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Abstract

Although the study of the initial value problem in General Relativity started in the
decade of 1950 with the work of Fourès-Bruhat, addressing the problem of global
non-linear stability of solutions to the Einstein field equations is in general a hard
problem. The first non-linear global stability result in General Relativity was ob-
tained for the de-Sitter spacetime by means of the so-called conformal Einstein field
equations introduced by H. Friedrich in the decade of 1980. The latter constitutes
the main conceptual and technical tool for the results discussed in this thesis. In
Chapter 1 the physical and geometrical motivation for these equations is discussed.
In Chapter 2 the conformal Einstein equations are presented and first order hyper-
bolic reduction strategies are discussed. Chapter 3 contains the first result of this
work; a second order hyperbolic reduction of the spinorial formulation of the confor-
mal Einstein field equations. Chapter 4 makes use of the latter equations to give a
discussion of the non-linear stability of the Milne universe. Chapter 5 is devoted to
the analysis of perturbations of the Schwarzschild-de Sitter spacetime via suitably
posed asymptotic initial value problems. Chapter 6 gives a partial generalisation of
the results of Chapter 5. Finally a result relating the Newman-Penrose constants at
future and past null infinity for spin-1 and spin-2 fields propagating on Minkowski
spacetime close to spatial infinity is discussed in Chapter 7 exploiting the framework
of the cylinder at spatial infinity. Collectively, these results show how the conformal
Einstein field equations and more generally conformal methods can be employed
for analysing perturbations of spacetimes of interest and extract information about
their conformal structure.
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Williams, Adem Hursit, José Luis Obregón, Susana Tecante, Manik Nava, Paulina
Flores, Liam Williams, Adrián Ortiz, Sol Gil, Diego Carranza and Michael Cole)
played also an important role during this period of my life both academically and
personally. I have profited from interaction and discussion with Dr Christian Lübbe
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support and advice. I would like to thank Dr Xavier Hernández and Dr Sergio
Mendoza, thanks for the encouragement to pursuit my goals! I would like to use
this opportunity to thank my examiners Prof. Paul Tod and Dr Gustav Holzegel in
advance for reading this thesis.

I gratefully acknowledge financial support from Consejo Nacional de Ciencia y
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1 Introduction

1.1 General Relativity

The General theory of Relativity is the most successful theory of gravity. Since

its birth in 1916, starting with the prediction of the redshift effect, the bending of

light rays and explaining the perihelion of Mercury, General Relativity has passed

numerous observational tests. More recently, in February 2016, the detection of

Gravitational waves originating from a pair of merging black holes announced by

the LIGO Scientific Collaboration confirms the validity of General Relativity not

only in the regime of weak gravitational fields but situations where both strong

and dynamical gravitational fields interact. In contrast with Newtonian gravity

where the gravitational field is encoded in one single scalar, in General Relativity

the gravitational field is encoded in 10 quantities corresponding to the components

of a Lorentzian metric. This issue in conjunction with the fact that the equations

governing the gravitational field in the theory —the Einstein field equations— are a

coupled system of nonlinear second order partial differential equations for the metric

components makes very difficult to obtain information about the behaviour of the

spacetime in realistic scenarios such as the one described above. Despite the com-

plexity of the Einstein field equations it was very rapidly realised that under suitable

assumptions representing idealised physical scenarios one can find explicit solutions

to the Einstein field equations. The paradigmatic example is the Schwarzschild so-

lution representing the exterior gravitational field of a spherically symmetric and

static configuration of matter. The study of exact solutions showed unexpected fea-

tures of the theory such as the existence of black holes and singularities. At first

instance some of these features may look as merely artefacts of the high symmetry

which one would expect to disappear once one is confronted with more realistic sit-

uations i.e., less symmetric and dynamical. Nevertheless, singularities in General

Relativity are ubiquitous and, as shown by R. Penrose and S. Hawking in their

singularity theorems, if a trapped surface (a 2-surface for which the null expansions

θ± are negative) exists and suitable energy conditions are satisfied the solutions to

the Einstein field equations will be geodesically incomplete —see [1, 2]. In some

cases the latter can be interpreted as an indication of the presence of a curvature

singularity. Whether or not this is generically the case is still a research question

—see for instance Conjecture 17.2 in [3]. Additionally, the study of exact solutions

7



1.2: The Cauchy problem in General Relativity 8

shows that in several situations, when present, the curvature singularity is hidden

by a event horizon so that it is causally disconnected from the rest of the spacetime,

i.e., singularities could not be seen from distant observers. The latter constitutes

the so-called weak cosmic censorship conjecture. Despite the fact that great insight

is gained from the study of exact solutions they do not exhaust all the space of

solutions to the Einstein field equations. Consequently, if a deeper analysis of the

generic properties of the solutions of the Einstein field equations is in order, one

requires a more systematic approach to explore the space of solutions of the theory.

Moreover, to understand the relevance and physical significance of these explicit

solutions it is necessary to analyse their stability. In other words, to investigate the

general behaviour of perturbed solutions to the Einstein field equations which are in

some sense close to a reference solution. The latter could help to distinguish those

properties and structures which are preserved in more realistic situations from those

which only arise in idealised scenarios. The most systematic way to approach this

problem is through suitable posed initial value problems.

1.2 The Cauchy problem in General Relativity

The initial value problem in General Relativity started with the seminal work of

Fourès-Bruhat [4] in which it was shown that, if the gauge is fixed appropriately, the

equations governing General Relativity split into constraint and evolution equations.

To see this in more detail recall that the Einstein field equations in vacuum with

vanishing cosmological constant, R̃µν = 0, in local coordinates (xµ) read

R̃µν = −1

2
g̃λρ∂λ∂ρg̃µν + ∇̃(µΓ̃ν) + g̃λρg̃

στ Γ̃σ
λ
µΓ̃τ

ρ
ν + 2Γ̃λ

σ
ρg̃
λτ g̃σ(µΓ̃ν)

ρ
τ = 0,

where

Γ̃µ
ν
λ =

1

2
g̃νρ(∂µg̃ρλ + ∂λg̃µρ − ∂ρg̃µλ)

and Γ̃µ ≡ g̃αβΓ̃α
µ
β are the so-called contracted Christoffel symbols. Define H̃µν via

H̃µν ≡ R̃µν −
1

2
S̃µν ,

where

S̃µν ≡ ∂µΓ̃ν + ∂νΓ̃µ.

A computation shows that the contracted Christoffel symbols are associated to the

choice of coordinates since

�̃xµ = Γ̃µ,

where �̃ ≡ ∇̃ν∇̃ν . Notice that the principal part of H̃µν coincides with that of �̃g̃µν .

With these definitions introduced and observations made, one of the main ideas in
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the work of Fourès-Bruhat is to consider a Cauchy problem for the reduced Einstein

field equations

H̃µν = 0, (1.1)

which constitute a system of wave equations for the metric components g̃µν . Let

S̃ denote a spacelike hypersurface with normal ñµ. The equation (1.1) is then

supplemented with data

g̃µν |S̃ = h̃µν , ñα∂αg̃µν |S̃ = 2K̃µν ,

satisfying

Γ̃µ|S̃ = 0, ñν∂νΓ̃µ|S̃ = 0, (1.2)

where h̃µν is a 3-dimensional Riemannian metric and K̃µν is a symmetric tensor on

S̃. A calculation using the contracted second Bianchi identity shows that Γ̃µ satisfy

a system of homogeneous linear wave equations, hence, the conditions (1.2) ensure

that Γ̃µ = 0. The latter, in turn, implies that H̃µν and R̃µν coincide. The conditions

(1.2) are associated to the Hamiltonian and momentum constraints —see [4, 5] for

a comprehensive discussion. In this formulation of General Relativity, the initial

data corresponds to a triple (S̃, h̃, K̃) where S̃ denotes a 3-dimensional manifold,

h̃ a Riemannian metric and K̃ a symmetric tensor. One of the most important

results in this regard was proved by Choquet-Bruhat and Geroch in [6] where it was

shown that associated to each triple (S̃, h̃, K̃) satisfying the constraint equations

there exists a unique maximal globally hyperbolic development (M̃, g̃). In other

words, S̃ is a spacelike hypersurface of M̃, h̃ is the induced metric of g̃ on S̃ and K̃

is associated with the extrinsic curvature. The adjective hyperbolic makes reference

to the fact that the evolution equations obtained in this formulation of the Einstein

field equations are hyperbolic. This property is fundamental from the physical point

of view as it is closely related to the notion of causality and to the finite speed of

propagation of signals.

Remark 1. Despite the fact that, Fourès-Bruhat’s approach leads naturally to the

analysis of wave equations, one can study the Cauchy problem in General Relativity

via first order symmetric hyperbolic systems. To see this, assume that a local system

of coordinates (xµ) on M̃ has been fixed such that ñ = ∂x0 = ∂0 is the normal vector

to a spacelike hypersurface S̃. Now, consider the wave equation

�̃u = F (x, u, ∂u), (1.3)

where u is a scalar function on M̃, F is a smooth function of its arguments and ∂u

denotes, collectively, the first derivatives of u. Introduce a new variable wµ = ∂µu.
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Then,

−g̃00∂0w0 − 2g̃0µ∂µw0 = g̃µν∂µwν + F (x, u, wµ), (1.4)

g̃µν∂0wµ = g̃µν∂µw0, (1.5)

∂0u = w0, (1.6)

with initial data (u,wµ)|S̃ satisfying

wµ|S̃ = (∂µu)|S̃ , (1.7)

is a symmetric hyperbolic system for (u,wµ) —see [7] for further discussion.

1.3 Conformal methods in General Relativity

Although the study of the initial value problem in General Relativity started in the

decade of 1950 with the work of Fourès-Bruhat, addressing the problem of global

non-linear stability of solutions to the Einstein field equations is in general a hard

problem. In fact, the first global non-linear stability result in General Relativity had

to wait until the decade of 1980 when in [8] and [9] H. Friedrich proved the semi-global

non-linear stability of the Minkowski spacetime and the global non-linear stability of

the de-Sitter spacetime. A proof of the full non-linear stability of the Minkowski

spacetime using vector field methods has been given in [10]. One of the essential

ideas in [8] and [9] was the use of the so-called conformal Einstein field equations

—introduced in [11]— to pose an initial value problem. As the name suggests, the

central concept in these equations is that of a conformal transformation. Conformal

transformations have a long tradition in General Relativity going back at least to

the decade of 1960. R. Penrose introduced the concept of conformal rescalings for

the study of asymptotics —the study of the behaviour of gravitational fields for

large distances and late times. In his proposal one starts with a physical spacetime

(M̃, g̃) where M̃ is a 4-dimensional manifold and g̃ is a Lorentzian metric which is

a solution to the Einstein field equations

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab, (1.8)

where R̃ab and R̃ are the Ricci tensor and Ricci scalar of g̃ab respectively, λ is the

cosmological constant and T̃ab is the energy momentum tensor. Notice that, in

vacuum T̃ab = 0, the Einstein field equations (1.8) reduce to

R̃ab = λg̃ab. (1.9)
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Then, one introduces a unphysical spacetime (M, g) into which (M̃, g̃) is confor-

mally embedded. Accordingly, there exists an embedding ϕ : M̃ →M such that

ϕ∗g = Ξ2g̃. (1.10)

The scalar function Ξ is the so-called conformal factor. By suitably choosing Ξ the

metric g may be well defined at the points where Ξ = 0. The set

I ≡
¶
p ∈M | Ξ(p) = 0, dΞ(p) 6= 0

©
is called the conformal boundary. The set of points where the conformal factor

vanishes is at infinity from the physical spacetime perspective. More precisely, if s̃

and s denote, g̃-affine and g-affine parameters of a null geodesic γ ⊂ M̃, then

ds̃

ds
=

1

Ξ2
,

consequently,

s̃ =
∫

1

Ξ2
ds. (1.11)

Since Ξ = 0 and dΞ 6= 0 on I then one can choose s to vanish at I and set

Ξ = O(sα) with α ≥ 1 then it follows from equation (1.11) that s̃ → ∞ as Ξ → 0

—see [12, 13] for further discussion. Thus, I can be identified with the collection

of endpoints —on (M, g)— of null geodesics of (M̃, g̃).

Definition. A conformal extension of a spacetime (M̃, g̃) satisfying the vacuum

Einstein field equations (1.8) consists on a manifold M equipped with a metric g,

a smooth conformal factor Ξ and a diffeomorphism ϕ : M̃ → U ⊆M, such that:

ϕ∗g = Ξ2g̃ is well defined at Ξ = 0,

Ξ > 0 in U ,
Ξ = 0 and dΞ 6= 0 on ∂U .

The set I ≡ ∂U is called conformal boundary. Since every point in I can be

identified with the endpoint of a null geodesics of (M̃, g̃) the set I + denoting

the portion of I corresponding to future endpoints of null geodesics will be called

future conformal boundary. Similarly, the set I − denoting the portion of I corre-

sponding to past endpoints of null geodesics will be called past conformal boundary.

Remark 2. Observe that the latter definition does not require that every null

geodesic acquires two distinct endpoints at I . In particular, it leaves the possibility

for the existence of null geodesics that do not reach I .

The relevance of this construction goes beyond the study of asymptotics and iso-

lated gravitational systems since the unphysical metric g contains the same causal
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information as the physical metric g̃. In this framework, a natural question that

arises is, how do the Einstein field equations behave under a conformal transforma-

tion of the metric? A straightforward computation using the conformal transforma-

tion laws for the curvature tensors shows that, in the vacuum case with λ = 0, the

Einstein field equations imply

Rab −
1

2
Rgab = −2Ξ−1(∇a∇bΞ−∇c∇cΞgab)− 3Ξ−2∇c∇cΞgab, (1.12)

where Rab, R and ∇a are the Ricci tensor, Ricci scalar and Levi-Civita connection of

the unphysical metric gab. From the last equation one immediately observes that the

Einstein field equations are not conformally invariant. Moreover, equation (1.12) is

formally singular at the conformal boundary. To have a satisfactory equation for the

unphysical metric it is necessary to derive a regular version of equation (1.12). An

approach to deal with this problem was given in [11] where a regular set of equations

for the unphysical metric was derived. These equations are known as the conformal

Einstein field equations. The crucial property of these equations is that they are

regular at the points where Ξ = 0 and a solution thereof implies whenever Ξ 6= 0

a solution to the Einstein field equations. At its core, the conformal Einstein field

equations constitute a system of differential conditions on the curvature tensors and

the conformal factor.

There are two versions of these equations: the standard conformal Einstein field

equations and the extended conformal Einstein field equations. In the former, these

differential conditions are expressed in terms of the Levi-Civita connection of g,

while in the latter the conditions are expressed in terms of Weyl connections. Addi-

tionally, the standard conformal Einstein field equations can be expressed in three

different formulations: the metric, frame and spinorial formulations. In the metric

formulation, the unphysical metric g is part of the unknowns while in the frame

version one introduces a g-orthonormal frame with respect to which all the geomet-

ric quantities are expressed. The frame formulation of the equations leads naturally

to a spinorial description which exhibits in a clearer way the algebraic structure of

the equations. In particular, this algebraic structure can be exploited to construct

alternative representations of these equations —see [14] for a discussion of a rep-

resentation of the spinorial conformal Einstein field equations as wave equations.

In the case of the extended conformal Einstein field equations one has frame and

spinorial formulations as well. These conformally invariant representations of the

Einstein field equations are not only advantageous from the purely theoretical point

of view but also for applications since the conformal framework allows to recast

global problems in (M̃, g̃) as local problems in (M, g).



1.4: Results obtained in this thesis 13

1.4 Results obtained in this thesis

Similar to the case of the Einstein field equations, a problem that one has to face

when dealing with the analysis of the conformal Einstein field equations is the issue

of gauge freedom. In the classical treatment of the Cauchy problem in General Rel-

ativity —see [4]— a judicious choice of coordinates allows to reduce the equations to

a system of wave equations for the metric components. Interestingly, in the original

treatment of the conformal Einstein field equations the hyperbolic reduction strate-

gies used lead to a first order system of equations —see [11, 13, 15–17]. In the case of

the spinorial formulation of the standard conformal Einstein field equations the use

of gauge source functions and the space spinor formalism renders a first order system

of symmetric hyperbolic evolution equations. In the case of the extended confor-

mal Einstein field equations the gauge fixing is performed exploiting a congruence

of curves with special conformal properties: conformal geodesics. This hyperbolic

reduction strategy leads to a first order system of symmetric hyperbolic equations

as well. In [18] a second order hyperbolic reduction of the metric formulation of

the standard conformal Einstein field equations has been obtained and used for the

analysis of the asymptotic characteristic problem on a cone —see [19]. In Chapter

3, a second order hyperbolic reduction of the equations for the spinorial formulation

of the standard conformal Einstein field equations is obtained. The spinorial formu-

lation is advantageous as the algebraic structure of the equations is simpler when

expressed in spinorial form and the construction of the wave equations can be done

in a systematic way. In particular, the equation for the rescaled Weyl spinor, which

can be considered as the central object in the discussion of the conformal Einstein

field equations, becomes particularly simple. Additionally, the use of spinors gives

access to a wider set of gauge source functions than those available in the metric

formulation. As an application of the analysis in Chapter 3, a discussion of the

non-linear stability of the Milne spacetime is given in Chapter 4. This spacetime is

a spatially flat Friedman-Lemâıtre-Robertson-Walker solution to the Einstein field

equations with vanishing cosmological constant —see e.g. [20]. Moreover, the Milne

Universe can be seen to be a part of the Minkowski spacetime written in comoving

coordinates adapted to the worldline of a particle. In this chapter, perturbations

of exact initial data —for the wave equations derived in Chapter 3— corresponding

to the Milne Universe are considered. Then the theory of symmetric hyperbolic

systems contained in [21] is used to obtain a non-linear stability result for small

perturbations of the Milne Universe.

A common feature that is exploited in the the analysis of constant curvature

spacetimes by means of conformal methods (the Minkowski, de-Sitter and anti de-

Sitter spacetimes) is that they can be conformally embedded in the Einstein cylinder

—see [8, 9, 22]. The latter is convenient as, an explicit solution to the conformal

Einstein field equations can be identified. In other words, most of the existence and
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stability results using the conformal Einstein field equations have been restricted to

the analysis of perturbations of conformally flat spacetimes. Therefore, an interest-

ing question is whether the conformal Einstein field equations can be exploited in

the analysis of global properties of non-conformally flat spacetimes and, in particu-

lar, in the stability the analysis black hole spacetimes. On the other hand, from a

physical point of view, observations have established that the universe is expanding.

Therefore, spacetimes describing isolated systems embedded in a de-Sitter universe

constitute a class of physically relevant spacetimes to be analysed. In view of these

remarks, in Chapter 5 the Schwarzschild-de Sitter spacetime is analysed using the

extended conformal Einstein field equations. The presence of a cosmological con-

stant with a de-Sitter like value —see Section 1.6 for definitions— is of importance

as it implies that the conformal boundary is spacelike. The use of conformal meth-

ods in this setting is natural as the conformal Einstein field equations allow to

discuss asymptotic initial value problems: initial value problems for which the ini-

tial hypersurface corresponds to the conformal boundary. Moreover, the conformal

constraint equations acquire a particular simple form at the conformal boundary so

that the asymptotic initial data is encoded essentially in the induced metric at the

conformal boundary hij and the electric part of the rescaled Weyl tensor dij. As

discussed in detail in Chapter 5, the induced metric at the conformal boundary for

the Schwarzschild-de Sitter spacetime is conformally flat. Furthermore, there exists

a conformal representation in which the initial data for the rescaled Weyl tensor

is regular and homogeneous so that one can integrate the extended conformal Ein-

stein field equations along single conformal geodesics. This is not directly evident

since, as discussed in detail in Chapter 5, there are conformal representations in

which the initial data for the rescaled Weyl tensor becomes singular at the asymp-

totic points Q and Q′ —corresponding to the region in the Penrose diagram of the

Schwarzschild-de Sitter spacetime where the horizons of the spacetime appear to

meet the conformal boundary. The insight gained from the analysis of the evolution

of the exact asymptotic initial data corresponding to the Schwarzschild-de Sitter

spacetime is used to discuss non-linear perturbations of this exact data by exploit-

ing the theory of symmetric hyperbolic systems contained in [23]. The spacetimes

constructed in this way can be regarded as perturbations of the asymptotic region of

the Schwarzschild-de Sitter spacetime. Moreover, they serve as non-trivial examples

of the theory of asymptotics for de Sitter-like spacetimes given in [24].

Notice that, despite the fact that the global non-linear stability of the Kerr-de

Sitter spacetime has been addressed in the recent work [25], the discussion given

in [25] is restricted to the black hole exterior region. In view of the domain of

dependence property of solutions to the Einstein field equations, the stability of the

black hole exterior can be analysed independently of the asymptotic region —see

[26] for further discussion. In the asymptotic initial value problem considered in
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Chapter 5, the domain of influence of the initial data is contained in the region

corresponding to the asymptotic region of the Schwarzschild-de Sitter spacetime.

The question whether the analysis given in Chapter 5 for the Schwarzschild-de Sitter

spacetime can be generalised to the case of the Kerr-de Sitter spacetime is explored

in Chapter 6. In this chapter, in particular, asymptotic initial data for the Kerr-de

Sitter spacetime is obtained and a local existence result for spacetimes arising from

asymptotic initial data close to that of the Kerr-de Sitter spacetime is obtained.

The singular behaviour of the asymptotic initial data for the rescaled Weyl tensor

at the asymptotic points Q and Q′ of the Schwarzschild-de Sitter spacetime is not

completely unexpected. Actually, one of the main difficulties in establishing a global

result for the stability of the Minkowski spacetime using conformal methods lies on

the fact that the initial data for the conformal Einstein field equations are not smooth

at i0. In [11] the initial data are not prescribed on a Cauchy hypersurface but on

a hyperboloid H̃ whose conformal extension in M intersects I . In the case of the

problem of spatial infinity i0, a milestone in the resolution of this problem is the

construction, originally introduced in [27], of a new representation of spatial infinity

known as the cylinder at spatial infinity. With this motivation in mind, and the fact

that the analysis of conserved quantities at null infinity —the so-called Newman-

Penrose constants— has gained some interest recently due to the discussion given

in [28], in Chapter 7, the framework of the cylinder at spatial infinity is exploited

for the analysis of the Newman-Penrose constants. More specifically, the framework

of the cylinder at spatial infinity is used to clarify the correspondence between

data on a spacelike hypersurface for the spin-1 and spin-2 fields —representing the

Maxwell spinor and the linearised gravitational field, respectively— propagating

on a Minkowski background and the value of their corresponding Newman-Penrose

constants at future and past null infinity. In particular, it was shown that the

electromagnetic NP constants at future and past null infinity case, are related to

each other as they arise from the same terms in the initial data.

Collectively, these results show how the conformal Einstein field equations and

more generally conformal methods can be employed for analysing perturbations of

spacetimes of interest and extract information about their conformal structure.

1.5 Structure of this thesis

In Chapter 2 the conformal Einstein equations are presented and first order hy-

perbolic reduction strategies are discussed. Chapter 3 contains the first result of

this thesis, a second order hyperbolic reduction of the spinorial formulation of the

conformal Einstein field equations —see Proposition 1 and 2. Chapter 4 makes use

of the latter equations to give a discussion of the non-linear stability of the Milne

universe —see Main Result 1. Chapter 5 is devoted to the analysis of perturba-
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tions of the Schwarzschild-de Sitter spacetime via suitably posed asymptotic initial

value problems —see Main Result 2. Chapter 6 provides with a generalisation of

the results of Chapter 5, more specifically, an existence result for perturbations of

the Kerr-de Sitter spacetime is given —see Theorem 4. Finally a result relating the

Newman Penrose constants at future and past null infinity for spin-1 and spin-2

fields propagating on Minkowski spacetime close to spatial infinity is discussed in

Chapter 7 exploiting the framework of the cylinder at spatial infinity —see Main

Result 3.

1.6 Notation and Conventions

The signature convention for (Lorentzian) spacetime metrics is (+,−,−,−). In these

conventions the cosmological constant λ of the de Sitter spacetime takes negative

values. Cosmological constants with negative (positive) values will be said to be

de Sitter-like (anti-de Sitter-like). In what follows, the Latin indices a, b, c, . . . are

used as abstract tensor indices while the boldface Latin indices a, b, c, . . . are used

as spacetime frame indices taking the values 0, . . . , 3. In this way, given a basis

{ea}, a generic tensor is denoted by Tab while its components in the given basis are

denoted by Tab ≡ Tabea
aeb

b. The indices i, j , k, . . . are reserved to denote frame

spatial indices respect to an adapted frame taking the values 1, 2, 3. Round and

square brackets enclosing a group of indices (abstract or frame) will be used to

denote symmetrisations and antisymmetrisations respectively, so that

T(ab) =
1

2
(Tab + Tba), T[ab] =

1

2
(Tab − Tba).

In addition the curly brackets will be used to denote the tracefree part of tensors,

e.g.,

T{ab} = Tab −
1

4
Tgab

where T = gabTab. Similar definitions hold for higher order tensors. For spinorial

expressions the conventions and notation of Penrose & Rindler [29] will be used.

In particular, A, B, C , . . . are abstract spinorial indices while A, B, C , . . . will de-

note frame spinorial indices with respect to some specified spin dyad {εAA}. The

conventions for the curvature tensors will be fixed by the relation

(∇a∇b −∇b∇a)v
c = Rc

dabv
d.

Although index notation will be preferred, for clarity some expressions will be writ-

ten in index free notation, in this regard the conventions used in this thesis are the

following: covectors will be denoted with bold Greek letters while vectors with bold

Latin letters. Similarly a covector ω ∈ T ∗|p(M) acting on a vector v ∈ T |p(M) is
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denoted by 〈ω,v〉 ∈ R. If a metric g is provided then the symbols [ and ] (mu-

sical isomorphisms) are used to denote the action of rise or lower indices in index

free notation. Namely, v[ ∈ T ∗|p(M) represents the index free version of gabv
b and

ω] ∈ T |p(M) represents the index free version of gabωa. Given a map ϕ : U → V
and ω ∈ T ∗q V the pull-back of this covector to T ∗ϕ−1(q)U is denoted by ϕ∗ω. Similarly,

given a vector v ∈ TpU the push-forward of this vector to Tϕ(p)V is denoted by ϕ∗v.

Nevertheless, in a slight abuse of notation ϕ(U) and V will be frequently identified

and the map ϕ will be omitted. In addition, D+(A), H+(A), J+(A) and I+(A)

will denote the future domain of dependence, the future Cauchy horizon, causal

and chronological future of A, respectively. The past counterparts will be denoted

changing + by − in the above notation —see [2, 30].



2 The conformal Einstein field

equations

2.1 The standard conformal Einstein field

equations

As previously discussed, the are three formulations of the standard conformal Ein-

stein field equations; the metric, frame and spinorial one. Despite being equivalent,

each formulation is better suited depending on the problem that one is to analyse.

The standard conformal Einstein field equations were originally introduced in [11].

In this section the conformal Einstein field equations are presented and the rela-

tion between the three different formulations briefly discussed —see [11, 31, 32] for

derivations and further discussion. These formulations of the conformal Einstein

field equations are well suited to analyse non-vacuum spacetimes with trace-free

matter content, i.e., T̃a
a = 0 —e.g., electrovacuum spacetimes. Nevertheless, as all

the applications of these equations discussed in this thesis are restricted to vacuum

spacetimes, in the following, the vacuum Einstein field equations (1.9) will be simply

referred as the Einstein field equations.

2.1.1 Conformal rescalings

Two spacetimes (M, g) and (M̃, g̃) are said to be conformally related if g and g̃

are related as in equation (1.10). In a slight abuse of notation ϕ(M̃) andM\I are

identified and the mapping ϕ : M̃ →M will be omitted. Consistently one writes

gab = Ξ2g̃ab.

For the subsequent discussion it is necessary to introduce some notation first. The

physical Schouten tensor L̃ab is defined as follows

L̃ab ≡
1

2
R̃ab −

1

12
R̃g̃ab, (2.1)

18
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where R̃ab and R̃ represent, respectively, the Ricci tensor and Ricci scalar of g̃ab.

The unphysical Schouten tensor Lab is defined in analogous way

Lab ≡
1

2
Rab −

1

12
Rgab. (2.2)

Notice that using expression (2.1) the Einstein field equations (1.9) can be rewritten

in terms of the physical Schouten tensor as

L̃ab =
1

6
λg̃ab. (2.3)

Remark 3. The motivation for the introduction of the Schouten tensor will be

clarified when discussing the conformal Einstein field equations in the remainder of

this chapter. Despite that in the conformal Einstein field equations one could replace

the Schouten tensor by the Ricci tensor and the Ricci scalar, the Schouten tensor

appears naturally in the equations due to its conformal transformation properties.

2.1.2 Frame formulation of the standard conformal

Einstein field equations

Let {ea} denote a set of frame fields onM and let {ωa} be the associated coframe.

Accordingly, one has that 〈ωa, eb〉 = δb
a. One defines the frame metric as gab ≡

g(ea, eb) —in abstract index notation gab ≡ ea
aeb

bgab. In the subsequent dis-

cussion only orthonormal frames will be considered, so that gab = ηab, where

ηab = diag(1,−1,−1,−1). The metric g is then expressed in terms of the coframe

{ωa} as

g = ηabω
a ⊗ ωb.

The connection coefficients Γ̀a
c
b of a connection ∇̀ —which is not assumed to be

the Levi-Civita connection of g— with respect to the frame {ea} are defined via the

relation

∇̀aeb = Γ̀a
c
bec,

where ∇̀a ≡ eaa∇̀a denotes the covariant directional derivative in the direction of

ea. The torsion Σ̀ of ∇̀ can be expressed in terms of the frame {ea} and the

connection coefficients Γ̀a
c
b via

Σ̀a
c
bec = [ea, eb]− (Γ̀a

c
b − Γ̀b

c
a)ec.

Since different connections will be used, all the geometrical objects derived from

each connection will carry a symbol over the kernel letter to denote the connection

from which they were defined. The symbols ∇ and ∇̃ will be reserved for the Levi-

Civita connection of the metrics g and g̃. Consistent with this notation one has

that Σa
c
b = 0. The connection coefficients of ∇ and ∇̃ are related to each other
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through the expression

Γa
c
b = Γ̃a

c
b + Sab

cdΥd, (2.4)

where

Sab
cd ≡ δa

cδb
d + δb

cδa
d − ηabηcd and Υa ≡ Ξ−1∇aΞ.

In particular, observe that the 1-form Υ ≡ Υaω
a is exact.

Let Rabcd denote the geometric curvature of ∇ —that is, the expression of the

Riemann tensor of ∇ written in terms of derivatives of the connection coefficients

Γa
c
b:

Rabcd ≡ ea(Γb
c
d)− eb(Γacd) + Γf

c
d(Γb

f
a − Γa

f
b) + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f .

