/T/abI/T/cd)a (613)

where Cgpeq is the anti-self dual Weyl tensor while f/ab, Uab and Wab are a basis
of self-dual bivectors related to the null tetrad —see [83] for a discussion on the

decomposition of the Weyl tensor in terms of self-dual 2-forms:

Uy = —lip + i, (6.14a)
Vip = Mgty — 1700, (6.14D)
W a’ﬁlb — mbﬁ’za — ’fbaib + ﬁbia. (6.140)

As consequence of equation (6.12) one can obtain an expression for the Weyl tensor
Cabea replacing Wy with Re(Ws) in equation (6.13). Since the rescaled Weyl spinor

associated to the conformal representation (6.8) is defined via

=1
dapcp == Vapep,

using equation (6.9) one concludes that the components of the rescaled Weyl spinor
respect to the unphysical spin basis {e4?} are related to the components of the

Weyl spinor in the physical spin basis {4} through
$aBcp =2 Vapcp. (6.15)
Consequently, the only non-zero component of the rescaled Weyl spinor is given by
¢o = E7°0,, (6.16)
Next, define an Hermitian 744/ spinor via

/ / !
TAA = EOAEO/A + €1A61/A . (617)
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AA! AA

The spinor 744" with normalisation 744744 = 2 corresponds to the spinor coun-
terpart of a timelike vector v/27% and can be used to perform a space spinor split as
discussed in Sections 2.4.1 and 2.4.2 of Chapter 2 to decompose the rescaled Weyl
spinor in electric and magnetic parts. A straightforward computation shows then
that the electric and magnetic parts of the rescaled Weyl spinor respect to 744" as

determined by equation (6.17) read
nagep = 3(¢2 + ¢2)oa0BLoip), fagep = —3i(¢2 — 2)o(aopictpy.  (6.18)
In tensorial notation using equations (6.13) and (6.10) one arrives at
dutea = = *Re(W2)(VisUap + Uat Vit + WarWea ).

where

=27 _ =277 _ =21
Vab = = Vab, Uab — — Uaby Wab — = ab-

For the subsequent discussion it will be useful at this point to define timelike and

spacelike covectors associated to the principal null tetrad via

1 - 1 -
§a57la+na7 %azila_ﬁa
(L, + 1) (I, 1)
Observe that
1 %, =1,
77848, = =" 7Ty = ~
-1 °n, = —1.

while all the other contractions vanish. Similarly, one defines the corresponding

unphysical counterparts through

8¢ = 284, Toa = ZTa, (6.19)
satisfying the pairings
1 I“ng =1,
9" sasy = —g"Tamy, = ‘ (6.20)
-1 [*n, =—1,
while all the other contractions vanish. For conciseness, consider the case (*n, = —1

in which 7, is timelike. Respect to this vector one can define the projector tensor as
hab = Gab — TaTh- (621)

The electric and magnetic parts E,, and By, of the rescaled Weyl spinor d .4 respect

to 7, are defined via

Eup = 77 hy dpgea, By = 7070, b (6.22)
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A direct computation using equations (6.10), (6.14a)-(6.14c), (6.20) and (6.21) shows
that for a Petrov type D spacetime one can rewrite the electric part of the rescaled

Weyl tensor as
1
E. = 5Re(¢2)(3sasb + hap)- (6.23)

A computation along the above lines leads to an analogous expression for the mag-
netic part of the rescaled Weyl tensor. Nevertheless, this calculation is not pursued

further as such expressions will not be required in the subsequent analysis.

6.4 The R x S?-conformal representation

As discussed in Chapter 5, to derive the asymptotic initial data for the conformal
Einstein field equations it is necessary to identify a representative of the conformal
class [h] and a trace-free tensor d;; satisfying D'd;; = 0 where D denotes the co-
variant derivative of h. The tensor d;; encodes the initial data electric part of the
rescaled Weyl tensor dgp.q. In the discussion of the asymptotic initial value problem
for the Schwarzschild-de Sitter spacetime given in Chapter 5, it was shown that the
conformal representation for which the induced metric at the conformal boundary
is the standard metric for R x S? leads to a regular representation of the asymptotic
initial data for the Schwarzschild-de Sitter spacetime. As discussed in Chapter 5
this is in stark contrast with the representation of asymptotic initial data for the
Schwarzschild-de Sitter spacetime for which the induced metric at the conformal
boundary h corresponds to the standard metric on S* —in this representation the
initial data for the electric part of the rescaled Weyl tensor diverges at the North and
South poles of S?. In this section a similar approach is followed to obtain a regular

representation of the asymptotic initial data for the Kerr-de Sitter spacetime.

6.4.1 Asymptotic initial data-tensorial description

In analogy to the case of the Schwarzschild-de Sitter spacetime one considers the
conformal rescaling

.
~ —_—
—
—

9 = =°gras

where Z = 1/r and uses the conformal factor as a coordinate. In other words, one
introduces £ = 1/r as a new coordinate. Following the discussion of Section 6.3, in
this representation the only non-zero component of the rescaled Weyl spinor —see

equation (6.16), reads
m

(1 —ia cos )3

Observe that, in this representation the asymptotic initial data for the non-zero

G2 =

component of the rescaled Weyl spinor does not contain information about the
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angular momentum a nor the Cosmological constant \ as

Pals =m

Using equation (6.18) one concludes that the only non-zero component of the electric

part of the rescaled Weyl spinor is then given by
n2|s = 6m, (6.24)

while the the magnetic part of the rescaled Weyl spinor vanishes at .. Despite the
fact that the use of spinors leads directly to the above conclusions it is instructive to
recover this discussion from the tensorial expression (6.13). Additionally, analysing
the behaviour of the null frame at the conformal boundary is better carried out in
tensor frame notation. To do so, observe that the physical timelike and spacelike
covectors s, and 7, are given in Boyer-Lindquist coordinates by

sgn(A,)

S DL P S
|Ar|

sen(A) V| A,
M (dt — asin? ngo).
Axo
In the coordinate system (t,,0,¢) their unphysical counterparts s, = §§a and

T, = =7, read

o Sgn(Ar)\/azf2 cos?f +1
toVi@e e - A/3> —2mg?|

sgn(A \/I a2£2 — A/3) — 2mg&’|
S = AM/a2£2 c0820+ 1

dg,

(dt — asin® Hdgo).

Since for r > r. one has that A, < 0 it follows that 7, is timelike and s, is spacelike

in the asymptotic region. Furthermore, at the conformal boundary .# one has

1
Taly = —,/wdg Sals = A ‘;"(dt — asin® §dyp). (6.25)

Notice that 7, is parallel to d=. In other words, 7, is orthogonal to .#. The induced

metric at the conformal boundary can be found writing

—_
—_

9 = Egkus,
in the coordinates (t, £, 0, ¢) and considering the limit £ — 0. A direct computation
yields

A A 0
3|A|2 (dt — asin Gdcp) (dt — a sin? Ody) — —d@ ®df — ﬂ

h= Ay A2

dp @ dp.
(6.26)
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The last computation has also been reported in [84] and [24]. A direct computation
shows that h is conformally flat as the Cotton tensor of h vanishes. From the metric

(6.26) one readily identifies an orthonormal basis for h;

h=-wow —ww —w®w?

where

1 40 wZZ\/AgsiHQd
VBg .

1

a1 [
JAV

Observe that the covector w3, corresponds to s,|+ as given in equation (6.25). With

= A ?(dt— a sin® Hdgo), w! =
A

this information, observe that the initial data for the electric part of the rescaled
Weyl tensor E,|» can be directly read off from equations (6.23), (6.26) and (6.25).
On the other hand, as discussed in Chapter 5 the initial data for the magnetic
rescaled Weyl tensor can be read off from the Cotton tensor of the induced metric
at the conformal boundary h. As h is conformally flat it follows that the initial data
for the magnetic part of the rescaled Weyl tensor vanishes. This is in agreement with
the observation, as discussed above, that for a Petrov type D spacetime the initial
data for magnetic part of the rescaled Weyl spinor corresponds to the imaginary
part of ¢o|, —see equation (6.18)— which vanishes in this case. To complete
the asymptotic initial data observe that the frame dual to {w®} determined by
(w® ep) = 0p* is given by
3

es = Ay Wat, €1 =Y AyOy, €2z =

Ay
VY

(csc 0B, + asin60,).

The components of the 3-dimensional Schouten tensor l;; = r;; — irhij respect to

this frame read
1 1
l33:§(A)\—A9_1)7 lll :§<3A9_A>\_1)7
1
la2 = 5(3A9—A/\—1)7 l32:_a\/g\/A>93m97

while all the other components vanish. The only non-zero connection coefficients

respect to the frame this frame are

t0 \
T212 = i/OA_9(2A9 —Ay), Y123 = =213 = —V312 = @ |3‘COS 0,

Finally, for completeness, one can compute the Friedrich scalar in this conformal
representation to obtain

1l — ~ 1 ~n
5=-V,VE4+ —R=. 2
5= VeVE+ R (6.27)
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Recalling the conformal transformation law for the Ricci scalar
D) o 6 — —c— ~ —vc—
R—=R=-=V.VE+ =VEVE, (6.28)
one observes that that the Friedrich scalar can be rewritten as

1 = 1l = 2=~
24= 2=

Alternatively one can write the last expression as

1 - 1 e e =
R+ = §"“V.EV.E. (6.30)

§=_=
24= =

A direct computation using the above expression renders

s f(3—a2)\+a2)\00892—6m§—|—3a2§2). (6.31)
6(1 + a? cos 62£2)

Thus one concludes that, in this conformal representation, the Friedrich scalar s
vanishes at the conformal boundary. Observe that as a consequence of the conformal

constraint equations, given in Section 2.5.2 of Chapter 2, one has then y;; = 0 at

58

6.4.2 Asymptotic initial data; spinorial description

The initial data for the electric and magnetic part of the rescaled Weyl is

napcp = 6mo(aopLctpy, paep = 0.

As discussed before, the only non-zero contribution to the initial data for the rescaled
Weyl spinor comes from its electric part. In terms of the valence-4 basic spinors of
the space spinor formalism —see Appendix 5.8.2 of Chapter 5, the initial data for
the rescaled Weyl spinor then reads

2
®aBcp = 6me” aBcp.-

The spinorial counterpart of the other objects described in the previous section can
be found by suitable contraction with the Infeld-van der Waerden symbols using
that

CD

Ta®Per = 110450 Por er, (6.32)

for a generic spatial tensor 7,7, with components T37j. Following the conventions

used in Chapter 5 for the frame, one introduces a pair of complex null vectors e,
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and e_ determined by

e, = ——(€; —1€e2), e_ = —(ey +1e2).
+ \/—2 1 2 \/5 1 2

A direct computation using equation (6.32) and equation (5.95a)-(5.95b) given in
Appendix of Chapter 5 to express the spatial Infeld-van der Waerden symbols in

terms of of the basic valence-2 symmetric spinors renders
eaB = Tapes — V2yape_ — V2zape,.

A similar computation then shows that the spinorial counterpart of the connection

coefficients ;7 can be encoded in

Y48 Pur = 21(7123$HF(yCDZAB —yaBzep) + N23tep(—YHFZAB

+yapzaF) — (M123TaB +17212(YaB — 24aB))(YHZ2CD — yCDZHF))-

The reduced connection defined as yap®r = 374" cF is given by
1 1
YABDF = \/572129€DF(yAB—xDFZAB)—l-%z:s\/5(—$ABIDF+2(yDFZAB+yABZDF))-

This can be rewritten in its irreducible parts by introducing the basic valence-4

spinors —see Appendix 5.8.2 of Chapter 5. A computation renders

1 1 1
YABDF = —7212 7(ebBCF"‘E?ABDF)"‘*(yBFEAD"‘yADEBF)"r‘*(ZBFGAD“FZADEBF)
V2 4 4

. 1
- 1\/57123<2€?43DF + ShABDF>-

Additionally, using the reality conditions (5.35) given in Chapter 5, it can be verified
that yapcp is an imaginary spinor —as is to be expected from the space spinor
formalism. The last spinor corresponds to the initial data for the spinor field é4pcp
representing the imaginary part of the reduced connection I'ygep. The real part of

I'aBep is encoded in the Weingarten spinor x apcp whose initial data is given by

XaBcp = khaseb-
The spinorial counterpart of the 3-dimensional Schouten tensor is
laBep = IsszaBTep + 2011 (Yep2aB + YaB2cp) — ilastep(YaB — 2aB),

which written in its irreducible parts is
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1
lapep = 233 apep — 201 (EZBCD + ghABCD)

1 1
+il <el + € + — €ac + € + ——(zBc€ac + zace )
23\ €aABCD ABCD 2\/§(yBD AC T YAcC BD) 2\/5( BCc€AC AC BD)

Thus, using that L;; = [;; + %/@2hij, one obtains

4 — 3K2
Lagcp = 2l33€° aBcp — l11< — 264 Bop + 5 hABCD)

1 1
+1il (el +é3 + — €ac + € + ——(2BCc€ac + zacC€ >
2\€apop +€apop + 3 \/i(yBD AC +YACEBD) 5 \/5( BCEAC + 2AC€BD)

6.4.3 Changing the conformal representation

The most important feature of the asymptotic initial data discussed in Section 6.4.1

is the fact that the h is conformally flat. Tracefree tensors satisfying the equation
Didi; =0 (6.33)

have been analysed in the conformally flat setting in [42]. The conformal invariance
of the last equation —see Lemma 13 of Chapter 5, reduces the problem to that of
analysing the above equation in a flat background, in other words for h = —4§, and
then suitably rescaling the solution. In [42], all smooth solutions to equation (6.33)
in flat space have been parametrised in terms of five quantities: A, J, P, Q) and A,
where the first four quantities are constants while Ay denotes an arbitrary smooth
function of spin-weight two. The latter quantity can be expressed alternatively as
Ay = 0%2)\¢ where )\ is a smooth scalar function of spin-weight zero and & and 0
denote the d and 0 operators of the Newman-Penrose formalism —see [12] for a
general discussion on the Newman-Penrose formalism. In Section 5.3.4 of Chapter 5
the solution to equation (6.33) on R? subject to the condition (5.25) was discussed.
In this paragraph, the latter discussion is extended —dropping the spherical sym-
metry condition encoded in equation (5.25)— adapting the analysis given in [42] to

the present setting and notation. Consider the equation
Did; = 0, (6.34)

where h = —4§ is the flat metric. Following [42], one can introduce Cartesian coor-
dinates (z®) with the origin of R3 located at a fiduciary position O. Additionally,
one can introduce polar coordinates defined via p = dagz®zP. The flat metric in
these coordinates reads

h=—-dp®dp—po. (6.35)
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where o is the standard metric on S?. Considering an arbitrary pair of complex null

vectors m and m such that
ol = (mem+mem)

and denoting the radial direction 8, by m one reexpresses the metric as hi=-n®
n—o. Introducing a spin-dyad adapted to the above described frame one can express

the metric in terms of the basic valence-2 spinors of the space spinor formalism as
hapcp = —¥aBTBC — 2YaBZcD — 2YcDZAB-

With this notation the general solution to equation (6.34) can be expressed in the

space spinor formalism as

p*daBcp = 660D + 2mEapen — 2mEapep + 2athpop + 212 aBoD
where
5:6%§+A+pQ+;R
m = —2p0,0\F 4+ 0N + pdQ — /1)813 +19.J,
pi2 = 2p0,(pD,A5) — 205 + BONS — pd, X5
with A = Re(A2) and A = ilm(\g) —see [42] for a detailed derivation. To extend

the above result to the conformally flat setting introduce e; and e; denoting a h

and h orthonormal frames, with

h = wh,

so that
éi = WEe;. (637)

Using equation (6.37) one observes that the frame version of the transformation law

for TT-tensors given in Lemma 13 of Chapter 5 reads

d,;j = w_SJij. (638)

From the discussion of Sections 6.4.1 and 6.4.2 one knows that there exist a
representation in which the asymptotic initial data for the rescaled Weyl spinor for

the Kerr-de Sitter spacetime can be expressed as

2
¢aBcp = bmeygep,

and the induced metric at the conformal boundary is determined by equation (6.26).
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As the Cotton tensor of h vanishes, there exists a conformal factor w such that
h = w?h

with h and h given by equations (6.26) and (6.35) respectively. Consequently, one
concludes that in the representation in which the induced metric at the conformal

boundary is flat, h=-6 , the initial data for the rescaled Weyl spinor reads

papcp =w *dapcop

in other words, the initial data for the Kerr-de Sitter spacetime in the flat representa-
tion is determined by four constants A, P, ), J and a smooth function of spin-weight
2, Ag = A+ A\l satisfying

_ 1 m
2\ R _
_ _ 1
—2p0,0\ + O\, + poQ — ;6]3 +1d.J = 0, (6.39b)
200,(pO,\5) — 2X\F + 30N — pd, A5 = 0. (6.39¢)

In Section 5.3.4 of Chapter 5 it was shown that for the Schwarzschild-de Sitter
spacetime w = p~!'. This in turn, using equations (6.39a)-(6.39¢), imply P = Q =
J =Xy =0 and A = m which then characterise the asymptotic initial data for the
Schwarzschild-de Sitter spacetime. For the Kerr-de Sitter spacetime the conformal
factor w cannot be determined explicitly and the discussion for the Schwarzschild-de
Sitter spacetime given in Chapter 5 suggests that the initial data for the rescaled
Weyl spinor will be singular in the flat representation. Consequently, the discussion
of the initial data will be restricted to the one associated with conformal represen-
tation described in Sections 6.4.1 and 6.4.2.