The expression of the irreducible decomposition of Riemann tensor Rabcd given by

ρabcd ≡ Ξdabcd + 2Sb[c
afLd]f . (2.5)

will be called the algebraic curvature. In the last expression Lab denotes the Schouten

tensor of g and dabcd represents the so-called rescaled Weyl tensor, defined as

dabcd ≡ Ξ−1Cabcd,

where Cabcd is the conformally invariant Weyl tensor (C̃a
bcd = Ca

bcd). Despite

the fact that the definition of the rescaled Weyl tensor may look singular at the

conformal boundary, it can be shown that under suitable assumptions the tensor

dabcd is regular even when Ξ = 0 —see Remark 4. Finally, let s —the so-called

Friedrich scalar— denote the scalar field defined as

s ≡ 1

4
∇a∇aΞ +

1

24
RΞ,

where R is the Ricci scalar of g. Using the above definitions one can write the frame

version of the conformal Einstein field equations as

Σa
c
b = 0, Ξcdab = 0, Zab = 0, Za = 0, (2.6a)

∆abc = 0, Λabc = 0, Z = 0, (2.6b)

where the so-called, zero-quantities are defined via

Σa
c
bec ≡ [ea, eb]− (Γa

c
b − Γb

c
a)ec, (2.7a)

Ξcdab ≡ Rcabd − ρcabd, (2.7b)

Zab ≡ ∇a∇bΞ + ΞLab − sηab, (2.7c)

Za ≡ ∇as+ Lac∇cΞ, (2.7d)
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Λbcd ≡ ∇adabcd, (2.7e)

∆cdb ≡ ∇cLdb −∇dLcb −∇aΞdabcd, (2.7f)

Z ≡ 6Ξs− 3∇aΞ∇aΞ− λ. (2.7g)

The starting point for the derivation of the conformal Einstein field equations is

similar to that leading to the singular equation (1.12) of Chapter 1; one writes

the conformal transformation law for the Schouten tensor and uses the Einstein

field equations as written in equation (2.3) to replace the physical Schouten tensor.

This equation is encoded in the zero-quantity Zab. The main conceptual difference

with respect to the formally singular equation (1.12) is that the equation Zab = 0

is read not as an equation for the metric but as an equation for the conformal

factor Ξ. The appearance of the scalar field s in the equation Zab = 0 requires the

construction of a suitable equation for this field. Considering∇bZab = 0, commuting

covariant derivatives and using the contracted second Bianchi identity renders such

an equation. This equation has been encoded in the zero-quantity Za. In the frame

version of the conformal Einstein field equations, the metric is not an unknown of the

system, instead, equations for the frame ea need to be incorporated. The equation

for the frame is encoded in Σa
c
b = 0 which describes the fact that the connection

∇ is torsion-free. Consistent with this spirit, the appearance of the Schouten tensor

in equation Za is not seen as representing second order derivatives of the metric

but as an unknown which has to satisfy an equation of its own. Such equations for

the curvature tensors are the content of the zero-quantities ∆abc, Λbcd and Ξdabc.

In particular, equations ∆cdb = 0 and Λbcd = 0 encode the contracted second

Bianchi identity. The equation Ξabcd = 0 expresses that the algebraic and geometric

curvature coincide. The equation Z = 0 encodes the fact that λ is a constant. It is

sufficient to demand that this equation holds only at one point p ∈M since, the rest

of the equations in (2.6a)-(2.6b) imply that ∇aZ = 0. Finally, observe that once the

conformal factor Ξ and frame ea are determined, one can obtain the corresponding

dual coframe ωa —provided that det(ηabea ⊗ eb) 6= 0— and the physical metric g̃

can be reconstructed as g̃ = Ξ−2ηabω
a ⊗ ωb.

Lemma 1. Let

{Ξ, ea, s,Γacb, Lab, dabcd}

denote a solution to the frame conformal Einstein field equations with Γa
c
b satisfying

the metric compatibility condition

Γa
d
bηdc + Γa

d
cηbd = 0

and such that

Ξ 6= 0, det(ηabea ⊗ eb) 6= 0,

in an open set U ⊂ M. Then the metric g̃ = Ξ−2ηabω
a ⊗ ωb where ωa is the dual
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frame to ea, is a solution to the Einstein field equations (1.9) on U .

A detailed proof of this Lemma can be found in [11] and [13]. The proof of

this Lemma exploits the geometrical significance that the conformal Einstein field

equations encode. In particular, if Σa
c
b = 0 then Γa

b
c correspond to the connection

coefficients with respect of {ea} of the Levi-Civita connection of g = ηabω
a ⊗ ωb.

Equations Ξcabd = 0, Λbcd = 0 and ∆cbd = 0 ensure that Lab and Cabcd ≡ Ξdabcd

are the components of the Schouten and Weyl tensors of ∇ respect to the frame

{ea}. Finally, equations Zab = 0 and Za = 0 imply that g̃ = Ξ−2gab satisfy the

Einstein field equations —expressed as in equation (2.3)— on U .

2.1.3 The metric conformal Einstein field equations

The derivation of the equations (2.7c)-(2.7g) can be done in formally identical way

in abstract index notation i.e., without making reference to a frame ea. In other

words, in the metric formulation one considers the following zero-quantities:

Zab ≡ ∇a∇bΞ + ΞLab − sgab, (2.8a)

Za ≡ ∇as+ Lac∇cΞ, (2.8b)

Λbcd ≡ ∇ad
a
bcd, (2.8c)

∆cdb ≡ ∇cLdb −∇dLcb −∇aΞd
a
bcd, (2.8d)

Z ≡ 6Ξs− 3∇aΞ∇aΞ− λ. (2.8e)

The main conceptual difference is that in this formulation the Cartan structure

equations for the frame ea encoded in the zero-quantities (2.7a) and (2.7b) are

not required. In this formulation, however, one needs to supplement the system

encoded in the zero-quantities (2.8a)-(2.8e) with an equation for the unphysical

metric. To do so, one considers equation (2.2) expressed in some local coordinates

(xµ). Recalling that, in local coordinates the components of the Ricci tensor can be

written as second order derivatives of the metric one obtains the required equation

for the unphysical metric. In concrete applications the choice of coordinates is

a subtle point since not every choice would lead to an equation of recognisable

form. An additional complication of this strategy is that for applications one has

to analyse a system of mixed order. This approach is closer in spirit to the classical

treatment of the Cauchy problem in General Relativity in [4]. Nevertheless, in view

of the applications discussed in this thesis, the frame and spinorial versions of the

conformal Einstein field equations will be preferred.
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2.1.4 Spinorial formulation of the standard conformal

Einstein field equations

A spinorial version of the extended conformal Einstein field equations (2.6a)-(2.6b)

is readily obtained by suitable contraction with the Infeld-van der Waerden symbols

σaAA′ . Given the components Tab
c of a tensor Tab

c respect to a frame ea field, the

components of its spinorial counterpart are given by

TAA′BB′
CC′ ≡ Tab

cσAA′
aσBB′

bσCC
′
c,

where

σAA′
0 ≡ 1√

2

Ñ
1 0

0 1

é
, σAA′

1 ≡ 1√
2

Ñ
0 1

1 0

é
, (2.9a)

σAA′
2 ≡ 1√

2

Ñ
0 −i

i 0

é
, σAA′

3 ≡ 1√
2

Ñ
1 0

0 −1

é
, (2.9b)

and

σAA
′
0 ≡ 1√

2

Ñ
1 0

0 1

é
, σAA

′
1 ≡ 1√

2

Ñ
0 1

1 0

é
, (2.9c)

σAA
′
2 ≡

1√
2

Ñ
0 i

−i 0

é
, σAA

′
3 ≡

1√
2

Ñ
1 0

0 −1

é
. (2.9d)

In particular, the spinorial counterpart of the frame metric gab = ηab is given by

gAA′BB′ ≡ εABεA′B′ . In turn, the frame ea and coframe ωa imply a spinorial frame

eAA′ and a coframe ωAA such that

g(eAA′ , eBB′) = εABεA′B′ .

If one denotes with the same kernel letter the unknowns of the frame version of

the conformal Einstein field equations one is lead to consider the following spinorial

zero-quantities:

ΣAA′
QQ′

BB′eQQ′ ≡ [eBB′ , eAA′ ]−
Ä
ΓAA′

CC′
BB′ − ΓBB′

CC′
AA′
ä
eCC′ , (2.10a)

ΞCC
′
DD′AA′BB′ ≡ RCC

′
DD′AA′BB′ − ρCC

′
DD′AA′BB′ , (2.10b)

ZAA′BB′ ≡ ∇AA′∇BB′Ξ + ΞLAA′BB′ − sεABεA′B′ , (2.10c)

ZAA′ ≡ ∇AA′s+ LAA′CC′∇CC
′
Ξ, (2.10d)

∆CC′DD′BB′ ≡ ∇CC′LDD′BB′ −∇DD′LCC′BB′ −∇AA′ΞdAA
′
BB′CC′DD′ , (2.10e)

ΛBB′CC′DD′ ≡ ∇AA′dAA
′
BB′CC′DD′ , (2.10f)

Z ≡ 6Ξs− 3∇AA′Ξ∇AA
′
Ξ− λ. (2.10g)
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In terms of these zero quantities, the spinorial formulation of the standard conformal

Einstein field equations can be succinctly expressed as

ΣAA′
CC′

BB′ = 0, ΞCC
′
DD′AA′BB′ = 0, ZAA′BB′ = 0, (2.11a)

∆AA′BB′CC′ = 0, ΛAA′BB′CC′ = 0, ZAA′ = 0, Z = 0. (2.11b)

In the spinorial formulation one can exploit the symmetries of the relevant fields

to obtain expressions in terms of lower valence spinors. In particular one has the

following irreducible decompositions:

ΓAA′
BB′

CC′ = ΓAA′
B
CεC′

B′ + Γ̄AA′
B′
C′εC

B, (2.12a)

dAA′BB′CC′DD′ = −φABCDεA′B′εC′D′ − φ̄A′B′C′D′εABεCD. (2.12b)

In the last decomposition φABCD = φ(ABCD) represent the components of the

rescaled Weyl spinor. Namely, φABCD ≡ Ξ−1ΨABCD where ΨABCD is the confor-

mally invariant Weyl spinor.

Remark 4. In the classical theory of asymptotics as discussed in [12, 33] it is shown

that if ΨABCD is smooth at I and T̃ab = O(Ξ3) where T̃ab is the physical energy

momentum tensor, then ΨABCD = O(Ξ) —see Theorem 3.5.3 in [12] and Theorem

10.3 in [13]. As mentioned previously, in the applications of the conformal Einstein

field equations discussed in this thesis T̃ab = 0.

In addition, ΓAA′
B
C ≡ 1

2
ΓAA′

BQ′
CQ′ denote the reduced connection coefficients.

Likewise, the geometric and algebraic curvature spinors can be decomposed as

RCC
′
DD′AA′BB′ = RCDAA′BB′εD′

C′ + R̄C
′
D′AA′BB′εD

C , (2.13a)

ρCC
′
DD′AA′BB′ = ρCDAA′BB′εD′

C′ + ρ̄C
′
D′AA′BB′εD

C , (2.13b)

where

RCDAA′BB′ ≡
1

2
RCQ

′
DQ′AA′BB′ , ρABCC′DD′ ≡

1

2
ρA

Q′
BQ′CC′DD′ .

Explicitly, in terms of the unknowns of the conformal Einstein field equations, the

reduced geometric and algebraic curvature spinors are given by

RCDAA′BB′ = eAA′
Ä
ΓBB′

C
D

ä
− eBB′

Ä
ΓAA′

C
D

ä
−ΓFB′

C
DΓAA′

F
B − ΓBF ′

C
DΓ̄AA′

F ′
B′ + ΓFA′

C
DΓBB′

F
A

+ΓAF ′
C
DΓ̄BB′

F ′
A′ + ΓAA′

C
EΓBB′

E
D − ΓBB′

C
EΓAA′

E
D, (2.14a)

ρABCC′DD′ = −ΞφABCDεC′D′ + LBC′DD′εCA − LBD′CC′εDA. (2.14b)
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Similarly, the zero-quantities can be decomposed as

∆CC′DD′BB′ = ∆CDBB′εC′D′ + ∆̄C′D′BB′εCD,

ΛBB′CC′DD′ = ΛBB′CDεC′D′ + Λ̄B′BC′D′εCD,

where

∆CDBB′ ≡
1

2
∆CQ′D

Q′
BB′ , ΛBB′CD ≡

1

2
ΛBB′CQ′D

Q′ .

Consequently one defines the following reduced spinorial zero-quantities

ΞCDAA′BB′ ≡ RCDAA′BB′ − ρCDAA′BB′ ,

∆CDBB′ ≡ ∇(C
Q′LD)Q′BB′ +∇QB′ΞφCDBQ,

ΛBB′CD ≡ ∇QB′φBCDQ,

With these definitions, the spinorial extended conformal Einstein field equations can

be alternatively written as

ΣAA′
CC′

BB′ = 0, ΞCDAA′BB′ = 0, ZAA′BB′ = 0, (2.15a)

∆CDBB′ = 0, ΛBB′CD = 0, ZAA′ = 0 Z = 0. (2.15b)

The last set of equations is completely equivalent to the equations in (2.11a)-(2.11b).

Moreover, since the equations (2.11a)-(2.11b) are equivalent to (2.6a)-(2.6b) an anal-

ogous result to Lemma 1 follows:

Lemma 2. Let

{Ξ, s, eAA′ ,ΓAA′CB, LAA′BB′ , φABCD}

represent a solution to (2.11a)-(2.11b) with ΓAA′BC satisfying the metric compati-

bility condition

ΓAA′BC = ΓAA′(BC)

and such that

Ξ 6= 0 and det(εABεA
′B′eAA′ ⊗ eBB′) 6= 0,

in an open set U ⊂M. Then the metric

g̃ = Ξ−2εABεA′B′ω
AA′ ⊗ ωBB′

where ωAA
′

is the dual coframe to eAA′, is a solution to the Einstein field equations

(1.9) on U .
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2.2 The extended conformal Einstein field

equations

In this section the necessary notation for discussing the extended conformal Einstein

field equations will be presented. In particular, the notion of a Weyl connection ∇̂
and the relevant transformation formulae between Weyl connections and the Levi-

Civita connection will be discussed. The extended conformal Einstein field equations

were originally introduced in [22] —see also [13, 27, 34–36].

2.2.1 Weyl connections

A Weyl connection ∇̂ is a torsion-free connection satisfying the property

∇̂agbc = −2fagbc, (2.16)

where fa is an arbitrary 1-form —thus, ∇̂ is not necessarily metric. Property (2.16)

is preserved under the conformal rescalings (1.10) as it can be verified that ∇̂ag̃bc =

−2f̃ag̃bc where f̃a ≡ fa + Υa. The connection coefficients of ∇̂ are related to those

of ∇ through the relation

Γ̂a
c
b = Γa

c
b + Sab

cdfd. (2.17)

A Weyl connection is a Levi-Civita connection of some element of the conformal

class [g] if and only if the 1-form fa is exact —compare with equation (2.4). The

Schouten tensors of the connections ∇̂ and ∇ are related to each other by

Lab − L̂ab = ∇afb −
1

2
Sab

cdfcfd (2.18)

Notice that, in general, L̂ab 6= L̂(ab).

2.2.2 Frame formulation of the extended conformal Einstein

field equations

From now on, Weyl connections ∇̂ related to a conformal metric g as in equation

(2.16) will be considered. Let R̂abcd denote the geometric curvature of ∇̂ —that

is, the expression of the Riemann tensor of ∇̂ written in terms of derivatives of the

connection coefficients Γ̂a
c
b:

R̂abcd ≡ ea(Γ̂b
c
d)− eb(Γ̂acd) + Γ̂f

c
d(Γ̂b

f
a− Γ̂a

f
b) + Γ̂b

f
dΓ̂a

c
f − Γ̂a

f
dΓ̂b

c
f . (2.19)
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The expression for the algebraic curvature, namely the irreducible decomposition of

Riemann tensor, is given by

ρ̂abcd ≡ Ξdabcd + 2Sb[c
af L̂b]f , (2.20)

where dabcd is the rescaled Weyl tensor defined as before dabcd = Ξ−1Cabcd. Notice

that the Weyl tensor Ca
bcd with respect to the Weyl connection ∇̂ coincides with

the Weyl tensor of any element of the conformal class [g]. Finally, one introduces a

1-form d defined by the relation

da ≡ Ξfa +∇aΞ.

With the above definitions one can write the extended conformal Einstein field equa-

tions as

Σ̂a
c
b = 0, Ξ̂abcd = 0, ∆̂cdb = 0, Λ̂bcd = 0, (2.21)

where

Σ̂a
c
bec ≡ [ea, eb]− (Γ̂a

c
b − Γ̂b

c
a)ec, (2.22a)

Ξ̂abcd ≡ R̂abcd − ρ̂abcd, (2.22b)

∆̂cdb ≡ ∇̂cL̂bd − ∇̂dL̂cb − dadabcd, (2.22c)

Λ̂bcd ≡ ∇̂adabcd − fadabcd. (2.22d)

The fields Σ̂a
c
b, Ξ̂abcd, ∆̂cdb and Λ̂bcd encoding the extended conformal Einstein

field equations will be called again zero-quantities. The geometric meaning of the

extended conformal field equations is completely analogous to the standard con-

formal Einstein field equations. Nevertheless, observe that, in contrast with the

formulation of the standard conformal Einstein field equations there is no differen-

tial condition for neither the 1-form d nor the conformal factor Ξ. In Section 2.3 it

will be discussed how to fix these fields by adapting the gauge to a congruence of

curves with special conformal properties: conformal geodesics. In order to relate the

extended conformal Einstein equations field equations (2.21) to the Einstein field

equations (1.9) one has to introduce the constraints—see Remark 5

δa = 0, γab = 0, ζab = 0. (2.23)

encoded in the supplementary zero-quantities

δa ≡ da − Ξfa − ∇̂aΞ, (2.24a)

γab ≡ L̂ab +
1

6
λΞ−2ηab − ∇̂a(Ξ−1db)− Ξ−2Sab

cddcdd, (2.24b)

ζab ≡ L̂[ab] − ∇̂[afb]. (2.24c)
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Equation (2.24a) encodes the definition of the 1-form da; equation (2.24b) arises

from the transformation law between the Schouten tensor L̂ab of ∇̂ and the physical

Schouten tensor L̃ab determined by the Einstein field equations as expressed in

equation (2.3); finally, equation (2.24c) relates the antisymmetry of the Schouten

tensor L̂ab to derivatives of the 1-form fa.

Remark 5. The supplementary zero-quantities (2.24a)-(2.24c) are regarded as con-

straints in the sense that they are propagated by conformal evolution equations

extracted from (2.22a)-(2.22d) —see Lemma 8. In other words, it is only required

that (2.24a)-(2.24c) are satisfied on a spacelike hypersurface S.

The precise relation between the extended conformal Einstein field equations and

the Einstein field equations is given by the following lemma:

Lemma 3. Let (ea, Γ̂a
b
c, L̂ab, d

a
bcd) denote a solution to the extended conformal

Einstein field equations (2.21) for some choice of gauge fields (Ξ, da) satisfying the

constraint equations (2.23). Assume, further, that

Ξ 6= 0 and det(ηabea ⊗ eb) 6= 0

on an open subset U ⊂ M̃. Then

g̃ = Ξ−2ηabω
a ⊗ ωb

where {ωa} is the coframe dual to {ea} is a solution to the Einstein field equations

(1.9) on U .

The proof of this lemma can be found in [13, 37].

2.2.3 Spinorial formulation of the extended conformal

Einstein field equations

Proceeding in a similar way as in Section 2.1.4 one can rewrite every frame expression

in spinorial form by contracting with the Infeld-van der Waerden symbols. Denoting

with the same kernel letter the unknowns of the extended conformal Einstein field

equations one has the following zero-quantities

Σ̂AA′BB′ ≡ [eAA′ , eBB′ ]− (Γ̂AA′
CC′

BB′ − Γ̂BB′
CC′

AA′)eCC′ , (2.25a)

Ξ̂CC
′
DD′AA′BB′ ≡ R̂CC

′
DD′AA′BB′ − ρ̂CC

′
DD′AA′BB′ , (2.25b)

∆̂CC′DD′BB′ ≡ ∇̂CC′L̂DD′BB′ − ∇̂DD′L̂CC′BB′ − dAA′dAA
′
BB′CC′DD′ , (2.25c)

Λ̂BB′CC′DD′ ≡ ∇̂AA′dAA
′
BB′CC′DD′ − fAA′dAA

′
BB′CC′DD′ . (2.25d)
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The spinorial version of the extended conformal Einstein field equations are then

succinctly written as

Σ̂AA′
QQ′

BB′eQQ′ = 0, Ξ̂CC
′
DD′AA′BB′ = 0, (2.26a)

∆̂CC′DD′BB′ = 0, Λ̂BB′CC′DD′ = 0. (2.26b)

As discussed for the frame formulation, in order to relate the extended conformal

Einstein field equations to the Einstein field equations one has to introduce the

constrains

δAA′ = 0, γAA′BB′ = 0, ζAA′BB′ = 0, (2.27)

where δAA′ , γAA′BB′ and ζAA′BB′ denote the spinorial counterpart of the supple-

mentary zero-quantities given in equations (2.24a)-(2.24c).

As discussed in Section 2.1.4, one of the advantages of the spinorial formulation

is that one can exploit the symmetries to express dAA
′
BB′CC′DD′ and Γ̂AA′

BB′
CC′

in terms of the lower valence spinors

φABCD, Γ̂AA′
B
C ,

satisfying formally identical expressions of those of equations (2.12a)-(2.12b). Due to

the fact that ∇̂ is not metric, the reduced connection coefficients does not necessarily

posses the symmetry ΓAA′CD = ΓAA′(CD) which holds for the reduced connection

coefficients of a Levi-Civita connection. Observe that a Weyl connection ∇̂ reduces

to the Levi-Civita connection of an element in the conformal class [g] if and only if

the 1-form f is exact. In addition, notice that the transformation formula for the

connection coefficients given in (2.17) is simpler in spinorial notation. In fact one

has that

Γ̂CC′AB = ΓCC′AB − εACfBC′ .

The expressions for geometric and algebraic curvature can be decomposed in a anal-

ogous way as in equation (2.13a) and (2.13b) The reduced geometric and algebraic

curvature read

R̂CDAA′BB′ = eAA′
Ä
Γ̂BB′

C
D

ä
− eBB′

Ä
Γ̂AA′

C
D

ä
−Γ̂FB′

C
DΓ̂AA′

F
B − Γ̂BF ′

C
D

¯̂
ΓAA′

F ′
B′ + Γ̂FA′

C
DΓ̂BB′

F
A

+Γ̂AF ′
C
D

¯̂
ΓBB′

F ′
A′ + Γ̂AA′

C
EΓ̂BB′

E
D − Γ̂BB′

C
EΓ̂AA′

E
D,

ρ̂ABCC′DD′ = −ΞφABCDεC′D′ + L̂BD′CC′εDA − L̂BC′DD′εCA.

From the last expressions one can notice that, in contrast with the Levi-Civita case,

the contractions

R̂QQAA′BB′ = ∇̂AA′fBB′−∇̂BB′fAA′ , ρ̂QQCC′DD′ = L̂CC′DD′−L̂DD′CC′ , (2.28)
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do not necessarily vanish. Accordingly, one defines the following reduced zero-

quantities

Ξ̂CDAA′BB′ = R̂CDAA′BB′ − ρ̂CDAA′BB′ , (2.29)

∆̂CDBB′ = ∇̂(C
Q′L̂D)Q′BB′ + dQB′φCDBQ, (2.30)

Λ̂BB′CD = ∇̂QB′φBCDQ − fQB′φBCDQ. (2.31)

Henceforth, the spinorial extended conformal Einstein field equations will be alter-

natively written as

Σ̂AA′
QQ′

BB′ = 0, Ξ̂CDAA′BB′ = 0, ∆̂CDBB′ = 0, Λ̂BB′CD = 0. (2.32)

The last set of equations is completely equivalent to the equations (2.26a)-(2.26b). In

turn, equations encoded in (2.26a)-(2.26b) are equivalent to the frame formulation of

the extended conformal Einstein field equations given in equation (2.21). Therefore,

a result analogous to Lemma 3 can be formulated:

Lemma 4. Let

(eAA′ , Γ̂AA′
B
C , L̂AA′BB′ , φABCD)

denote a solution to the spinorial formulation of the extended conformal Einstein

field equations (2.32) for some choice of gauge fields (Ξ, dAA′) satisfying the con-

straint equations (2.27). Assume further that

Ξ 6= 0 and det(εABεA
′B′eAA′ ⊗ eBB′) 6= 0,

on an open subset U ⊂ M̃. Then

g̃ = Ξ−2εABεA′B′ω
AA′ ⊗ ωBB′ ,

where ωAA
′

is the dual coframe to eAA′, is a solution to the Einstein field equations

(1.9) on U .

2.3 Conformal geodesics and conformal Gaussian

systems

In this section the notion of conformal geodesics and conformal Gaussian systems

is introduced. Additionally, it is discussed how to exploit the conformal geodesic

equations to fix the gauge in the extended conformal Einstein field equations. Then,

using the space spinor formalism, also briefly discussed in this section, it is shown

how to extract a system of first order evolution equations from the extended con-

formal Einstein field equations. A discussion of the propagation of the constraints
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is also provided.

2.3.1 Conformal Geodesics

The following definitions are important for the subsequent discussion.

Definition. A conformal geodesic on spacetime (M̃, g̃) consist of a pair (x(τ),β(τ)),

where x(τ) is a curve on M̃, τ ∈ I ⊂ R with tangent ẋ and β is a 1-form defined

along x(τ), satisfying the equations

ẋc∇̃cẋ
a = −ẋdẋbSdbafβf (2.33a)

ẋc∇̃cβa = 1
2
ẋcSca

bdβbβd + L̃caẋ
c. (2.33b)

where L̃ab denotes the Schouten tensor of ∇̃ and Sab
cd encodes the tensor introduced

in Section 2.1.2.

Definition. A frame ea on M̃ is said to be Weyl propagated along a conformal

geodesic (x(τ),β(τ)) if it satisfies

ẋc∇̃cea
a = −Scdafeadẋcβf .

The motivation for considering curves satisfying equations (2.33a)-(2.33b) is un-

derstood when one observes their behaviour under conformal transformations and

transitions to Weyl connections. Given an arbitrary 1-form Ùf consider its associated

Weyl connection ı∇ i.e., such that ı∇agbc = −2 Ûfagbc. Then, defining Ùβ ≡ β − Ùf the

pair (x(τ), Ùβ(τ)) will satisfy the equations

ẋcı∇cẋ
a = −ẋdẋbSdbaf Ûβf ,

ẋcı∇c
Ûβa = 1

2
ẋcSca

bd Ûβb Ûβd + ÙLcaẋc,
where ÙLab is the Schouten tensor of ı∇. Notice that if one chooses a Weyl connection

∇̂ whose defining 1-form f coincides with the 1-form β of the ∇̃-conformal geodesic

equations (2.33a)-(2.33b), then the conformal geodesic equations reduce to

ẋc∇̂cẋ
a = 0, L̂abẋ

b = 0. (2.34)

Similarly, the Weyl propagation of the frame becomes

ẋc∇̂cea
a = 0. (2.35)

The conformal geodesics equations admit more general reparametrisations than

the usual affine parametrisation of metric geodesics. This is summarised in the

following lemma:
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Lemma 5. The admissible reparametrisations mapping (non-null) conformal geodesics

into (non-null) conformal geodesics are given by fractional transformations of the

form

τ 7→ aτ + b

cτ + d

where a, b, c, d ∈ R.

The proof of this lemma can be found in [37] —see also [13, 38].

2.3.2 Conformal Gaussian systems

Besides their conformal invariance a major motivation for the introduction of con-

formal geodesics in the analysis of spacetimes by means of the extended conformal

Einstein field equations is that they provide a geometric way for fixing the gauge

fields (Ξ,d) of Lemma 4. Assume that an open set U ⊂ M̃ of a spacetime (M̃, g̃)

can be covered by non-intersecting congruence of conformal geodesics. If one identi-

fies the timelike leg of the tetrad {ea} with the tangent to the curves, e0 = ẋ, then

one can single out a conformal factor Θ by requiring

g(ẋ, ẋ) = 1, g = Θ2g̃. (2.36)

The last equation states that the parametrisation of the curve x(τ) is chosen so

that the tangent vector ẋ is g-normalised. It follows from the condition (2.36) by

successive application of ∇ẋ —a derivative in the direction of ẋ, e.g., Θ̇ ≡ ∇ẋΘ—

and using the conformal geodesic equations (2.33a)-(2.33b) that the conformal factor

Θ satisfies

Θ̇ = βaẋ
aΘ, (2.37)

Θ̈ = 1
2
Θ(g̃abẋ

aẋb)(g̃cdβcβd) + ΘL̃abẋ
aẋb, (2.38)

...
Θ = (∇̃ẋ(L̃abẋ

aẋb) + (L̃abg̃
bcβcẋ

a)(g̃pqẋ
pẋq) + βcẋ

cL̃abẋ
aẋb)Θ. (2.39)

Moreover one can verify that

∇̃ẋ(gabea
aeb

b) = 0.

Therefore, if the frame {ea} is orthogonal at one point of the conformal geodesic it

will remain orthonormal along the conformal geodesic. If (M̃, g̃) is a solution to the

vacuum Einstein field equations one can use equation (2.3) to show that the right

hand side of equation (2.39) vanishes. This observation is contained in the following

key result:

Lemma 6. Let (M̃, g̃) be a spacetime where g̃ is a solution to the vacuum Einstein

field equations (1.9). Moreover, let (x(τ),β(τ)) satisfy the conformal geodesic equa-

tions (2.33a)-(2.33b), let τ? ∈ R be an arbitrary constant defining the value of τ at
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a fiduciary point on the conformal geodesic and let {ea} denote a Weyl propagated

g-orthonormal frame along x(τ) with

g ≡ Θ2g̃,

such that

g(ẋ, ẋ) = 1.

Then the conformal factor Θ is given, along x(τ), by

Θ(τ) = Θ? + Θ̇?(τ − τ?) +
1

2
Θ̈?(τ − τ?)2, (2.40)

where the coefficients Θ? ≡ Θ(τ?), Θ̇? ≡ Θ̇(τ?) and Θ̈? ≡ Θ̈(τ?) are constant along

the conformal geodesic and satisfy the constraints

Θ̇? = 〈β?, ẋ?〉Θ?, Θ?Θ̈? =
1

2
g̃](β?,β?) +

1

6
λ. (2.41)

Moreover, along each conformal geodesic

Θβ0 = Θ̇, Θβi = Θ?βi?,

where βa ≡ 〈β, ea〉.

Finally the gauge field d can be specified via d ≡ Θβ. The constraints for the

initial data for Θ can then be written in terms of d as

Θ̇? = 〈d?, ẋ?〉, Θ?Θ̈? =
1

2
g](d?,d?) +

1

6
λ.