Notice that the above discussion is consistent with the characterisations of asymp-
totically Kerr-de Sitter like spacetimes given in [85]. In the latter reference, Kerr-de
Sitter-like spacetimes are characterised in terms of a conformal Killing vector v; at
7 arising from a Killing vector X; on (M, g) where § is a solution to the Einstein
field equations with positive Cosmological constant. In [85] it is shown that the

so-called rescaled Mars-Simon tensor vanishes if the following conditions hold

A 1
Cz] = \/;Cm(zg|’l]|5<’ljivj + |U|2§hlj)7 (640&)
1
dij = el|v|_5(vivj + ’U|2§hz’j)a (6.40b)

> = v, C;; is the Cotton-York tensor of the induced metric at the confor-

where |v
mal boundary, d;; denotes the electric part of the rescaled Weyl tensor and C,; and

Cinag are two undetermined constants —see [85] for a detailed discussion. Equa-
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tions (6.40a) and (6.40b) have been adapted to the signature conventions used in
this thesis. Notice additionally that, the second expression can be written using the

space spinor formalism as
_ -5
daBcpD = Cel’U| V(ABUCD)-

This is consistent with the discussion of Section 6.4.1 if the spin-dyad e 44 is aligned
with the conformal Killing vector v* so that, up to a normalisation factor, vap

corresponds to z4p.

6.5 Perturbations of the Kerr-de Sitter spacetime

In the following, a similar discussion to that given in Chapter 5 for perturbations of
the Schwarzschild-de Sitter spacetime will be given. In particular, one will consider
perturbations of the Kerr-de Sitter spacetimes which can be covered by a congru-
ence of conformal geodesics. The last assumption implies, in particular, that the
functional form of the conformal factor will be the same as that of the background so-
lution. Observe that the asymptotic initial data obtained in Sections 6.4.1 and 6.4.2
correspond to a conformal representation in which the initial hypersurface 7 = 0
representing . is topologically R x S? with a metric h given by (6.26). Contrast
with the case of the Schwarzschild-de Sitter spacetime, analysed in Chapter 5, in
which the initial hypersurface is not only topologically but also metrically R x S?. In
this section non-linear perturbations of the Kerr-de Sitter spacetimes are analysed
by means of a suitably posed initial value problem. In other words, the develop-
ment of perturbed initial data close to that of the Kerr-de Sitter spacetime, in the
above described conformal representation, is discussed. In view of the symmetric
hyperbolicity of the conformal evolution equations (5.5a)-(5.5b) of Chapter 5 one
can exploit the theory of first order symmetry hyperbolic systems contained in [23]
to obtain an existence result for the asymptotic region of the Kerr-de Sitter space-
time. Proceeding in an analogous way as in Section 5.4.3 of Chapter 5 one obtains

the following result

Theorem 4 (existence of perturbations of asymptotic initial data for the
Kerr-de Sitter spacetime). Let u, = u, + 0, denote asymptotic initial data
for the extended conformal FEinstein field equations on a 3-dimensional manifold
S ~ R x S? where 0, denotes the asymptotic initial data for the Kerr-de Sitter
spacetime in the time-symmetric conformal representation k = 0. Then, for m > 4

there exist a small 7o > 0 and € > 0 such that:

(i) for ||Q.||s;m < €, there ezist a unique solution U to the conformal evolution
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equations (5.5a)-(5.5b) with a minimal ezistence interval [0, 7,] and
e C™2([0,7,] x S,C"),

and the associated congruence of conformal geodesics contains no conjugate
points in [0, 7,];
(ii) the solution u = u + u is unique in [0,7,] X S and implies a C™ 2 solution

(M., g) to the Finstein vacuum equations with the same de Sitter-like Cos-

mological constant as the background solution where
M., =(0,7,) x S.

Moreover, the hypersurface & = {0} x S represents the conformal boundary

of the spacetime.

Proof. The proof of this theorem is analogous to that given for the Schwarzschild-de

Sitter spacetime in Theorem 3.

6.6 Conclusions

In this chapter an analysis of perturbations of the Kerr-de Sitter spacetime arising
from suitably posed asymptotic initial value problems is given. To do so, initial
data for the conformal Einstein field equations representing asymptotic initial data
for the Kerr-de Sitter spacetime was found. Then, by introducing the appropriate
norms —see Section 5.4.3 of Chapter 5— small perturbations of asymptotic initial
data close to that of the Kerr-de Sitter spacetime were considered. Exploiting the
structure of the conformal evolution equations and the theory of symmetric hyper-
bolic systems contained in [23] an existence result for perturbations of the Kerr-de
Sitter spacetime valid in their corresponding asymptotic region was obtained. The
asymptotic initial data for the Kerr-de Sitter spacetime discussed in this chapter
was obtained in the time symmetric conformal representation k = 0 —alternatively
characterised by the vanishing of the Friedrich scalar at .#. Nonetheless, the confor-
mal properties of the conformal constraint equations open the possibility to consider
other conformal representations. In particular, as the induced metric at the con-
formal boundary of the Kerr-de Sitter spacetime h is conformally flat, one could in
principle consider a representation in which h is the flat metric. In the latter repre-
sentation, all smooth solutions of the Gauss constraint (TT-tensors) determining the
initial data for the electric part of the rescaled Weyl tensor have been parametrised
in terms of four constants A, J, @), P and a smooth complex function of spin weight
two Ag in [42]. As discussed in more detail in Chapter 5 and briefly in this chapter,
for the Schwarzschild-de Sitter spacetime, the constant A can be identified with the
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mass parameter m of the exact solution. Intuition would suggest that the initial
data for the electric part of the rescaled Weyl tensor spinor for the Kerr-de Sitter
spacetime could be obtained by simple superposition of the solution containing with
A # 0 and J # 0 and all the other parameters vanishing. Nevertheless, as shown in
this chapter this is not the case as the asymptotic initial data for electric part of the
rescaled Weyl spinor for the Kerr-de Sitter spacetime in this conformal representa-
tion is characterised by equations (6.39a)-(6.39¢). Moreover, it would be interesting
to investigate the representation for which the initial data for the induced metric at
the conformal boundary is the standard metric of S? since, as discussed in Chapter 5,
in this conformal representation the asymptotic initial data for the Schwarzschild-
de Sitter spacetime is singular in the region of the spacetime where the horizons
meet the conformal boundary. The singular behaviour of d;; is not observed here
as in the R x S?-representation the points where the conformal boundary meets the
horizon (asymptotic points) are send to infinity. By working on this representation
the smallness requirement on the initial data, using the theory contained in [23],
imposes certain decay of the perturbations at these points. Despite the results of
this chapter constitute a generalisation of the analysis given in Chapter 5 for the
Schwarzschild-de Sitter spacetime, in the latter chapter an analysis of the time of
existence for the solutions was given, the latter requires a deeper analysis of the
conformal evolution equations describing the exact Kerr-de Sitter spacetime as a
solution to the extended conformal Einstein field equations expressed in terms of a
conformal Gaussian system. An analysis addressing the above raised questions for
the Kerr-de Sitter spacetime will be addressed elsewhere. Nevertheless, this chap-
ter shows that it is possible to construct future asymptotically de Sitter spacetimes
whose asymptotic initial data lies on an open ball close to the Kerr-de Sitter space-
time. In particular, the latter implies that the initial data for the induced metric
at the conformal boundary of the perturbed spacetimes is not necessarily confor-
mally flat, and consequently, according to the theory of asymptotics given in [24]
these spacetimes represent non-trivial examples for the theory of asymptotics for de

Sitter-like spacetimes allowing for gravitational radiation at .#.



7 Zero rest-mass fields and the
Newman-Penrose constants on

flat space

7.1 Introduction

The concept of asymptotic simplicity is central for the understanding of isolated
systems in general relativity. In this regard, Penrose’s proposal [33] is an attempt
to characterise the fall-off behaviour of the gravitational field in a geometric manner
—see also [34]. As discussed in Chapter 1, in Penrose’s proposal to study the asymp-
totic region of the physical spacetime (M, g) satisfying the Einstein field equations

one considers an unphysical spacetime (M, g), where g and g are related via

(1]

9="2"g,

The set of points where = = 0 but d= # 0 is called the conformal boundary. If g
satisfies the vacuum Einstein field equations (with vanishing Cosmological constant)
near ., then the conformal boundary defines a smooth null hypersurface of M and
one calls & null infinity —see [12, 34]. One can identify two disjoint pieces of .#:
#~ and # T correspond to the past and future end points of null geodesics. If every
null geodesic acquires two distinct endpoints at ., the spacetime (M, g) is said to
be asymptotically simple —see [12, 13, 34| for precise definitions. The Minkowski
spacetime, (R*,7) is the prototypical example of an asymptotically simple space-
time. In the standard conformal representation of the Minkowski spacetime, the
unphysical spacetime can be identified with the Einstein cylinder (Mg, gg) where

Mg ~ R x S3 and
gr =d7T @ dT — dy ® dv — sin® Yo, = = cos(T) + cos(v),

where —m < T < 7,0 < 9 < 7 and o is the standard metric on S?. In this conformal
representation £+ correspond to the sets of points on the Einstein cylinder, Mg =
R x S3, for which 0 < ¢ < 7 and T' = £(m —1). One can directly verify that Z| s+ =
0 while dZ| s+ # 0 —see [12]. Consequently, a special region in the conformal

structure of the Minkowski spacetime is spatial infinity i° for which both =], and

180
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d=|;0 vanish. In this conformal representation, spatial infinity corresponds to a point

in the Einstein cylinder with coordinates ¢ = m and T' = 0.

A natural problem to be considered is the existence of spacetimes whose conformal
structure resembles that of the Minkowski spacetime. The conformal Einstein field
equations introduced originally in [11] provide a convenient framework for discussing
global existence of asymptotically simple solutions to the Einstein field equations.
An important application of these equations is the proof of the semi-global non-
linear stability of the Minkowski spacetime given in [11]. In the latter work, the
evolution of perturbed initial data close to exact Minkowski data is analysed. Nev-
ertheless, the initial data is not prescribed on a Cauchy hypersurface S but on a
hyperboloid # whose conformal extension in M intersects .# —see Chapter 4 for a
similar discussion of the non-linear stability the Milne spacetime. Therefore, an open
problem in the framework of the conformal Einstein field equations is the analysis
of the evolution of initial data prescribed on a Cauchy hypersurface S intersect-
ing i° —see [10] for the proof of the global non-linear stability of the Minkowski
spacetime employing different methods. One of the main difficulties in establishing
a global result for the stability of the Minkowski spacetime using conformal meth-
ods lies on the fact that the initial data for the conformal Einstein field equations
is not smooth at i°. This is not unexpected since, as observed by Penrose —see
[33, 86]— the conformal structure of spacetimes with non-vanishing mass becomes
singular at spatial infinity —in the sense that the rescaled Weyl tensor becomes
singular at i°. A milestone in the resolution of this problem is the construction,
originally introduced in [27], of a new representation of spatial infinity known as the
cylinder at spatial infinity. In this representation, spatial infinity is not represented
as a point but as set whose topology is that of a cylinder. This representation is
well adapted to exploit the properties of curves with special conformal properties:
conformal geodesics. In addition, it allows to formulate a regular finite initial value
problem for the conformal Einstein field equations. Other approaches for analysing
the gravitational field near spatial infinity using different representations of spatial

infinity have been also proposed in literature —see [87-90)].

The framework of the cylinder at spatial infinity and its connection with the con-
formal Einstein field equations have been exploited in an analysis of the gravitational
Newman-Penrose (NP) constants in [81]. The NP constants, originally introduced
in [91], are defined in terms of integrals over cuts C &~ S? of .#. The integrands in the
expressions defining the NP constants are, however, written in a particular gauge
adapted to .# (the so-called NP-gauge) while the natural gauge used in the frame-
work of the cylinder at spatial infinity (the so-called F-gauge in [81]), is adapted
to a congruence of conformal geodesics and hinged at a Cauchy hypersurface S.
This fact, which at first instance looks as an obstacle to analyse the NP constants,

turns out to be advantageous since, once the relation between the NP-gauge and
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the F-gauge is clarified, one can relate the initial data prescribed on S with the

gravitational NP constants at 7.

In a recent work [28], the authors exploit the notion of these conserved quantities
at .# to make inroads into the problem of the information paradox —see [92-94].
In the [28], the concept of soft hair is motivated by means of an analysis of the
conservation laws and symmetries of abelian gauge theories in Minkowski space.
These conservation laws correspond essentially to the electromagnetic version of the
gravitational NP constants. With this motivation, in this chapter zero rest-mass
fields propagating on flat space and their corresponding NP constants are studied.

The discussion of this chapter is based on

Gasperin E. and Valiente Kroon J.A., “Zero rest-mass fields and the Newman-
Penrose constants on flat space,” ArXiv e-prints (Aug., 2016) , arXiv:1608.05716
[gr-qc].

In this chapter, two physically relevant fields are analysed: the spin-1 and spin-2
zero rest-mass fields. The spin-1 field provides a description of the electromagnetic
field while the spin-2 field on the Minkowski spacetime describes linearised gravity.
It is shown how the framework of the cylinder at spatial infinity can be exploited to
relate the corresponding NP constants with the initial data on a Cauchy hypersur-
face intersecting i° —see Propositions 11 and 12 for the spin-1 case and Proposition
13 and 14 for the spin-2 case. Additionally, it is shown that, for the class of ini-
tial data considered, the NP constants at .#+ and .#~ coincide —see Theorems 5
and 3. Moreover, it is discussed how this identification arises from a delicate inter-
play between the evolution and constraint equations associated to these fields. In
particular, the analysis given in this chapter highlights the connection between the

smoothness of the fields at null infinity and the finiteness of the conserved quantities.