The proof of this Lemma and a further discussion of the properties of conformal

geodesics can be found in [13, 22].

For spacetimes with a spacelike conformal boundary the relation between metric

geodesics and conformal geodesics is particularly simple. This observation is the

content of the following:

Lemma 7. Any conformal geodesic leaving I + (I −) orthogonally into the past

(future) is up to reparametrisation a timelike future (past) complete geodesic for the

physical metric g̃. The reparametrisation required is determined by

dτ̃

dτ
=

1

Θ(τ)
(2.42)

where τ̃ is the g̃-proper time and τ is the g-proper time and g = Θ2g̃.

The proof of this Lemma can be found in [39].
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Conformal Gaussian systems

Assume, as before, that there exists a region U of the spacetime (M̃, g̃) which can

be covered by non-intersecting conformal geodesics. Furthermore, suppose that the

tangent vector ẋ? ≡ ẋ(τ?) is orthogonal to some spacelike hypersurface S̃ ⊂ U
determined locally by the condition τ = τ?. The conformal factor is determined

by equation (2.39) and specification of the initial data Θ?, Θ̇? and Θ̈? on S̃. As

discussed in the previous section on the construction of a conformal Gaussian system

one identifies the tangent to the conformal curve (x(τ),β(τ)) with the time leg of

the g-orthonormal tetrad {ea} —i.e. one sets e0 = ẋ. This gauge choice can be

specialised further by using the parameter τ along the conformal geodesics as a time

coordinate so that

e0 = ∂τ . (2.43)

To construct a spacetime system of coordinates consider some local (spatial) co-

ordinates (xα) on S which are extended off the initial hypersurface S by requir-

ing them to remain constant along a conformal geodesic. Namely, if a conformal

geodesic intersects S at a point p with coordinates (xα? ) then the points in the con-

formal geodesic will have coordinates (τ, xα? ). With the above prescription (τ, xα)

constitute a conformal Gaussian coordinate system on U . This choice of gauge

naturally leads to consider a 1+3 decomposition of the field equations. Another

advantageous feature of considering a conformal Gaussian system is that the the

conformal geodesic equations, as written in equations (2.34) and (2.35) imply the

gauge conditions

Γ̂0
a
b = 0, L̂0a = 0, f0 = 0. (2.44)

2.3.3 The g̃-adapted equations

In the last section it was shown that imposing that τ corresponds to the g-proper

time readily selects a representative of the conformal class. However, for some appli-

cations it is more convenient to consider parametrisation of the conformal geodesics

in terms of the (physical) g̃-proper time τ̃ . To reexpress the conformal geodesic

equations in terms of the physical proper time consider the parameter transforma-

tion τ̃ = τ̃(τ) given by

τ̃ = τ̃? +
∫ τ

τ?

ds

Θ(s)
, (2.45)

with inverse τ = τ(τ̃). In what follows let x̃(τ̃) ≡ x(τ(τ̃)). It can then verified that

x̃′ ≡ dx̃

dτ̃
= Θẋ, (2.46)

and that

g̃(x̃′, x̃′) = 1
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so that τ̃ is the g̃-proper time of the curve x̃(τ̃). In order to write the equation for

the curve x̃(τ̃) in a convenient way, one considers the split

β = β̃ +$ẋ[, (2.47)

where the 1-form β̃ satisfies

〈β̃, ẋ〉 = 0, $ ≡ 〈β, ẋ〉
g̃(ẋ, ẋ)

, g](β,β) = 〈β, ẋ〉2 + g](β̃, β̃).

Moreover, one can verify that,

g̃(ẋ, ẋ) = Θ−2 〈β, ẋ〉 = Θ−1Θ̇ $ = ΘΘ̇ (2.48)

In terms of these objects the g̃-adapted equations for the conformal curves are given

by

∇̃x̃′x̃′ = β̃], (2.49a)

∇̃x̃′β̃ = β̃2x̃′[, (2.49b)

where β̃2 ≡ −g̃](β̃, β̃) is constant along a given conformal geodesic.

2.4 Conformal evolution equations and

hyperbolic reduction strategies

In view of the tensorial nature of the conformal Einstein field equations, to make

assertions about the existence and properties of their solutions, it is necessary to

derive from them a suitable evolution system to which the theory of hyperbolic par-

tial differential equations can be applied. This procedure is known as a hyperbolic

reduction. Part of the hyperbolic reduction procedure consists of a specification of

the gauge inherent to the equations. A systematic way of proceeding to the specifi-

cation of the gauge is through so-called gauge source functions. These functions are

associated to derivatives of the field unknowns which are not determined by the field

equations. This idea can be used to extract a first order symmetric hyperbolic sys-

tem of equations for the field unknowns for the metric, frame and spinorial versions

of the standard conformal Einstein field equations.

In the other hand, the extended conformal Einstein field equations are expressed

in terms of Weyl connections and, thus, contain a bigger gauge freedom than the

standard conformal equations. This opens the possibility of an alternative approach

to gauge fixing; adapting the gauge to a congruence of conformal geodesics —see

[37, 39]. As previously discussed, this is advantageous since, in vacuum, conformal

geodesics allow to fix the conformal freedom by selecting a canonical representative
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of the conformal class [g̃]. In this manner, one gains a priori knowledge of the

conformal boundary of the spacetime.

Remark 6. The conformal factor given in Lemma 6 is canonical in the sense that

if g̃ is a vacuum solution to the Einstein field equations and g = Θ2g̃ then requiring

g(ẋ(τ), ẋ(τ)) = 1 fixes the form of the conformal factor Θ to be a quadratic function

of τ .

2.4.1 Space spinor formalism

In what follows, let the Hermitian spinor τAA
′

denote the spinor counterpart of the

vector
√

2e0
a. In addition, let {εAA} with ε0

A = oA, ε1
A = ιA denote a spinor dyad

such that

τAA
′
= ε0

Aε0′
A′ + ε1

Aε1′
A′ . (2.50)

The normalisation τAA
′
τAA′ = 2, has been chosen in accordance with the conventions

of [17]. In what follows let τAA
′

denote the components of τAA
′

respect to {εAA}.
The Hermitian spinor τAA

′
can be used to perform a space spinor split of the frame

{eAA′} and coframe {ωAA′}. Namely, one can write

eAA′ =
1

2
τAA

′
e− τBA′eAB, ωAA

′
=

1

2
τAA

′
ω + τC

A′ωCA, (2.51)

where

e ≡ τPP
′
ePP ′ , eAB ≡ τ(A

P ′eB)P ′ , ω ≡ τPP ′ω
PP ′ , ωAB = −τ (AP ′ωB)P ′ .

In this formalism one defines the spatial Infeld-van der Waerden symbols by σAB
i ≡

τ(A
A′σB)A′

i. A direct computation shows that the components of the Infeld-van der

Waerden symbols can be read from the matrices

σAB
1 ≡ 1√

2

Ñ
−1 0

0 1

é
, σAB

2 ≡ 1√
2

Ñ
i 0

0 i

é
, σAB

3 ≡ 1√
2

Ñ
0 1

1 0

é
,

σAB1 ≡
1√
2

Ñ
−1 0

0 1

é
, σAB2 ≡

1√
2

Ñ
-i 0

0 i

é
, σAB3 ≡

1√
2

Ñ
0 1

1 0

é
. (2.52)

It follows from the space spinor split of the frame encoded in equation (2.51) that

the metric g admits the split

g =
1

2
ω ⊗ ω + hABCDω

AB ⊗ ωCD

where

hABCD ≡ g(eAB, eCD) = −εA(CεD)B.
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Similarly, any general connection ∇̆ can be split as

∇̆AA′ =
1

2
τAA′P − τA′QD̆AQ, (2.53)

where

P ≡ τAA
′∇̆AA′ and D̆AB ≡ τ(B

A′∇̆A)A′ ,

denote, respectively, the derivative along the direction given by τAA
′

and D̆AB is

the Sen connection of ∇̆ relative to τAA
′
.

The Hermitian spinor τAA
′

induces a notion of Hermitian conjugation: given an

arbitrary spinor with components µAB its Hermitian conjugate has components

µ†CD ≡ τC
A′τD

B′µAB = τC
A′τD

B′µA′B′ , (2.54)

where the bar denotes complex conjugation. In a similar manner, one can extend

the definition to contravariant indices and higher valence spinors by requiring that

(πµ)† = π†µ†. As a consequence of this definition, for a spinor µA1A2...An with a

string of n indices, one has that

µ††A1A2...An
= (−1)nµA1A2...An .

Additionally, the Hermitian conjugation operation allows to introduce the notion of

real and imaginary spinors. If a spinor µA1B1...AnBn with 2n indices satisfies

µ†A1B1...AnBn
= (−1)nµA1B1...AnBn ,

it will be said to be real, while if it satisfies

µ†A1B1...AnBn
= (−1)n+1µA1B1...AnBn ,

it will be said to be imaginary.

2.4.2 First order hyperbolic reduction for the standard

conformal Einstein field equations

In [17] it was shown that introducing gauge source functions and exploiting the

so-called, space spinor formalism one can extract from (2.10a)-(2.10g) a symmetric

hyperbolic system of evolution equations. In this section the notion of gauge source

functions is reviewed. For conciseness of the presentation, the hyperbolic reduction

procedure is only sketched by means of a model equation —see [11, 13, 15–17] for a

comprehensive discussion of the space spinor formalism and gauge source functions.

To illustrate the general strategy of the hyperbolic reduction procedure consider the
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model equation

∇AA′ϕBB′ −∇BB′ϕAA′ = GAA′BB′ . (2.55)

Recall that, in general, one can decompose a spinor with the index structure of

GAA′BB′ , as follows

GAA′BB′ = G(AB)(A′B′)+
1

2
εA′B′G(A|Q′|B)

Q′+
1

2
εABGQ(A′

Q
B′)+

1

4
εABεA′B′GQQ′

QQ′ .

Observe from equation (2.55) that GAA′BB′ = −GBB′AA′ . Exploiting this antisym-

metry one can show that the first and last term in the last decomposition vanish.

Now, define

GABK ≡
1

2
G(A|Q′|B)

Q′ ,

and observe that

ḠA′B′K =
1

2
Ḡ(A′|Q|B′)

Q =
1

2
ḠQ(A′

Q
B′).

Thus, the irreducible decomposition of GAA′BB′ is

GAA′BB′ = εA′B′GAB + εABḠAB.

In other words, the information of GAA′BB′ is encoded in the reduced spinor GAB

—this is analogous to the irreducible decomposition relating the Faraday tensor in

terms of the Maxwell spinor as discussed in [12, 40]. Consequently, one can rewrite

the model equation as

∇(A|Q′|ϕB)
Q′ = GAB. (2.56)

Notice that one has performed an irreducible decomposition of the spinors in equa-

tion (2.55), therefore equation (2.56) contains the same information as equation

(2.55). Additionally, observe that

∇AQ′ϕBQ
′
= ∇(A|Q′|ϕB)

Q′ +
1

2
εAB∇QQ

′
ϕQQ′ . (2.57)

From the last expression one concludes that equation (2.56) does not contain infor-

mation about the full derivative ∇AQ′ϕBQ′ but only about its symmetrised part. In

other words, equation (2.56) leaves the divergence ∇QQ′ϕQQ′ completely unspeci-

fied. This observation leads to the notion of gauge source functions. Let F (x) be

an arbitrary smooth function of the coordinates. The divergence in equation (2.57),

encoding the freedom left in the equation (2.56), will be generically called gauge

source function. Using equation (2.56) and taking the above considerations into

account one can construct the following equation for the unknown ϕQAK

∇AQ′ϕBQ
′
= GAB +

1

2
εABF (x). (2.58)

The key observation is that one can extract a symmetric hyperbolic system of
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evolution equations from equation (2.58). This procedure can be generalised for an

equation containing higher valence spinors with similar index structure as the simple

model equation discussed above. The conformal Einstein field equations encoded in

the zero-quantities (2.10a)-(2.10g) have a similar structure to that of the model

equation and an analogous reduction procedure can be implemented. In the rest of

this subsection the gauge source functions defined for the hyperbolic reduction of

the conformal Einstein field equations are listed:

(i) The coordinate gauge source function is defined as

F a(x) ≡ ∇QQ′eQQ′a,

where eaAA′ are the so-called frame coefficients defined via eAA′ = eAA′
aca

where {ca} is a smooth frame field onM and eAA′ is a g-orthonormal frame.

The coordinate gauge source function can be succinctly written in terms of

the frame coefficients and spin coefficients using that

∇AA′eBB′a = eAA′(eBB′
a)− ΓAA′

Q
BeQB′

a − Γ̄AA′
Q′
B′eBQ′

a. (2.59)

(ii) The frame gauge source function is defined as

FAB(x) ≡ ∇QQ′ΓQQ′AB, (2.60)

where ΓQQ′AB are the reduced connection coefficients. Similarly, the frame

gauge source function can be succinctly written in terms of the frame coeffi-

cients and the spin coefficients via

∇EE′ΓFF ′AB = eEE′
Ä
ΓFF ′AB

ä
− ΓEE′

Q
FΓQF ′AB

− Γ̄EE′
Q′
FΓFQ′AB − ΓEE′

Q
AΓFF ′QB − ΓEE′

Q
BΓFF ′AQ. (2.61)

(iii) The conformal gauge source function is given by the Ricci scalar R(x) of g.

This gauge source function fixes the freedom in choosing a representative from

the conformal class [g]. The relation between Ξ and R can be understood in

terms of the conformal transformation law for the Ricci scalar since the latter

implies a wave equation for the conformal factor Ξ where R acts as a source

term —see [16] for further discussion of the role played by the conformal gauge

source function in the formulation of the conformal Einstein field equations.
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2.4.3 First order hyperbolic reduction for the extended

conformal Einstein field equations

The space spinor formalism leads to a systematic split of the extended conformal

Einstein field equations (2.32) into evolution and constraint equations. To this end,

one performs a space spinor split for the fields eAA′ , fAA′ , L̂AA′ , Γ̂AA′
B
C . The

frame coefficients eAA′
a satisfy formally identical splits to those in (2.51), where

eAA′ = eAA′
aca with ca ∈ {∂τ , ci} represent a fixed frame field —the latter is not

necessarily g-orthonormal. Observe that, in terms of tensor frame components, the

gauge condition (2.43) implies that e0
a = δ0

a. The gauge conditions (2.44) and

(2.43) are rewritten as

τAA
′
eAA′ =

√
2∂τ , τAA

′
Γ̂AA′

B
C = 0, τAA

′
L̂AA′BB′ = 0. (2.62)

In addition, one defines

Γ̂ABCD ≡ τB
A′Γ̂AA′CD, ΓABCD ≡ τB

A′ΓAA′CD, fAB ≡ τB
A′fAA′ , (2.63a)

LABCD ≡ τB
A′τD

C′L̂AA′CC′ , ΘABCD ≡ LAB(CD) ΘAB ≡ LABQ
Q. (2.63b)

Recalling equation (2.2.3) one obtains

Γ̂ABCD = ΓABCD − εCAfDA′τBA
′
,

where ΓABCD ≡ τB
A′ΓAA′CD. This relation allows to write the equations in terms

of the reduced connection coefficients of the Levi-Civita connection of g instead

of the reduced connection coefficients of ∇̂. Only the spinorial counterpart of the

Schouten tensor of the connection ∇̂ will not be written in terms of its Levi-Civita

counterpart. Exploiting the notion of Hermitian conjugation given in equation (2.54)

one defines

χABCD ≡ −
1√
2

Ä
ΓABCD + Γ†ABCD

ä
, ξABCD ≡

1√
2

Ä
ΓABCD − Γ†ABCD

ä
,

Observe that χ†ABCD = χABCD while ξ†ABCD = −ξABCD. Consequently χABCD is

real and ξABCD is imaginary—see Section 2.4.1 for the notion of real and imaginary

spinors. Notice that, consistent with these definitions, ΓABCD can be written as as

ΓABCD =
1√
2

(ξABCD − χABCD). (2.64)

One proceeds with the rescaled Weyl spinor defining

ηABCD ≡
1

2

Ä
φABCD + φ†ABCD

ä
, µABCD ≡ −

1

2
i
Ä
φABCD − φ†ABCD

ä
.
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Observe that η†ABCD = ηABCD and µ†ABCD = µABCD so that both ηABCD and

µABCD are real spinors. Consequently, one has

φABCD = ηABCD + iµABCD (2.65)

The latter implies that ηABCD and µABCD can be interpreted as the electric and

magnetic parts of the rescaled Weyl spinor. Observe that the split (2.64) is not an

electric-magnetic decomposition as that of equation (2.65). The gauge conditions

(2.62) can be rewritten in terms of the spinors defined in (2.63a) as

fAB = f(AB), ΓQ
Q
AB = −fAB, L̂Q

Q
AB = 0. (2.66)

The last condition implies the decomposition

L̂ABCD = ΘABCD +
1

2
εCDΘAB,

for the components of the spinorial counterpart of the Schouten tensor of the Weyl

connection where ΘABCD ≡ L̂(AB)(CD) and ΘAB ≡ L̂ABQ
Q.

The fields defined in the previous paragraphs allows to derive from the expressions

τAA
′
Σ̂AA′

PP ′
BB′ePP ′

a = 0, τCC
′
Ξ̂ABCC′DD′ = 0, (2.67a)

τAA
′
∆̂AA′BB′CC′ = 0, τ(A

A′Λ̂|A′|BCD) = 0, (2.67b)

as a set of evolution equations for the fields

χABCD, ξABCD, eAB
0, eAB

i, fAB, ΘABCD, ΘAB, φABCD.

Explicitly, one has that

∂τeAB
0 = −χ(AB)

PQePQ
0 − fAB, (2.68a)

∂τeAB
i = −χ(AB)

PQePQ
i, (2.68b)

∂τξABCD = −χ(AB)
PQξPQCD +

1√
2

(εACχ(BD)PQ + εBDχ(AC)PQ)fPQ,(2.68c)

−
√

2χAB(C
EfD)E −

1

2
(εACΘBD + εBDΘAC)− iΘµABCD, (2.68d)

∂τfAB = −χ(AB)
PQfPQ +

1√
2

ΘAB, (2.68e)

∂τχ(AB)CD = −χABPQχPQCD −ΘABCD + ΘηABCD, (2.68f)

∂τΘABCD = −χ(AB)
PQLPQ(CD) − Θ̇ηABCD + idP (AµB)CDP , (2.68g)

∂τΘAB = −χ(AB)
EFΘEF +

√
2dPQηABPQ, (2.68h)

∂τφABCD −
√

2D(A
QφBCD)Q = 0. (2.68i)
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The following proposition relates the discussion of the conformal evolution equa-

tions and the full set of extended conformal field equations given by (2.21):

Lemma 8 (propagation of the constraints and subsidiary system). Let

(M̃, g̃) be a spacetime where g̃ is a solution to the vacuum Einstein field equations.

Assume that an open set U ⊂ M̃ can be covered by a non-intersecting congruence

of conformal geodesics and that the evolution equations extracted from equations

(2.67a)-(2.67b) and the conformal Gauss gauge conditions (2.66) hold on U . Then,

the components of the zero quantities

Σ̂AA′
BB′

CC′ , Ξ̂ABCC′DD′ , ∆̂AA′BB′CC′ , Λ̂AA′BC δAA′ , γAA′BB′ , ζAA′ ,

which are not determined by the evolution equations or the gauge conditions, satisfy

a first order symmetric hyperbolic system of equations (subsidiary system) whose

lower order terms are algebraic and homogeneous in the zero-quantities on U .

The proof of Lemma 8 can be found in [13, 22, 27] —see also [36] for a discussion

of these equations in the presence of an electromagnetic field.

The most important consequence of Lemma 8 is that if the zero-quantities vanish

at some initial hypersurface and the evolution equations (2.68a)-(2.68h) are satisfied,

then the full extended conformal Einstein field equations encoded in (2.26a)-(2.26b)

are satisfied in the development of the initial data. This is a consequence of the

standard uniqueness result for homogeneous symmetric hyperbolic systems.

Remark 7. The evolution equations (2.68a)-(2.68i) are extracted from equations

(2.67a)-(2.67b). In tensorial notation these correspond to the following components

of the zero-quantities (2.22a)-(2.22d):

Σ̂0
c
b = 0, Ξ̂ca0b = 0, ∆̂0bc = 0, Λ̂(a|0|b) = 0, Λ̂∗(a|0|b) = 0,

where Λ̂∗bcd = 1
2
εcd

ef Λ̂bef and the frame indices a, b, c take values 0, 1, 2, 3. The

components of the zero-quantities (2.22a)-(2.22d) which are not determined by the

evolution equations correspond to

Σ̂i
c
b = 0, Ξ̂cdib = 0, ∆̂ibc = 0, Λ̂0ij = 0, Λ̂0i0 = 0, (2.69)

with i, j = 1, 2, 3. The lower order terms in the first symmetric hyperbolic system

(subsidiary system) referred in Lemma 8 consist of algebraic expressions containing

the zero-quantities in equation (2.69). The subsidiary system is not given explicitly

in this thesis for conciseness. A detailed derivation of the subsidiary system and a

comprehensive discussion can be found in [13, 22, 27] —see also [36].
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Controlling the gauge

The derivation of the conformal evolution equations (2.68a)-(2.68h) is based on the

assumption of the existence of a non-intersecting congruence of conformal geodesics.

To verify this assumption one has to analyse the deviation vector of the congruence.

Let z denote the deviation vector of the congruence. One has then that

[ẋ, z] = 0. (2.70)

Now, let zAA
′

denote the spinorial counterpart of the components za of z respect to

a Weyl propagated frame {ea}. Following the spirit of the space spinor formalism

one defines zAB ≡ τB
A′zAA′ . This spinor can be decomposed as

zAB =
1

2
zεAB + z(AB).

The evolution equations for the deviation vector can be readily deduced from the

commutator (2.70). Expressing the latter in terms of the fields appearing in the

extended conformal field equations one obtains

∂τz = fABz
(AB), (2.71a)

∂τz(AB) = χCD(AB)z
(CD). (2.71b)

The congruence of conformal geodesics is non-intersecting as long as z(AB) 6= 0.

Once one has solved equations (2.68a)-(2.68i) one can substitute fAB and χABCD

into equations (2.71a)-(2.71b) and analyse the evolution of the deviation vector —for

further discussion see [41].

2.5 The conformal constraint equations

The conformal constraint equations encode the set of restrictions induced by the

zero-quantities on the various fields on spacelike hypersurfaces of the unphysical

spacetime (M, g). In what follows, one consider the setting where the 1-form f

vanishes on one of these hypersurfaces, which is regarded as the initial hypersurface.

Accordingly, the initial data for the extended conformal evolution equations (2.68a)-

(2.68h) and those implied by the hyperbolic reduction of the standard conformal

Einstein field equations using gauge source functions —see Section 2.4.2— are the

same. Now, let S̃ denote a 3-dimensional spacelike submanifold of M̃. The metric g̃

induces a 3-dimensional metric h̃ = ϕ̃∗g̃ on S̃, where ϕ̃ : S̃ → M̃ is an embedding.

Similarly, one can consider a 3-dimensional submanifold S ofM with induced metric

h = ϕ∗g, such that

h = Ω2h̃, (2.72)
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where Ω denotes the restriction of the conformal factor to the initial hypersurface

S —in Section 2.3.2 this restriction is denoted by Θ?.

Let na and ña with na = Ωña be, respectively, the g-unit and g̃-unit normals, so

that nana = ñaña = 1 —in accordance with the signature conventions introduced

in Section 1.6 of Chapter 1 for a spacelike hypersurface. With these definitions,

the second fundamental forms χab ≡ ha
c∇cnb and χ̃ab ≡ h̃a

c∇̃cñb are related by the

formula

χab = Ω(χ̃ab + Σh̃ab) (2.73)

where Σ ≡ na∇aΩ.

The conformal constraint equations are conveniently expressed in terms of a frame

{ei} adapted to the hypersurface S —that is, the vectors ei span TS and, thus, are

orthogonal to its normal. All the fields appearing in the constraint equations are

expressed in terms of this frame. The conformal constraint equations are then given

by:

DiDjΩ = −Σχij − ΩLij + shij , (2.74a)

DiΣ = χi
kDkΩ− ΩLi, (2.74b)

Dis = −LiΣ− ΩLi, (2.74c)

DiLjk −DjLik = −Σdijk + dlkijD
lΩ− (χikLj − χjkLi)

−
Ä
χikLj − χjkLi

ä
, (2.74d)

DiLj −DjLi = dlijD
lΩ + χi

kLjk − χjkLik, (2.74e)

Dkdkij = χkidjk − χkjdik, (2.74f)

Didij = χikdijk, (2.74g)

Djχki −Dkχji = Ωdijk + hijLk − hikLj , (2.74h)

lij = Ωdij + Lij − χkk(χij −
1

4
χhij) + χkiχj

k − 1

4
χklχ

klhij , (2.74i)

λ = 6Ωs− 3Σ2 − 3DkΩDkΩ, (2.74j)

where D is the Levi-Civita connection on (S,h), lij is the associated Schouten

tensor of D, dijk ≡ di0jk, dij ≡ di0j0, Li ≡ L0i and s is the Friedrich scalar field on

S.

Definition. A solution to the conformal constraint equations on S is given by a

collection u? ≡ (Ω,Σ, s, ei, γi
k
j , χij , Lij , Li, dij , dijk) satisfying (2.74a)-(2.74j).

2.5.1 The Hamiltonian and momentum constraint equations

An alternative point of view for discussing the conformal constraint equations is

to start with the usual Hamiltonian and momentum constraints in the physical
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representation (S̃, h̃)

r̃ + χ̃2 − χ̃abχ̃ab = 2λ, (2.75a)

D̃bχ̃ab − D̃aχ̃ = 0, (2.75b)

where r̃ is the Ricci scalar of h̃, λ is the Cosmological constant. Considering the

conformal rescaling h = Ω2h̃ab, and an adapted frame ei as in Section 2.5, a direct

computation using equations (2.75a)- (2.75b) gives the so-called conformal Hamil-

tonian and momentum constraints:

2ΩDiD
iΩ− 3DiΩD

iΩ + 1
2
Ω2r − 3Σ2

−1
2
Ω2(χ2 − χijχij) + 2ΩΣχ = λ, (2.76a)

Ω3Di(Ω−2χik)− Ω(Dkχ− 2Ω−1DkΣ) = 0, (2.76b)

where r̃ is the Ricci scalar of h. The relation between the conformal Hamiltonian

and momentum constraint equations (2.76a)-(2.76b) and the conformal constraint

equations (2.74a)-(2.74j) is the content of the following:

Lemma 9. A solution (S,u?) to the conformal constraint equations (2.74a)-(2.74j)

implies a solution to the conformal Hamiltonian and momentum constraints (2.76a)-

(2.76b). Conversely, a solution (S,h,χ,Ω,Σ) of (2.76a)-(2.76b) gives rise to a

solution to (2.74a)-(2.74j) on the points of S for which Ω 6= 0.

Remark 8. If one is to formulate a Cauchy problem for the conformal Einstein

field equations, by prescribing initial data on a 3-dimensional manifold S in which

Ω 6= 0, Lemma 9 suggests to use equations (2.76a)-(2.76b) to determine initial data

for the conformal evolution equations.

Lemma 9 and Remark 8 motivate the following definitions.

Definition (basic initial data set). A collection (S,h,χ,Ω,Σ) where S denotes

a 3-dimensional manifold, h a Riemannian 3-metric, χ a symmetric rank-2 tensor,

Ω and Σ scalar functions on S satisfying equations (2.76a)-(2.76b), will be called a

basic initial data set.

Definition (standard initial value problem for the conformal Einstein

field equations). The Cauchy problem for the evolution equations implied by the

conformal Einstein field equations provided with a basic initial data set (S,h,χ,Ω,Σ)

will be called a standard initial value problem.

Remark 9. Observe that, in contrast with the conformal constraint equations

(2.76a)-(2.76b), the conformal Hamiltonian and momentum constraint equations

(2.76a)-(2.76b) are not formally regular at Ω = 0 in the sense that they contain
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terms involving Ω−1 and Ω−2. Consequently, for a Cauchy problem for the confor-

mal Einstein field equations for which Ω(p) = 0 for all p ∈ S —see definition of

asymptotic initial value problem given below— equations (2.76a)-(2.76b) are not

suitable to define initial data for this type of problems.

The last remark motivates the following definition:

Definition (asymptotic initial value problem for the conformal Einstein

field equations). The Cauchy problem for the evolution equations implied by the

conformal Einstein field equations provided with initial data consisting of (S,u?)
where S denotes a 3-dimensional manifold and u? is a solution to the conformal

constraint equations on S for which Ω = 0, will be called a asymptotic initial value

problem.

2.5.2 The vacuum conformal constraint equations at the

conformal boundary

In the last section it was pointed out the difficulty in obtaining initial data sets for

an asymptotic initial value problem using (2.76a)-(2.76b). Nevertheless, in contrast

with equations (2.76a)-(2.76b), the conformal constraint equations (2.74j)-(2.74j) are

regular even when Ω = 0. Moreover, the conformal constraint equations simplify

considerably on spacelike hypersurfaces for which Ω = 0. In this case equations

(2.74a)-(2.74i) reduce to

shij = Σχij , (2.77a)

DiΣ = 0, (2.77b)

Dis = −LiΣ, (2.77c)

DiLjk −DjLik = −Σdijk − (χikLj − χjkLi), (2.77d)

DiLj −DjLi = χi
kLjk − χjkLik, (2.77e)

Dkdkij = χkidjk − χkjdik, (2.77f)

λ = −3Σ2, (2.77g)

Didij = χikdijk, (2.77h)

Djχki −Dkχji = hijLk − hikLj , (2.77i)

lij = Lij − χ(χij −
1

4
χhij) + χkiχj

k − 1

4
χklχ

klhij . (2.77j)

In [9, 22] a procedure for obtaining solutions for these equations has been given.

The main idea is to identify as free specifiable data the 3-metric h and a smooth

function κ at S —encoding, essentially, the Friedrich scalar s at S. Then, the

remaining fields comprising a solution u? are derived from h and κ as follows:

Σ =

 
|λ|
3
, Σi = 0, s = Σκ, χij = κhij , Li = −Diκ, (2.78a)
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Lij = lij +
1

2
κ2hij , dijk = −Σ−1yijk, (2.78b)

where yijk denotes the components of the Cotton tensor of the metric h. The only

differential condition that has to be solved to obtain a full solution to the conformal

constraint equations is

Didij = 0, (2.78c)

where dij is a symmetric transverse-tracefree tensor encoding the initial data for

the electric part of the rescaled Weyl tensor. This procedure is summarised in the

following Lemma:

Lemma 10. Given a Riemannian 3-metric hij, a smooth scalar function κ and

a h-divergence-free symmetric tracefree tensor dij on S, the tensor fields χij, Li,

Lij and dijk defined as in equations (2.78a)-(2.78b) constitute a solution u? to the

conformal constraint equations with Ω = 0.