7.2 The cylinder at spatial infinity and the
F-gauge

In this section a conformal representation of the Minkowski spacetime that is adapted
to a congruence of conformal geodesics is discussed. This conformal representation,
introduced originally in [27], is well suited for analysing the behaviour of fields near
spatial infinity. In broad terms, in this representation spatial infinity °, which cor-
responds to a point in the standard compactification of the Minkowski spacetime, is
blown up to a set I with the topology of R x S2. In the subsequent discussion this
representation will be referred as the cylinder at spatial infinity. The discussion of
the cylinder at spatial infinity as presented in [27] is given in the language of fibre

bundles. In particular, the construction of the so-called extended bundle space is


http://arxiv.org/abs/1608.05716
http://arxiv.org/abs/1608.05716
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required —see [27, 95]. Nevertheless, a discussion which does not make use of this

construction is presented in the following.

7.2.1 The cylinder at spatial infinity

Consider the Minkowski metric 77 in Cartesian coordinates #* = (¢, 7"),
n= nuvdiu ® dz",

where 7, = diag(l,—1,—1,—1). Introducing polar coordinates defined by p* =
;877 where §;; = diag(1,1,1), and an arbitrary choice of coordinates on S?, the

metric 77 can be written as
n=dt®dt—djp®dj— p’c,

with # € (—o00,00), p € [0,00) and o denotes the standard metric on S2. A common
procedure to obtain a conformal representation of the Minkowski spacetime close to

i¥ is to introduce inversion coordinates v = (t, ") defined by —see [12],
ot = i) X2 XP =0, M

The inverse transformation is given by
= —at /X3, X% =2t

Using these coordinates one readily identifies the following conformal representation

of the Minkowski spacetime
gr = EQ ﬁ? (71)

where g; = 1, d2* @ dz¥ and = = X?. Notice, additionally that, X? = 1/)~(2.
Introducing an unphysical polar coordinate defined as p®> = §;;z'a?, one observes

that the rescaled metric g; and conformal factor = read
g =dt®dt —dp®dp — po, E=1—p% (7.2)

with ¢ € (—00,00) and p € (0,00). In this conformal representation, spatial infinity

0

i corresponds to a point located at the origin. For future reference, observe that ¢

and p are related to t and p via

t p
o Rt (7.3)

2

Il
™

Il
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Then, one introduces a time coordinate 7 defined via ¢t = p7. In the coordinate

system determined by 7 and p the metric g; is written as
g =pdr®dr — (1 -73)dp®dp + prdp @ dr + prdT @ dp — p’o.

The required conformal representation is obtained by considering the rescaled metric

1
gc = —9i. 7.4
2 I (7.4)

Introducing p* = — In p the metric go explicitly reads
gc =dr®@dr — (1 — 7*)do* ® do* — 7dT ® do* — 7do* ® dT — 0.

Observe that spatial infinity i, which is at infinity respect to the metric g¢, corre-
sponds to a set which has the topology of R x S —see [27, 95]. In what follows the
coordinates (7, p) will be preferred and will be referred as the F-coordinates. Fol-
lowing the conformal rescalings previously introduced one considers the conformal

extension (M, g¢) where
gC:@2~7 ®:p(1_7—2)7

and
M={peR'| —1<7<1, p(p) >0}.

In this representation future and past null infinity are located at
Jr={peMlrp)=1}, I ={peM|r(p) =-1},
and the physical Minkowski spacetime can be identified with the region
M={peM| -1<7(p) <1, plp) >0}
In addition, the following sets will be distinguished:
I={peM]| || <1, pp) =0},  I"={peM]|r(p)=0, p(p) =0},

If={peMlrp)=1pp)=0}, I ={peM]7(p)=—-1, p(p) =0}

Notice that spatial infinity °, which originally was a point in the g;—representation,
can be identified with the set I in the go—representation. In addition, one can
intuitively think of the critical sets It and I~ as the region where spatial infinity
“touches” £+ and £~ respectively. Similarly, I° represents the intersection of "
and the initial hypersurface S = {7 = 0} —see Figure 7.1. See also [27, 81] and [95]

for further discussion of the framework of the cylinder at spatial infinity implemented
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b)

_l’_

_— = - 7 = JH
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Figure 7.1: Figure a) illustrates the geometric setting in which the NP-frame €'y 4/
is constructed: €'y, is paralelly propagated along S while eyq is tangent to the
generators of a null hypersurface N transverse to . OnC =N N1 a complex
null frame egy and ery s chosen and paralelly propagated along N'. Figure b) shows
a schematic depiction of the cylinder at spatial infinity and the F-frame {e,, e;}.
In this representation spatial infinity i° is blown-up to a set I with the topology of
R x S2. The location of I = SN I and the critical sets IT where the cylinder at
spatial infinity I meets future and past null infinity Z* are also shown in this figure.

for stationary spacetimes.

7.2.2 The F-gauge

In this section a brief discussion of the so-called F-gauge is provided —see [81, 95]
for a discussion of the F-gauge in the language of fibre bundles. Following the
philosophy of the previous section the discussion presented here will not make use of
the extended bundle space —see [81, 95] for definitions. One of the motivations for
the introduction of this gauge is that it exploits the properties of conformal geodesics.
More precisely, in this framework, one introduces an orthonormal frame (from which
one can construct an associated null frame) whose timelike leg corresponds to the
tangent of a conformal geodesic starting from a fiduciary spacelike hypersurface
S = {7 = 0} —see Section 2.3.2 in Chapter 2.

To start the discussion, consider the conformal extension (M, g¢) of the Minkowski
spacetime and the F-coordinate system introduced in Section 7.2.1. Observe that
the induced metric on the surface Q@ = {7 = 7,p = ps, }, with 7., p, fixed, is
the standard metric on S?. Consequently, one can introduce a complex null frame
{8,,08_} on Q as described in Appendix 7.9. To propagate this frame off Q one
requires that

[0;,04+] =0, 8,,0+] = 0.

Taking into account the above construction one writes, in spinorial notation, the
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spacetime frame

2 2

€oo = \é_((l —7)0; + pd,), el = {((1 +7)8; — pd,), (7.5a)
2 2

€01/ = \g_&r, €100 = \é_ . (75b)

The corresponding dual coframe is given by

woo’:éﬁ(dT_;(l_T)dp)’ Wt :‘f(dr+i(1+7)dp),

WO = V2w, Wi = V2w~

One can directly verify that

gc = GABEA’B’WAA/UJBB/-
The above construction and frame will be referred in the following discussion as the
F-gauge. A direct computation using the Cartan structure equations shows that the
only non-zero reduced connection coefficients are given by

V2

ooty =Tty = R ,
V2 V2
oty = —T10% = @, To1% = —Tort: = Tﬁ

4

0o _ 0o __
I‘00/ O_Fll’ 0o —

V2
4

7.3 The electromagnetic field in the F-gauge

In this section the Maxwell equations on (M, g¢) are discussed. After rewriting
the equations in terms of the & and 0 operators, a general solution is obtained by
expanding the fields in spin-weighted spherical harmonics. The resulting equations
for the coefficients of the expansion, satisfy ordinary differential equations which
can be explicitly solved in terms of special functions. The analysis given here is
similar to the one for the Maxwell field on a Schwarzschild background in [96] and
the gravitational field in [27]. Notice that, in contrast with the analysis presented
in this section, in the latter references the equations and relevant structures are
lifted to the extended bundle space. Additionally, the initial data considered in this

analysis is generic and in particular is not assumed to be time symmetric.

7.3.1 The spinorial Maxwell equations

The Maxwell equations in the 2-spinor formalism take the form of the spin-1 equation

Valdap = 0. (7.6)
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Let e4? with ¢ = 04 and ;4 = * denote a spin dyad adapted to the F-gauge
so that eqa?? = ea€ a4, corresponds to the null frame introduced in Section

7.2.2. A direct computation shows that equation (7.6) implies a set of equations

for the components of ¢ respect to ex?: ¢y = dapo?o?, ¢ = dpapo*? and
b2 = dapt™ B, which can be split into a system of evolution equations
(1+7)0-¢0 — pdypo — 0191 = —¢o, (7.7a)
1 1
Orp1 — 5(3+¢2 + 3—%) = §<5¢2 + wﬁﬁo), (7.7b)
(1= 17)0-¢2 + pOppa — O_¢1 = 2, (7.7¢)
and a constraint equation
1 1,
70,01 — pd,b1 + 5(a_gzs0 — Dy) = 5(m)2 — wy). (7.7d)

One can systematically solve the above equations decomposing the fields ¢g, ¢1, @2
in spin-weighted spherical harmonics. To do so, one has to rewrite these equations
in terms of the & and 0 operators of Newman and Penrose. Using equation (7.106)
of Appendix 7.10 and the fact that ¢, ¢, and ¢, have spin weights 1, 0 and -1,
respectively, one finds that equations (7.7a)-(7.7d) can be rewritten as the following

evolution equations

(L4 7)0r¢0 — pOpgo + D1 = —¢, (7.8a)
O-¢1 + ;(5@ +0¢) = 0, (7.8b)
(1 - T)aT¢2 + p8p¢2 + 6¢1 = ¢2> (780)

and the constraint equation
1 _
TO-¢1 — pO,d1 + §<6¢2 — 5%) = 0. (7.8d)

7.3.2 The transport equations for the electromagnetic field
on the cylinder at spatial infinity

In order to analyse the behaviour of solutions of the Maxwell equations in a neigh-

bourhood of the cylinder at spatial infinity one assumes that ¢g,¢; and ¢, are

smooth functions of 7 and p. Moreover, taking into account equation (7.108) of

Appendix 7.10 one makes the Ansatz:

Assumption 1. The components of the Maxwell field admit a Taylor-like expansion
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around p = 0 of the form

Z Z Z anpfm T)Y1_ nit—1,mpP’ (7.9)

p=|1—n| l=|1— n\m—fé

where ay, p.m : R = C and with n = 0,1, 2.

Remark 52. Recalling that Yy.p,,» = 0 for ' < ||, one notices that the lowest
order in the expansion for ¢y is O(p?). This observation will play a role in Section
7.6 when the electromagnetic NP constants are computed in terms of the initial
data. Expression (7.9) is not the most general Ansatz which is compatible with the

Maxwell constraints. However, more general expansions, like

Z Z Z anpfm }/1 némpp

p=|1-n| l=|1— n|m——€

which follow from general multipolar expansions in electrostatics and magnetostatics
and allow for higher harmonics at each order in p can be seen to have, in general,

divergent Newman-Penrose constants.

To simplify the notation of the subsequent analysis let

oo
(r) — n
PP = o : (7.10)

p=0

with n = 0,1,2. Formally differentiating equations (7.8a)-(7.8d) with respect to p

and evaluating at the cylinder I one obtains

(1+7)¢h — (p — 1) + 0¢ = 0, (7.11a)
3+ (068 +30) =0, (7.11b)
(1=7)¢P + (p— 1) + 5P = 0, (7.11c)
I ;(%é”) ~3g") =0, (7.11d)

where the dot denotes a derivative respect to 7. Using equations (7.109a)-(7.109b)
of Appendix 7.10 and the expansions encoded in equation (7.9) one obtains the
following equations for ay p.em:
(14 7)aopiem + VU + 1)ar pom — (p — 1)aopem = 0, ( )
) 1
a1,psem + 2 U(€ + 1) (a2 pem — Ao pem) = 0, ( )
(1 — T)C'sz;gm — \/6(6 + 1)(117p;gm + (p — 1)&27]);@77” =0, (7‘14)
(7.15)

. 1
TAa1 pyem — 5 E(E + 1)(a2,p;€m + aO,p;(m) — Pa1 pym = 07
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forp>1,1<¢<p, —¢ <m < /. Notice that equations (7.12)-(7.15) correspond,
essentially, to the homogeneous part of the equations reported in [96]. Furthermore,

a1 pe.m can be solved from (7.13) and (7.15) in terms of ag p.pm and ag p.m to obtain

0(0+1)

a1 pitm =
t gl 2p

(1 = 7)a2pem + (L4 7)aopiem)- (7.16)

Substituting ay ,.0.m as given in (7.16) into equations (7.12) and (7.14) one obtains

. 1 L
(14 7)o ptm + (QPW +1)(1+7)—(p— 1))ao,p;g,m 5, D = T)azpem =0,
(7.17a)
. 1 1
(1= 7Yz = 5 (D4 Do~ (5, 00+ DL =7) = (0= 1) )z =0
(7.17b)

At this point one can follow the procedure discussed in [96] to obtain a fundamental
matrix for the system (7.17a)-(7.17b): a direct computation shows that one can de-

couple the last system of first order equations and obtain the second order equations

(1 = 73)éopem + 2(1 — (1 = p)T)aopem + (p+ O (€ — p+ agpwm =0, (7.18a)
(1 — 7)dgpem — 2(1+ (1 — p)T)azpem + (p+ O (€ — p+ 1)azpwm = 0. (7.18Db)

Dropping temporarily the subindices p, £, m observe that, if as(7) solves (7.18b) then
as(—7) solves equation (7.18a). Equations (7.18a)-(7.18b) are particular examples
of Jacobi ordinary differential equations. Following the discussion of [96] one obtains

the following:

Proposition 7. Forp > 2, { < p, —¢ < m </ the solutions to the Jacobi equations
(7.18a)-(7.18b) are polynomial in 7. For p > 2, { =p, —p < m < p one has

=7\ 1+ m\"! o [T ds
40ppm(7) :< 2 ) < 2 ) (Cp,m+0p7m/0 (1+3)p<1—3)p+2>’
(7.19a)

L+7\? /1 —r\P! s [T ds
G2ppm(T) = < 2 > < 2 > (Dp”” * Dp’m/o (1—s)P(1+ 3)p+2) :
(7.19b)

® ® ; ;
where Cpm, Cpr, and Dy, Dy, are integration constants.

Remark 53. Observe that, for non-vanishing C;7,,, and D, , the solutions ag ppm ()

and ag p.p.m(7) with p > 2, —p < m < p, contain terms which diverge logarithmically

near 7 = 1.

Remark 54. The expressions of Proposition 7 are solutions to the Jacobi equations.
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To obtain a solution to the original system it is necessary to evaluate these expres-
sions in the coupled system (7.17a)-(7.17b). In turn, this gives rise to restrictions

on the integration constants.

Remark 55. The convergence of the expansions encoded in (7.9) follows from the
results of [97].

7.3.3 Initial data for the Maxwell equations

Evaluating the constraint equation (7.8d) at 7 = 0 gives the following equation

POpd1 — ;(5% — d¢p) = 0. (7.20)

Consistent with the expressions encoded in equation (7.9) one considers on the initial

hypersurface S fields ¢,|s, with n = 0, 1,2, which can be expanded as

</>n‘$ = Z Z Z an,p@m lefn;fflmpp- (721)

p=|1—n| t=|1— n\m—fé

Observe that once agp.m,(0) and agppm(0) are given, aj,0,(0) is already deter-

mined by virtue of equation (7.16) as

(0+1)

2 (a2.ptm (0) + a0,p30m (0)).

a1,piem (0) =

In addition, observe that equations (7.17a)-(7.17b) are first order while equations
(7.18a)-(7.18b) are second order. Consequently, the initial data ag,..m(0) and
a2.p0m(0) are determined, by virtue of equations (7.17a)-(7.17b) restricted to S,
by the initial data agp¢.,(0) and agpem(0).