Remark 10. Observe in Lemma 10 that the choice of κ is irrespective of hij and

dij.

Remark 11. Given a 3-metric h there is, in general, not a unique solution to

Didij = 0. In other words, using Lemma (10), given (h, κ) one can construct

several solutions to the conformal constraint equations u? with Ω = 0 by considering

different solutions to the equation Didij = 0. For instance, if h is conformally flat,

the analysis given in [42] shows that all smooth solutions to Didij = 0, can be

parametrised by four constants A,Q, P, J and an arbitrary function λ2 of spin-weight

two. Therefore, in the conformally flat case one can construct different solutions to

Didij = 0 considering different values for A,Q, P, J or choosing different functions

λ2.



3 Second order hyperbolic

reductions

3.1 Introduction

The first order hyperbolic reduction of the conformal Einstein field equations using

gauge source functions, as briefly discussed in Chapter 2, was originally introduced

in [15] —see also [17] for the hyperbolic reduction of the conformal Einstein-Yang-

Mills equations. Additionally, in Chapter 2 the first order hyperbolic reduction of

the extended conformal Einstein field equations employing conformal Gaussian sys-

tems was discussed. The latter hyperbolic reduction strategy was first introduced in

[22] —see also[27]. Nevertheless, more recently, it has been shown that gauge source

functions can be used to obtain, out of the metric conformal field equations, a sys-

tem of quasilinear wave equations —see [18]. This particular construction requires

the specification of a coordinate gauge source function and a conformal gauge source

function and is close, in spirit, to the classical treatment of the Cauchy problem in

General Relativity in [4] —see also [43]. Although, in principle, of general applica-

bility, the construction of wave equations for the metric conformal field equations

has been used, so far, only in the discussion of the asymptotic characteristic problem

on a cone —see [19].

The discussion given in this chapter is based on the second order hyperbolic

reduction procedure introduced in:

Gaspeŕın E. and Valiente Kroon J.A., “Spinorial wave equations and stability

of the Milne spacetime,”Classical and Quantum Gravity 32 (Sept., 2015) 185021,

arXiv:1407.3317 [gr-qc].

In the latter reference it is shown how to deduce a system of quasilinear wave

equations for the unknowns of the spinorial (standard) conformal Einstein field

equations and its relation to the original set of field equations is analysed. The

use of the spinorial formulation of the conformal Einstein field equations (or, in

fact, the frame formulation of the conformal Einstein field equations) gives access to

a wider set of gauge source functions consisting of coordinate, frame and conformal

gauge source functions. Another advantage of the spinorial version of the conformal

Einstein field equations is that they have a much simpler algebraic structure than the

metric equations. To discuss this point let∇AA′ denote the spinorial extension of the

48
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3.1: Introduction 49

Levi-Civita covariant derivative∇a of the unphysical metric g. One of the features of

the spinorial formalism simplifying the analysis is the use of the symmetric operator

�AB ≡ ∇Q′(A∇B)
Q′

instead of the usual commutator of covariant derivatives [∇a,∇b]. As shown in this

chapter, the use of spinors allows a more unified and systematic discussion of the

construction of the wave equations and the so-called subsidiary system —needed

to show that under suitable conditions a solution to the wave equations implies a

solution to the conformal Einstein field equations. As already mentioned, in the

spinorial formulation of the conformal Einstein field equations the metric is not part

of the unknowns. This observation is important since, whenever the wave operator

∇a∇a is applied to any tensor of non-zero rank, there will appear derivatives of

the connection which, in terms of the metric, represent second order derivatives.

Thus, if the metric is part of the unknowns, the principal part of the operator ∇a∇a

is altered by the presence of these derivatives. This is an extra complication that

needs to be taken into account in the analysis of [18]. The use of a spinorial frame

formalism allows to exploit the algebraic properties of the conformal field equations

in a more systematic manner —as it will be seen in the sequel the construction of

evolution and subsidiary equations becomes almost algorithmic. In addition, the

use of a spinorial version of the equations allows the use of more general classes of

gauges and may be more amenable to the inclusion of matter.

In view of the use of spinors, the wave equations considered in this chapter are

expressed in terms of the spinorial extension of ∇a∇a —see [29]. Namely, one has

� ≡ ∇AA′∇AA′ .

The operator � acting on spinors of non-zero rank will rise to terms involving frame

derivatives of the spin connection coefficients. The operator � is the 2-spinor version

of the square of the spin-Dirac derivative operator —see e.g. [44].

The construction of wave equations for the fields appearing in the conformal

Einstein field equations gives access to a set of methods of the theory of partial

differential equations alternative to that used for first order symmetric hyperbolic

systems —see e.g. [7] for a discussion on this. For example, the discussion given

in [18] is motivated by the analysis of the characteristic problem on a cone for

which a detailed theory is available for quasilinear wave equations. An analogous

construction of wave equations for the Dirac field on a curved spacetime using the 2-

spinors formalism has been given in [45]. It is also worth mentioning that a similar

construction of wave equations can be readily implemented for the Maxwell and

Yang-Mills fields.
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3.2 The spinorial wave equations

In this section a set of wave equations is derived from the spinorial version of the

conformal Einstein field equations as given in Chapter 2. Since the approach for ob-

taining the equations is similar for most of the zero-quantities, a general discussion

of the procedure is provided first. In the subsequent parts of this section the pecu-

liarities of each equation are addressed. The results of this section are summarised

in Proposition 1. Throughout this chapter only the standard formulation conformal

Einstein field equations encoded in equations (2.11a)-(2.11b) of Chapter 2 are used.

Therefore for conciseness, when referring to the conformal Einstein field equations

it will be understood the standard (vacuum) conformal Einstein field equations. Af-

ter the discussion of the model equation of Section 3.2.1, the impatient reader may

jump to Section 3.2.7 for a summary of the results.

3.2.1 General procedure for obtaining the wave equations

Before deriving each of the wave equations it is illustrative to outline the general

procedure with a model equation. To this end consider an equation of the form

∇EA′NEAK = 0, (3.1)

where NEAK ≡ ∇(E
B′MA)B′K and K is an arbitrary string of spinor indices. The

symmetries of the relevant quantities can be exploited using the following decom-

position of a spinor of the same index structure

TEAK = T(EA)K + 1
2
εEATQ

Q
K,

and recast NEAK as

NEAK = ∇EB
′
MAB′K +

1

2
εEA∇QB

′
MQB′K.

Remark 12. The model equation (3.1) determines the symmetrised derivative

∇(E
B′MA)B′K, while the divergence ∇QB′MQB′K can be freely specified.

In view of the last remark let FK(x) ≡ ∇QB′MQB′K be a smooth but otherwise

arbitrary spinor. This spinor, encoding the freely specifiable part of NEAK, is the

gauge source function for the model equation. Taking this discussion into account,

the model equation can be reexpressed as

∇EA′NEAK = ∇EA′∇EB
′
MAB′K +

1

2
∇AA′FK(x) = ∇E(A′∇B′)EMA

B′
K

+ 1
2
εA′B′∇EQ′∇EQ

′
MA

B′
K +

1

2
∇AA′FK(x) = 0 (3.2)
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where after the second equality sign, the decomposition of a 2-valence spinor in its

symmetric and trace parts has been used. Finally, recalling the definition of the

operators

� ≡ ∇AA′∇AA
′
, �AB ≡ ∇Q′(A∇B)

Q′ ,

equation (3.2) is rewritten as

�MAA′K − 2�A′B′MA
B′
K −∇AA′FK(x) = 0. (3.3)

The spinorial Ricci identities can be used to rewrite �A′B
′
MAB′K in terms of the

curvature spinors —namely, the Weyl spinor ΨABCD = ΞφABCD, the Ricci spinor

ΦABA′B′ , and the Ricci scalar and MAB′K.

Remark 13. It is customary when using the spinorial Ricci identities to denote the

Ricci scalar using the symbol Λ —see [12, 29]. More precisely, in accordance with

the conventions used in this thesis one has that Λ = −24R.

In the rest of the section, it is discussed how to derive the particular wave equations

implied by each of the zero-quantities following an analogous procedure as the one

used for the model equation.

3.2.2 Wave equation for the frame (no-torsion condition)

The zero-quantity ΣAA′
QQ′

BB′ encodes the no-torsion condition. The equation

(2.10a) can be conveniently rewritten introducing an arbitrary frame {ca}, which

allows to write eAA′ = eAA′
aca . Taking this into account one rewrites the zero-

quantity for the no-torsion condition as

ΣAA′
QQ′

BB′eQQ′
c = ∇BB′(eAA′c)−∇AA′(eBB′c)− CacbeAA′aeBB′b, (3.4)

where Ca
c
b are the commutation coefficients of the frame, defined by the relation

[ca, cb] = Ca
c
bcc. In the last expression ∇AA′eBB′c is to be interpreted as a short-

hand for the longer expression given in equation (2.59). Using the irreducible de-

composition of a spinor representing an antisymmetric tensor one obtains that

ΣAA′
QQ′

BB′eQQ′
c = εABΣ̄A′B′

c + εA′B′ΣAB
c (3.5)

where

ΣAB
c ≡ 1

2
Σ(A|D′|

QQ′
B)
D′eQQ′

c

is a reduced zero-quantity which can be written in terms of the frame coefficients

using equation (3.4) as

ΣAB
c = ∇(A

D′eB)D′
c + 1

2
e(A

D′aeB)D′
bCa

c
b.
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Using the decomposition of a valence-2 spinor in the first term of the right-hand

side renders

ΣAB
c = ∇AD

′
eBD′

c + 1
2
εAB∇PD

′
ePD′

c + 1
2
e(A

D′aeB)D′
bCa

c
b.

Introducing the coordinate gauge source function F c(x) = ∇PD′ePD′c, a wave equa-

tion can then be deduced from the condition

∇AE′ΣABc = 0.

Observe that this equation is satisfied if ΣAB
c = 0 —that is, if the correspond-

ing conformal Einstein field equation is satisfied. Adapting the general procedure

described in Section 3.2.1 as required, one obtains

�eBE′
c − 2�E′D′eB

D′c −∇BE′F c(x)−∇AE′
Ä
e(A

D′aeB)D′
bCa

c
b

ä
= 0.

Finally, using the spinorial Ricci identities and rearranging the last term one finds

the wave equation

�eBE′
c − 2eQD

′cΦQBE′D′ + 6Λ eBE′
c − e(AD

′aeB)D′
b∇AE′Cacb

− 2Ca
c
be(A

D′a∇A|E′|eB)D′
b −∇BE′F c(x) = 0. (3.6)

3.2.3 Wave equation for the connection coefficients

The spinorial counterpart of the Riemann tensor can be decomposed as

RAA′BB′CC′DD′ = RABCC′DD′εB′A′ + R̄A′B′CC′DD′εBA,

where the reduced curvature spinor RABCC′DD′ is expressed in terms of the spin

connection coefficients as

RABCC′DD′ + ΣCC′
QQ′

DD′ΓQQ′AB = ∇CC′ΓDD′AB −∇DD′ΓCC′AB
+ ΓCC′

Q
BΓDD′QA − ΓDD′

Q
BΓCC′QA. (3.7)

In the last equation, ∇DD′ΓCC′AB has been introduced for convenience as a short-

hand for the longer expression given in equation (2.61). Observe that the zero

quantity ΞABCC′DD′ defined in equation (2.10b) has the symmetry ΞABCC′DD′ =

Ξ(AB)CC′DD′ = −Ξ(AB)DD′CC′ . Exploiting this fact, the reduced spinors associated

to the geometric and algebraic curvatures RABCC′DD′ and ρABCC′DD′ can be split,

respectively, as

RABCC′DD′ = εC′D′RABCD + εCDRABC′D′ ,
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ρABCC′DD′ = εC′D′ρABCD + εCDρABC′D′ ,

where

RABCD = 1
2
RAB(C|E′|D)

E′ , RABC′D′ = 1
2
RABE(C′

E
D′),

are the reduced geometric curvature spinors. Analogous definitions are introduced

for the algebraic curvature. Observe that in contrast with the split (3.5) used for

the no-torsion condition, the reduced spinors RABCD and RABC′D′ are not com-

plex conjugate of each other. Together, these two reduced geometric and algebraic

curvature spinors give the reduced zero quantities

ΞABCD = RABCD − ρABCD, ΞABC′D′ = RABC′D′ − ρABC′D′ .

Remark 14. Observe that although RABCD and RABC′D′ are independent, their

derivatives are related through the second Bianchi identity, which implies that

∇CD′RABCD = ∇C′DRABC′D′ .

This observation is also true for the algebraic curvature as a consequence of the

conformal field equations ∆CDBB′ = 0 and ΛB′BCD = 0 since they encode the

second Bianchi identity written as differential conditions on the spinorial counterpart

of the Schouten tensor and the Weyl spinor. To verify the last statement, recall that

the equation for the Schouten tensor encoded in ∆CDBB′ = 0 corresponds to the

spinorial counterpart of the frame equation (2.7f). Using equation (2.7e), the latter

can be rewritten as

∇aCabcd = ∇cLdb −∇dLcb,

which corresponds to the second Bianchi identity written in terms of the Schouten

and Weyl tensors. This can be easily verified, as the last equation is obtained from

the substitution of the expression for the Riemann tensor in terms of the Weyl and

Schouten tensors (i.e. the algebraic curvature) in the second Bianchi identity. This

means that, as long as the conformal field equations ∆CDBB′ = 0 and ΛB′BCD = 0

are satisfied one can write

∇CD′ρABCD = ∇C′DρABC′D′ .

Therefore, the reduced quantities ΞABCD and ΞACC′D′ are related via

∇CD′ΞABCD = ∇C′DΞABC′D′ .

Now, one has to compute explicitly the reduced geometric and algebraic curvature.

Recalling the definition of ρABCC′DD′ in terms of the Weyl spinor and the spinorial
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counterpart of the Schouten tensor as given in equation (2.14b) it follows that

ρABCD = ΨABCD + LBE′(D
E′εC)A

or, equivalently

ρABCD = ΞφABCD + 2Λ(εDBεCA + εCBεDA).

Similarly,

ρABC′D′ = ΦABC′D′ . (3.8)

A computation using the reduced version of the geometric curvature from expression

(3.7) renders

RABCD = −1
2
Σ(C|E′|

QQ′
D)
E′ΓQQ′AB +∇(C|E′|ΓD)

E′
AB + Γ(C|E′

Q
B|ΓD)

E′
QA, (3.9a)

RABC′D′ = −1
2
ΣE(C′

QQ′E
D′)ΓQQ′AB +∇E(C′ΓD′)

E
AB + ΓE(C′

Q
|B|Γ

E
D′)QA. (3.9b)

If the no-torsion condition (3.4) is satisfied, then the first term in each of the last

expressions vanishes. In this manner one obtains an expression for the reduced

geometric curvature purely in terms of the reduced connection coefficients and, in

turn, a wave equation from either ∇CD′ΞABCD or ∇C′DΞABC′D′ . In what follows,

for concreteness only

∇C′DΞABC′D′ = 0,

is considered. Adapting the procedure described in Section 3.2.1 and taking into

account equations (3.8) and (3.9a) one obtains

�ΓDD′AB − 2�DEΓED′AB −∇D′DFAB(x)

+ 2∇C′DΓE(C′
Q
|B|Γ

E
D′)QA = 2∇C′DΦABC′D′ . (3.10)

The gauge source function FAB(x) that appears in the last expression is the frame

gauge source function as defined in equation (2.60). Using the spinorial Ricci

identities to replace �DEΓED′AB in equation (3.10) and exploiting the symmetry

ΓED′AB = ΓED′(AB) gives

�DEΓED′AB = −3ΛΓDD′AB + ΓEH
′
ABΦD′H′DE

+ 2ΞφDEH(AΓE |D′|
H
B) − 2Γ(A|D′D|B) − 2ΓED′E(Bε|D|A). (3.11)

Substituting the last expression into (3.10) one finds the wave equation

�ΓDD′AB − 2(ΓEH
′
ABΦD′H′DE − 3ΛΓDD′AB + 2ΞφDEH(AΓE |D′|

H
B)

− 2Γ(A|D′D|B) − 2ΓED′E(Bε|D|A)) + 2∇C′DΓE(C′
Q
|B|Γ

E
D′)QA

− 2∇C′DΦBAC′D′ −∇D′DFAB(x) = 0.
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3.2.4 Wave equation for the Ricci spinor

The zero-quantity defined by equation (2.10e) is expressed in terms of the spinorial

counterpart of the Schouten tensor. The spinor LAA′BB′ can be decomposed in

terms of the Ricci spinor ΦAA′BB′ and Λ as

LAA′BB′ = ΦAA′BB′ − ΛεABεA′B′ (3.12)

—see Appendix 3.4 for more details. In the context of the conformal Einstein field

equations the field Λ can be regarded as a gauge source function. Thus, in what

follows the equation ∆CABB′ = 0 is regarded as an expression encoding differential

conditions on ΦAA′BB′ . In order to derive a wave equation for the Ricci spinor

consider

∇CE′∆CDBB′ = 0.

Proceeding, again, as described in Section 3.2.1 and using that ∇CE′φCDBQ = 0

—that is, assuming that the equation encoded in the the zero-quantity ΛC′DBQ is

satisfied— gives

�LDBE′B′ − 2�E′Q′LDB
Q′
B′ −∇DE′∇EQ

′
LEQ′BB′ − 2φCDBQ∇CE′∇QB′Ξ = 0.

Using the decomposition (3.12) and symmetrising in CD one further obtains that

�ΦDBE′B′ − 2�E′Q′ΦDB
Q′
B′ −∇(D|E′∇EQ

′
LEQ′|B)B′ − 2φCDBQ∇CE′∇QB′Ξ = 0.

(3.13)

To find a satisfactory wave equation for the Ricci tensor it is necessary to rewrite

the last three terms of equation (3.13). To compute the third term observe that the

second contracted Bianchi identity as in equation (3.39) of Appendix 3.4 and the

decomposition of the Schouten spinor given by equation (3.12) imply

∇EQ′LEQ′BB′ = ∇EQ′ΦEQ′BB′ − εEBεQ′B′∇EQ
′
Λ = −4∇BB′Λ.

Therefore, one finds that

∇(D|E′∇EQ
′
LEQ′|B)B′ = −4∇E′(D∇B)B′Λ. (3.14)

This last expression is satisfactory since, as already mentioned, the Ricci scalar R (or

equivalently Λ) can be regarded as a gauge source function —the so-called conformal

gauge source function [15]. In order to replace the last term of equation (3.13) one

exploits the field equation encoded in ZAA′BB′ = 0 and the decomposition (3.12),

to obtain

φCDBQ∇CE′∇QB′Ξ = −ΞφCDBQL
C
E′
Q
B′ = −ΞφCDBQΦCE′

Q
B′ . (3.15)
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Finally, computing�E′Q′ΦDBQ
′
B′ and substituting equations (3.14) and (3.15) gives

�ΦDBE′B′ − 4ΦP (B
Q′
|B′|ΦD)PE′Q′ + 6ΛΦDBE′B′ − 2Ξφ̄E′Q′B′H′ΦDB

Q′H′

+ 4ΛΦDB
Q′

(E′εQ′)B′ + 2φCDBQΦCE′
Q
B′ + 4∇E′(D∇B)B′Λ = 0. (3.16)

3.2.5 Wave equation for the rescaled Weyl spinor

Proceeding as in the previous subsections, consider the equation

∇DB
′
ΛB′BAC = 0. (3.17)

Observe that in this case a gauge source function is not required since in the defini-

tion of ΛB′BAC one already has a unsymmetrised derivative. Following the procedure

described in Section 3.2.1 renders

�φABCD − 2�DQφABC
Q = 0.

Thus, to complete the discussion its necessary to compute �DQφABCQ. Using the

spinorial Ricci identities renders

�DQφABC
Q = ΞφFQADφBC

FQ + ΞφFQDBφAC
FQ + ΞφFQCDφAB

FQ − 6ΛφABCD

The symmetries of φABCD simplify the equation since

�(D|QφA|B)C
Q = 3ΞφFQ(ABφCD)FQ − 6ΛφABCD.

Taking into account the last expression one obtains the following wave equation for

the rescaled Weyl spinor

�φABCD − 6ΞφFQ(ABφCD)FQ + 12ΛφABCD = 0. (3.18)

Observe that the wave equation for the rescaled Weyl spinor is remarkably simple.

3.2.6 Wave equation for the Friedrich scalar and the

conformal factor

Since s is a scalar field, the general procedure described in Section 3.2.1 does not

provide any computational advantage. The required wave equation is derived from

considering

∇AA′ZAA′ = 0.
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Explicitly, the last equation can be written as

�s+∇AA′ΦACA′C′∇CCΞ + ΦACA′C′∇AA
′∇CC′Ξ = 0.

Using the contracted second Bianchi identity (3.39) to replace the second term and

the conformal field equation encoded in ZAA′BB′ = 0 along with the decomposition

(3.12) to replace the third term one obtains

�s− ΞΦACA′C′Φ
ACA′C′ − 3∇CC′Λ∇CC

′
Ξ = 0.

Finally, notice that a wave equation for the conformal factor follows directly from

the contraction ZAA′
AA′ and the decomposition (3.38):

�Ξ = 4 (s+ ΛΞ) .

3.2.7 Summary of the analysis

The results of this section are summarised in the following proposition:

Proposition 1. If the conformal Einstein field equations (2.11a)-(2.11b) in vacuum,

are satisfied on U ⊂M, and

F a(x), FAB(x), Λ(x)

are smooth functions on M such that

∇QQ′eQQ′a = F a(x), ∇QQ′ΓQQ′AB = FAB(x) ∇QQ′ΦPQP ′Q′ = −3∇PP ′Λ(x).

then one has that

�eBE′
c − 2eQD

′cΦQBE′D′ + 6Λ eBE′
c − e(AD

′aeB)D′
b∇AE′Cacb

− 2Ca
c
be(A

D′a∇A|E′|eB)D′
b −∇BE′F c(x) = 0, (3.19a)

�ΓDD′AB − 2(ΓEH
′
ABΦD′H′DE − 3ΛΓDD′AB

+ 2ΞφDEH(AΓE |D′|
H
B) − 2Γ(A|D′D|B) − 2ΓED′E(Bε|D|A))

+ 2∇C′DΓE(C′
Q
|B|Γ

E
D′)QA − 2∇C′DΦBAC′D′ −∇D′DFAB(x) = 0, (3.19b)

�ΦDBE′B′ − 4ΦP (B
Q′
|B′|ΦD)PE′Q′ + 6ΛΦDBE′B′ − 2Ξφ̄E′Q′B′H′ΦDB

Q′H′

+ 4ΛΦDB
Q′

(E′εQ′)B′ + 4∇E′(D∇B)B′Λ + 2φCDBQΦCE′
Q
B′ = 0, (3.19c)

�s− ΞΦACA′C′Φ
ACA′C′ − 3∇CC′Λ∇CC

′
Ξ = 0, (3.19d)
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�φABCD − 6ΞφFQ(ABφCD)FQ + 12ΛφABCD = 0, (3.19e)

�Ξ− 4 (s+ ΛΞ) = 0, (3.19f)

hold on U .

Remark 15. The unphysical metric is not part of the unknowns of the system of

equations of the spinorial version of the conformal Einstein field equations. This

observation is of relevance in the present context because when the operator � is

applied to a spinor NK of non-zero rank one obtains first derivatives of the con-

nection —if the metric is part of the unknowns then these first derivatives of the

connection representing second derivatives of g would enter into the principal part

of the operator �. Therefore, since in this setting the metric is not part of the

unknowns, the principal part of the operator � is given by εABεA
′B′eAA′eBB′ .

Remark 16. In the sequel let {e, Γ, Φ, φ} denote vector-valued unknowns encoding

the independent components of {eAA′c, ΓCC′AB, ΦAA′BB′ , φABCD} and let u ≡
(e, Γ, Φ, φ, s, Ξ). Additionally, let ∂u denote collectively the derivatives of u. With

this notation the wave equations of Proposition 1 can be recast as a quasilinear wave

equation for u having, in local coordinates, the form

gµν(u)∂µ∂νu + F (x; u, ∂u) = 0, (3.20)

where F is a vector-valued function of its arguments and gµν denotes the compo-

nents, in local coordinates, of contravariant version of a Lorentzian metric g. In

accordance with the current notation gµν ≡ ηabea
µeb

ν where, in local coordinates,

one writes ea = ea
µ∂µ.

3.3 Propagation of the constraints and the

derivation of the subsidiary system

The starting point of the derivation of the wave equations discussed in the previous

section was the conformal Einstein field equations. Therefore, any solution to the

conformal Einstein field equations is a solution to the wave equations. It is now

natural to ask: under which conditions a solution to the wave equations (3.19a)-

(3.19f) will imply a solution to the conformal Einstein field equations? The general

strategy to answer this question is to use the spinorial wave equations of Proposition

1 to construct a subsidiary system of homogeneous wave equations for the zero-

quantities and impose vanishing initial conditions. Then, using a standard existence

and uniqueness result for wave equations, the unique solution satisfying the data
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will be given by the vanishing of each zero-quantity. This means that under certain

conditions (encoded in the initial data for the subsidiary system) a solution to the

spinorial wave equations will imply a solution to the original conformal Einstein

field equations. The procedure to construct the subsidiary equations for the zero

quantities is similar to the construction of the wave equations of Proposition 1.

There is, however, a key difference: the covariant derivative is, a priori, not assumed

to be a Levi-Civita connection. Instead, one assumes that the connection is metric

but not necessarily torsion-free. This derivative will be denoted by Ë∇. Therefore,

whenever a commutator of covariant derivatives appears, or in spinorial terms the

operator Á�AB ≡ Ë∇C′(AË∇B)
C′ , it is necessary to use the Ë∇-spinorial Ricci identities

involving a non-vanishing torsion spinor —this generalisation is given in Appendix

3.4 and is required in the discussion of the subsidiary equations where the torsion

is, in itself, a variable for which a subsidiary equation needs to be constructed.

Remark 17. The introduction of a connection Ë∇ which is not torsion-free is nec-

essary for the discussion of the subsidiary system as the torsion ΣAB
c is part of the

zero-quantities to be propagated.

As in the previous section, the procedure for obtaining the subsidiary system is

similar for each zero-quantity. Therefore, a general outline of the procedure is given

in the next section.

3.3.1 General procedure for obtaining the subsidiary

system and the propagation of the constraints

In the general procedure described in Section 3.2.1, the spinor NEAK played the role

of a zero-quantity, while the spinor MAB′K played the role of the variable for which

the wave equation (3.3) was to be derived. In the construction of the subsidiary

system one is not interested in finding an equation for MAB′K but in deriving an

equation for NEAK under the hypothesis that the wave equation for MAB′K is sat-

isfied. As already discussed, since the connection is not assumed to be torsion-free

the equation for NEAK has to be written in terms of the metric connection Ë∇.

Before deriving the subsidiary equation a couple of observations are in order. In

Section 3.2.1 the quantity NEAK ≡ ∇(E
B′MA)B′K was defined. Then, decomposing

this quantity as usual one obtained

NEAK = ∇EB
′
MAB′K + 1

2
εEA∇QB

′
MQB′K.

At this point in the discussion of Section 3.2.1 a gauge source function∇PQ′MPQ′K =

FK was introduced. Consequently, instead of directly deriving an equation for NEAK



3.3: Propagation of the constraints and the derivation of the subsidiary system 60

one has derived an equation using the modified quantity

N̂EAK ≡ ∇EB
′
MAB′K + 1

2
εEAFK.

Accordingly, the wave equations discussed in Section 3.2 can be succinctly written

as ∇EA′N̂EAK = 0. Later on, one has to show that, in fact, N̂EAK = NEAK if the

appropriate initial conditions are satisfied. In addition, observe that∇AC′N̂EAK can

be written in terms of the connection Ë∇ by means of a transition spinor QAA′BC —

see Appendix 3.5 for definitions. Using equation (3.50) of Appendix 3.5 one obtainsË∇AC′N̂ABK = ∇AC′N̂ABK −QAC′AHN̂HBK
−QAC′BKHN̂AHK − · · · −QAC′KHN̂AB···H (3.21)

where K is the last index of the string K. For a connection which is metric, the

transition spinor can be written entirely in terms of the torsion as

QAA′BC ≡ −2ΣBAA′C − 2ΣA(C|A′|B) − 2Σ̄A′(C|Q′
Q′εA|B). (3.22)

If the wave equation for MAB′K encoded in ∇AC′N̂ABK = 0 is satisfied, the first

term of equation (3.21) vanishes. Therefore, the wave equation discussed in Section

3.2.1 can be written in terms of the connection Ë∇ asË∇AC′N̂ABK = WBC′K, (3.23)

where

WBC′K = −QAC′AHN̂HBK −QAC′BHN̂AHK − .....−QAC′KHN̂AB...H .

The subsidiary system

In this section it is shown that by setting the appropriate initial conditions, if the

wave equation for MAB′K encoded in ∇AE′N̂ABK = 0 holds then N̂ABK = 0. The

strategy will be to obtain an homogeneous wave equation for N̂ABK written in terms

of the connection Ë∇. First, observe that Ë∇Q′P N̂ABK can be decomposed asË∇Q′P N̂ABK = Ë∇Q′ (P N̂A)BK + 1
2
εPAË∇Q′EN̂E

BK. (3.24)

Replacing the second term using equation (3.23) —i.e. using that the wave equation

for MAB′K encoded in ∇AE′N̂ABK = 0 holds— rendersË∇Q′P N̂ABK = Ë∇Q′ (P N̂A)BK + 1
2
εPAW

Q′
BK.
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Applying Ë∇PQ′ to the previous equation and expanding the symmetrised term in

the right-hand side one obtainsË∇PQ′Ë∇Q′P N̂ABK = 1
2
Ë∇PQ′ ÄË∇Q′P N̂ABK +Ë∇Q′AN̂PBKä+ 1

2
Ë∇AQ′WQ′

BK,

= −1
2
Á�N̂ABK − 1

2
Ë∇PQ′Ë∇Q′AN̂P

BK + 1
2
Ë∇AQ′WQ′

BK,

= −1
2
Á�N̂ABK − 1

2

ÄÁ�PAN̂P
BK + 1

2
εPAÁ�N̂P

BK
ä

+ 1
2
Ë∇AQ′WQ′

BK.

From this expression, after some rearrangements one concludes thatÁ�N̂ABK = 2Á�PAKN̂P
BK − 2Ë∇AQ′WQ′

BK.

It only remains to reexpress the right-hand side of the above equation using the Ë∇-

spinorial Ricci identities. This can be computed for each zero-quantity using the

expressions given in Appendix 3.4. Observe that the result is always a homogeneous

expression in the zero-quantities and its first derivatives. The last term also shares

this property since the transition spinor can be completely written in terms of the

torsion, as shown in equation (3.22), which is one of the zero-quantities. Finally,

once the homogeneous wave equation is obtained one sets the initial conditions

N̂ABK|S = 0 and (Ë∇EE′N̂ABK)|S = 0

on a spacelike hypersurface S, and using standard existence and uniqueness results

for wave equations it follows that the unique solution satisfying this data is given

by N̂ABK = 0.

Remark 18. The crucial step in the last derivation was the assumption that the

equation ∇AE′N̂ABK = 0 is satisfied —i.e. the wave equation (3.3) for MABK.

Initial data for the subsidiary system

In this section the relations between the initial conditions

N̂ABK|S = 0, (Ë∇EE′N̂ABK)|S = 0.

are analysed. Additionally, in the subsequent discussion it is shown how to use these

conditions to construct initial data for the wave equations of Proposition 1. More

concretely, the main purpose of this section is to show that only N̂ABK|S = 0 is

essential, while Ë∇EE′N̂AB|S = 0 holds by virtue of the condition ∇AA′N̂ABK = 0.

To do so, first observe that as the spatial derivatives of N̂ABK can be determined

from N̂ABK|S = 0. Then, it follows that (Ë∇EE′N̂ABK)|S = 0 is equivalent to only

specifying the derivative along the normal to the initial hypersurface S.

Let τAA
′

be an Hermitian spinor corresponding to a timelike vector such that

τAA
′ |S is the normal to S. The spinor τAA

′
can be used to perform a space spinor
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split of the derivative Ë∇AA′ as discussed in Section 2.4.1 of Chapter 2. Using the

split of Ë∇ as in equation (2.53) and N̂ABK|S = 0 it follows thatË∇EE′N̂ABK|S = 1
2
(τEE′PN̂ABK)|S .

Therefore, requiring Ë∇EE′N̂AB|S = 0 is equivalent to (PN̂ABK)|S = 0 as previ-

ously stated. Observe that the wave equation ∇AA′N̂ABK = 0 or, equivalently,Ë∇AA′N̂ABK = WA′
BK implies (Ë∇AA′N̂ABK)|S = WA′

BK|S —recall that WA′
BK|S

is given entirely in terms of zero-quantities since the transition spinor can be writ-

ten in terms of the torsion. Therefore, assuming that all the zero-quantities vanish

on the initial hypersurface S it follows that (Ë∇AA′N̂ABK)|S = 0. Using, again,

the space spinor decomposition of Ë∇AA′ and considering N̂ABK|S = 0 one obtains

(τAA
′PN̂ABK)|S = 0 which also implies that (PN̂ABK)|S = 0.

Summarising, the only the condition that is needed is that all the zero-quantities

vanish on the initial hypersurface S since the condition (Ë∇EE′N̂ABK)|S = 0 is always

satisfied by virtue of the wave equation ∇AA′N̂ABK = 0.

Propagation of the constraints

To close the argument one has to show that N̂AB = NAB. To do so, one writes

NABK − N̂ABK = 1
2
εABQK,

where QK encodes the difference between N̂ABK and NABK. Computing the trace

of the last equation and taking into account the definition of NABK one finds that

N̂A
AK = QK. Invoking the results derived in the last subsection it follows that if

the wave equation ∇AE′N̂ABK = 0 is satisfied and all the zero-quantities vanish

on the initial hypersurface S then N̂ABK = 0. This observation also implies that if

N̂A
AK|S = 0 then N̂A

AK = 0. The later result, expressed in terms of QK means that

if QK|S = 0 then QK = 0. Therefore, requiring that all the zero-quantities vanish

on S and that the wave equation ∇AA′N̂ABK = 0 holds everywhere, is enough to

ensure that

N̂ABK = NABK

everywhere. Moreover, N̂ABK = 0 implies that NABK = 0 and the gauge conditions

hold. Namely, one has that

∇AB′MAB′K = FK(x).

3.3.2 Subsidiary system and propagation of the constraints

The essential ideas of the Section 3.3.1 can be applied to every single zero-quantity.

One only needs to take into account the particular index structure of each zero-



3.3: Propagation of the constraints and the derivation of the subsidiary system 63

quantity encoded in the string of spinor indices K. The problem then reduces to the

computation of Á�PAN̂P
BK, Ë∇AQ′WQ′

BK,

the result of which is to be substituted intoÁ�N̂ABK = 2Á�PAN̂P
BK − 2Ë∇AQ′WQ′

BK. (3.25)

The latter can be succinctly computed using the equations (3.46a)-(3.46d) in Ap-

pendix 3.4. The explicit form can be easily obtained and renders long expressions

for each zero-quantity. The key observation from these computations is that (3.25)

leads to an homogeneous wave equation. The explicit form is given in Appendix 3.6.

These results can be summarised in the following proposition:

Proposition 2. Assume that the wave equations (3.19a)-(3.19f) of Proposition 1

encoded in

∇AE′“ΣABc = 0, ∇C′D“ΞABC′D′ = 0,

∇CE′“∆CDBB′ = 0, ∇EB
′
ΛB′BAC = 0,

∇AA′ZAA
′
= 0, ZAA′

AA′ = 0,

are satisfied on U ⊂ M. Then the zero-quantities satisfy the homogeneous wave

equations Á�“ΣABc − 2Á�PA“ΣPBc + 2Ë∇AQ′W [Σ]Q
′
B
c = 0, (3.26)Á�“ΞABC′D′ − 2Á�P ′C′“ΞABP ′D′ + 2Ë∇C′QW [Ξ]QABD′ = 0, (3.27)Á�“∆P

DBB′ − 2Á�PC“∆P
DBB′ + 2Ë∇CQ′W [∆]Q

′
DBB′ = 0, (3.28)Á�ΛB′BAC − 2Á�P ′B′ΛP ′BAC + 2Ë∇B′QW [Λ]QBAC = 0, (3.29)Ë∇AA′ZAA′ −W [Z]AA

′
AA′ = 0, (3.30)

where

W [Σ]Q
′
B
c ≡ Ë∇Q′E“ΣEBc, W [Ξ]QABD′ ≡ Ë∇QE′“ΞABE′D′

W [∆]Q
′
DBB′ ≡ Ë∇Q′F “∆F

DBB′ , W [Λ]QBAC ≡ Ë∇E′QΛE
′
BAC ,

W [Z]AA
′
AA′ ≡ Ë∇AA′ZAA′ ,

on U .

In the following, the set of equations (3.26)-(3.30) given in Proposition 2 will be

referred to as the subsidiary system. It should be noticed that the terms of the

form Á�PAN̂P
BK and WQ′

BK can be computed using the Ë∇-Ricci identities and

the transition spinor QAA′BC respectively. Using the subsidiary equations from the

previous proposition one readily obtains the following reduction lemma:
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Lemma 11. If the initial data for the subsidiary system of Proposition 2 is given

by“ΣABc|S = 0, “ΞABC′D′ |S = 0, “∆ABCC′ |S = 0, ΛB′BAC |S = 0, ZAA′|S = 0,

where S is a spacelike hypersurface and the wave equations of Proposition 2 are

satisfied everywhere, then one has a solution to the vacuum conformal Einstein field

equations —in other words

ΣAB
c = 0, ΞABC′D′ = 0, ∆ABCC′ = 0, ΛB′BAC = 0, ZAA′ = 0,

in D(S). Moreover, whenever Ξ 6= 0, the solution to the conformal Einstein field

equations implies a solution to the vacuum Einstein field equations.

Proof. It can be verified, using the Ë∇-Ricci identities given in the Appendix 3.4,

that the equations of Proposition 2 are homogeneous wave equations for the zero-

quantities. Notice, however, that the equation for ZAA′ is not a wave equation but

of a first order homogeneous equation. Therefore, if the zero-quantities vanish on

an initial spacelike hypersurface S then by the homogeneity of the equations one

has that“ΣABc = 0, “ΞABC′D′ = 0, “∆ABCC′ = 0, ΛB′BAC = 0, ZAA′ = 0,

everywhere on D(S). Moreover, since initially “ΣABc = ΣAB
c, “ΞABC′D′ = ΞABC′D′

and “∆ABCC′ = ∆ABCC′ , one has that ΣAB
c = 0, ΞABC′D′ = 0, ∆ABCC′ = 0 on

D(S). In addition, using that a solution to the conformal Einstein field equations

implies a solution to the Einstein field equations whenever Ξ 6= 0 [15], it follows

that a solution to the wave equations of Proposition 1 with initial data consistent

with the initial conditions given in Lemma 11 will imply a solution to the vacuum

Einstein field equations whenever Ξ 6= 0.

Remark 19. It is noticed that the initial data for the subsidiary equations give

a way to specify the data for the wave equations of Proposition 1. This observa-

tion is readily implemented employing a space spinor formalism which mimics the

hyperbolic reduction process to extract a first order hyperbolic system out of the

conformal Einstein field equations —see e.g. [17]. In the following, to illustrate this

procedure, initial data for the rescaled Weyl spinor encoded in ΛA′BCD|S = 0 is

considered.



3.3: Propagation of the constraints and the derivation of the subsidiary system 65

Initial data for the rescaled Weyl spinor

A convenient way to specify the initial data

φABCD|S , PφABCD|S .

is to use the space spinor formalism to split the equations encoded in ΛA′BCD = 0.

From this split, a system of evolution and constraint equations can be obtained.

Recall that ΛA′BCD ≡ ∇QA′φABCQ. Making use of the the decomposition of∇AB ≡
τB

A′∇AA′ in terms of the operators P and DAB one obtains

ΛABCD = −1
2
PφABCD +DQAφBCDQ,

Evolution and constraint equations are obtained, respectively, from considering

EABCD ≡ −2ΛABCD = PφABCD − 2DQ(AφBCD)Q = 0, (evolution equation)

CCD ≡ ΛQQCD = DPQφPQCD = 0. (constraint equation).

Restricting the last equations to the initial hypersurface S it follows that the initial

data φPQCD|S must satisfy CCD|S = 0 and the initial data for (PφPQCD)|S can be

read form EABCD|S = 0 i.e. (PφPQCD)|S = 2DQ(AφBCD)Q|S .

The procedure for the other equations is analogous and can be succinctly obtained

by revisiting the derivation of the first order hyperbolic equations derived from

the conformal Einstein field equations using the space spinor formalism —see for

instance [17].

Remark 20. The hyperbolic reduction given in [18] makes use of the metric version

of the conformal Einstein field equations, consequently, since in this formulation the

metric is part of the unknowns one has to append an equation for the metric. To do

so, one follows the discussion given in Section 2.1.3 of Chapter 2. In other words one

uses equation (2.2) and one considers Rab in local coordinates (xµ) as an expression

involving second order derivatives of the metric components. However, the princi-

pal part of Rab[g], seen as an expression involving second order derivatives of the

metric components, is not necessarily hyperbolic. To recast the system of second

order equations (3.2)-(3.4) and (3.8)-(3.9) given in [18] it is necessary to impose

the appropriate gauge condition. In [18] the gauge is fixed imposing a generalised

wave-map gauge.

One of the advantages of deriving wave equations using the spinorial version of

the conformal Einstein field equations is that the metric is not part of the unknowns

so that the principal part of � is always hyperbolic. In this case, instead of writing

an equation for the metric one has to write equations for the frame and connection
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coefficients denoted by eAA′
a and ΓAA′

B
C respectively. Another difference to be

emphasised is that, in the spinorial approach put forward in this thesis, the algebraic

structure of the spinorial version of the conformal Einstein field equations can be

exploited to derive the wave equations in a systematic way. This can be noticed for

instance in the derivation of the wave equation for the rescaled Weyl spinor φABCD

in comparison with that for the rescaled Weyl tensor dabcd.

3.4 Appendix: Spinorial relations

In this appendix several relations and identities that are used repeatedly throughout

this chapter are recalled —see Sections 4.6, 4.7, 4.9 and 4.10 of [29]. In addition,

using the remarks made in [46] a generalisation of the spinorial Ricci identities for

a connection which is metric but not necessarily torsion-free is obtained.

3.4.1 The Levi-Civita case

In this section some well-known relations satisfied by the curvature spinors of a Levi-

Civita connection are revisited. The discussion of this section follows [29], Sections

4.9 and 4.11. First recall the decomposition of a general curvature spinor

R̀AA′BB′CC′DD′ = R̀ABCC′DD′εB′A′ +
`̄RA′B′CC′DD′εBA.

In addition, the reduced spinor R̀ABCC′DD′ can be decomposed as

R̀ABCC′DD′ = X̀ABCDεC′D′ + ỲABC′D′εCD,

where

X̀ABCD ≡ 1
2
R̀AB(C|E′|D)

E′ ỲABCD ≡ 1
2
R̀ABE(C′

E
D′).

In the above expressions the symbol ` over the kernel letter indicates that this

relation is general —i.e. the connection is not necessarily neither metric nor torsion-

free. The spinors X̀ABCD and ỲABCD are not necessarily symmetric in AB.

It is well known that if that the connection is metric, then the spinors ËXABCD
and ÁYABC′D′ have the further symmetries:ËXABCD = ËX(AB)CD, ÁYABC′D′ = ÁY(AB)C′D′ . (3.31)

The symbol Ë is written over the kernel letter to denote that only the metricity

of the connection is being assumed. If the connection is not only metric but, in

addition, is torsion free (i.e. it is a Levi-Civita connection) then the first Bianchi



3.4: Appendix: Spinorial relations 67

identity Ra[bcd] = 0 can be written equivalently as

R∗ab
cb = 0, (3.32)

where R∗abcd ≡ 1
2
εcd

efRabef and εabcd is the totally antisymmetric Levi-Civita ten-

sor. Notice that equation (3.32) can be written in spinorial terms as —see equations

(4.6.7) and (4.6.14) of [29]

RAA′BB′
CB′BC′ = 0.

The last equation in turn implies that XSP
SP = X̄S′P ′

S′P ′ and YABA′B′ = ȲA′B′AB.

Accordingly XSP
SP is a real scalar and YABA′B′ is a Hermitian spinor which, fol-

lowing the notation of [29], will be denoted by ΦABA′D′ = Φ̄A′B′AB. Collecting all

this information and decomposing in terms of irreducible components one obtains

the usual decomposition of the curvature spinors

XABCD = ΨABCD + Λ(εDBεCA + εCBεDA), YABC′D′ = ΦABC′D′ ,

where ΨABCD is the Weyl spinor and ΦABC′D′ is the Ricci spinor. The latter

is the spinorial counterpart of a world tensor (because of its Hermiticity which is

consequence of the first Bianchi identity) and Λ is a real scalar (consequence of the

first Bianchi identity again). Additionally, observe that XA(BC)
A = 0. This is a

consequence of the symmetry under the interchange of pairs Rabcd = Rcdab of the

Riemann tensor of a Levi-Civita connection. For a general connection the right hand

side of last equation is not necessarily zero —the reason is that the interchange of

pairs symmetry is a consequence of the antisymmetry in the first and second pairs

of indices and the first Bianchi identity which for a general connection involves the

torsion and its derivatives.

In the Levi-Civita case, the spinorial Ricci identities are the spinorial counterpart

of

[∇a∇b]vc = Rceabv
e.

These identities are given in terms of the operator �AB = ∇Q′(A∇B)
Q′ . The spino-

rial Ricci identities are given in a rather compact form by

�ABξ
C = XABQ

CξQ, �A′B′ξ
C = ΦA′B′Q

CξQ, (3.33)

�ABξC = −XABCQξQ, �A′B′ξC = −ΦA′B′C
QξQ. (3.34)

It is useful to combine these identities with the decomposition of XABCD to obtain

a more detailed list of relations. The following expressions are repeatedly used in

this chapter:

�ABξC = ΨABCQξ
Q − 2Λξ(AεB)C , �(ABξC) = ΨABCQξ

Q, (3.35)
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�ABξ
B = −3ΛξA, �A′B′ξC = ξQΦQCA′B′ . (3.36)

Using these relations and the Jacobi identity (ε -identity) the second Bianchi identity

can be expressed in terms of spinors as

∇AB′XABCD = ∇A′BΦCDA′B′ .

For completeness, the relation between ΦABA′B′ and the Ricci tensor and between

R and Λ is given explicitly:

Rac 7→ RAA′CC′ = 2ΦACA′C′ − 6ΛεACεA′C′ , R = −24Λ. (3.37)

From the above expressions it follows that 2ΦABA′B′ is the spinorial counterpart

of the trace-free Ricci tensor R{ab} ≡ Rab − 1
4
Rgab. From this last observation, it

follows that the spinorial counterpart of the Schouten tensor can be rewritten in

terms of ΦAA′BB′ and Λ. Recalling the definition of the 4-dimensional Schouten

tensor Lab = 1
2
Rab − 1

12
Rgab and equation (3.37) one gets

LABA′B′ = ΦACA′C′ − ΛεACεA′C′ . (3.38)

The second contracted Bianchi identity can be recast in terms of these spinors as

∇CA′ΦCDA′B′ + 3∇DB′Λ = 0. (3.39)

3.4.2 Spinorial Ricci identities for a metric connection

It this section the case of a connection Ë∇ which is metric but not torsion-free is

considered. First, one needs to obtain a suitable generalisation of the operator

�AB. In order to achieve this, observe that the relation [∇a,∇b]ud = Rdcabu
c valid

for a Levi-Civita connection extends to a connection with torsion as

[Ë∇a,Ë∇b]ud = ÁRdcabuc + Σa
c
b
Ë∇cud.

Another way to think the last equation is to define a modified commutator of co-

variant derivatives through

JË∇a,Ë∇bKud ≡ Ä[Ë∇a,Ë∇b]− Σa
c
b
Ë∇cäud.

In this way one can recast the Ricci identities as

JË∇a,Ë∇bKud = ÁRdcabuc.
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This observation leads to an expression for the generalised operatorÁ�AB ≡ Ë∇C′(AË∇B)
C′ .

The relation between this operator and the commutator of covariant derivatives is

[Ë∇AA′ ,Ë∇BB′ ] = εA′B′Á�AB + εABÁ�A′B′ .
One cannot directly write down the equivalent spinorial Ricci identities simply by

replacing X and Y by ËX and ÁY because of appearance of the term Σa
c
b
Ë∇cud in the

commutator of the covariant derivatives. A way to get around this difficulty is to

define a modified operator Á�AB formed using the modified commutator of covariant

derivatives instead of the usual commutator. In this way, one can directly translate

the previous formulae simply by replacing X and Y by ËX and ÁY . The relation

between Á�AB and Á�AB can clarified observing thatÁ�CD = 1
2
εC
′D′JË∇CC′ ,Ë∇DD′K

= 1
2
εC
′D′
Ä
[Ë∇CC′ ,Ë∇DD′ ]− ΣCC′

EE′
DD′
Ë∇EE′ä

= 1
2

ÄË∇D′CË∇DD′ +Ë∇D′DË∇CD′ − ΣCD′
EE′

D
D′Ë∇EE′ä . (3.40)

Using the antisymmetry of the torsion spinor one has the decomposition

ΣAA′
CC′

BB′ = εABΣA
EE′

B + εA′B′ΣA′
EE′

B′ , (3.41)

where the reduced spinor is given by ΣA
EE′

B = 1
2
Σ(A|Q′|

EE′
B)
Q′ . Using this decom-

position and symmetrising expression (3.40) in the indices CD one obtainsÁ�CD = Ë∇D′(CË∇D)
D′ − ΣC

EE′
D
Ë∇EE′ = Á�CD − ΣC

EE′
D
Ë∇EE′ .

Therefore Á�AB = Á�AB + ΣA
EE′

B
Ë∇EE′ . (3.42)

In order to compute explicitly how Á�AB acts on spinors it is sufficient to compute

the generalised spinors ËXABCD and ÁΦABC′D′ .
As discussed in previous paragraphs, the fact that the connection is not torsion free

is reflected in the symmetries of the curvature spinors. Notice that, the symmetries

in equation (3.31) still hold due to the metricity of Ë∇. Nevertheless, the interchange

of pairs symmetry of the Riemann tensor, the reality condition on ËXSP SP and the

Hermiticity of ÁΦABC′D′ do not longer hold as these properties rely on the the cyclic

identity Rd[abc] = 0. In fact, the first Bianchi identity is, in general, given by

R̀d[abc] + ∇̀[aΣb
d
c] + Σ[a

e
bΣc]

d
e = 0.
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It follows that ËXA(BC)
A does not necessarily vanish and, generically, it will depend

on the torsion and its derivatives as can be seen from the last equation. Nonetheless,

one labels, as usual, the remaining non-vanishing contractions of ËXABCDËXABAB = 6ÁΛ, ËX(ABCD) = ÁΨABCD, ËXA(BC)
A = HBC ,

where HBC is a spinor which, as discussed previously, depends on the torsion and

its derivatives. The explicit form of HBC will not be needed. Finally, recall the

general decomposition in irreducible terms of a 4-valence spinor ξABCD:

ξABCD = ξ(ABCD) + 1
2
ξ(AB)P

P + 1
2
ξP

P
(CD)εAB + 1

4
ξP

P
Q
QεABεCD

+1
2
εA(CξD)B + 1

2
εB(CξD)A − 1

3
εA(CεD)Bξ.

where

ξAB ≡ ξQ(AB)
Q, ξ ≡ ξPQ

PQ.

Using the above formula one obtains the following expressions for the irreducible

decomposition of the curvature spinor ËXABCD:ËXABCD = ÁΨABCD + ÁΛ (εACεBD + εADεBC) + 1
2
εA(CHD)B + 1

2
εB(CHD)A. (3.43)

In order to ease the comparisons with the Levi-Civita case letÁYABC′D′ = ÁΦABC′D′ . (3.44)

Observe that, in contrast with the case of a Levi-Civita connection, ÁΛ is not real

and ÁΦABC′D′ is not Hermitian. In other words, one has thatÁΛ− Á̄Λ 6= 0, ÁΦABC′D′ − Á̄ΦA′B′CD 6= 0, HAB 6= 0. (3.45)

In fact, the right hand side of the previous equations depends on the torsion and

its derivatives —see [46]. However, its explicit expression is not required in the

discussion of this chapter. Having found the curvature spinors, one can derive

the spinorial Ricci identities. As discussed in the previous paragraph, the modified

operator Á�AB formed from the modified commutator of covariant derivatives satisfies

a version of the spinorial Ricci identities which is obtained simply by replacing the

curvature spinors XABCD and ΦABC′D′ by the spinors ËXABCD and ÁΦABC′D′ . The

Ricci identities with torsion are then given byÁ�ABξC = ËXABQCξQ + ΣA
PP ′

B
Ë∇PP ′ξC ,Á�A′B′ξC = Á̄ΦA′B′QCξQ + Σ̄A′

PP ′
B′
Ë∇PP ′ξC ,Á�ABξC = −ËXABCQξQ + ΣA

PP ′
B
Ë∇PP ′ξC ,
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PP ′

B′
Ë∇PP ′ξC ,

with ËXABCD and ÁΦABC′D′ given by equations (3.43) and (3.44). The primed version

of the last expressions can be readily identified. More importantly, the detailed

version (in terms of irreducible components) of the spinorial Ricci identities become

Á�ABξC = ÁΨABCQξ
Q − 2ÁΛξ(AεB)C + UABCQξ

Q + ΣA
PP ′

B
Ë∇PP ′ξC , (3.46a)Á�(ABξC) = ÁΨABCQξ

Q + Σ(A
PP ′

B
Ë∇|PP ′|ξC), (3.46b)Á�ABξB = −3ÁΛξA +HABξ

B + ΣA
PP ′

B
Ë∇PP ′ξB, (3.46c)Á�A′B′ξC = ξQÁ̄ΦQCA′B′ + Σ̄A′

PP ′
B′
Ë∇PP ′ξC . (3.46d)

The above identities are supplemented by their complex conjugated version —

keeping in mind the non-Hermiticity of ÁΦABC′D′ and the non-reality of ÁΛ as stated

in expression (3.45). In the last list of identities the quantity UABCD is defined as

UABCD ≡ 1
2
εA(CHD)B + 1

2
εB(CHD)A. (3.47)

The Levi-Civita case can be readily recovered by setting ΣA
PP ′

B = 0 since in such

case, the spinors HAB and UABCD also vanish. Moreover, the pair interchange

symmetry is recovered and the expressions in (3.45) become equalities.

3.5 Appendix: The transition tensor and the

torsion tensor

In this appendix the transition spinor relating a Levi-Civita connection ∇ with a

connection Ë∇ which is metric but not necessarily torsion-free is discussed. The

general strategy behind this discussion can be found in [29]. Given two general

connections ∇̀ and ∇́ one has that

(∇̀a − ∇́a)ξb ≡ Qa
b
cξ
c

where Qa
b
c is the transition tensor. It is well known that for the case of a Levi-Civita

connection ∇ and a metric connection Ë∇ one has

Σa
c
b = −2Q[a

c
b] Qabc = Qa[bc]. (3.48)

Therefore, the spinorial counterpart of the transition tensor can be decomposed as

QAA′BB′CC′ = QAA′BCεB′C′ + Q̄AA′B′C′εBC (3.49)
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where

QAA′BC ≡ 1
2
QAA′(B|Q′|C)

Q′ .

This expression allows to translate expressions containing the covariant derivativeË∇ to expressions containing ∇ and the transition spinor QAA′BC as follows:Ë∇AA′ξB = ∇AA′ξB +QAA′
B
Qξ

Q, Ë∇AA′ξC = ∇AA′ξC −QAA′QCξQ. (3.50)

These expressions can be extended in a similar manner to spinors of any index

structure. Now, from the equations in (3.48) it follows that

Qacb = −Σa[cb] − 1
2
Σcab. (3.51)

Using the above equation along with the decompositions (3.49) and (3.41) gives

QAA′BC = −2Σ(B|AA′|C) − 2ΣA(C|A′|B) − 2Σ̄A′(C|Q′
Q′εA|B).

3.6 Appendix: Explicit expressions for the

subsidiary equations

In Section 3.3.2 it was shown that the generic form of the equations in the subsidiary

system is Á�N̂ABK = 2Á�PAN̂P
BK − 2Ë∇AQ′WQ′

BK.

In this section results of Appendices 3.4 and 3.5 are used to compute explicitly the

terms Á�PAN̂P
BK and WQ′

BK for every zero-quantity. A direct computation using

Appendices 3.4 and 3.5 renderÁ�PA“ΣPBc = −3ÁΛ“ΣABc +HPA“ΣPBc + ÁΨPABG
“ΣPG c − 2ÁΛ“ΣP (P

cεA)B

+UPABQ“ΣP (P
cεA)B + 2ΣP

QQ′
A
Ë∇QQ′“ΣPBc,Á�P ′C′“ΞABP ′D′ = “ΞQBP ′D′ Á̄ΦQAP ′C′ + Σ̄P ′

QQ′
C′
Ë∇QQ′“ΞABP ′C′

+“ΞAQP ′D′ Á̄ΦAQP ′C′ + Σ̄P ′
QQ′

C′
Ë∇QQ′“ΞABP ′C′

−Á̄Λ“ΞABC′D′ + H̄P ′C′“ΞABP ′D′ + Σ̄P ′
QQ′

C′
Ë∇QQ′“ΞABP ′D′

+Á̄ΨP ′C′D′Q′
“ΞABP ′Q′ − Á̄Λ“ΞABP ′ (P ′εC′)D′ + ŪP ′C′D′Q′“ΞABP ′Q′

+Σ̄P ′
QQ′

C′
Ë∇QQ′“ΞABP ′D′ ,Á�PC“∆P

DBB′ = −3ÁΛ“∆CDBB′ +HPC“∆P
DBB′ + ΣP

QQ′
C∇̃QQ′“∆P

DBB′

+ÁΨPCDQ
“∆PQ

BB′ − 2ÁΛ“∆P
(P |DBB′|εC)D + UPCDQ“∆PQ

BB′

+ΣP
QQ′

C
Ë∇QQ′“∆P

DBB′ + ÁΨPCBQ
“∆P

D
Q
B′ − 2ÁΛ“∆P

D(P |B′|εC)B

+UPCBQ“∆P
D
Q
BB′ + ΣP

QQ′
C
Ë∇QQ′“∆P

DBB′ + “∆P
DB

Q′ÁΦQ′B′PC
+ΣP

QQ′
C
Ë∇QQ′“∆P

DBB′ ,
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′Q
AC
Á̄ΦQBP ′B′ + Σ̄P ′

QQ′
B′
Ë∇QQ′ΛP ′BAC − 3ÁΛΛP ′BAC

+H̄P ′B′Λ
P ′
BAC + Σ̄P ′

QQ′
B′
Ë∇QQ′ΛP ′BAC + ΛP

′
B
Q
C
Á̄ΦQAP ′B′

+Σ̄P ′
QQ′

B′
Ë∇QQ′ΛP ′BAC + ΛP

′
BA

QΦQCP ′B′

+Σ̄P ′
QQ′

B′
Ë∇QQ′ΛP ′BAC .

Moreover, one has that

W [Σ]Q
′
B
c ≡ QQ

′
E
E
F
“ΣFBc −QQ′EBF“ΣEF c,

W [Ξ]QABD′ ≡ −QQE′AF“ΞFBE′D −QQE′BF“ΞAFE′D + Q̄QE′
E′
F ′
“ΞABF ′D

−QQE′DF“ΞABE′F ,
W [∆]Q

′
DBB′ ≡ QQ

′
E
“∆F

DBB′ −QQ
′
ED

F “∆E
FBB′ −QQ

′
EB

F “∆E
DFB′

−Q̄Q′EB′F
′“∆E

DBF ′ ,

W [Λ]QBAC ≡ −QE′GBFΛE
′
FAC + Q̄E′

GE′
F ′Λ

F ′
BAC −QE′GAFΛE

′
BFC

−QE′GCFΛE
′
BAF ,

W [Z]AA
′
AA′ ≡ −QAA′AEZEA

′ − Q̄AA′A
′
EZ

EE′ ,

where the transition spinor is understood to be expressed in terms of the reduced

torsion spinor which is, in itself, a zero-quantity —see equation (3.22).



4 Non-linear stability of the Milne

spacetime

In this chapter an analysis of the non-linear stability of the Milne spacetime is given.

This discussion is an application of the hyperbolic reduction procedure put forward

in Chapter 3. The discussion given in this chapter is based on:

Gaspeŕın E. and Valiente Kroon J.A., “Spinorial wave equations and stability

of the Milne spacetime,”Classical and Quantum Gravity 32 (Sept., 2015) 185021,

arXiv:1407.3317 [gr-qc].

The Milne Universe is a Friedman-Lemâıtre-Robertson-Walker (FLRW) solution

to the Einstein field equations with vanishing Cosmological constant and negative

spatial curvature —see e.g. [20]. The Milne Universe can be seen to be a part of

the Minkowski spacetime written in comoving coordinates adapted to the world-

line of a particle. Accordingly, analysing the non-linear stability of the Milne Uni-

verse is essentially equivalent to obtaining a proof of the semiglobal stability of the

Minkowski spacetime —see [8]. The analysis of the semiglobal non-linear stability of

the Minkowski spacetime given in [8] makes use of the standard conformal Einstein

field equations and the first order hyperbolic reduction discussed in Section 2.4.2 of

Chapter 2. Nevertheless, in principle, one could recover some of the classical results

by H. Friedrich —say [8, 9]— using the system of wave equations discussed in Chap-

ter 3 instead. With this motivation in mind, the Milne spacetime was chosen for

analysis in this chapter to show how to use the system of wave equations of Chapter

3 on a specific application.