The following remark plays an important role for the subsequent discussion of the

electromagnetic NP constants:

Remark 56. For general p, ¢ and m, the free data is encoded in agype.,(0) and
a2p.0m(0). Nevertheless, for p = ¢, a direct substitution of the solution (7.19a)-
(7.19b) into equations (7.17a)-(7.17b) shows that C, = DJ, = 0 with p > 2,
—p < m < p. Consequently, the potentially divergent terms in expressions (7.19a)-
(7.19b) do not contribute to the electromagnetic field. Additionally, one has that

aO,p;p,mm) = a2,p;p,m(0> = Cpm = Dpm, (7.22)

with p > 2, —p < m < p. Observe that the initial data considered is generic and the
restriction (7.22) is a consequence of the interplay of the evolution and constraint
equations. In other words, this condition does not arise from restricting the class of

initial data.
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7.4 The massless spin-2 field equations in the
F-gauge

In Section 7.3 the Maxwell equations (in the F-gauge) were discussed, these cor-
respond in spinorial formalism to the spin-1 equations. In this section, a similar
analysis is performed for a spin-2 field propagating on the Minkowski spacetime.
As discussed in [98] the spin-2 equations on the Minkowski spacetime can be used
to describe the linearised gravitational field. In [98] these equations were written
in terms the lifts of the relevant structures to the extended bundle space. In this
section, following the spirit of this chapter, the equations will be discussed without
making use of these structures. In a similar way as in the electromagnetic case stud-
ied in Section 7.3, after rewriting the equations in terms of the & and 0 operators, a
general solution is obtained by expanding the fields in spin-weighted spherical har-
monics. The resulting equations for the coefficients of the expansion satisfy ordinary

differential equations which can be explicitly solved in terms of special functions.

7.4.1 The spin-2 equation

As discussed in [98], the linearised gravitational field over the Minkowski spacetime

can be described with the so-called massless spin-2 field equation

Valdapop = 0. (7.23)

Following an approach analogous to the one described in Section 7.3.1 for the electro-
magnetic field, it can be shown that equation (7.23) implies the following evolution

equations for the components of the spinor ¢papcp

(1+7)0-¢0 — pOppo — 041 + Wh1 = —2¢y, (7.24a)

Orpy — ;3+¢2 - ;8% — Wy = —9¢1, (7.24Db)
1 1 1 1

Or g — 53—¢1 - §3+¢3 - §w¢1 — 5@% =0, (7.24c)

0.05 — 50:01 — 5062 — @61 = 0y, (7.24d)

(1 - T)&T¢4 + p8p¢4 - 8_¢3 + wqbg = 2¢4, (7246)

and the constraint equations

1 1

70:91 = pOpp1 — 50462 + 50-¢o + Wy =0, (7.25a)
1 1 1 1

70:93 = pOyps = 50403 + 50-01 — s + ey =0, (7.25b)
1 1

TOr¢3 — pOpd3 — 50404 + 502 — WPy = 0, (7.25¢)

2 2
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where the five components ¢q, ¢1, @2, 3 and ¢y, given by

$o = papcpo’oPoCol b1 = papcpooPoCiP,

¢2 = Gapcpo’o?i i, ¢3 = apcpo PP,

¢1 = dapopt™1P19P,
have spin weight of 2, 1,0, —1, —2 respectively. Taking into account this observation
and equations (7.106) and (7.107) given in Appendix 7.10 one can rewrite (7.24a)-
(7.25¢) in terms of the & and d as done for the electromagnetic case. A direct

computation renders the following evolution equations

(1+7)0rdo — pdydo + 01 = —2¢y, (7.26a)
0.1 + 536 + 3002 = —61. (7.26b)
0.5 + 5061 + 1065 = 0 (7.26¢)
Or¢3 + ;6@ + ;8@ = 3, (7.26d)
(1= 7)0rha + pOyda + 03 = 26, (7.26¢)

and the constraint equations

1 1

7—aﬂél - pap(bl + §5¢2 - §6¢0 - 0, (727&)
1 1<

70: 93 — pOpps + 5003 — 501 =0, (7.27b)
1 1<

TaTgbg - pap¢3 + §6¢4 - 56@52 =0. (7270)

With the equations already written in this way, one can follow the discussion of

[98] for parametrising the solutions to equations (7.26a)-(7.27c).

7.4.2 The transport equations for the massless spin-2 field

on the cylinder at spatial infinity

One proceeds in analogous way as in the electromagnetic case and assumes that the
fields ¢,, with n =0, 1,2, 3,4, are smooth functions of 7 and p. Taking into account
equation (7.108) of Appendix 7.10, it is assumed one can express the components
of the linearised gravitational field in a Taylor-like expansion around p = 0. More

precisely, we make the Ansatz:

Assumption 2. In what follows it is assumed that the components of the spin-2
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field have the expansions

Z Z Z anpﬁm }/2 nl— 1mpp (728)

p=|2—n| l=|2— n|m—f€

where ay ppm R — C andn=0,..., 4.

Remark 57. Recalling that Yy .,y = 0 for I’ < |¢'| then one notices that the
lowest order in the expansion for ¢q is O(p®). As in the case of the spin-1 field,
one can consider more general expressions which are compatible with the spin-2
constraints which admit higher harmonics at every order. Some experimentation
reveals, however, that these more general expansions lead to divergent NP constants
—cf. Remark 52.

For the remaining part of this section, the p-th derivative respect to p of the
fields ¢,, with n = 0,1, 2, 3,4 evaluated at the cylinder I, is denoted using the same
notation as in equation (7.10). Then, by formally differentiating equations (7.26a)-

(7.27c) respect to p and evaluating at the cylinder I, one obtains the equations

(14 7)r 6" + 06 (p - 2)6 = 0, (7.292)
061" + ;%ép) + ;&bé”) +¢1” =0, (7.29b)
O, + ;&bg”) + ;%gp’ =0, (7.29¢)
8,3 + ;&é(”) + }5@5@) — P =0, (7.29d)
(1—7)8,0% + 6¢<P> +(p—2)oP =0, (7.29)
and
r0.01 + 5068 — 60 — o) =0 (7.30a)
70,05+ 506 — 360 — polf) = (7.300)
70,05+ 5067 — 6 — polf) = (7.300)

The last set of equations along with the expansion (7.28), in turn, imply the following

equations for a, p.,» with p > 2 and 2 < ¢ < p:

(14 7)ag + \a; — (p — 2)ap = 0, (7.31a)
a; — ;Alao + ;)\Oag +a, =0, (7.31b)
Qs — ;)\gal + ;)\Oag =0, (7.31c)

~ D+ Ehas—ay =0, (7.31d)

2 2
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(1 — T)a4 — )\1(1,3 + (p — 2)(1,4 = O, (7316)
and
. 1 1
Tay + 5)\0@2 + 5)\1610 —pa; =0, (7.32a)
1 1
TdQ + 5/\0@3 + 5)\0011 — pPaos = O, (732b)
) 1 1
Tas + 5)\1a4 + 5)\0a2 —pasz =0, (7.32¢)

where A\ = /({ —1)({+2) and \g = \/¢(¢{+ 1) and the labels p; ¢, m have been
suppressed for conciseness. From equations (7.31b)-(7.31d) and (7.32a)-(7.32¢c) one

obtains an algebraic system which can be written as

p+T —3(1—=7)X 0 -I [al-l [(1+7’)a0-|
1
—1(1+7)N P — (1 =7)No| |az| = 5)\1 0 . (7.33)
0 —2(1+ 7)Ao p—T as (1—7)ay

Solving the above system and substituting ag, a; and as written in terms of ag and

a4 into equations (7.31a) and (7.31e) one obtains

(I+71)ag+ (—(p—2)+ f(r,p,€))ao + g(1,p,{)as = 0, (7.34a)
(1=7)as+(—(p—2)+ f(—7,p,0))as + g(—7,p,0)ag = 0, (7.34b)

where

N = (1+7)(l—1)(0+ 2)[4]72 —dpT + (0 + 1)(7’2 —1)]
fp6) = dp(2p? — 0l + 1) + (- 1)(( + 2)72) ’
(1= 7)30(0 + 1)(¢ — 1)(£ +2)

dp(2p? — L+ 1)+ (L —1)({ +2)72)

g9(m,p,0) =
Together, the last equations entail the decoupled equations

(1—=7%)ao+ @ +2(p—D7)ag+ (p+O)(p— £+ 1)ag = 0, (7.35a)
(I—=7Hds+ (—4+2p—)7)as+ (p+O(p— L+ 1)ag =0.  (7.35b)

It can be verified that if ay(7) solves (7.35a) then ag(—7) solves equation (7.35b). As
in the electromagnetic case, these equations are Jacobi ordinary differential equa-

tions. For the solutions to these equations one has the following:
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Proposition 8. Forp >3, p > {, —¢ < m < { the solutions to equations (7.35a)-
(7.35b) are polynomial. For p >3, p=4{, —p < m < p one has

1—7\P"2 /14 7\P2 . a ds
a‘O,p;p,m<T> = ( 2 ) < 2 ) <Cp7m + Cp,m/o (1 + S)p—l(l _ S)p+3) )
(7.36a)

L+7\PP2 1 =1\ 2 s 7 ds
@4,p;p,m(7) = ( 9 ) < 2 ) <Dp7m + Dp,m/O (1 _ S)p—l(l + 5)p+3) )
(7.36b)

where Cp ., C¥ and Dy, ,, D

pm are integration constants.

p,m

Remark 58. Notice that for non-vanishing Cy,, and Dy, the above solution di-
verges logarithmically near 7 = 1. The expressions of Proposition 8 are solutions
to the Jacobi equations. To obtain a solution to the original system it is necessary
to evaluate these expressions in the coupled system (7.34a)-(7.34b). In turn, this

shows that the integration constants are not independent of each other.

Remark 59. The convergence of the expansions (7.28) follows from the results

given in [98].

7.4.3 Initial data for the spin-2 equations

Consistent with equations (7.28) one considers on the initial hypersurface S fields

bnls, with n = 0,1,2,3,4 which can be expanded as

¢”‘5 - Z Z Z anpfm Yan;Zflmpp- (7'37)

p=|2—n| £=|2— n\m—fﬁ

Observe that, by virtue of equation (7.33), the initial data aj p.¢.m(0), @2p0.m(0)
and as .., (0) are determined by ag p ¢, (0) and aqyp,,(0). In addition, notice that,
equations (7.34a)-(7.34b) are first order while equations (7.35a)-(7.35b) are second
order. Therefore, the initial data @oypem(0) and Gqpe.,(0) are determined, as a
consequence of equations (7.34a)-(7.34b) restricted to S, by the initial data ag , ¢m(0)
and aypem(0). The following remarks plays an important role for the subsequent

discussion of the spin-2 NP constants:

Remark 60. For general p, ¢ and m, the free initial data is encoded in ag ., (0) and
a4,p0.m(0). However, for p = ¢, a direct substitution of the solution (7.36a)-(7.36b)
into equations (7.34a)-(7.34b) shows that C, = D7 and Cp,, = Dy In other
words, for p > 3, —p < m < p,

p,m

a0, pp.m(0) = a47p,p,m(0)- (7.38)
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Remark 61. In contrast with the electromagnetic case, in principle, initial data
with C, . = DJ,, # 0, is admissible and consequently, for generic initial data
the appearance of logarithmic singularities is expected. Nevertheless, for the com-
putation of the NP constants C;,, = Dy, = 0 will be assumed —otherwise the

expressions defining the NP constants diverge —see Section 7.7.

Remark 62. The solutions to the constraint equations correspond, in tensor frame

notation to solutions to the equation
Digy; =0,

where D; denotes the covariant Levi-Civita derivative of the metric h;; intrinsic to
the initial hypersurface S and ¢;; corresponds to the tensorial counterpart of the
field ¢papcp. In the conformally flat setting, the solutions to these equations are
known —see [42]. Moreover, in the latter reference, a general parametrisation to the
solutions to this equation was given. Consequently, one could, in principle, rewrite

the initial data considered in this section using this parametrisation.

7.5 The NP-gauge

In this section, an adapted frame satisfying the NP-gauge conditions and Bondi co-
ordinates are constructed for the conformal extension (M, gr) introduced in Section
7.2.1. For convenience of the reader, a general discussion of the NP-gauge conditions

and the construction of Bondi coordinates is provided in the first part of this section.

7.5.1 The NP-gauge conditions and Bondi coordinates

This section provides a general discussion of the NP-gauge conditions and the con-
struction of Bondi coordinates. A more comprehensive discussion of these gauge
conditions and their consequences can be found in [12, 13, 81].

Let (M, g, =) denote a conformal extension of an asymptotically simple space-
time (/\;l, g) where g satisfies the vacuum Einstein field equations with vanishing
Cosmological constant. It is a general result in the theory of asymptotics that for
vacuum spacetimes with vanishing Cosmological constant the conformal boundary
&, with locus given by Z = 0, consists of two disjoint null hypersurfaces . and .~
each one having the topology of R x S>—see [12, 13]. In this section the discussion
will be particularised to .#*. Nevertheless, the time dual results and construc-
tions can be formulated for .~ in an analogous manner. To simplify the notation,
the symbol ~ will be used to denote equality at ., e.g. if w is a scalar field on
M that vanishes at . one writes w ~ 0. Let {€44/} denote a frame satisfying
g(€éaa,epp) = €apeap in a neighbourhood YU C M of #+. Additionally, let

[ 448 ¢ denote the reduced connection coefficients of the Levi-Civita connection of
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g defined with respect to €44:. The frame €44/ is an adapted frame at .#* if the

following conditions hold:

(i) The vector €44/ is tangent to and parallely propagated along £ i.e.,

Vn/éu/ ~ (.

(ii) On U there exists a smooth function u inducing an affine parameter on the
null generators of ., namely €;1/(u) ~ 1. The vector égo is then defined as
€oor = g(du, -) so that it is tangent to the null generators of the hypersurfaces

transverse to .# defined by
NuO = {p € u | U(p) = u0}7

with constant wue.

(iii) The frame {€4.4/} is tangent to the cuts C,, = N,, N # T ~ S? and parallely
propagated along N, , namely

VOO’éAA/ =0 on Nuo-

Conditions (i)-(iii) can be encoded in the following requirements on the reduced

connection coefficients I's arcp:

Proposition 9 (adapted frame at ). Let (M, g,=) be a conformal extension
of an asymptotically simple spacetime (M, g) with vanishing Cosmological constant.
On a neighbourhood U C M of F* it is always possible to find a g-null frame
{€aa'} for which

011 ~ 0, 1111 ~ 0, (7.39a)

f‘1000 = f‘1’0'0’0'7 f‘11'00 = f‘1/00'1' + f‘01/01, fOO’AB =0 on U. (7-39b)

The conformal freedom of the setting, i.e. the fact that instead of (M, g, =) one

can consider (M', ¢g’,=') with
g — b%g, 2=z =0z,

can be exploited to obtain an improved frame €', 4, leading to further simplifications
to the conditions given in Proposition 9. If in addition, one introduces an arbitrary

function s constant along the generators of 4 and sets
€y ~ 0 %xéqy, on A (7.40)

one is lead to define an affine parameter u'(u) such that e}, is parallely propagated

and €},,(v') = 1. This in turn implies du//du = k7'6* which, integrating along the
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null generators of .# 7, renders

1 u
o' (u) = —/ 0%(s)ds + ., (7.41)
7 Ju,

where the integration constants u, and v/ identify a fiduciary cut C, = C,,. Observ-
ing that equation (7.40) also holds on C,, one prescribes the remaining part of the

frame on C, as
Ly = e Ly =0""te Ly =07t C 7.42
600/ =z 600/, 601/ — 6017 610/ — 610/ on * . ( . )

Observe that, using equations (7.40) and (7.42), it can be verified that g(€/y 4/, €5p/) =
eaaepp on C,. Using these expressions, one can exploit the freedom in choosing
2 and 0 along with the conformal transformation laws for the relevant fields (con-
nection coefficients and curvature spinors) and a general rotation of eg,, and €’y of
the form

/ ic s / -1
601/ ’_) e C601/, 810/ = e 0610/7 (743)

where ¢ is a scalar function such that ¢ = 0 at C,, to obtain a improved frame €'y 4

that satisfies the following conditions:

Proposition 10 (NP-gauge conditions at 7). Let (M,g) be an asymptoti-
cally simple spacetime. Locally, it is always possible to find a conformal extension
(M',g',Z") for which there exist a g'-null frame {€'y o/} such that the reduced spin
connection coefficients of the Levi-Civita connection of g’ with respect to €'y 4/ satisfy

the gauge conditions:

oo e =0, IMyee >0, (7.44a)
I'o111 =0, Mooo = 0, 1011 =0, (7.44b)
001 + Toror = 0. (7.44c)

Moreover, for the curvature one has
R ~0, o, ~ 0, Phy ~ 0. (7.44d)

where R' and @'y o/ are, respectively, the Ricci scalar and the components (with
respect to €4 4:) of the trace-free Ricci spinor of the Levi-Civita connection of g'.