In the analysis of this chapter, the stability result follows from the general theory

of quasilinear wave equations, in particular the property of Cauchy stability, as given

in [21]. In broad terms, this stability result for the Milne Universe can be phrased

as:

Main Result 1. Initial data for the conformal wave equations close enough to the

data for the Milne Universe give rise to a solution to the Einstein field equations

which exist globally to the future and has an asymptotic structure similar to that of

the Milne Universe.

As in the case of first order hyperbolic reductions of the conformal Einstein field

equations —see e.g. [17]— some of the methods discussed in this chapter are not

74

http://dx.doi.org/10.1088/0264-9381/32/18/185021
http://dx.doi.org/10.1088/0264-9381/32/18/185021
http://arxiv.org/abs/1407.3317
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Figure 4.1: Penrose Diagram for the Milne Universe. The diagram for the Milne
Universe corresponds to a portion (shaded area) of the Penrose diagram of the
Minkowski spacetime. The boundary H+∪H− corresponds to the limit of the region
where the coordinates (t, χ) are well defined. The region of spacetime obtained from
evolving hyperboloidal initial data, as discussed in this chapter, does not correspond
to all the shaded area in this diagram —compare with Figure 4.2.

only applicable to the Milne spacetime but more generally to spacetime manifolds

whose spatial sections are orientable compact manifolds. For this, one makes use the

localisability property of solutions to hyperbolic equations —see e.g. [3] for further

discussion on this type of constructions.

4.1 Basic properties of the Milne Universe

The Milne Universe is a Friedman-Lemâıtre-Robinson-Walker vacuum solution to

the Einstein field equation with vanishing Cosmological constant, energy density

and pressure. In fact, it represents a flat spacetime written in comoving coordinates

of the worldlines starting at t = 0 —see [20]. This means that the Milne Universe can

be seen as a portion of the Minkowski spacetime, which in turn can be conformally

related to the Einstein Cosmos, (ME ≡ R × S3, g̊) (sometimes also called the

Einstein cylinder) —see Figure 4.1. The metric ˜̊g of the Milne Universe is given in

comoving coordinates (t, χ, θ, ϕ) by

˜̊g = dt⊗ dt− t2
Ä
dχ⊗ dχ+ sinh2 χ

Ä
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

ää
(4.1)

where

t ∈ (−∞,∞), χ ∈ [0,∞), θ ∈ [0, π], φ ∈ [0, 2π).

In fact, introducing the coordinates

r̄ ≡ t sinhχ, t̄ ≡ t coshχ
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the metric reads

˜̊g = dt̄⊗ dt̄− dr̄ ⊗ dr̄ − r̄2
Ä
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

ä
.

Therefore, t̄2 − r̄2 > 0, and the Milne Universe corresponds to the interior of the

light cone through the origin in the Minkowski spacetime as shown in the Penrose

diagram of Figure 4.1. As already discussed, this metric is conformally related to

the metric g̊ of the Einstein Cosmos. More precisely, one has that

g̊ = Ξ̊2 ˜̊g

where the metric of the Einstein cylinder, g̊, is given by

g̊ ≡ dT ⊗ dT − ~,

with ~ denoting the standard metric of S3

~ ≡ dψ ⊗ dψ + sin2 ψdθ ⊗ dθ + sin2 ψ sin2 θdϕ⊗ dϕ.

The conformal factor relating the metric of the Milne Universe to metric of the

Einstein Universe is given by

Ξ̊ = cosT + cosψ,

and the coordinates (T, ψ) are related to (t̄, r̄) via

T = arctan(t̄+ r̄) + arctan(t̄− r̄), ψ = arctan(t̄+ r̄)− arctan(t̄− r̄).

Equivalently, in terms of the original coordinates t and χ one has

χ = arctan

Ç
sinψ

sinT

å
, t =

√
cosψ − cosT

cosψ + cosT
.

Therefore, the Milne Universe is conformal to the domain

˜̊M =
¶
p ∈ME| 0 ≤ ψ < π, ψ − π < T < π − ψ, |T | > ψ

©
.

4.2 The Milne Universe as a solution to the wave

equations of Proposition 1

Since the Milne Universe is a solution to the the Einstein field equations, it follows

that the pair (g̊, Ξ̊) implies a solution to the conformal Einstein field equations which,

in turn, constitutes a solution to the wave equations of Proposition 1. Following the
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discussion of Sections 2.1.2 and 2.1.4, this solution consists of the frame fields

{eac,Γabc, Lab, dabcd,Σa,Ξ, s}

or, equivalently, the spinorial fields

{eAA′c,ΓAA′BC ,ΦAA′BB′ , φABCD,ΣAA′ ,Σ,Ξ, s}

where one writes Σa ≡ ∇aΞ and ∇AA′Ξ ≡ ΣAA′ as a shorthand for the derivative

of the conformal factor.

For later use, notice that in the Einstein Cosmos (ME, g̊) one has

Weyl[̊g] = 0, R[̊g] = −6, Schouten[̊g] = 1
2

(dT ⊗ dT + ~) .

The spinorial version of the above tensors can be more easily expressed in terms of

a frame. To this end, now consider the class of geodesics on the Einstein Cosmos

(ME, g̊) given by

x(τ) = (τ, x?), τ ∈ R,

where x? ∈ S3 is fixed. Using the congruence of geodesics generated by varying x?

over S3 one obtains a Gaussian system of coordinates (τ, xα) on the Einstein cylinder

R×S3 where (xα) are some local coordinates on S3. In addition, in a slight abuse of

notation the standard time coordinate T on the Einstein cylinder is identified with

the parameter τ of the geodesic.

4.2.1 Frame expressions

A globally defined orthonormal frame on the Einstein Cosmos (ME, g̊) can be con-

structed by first considering the linearly independent vector fields in R4

c1 ≡ w
∂

∂z
− z ∂

∂w
+ x

∂

∂y
− y ∂

∂x
,

c2 ≡ w
∂

∂y
− y ∂

∂w
+ z

∂

∂x
− x ∂

∂z
,

c3 ≡ w
∂

∂x
− x ∂

∂w
+ y

∂

∂z
− z ∂

∂y
,

where (w, x, y, z) are Cartesian coordinates in R4. The vectors {ci} are tangent

to S3 and form a global frame for S3 —see e.g. [8]. This spatial frame can be

extended to a spacetime frame {e̊a} by setting e̊0 ≡ ∂τ and e̊i ≡ ci. Using this

notation one observes that the components of the basis respect to this frame are

given by e̊a = δa
bcb ≡ e̊a

bcb. Respect to this orthogonal basis the components of

the Schouten tensor read

L̊ab = δa
0δa

0 − 1

2
ηab.
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so that the components of the traceless Ricci tensor are given by

R̊{ab} = 2δa
0δb

0 − 1

2
ηab

where the curly bracket around the indices denote the symmetric trace-free part of

the tensor. In addition,

d̊abcd = 0

since the Weyl tensor vanishes.

Let γ̊i
j
k denote the connection coefficients of the Levi-Civita connection D of

~ with respect to the spatial frame {ci}. Observe that the structure coefficients

defined by [ci, cj ] = Ci
k
jck are given by Ci

k
j = 2εij

k, and, consequently

γ̊i
k
j = −εikj

where εi
k
j is the 3-dimensional Levi-Civita totally antisymmetric tensor. Taking

into account that e̊0 = ∂τ is a timelike Killing vector of g̊, one can readily obtain

the connection coefficients Γ̊a
b
c, of the Levi-Civita connection ∇̊ of the metric g̊,

with respect to the basis {e̊a}. More precisely, one has that

Γ̊a
b
c = −ε0abc.

For the conformal factor and its concomitants one readily obtains

Σ̊ ≡ Σ̊0 = − sin τ, Σ̊i = ci(Ξ̊), s̊ = −1
2
(cos τ + cosψ).

4.2.2 Spinorial expressions

In order to obtain the spinor frame form of the last expressions let τAA
′

denote the

spinorial counterpart of the vector
√

2∂τ so that τAA′τ
AA′ = 2. With this choice,

consider a spinor dyad {εAA} = {oA, ιA} adapted to τAA
′

—i.e. a spinor dyad such

that τAA
′

can be written as in equation (2.50). The spinor τAA
′

can be used to

introduce a space spinor formalism similar to the one discussed in Section 2.4.1 of

Chapter 2. One directly finds that in the present case

e̊AA′
b ≡ σAA′

ae̊a
b = σAA′

b. (4.2)

where σAA′
b denotes the Infeld-van der Waerden symbols given in equations (2.9a)-

(2.9b). Now, decomposing e̊AA′
b as in equation (2.51) and comparing with equation

(4.2) one readily finds that the components of the space spinor split of the frame,

e̊a and e̊AB
a, are given by

e̊0 =
√

2, e̊AB
0 = 0,
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e̊i = 0, e̊AB
i = σAB

i .

where σAB
i are the spatial Infeld-van der Waerden symbols given in equation (2.52).

These expressions provide a direct way of recasting the frame expressions of Section

4.2.1 in spinorial terms. Denoting by 2Φ̊AA′BB′ the spinorial counterpart of R̊{ab}

one obtains

Φ̊AA′BB′ = 1
2
σAA′

aσBB′
bR̊{ab} = σAA′

0σBB′
0 − 1

4
εABεA′B′ .

From equation (2.50) one sees that τAA′ =
√

2σAA′
0. Accordingly,

Φ̊AA′BB′ = 1
2
τAA′τBB′ − 1

4
εABεA′B′ .

To obtain the reduced spin connection coefficients one proceeds as follows: let

Γ̊AA′
BB′

CC′ denote the spinorial counterpart of Γ̊a
b
c. Since Γ̊a

b
c = −ε0abc, one

can compute its spinorial counterpart by recalling the spinorial version of the vol-

ume form

εAA′BB′CC′DD′ = i(εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′).

It follows then that

Γ̊BB′
CC′

DD′ = − 1√
2
τAA

′
εAA′BB′

CC′
DD′ = − i√

2
(τCD′εBDεB′

C′ − τDC
′
εB
CεB′D′).

Combining the last expression with the definition of the reduced spin connection

coefficients Γ̊AA′
C
B ≡ 1

2
Γ̊AA′

CQ′
BQ′ one obtains

Γ̊BB′
C
D = − i

2
√
2
(τCQ′εBDδB′

Q′ − τDQ
′
εB′Q′δB

C) = − i
2
√
2
(εBDτ

C
B′ + τDB′δB

C).

Thus, one concludes that

Γ̊AA′BC = − i√
2
εA(CτB)A′ .

Finally, for the rescaled Weyl spinor one has

φ̊ABCD = 0.

Gauge source functions for the Milne spacetime

The expressions for Γ̊a
b
c and e̊b

a derived in the previous sections allow to readily

compute the gauge source functions associated to the conformal representation of

the Milne Universe under consideration. Regarding e̊b
a as the component of a
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contravariant tensor one computes

∇̊be̊ba = ηcb∇̊ce̊ba = ηcb(e̊c(̊eb
a)− Γ̊c

e
be̊e

a)

where e̊c = e̊c
ece. Using that in this case e̊b

a = δb
a, one obtains

∇̊be̊ba = −ηcbΓ̊cab = ηcbε0c
a
b = 0.

Therefore, the coordinate gauge source function vanishes. That is, one has that

F̊ a(x) = ∇̊AA′ e̊AA′a = 0.

The frame gauge source function can be obtained as follows

∇̊aΓ̊a
b
c = ηda∇̊dΓ̊abc = ηda

Ä
e̊d(̊Γa

b
c) + Γ̊d

b
eΓ̊a

e
c − Γ̊d

e
aΓ̊e

b
c − Γ̊d

e
cΓ̊e

b
a

ä
= −ηdae̊d(ε0adc) + ηdaε0d

b
eε0a

e
c − ηdaε0deaε0ebc − ηdaε0decε0eba

= ε0
ab
eε0a

e
c − ε0abeε0aec = 0.

Therefore, using the irreducible decomposition of Γ̊AA′
BB′

CC′ in terms of Γ̊AA′
B
C

given in (2.12a), one concludes that

F̊AB(x) = ∇QQ′Γ̊QQ′AB = 0.

Finally, the conformal gauge source function is determined by the value of the Ricci

scalar, in this case R = −6. It follows then that

Λ = 1
4
.

Summary

The main results of this section are collected in the following proposition:

Proposition 3. The fields (Ξ̊, Σ̊, Σ̊i, s̊, e̊a
b, Γ̊a

b
c, L̊ab, d̊

a
bcd) given by

Ξ̊ = cos τ + cosψ, Σ̊ = − sin τ, Σ̊i = ci(Ξ̊), e̊a
b = δa

b, d̊abcd = 0,

Γ̊a
b
c = −ε0abc, L̊ab = 2δa

0δb
0 − 1

2
ηab, s̊ = −1

2
(cos τ + cosψ),

or, alternatively, in spinorial terms, the fields

(Ξ̊, Σ̊AA′ , s̊, e̊AA′
b, Γ̊AA′

B
C , Φ̊AA′BB′ , φ̊ABCD)

with Ξ̊ and s̊ as above and

e̊AA′
b = σAA′

b, Γ̊AA′BC = − i√
2
εA(BτC)A′ , φ̊ABCD = 0,
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Φ̊AA′BB′ = 1
2
τAA′τBB′ − 1

4
εABεAC , Σ̊AA′ = σAA′

aca(Ξ̊),

defined on the Einstein cylinder R× S3 constitute a solution to the conformal Ein-

stein field equations representing the Milne Universe. The gauge source functions

associated to this representation are given by

F̊ a(x) = 0, F̊AB(x) = 0, Λ̊ = 1
4
.

The solution is smooth on
˜̊M as defined Section 4.1. Moreover, one can smoothly

extend this solution to the Einstein cylinder R× S3.

Initial data for the Milne spacetime

The expressions in Proposition 3 readily imply initial data for the wave equations

(3.19a)-(3.19f) on the hyperboloids

H ≡
¶
p ∈ R× S3 | τ(p) = τ?, cos τ? + cosψ(p) ≥ 0

©
, τ? ∈ [1

2
π, π). (4.3)

By construction, the development of this data is (a portion of) the Milne Universe.

In what follows, for simplicity, the discussion will be restricted to the initial data

on the so-called standard hyperboloid

H? ≡
¶
p ∈ R× S3 | τ(p) = 1

2
π, cosψ(p) ≥ 0

©
.

Nevertheless, this analysis can be readily extended to any of the hyperboloids H
defined in expression (4.3). The intersection of the standard hyperboloid with the

conformal boundary I + is given by

Z? ≡
¶
p ∈ H? | cosψ(p) = 0

©
.

Restricting the expressions of Proposition 3 to H?, one obtains the following initial

data for the wave equations of Proposition 1:

Ξ̊|H? = cosψ, e̊AA′
b|H? = σAA′

b, Γ̊AA′BC |H? = − i√
2
εA(BτC)A′ ,

Φ̊AA′BB′ |H? = 1
2
τAA′τBB′ − 1

4
εABεAC , ΣAA′ |H? = σAA

aca(Ξ̊)|H? ,

s̊|H? = −1
2

cosψ, PΞ̊|H? = Σ|H? = −1
2
, P e̊AA′b|H? = 0, φ̊ABCD|H? = 0,

PΓ̊AA′BC |H? = 0, PΦ̊AA′BB′|H? = 0,

Pφ̊ABCD|H? = 0, P s̊|H? = 1
2

sin τ?.

Observe that the above data is, in fact, smooth on the whole of the hypersurface

S? ≡
¶
p ∈ R× S3 | τ(p) = 1

2
π
©
⊃ H?
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of the Einstein cylinder. In what follows, the set S? will be the paradigmatical

hypersurface on which initial data for the wave equations (3.19a)-(3.19f) will be

prescribed.

4.2.3 Perturbation of initial data

To discuss the stability of the Milne Universe it is necessary to parametrise pertur-

bations of initial data close to the data for the exact solution. To do so, consider

a basic initial data set for the conformal field equations in vacuum and vanishing

Cosmological constant, namely a collection (S,h,K,Ω,Σ) —here K is used instead

of χ to avoid confusion with the coordinate χ in equation (4.1)— satisfying (2.76a)-

(2.76b) with λ = 0.

Hyperboloidal initial data

Motivated by the prototypical example of the Milne Universe, in what follows solu-

tions to the conformal constraint equations (2.76a)-(2.76b) corresponding to hyper-

boloidal data will be considered. A solution (S,h,K,Ω,Σ) to equations (2.76a)-

(2.76b) will be said to be hyperboloidal data if there exists a 3-dimensional manifold

H ⊂ S with boundary Z, such that

Ω > 0 on int H,
Ω = 0, dΩ 6= 0, Σ < 0, on Z ≡ ∂H ≈ S2.

The construction of hyperboloidal initial data has been analysed in [47, 48]. To

discuss this point in more detail recall from Section 2.5 of Chapter 2 that a physical

initial data set (S̃, h̃, K̃) is related to an unphysical data set (S,h,K,Ω,Σ) via

hij = Ω2h̃ij, Kij = Ω(K̃ij + Σh̃ij),

where Σ = na∇aΩ and na = Ωña denote the g-unit and g̃-unit normals to the

initial hypersruface. Now, consider initial data sets for which the physical second

fundamental form is pure trace:

K̃ij =
1

3
K̃h̃ij.

Then, as a consequence of the momentum constraint (2.75b), K̃ is constant and the

problem reduces to the analysis of the the Hamiltonian constraint. Observe that, in

this case, equation (2.76a) reduces to

4ΩDiD
iΩ− 6DiΩD

iΩ + 2Ω2r = K̃2. (4.4)



4.2: The Milne Universe as a solution to the wave equations of Proposition 1 83

Let % be a smooth function on S such that

%|∂S = 0, d%|∂S 6= 0.

The function % is regarded as a boundary defining function. Consider the Ansatz

Ω = ρϑ−2 with ϑ > 0 on S. With this Ansatz, equation (4.4) implies an elliptic

equation for ϑ which is singular at ∂S. This equation has been analysed in [47].

The conclusion of such analysis is the content of the following

Lemma 12. Let (S,h) be a smooth Riemannian manifold with boundary ∂S. Then,

there exist a unique positive solution ϑ to the equation implied by (4.4) with Ω =

ρϑ−2. Moreover, the following are equivalent

(i) The function ϑ and the tensors

Lij = − 1

Ω
D{iDj}Ω +

1

12
(r +

2

3
K2)hij (4.5)

dij =
1

Ω2
D{iDj}Ω +

1

Ω
r{ij} (4.6)

determined on S̃ by h and Ω = ρϑ−2 extend smoothly to S.

(ii) The Weyl tensor Ca
bcd computed from data on S vanishes on ∂S.

(iii) The conformal class [h] is such that the extrinsic curvature of ∂S with respect

to its embedding in (S,h) is pure trace.

The expressions for Lij and dij in Lemma 12 correspond to the spatial part of

the (4-dimensional) Schouten tensor Lab and electric part of the rescaled Weyl ten-

sor dabcd as determined by the conformal constraint equations (2.74a)-(2.74j). The

latter theorem has been extended to include more general forms of physical second

fundamental forms K̃ij in [48, 49].

Remark 21. Despite the fact that the Milne spacetime corresponds to the region of

the Einstein cylinder denoted by
˜̊M —as given in Section 4.1— one can extend the

fields describing the Milne solution in Proposition 3 to the whole Einstein cylinder

R × S3. In particular, the coordinate τ can be extended to τ ∈ R. Additionally,

although the standard hyperboloidH? on the Milne spacetime —see expression 4.3—

is completely contained in a hemisphere of S3 one can extend the data on H? to data

on all S3 —see Remark 22. Observe that, in the case of the exact Milne spacetime,

the 3-metric in the initial data corresponds to the standard metric on S3.

Motivated by observations in Remark 21, to study perturbations of exact Milne

data, we will consider 3-manifolds S which are topologically (but not metrically)

S3 —that is, S ≈ S3. Accordingly, one considers a diffeomorphism ψ : S → S3.

This diffeomorphism and its inverse can be used to pull-back coordinates (xα), the
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frame fields {ci} and associated coframe fields {αi} on S3 to fields on S. In a slight

abuse of notation the coordinates, vector and covector fields on S are denoted again

by (xα), {ci} and {αi}. Observe that while {ci} are orthonormal with respect to

the standard metric of S3, they will not be orthonormal, in general, with respect

to the metric h obtained from the solution to the conformal constraint equations

(2.76a)-(2.76b).

The inherent freedom in the choice of the diffeomorphism ψ can be exploited to

make ψ a harmonic map and the correspondence between coordinates of S3 and S
the identity —see [17] for further details on this construction.

Parametrising the initial data

Assume one is given a hyperboloidal solution (S,h,K,Ω,Σ) to the conformal con-

straint equations (2.76a)-(2.76b) defined on a H ⊂ S. Let {ei} denote a h-

orthonormal frame over S and let {ωi} be the associated cobasis. Assume that

there exist vector fields {ĕi} such that an h-orthonormal frame {ei} is related to

an ~-orthonormal frame ci through ei = ci+ ĕi. This last requirement is equivalent

to introducing coordinates on S such that

h = h̊+ h̆ = ~ + h̆. (4.7)

Notice that the notation ˚ is used to denote the value in the exact (background)

solution while ˘ is used to denote the perturbation.

To measure the size of the perturbed initial data, one introduces Sobolev norms

defined for any spinor quantity NK with K being an arbitrary string of frame spinor

indices, as

||NK||H,m ≡
∑
K
||NK||H,m

where
∑
K is the sum over all the frame spinor indices encoded in K and

||NK||H,m =

(
m∑
l=0

3∑
α1,...,αl

∫
H

(∂α1 ...∂αl
NK)2dµ

)1/2

.

where dµ denotes the volume element associated to the standard metric on S3.

Observe that since the indices in K are frame indices, the quantities NK are scalars.

Notice, also that as S ≈ S3, then H can be regarded as a region of S3. Consistent

with the split (4.7), one makes use of the above expressions to consider perturbations

of the initial data for the Milne Universe on the standard hyperboloid H? of the form

Ξ|H = Ξ̊|H + Ξ̆|H, eAA′
b|H = e̊AA′

b|H + ĕAA′
b|H,

ΓAA′BC |H = Γ̊AA′BC |H + Γ̆AA′BC |H, ΦAA′BB′ |H = Φ̊AA′BB′ |H + Φ̆AA′BB′ |H,
φABCD|H = φ̆ABCD|H, s|H = s̊|H + s̆|H,
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ΣAA′|H = Σ̊AA′|H + Σ̆AA′|H.

together with

Σ|H = Σ̊|H + Σ̆|H, PeAA′b|H = P ĕAA′b|H,
PΓAA′BC |H = PΓ̆AA′BC |H, PΦAA′BB′ |H = PΦ̆AA′BB′|H
PφABCD|H = Pφ̆ABCD|H, Ps|H = P s̊|H + P s̆|H.

Recall from the discussion of the space spinor formalism given in Section 2.4.1 of

Chapter 2 that P ≡ τAA
′∇AA′ =

√
2∂τ . Additionally observe that, by assumption,

the above fields are solutions to the equations implied by the initial data for the

subsidiary system given in Proposition 2. Thus, in particular, they ensure that the

initial data for the subsidiary equations vanish. The above data will be collectively

denoted by

w? ≡ (u?, ∂τu?).

The parametrisation into background and perturbed parts will be written as

u? = ů? + ŭ?, ∂τu? = ∂τ ů? + ∂τ ŭ?.

The perturbation part of the initial data (ŭ?, ∂τ ŭ?) is only defined in the region H of

S. To apply the theory of quasilinear wave equations as described in Appendix 4.4,

one needs data on the whole of S ≈ S3. The initial data can be extended invoking

the Extension Theorem which states that there exists a linear operator

E : Hm(H,CN)→ Hm(S,CN)

such that if w? ∈ Hm(H,CN) then Ew?(x) = w?(x) almost everywhere in H and

||Ew?||m,S ≤ K||w?||m,H

where K is a universal constant for fixed m —see e.g. [50]. Hence, using equation

(4.12), one can make ||Ew?||m,S small as necessary by making ||w?||m,H small —that

is, the size of the extended data is controlled by the data on the initial hypersurface

H. Therefore, the extended data will be given by

Eu? = ů? + Eŭ? E∂τu? = ∂τ ů? + E∂τ ŭ?

which are well defined on Hm(S,CN). Therefore, if one assumes that

||ŭ?||S,m + ||∂τ ŭ?||S,m < ε.
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then

||Eŭ?||H,m + ||E∂τ ŭ?||H,m ≤ Kε.

Remark 22. The fact that the extension of the data obtained in the previous para-

graph is not unique and it does not necessarily satisfy the constraints of Proposition

11 is not a problem in this analysis since

D+(H) ∩ I+(S\H) = ∅

where D+ denotes the domain of dependence and I+ the chronological future of

achronal sets —see [30] for a detailed discussion of these causal concepts. The proof

of the last statement follows by contradiction. Let q ∈ D+(H) ∩ I+(S\H). Then,

on the one hand, one has that q ∈ I+(S\H), so that it follows that there exists a

future timelike curve γ from p ∈ S\H to q. On the other hand q ∈ D+(H) which

means that every past in extendible causal curve through q intersects H, therefore

p ∈ H. This is a contradiction since p ∈ S\H.

4.2.4 Construction of perturbed solutions

In this section a discussion of the construction of solutions to the wave equations

(3.19a)-(3.19f) describing non-linear perturbations of the Milne Universe is provided.

Consistent with the discussion of the previous subsection, the unknowns in the

wave equation (3.19a)-(3.19f) will be split into a background and a perturbation

part. More precisely one writes

Ξ = Ξ̊ + Ξ̆, ΣAA′ = Σ̊AA′ + Σ̆AA′ , eAA′
b = e̊AA′

b + ĕaA′
b, s = s̊+ s̆,

ΓAA′
B
C = Γ̊AA′

B
C + Γ̆AA′

B
C , ΦAA′BB′ = Φ̊AA′BB′ + Φ̆AA′BB′ ,

φABCD = φ̆ABCD.

Following the notation used in Remark 16, the independent components of the

unknowns as a single vector-valued variable are collected in a vector-valued unknown

u. Consistent with this notation one has

u = ů + ŭ.

The components of the contravariant metric tensor gµν(x,u) in the vector-valued

wave equation (3.20) can be written as the metric for the background solution ů

plus a term depending on the unknown u

gµν(x; u) = g̊µν(x; ů) + ğµν(x; u). (4.8)
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The latter can be expressed, alternatively, in spinorial terms as

gµν(x; u) = εAA
′
εBB

′
eAA′

µeBB′
ν = εAA

′
εBB

′
(e̊AA′

µe̊BB′
ν + ĕAA′

µĕBB′
ν). (4.9)

Substituting the split (4.8) into equation (3.20) one obtains,

(gµν(x; ů) + ğµν(x; u))∂µ∂ν(ů + ŭ) + F (x; u, ∂u) = 0.

Noticing that ů is, in fact, a solution to

g̊µν(x; ů)∂µ∂νů + F (x; ů, ∂ů) = 0,

it follows then that

g̊µν(x; ů)∂µ∂νŭ + ğµν(x; u)∂µ∂νů + ğµν(x; u)∂µ∂νŭ + F (x; u, ∂u)− F (x; ů, ∂ů) = 0.

Finally, since the background solution ů is known then the last equation can be

recast as

(̊gµν(x) + ğµν(x; ŭ))∂µ∂νŭ = F (x; ŭ, ∂ŭ). (4.10)

The above equation is in a form where the local existence and Cauchy stability

theory of quasilinear wave equations as given in, say, [21] can be applied. Notice

that g̊(x) is Lorentzian since it corresponds to the metric of the background solution

—i.e. the metric of the Einstein Cosmos. Now, consider initial data (u?, ∂tu?) close

enough to initial data (ů?, ∂tů?) for the Milne Universe —that is, take

(u?, ∂tu?) ∈ Bε(ů?, ∂tů?), (4.11)

where the notion of closeness is encoded in

Bε(u?,v?) ≡
¶
(w1,w2) ∈ Hm(S,CN)×Hm(S,CN) | ‖ w1−u? ‖S,m + ‖ w2−v? ‖S,m≤ ε

©
.

Additionally, given δ > 0 define

Dδ ≡
¶
(w1,w2) ∈ Hm(S,CN)×Hm(S,CN) | δ < | det gµν(w1)|

©
.

Using that u = ů + ŭ, the requirement (4.11) is equivalent to say that the initial

data for the perturbation is small in the sense that

||ŭ?||S,m + ||∂τ ŭ?||S,m < ε. (4.12)

With this remark in mind and recalling that ů is explicitly known, observe that from
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equation (4.8) it follows that

gµν(x; u) = g̊µν(x) + ğµν(x; ŭ).

Since the variable ŭ? is a vector-valued function collecting the independent com-

ponents of the conformal fields, and in particular (ĕAA′
µ)?, it follows that for suf-

ficiently small initial ŭ? the perturbation ğµν will be small. Therefore, choosing

ε small enough one can guarantee that the metric g̊µν(x) + ğµν(x; ŭ?) is initially

Lorentzian.

To state the main result of this section, it will be convenient to shift the time

coordinate τ by an amount of 1
2
π, namely Ûτ ≡ τ − 1

2
π so that the location of the

standard hyperboloid of the Milne Universe is given by Ûτ = 0. At this point one is

now in position to make use of a local existence and Cauchy stability result adapted

from [21] —see Appendix 4.4 , to establish the following theorem:

Theorem 1 (Existence and Cauchy stability). Let (u?, ∂τu?) = (ů?+ŭ?, ∂τ ů?+

∂τ ŭ?) be hyperboloidal initial data for the conformal wave equations on an 3-dimensional

manifoldH where (ů?, ∂τ ů?) denotes initial data for the Milne Universe. Let (Eu?, E∂τu?)
denote the extension of these data to S ≈ S3. Then, for m ≥ 4 and Ûτ• ≥ 3

2
π there

exist an ε > 0 such that:

(i) For ||ŭ?||H,m + ||∂τ ŭ?||H,m < ε, there exist a unique solution u = ů + ŭ to the

wave equations of Proposition 1 with a minimal existence interval [0, Ûτ•] and

u ∈ Cm−2([0, Ûτ•]× S,CN).

(ii) Given a sequence (u
(n)
? ,v

(n)
? ) ∈ Bε(u?,v?) ∩Dδ such that

‖ u(n)
? − u? ‖S,m→ 0, ‖ v(n)

? − v? ‖S,m→ 0, as n→∞,

then for the solutions u(n) with u(n) = u
(n)
? and ∂tu

(n)(0, ·) = v
(n)
? , it holds that

‖ u(n)(τ, ·)− u(τ, ·) ‖S,m→ 0 as n→∞

uniformly in τ ∈ [0, Ùτ•) as n→∞.