Additionally, egy (Z') is constant on S 7.

A frame €4 4, satisfying the conditions of Proposition 10 will be said to be a NP-
frame. The proof of this proposition can be found in [81] and [13]. The proof, in
addition gives a procedure to determine 6 and s by prescribing data on C, which
is extended along .# solving ordinary differential equations. Observing equations
(7.40), (7.42) and (7.43) one concludes that in general, frames €44/ and €’y 4, of

Propositions 9 and 10 respectively, are related via a conformal transformation g’ =
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6?g and a Lorentz transformation encoded in (s, ¢) so that
! — « / -1 / leg—1 = / —lep—1
ey ~0 23611/, oy = X Yéoo, €o = e0Leéo, €1y =¢€ lepg=leo on U.

The function s¢ corresponds a boost while ¢ encodes a spin.

In the discussion of the NP-gauge, is customary to complete the construction
introducing Bondi coordinates as follows: choose an arbitrary coordinate system
Y® with a = 2,3 on the cut C, ~ S?. Extend this coordinate system to £+ so
that they remain constant along its null generators. Recalling that ', as defined
in equation (7.41), corresponds to an affine parameter along the generators of .4
fixed by the condition e}, (u’) = 1, is then natural to use as an affine parameter
on the hypersurfaces N,, transverse to .# 1, a parameter 1’ fixed by the conditions
eoo (') = 1 and " ~ 0. Using 7’ and u' defined as previously described, (', ', %)

defines a Bondi coordinate system.

7.5.2 The NP frame and Bondi coordinates for the

conformal extension (/\/l,gz)

To implement the procedure described in Section 7.5.1 for the conformal extension
(M, gr) it is convenient to introduce null coordinates u = t — p and v = t + p.
Observe that the unphysical null coordinates u and v are related to the physical
null coordinates @ =t — pand ¥ =t + j via u = —1/% and v = —1/9. In these
coordinates, the metric g; and conformal factor = read

1
gr = (du®dv+dv®du)—1(v—u)20, = = uv.

DN | —

In this representation, future null infinity #* is located at v = 0 while past null
infinity .#~ is located at u = 0. Additionally, a g;-null frame is given by
V2 V2

8-1—7 €10 =
V—Uu V—Uu

oo = V20, é1r = V20, €01 = o_.

A direct computation using the Cartan structure equations, one can verify that the
only non-zero spin coefficients are

- \/§w - \/55

o1 = —7 ) Lori0 = — )
2 v—u 2 v—u

V2

v—u

1—‘01’11 = FIO’OO = -

A direct inspection reveals that the frame {€44/} does satisfy all the conditions of
Proposition 10. In order to construct a frame satisfying the conditions defining the
NP gauge one has to introduce a conformal rescaling a Lorentz transformation as

follows: consider a conformal rescaling

g =g, (7.45)
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and the following g’-null frame,
8,00 = %_1é00/, 8/11/ = %9_2é11/, 861/ = 9_1€1Cé01/, 6/10/ = 9_16_lcé10/. (746)

Some experimentation reveals that setting

2 4u?

v—u’ (v —u)?’

0 —

one obtains the non-zero spin coefficients

, V2uv , V2_

!
o = —— g = ——— 0 I'oiq0 = —70. 7.47
110 = 0 10’10 ) 01’10 1 ( )

“[5

In addition, observe that I};,15 =~ 0. A further computation, using the NP-equations

as given in [12] and equation (7.102) of Appendix 7.9, shows that
/ / / / / / 1
R =0, Poo = Po1 = Pop = P32 =0, (I)11:§

An inspection of the conditions of Proposition 10 shows that €’4 4, constitutes a frame
in the NP-gauge. To round up the discussion one can introduce Bondi coordinates

(r',u’) fixed by the requirements
eoo (1) =1, e (u) =1, r' ~0.

A direct computation shows that

A (w1l
V2\u—v/’ N ’

In these coordinates the frame €', 4, reads

Qm, ey = ~-8_. (7.48)

1
/ !/ 12 /
600/ — 6T/, 611/ T 87‘/ au/, 601/ - 2

T2

o[

Observe that the Bondi coordinates (r’, u') are related to the physical coordinates p
and u, as introduced in Section 7.2.1, through
o2
V25 V2
For future reference, notice that in the physical coordinates (g, %) the NP-frame
€'y 4 1s given by

V2

/ J—
78+7 €o1r =

V2

ehy = V20705 €y = V208 — V285 ey = 50 (749)
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7.5.3 Relating the NP-gauge to the F-gauge

In general, a frame in the F-gauge and the NP-gauge will not coincide since, while the
former is based on a Cauchy hypersurface, the latter is adapted to .# —see Figure
7.1. However, as gc and g’ are conformally related, g’ = x2gc, then the frames e 4 4/

and €’y 4, are related through a conformal rescaling and a Lorentz transformation
e/AA’ = K_lABAAB/A/BBB/. (750)

To determine explicitly x and A“%p observe that the frame é44/, introduced in

Section 7.5.2, written in the F-coordinates, reads

€og’ = 2[)((1—T>8T+p8p), €é111 = 2p((1+7’)87—p8p), €o1 = %84_, €10/ — %8_
In addition, one has
1
0=—, x=(1-71)2 (7.51)
p
Then, from a direct comparison of equation (7.4) and (7.45) one concludes that
g =gc. (7.52)

Moreover, using equations (7.46) and (7.51) the NP frame {€4 4.} in the F-coordinates

reads

/ \/§ 1 / 2
b = g (=70 +09,). e = g1 =14 710 — ).

2
\2f3+, ey =228

\)

, JE—
€1 =

w%wﬂ

Comparing the last expressions for €/, 4, and e 4+ as given in equations (7.5a)-(7.5b)

one concludes that

1

A=
ORIy

AY =p21-7), k=1 (7.53)

7.6 The electromagnetic NP constants

Consider the Minkowski spacetime (/\;l,ﬁ) described through the physical coordi-

nates (u, p) as defined in Sections 7.2.1 and 7.5.2. In these coordinates one has

Hn=di®di+di®dj+djpedi— jo.
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From equations (7.1) and (7.45) one has that g’ = #>Z%n and using equations (7.2),
(7.3) and (7.51) one concludes that

=

g == (7.54)

2

™

. . /
Let € 44, with €o? = 04 and €14 = /4, denote a spin dyad so that e’ 4444 =

¢ a2¢' 4" constitutes the NP-frame given in equation (7.49). Let {64,74} denote a

spin dyad denoted by €44 and defined via
ot = po?, A =7 (7.55)

Notice that, by virtue of equation (7.54), the spin dyad é4* is normalised respect
to 1. To introduce the electromagnetic NP constants as defined in [91] consider the

physical Maxwell spinor ¢4p satisfying
Valoap =0,

where V 44 denotes the Levi-Civita connection respect to 7. The components the

physical Maxwell spinor respect to the spin dyad é4* will be denoted, as usual, by
G0 = Ppapo?oP, o1 = PapdtiP, g0 = Papiti®.

Assumption 3. Following [91], the gz~50 component is assumed to have an expansion

5 N In 1
do=_ pff:n + o(ﬁ3+N), (7.56)

n=0

where the coefficients gz;g do not depend on p.

The electromagnetic NP constants are defined through the following integrals over

cuts C of null infinity:
F:{k = / Yl;n+1,mq~58+1d57
c

where n, m € Z with n > 0, |m| < n + 1 and dS denotes the area element respect
to o. In flat space, F) are absolutely conserved in the sense that their value is
independent of the cut C on which they are evaluated —see [91]. From these, only
those given by n = 0 and m = —1,0,1 are conserved in the general non-linear

Einstein Maxwell theory —see [91].

7.6.1 Translation to the F-gauge

In view of equation (7.54), one has that, as a consequence of the standard conformal

transformation law for the spin-1 equation —see [12], the spinor ¢/, 5, satisfying

VA =0,
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where V', ,, is the Levi-Civita connection of g', is related to ¢4p via
$ap = POAB- (7.57)
Therefore, using equations (7.56), (7.55) and (7.57), one obtains
X ES)
= N\
where ¢f, = ¢/,5040'5. From equation (7.49), one has that ey, = /25?9, and
consequently

1 -
5 (65) = G5+ o(5™)

The repeated application of eg, to the above relation shows that in general

Ly 0, (i+1)! ¢ 1
=75 €00’ = (—1)7q! ¢f > (1) . < )v
2‘]/2 €00 (¢O) ( ) q ¢0 + i:q+1( ) (Z —q + 1)[ p"'lfq +o ﬁqu

where 600/(%) denotes ¢ consecutive applications of e, to ¢g. Thus, the quantities

F" can be written as

n_ (=D
m_(n+1)|2n+1/2

/ Yi n+1m eon+1 (¢0) (758)

Observe that the constants F' in the previous equation are expressed in terms of
g’-associated quantities. In order to obtain a general expression for the electromag-
netic NP quantities in the F-gauge one has to rewrite expression (7.58) in terms of
gco-related quantities. As discussed before, the frames eaa: and €4 4, are related
through a conformal rescaling and a Lorentz transformation as given in equation
(7.50). For the sake of generality, the first part of the discussion will be carried out

for general x and A4p

Remark 63. In [91] it is shown that the Newman-Penrose constants at .+ of a
purely outgoing field propagating on Minkowksi spacetime vanish. A more recent
discussion of this phenomenon was given in [99]. As discussed in [99], if ¢3¢ is a

purely retarded field then it can be expressed as

out (£—2) bﬂm(a)
_KY Z Yaump =2 (95 — 205)"2 s (7.59)

=2 m=—/

where b“" (@) are smooth functions which depend only on % and K is an unimportant
numerical constant. A short argument given in Proposition 3 of [99] shows that
the NP constants associated to the latter field vanish —see also [91]. In order to

compare (7.59) with the formal expansion for gz~50 implied by Assumption 2 observe
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that, recalling that @ = ¢ — j, equations in (7.3) render

p ptu

= —, = —— 7.60
o7 M (760)

In addition, notice that the discussion of Section 7.5 implies that
ng — 1573(A00>4¢0. (761)

Therefore, using equations (7.60), (7.61) and (7.53) one sees that the formal expan-
sions (7.28) imply

7 PP A & You—1m PP p+u
¢0 - Z Z ; ‘ p(ﬁ + Qﬁ)p Q0 .p;t,m ( p~ ) s (762)

u+2p 1

where that ag .0 is the solution to the differential equation (7.18a). These solutions
can be written explicitly in terms of Jacobi polynomials —see [96]. Expanding the
first few terms in expressions (7.62) and (7.59) one can check that by Assumption 2
does not imply purely retarded fields.

Remark 64. The time dual of Remark 63 follows mutatis mutandis: the NP con-
stants on .~ of a purely the advanced field @” vanish. The formal expansions of

Assumption 2 do not imply purely advanced fields.

Explicit computation of the first three constants

Let e4?, with €o? = 0 and ;4 = ¢*, denote a spin dyad normalised respect to g¢
as defined in Section 7.3. As a consequence of equation (7.50), the spin dyads €%

and € 44, giving rise to €44 and €/4 4/, are related via
€4t = KT1V2AB 4ep?. (7.63)
Additionally, the spinor field ¢ 4p, satisfying
Va'tdap =0,
where V 44/ is the Levi-Civita connection respect to g¢, is related to ¢4 via
¢/AB = ”_1¢AB-

Therefore, one has that
¢y =k 2A%oAPodcp,

where ¢cp = ec®ep”dcp. Using the Leibniz rule one obtains
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€oo(P0) = R_Q(ACOADOGBO/WCD) +2¢0cpA%0egy (AP)
— 257 A% AP gdeey (1)) (7.64)
Notice that, in the above expression, all the quantities except for the frame
derivative ep, are go-related quantities, namely, given in the F-gauge and the F-

coordinates. Using equation (7.50) one can expand expression (7.64). This leads to

the following expression for the conserved quantities:

F,?L = —1/}71;1,m/<_3<ACOAD0AB0/_\BIO’€BB’(¢CD)
V2 Je

+ 250epA 0y (AP) — 2A0C0APodenep(r) )dS.  (7.65)
for m = —1,0, 1. These correspond to the three electromagnetic NP quantities that
remain conserved in the non-linear Einstein Maxwell theory. The last expression
represents the electromagnetic counterpart of the gravitational NP quantities in the
F-gauge as reported in [81] in equation (III.5). The last expression is general can
be used, in principle, to find the electromagnetic NP constants in the F-gauge in
the non-linear case. Nevertheless, particularising the discussion to the case analysed

in this chapter simplifies the expressions considerably. To verify this, observe that,

using the results of Section 7.5.3, equation (7.64) reduces to

oo (90) = (M) (€00 (¢0)) + 200(Ao°)€pg (Aa?). (7.66)

Using equations (7.5a) and (7.53) one observes that

€0 (Mo”) = \ZF(AOOY’, (7.67)

and more generally

eln) (M) = <\f> (2n — 1)I1(A%)> . (7.68)

Using equation (7.67) one gets

el () = (Aa")(ean () + %00 (7.69)

In order to write explicitly the first term of the last expression one uses equation
(7.5a) and obtains

1
eoor(60) = ﬁ((l — )8,60 + pdyd0 ). (7.70)
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Substituting equations (7.53) and (7.70) into equation (7.69) renders
/ / 1 -2 —4
oo (04) = 7507 (1=7) (1= 7)8:00 + pByn + o).

Using the last expression, the quantities F as determined in equation (7.58) are

rewritten as

p—0
T—1

F7?1 = lim < — ;/SQ E;l,mﬂiQ(l — T)*4((1 — 7')87-¢0 + p8p¢0 -+ ¢0)d8> . (771)

Substituting the expansion (7.9) for ¢, into equation (7.71) and using the orthogo-

nality relation
/2 Y;;Z’,m/ _sgé,m = 5@,5/5m,m/7 (772)
S

one obtains

. 1 . .
Fy, = lim ( T 9% 9l (1—=7) 4((1 — T)ao,22,m + 3ao,2;2,m)>- (7.73)

T—1

Using the solution for ag .. as given in equation (7.19a) and the discussion of
the initial data of Section 7.3.3 showing that C’;fm = 0, one gets

FY = !

- Oy 74
m 2><2!><1(f302’m (7.74)

where (Y, is the integration constant of Proposition 7.

Remark 65. As discussed in Section 7.3.3 the condition C},, = 0 with p > 2,
—p < m < p, does not represent a restriction on the class of initial data but arises
as a necessary condition ensuring that the solutions (7.19a)-(7.19b) to the Jacobi
equation correspond to a solution to the original equations (7.17a)-(7.17b). In the
spin-2 case the analogous condition, in contrast, does represent a restriction on the

class of initial data.

Proceeding in an analogous way, one can compute the next set of constants in the

hierarchy, i.e., Fl. A direct computation using equations (7.69) and (7.67) renders

3(65) = (86")" (e (00) + 2200 (60) + ). (1.5

Using expression (7.5a) one has

) (¢0) = ;((1—T)233¢0+2p(1—T)aTap¢o+an§¢o—(1—7)37¢0+,oap¢0). (7.76)

Substituting equations, (7.53), (7.70) and (7.76) into (7.75) renders
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eqa(04) = 5p (1 — 1) (1= 7)2020 + 20(1 — 1)8,8,00 + 18260

21— 7)8r 0 + 4By + 200 ).

Using the last expression the integral of equation (7.58) reads

1 _ 1 1 \/ -3 —6 292
= i (8 [, Tramp (1= )7 ((1 = 720200 + 2(1 ~ 1).8,00

+ 020500 + 2(1 — 7)o + 4pByo + 2¢o)dS> - (7.77)

Exploiting the orthogonality conditions (7.72) one gets

. 1 _ } )
Fnll = lim <8 <3l (1 — 7‘) 6((1 — 7‘)2@073;377” + 6(1 — T)a073;37m + 20@0,3;3,m)> . (778)

T—1

Consequently, using equation (7.19a) with C},, = 0 —see Remark 65, one obtains

1
Fl— — —
mT 8% 3l x32

where (s, is the integration constant of Proposition 7. It is instructive to find
explicitly one order more in this hierarchy —namely F?2. A computation using
equations (7.75) and (7.67) renders

6(3/ (%) ( )8 (eoo'(%) + 3\/_600/(%) *600’@)0) + 3\/_¢0> (7.79)

Applying ego to equation (7.76) one obtains

egy (d0) = 2\/_<(1 — 7)*8%p0 + 20 + 3p(1 — 7)28,8%0
+3p%(1 — 7)828, ¢y — 3(1 — 7)28%¢y + 3p*02¢y

(1 =7)8 0 + pBydy ). (7.80)
Using the last expression along with equations (7.53), (7.70), (7.76) one gets
/ I _
o) = 51— 1) ((1= 10%en) + 4 B3(en) + 301 — 71830 ()

+3p(1 = 7)28,02(d0) + 908 (¢0) + 3(1 — 7)?82(¢ho) + 12p(1 — 7)8,0;(¢0)
+18p8,(¢0) + 6(1 — 1) () + 66 ).

Consequently, the quantities F as given in equation (7.58) read
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P2 = lim <48 [ Tasmp™t (0= 17 ((1 = 7)*0%(00) + 1°83(60)
3% (1=7)020, (60) +3p(1—7)°9,02(90)+9p82(90) +3(1~7)*02(60)

+12p(1 = 7)8,, (o) + 1898, (69) + 6(1 — )8, (60) + 6¢0>d5>- (7.81)

Exploiting the orthogonality condition (7.72) the last expression simplifies to

1 R .
Fr = l—n <48><4'(1 - T)_8<(1 —7)° @oaam + 15(1 — 7')2@0,4;4,m

+90(1 — 7)o, 41 + 210a074;4,m)> . (7.82)
Finally, using equation (7.19a) with C;¥, = 0 —see Remark 65, one obtains

3
) . o )
m A8 w 4l x 128

where C4,, is the integration constant of Proposition 7.

The general case

The previous discussion suggests that, in principle, it should be possible to obtain
a general formula for F. Revisiting the calculation of F°, F! and F? one can
obtain the following results concerning the overall structure of the electromagnetic

NP constants in flat space:

Lemma 28. For any integer n > 1
2(nt+1) 0
00' (%) (AO ) ZAieOO'(%)
i=1

for some coefficients A; independent of p and T.

Proof. To prove this result one proceeds by induction. Equations (7.69), (7.75) and
(7.79) already show that the result is valid for n = 1, n = 2 and n = 3. This

constitutes the basis of induction. Now, assume that
n) s 1 0 2An+
€0’ (09) = (Ao Z A; 800'
then, applying ego to the last expression one has

i 2(n+1) n ; 2n+1 n ;
e (00 = (M%) Y A (e (G +2(n 1) (A0°) " (ehya®) - Asel(60).
=1

i=1
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Using equations (7.50), (7.53) and (7.67) one obtains

" Dy V2 ) B
egnV(9h) = (A0°) ZAZ b 00+ 1)(A°) Y Al (o).
=1

One can rearrange the last expression into
og/+1)(¢o> ( 0>2(n+2)1§A 600/ (¢0),
where A; = A; and A; = (n+1)A + A;_q for ¢ > 2. O
Lemma 29. For any integer n > 1
o) = 3 Bup(l — 10000,

i+j=k
k=1

for some coefficients B;; independent of p and 7.

Proof. As in the proof of Lemma 28, one argues inductively. Equations (7.70), (7.76)

and (7.80) serve as the basis of induction. Assume that

o) = 3 Byl —ryaPole,
l-‘,];j_lk‘

then, applying egy to the last expression renders

k=n
eby " (00) = 3 By(p(1 - 7)eon (8789 60) + (809 du)eqn (p'(1 — 7)7) ).
z;gzzlk
Using that
eoo (p'(1 = 7)) = \}ﬁ(i + )P (1 — 7Y
and )
eon (90900) = 5 (1 =)0 00" 6, + pof 06 ).
one obtains
k=n
eO%J,“l (Go)= 3 \/_ ”( i(1— )J+13 AU gy 1 piti(1 — T)Jaf()zﬂ)ag)%
H-J k

i+ )P (1= )88 gy ).
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The last expression can be rearranged as

k=n-+1

edo ' (00) = 3 Bup'(1=7)/878 gy,
i+j=Fk
k=1
for some coefficients B;; which depend only on By, i and j. O

Remark 66. In the following the label + is added to the constants F** to remind
that the quantities correspond to the NP constants at .# .

Proposition 11. If the electromagnetic constants F'* at #T are finite, then F™™*

depends only on the initial datum ao.pn42n4+2.m(0) —that is, one has
't = Q% (m,n)Chiam,

where QT (m,n) is a numerical coefficient and C, 19, is the integration constant of

Proposition 7.
Proof. Using equation (7.53) and the results from Lemmas 28 and 29 one has that

k=q

oy (06) = p VA=) IR Y By (1= 7)'9,70 0n,
q=1 i+j=k
k=1

for some coefficients £;; independent of p and 7. Using the expansion for ¢ given

in equation (7.9) one has
eoo (¢) = p "L —7) D RT ST SN S { Eip! (1= 1)V

809 (0 ao pier (7)) }

Noticing that

Béi)aij)(PpCLO,p;é’,m’(T)) - af()i)(pp)aﬁj)(a&p;é’,m’ (7)), (7.83)
and using that
wp_  @tDY

one finds

p

n k=q oo o ‘
:)(g’)(ﬁbo) (1- T)_2(n+1) Z Z Z Z Z { ijp Pp (o +1) ( —7)
q=1 Z—};J::lk p=10=1m'=—"¢'
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le;é’—l,mafgj) (@0,pstr;m (7)) } )

where E;;, = E;j(p+1)/(p — ¢+ 1)!. Notice that, the terms with p < n+ 1 diverge
when p — 0 while the terms with p > n+ 1 vanish when p — 0. Integrating the last

expression with Y}.,,, and using the the orthogonality condition (7.72) one obtains

/Y1nme00,(¢0)d5 (1—7)720+D En: i iz Z {Ez-jppp(nﬂm_r)j

kpilﬂ’ 1m/=—¢
68/ ln(sm ma( )<a0,p5/ '( ))}

Noticing that only the terms with ¢ = n + 1 and m = m’ contribute to the sum
and recalling that ¢ < p one realises that all the potentially diverging terms with

p < n+ 1 vanish. Taking this into account this observation one concludes that

n k=q

lim [ Vel (00)dS = (1=r) 203 57 Bia(1=7)09 (@0t 11,n(7).
q=1 i+j=k
k=1

Taking into account the expression for the electromagnetic NP quantities F)” in the
F-gauge as given in equation (7.58), consistently with this definition, one replaces n

with n + 1 to obtain

n+1 k=q

Frt = lim (1= 1) 20 S S By (1 789 (g usmean(r)]. (7.85)
qg=1 l-};j_lk)

Therefore, if F) is finite then it can only depend on the initial datum ag.;,+2,5n-+2.m(0).

Moreover, since Cy\5,,, = 0. One concludes that
F;rLL+ = Q+(ma n)Cn+2,m7

where Q7 (m,n) is a numerical coefficient and C,,14,, is the integration constant of

Proposition 7. O

Remark 67. Notice that to show that F'* is always finite then one would need to
analyse the limit given in equation (7.85). This, however, requires a detailed analysis
of the coefficients £;;, which in addition would determine explicitly the numerical
coefficient QT (m,n). The latter requires a lengthy computation which will not be

pursued here.
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7.6.2 The constants at .¥~

The analysis carried out in Sections 7.5 and 7.6 for the electromagnetic constants
defined at £, can be performed in a completely analogous way for .# . To do
so, consider a formal replacement 7 — —7 and consistently 8, — —8,. Upon this
formal replacement the roles of £ = egp and m = eyy: as defined in (7.5a) and ¢,
and ¢, are essentially interchanged. Then, following the discussion of Sections 7.5.3

and 7.6, one obtains mutatis mutandis the time dual of Proposition 11:

Proposition 12. If the electromagnetic constants F'~ at .~ are finite, then F)'~

depends only on the initial datum as.ni2n4+2.m(0). Moreover,
anm_ = Q_(mv n)Dn—i-?,mv

where Q~(m,n) is a numerical coefficient and D, 12, is the integration constant of

Proposition 7.

Finally, recalling the results of Propositions 11 and 12 and the discussion of the

initial data given in Section 7.3.3 one obtains the following:

Theorem 5. If the electromagnetic NP constants F'* and F)~ at % and I,

are finite, then, up to a numerical factor Q*(m,n)/Q~ (m,n), coincide.

Remark 68. Observe that the conclusion of Theorem 5, which at first instance
would seem to hold only for time-symmetric data, holds for generic initial data and
is a consequence of the interplay between the evolution and constraint equations as

discussed in Section 7.3.3.

Remark 69. The computations at order n = 0, 1,2 given in Section 7.6.1 suggest
that in fact Q1 (m,n) = Q~(m,n). Nevertheless, explicitly determining these factors

require a lengthy computation which will not be pursued here.

7.7 The NP constants for the massless spin-2 field

In this section an analogous analysis to that given in Section 7.6 is performed for the
case of the spin-2 massless field. The same notation as the one introduced in Section
7.6 will be used. In particular, the spin dyads €44, €44 and e4* associated to 7,
g’ and g¢ will be employed. To introduce the gravitational NP constants originally
introduced in [91], let gzgo, gz~51, 952, 953 and 954 denote the components of the spin-2

massless field qg aop respect to €4 The spin-2 equation reads

Valéapcp = 0. (7.86)
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Assumption 4. Following [91], the component ¢ is assumed to have the expansion

N N in 1
do=3" ﬁfﬁn ¥ 0<ﬁ5+N>, (7.87)

n=0

where the coefficients ggg do not depend on p.

As already mentioned, the field &ABCD provides a description of the linearised
gravitational field over the Minkowski spacetime. In the full non-linear theory,
the linear field gg apcp is replaced by the Weyl spinor ¥ gcp and the analogue of
equation (7.86) encodes the second Bianchi identity in vacuum —see [91]. The spin-2

NP quantities are defined through the following integrals over cuts C of null infinity:
G = [ Vansamditds,
c

where n,m € Z with n > 0, |m| < n + 2 and dS denotes the area element respect
to o. The NP constants G, are absolutely conserved in the sense that their value

is independent on the cut C on which they are evaluated.

Remark 70. In particular, the constants G°, are also conserved in the full non-
linear case of the gravitational field where ¢ is replaced by the component W, of
the Weyl spinor ¥ 4pcp —see [91]. These are the only constants of the hierarchy

which are generically inherited in the non-linear case.

7.7.1 Translation to the F-gauge

An expression for the gravitational NP constants in the F-gauge has been given in
Section III of [81]. In order to provide a self-contained discussion and for the ease
of comparison with the analysis made in Section 7.6 the analogue of Formula (IIL.5)
of [81] will be derived in accordance with the notation and conventions used in this
chapter. In view of equation (7.54), one has that, as a consequence of the standard
conformal transformation law for the spin-2 equation —see [12], the spinor ¢/, 5 p,
satisfying

1A _
VA/ ¢ABCD - 07

where V', 4, is the Levi-Civita connection of g’, is related to ¢apcp via

$apop = PPABOD- (7.88)

Therefore, using equations (7.87),(7.55) and (7.88), one obtains

N
o 1

Cb/: T+0<T),
’ ngop" pN
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where ¢) = ¢'45cp0’10P0’“0'P. Using the last expansion and recalling that ey, =

\/§ﬁ28ﬁ one obtains, after consecutive applications of eg/, the expression
(_1)n+1

no= Y, (n+1)
o = (05 D)2 /6Y2m+27m600/ (¢)dS. (7.89)

To derive an expression for the spin-2 NP constants in the F-gauge one recalls
the relation between the g’ and g representations and their associated spin dyads
encoded in equation (7.63). Once again, as a consequence of the conformal trans-
formation laws for the spin-2 equation one has that the spinor field ¢ 4pcp related

to ¢'4pcp through

—1
Papep = K daBcp;

satisfies

Valéapep =0,

where V 44 represents the Levi-Civita connection respect to go. Additionally, one
has that
oy = kA GABGAC AP b aBeD,

_ _A__B, C, D
where papcp = €a’ep ece€p” Gapcp -

Explicit computation of the first constant

Using equation (7.89) and the Leibniz rule one obtains the analogue of Equation
(IIL.5) of [81] written in accordance with the notation and conventions used in this

thesis

1 _ -
G =~ / Voo~ (A%APoACOAP o (ARG AP wepp (6 ancn)
- 3¢ABCD360,(/<;)) + 4/<;AA0ABoAco¢ABCD6/00f(AD0)>d5~ (7.90)

Particularising the discussion to the case of the Minkowski spacetime, simplifies
the expressions considerably. To see this, observe that, using the results of Section
7.5.3 and equation (7.67) one has that

€00 (60) = (80°)° (€00 (00) + V209). (7.91)
A direct computation using equation (7.5a) and (7.69) renders
/ / \/§ 1 1
oo (%0) = p3<1_7_)6<2(1 = T)8¢o + 5p8pdo + (bo).

Using the last expression, the quantities G°, as determined in equation (7.89) are
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rewritten as

p—0
T—1

G?n = lim ( — ;/ )72;2,mp_3(1 — 7')_6((1 — 7-)379250 + papgbo + 2¢0>d5> . (792)
SQ

Substituting the expansion for ¢ as succinctly encoded in (7.28)

¢0 - iz Z ! a(]p,fm( )Y2;€—1mpp7 (793)

p=2/(=2m=—(
into equation (7.71) renders

G?n = lim <_ 1 T Z Z Z / 2,2,m((1_T)d’O,p;é,m+(p+2)a0,p;f,m)dS) .

—0
7p__>1 p=2/(= 2m—7f

Using the orthogonality relation (7.72) one obtains

. 1 _ :
G?n = llg% ( T 9 %3l (1-7) 6((1 — T)G03:3m + 5‘1073?3”))'

Remark 71. The above expression is general and makes no assumption on the form
of the initial data. An explicit calculation shows, however, that the limit will diverge
unless one discards the logarithmic part of the solution in (7.36a). This observation
brings to the forefront the close relation between the regularity at the conformal

boundary (and in particular at i°) and the NP constants.
The previous remark motivates the following assumption:

Assumption 5. The initial data (7.37) is assumed to satisfy the reqularity condition
® _ n® _
Cp,m_Dp,m_O fOT’ p23, _pgmgp
so that no logarithmic singularities arise in the solutions to the Jacobi equation

(7.34a)-(7.34b).