(iii) The solution u = ů + ŭ is unique in D+(H) and implies, wherever Ξ 6= 0, a

Cm−2 solution to the Einstein vacuum equations with vanishing Cosmological

constant.

Proof. Points (i) and (ii) are a direct application of Theorem 2 given in Appendix

4.4. The wave equation (4.10) is of the form covered by equation (4.17): the condi-

tion ensuring that g̊(x) + ğ(x; u) is Lorentzian is encoded in the requirement of the

perturbation for the initial data being small as discussed in Section 4.2.4; moreover,



4.2: The Milne Universe as a solution to the wave equations of Proposition 1 89

the coefficients in equation (4.10) are smooth functions of their arguments. No-

tice that the background conformal representation of the Milne Universe, as given

in Proposition 3, is a smooth solution to the wave equations of Chapter 3 on the

Einstein cylinder R × S3. Thus, ů is smooth on the time coordinate τ ∈ R. In

particular, the solution ů exist up to a time Ûτ• ≥ 3
2
π. The theory contained in [21]

—see also Appendix 4.4— ensures then, that the perturbations ŭ have the same

existence time Ûτ• as the reference solution ů.

The statement of point (iii) follows from the discussion of Section 3.3 for the prop-

agation of the constraints and the subsidiary system as summarised in Proposition

1 and Lemma 11. In particular, in this section it was shown that a solution to the

spinorial wave equations is a solution to the conformal Einstein field equations if

initial data satisfies the appropriate conditions. As exemplified in Section 3.3.2 for

the rescaled Weyl spinor, requiring the zero-quantities to vanish in the initial hyper-

surface renders conditions on the initial data. Finally, recall that a solution to the

conformal Einstein field equations implies a solution to the Einstein field equations

wherever Ξ 6= 0 —see [15].

Remark 23. The localisability property of solutions to wave equations allows to

apply the methods leading to Theorem 1 to discuss the non-linear perturbations of

background solutions whose spatial sections are orientable compact manifolds. For

this one consider a finite cover of the base manifold. Solutions are then obtained on

the Cauchy development of each of the elements of the cover. These solutions are

then patched together to obtain a global in space solution. The geometric uniqueness

of the setting ensures that solutions on the overlapping regions are compatible. The

details of this well-known construction can be found in [3]. A discussion of the

patching method for (first order) symmetric hyperbolic systems can be found in

[17].

Remark 24. Point (ii) in the Theorem establishes the stability of the background

(Milne) solution —i.e. the fact that the development of data close to Milne data

will be, in a suitable sense, close to the Milne solution.

Remark 25. Observe that Σ̊ < 0 for Ûτ ∈ (0, 1
2
π) and Σ̊ > 0 for Ûτ ∈ (1

2
π, 3

2
π). Thus,

recalling that Σ = Σ̊ + Σ̆ then Σ < 0 for Ûτ ∈ (0, 1
2
π) and Σ > 0 for Ûτ ∈ (1

2
π, 3

2
π) for

ε small enough, therefore there is at least one point where Σ = 0. This fact will be

used in the analysis of the conformal boundary given in the next section.

4.2.5 Structure of the conformal Boundary

In this section Theorem 1 is complemented by showing that the conformal boundary

I coincides with the Cauchy horizon of H. The argument of this section is based
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on analogous discussion in [8]. Since the Cauchy horizon H(H) = ∂(D+(H)) is

generated by null geodesics with endpoints on Z the null generators of H(H) —i.e

the null vectors tangent to H(H)— are given at Z by Σa|Z . One defines two null

vectors (n, l) on Z by setting

la? = Σa|Z , n? ⊥ Z, g(n?, l?) = 1 on Z. (4.13)

These pair of null vectors {l?,n?}, where l? is tangent toH(H) on Z and n? is normal

to Z is complemented with a pair of complex conjugate vectors m? and m̄? tangent

to Z such that g(m?, m̄?) = 1, so as to obtain the tetrad {l?,n?,m?, m̄?}. In order

to obtain a Newman-Penrose frame {l,n,m, m̄} off Z along the null generators of

H(H) one propagates them by parallel transport in the direction of l by requiring

la∇alb = 0, la∇anb = 0, la∇amb = 0. (4.14)

Now, suppose that one already has a solution to the conformal wave equations.

Using the result of Lemma 11, one knows that the solution will also satisfy the con-

formal Einstein field equations. In this section the conformal Einstein field equations

are employed to study the conformal boundary. From the tensorial (frame) version

of the conformal Einstein field equations in vacuum as given in Section 2.1.2 of

Chapter 2, one notices the subset of equations formed by equations (2.7c), (2.7d)

and the definition of Σa as the gradient of the conformal factor:

∇aΞ = Σa, (4.15a)

∇aΣb = sgab − ΞLab, (4.15b)

∇as = −LabΣb. (4.15c)

Transvecting the first two equations, respectively, with la, lalb and lamb renders

la∇aΞ = laΣa,

la∇a(lbΣb) = −ΞLabl
alb,

la∇a(mbΣb) = −ΞLabl
amb,

where equation (4.14) and the fact that l is null and orthogonal tom have been used.

The latter equations can be read as a system of homogeneous transport equations

along the integral curves of l for a vector-valued variable containing as components

Ξ , Σal
a and Σam

a. Written in matricial form one has

∇l

á
Ξ

Σal
a

Σam
a

ë
=

á
0 1 0

−Lcdlcld 0 0

−Lcdlcmd 0 0

ëá
Ξ

Σal
a

Σam
a

ë
. (4.16)
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Observe that the column vector shown in the last equation is zero on Z, since Ξ|Z
=0 , (laΣa)|Z = (lala)|Z = 0 and (Σam

a)|Z = (lam
a)|Z = 0 which follows from

(4.13) and (4.14). Since equation (4.16) is homogeneous and it has vanishing initial

data on Z one has that Ξ, Σal
a and Σam

a will be zero along l until one reaches

a caustic point. Consequently, one concludes that the conformal Ξ factor vanishes

in the portion of H(H) which is free of caustics. Thus, this portion of H(H) can

be interpreted as the conformal boundary of the physical spacetime (M̃, g̃). In

addition, notice that from the vanishing of the column vector of equation (4.16)

it follows that Σal
a = Σam

a = 0 on H(H). Therefore, the only component of

Σa that can be different from zero is Σan
a. Accordingly, Σa is parallel to la and

Σa = (Σcn
c)la. Moreover, since g(n?, l?) = 1 it follows that (Σan

a)|Z = 1 —this

can also be shown by noticing that (nbΣb)|Z = (nblb)|Z = 1.

Now, in order to extract the information contained in Σan
a one transvects (4.15b)

with lanb, to obtain

la∇a(nbΣb) = sgabl
anb − ΞLabl

anb.

Using that g(l,n) = 1 and that Ξ vanishes on H(H) one concludes that

∇l(Σana) = s on H(H).

One can obtain a further equation transvecting (4.15c) with la

la∇as = −LablaΣb = −LablaΣfn
f lb on H(H).

It follows then that one has the system

∇l
Ñ

Σan
a

s

é
=

Ñ
0 1

−Lcdlcld 0

éÑ
Σan

a

s

é
.

Since (Σan
a)|Z = 1 (i.e. non-vanishing), the solution for the column vector formed

by s and Σan
a cannot be zero. Accordingly, s and Σan

a cannot vanish simultane-

ously. Finally, transvecting equation (4.15b) with mam̄b one gets

mam̄b∇aΣb = −Ξmam̄bLab + sgabm
am̄b.

Using that g(m, m̄) = 1 and restricting to H(H) where Ξ = 0 renders

m̄bma∇aΣb = s on H(H).

Using g(m̄, l) = 0 it follows that the left hand side of the last equation is equivalent
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to

mam̄b∇aΣb = mam̄b∇a(Σcn
clb)

= mam̄bΣcn
c∇alb +mam̄blb∇aΣcn

c

= Σcn
cmam̄b∇alb.

Finally, recalling the definition of the expansion ρ ≡ −mam̄b∇alb (in the Newman-

Penrose notation [12]) one finally obtains

Σan
aρ = −s on H(H).

Since the only possible non-zero component of the gradient of Ξ is Σan
a and it

cannot vanish simultaneously with s, one has that dΞ = 0 implies ρ→∞ on H(H).

To be able to identify the point i+ where dΞ = 0 with timelike infinity one needs

to calculate the Hessian of the conformal factor. Observe that this information is

contained in the conformal field equation (2.7c). Considering this equation at H(H),

where it has already been shown that the conformal factor vanishes, one gets

∇a∇bΞ = sgab.

Now, as it has been shown that s and Σan
a (or, equivalently, dΞ) do not vanish

simultaneously one concludes that s 6= 0 and that ∇a∇bΞ is non-degenerate. Thus,

the point i+ on H(H) where both Ξ and dΞ vanish can be regarded as representing

future timelike infinity for the physical spacetime (M̃, g̃).

Remark 26. Observe that the construction discussed in the previous paragraphs

crucially assumes that Ξ? is zero on the boundary Z of the initial hypersurface H.

This construction cannot be repeated if one were to take another hypersurface H′
with boundary Z ′ where the conformal factor does not vanish. This is the case of an

initial hypersurface that intersects the cosmological horizon, where for the reference

solution the conformal factor does not vanish —see Figure 4.2.

The results of the analysis of this section are summarised in the following:

Proposition 4. (Structure of the conformal boundary) Let u denote a solu-

tion to the conformal wave equations equations constructed as described in Theorem

1. Then, there exists a point i+ ∈ H(H) where Ξ|i+ = 0 and dΞ|i+ = 0 but the

Hessian ∇a∇bΞ|i+ is non-degenerate. In addition, dΞ 6= 0 on I + = H(H) \ {i+}.
Moreover D+(H) = J−(i+).

Proof. From the conclusions of Theorem 1 and the discussion of Section 4.2.5 it

follows that if one has a solution to the conformal wave equations which, in turn

implies a solution to the conformal field equations, then there exists a point i+ in
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Figure 4.2: Portion of the Penrose diagram of the Milne Universe showing the
initial hypersurface H where the the hyperboloidal data is prescribed. At Z the
conformal factor vanishes and the argument of Section 4.2.5 can be applied. The
dark grey area represents the development of the data on H. Compare with the case
of the hypersurface H′ which intersects the horizon at Z ′ where the argument cannot
be applied. Analogous hypersurfaces can be depicted for the lower diamond of the
complete diagram of Figure 4.1.

H(H) where both the conformal factor and its gradient vanish but ∇a∇bΞ is non-

degenerate. This means that i+ can be regarded as future timelike infinity for the

physical spacetime. In addition, null infinity I + will be located at H(H)\{i+}
where the conformal factor vanishes but its gradient does not.

Remark 27. Inspection of the argument leading to Proposition 4 requires two

continuous derivatives of the conformal fields involved. This is precisely the minimal

regularity provided by Theorem 1.

4.3 Conclusions

The discussion given in this chapter shows how the wave equations derived in Chap-

ter 3 can be employed to study the semiglobal non-linear stability of the Milne

Universe. This analysis, in particular, exemplifies how the extraction of a system

of quasilinear wave equations out of the conformal Einstein field equations allows

to readily make use of the general theory of partial differential equations to ob-

tain non-trivial statements about the global existence of solutions to the Einstein

field equations. The analysis of Chapter 3 has been restricted to the vacuum case.

However, a similar procedure can be carried out, in the non-vacuum case, for some

suitable matter models with trace-free energy-momentum tensor —see e.g. [17].

In addition, this analysis has been restricted to the case of the so-called stan-

dard conformal Einstein field equations. Nevertheless, as discussed in Chapter 2,

there exists a more general version of the conformal Einstein field equations, the so-

called, extended conformal Einstein field equations in which the various equations
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are expressed in terms of a Weyl connection.

The hyperbolic reduction procedures for the extended conformal Einstein field

equations available in the literature do not make use of gauge source functions.

Instead, one makes use of conformal Gaussian systems based on the congruence of

privileged curves known as conformal geodesics to extract a first order symmetric

hyperbolic system. It is an interesting open question to see whether it is possible to

use conformal Gaussian systems to deduce wave equations for the conformal fields

in the extended conformal Einstein field equations. Nevertheless, the latter will not

be pursued in this thesis.

4.4 Appendix: Basic existence and stability

theory for quasilinear wave equations

In this appendix an adapted version of a theorem for quasilinear wave equations

given in [21] is given. The particular formulation has been chosen so as to simplify

comparison with an analogous result for first order symmetric hyperbolic as given

in [8] —see Theorem 3.1 in that reference.

In what follows, one will consider open, connected subsets U ⊂MT ≡ [0, T )× S
for some T > 0 and S ≈ S3 an oriented, compact 3-dimensional manifold. On U
one can introduce local coordinates x = (xµ) = (t, xα). Given a fixed N ∈ N, in

what follows, let u :MT → CN denote a CN -valued function. The derivatives of u

will be denoted, collectively, by ∂u. The discussion will be restricted to quasilinear

wave equations of the form

gµν(x; u)∂µ∂νu = F(x; u, ∂u), (4.17)

where gµν(x; u) denotes the contravariant version of a Lorentzian metric gµν(x; u)

which depends smoothly on the unknown u and the coordinates x and F is a smooth

CN -valued function of its arguments. Separating the fields into real and imaginary

parts one can regard u as a R2N -valued function.

In order to formulate a Cauchy problem for equation (4.17) it is necessary to

supplement it with initial data corresponding to the value of u and ∂tu on the

initial hypersurface S. For simplicity, choose coordinates such that S is described

by the condition t = 0. Given two functions u?, v? ∈ Hm(S,CN), m ≥ 2, one

defines the ball of radius ε centred around (u?,v?) as the set

Bε(u?,v?) ≡
¶
(w1,w2) ∈ Hm(S,CN)×Hm(S,CN) | ‖ w1−u? ‖S,m + ‖ w2−v? ‖S,m≤ ε

©
.
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Also, given δ > 0 define

Dδ ≡
¶
(w1,w2) ∈ Hm(S,CN)×Hm(S,CN) | δ < | det gµν(w1)|

©
.

The basic existence and Cauchy stability theory for equations of the form (4.17)

has been given in [21]. The following theorem is based on Theorem III of the later

reference —the presentation follows Theorem 3.1 of [8]:

Theorem 2. Given an orientable, compact, 3-dimensional manifold S ≈ S3, con-

sider the the Cauchy problem

gµν(x; u)∂µ∂νu = F(x; u, ∂u),

u(0, x) = u?(x) ∈ Hm+1(S,CN),

∂tu(0, x) = v?(x) ∈ Hm(S,CN), m ≥ 4,

and assume that gµν(x; u?) is a Lorentzian metric such that (u?,v?) ∈ Dδ for some

δ > 0. Then:

(i) There exists T > 0 and a unique solution to the Cauchy problem defined on

[0, T )× S such that

u ∈ Cm−2([0, T )× S,CN).

Moreover, (u(t, ·), ∂tu(t, ·)) ∈ Dδ for t ∈ [0, T ).

(ii) There is a ε > 0 such that a common existence time T can be chosen for all

initial data conditions on Bε(u?,v?) ∩Dδ.

(iii) If the solution u with initial data u? exists on [0, T ) for some T > 0, then the

solutions to all initial conditions in Bε(u?,v?) ∩Dδ exist on [0, T ] if ε > 0 is

sufficiently small.

(iv) If ε and T are chosen as in (i) and one has a sequence (u
(n)
? ,v

(n)
? ) ∈ Bε(u?,v?)∩

Dδ such that

‖ u(n)
? − u? ‖S,m→ 0, ‖ v(n)

? − v? ‖S,m→ 0, as n→∞,

then for the solutions u(n)(t, ·) with u(n)(0, ·) = u
(n)
? and ∂tu

(n)(0, ·) = v
(n)
? , it

holds that

‖ u(n)(t, ·)− u(t, ·) ‖S,m→ 0 as n→∞

uniformly in t ∈ [0, t) as n→∞.

Remark 28. The particular formulation of the theorem has been chosen to ease

the comparison with Theorem 3.1 of [8] where an analogous existence and Cauchy

stability result for first order symmetric hyperbolic systems is given.
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Remark 29. The hypotheses of Theorem III in [21], on which Theorem 2 is based,

require the positivity away from zero of the coefficients of the second derivatives

with respect to time in the wave equations. It also requires that the second order

spatial partial derivatives give rise to a strongly elliptic system. These requirements

are satisfied for equation (4.17) if the matrix gµν is a non-degenerate Lorentzian

metric. This requirement is encoded in the set Dδ. The regularity requirements of

the coefficients in the quasilinear wave equations with respect to their arguments

required by Theorem III in [21] are satisfied by the smoothness assumptions on the

functional form of equation (4.17).

Remark 30. Theorem III in [21] establishes the well-posedness of the Cauchy prob-

lem for quasilinear wave equations of the form (4.17). It contains two main state-

ments. The first establishes the local existence and uniqueness of solutions to initial

value problem —this is essentially the content of point (i) in Theorem 2. The second

statement asserts the continuous dependence of solutions and existence times with

respect to the initial data. In particular, if a known solution to the initial value prob-

lem has a minimal existence time T , then any initial data sufficiently close to the

reference solution will have the same existence time —this is essentially the state-

ment in points (ii) and (iii) of Theorem 2. The non-existence of nearby data with

solutions having the same existence time would be in contradiction with the uniform

continuity of the map relating initial data and solutions. The dependence of the so-

lutions on the initial data is continuous in the topology of Hm+1 × Hm uniformly

in the common existence interval —this is the statement in point (iv) of Theorem

2. Notice that this is expressed, for concreteness, in terms of the convergence of a

sequence.

Remark 31. In view of the applications of the Theorem, the regularity of the

solutions has been expressed in terms of standard derivatives rather than Sobolev

spaces —see also, the remarks after Theorem 3.1 in [8].

Remark 32. The regularity in both the hypothesis and conclusions of the Theorem

are not optimal. The reader interested is referred to [51–54].

Remark 33. Alternatively, rewriting equation (4.17) as a first order symmetric

hyperbolic system, one can obtain Theorem 2 from Theorem 3.1 of [8]. Similar

ideas have been used in [55, 56].

Remark 34. Using the method of patching solutions, Theorem III can be extended

to any compact orientable 3-manifold S —see e.g. the discussion in [17].



5 Perturbations of the asymptotic

region of the Schwarzschild-de

Sitter spacetime.

5.1 Introduction

The stability of black hole spacetimes is, arguably, one of the outstanding problems

in mathematical General Relativity. The challenge in analysing the stability of black

hole spacetimes lies in both the mathematical problems as well as in the physical

concepts to be grasped. By contrast, the non-linear stability of Minkowski spacetime

—see e.g. [8, 10]— and de Sitter spacetimes —see [8, 9]— are well understood.

The results in [8, 9] show that conformal Einstein field equations are a powerful

tool for the analysis of the stability and global properties of vacuum asymptotically

simple spacetimes —see [8, 9, 11, 57]. In particular, the analysis given in [8, 9],

makes use of the standard conformal Einstein field equations. More recently, in [41],

it was shown that the extended conformal field equations can be used to obtain an

alternative proof of the semiglobal non-linear stability of the Minkowski spacetime

and of the global non-linear stability of the de-Sitter spacetime —see [41]. In view

of these results, a natural question is whether conformal methods can be used in the

global analysis of spacetimes containing black holes. The discussion in this chapter

is based on

Gaspeŕın E. and Valiente Kroon J.A., “Perturbations of the asymptotic region

of the Schwarzschild–de Sitter spacetime,” Annales Henri Poincaré (2017) 1–73.

http://dx.doi.org/10.1007/s00023-016-0544-z.

where a first step in this direction is given by analysing certain aspects of the con-

formal structure of the Schwarzschild-de Sitter spacetime using conformal methods.

The current approaches for analysing stability properties of black hole spacetimes

do not make use of conformal formulations of the Einstein field equations, conse-

quently, the use of conformal methods for the stability analysis of solutions of the

Einstein field equations represents a new and unexploited venue. Despite the fact

the result obtained in this chapter does not fully address the outstanding stability

of the Schwarzschild-de Sitter, the constructed class of solutions is non-trivial. In

97
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addition, as previously mentioned, it does represent a first step in implementing

conformal methods for the the analysis of black hole spacetimes.

5.1.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime is a spherically symmetric solution to the

vacuum Einstein field equations with Cosmological constant. It depends on two

parameters: the Cosmological constant λ and the mass parameter m. The as-

sumption of spherical symmetry almost completely singles out the Schwarzschild-de

Sitter spacetime among the vacuum solutions to the Einstein field equations with

de Sitter-like Cosmological constant. The other admissible solution is the so-called

Nariai spacetime. This observation can be regarded as a generalisation of Birkhoff’s

theorem —see [58] for a modern discussion on this classical result. For small val-

ues of the area radius r, the solution behaves like the Schwarzschild spacetime and

for large values its behaviour resembles that of the de Sitter spacetime. In the

Schwarzschild-de Sitter spacetime the relation between the mass and Cosmological

constant determines the location of the Cosmological and black hole horizons.

The presence of a Cosmological constant makes the Schwarzschild-de Sitter solu-

tion a convenient candidate for a global analysis by means of the extended conformal

Einstein field equations —see Section 2.2 in Chapter 2— as the solution is an exam-

ple of a spacetime which admits a smooth conformal extension towards the future

(respectively, the past) —see Figures 5.3, 5.4 and 5.5 in this chapter. This type

of spacetimes are called future (respectively, past) asymptotically de Sitter —see

Section 5.2.1 for definitions and [59, 60] for a more extensive discussion. As the

Cosmological constant takes a de Sitter-like value, the conformal boundary of the

spacetime is spacelike and, moreover, there exists a conformal representation in

which the induced 3-metric on the conformal boundary I is homogeneous. Thus, it

is possible to integrate the extended conformal field equations along single conformal

geodesics.

In this chapter the Schwarzschild-de Sitter spacetime as a solution to the extended

conformal Einstein field equations is analysed. The insights thus obtained are used

to discuss non-linear perturbations of the spacetime. A natural starting point for

this discussion is the analysis of conformal geodesic equations on the spacetime. The

results of this analysis can, in turn, be used to rewrite the spacetime in the confor-

mal gauge associated to these curves. However, despite the fact that the conformal

geodesic equations for spherically symmetric spacetimes can be written in quadra-

tures [37], in general, the integrals involved cannot be solved analytically. In view of

this difficulty, in this chapter the conformal properties of the exact Schwarzschild-de

Sitter spacetime are analysed by means of an asymptotic initial value problem for the

conformal field equations. Accordingly, initial data implied by the Schwarzschild-de

Sitter spacetime on the conformal boundary is obtained and used to analyse the
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a) b) c)
Q Q′ Q Q Q′ Q Q′

Q Q′ P
Figure 5.1: Schematic depiction of the Main Result 2. The dark grey area in
panels a) b) and c) illustrates the region covered by the development of asymptotic
initial data close to that of the Schwarzschild-de Sitter spacetime —in the global
representation— for the subextremal, extremal and hyperextremal cases respectively.
The light grey area represents the exact Schwarzschild-de Sitter spacetime. For the
exact Schwarzschild-de Sitter spacetime the initial metric is ~, the standard metric
on S3, and the asymptotic points Q and Q′ are excluded (denoted by empty circles
in the diagram). See also Figures 5.3, 5.4 and 5.5.

−∞ ∞

Figure 5.2: Schematic depiction of the Main Result 2. Development of asymptotic
initial data close to that of the Schwarzschild-de Sitter spacetime in the representa-
tion in which Theorem 3 is obtained. For the exact Schwarzschild-de Sitter spacetime
the initial metric is h, the standard metric on R× S2, and the asymptotic points Q
and Q′ are at infinity with respect to h —since ~ and h are conformally flat one has
h = ω2~. The initial data for the subextremal, extremal and hyperextremal cases is
formally identical. For small enough perturbations the development have the same
asymptotic structure as the reference spacetime

behaviour of the conformal evolution equations. An important property of these

evolution equations is that their essential dynamics is governed by a core system

of equations. Consequently, an important aspect of this discussion consists of the

analysis of the formation of singularities in the core system. This analysis is irre-

spective of the relation between λ 6= 0 and m. This allows to formulate a result

which is valid for the subextremal, extremal and hyperextremal Schwarzschild-de

Sitter spacetime characterised by the conditions 0 < 9m2|λ| < 1, 9m2|λ| = 1 and

9m2|λ| > 1 respectively.

5.1.2 The main result

The analysis of the conformal properties of the Schwarzschild-de Sitter spacetime

allows to formulate a result concerning the existence of solutions to the asymptotic

initial value problem for the Einstein field equations with de Sitter-like Cosmological

constant which can be regarded as perturbations of the asymptotic region of the
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Schwarzschild-de Sitter spacetime —see Figures 5.1 and 5.2. The existence result

proven in this chapter can be stated as:

Main Result 2 (asymptotically de Sitter spacetimes close to the asymp-

totic region of the SdS spacetime). Given asymptotic initial data which is

suitably close to data for the Schwarzschild-de Sitter spacetime there exists a solu-

tion to the Einstein field equations which exists towards the future (past) and has an

asymptotic structure similar to that of the Schwarzschild-de Sitter spacetime —that

is, the solution is future (past) asymptotically de Sitter.

Remark 35. A detailed formulation of the Main Result of this chapter can be found

in Section 5.4.4 —see Theorem 3.

The analysis of the conformal evolution equations governing the dynamics of the

background solution given in this chapter provides explicit minimal existence in-

tervals for the solutions. These intervals are certainly not optimal. An interesting

question related to this class of solutions to the Einstein field equations is to obtain

their maximal development. To address this problem one requires different methods

of the theory of partial differential equations and it will be discussed elsewhere. A

schematic depiction of the Main Result is given in Figure 5.1.

Part of the analysis of the background solution requires deriving asymptotic ini-

tial data for the Schwarzschild-de Sitter spacetime. The construction of this initial

data allows to study in detail the singular behaviour of the conformal structure of

the family of background spacetimes at the asymptotic points Q and Q′, where the

horizons of the spacetime meet the conformal boundary. As a consequence of the

singular behaviour of the asymptotic initial data, the discussion of the asymptotic

initial value problem has to exclude these points. In view of this, it turns out that a

more convenient conformal representation to analyse the conformal evolution equa-

tions for both the exact Schwarzschild-de Sitter spacetime and its perturbations is

one in which the the conformal boundary is metrically R×S2 rather than S3\{Q,Q′}
so that the problematic asymptotic points are sent to infinity —see Figure 5.2.

5.1.3 Related results

The properties of the Schwarzschild-de Sitter spacetime have been systematically

probed by means of an analysis of the solutions of the scalar wave equation using

vector field methods —see [61]. This type of analysis requires special care when

discussing the behaviour of the solution close to the horizons. In the asymptotic

initial value problem considered in this chapter, the domain of influence of the

initial data is contained in the region corresponding to the asymptotic region of the

Schwarzschild-de Sitter spacetime.
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The properties of the Nariai spacetime —the other solution appearing in the

generalisation of Birkhoff’s theorem to spacetimes with a de Sitter-like Cosmological

constant— have been analysed by means of both analytic and numerical methods

in [62, 63]. In particular, in the former reference it is shown that the Nariai solution

does not admit a smooth conformal extension —see also [57]. Thus, it cannot be

obtained from an asymptotic initial value problem.

Finally, it is pointed out that the singularity of the Schwarzschild-de Sitter space-

time is not a conformal gauge singularity since C̃abcdC̃
abcd → ∞ as r → 0. Accord-

ingly, theory of the extendibility of conformal gauge singularities as developed in

[64] cannot be applied in the case analysed in this chapter. For any of the possible

conformal gauges available, one either has a singularity of the Weyl tensor arising

at a finite value of the parameter of a conformal geodesic or one has an inextendible

conformal geodesic along which the Weyl tensor is always smooth.

5.2 The asymptotic initial value problem in

General Relativity

In this section the notion of asymptotically de Sitter spacetimes is revisited —see

[2, 59, 60]. In particular, it is discussed how to use the conformal field equations

expressed in terms of a conformal Gaussian system —recall the conformal evolution

and constraint equations discussed in Sections 2.4.3 and 2.5 of Chapter 2— to set

up an asymptotic initial value problem for a spacetime with a spacelike conformal

boundary. This section concludes with a discussion of the structural properties

of the conformal evolution equations in the framework of the theory of symmetric

hyperbolic systems contained in [23].

5.2.1 Asymptotically de Sitter spacetimes

The following definition of future asymptotically de Sitter spacetimes will be fre-

quently used in this chapter.

Definition. A spacetime (M̃, g̃) satisfying the vacuum Einstein field equations

R̃ab = λg̃ab, (5.1)

is future asymptotically de Sitter if there exist a spacetime with boundary (M, g), a

smooth conformal factor Ξ and a diffeomorphism ϕ : M̃ → U ⊆M, such that:

Ξ > 0 in U ,
Ξ = 0 and dΞ 6= 0 on I + ≡ ∂U ,
I + is spacelike —i.e. g(dΞ,dΞ) > 0 on I +,
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I + lies to the future of M̃ —i.e. I + ⊂ I+(M̃).

Observe that this definition does not restrict the topology of I +. In particular,

it does not have to be compact —see [60]. The notion of past asymptotically de

Sitter is defined in analogous way. Additionally, (M̃, g̃) is asymptotically de Sitter

if it is future and past asymptotically de Sitter. Notice that a spacetime which

is asymptotically de Sitter is not necessarily asymptotically simple —see [2] for a

precise definition of asymptotically simple spacetimes. In the following, in a slight

abuse of notation, the mapping ϕ : M̃ → U ⊆ M will be omitted in the notation

so that one writes

g = Ξ2g̃. (5.2)

Furthermore, the term asymptotic region will be used to refer to the set J−(I +) of

a future asymptotically de Sitter spacetime or J+(I −) of a past asymptotically de

Sitter spacetime.

5.2.2 The formulation of an asymptotic initial value

problem

In this section it is shown how the conformal Gaussian gauge can be used to formu-

late an asymptotic initial value problem for the extended conformal Einstein field

equations. Thus, in the sequel an initial hypersurface on which the conformal fac-

tor vanishes, so that it corresponds to the conformal boundary of a hypothetical

spacetime, is considered. Accordingly, this initial hypersurface will be denoted by

I .

The conformal boundary

Following Lemma 6 one can set, without loss of generality, τ? = 0 on I . Moreover, it

will be assumed that fa vanishes initially. Accordingly, one has the initial condition

β? = Θ−1? dΘ?. Recalling that d = Θβ, and g̃] = Θ2g], and using the constraints

in equation (2.41) of Lemma 6 it readily follows, for the asymptotic initial value

problem (in which Θ? = 0), that

Θ̇? =

√
|λ|
3
.