Substituting the solution for ag ., as given in equation (7.36a) for p = ¢ = 3,
taking into account the discussion of the initial data of Section 7.4.3 and setting

C3,, = 0, consistent with Assumption 5, one obtains

1
0 e —
G5, = — 55 Com (7.94)

where Cs,,, is the integration constant of Proposition 8.
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The general case

One can obtain in similar way to compute higher constants in the hierarchy G7,. In
order to obtain a general expression for the overall structure of G}, one proceeds

inductively —in a similar way to the discussion of the electromagnetic NP constants
E".

Lemma 30. For any integer n > 1

2(n+2) n .
600/ (Cbo) <A0 ) Z Aieg())/(%)
i=1

for some coefficients A; independent of p and T.

Proof. As before, one argues by induction. Equation (7.91) for the case n = 0

constitutes the basis of induction. Assuming that
(m), 1 0 2(n+
o (90) = (Ao Z A 800’

and applying egy one obtains

n

in 2(n+2 , ;
0(0’+1)(¢0) ( 0) Z Aiegy (683/(%))
i=1
2n+3
+2(n+2) <A00) (e{)O,AOO) Z Aeld (¢

Making use of equations (7.50), (7.53) and (7.67) one gets

. o) B V2 2 B
et (9h) = (A0°) >~ el (00) + 5 (n+1)(A) Y el (o).
=1

One can rearrange the last expression into

n 2(n+3) ntl :
00/Jrl (%) ( 00) ZAieg()y(%),

i=1
where A; = A; and A; = (n—I—Q)A + A, for ¢ > 2. O

Remark 72. Observe that the conclusion of Lemma 29 in Section 7.6 is valid for
any scalar field ¢ on M. Consequently, it can be applied without further change for

the spin-2 case.

Proposition 13. If the NP constants G, associated to a spin-2 field on the
Minkowski spacetime at I+ are finite, then G"* depends only on the initial da-

tum agn43n+3,m(0) —that is, one has

G = Q" (m,n)Crism,
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where QT (m,n) is a numerical coefficient and C,13,, is the integration constant of

Proposition 8.

Proof. Taking into account Remark 72 and equation (7.53) one obtains using Lem-
mas 29 and 30 that

€0/ (05) = p~ (L= 7) PN ST Byp'(1-7)80 e,
q=1 Z—};]—:lk

for some coefficients £;; independent of p and 7. Using the expansion for ¢, given

in equation (7.93) one has

k=

LS

n n [o¢] p A 1 ) )
ey (¢) = p L -7)AZ 3T PN N {zﬂEﬁp«l—ﬂwLm,

q:1 ’LJrj:k p:2 =2m'=—"¢
k=

—_

8,07 (0" ao pier s (7)) } :

Using equations (7.83) and (7.84) one finds

p

o) = (- s S zz ; {E (1= 7y

q=1 i+j=k p=2/¢'=
k=1

Your— 1ma()(a0,p€’ m (T ))}7

where E;;, = Ejj(p+1)/(p — ¢+ 1)!. In view of the expression for the spin-2 NP

constants given in equation (7.89), one replaces n with n + 1 to obtain

n+1 k=q

oo () = (1 —7)7 203 % ZZ Z {Ez-jppp-<“+3><1—7>f

q=1 i+j= k p=2/¢=
k=
Y2;€’—1,ma£j) (@0,pser;m (7)) } .
Integrating the last expression with Ya., 42, and using the the orthogonality condi-

tion (7.72) one obtains

n+1 k=

/Sz 372m+2,m€:)(g/+1)(¢6)d5 1 7' ) Z Z ZZ Z {Eijpéé’—l,%?‘sm’m

g=1i+j=kp=20'=2m/=—1'
k=1

pp—(n+3) (1 _ 7—)] 85_]) (ao’p;w’m/ (T)) } .

Observe that only the terms with ¢ = n + 3 and m = m’ contribute to the sum
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and ¢’ < p, consequently all the potentially diverging terms with p < n + 3 vanish.

Taking this into account one concludes that

3 n+1 k=q ) ‘
limy | Vanssmeon " (95)dS = (1=r) 20" 32 57 Bignys(1=) 8L (a0 nsmsm(7)
=1 itj=k
R
Therefore, one concludes that
nt+l k=g o
Gt =lim (1= 7)72 S S Bya(l = 7109 (a0 gmssm(7))]  (7.95)
q=1 i+j=k
k=1

At this point, a necessary condition for the above limit to be finite is to set Cyy, 5,, =
0 to avoid the appearance of logarithmic singularities. In accordance with Assump-
tion 5 one concludes that, if G7, is finite then it can only depend on the initial datum

@0;n+3,n+3,m(0)' MOI’GOVGI‘,
G = QT (m,n)Cryam,

where QT (m,n) is a numerical coefficient and C,,13,, is the integration constant
of Proposition 8. In the last line the label + has been added to remind that the

quantities correspond to the NP constants at # . O

Remark 73. Notice that Assumption 5 is a necessary condition if the full hierarchy
of constants G is required. Nevertheless, if one is only interested on a finite
subset of these constants, say G, 1 at fixed order n’, then the restriction imposed by
Assumption 5 to the initial data can be relaxed to C;,, = D, = 0 for p = n’ + 3,

—p<m<p.

7.7.2 The constants on ¥~

The time dual result can be obtained succinctly considering a formal replacement
T — —7 and consistently 9, — —9,. As previously discussed, upon this formal
replacement the roles of £ = ego and n = ey as defined in (7.5a) and ¢y and ¢y
are essentially interchanged. Finally, one obtains mutatis mutandis that the time

dual of Proposition 13

Proposition 14. If the NP constants G}, ~ associated to a spin-2 field on the
Minkowski spacetime at Z~ are finite, then G~ depends only on the initial da-

tum agn43n+3m(0) —that is, one has
G%_ = Q_(m7n)Dn+3,m7

where Q~(m,n) is a numerical coefficient and D,, 13, is the integration constant of
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Proposition 8.

Remark 74. A necessary condition for G * to be finite is that the regularity con-
dition of Assumption 5 is satisfied —see Remark 73. Nevertheless, to show that this
condition is sufficient requires a detailed analysis of the coefficients Ej, 3 in equa-
tion (7.95), which in addition would determine explicitly the numerical coefficient
Q*(m,n). The latter requires a lengthy computation which will not be pursued

here.

Recalling Propositions 13 and 14 and the discussion of the initial data given in

Section 7.4.3 one obtains the following:

Main Result 3. If the spin-2 NP constants GI." and G~ at I+ and I~ in
Minkowski spacetime, are finite, then, up to a numerical factor Q@ (m,n)/Q~(m,n),

coincide.

Remark 75. This conclusion, which at first instance would seem to hold only for
time-symmetric data, is a consequence of the field equations and, as discussed in
Section 7.4.3, holds for generic initial data satisfying the regularity condition given

in Assumption 5 —see also Remark 73.

Remark 76. A similar symmetric behaviour has been observed in the gravitational
case in [100]. In that reference the Newman-Penrose constants at future and past null

infinity of the spacetime arising from Bowen-York initial data have been computed.

7.7.3 The time symmetric case

It is of interest to analyse the case when the initial data is time-symmetric. An
analysis of a spin-2 field on Minkowski spacetime with time-symmetric initial data
in the framework of the cylinder at spatial infinity was given in [98]. In this reference
it is shown that for time-symmetric initial data one has, for p > 3, —p < m < p ,

that
0,p.pm(0) = =4 ppm(0). (7.96)

Nevertheless, as shown in Section 7.4.3 if the regularity condition C,, = D> =0
holds, then necessarily ag pp.m(0) = @4ppm(0). Combining this observation with the
condition (7.96) valid for time-symmetric data, one concludes, for p > 3, —p < m <
m, that

0,p.p.m(0) = Appm(0) = 0. (7.97)

Therefore C), ,,, = D, ,» = 0 and using Propositions 13 and 14 one concludes that all

the constants in the hierarchy G™* vanish.

Proposition 15. Given time-symmetric initial data for the spin-2 field on the
Minkowski spacetime, if the reqularity conditions (7.97) hold for p > 3, then the
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gravitational NP constants at S+ and %, denoted by G** and G"~

m 0

are finite

and vanish —that is, one has that
Gt =Gl =0.

Remark 77. In the time-symmetric case the regularity condition of Assumption
5 imposes conditions on initial data which can be written covariantly in terms of
the value of the linearised Bach tensor and its derivatives at spatial infinity. More
precisely, in the time-symmetric case, the regularity condition C,, = DJ, = 0 at
fix order p is equivalent to

D(Aqu"‘DAlBlBABCD)(iO) = 0, q= 0...p,

where Bapcep is the linearised Bach spinor given in terms of ¢papcp via

Bagep = 2DgaQ0scep)” + QDpadsen)”,

where 2 = p? and D is the Levi-Civita connection respect to the induced metric
by gc at S —see Section 7.1. This result was given in [96] and follows from direct
linearisation of Theorem 4.1 in [27]. In the non-linear case the above regularity
condition is a necessary but not sufficient condition for the regularity of .# as shown
in [101].

Remark 78. Whether or not there exists an analogous covariant representation of
the regularity condition of Assumption 5 for the non time-symmetric case is still a

research question which is not investigated in this thesis.

7.8 Conclusions

In this chapter the correspondence between initial data given on a Cauchy hypersur-
face S intersecting :° on Minkowski spacetime for the spin-1 (electromagnetic) and
spin-2 fields and their associated NP constants was analysed. This analysis has been

done for the full hierarchy of NP constants F)} and G}, in the Minkowski spacetime.

For the electromagnetic case, it was shown that, once the initial data for the
Maxwell spinor is written as an expansion of the form (7.21), the electromagnetic
NP constants F»" at .# " can be identified with the initial datum ag ., (0) with
p =4{=n+2. Since 1 </ < p, one concludes that £ are in correspondence with the
highest harmonic but are irrespective of the initial data for the lower modes ¢ < p.
In an analogous way, one can identify the electromagnetic NP constants F)}~ at .~
with the initial datum asp,,(0). Notice that the only restriction imposed on the
initial data is to have the appropriate decay at infinity so that the electromagnetic

NP constants can be defined. Apart from this requirement, the initial data encoded
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in (7.21) is completely general. As a by-product of the analysis of Section 7.6
and the discussion of the field equations given in Section 7.3.3 one concludes that
the electromagnetic NP constants at #* and ¢~ coincide —up to an irrelevant
numerical factor. In this discussion, the field equations S played a dual role: on the
one hand they allow to conclude that for p = £ one has that C;y,, = Dy, = 0 so that
the potentially singular part of the solutions (7.19a) and (7.19b) does not contribute
to the electromagnetic field. On the other hand, the field equations further imply
that agp.m(0) = a2p0m(0) = Cpr = Dy This last observation is the one which
ultimately relates the electromagnetic NP constants at .# " and .#~. Observe that

this result is irrespective of the initial data being time symmetric or not.

An analogous analysis was performed for a spin-2 field on a Minkowski back-
ground. In contrast with the electromagnetic case, for the spin-2 field, the divergent
terms at 7 = £1 in expressions (7.36a)-(7.36b) are solutions which contribute to the
field. In other words, Cy,, = Dy, # 0 represents, in principle, admissible initial
data. Consequently, for generic initial data, logarithmic singularities at null infin-
ity arise. In such cases the spin-2 field does not have the appropriate decay and
the associated NP constants are divergent. Thus, if the initial data for the field
is written as an expansion of the form (7.37) and satisfy the regularity condition
Cy.,. =Dy, =0, then the spin-2 NP constants Gy,* and G},~ at #* and .~ can
be identified with the initial data agnt3m+3m(0) and a4 ni3n+3.m(0), respectively.
Moreover, as discussed in Section 7.4.3, if the regularity condition is satisfied, the
field equations imply that ag;p.m(0) = a4ppm(0). Consequently, up to a numerical
constant, G 1 and G~ coincide. Notice that this result is irrespective of the initial
data being time symmetric or not. Furthermore, a direct consequence of this anal-
ysis is that, for time-symmetric data satisfying the regularity condition, the spin-2

NP constants vanish.

7.9 Appendix: The connection on S?

In this section expressions for the connection coefficients (of the Levi-Civita connec-
tion) respect to a complex null frame which do not make reference to any particular
coordinate system on S? are obtained. To do so, the Cartan structure equations
as given in Appendix 5.8 of Chapter 5 will be employed. Let {9,,8_} be a com-
plex null frame on S? with corresponding dual covectors {w™,w™}. Namely, one

considers

1
o=2w'Rw +w Quwh), aﬁ:§(3+®8_+3_®8+),
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where o and ! denote the covariant and contravariant version of the standard

metric on S?. Furthermore, one assumes that

and consequently w™ = w~. To start the discussion observe that [8,,0_] and its
complex conjugate can be expressed as a linear combination of the basis vectors 9,
and 0_. A direct inspection, taking into account the condition encoded in equation
(7.98), reveals that

[04,0_] = wd, —wI_, (7.99)

where @ is a scalar field over S2. Using the no-torsion condition of the Levi-Civita

connection ¥ on S? one obtains from equation (7.99) that
W_}_a, - W_a+ == w3+ - 56,, (7100)

where ¥, and Y_ denote a covariant derivative in the direction of 8, and 8_
respectively. Using equation (7.100) and the metricity conditions YV o =0,¥V_o =
0, one finds that the only non-zero connection coefficients are all encoded in the
scalar field w:

r.—_ = F+++ = —F_++ = —F+__ = .

The connection can be compactly encoded in the curvature 1-form %, as defined
in equations (5.89) and (5.87) in Appendix 5.8 of Chapter 5. A direct computation
renders

Y=y _-=mw —ww, Y _=7,=0.
Using the first Cartan structure equation as given in equation (5.88a) in Appendix
5.8 of Chapter 5, one obtains

dw? = —mw" Aw™, dw” =Tw" Aw™. (7.101)

For completeness, using the above expressions and the second Cartan structure
equation as given in (5.88b) in Appendix 5.8 of Chapter 5, one can directly compute

the curvature form 2%:

- 1
Q++ = Q__ = —2(|W|2 + 5(6_},.@ + a_ﬁ))w—*— Nw .
Notice that in order to find further information about w one can exploit the fact

that the Riemann curvature for maximally symmetric spaces (N, h) is given by

1
Rabcd = QR(habhbd - hadhbc>7
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where R is the Ricci scalar of the Levi-Civita connection of the metric h on N.
Since the Ricci scalar for S? is R = —2, using equations (5.89) and (5.87) as given
in Appendix 5.8 of Chapter 5, one finds that

Consequently, one concludes that the scalar field w satisfies

1
| |* + §(am +0_w@) = —1. (7.102)

7.10 Appendix: The 0 and 0 operators

In this appendix, the operators 8, and 8_ are written in terms of the & and 0
operators of Newman and Penrose. To fix the notation and conventions, let 0p
and 0p denote the & and O operators as defined in [12]. In the language of the
NP-formalism [12, 29, 102|, given a null frame represented by {l,n,m,m} their
corresponding covariant directional derivatives are denoted by {D,A,d,0}. The
operators 0p and Op acting on a quantity n with spin weight s can be written in

terms of the § and § derivatives as —see [12],

Opn=6dn+s(@—pB)m,  dpn=0dn—s(a—p)n, (7.103)

where o and (8 denote the spin coefficients as defined in the NP formalism. The
action of the directional derivatives § and & on the vectors m and m, projected into

the tangent space T'(Q) C T'(M) spanned by m and m, is encoded in

ym® = —(a — f)m*°, om® = (a — pg)m” on Q. (7.104)
The directional derivatives ¥, and Y _ as defined on Appendix 7.9 are related to §
and § via .

- 1
5= ﬁ%’ 5= EV*‘

It follows from the discussion of Appendix 7.9 and equation (7.104) that
w, on Q (7.105)
Using equations (7.104) and (7.105) one obtains

V.n = 20pn + s@n, Y _n=+20pn — swn, (7.106)
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To align the discussion with the conventions of [81, 96, 98] is convenient to define 0

and O by rescaling 0p and 0p as
9= ——3p, J=-——>dp, (7.107)

The corresponding eigenfunctions Y.z, of the operator 99, defining the spin-weighted
spherical harmonics, will be assumed to be rescaled in accordance with equation
(7.107). Exploiting that {Ys.em}, with 0 < |s| < £ and —¢ < m < ¢, form a complete
basis for functions of spin-weight s over S?, given a scalar field £ : Q@ — R, with

spin-weight s, one can expand & as

[e9) l
’5 = Z Z Cotm Y;;Zm- (7108)
l=s m=—/{
In addition, one has that
0(Yem) = V(£ = )(€+ 5 +1) Yirnem, (7.1092)
O(Yasom) = =/ (£ 4+ 8)(0 — 5+ 1) Ya_10m. (7.109b)

Notice that equation (7.108) as well as equations (7.109a)-(7.109b) do not depend

on the specific choice of coordinates on Q.



8 Conclusions, perspectives and

future work

In this thesis a variety of applications of the conformal Einstein field equations has
been given. These equations were motivated and presented in Chapters 1 and 2 re-
spectively. The main strength of the use of the conformal Einstein field equations as
a tool for the analysis of global properties of solutions to the Einstein field equations
resides in their behaviour under conformal transformations. This property, in turn,
opens the possibility to study the physical spacetime (M, g) through the analysis of
its conformal extension (M, g). From the point of view of the initial value problem
it allows to reduce, in certain cases, global problems into local problems, e.g., the
proof of the global non-linear stability of the de-Sitter spacetime given in [9] and
the semiglobal non-linear stability of the Minkowski spacetime given in [8]. More-
over, it allows to formulate asymptotic initial value problems, i.e., an initial value
problem in which the initial data is given at the conformal boundary. From a more
physical point of view, to be able to analyse the behaviour of the gravitational field
at the conformal boundary is of great important as several quantities of physical
interest such as the Bondi mass, the Newman-Penrose constants and the notion of

gravitational radiation are defined in terms of structures at .#.

As discussed in Chapter 2, there are two versions of the conformal Einstein field
equations: the standard conformal Einstein field equations and the extended confor-
mal Einstein field equations. In the former case the gauge is fixed by introducing
gauge source functions while in the latter by exploiting the notion of conformal
Gaussian systems of coordinates. In both cases, one obtains a first order system of
symmetric hyperbolic evolution equations. Nevertheless, in the classical discussion
of the Cauchy problem in general relativity in [4], the hyperbolic reduction of the
Einstein field equations using harmonic coordinates —corresponding to a particular
choice of the coordinate gauge source function— renders a system of wave equations
for the metric components. Consequently, in this regard, it is natural to obtain
a second order hyperbolic reduction for the conformal Einstein field equations. In
[18], a system of wave equations equivalent to the metric formulation of the con-
formal Einstein field equations has been given. In the latter reference the gauge is
fixed exploiting a generalised wave-map gauge and is closer in spirit to the classical

treatment of the Cauchy problem in General Relativity.

225
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Chapter 3 contains the first application of the conformal Einstein field equations
discussed in this thesis. In this chapter, a second order hyperbolic reduction of
the spinorial formulation of the conformal Einstein field equations was given. The
analysis given in this chapter shows how the spinorial formulation leads to a sys-
tematic construction of the wave equations for the relevant fields. The use of the
spinorial formulation is advantageous as it gives access to a wider set of gauge source
functions (coordinate, frame and conformal gauge source functions). Moreover, in
the spinorial formulation, the equations posses a simpler algebraic structure than
in the metric formulation. In particular, the equation for the rescaled Weyl spinor,
which can be regarded as the most fundamental field in the equations, satisfies a
particularly simple wave equation. Chapter 4 constitutes an application of the wave
equations introduced in Chapter 3. In this chapter small perturbations of hyper-
boloidal initial data of the Milne spacetime were discussed. This analysis is similar
to the discussion of the Minkowski spacetime given in [8]. Notice that the analysis
given in Chapter 3 is restricted to the vacuum case. Nevertheless, the standard con-
formal Einstein field equations can be formulated for some suitable matter models
for which the energy-momentum tensor is tracefree. Consequently, a natural gener-
alisation to the analysis given in Chapter 3 is to obtain a system of wave equations
for the standard conformal Einstein field equations coupled with tracefree matter,
e.g., the electromagnetic field. Additionally, in view of the discussion of the extended
Einstein field equations in Chapter 2 an open problem is whether it is possible to
use conformal Gaussian systems of coordinates to obtain a system of wave equations

for the fields in the extended conformal Einstein field equations.

Presumably, one of the most important questions for conformal methods in Gen-
eral Relativity is whether the conformal Einstein field equations can be employed not
only for the analysis of asymptotically simple spacetimes —say as in [8, 9, 11, 57]—
but if they can be used to make inroads into the stability analysis of black hole
spacetimes. From the physical point of view, observations have established that the
Cosmological constant is positive in our universe. Consequently, spacetimes describ-
ing isolated systems embedded in a de-Sitter universe constitutes a class of physi-
cally relevant spacetimes to be analysed. In this regard, in Chapter 5 constitutes
an application of conformal methods for the stability analysis of non-linear pertur-
bations of the Schwarzschild-de Sitter spacetime. In this chapter, initial data for an
asymptotic initial value problem —initial data given on the (spacelike) conformal
boundary— for the Schwarzschild-de Sitter spacetime was obtained. In particu-
lar, it was shown how the initial data allows to understand the singular behaviour
of the conformal structure at the asymptotic points @ and Q" where the horizons
of the Schwarzschild-de Sitter spacetime meet the conformal boundary. Using the
insights gained from the analysis of the Schwarzschild-de Sitter spacetime in a con-

formal Gaussian gauge, non-linear perturbations close to the Schwarzschild-de Sitter
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spacetime in the asymptotic region were considered. It was shown that small enough
perturbations of asymptotic initial data for the Schwarzschild de-Sitter spacetime
give rise to a solution to the Einstein field equations which exists to the future and
has an asymptotic structure similar to that of the Schwarzschild-de Sitter spacetime.
The analysis given in Chapter 5 shows some of the main features and difficulties in
using the conformal Einstein field equations in the analysis of perturbations of black
hole spacetimes particularly for those with de-Sitter like asymptotics. Despite the
fact this result does not fully address the outstanding stability of the Schwarzschild-
de Sitter, the constructed class of solutions is non-trivial. Moreover, these per-
turbed spacetimes constitute a large class of asymptotically Schwarzschild-de Sit-
ter spacetimes —see [24] for a definition of asymptotically Schwarzschild-de Sitter
spacetime— which are dynamical and represent non-trivial examples of spacetimes
allowing for gravitational radiation at .#. In particular, for the non-linear pertur-
bations of the Schwarzschild de-Sitter spacetime analysed in Chapter 5 the induced
metrics at the conformal boundary h,, are, in principle, in contrast with the exact
Schwarzschild-de Sitter asymptotic datum fozab, not conformally flat, as hy, can lie
anywhere in an open ball centred at iLab in terms of suitably defined norms. Conse-
quently they serve as non-trivial examples for the theory of asymptotics for de-Sitter
like spacetimes introduced in [24, 103, 104].

Nonetheless, the result obtained in Chapter 5 does not exhaust the full domain
of dependence associated to this asymptotic initial value problem. Thus, a natural
generalisation of these results is to obtain the maximal Cauchy development of the
small perturbed data discussed in Chapter 5. A possible approach would be to
exploit the time-symmetric conformal representation in which x = 0 and use the
global stability methods contained in [76]. Related to this problem is the question
of whether there exist a Cauchy horizon associated to this development and if the
singularities in the rescaled Weyl tensor at the asymptotic points Q and Q' propagate
through this boundary. To perform an analysis of the gravitational field close to the
asymptotic points a possible venue would be to exploit the mean curvature foliation
of the Schwarzschild-de Sitter spacetime discussed in [105, 106]. As discussed in [105]
there exist a particular hypersurface of this foliation for which the extrinsic curvature
is pure trace and the induced 3-metric metric is formally the same as the 3-metric
in the the time-symmetric slice in the Schwarzschild spacetime. This hypersurface
has an asymptotic end which, in this case, corresponds to one the asymptotic points
in the Schwarzschild-de Sitter spacetime —see the Figure 2 in [105] and Figures 2
and 3 in [106]. Analysing the evolution of initial data for the conformal Einstein
field equation on this slice and exploiting the techniques used to analyse spatial
infinity —the framework of the cylinder at spatial infinity as discussed in [27]—
would bee useful in understanding the behaviour of the gravitational field close to

the asymptotic points @ and Q’.
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In Chapter 6 small perturbations of the Kerr-de Sitter spacetime were discussed.
This constitutes a partial generalisation of the analysis of Chapter 5. Following the
spirit of Chapter 5 an asymptotic initial value problem was formulated and small
perturbations of exact asymptotic initial data for the Kerr-de Sitter spacetime were
considered. Then, using the theory of symmetric hyperbolic systems contained in
[23] an existence result for small perturbations was obtained. Nevertheless, the
discussion given in Chapter 6 only constitutes a partial generalisation of the results
given in Chapter 5 as the conformal evolution equations governing the exact Kerr-de
Sitter spacetime in the conformal Gaussian gauge were not analysed. In particular,
notice that, in contrast with the analysis give in Chapter 5, an estimation of the
time of existence of the solutions was not obtained. Instead, the emphasis of the
analysis of Chapter 6 was on discussing the existence of conformal representation
for which the associated asymptotic initial data is regular. In this regard, the most
important observation is that although in this case the initial 3-metric h does not
correspond to the standard metric on R x S?, as in the case of the Schwarzschild-de
Sitter spacetime, it is conformally flat. Additionally, it was shown that, similar
to the case of the Schwarzschild-de Sitter spacetime, this conformal representation
is associated to the time-symmetric representation for which x = 0 —equivalently
characterised by the vanishing of the Friedrich scalar at .#. It is of interest to
investigate whether the initial data for the rescaled Weyl tensor becomes singular
at the asymptotic points @ and @’ in other conformal representation; in particular
in the S*/{Q, Q'} conformal representation. To clarify this point, one would need
to analyse the behaviour of the conformal factor relating both representations. This

analysis will be done elsewhere.

An additional observation related to the analysis of the Kerr-de Sitter spacetime
using conformal methods is that, despite that at first sight the conformal Einstein
field equations expressed in components respect to an arbitrary frame seem to be
very complicated, symmetry assumptions —spherical symmetry in the case of the
Schwarzschild-de Sitter spacetime— can reduce the the number of equations to be
analysed. In the case of Petrov type D spacetimes, the symmetry of the spacetime
is closely related to the existence of Killing spinors. In this regard, it is of interest
to analyse the relation of symmetries at conformal infinity in de-Sitter like space-
times. In other words conformal Killing vectors and Killing spinors at the conformal
boundary in de-Sitter like spacetimes —e.g., the Schwarzschild de-Sitter and Kerr-
de Sitter spacetimes. In [85] an analysis has been given exploiting the unphysical
Killing initial data equations introduced in [72, 107] and a characterisation of the
Kerr-de Sitter spacetime via the Mars-Simon tensor —see [108]. Nevertheless, as
Killing spinors can be considered as a more fundamental quantity than Killing vec-
tors, it is natural to try to find a similar characterisation as the one given in [85] but

exploiting the notion of Killing spinors instead. Furthermore, as the Mars-Simon
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tensor and the rescaled Mars-Simon tensor introduced in [85] share the same sym-
metries of the Weyl tensor, a spinorial approach seems appropriate. The interplay
between the existence of Killing spinors at the conformal boundary of de-Sitter like
spacetimes can potentially be related with the properties of the asymptotic initial
data for these spacetimes. These notions can be, ultimately, useful for making in-
roads into the resolution of the uniqueness problem of black holes with a de-Sitter

like Cosmological constant.

One of the conclusions from the analysis of the global structure of spacetimes
using the conformal methods can be condensed in the observation that, generically,
initial data for the conformal Einstein field equations will not be smooth at least in
one point in the conformal extension of the spacetime. In the case of the proof of the
semiglobal non-linear stability of the Minkowski spacetime of [8] this point corre-
sponds to spatial infinity ¢°; for the Schwarzschild-de Sitter spacetime the asymptotic
points Q and Q'. In the case of the problem of spatial infinity i°, a milestone in the
resolution of this problem is the construction, originally introduced in [27], of a new
representation of spatial infinity known as the cylinder at spatial infinity. In this
representation, spatial infinity is not represented as a point but as set whose topol-
ogy is that of a cylinder. In addition, it allows to formulate a regular finite initial
value problem for the conformal Einstein field equations. In this regard, Chapter
7 represents an application of the framework of the cylinder at spatial infinity into
the analysis of the Newman-Penrose constants. The analysis of these constants has
gained some interest recently due to the discussion given in [28] where the concept
of soft-hair on black holes is put forward. In the latter reference, the discussion is
motivated by analysing the Maxwell equations on a flat background and relating
conserved charges which are constructed as surface integrals of the electromagnetic
field at future and past null infinity. These quantities correspond, essentially, to the
electromagnetic Newman-Penrose constants on flat space. With this motivation, in
Chapter 7 the framework of the cylinder at spatial infinity was used to clarify the
correspondence between data on a spacelike hypersurface for the spin-1 and spin-2
fields —the former represents the Maxwell spinor and the latter can be interpreted
as the linearised gravitational field— propagating on a Minkowski background and
the value of their corresponding Newman-Penrose constants at future and past null
infinity. In particular, it was shown that the electromagnetic NP constants at future
and past null infinity case, are related to each other as they arise from the same
terms in the initial data. Moreover, it was shown that this observation is true for
data which is not necessarily time-symmetric. A similar result was obtained for the
NP constants associated to the spin-2 field. However, in the latter case, for generic
initial data, logarithmic singularities at null infinity arise. In such case, the inte-
grals defining the NP constants are divergent unless one imposes an regularisation

condition restricting the initial data.
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Most of the applications of the conformal Einstein field equations for the sta-
bility analysis of solutions to the Einstein field equations make use of the theory
of symmetric hyperbolic systems contained in [23]. Nevertheless, to make inroads
in to the resolution of the outstanding problem on the full global non-linear sta-
bility of black hole spacetimes, say the Kerr-de Sitter spacetime, one first needs
to implement more refined theory of partial differential equations and have more
control on the behaviour of the perturbations by obtaining suitable estimates. The
natural approach would be to import some techniques used in the vector field meth-
ods approach used in [10, 61, 109, 110]. Combining these two different approaches;
the conformal Einstein field equations and the standard vector field method, is a
promising venue as one could exploit the strengths of both approaches. In the cur-
rent standard applications of vector field methods for analysing perturbations of
de-Sitter like spacetimes containing black holes —see [61]— determining the loca-
tion of the conformal boundary is a delicate issue. In contrast, using the extended
conformal Einstein field equations and conformal Gaussian systems of coordinates
can be advantageous as in the formulation of the asymptotic initial value problem
studied in Chapter 5 one has apriori knowledge of the location of the conformal
boundary. Since the implementation of vector field methods for analysing black
hole spacetimes using the conformal Einstein field equations would be a long term
program, in order to make inroads into this problem one can start with a more mod-
est problem in which one can probe and test these techniques now in the conformal
setting. In this regard, one can start considering perturbations of spacetimes which
can be conformally embedded into the Einstein cylinder, e.g., the de-Sitter space-
time. One could then use vector field methods to analyse the extended conformal
Einstein field equations to obtain more detailed information about the behaviour
of the perturbations than that obtained by direct application of theory symmetric

hyperbolic systems contained in [23].
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