Moreover, using again that d = Θβ and requiring ẋ? to be orthogonal to I (so

that ẋ? = e0), one obtains d0? = Θ̇?. Consequently

d0? =

√
|λ|
3
.
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The coefficient Θ̈? is fixed by the requirement s = Σκ on I —see [65]. From the

definition of s and Σa ≡ ∇aΘ it follows that

s? =

Ç
1

4
∇a∇aΘ +

1

24
RΘ

å
?

=
1

4
(eaΣa)? +

1

4
(Γa

a
bΣ

b)?

=
1

4
ηab(eaebΘ)? +

1

4
Θ̇?(Γa

a
0)?.

(5.3)

Taking into account that Θ and Σi vanish at I one has that ηab(eaebΘ)? = Θ̈?.

Using the solution to the constraints given in equations (2.78a)-(2.78b) of Chap-

ter 2 and exploiting the properties of the adapted orthonormal frame one obtains

(Γa
a
0)? = (Γi

i
0)? = (χi

i)? = κδi
i = 3κ. Substituting into equation (5.3) and using

that s? = Θ̇?κ one gets

Θ̈? = Θ̇?κ.

Summarising, for an asymptotic initial value problem the conformal factor implied

by the conformal Gaussian gauge is given by

Θ(τ) =

√
|λ|
3
τ
Å

1 +
1

2
κτ
ã
. (5.4)

The conformal factor given by equation (5.4) is, in a certain sense, universal —see

Remark 37. It does not encode any information about the particular details of the

spacetime to be evolved from I . As such, it can be used to analyse any spacetime

with de Sitter-like Cosmological constant as long as the spacetime has at least one

component of the conformal boundary. If κ 6= 0 the conformal boundary has two

components located at

τ = 0 and τ = −2

κ
.

The first zero corresponds to the initial hypersurface I . The physical spacetime

corresponds to the region where Θ 6= 0. Therefore, the roots of Θ render two

different regions of (M, g) corresponding to two different conformal representation

of (M̃, g̃). One of these representations corresponds to the region covered by the

conformal geodesics with τ ∈ [−2/|κ|, 0] or τ ∈ [0, 2/|κ|] and other corresponds

to the region covered by the conformal geodesics with τ ∈ [0,∞) or τ ∈ (−∞, 0]

depending on the sign of κ.

Remark 36. The discussion of the previous paragraphs is formal: the compo-

nent of the conformal boundary given by τ = −2/κ may not be realised in a spe-

cific spacetime. This is, in particular, the case of the extremal and hyperextremal

Schwarzschild-de Sitter spacetimes in which the singularity precludes reaching the

second conformal infinity —see Figure 5.4.

Remark 37. The expression (5.4) is universal in the sense that it is the conformal

factor singled out by a congruence of conformal geodesics starting orthogonally
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from I —see Section 2.3.2 in Chapter 2. Observe that the location of the conformal

boundary is known apriori in the sense that the values of τ for which the conformal

factor of Lemma 6 vanishes can be written in terms of Θ?, Θ̇? and Θ̈?. Furthermore,

notice that the values of Θ?, Θ̇? and Θ̈? are fixed by the value of λ and κ in the

asymptotic initial value problem.

Exploiting the conformal gauge freedom

The conformal freedom of the setting allows us to further simplify the solution to

the conformal constraint equations at I . Given a solution to the conformal Einstein

field equations associated to a metric g, it follows from the conformal covariance of

the equations and fields that the conformally related metric g′ ≡ ϑ2g for some ϑ is

also a solution. On an initial hypersurface S the latter implies implies h′ = ϑ2
?h.

From the definition of the Friedrich scalar s —see Section 2.1.2 in Chapter 2— and

the conformal transformation rule for the Ricci scalar one has that

s′? = ϑ−1? s? + ϑ−2? (∇cϑ)?(∇cΘ)?.

Thus, the condition s′ = 0 can be solved locally for ϑ?. Accordingly, one chooses ϑ?

so that κ = 0. In this gauge χ′ij and L′i vanish and L′ij = l′ij at I . In addition, the

conformal factor reduces to

Θ(τ) =

√
|λ|
3
τ.

In this representation Θ has only one zero and the second component of the confor-

mal boundary (if any) is located at an infinite distance with respect to the parameter

τ .

5.2.3 The general structure of the conformal evolution

equations

One of the advantages of the hyperbolic reduction of the extended conformal Ein-

stein field equations by means of conformal Gaussian systems is that it provides

a priori knowledge of the location of the conformal boundary of the solutions to

the conformal field equations —see Remark 37. Following the discussion in Section

2.3.2 of Chapter 2, the conformal geodesics fix the gauge through equations (2.44)

and (2.43). The last condition corresponds to the requirement on the spacetime

to possess a congruence of conformal geodesics and a Weyl propagated frame —i.e.

equations (2.34) and (2.35) are satisfied. As already mentioned, the system of evo-

lution equations (2.68a)-(2.68h) constitutes a symmetric hyperbolic system. This is

the key property for analysing the existence and stability of perturbations of suitable

spacetimes using the extended conformal Einstein field equations.

To discuss the structure of the conformal evolution system in more detail, let e



5.2: The asymptotic initial value problem in General Relativity 105

denote the components of the frame eAB, Γ the independent components of χABCD

and ξABCD, and φ the independent components of the rescaled Weyl spinor φABCD.

Then the evolution equations (2.68a)-(2.68h) can be written as

∂τυ = Kυ + Q(Γ)υ + L(x)φ, (5.5a)

(I + A0(e))∂τφ+ Ai∂iφ = B(Γ), (5.5b)

where υ represents the independent components of the spinors in the conformal

evolution equations except for the rescaled Weyl spinor whose components are rep-

resented by φ. In addition, I is the 5 × 5 identity matrix, K is a constant matrix,

Q, A0, Ai, and B are smooth matrix valued functions of its arguments and L(x)

is a matrix valued function depending on the coordinates. To have an even more

compact notation let u ≡ (υ,φ). Consistent with this notation, let ů denote a solu-

tion to the evolution equations (5.5a)-(5.5b) arising from data ů? prescribed on an

hypersurface S. The solution ů will be regarded as the reference solution. Consider

a general perturbation succinctly written as u = ů + ŭ. Equivalently, one considers

e = e̊+ ĕ, Γ = Γ̊ + Γ̆, φ = φ̊+ φ̆. (5.6)

Recalling that ů is a solution to the conformal evolution equations (5.5a)-(5.5b) and

making use of the split (5.6) one obtains that

∂τ ῠ = Kῠ + Q(Γ̊ + Γ̆)ῠ + Q(Γ̆)υ̊ + L(x)φ̆, (5.7a)

(I + A0(e̊+ ĕ))∂τ φ̆+ (I + A0(e̊+ ĕ))∂τ φ̊+ Ai(e̊+ ĕ)∂iφ̆+

Ai(e̊+ ĕ)∂iφ̊ = B(Γ̊ + Γ̆)φ̆+ B(Γ̊ + Γ̆)φ̊. (5.7b)

Equations (5.7a) and (5.7b) are read as equations for the components of the per-

turbed fields ῠ and φ̆. These equations are in a form where the theory of first

order symmetric hyperbolic systems in [23] can be applied to obtain a existence

and stability result for small perturbations of the initial data ů?. This requires

however, the introduction of the appropriate norms measuring size of the perturbed

initial data ŭ?. This general discussion will not be developed further, instead, the

discussion will be particularised in Section 5.4.3 introducing the appropriate norms

required to analyse the Schwarzschild-de Sitter spacetime as an asymptotic initial

value problem.



5.3: The Schwarzschild-de Sitter spacetime and its conformal structure 106

5.3 The Schwarzschild-de Sitter spacetime and its

conformal structure

In this section the general properties of the Schwarzschild-de Sitter spacetime that

will be relevant for the main analysis are briefly reviewed.

5.3.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime is the spherically symmetric solution to the

Einstein field equations (5.1) with, in the signature conventions used in this thesis,

a negative Cosmological constant given in static coordinates (t, r, θ, ϕ) by

g̃SdS = F (r)dt⊗ dt− F (r)−1dr ⊗ dr − r2σ, (5.8)

where the function F (r) is given by

F (r) ≡ 1− 2m

r
+

1

3
λr2, (5.9)

and σ is the standard metric on the 2-sphere S2

σ ≡ dθ ⊗ dθ + sin2 θdϕ⊗ dϕ,

with t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ [0, π], ϕ ∈ [0, 2π). This solution reduces to the

de Sitter spacetime when m = 0 and to the Schwarzschild solution when λ = 0.

Remark 38. In the following, only the case m > 0 will be considered. Furthermore,

it will be always assumed a de Sitter-like value for the Cosmological constant λ.

The location of the roots of the polynomial r − 2m + 1
3
λr3 are determined by

the relation between m and λ; whenever 0 < 9m2|λ| < 1 this polynomial has two

distinct positive roots rb, rc and a negative root r− located at

rb ≡
2»
|λ|

cos

Ç
α

3
+

4π

3

å
,

rc ≡
2»
|λ|

cos
Åα

3

ã
,

r− ≡
2»
|λ|

cos

Ç
α

3
+

2π

3

å
,

where cosα = −3m
»
|λ|. The positive roots 0 < rb ≤ rc correspond, respectively,

to a black hole-like horizon and a Cosmological-like horizon. One can classify this

2-parameter family of solutions to the Einstein field equations depending on the

relation between the parameters m and λ . The subextremal Schwarzschild-de Sitter
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I −(r =∞) r = 0 I −(r =∞) r = 0

I +(r =∞) r = 0 I +(r =∞) r = 0

Q Q′ Q Q′ Q

Q Q′ Q Q′ Q

HcHc HbHb HcHc HbHb

HcHc HbHb HcHc HbHb

Figure 5.3: Penrose diagram for the subextremal Schwarzschild-de Sitter spacetime.
The excluded points Q, Q′ represent asymptotic regions where the Cosmological hori-
zon appear to meet I . As discussed in Section 5.3.1 this region of the spacetime
does not belong to I .

spacetime arises when the relation between m and λ satisfies

0 < 9m2|λ| < 1. (5.10)

If condition (5.10) holds, one can verify that F (r) > 0 for rb < r < rc while

F (r) < 0 in the regions 0 ≤ r < rb and r > rc. Consequently, the solution is

static for rb < r < rc —see [66]. The extremal Schwarzschild-de Sitter spacetime is

obtained by setting

|λ| = 1/9m2. (5.11)

If the extremal condition (5.11) holds, then the black hole and Cosmological horizons

degenerate into a single Killing horizon at r = 3m. Moreover, one has that F (r) < 0

for 0 ≤ r <∞ so that the hypersurfaces of constant coordinate r are spacelike while

those of constant t are timelike and there are no static regions. In the extremal case

the function F (r) can be factorised as

F (r) = −(r − 3m)2(r + 6m)

27m2r
. (5.12)

In the hyperextremal Schwarzschild-de Sitter spacetime one considers

9m2|λ| > 1. (5.13)

In this case one has again F (r) < 0 for 0 ≤ r <∞ so that similar remarks as those

for the extremal case hold. The crucial difference with the extremal case is that in

the hyperextremal case there are no horizons. Finally, at r = 0 it can be verified

that the spacetime has a curvature singularity irrespective of the relation between

m and λ —in particular, the scalar C̃abcdC̃
abcd, with C̃a

bcd the Weyl tensor of the

metric g̃SdS, blows up.
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(a)

Q Q′ Q
I (r =∞) I (r =∞)

H H H H H H
P P

r = 0
(b)

r = 0

P P

I (r =∞) I (r =∞)

Q Q′ Q
H H H H H H

Figure 5.4: Penrose diagrams for the extremal Schwarzschild-de Sitter spacetime.
Case (a) corresponds to a white hole which evolves towards a de Sitter final state
while case (b) is a model of a black hole with a future singularity. The continuous
black line denotes the conformal boundary; the serrated line denotes the location
of the singularity; the dashed line shows the location of the Killing horizons H at
r = 3m . The excluded points Q, Q′ and P represent asymptotic regions of the
spacetime that do not belong to I or the singularity r = 0.

5.3.2 The S3\{Q,Q′}-representation

The basic conformal structure of the subextremal and extremal Schwarzschild-de

Sitter spacetimes has already been discussed in [66, 67] and [68] respectively. Coor-

dinate and Penrose diagrams have been also provided in [69] for the subextremal,

extremal and hyperextremal cases. This section provides a concise discussion,

adapted to the conventions used in this thesis, of the conformal structure of the

Schwarzschild-de Sitter spacetime in the subextremal, extremal and hyperextremal

cases. In this section the discussion starts showing that irrespective of the relation

of m and λ the induced metric at the conformal boundary for the Schwarzschild de

Sitter spacetime can be identified with the standard metric on S3. As discussed in

more detail in Section 5.3.3, this construction depends on the particular conformal

representation being considered. In the subextremal case one cannot obtain simul-

taneously an analytic extension regular near both rb and rc—see [67]. Since one is

interested only in the asymptotic region, in this section only the region r > rc is

considered. For the extremal and hyperextremal cases such considerations are not

necessary.

In the following the null coordinates

u ≡
»
|λ|(t− r), v ≡

»
|λ|(t+ r),



5.3: The Schwarzschild-de Sitter spacetime and its conformal structure 109

a)

Q Q′I (r =∞)

r =
0r =

0

b)

Q Q′I (r =∞)

r =
0 r =

0

Figure 5.5: Penrose diagram for the hyperextremal Schwarzschild-de Sitter space-
time. The singularity is of spacelike nature. Dotted lines at 45 ◦ and 135 ◦ have
been included for visualisation. Case (a) corresponds to a white hole which evolves
to a final de-Sitter state. Case (b) corresponds to a black hole with a future spacelike
singularity.

are introduced, where r is a tortoise coordinate given by

r ≡
∫

1

F (r)
dr. (5.14)

This integral can be computed explicitly —see [66, 67]. The particular form of r

depends on the relation between λ and m. As discussed in [66, 68] the integration

constant can always be chosen so that r→ 0 as r →∞. Defining tanU ≡ u, tanV ≡
v, with U, V ∈ [−π

2
, π
2
] one gets the line element

g̃SdS =
1

2

F (r)

|λ| sec2Usec2V (dU ⊗ dV + dV ⊗ dU)− r2σ. (5.15)

As discussed in [66, 67], one can construct Kruskal type coordinates covering the

black hole horizon by choosing appropriately the integration constant in equation

(5.14). Analogously, choosing a different integration constant, one can construct

Kruskal type coordinates covering the cosmological horizon. Nevertheless in the

subextremal case, as emphasised in [67], it is not possible to construct Kruskal

type coordinates covering simultaneously both horizons. To construct the Penrose

diagram for this spacetime, one considers as building blocks the Penrose diagrams

for the regions 0 ≤ r ≤ rb, rb ≤ r ≤ rc and rc ≤ r < ∞ which are then glued

together using the corresponding Kruskal type coordinates to cross each horizon

—see [67, 69] for a detailed discussion on the construction the Penrose diagram and

Kruskal type coordinates in the Schwarzschild-de Sitter spacetime. Consistent with

the above discussion and given that one is only interested in the asymptotic region,

the analysis is restricted, in the subextremal case, to r > rc. In the extremal case
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one has, however, that rb = rc = 3m and one can verify that

lim
r→3m

cosU

r − 3m
= lim

r→3m

cosV

r − 3m
= C,

where C 6= 0 is a constant depending on m and the integration constant chosen

in the definition of r. Consequently, in the extremal case, the metric (5.15) is well

defined for the whole range of the coordinate r: 0 < r <∞ —see [68]. Introducing

the coordinates (Ū , V̄ ) defined via

tanU ≡ ln tan

Ç
π

4
+
Ū

2

å
, tanV ≡ ln tan

Ç
π

4
+
V̄

2

å
one obtains

g̃SdS =
1

2

F (r)

|λ| sec Ūsec V̄
Ä
dŪ ⊗ dV̄ + dV̄ ⊗ dŪ

ä
− r2σ.

Recalling that in the subextremal case F (r) ≤ 0 for r ≥ rc while for the extremal

and hyperextremal cases F (r) ≤ 0 for 0 < r < ∞, one identifies the conformal

factor

Ξ2 =
|λ|
|F (r)| cos Ū cos V̄ .

Therefore, one obtains the conformal metric gSdS = Ξ2g̃SdS with

gSdS = −1

2

Ä
dŪ ⊗ dV̄ + dV̄ ⊗ dŪ

ä
− |λ|r

2

|F (r)| cos Ū cos V̄ σ. (5.16)

Introducing the coordinates

T ≡ Ū + V̄ , Ψ ≡ V̄ − Ū ,

one gets

gSdS =
1

4
(dΨ⊗ dΨ− dT ⊗ dT )− |λ|r

2

|F (r)| cos
1

2
(T + Ψ) cos

1

2
(T −Ψ)σ.

The analysis in [67] shows that the conformal factor Ξ tends to zero as r → ∞.

Hence, to identify the induced metric at I it is sufficient to analyse such limit.

Noticing that

r =
1

2
»
|λ|

(v − u) =
1

2
»
|λ|

ln

Ç
tan(π/4 + V̄ )

tan(π/4 + Ū)

å
and recalling that

lim
r→∞

r = 0,

one concludes that r →∞ implies Ψ = 0 as long as Ū 6= ±1
2
π and V̄ 6= ±1

2
π. Using
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equation (5.9) one can verify that

lim
r→∞

|λ|r2
|F (r)| = 1.

Consequently, the induced metric on I is given by

h = −1

4
dT ⊗ dT − cos2

T

2
σ

which can be written in a more recognisable form introducing ξ ≡ 1
2
(T + π) so that

~ = −dξ ⊗ dξ − sin2 ξσ. (5.17)

The metric ~ is the standard metric on S3. Observe that the excluded points in

the discussion of this section (Ū , V̄ ) = (±1
2
π,±1

2
π) correspond to ξ = 0 and ξ = π

—the North and South poles of S3. The Penrose diagrams of the subextremal,

extremal and hyperextremal Schwarzschild-de Sitter spacetime are given in Figures

5.3, 5.4 and 5.5. The conformal boundary I of the (subextremal, extremal and

hyperextremal) Schwarzschild-de Sitter spacetime, defined by the condition Ξ = 0,

is spacelike consistent with the fact that the Cosmological constant of the spacetime

is de Sitter-like —see e.g. [12, 70]. Moreover, the singularity at r = 0 is of a

spacelike nature —see [68, 69]. As pointed out in [20, 67], the Schwarzschild-de

Sitter spacetime can be interpreted as the model of a white hole singularity towards

a final de Sitter state. Alternatively, making use of a reflection

u 7→ −u, v 7→ −v,

one obtains a model of a black hole with a future singularity —see Figures 5.3, 5.4

and 5.5.

In what follows, the white hole point of view for the extremal and hyperextremal

cases will be adopted so that I corresponds to future conformal infinity and one will

consider a backward asymptotic initial value problem. Consistent with this point of

view, for the subextremal case we consider asymptotic initial data on I + and study

the development of such data towards the curvature singularity located at r = 0

—see Figure 5.1.

5.3.3 The R× S2-representation

In Section 5.3.2 it was shown that there exist a conformal representation in which

the induced metric on the conformal boundary corresponds to the standard metric

on S3. A quick inspection shows that the metric (5.17) is conformally flat. In

this section this observation is put in a wider perspective and it is shown how

this follows as a consequence of the the spherical symmetry of the spacetime. In
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addition, a conformal representation in which the induced metric at the conformal

boundary corresponds to the standard metric on R×S2 is discussed. This conformal

representation will be of particular importance in the subsequent analysis.

The conformal boundary of spherically symmetric and asymptotically

de Sitter spacetimes

Following an argument similar to the one given in [71] one has the following con-

struction for a spherically symmetric spacetime with spacelike conformal boundary:

if a spacetime (M̃, g̃) is spherically symmetric then the metric g̃ can be written in

a warped product form

g̃ = γ̃ − ρ̃2σ, (5.18)

where γ̃ is the 2-metric on the quotient manifold Q̃ ≡ M̃/SO(3), σ is the standard

metric of S2 and ρ̃ : Q̃ → R. If g and g̃ are conformally related, g = Θ2g̃, then the

spherical symmetry condition for g is translated into the requirement that g can be

written in the form

g = γ − ρ2σ,

where γ ≡ Θγ̃ and ρ ≡ Θρ̃, where Θ does not depend on the coordinates on S2. Near

I one introduces local coordinates (Θ, ψ) on the quotient manifold Q ≡M/SO(3)

so that Θ = 0 denotes the locus of I . Since the conformal boundary is spacelike

one has that g(dΘ,dΘ) > 0. Therefore, the metric induced on I by g is of the

form

h = −A(ψ)dψ ⊗ dψ − ρ2(ψ)σ,

where A(ψ) is a positive function. Redefining the coordinate ψ one can rewrite h as

h = −ρ2(ψ)(dψ ⊗ dψ + σ).

It can be readily verified —say, by calculating the Cotton tensor of h— that the

metric h is conformally flat. In Section 5.3.4 it will be shown that, in view of the

conformal freedom of the setting, a convenient choice is to consider a conformal

representation in which the the 3-metric on I is given by

h = −dψ ⊗ dψ − σ. (5.19)

This metric is the standard metric of the cylinder R × S2 with ψ ∈ (−∞,∞). It

can be verified that this conformal representation is related to the one discussed in

Section 5.3.2 via h = ω2~, where the conformal factor ω and the relation between

the coordinates are given by

ψ(ξ) = ψ? − ln | csc ξ + cot ξ|, ω(ξ) = csc(ξ). (5.20)
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Equivalently, one has that

ξ(ψ) = arccos

(
e2(ψ?−ψ) − 1

e2(ψ?−ψ) + 1

)
, ω(ψ) =

eψ

2eψ?
(e2ψ? + e2ψ),

where ψ? is a constant of integration. Observe that in this representation ξ = 0 and

ξ = π correspond to ψ = −∞ and ψ =∞, respectively.

The extrinsic curvature of the conformal boundary in the R× S2

representation

A particularly simple conformal representation for the Schwarzschild-de Sitter space-

time can be obtained using the discussion of Section 5.3.3. Accordingly, take the

metric of the Schwarzschild-de Sitter spacetime as written in equation (5.8) with

F (r) as given by the relation (5.9) and consider the conformal factor ÙΞ ≡ 1/r.

Introducing the coordinates % ≡ 1/r and ζ ≡
»
|λ|/3t, the conformal metricÛg ≡ ÙΞ2g̃SdS

is given byÛg =
3

|λ|
Å
%2 − 2m%3 − 1

3
|λ|
ã
dζ ⊗ dζ −

Å
%2 − 2m%3 − 1

3
|λ|
ã−1

d%⊗ d%− σ.

The induced metric on the hypersurface described by the condition ÙΞ = 0 is given

by Ùh = −dζ ⊗ dζ − σ.

It can be verified that Ûg satisfies a conformal gauge for which the conformal boundary

has vanishing extrinsic curvature. To see this, consider a Ûg-orthonormal coframe

{ωa} with

ω0 =

√
3

|λ|

Ç
%2 − 2m%3 − 1

3
|λ|
å1/2

dζ, ω3 =

Ç
%2 − 2m%3 − 1

3
|λ|
å−1/2

d%,

and {ω1, ω2} a σ-orthonormal coframe. Denote by {ea} the corresponding dual

frame. Using this frame one can directly compute the Friedrich scalar Ûs ≡ 1
4
ı∇cı∇cÙΞ+

1
24
ÙR ÙΞ. The computation of the Ricci scalar yieldsÙR = −12m%. (5.21)

A direct calculation usingı∇µ
ı∇µΞ =

1√− det Ûg∂µ(
»
− det Ûg Ûgµν∂νΞ)
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shows that ı∇a
ı∇aΞ = 6m%2 − 2%. Consequently, the scalar Ûs vanishes at the hy-

persurface defined by ÙΞ = % = 0. Contrasting this result with the solution to the

conformal constraints given in equations (2.78a)-(2.78b) of Chapter 2 one concludes

that in this representation the hypersurface described by ÙΞ = 0 has vanishing ex-

trinsic curvature as claimed.

Remark 39. Notice that, in this representation the curvature singularity, located

at r = 0, corresponds to % = ∞. Consequently, the singularity is at an infinite

distance from the conformal boundary.

Observe that, the components of the Weyl tensor with respect to the orthonormal

frame {ea} as described above are given by

C1212 = −2m%, C1313 = m%, C1010 = −m%, C2323 = m%, C2020 = −m%, C3030 = 2m%.

This information will be required in the discussion of the initial data for the rescaled

Weyl tensor —see Section 5.3.4. Using now that dabcd = Ξ−1Cabcd with ÙΞ = % and

exploiting the fact that the computations have been carried out in an orthonormal

frame so that Cabcd = ηafCfbcd, one gets

d1212 = −2m, d1313 = m, d1010 = −m, d2323 = m, d2020 = −m, d3030 = 2m.

Finally, considering dij ≡ di0j0 one obtains

d11 = −m, d22 = −m, d33 = 2m. (5.22)

5.3.4 Identifying asymptotic regular data

As discussed in Section 5.3.1, there is a conformal representation in which the in-

duced metric on the conformal boundary of the Schwarzschild-de Sitter is the stan-

dard metric ~ on S3. Nevertheless, the asymptotic points Q and Q′, as depicted in

the Penrose diagram of Figure 5.3, are associated to the behaviour of those time-

like geodesics which never cross the horizon —see Appendix 5.6. Despite that,

from the point of view of the intrinsic geometry of I these asymptotic regions —

corresponding to the North and South poles of S3— are regular, from a spacetime

point of view they are not. This issue will be further discussed in this section. In

particular, it will be shown that the initial data for the electric part of the rescaled

Weyl tensor is singular at Q and Q′. Fortunately, as exposed in Sections 5.2.2 one

can exploit the inherent conformal freedom of the setting to select any representa-

tive of the conformal class [~] to construct a solution to the conformal constraint

equations —see Section 2.5 of Chapter 2. Taking into account the previous remarks

it will be convenient to choose the conformal representation discussed in Section
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5.3.3, h = ω2~ with ω and h given in equations (5.19) and (5.20), in which the

points Q and Q′ are at infinity respect to the metric h.

A frame for the induced metric at I

Consistent with the discussion of the last section, on I one considers an adapted

frame {l, m, m̄} such that the metric (5.19) can be written in the form

h = −(l⊗ l + σ)

where

l = dψ, σ =
1

2
(m⊗ m̄+ m̄⊗m).

In terms of abstract index notation one has

hij = −lilj − 2m(im̄j). (5.23)

The frame {l, m, m̄} satisfies the pairings

ljl
j = −1, mjm̄

j = −1, ljm
j = ljm̄

j = mjm
j = m̄jm̄

j = 0. (5.24)

Initial data for the rescaled Weyl tensor

The procedure for the construction of a solution to the conformal constraints at the

conformal boundary requires, in particular, a solution to the divergence equation

(2.78c) for the electric part of the rescaled Weyl tensor —see Section 2.5.2 in Chap-

ter 2. The requirement of spherical symmetry of the spacetime can be succinctly

incorporated using the results in [72]. If the unphysical spacetime (M̃, g̃) possesses

a Killing vector X then the initial data encoded in the symmetric tracefree tensor

dij must satisfy the condition

£Xdij = 0, (5.25)

where £X denotes the Lie derivative in the direction ofX on the initial hypersurface.

If dij is to be compatible with the symmetries of R× S2 then it is of form

dij =
1

2
ς(3lilj + hij). (5.26)

where ς = dijl
ilj. The most important property of the geometry of the conformal

boundary of the Schwarzschild-de Sitter spacetime is the fact that it is conformally

flat. The latter is particularly convenient as the general form of symmetric, tracefree

and divergence-free tensors (i.e. TT-tensors) in a conformally flat setting are well-

known —see e.g. [42, 73]. This opens the possibility of determining the required dij

not only in the R×S2-representation but to explore solutions to equation (2.78c) in

other conformal representations which will be relevant for the subsequent discussion.
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TT-tensors on R3. For convenience of the reader, in this short paragraph, the

conventions and discussion of TT-tensors on Euclidean space given in [42, 73] are

adapted to the present setting. The general solutions to the equation

D̀id̀ij = 0, (5.27)

where h̀ ≡ −δ is the flat metric has been given in [42]. One can introduce Cartesian

coordinates (xα) with the origin of R3 located at a fiduciary position O. Addition-

ally, polar coordinates defined via ρ2 = δαβx
αxβ are introduced. The flat metric in

these coordinates reads

h̀ = −dρ⊗ dρ− ρ2σ. (5.28)

Using this notation and taking into account the requirement of spherical symmetry

encoded in equation (5.25) the flat space counterpart of the required solution is

d̀ =
A?
ρ3

(
3dρ⊗ dρ+ h̀

)
,

where A? is a constant. In order to obtain an analogous solution in conformally

related 3-manifolds one can exploit the conformal properties of equation (5.27) using

the following:

Lemma 13. Let d̄ij be a tracefree symmetric solution to D̄id̄ij = 0 where D̄ is

the Levi-Civita connection of h̄. Let h = ω2h̄, then dij = ω−1d̄ij is a symmetric

tracefree solution to Didij = 0 where D is the Levi-Civita connection of h.

This lemma can be found in [42]. Here the statements have been adapted to agree

with the conventions of this thesis.

TT-tensors on S3 and R×S2. One can exploit Lemma 13 to derive spherically sym-

metric solutions of the divergence equation (5.27) in conformally flat 3-manifolds.

In particular, the metrics ~ and h̀ as given in equations (5.17) and (5.28) are related

via

~ = ω2h̀,

where

ρ(ξ) = cot(ξ/2), ω(ξ) = 2 sin2(ξ/2), (5.29)

The coordinate transformation ρ(ξ) corresponds to the stereographic projection in

which the origin O of R3 is mapped to the South pole on S3. Alternatively, one can

also derive

ρ(ξ) = tan(ξ/2), ω(ξ) = 2 cos2(ξ/2), (5.30)

corresponding to the stereographic projection in which the origin of R3 is mapped to
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the North pole of S3. Using Lemma 13 with equations (5.29) or (5.30) one obtains

d̄ =
A?

2
»

1− ω2(ξ)
(3dξ ⊗ dξ + ~) . (5.31)

Observe that d̄ij is singular when ω(ξ) = 1 which corresponds to ξ = 0 and ξ = π

according to equations (5.29) and (5.30), respectively. Therefore, in this conformal

representation the electric part of the rescaled Weyl tensor is singular at the North

and South poles of S3. Proceeding in a analogous way as in the previous paragraphs

one can observe that the metrics h and h̀ given in equations (5.19) and (5.28) are

related via

h = ω2h̀

where

ρ(ψ) = eψ, ω(ψ) = e−ψ.

A straightforward computation using Lemma 13 renders

d = A? (3dψ ⊗ dψ + h) . (5.32)

Moreover, one can verify that £Xdij = 0. Finally, comparing expression (5.32) with

equation (5.22) one can recognise that A? = m. Observe that this identification is

irrespective of the extrinsic curvature of I since the latter is fixed by κ which does

not play a role in the determination of a solution to Didij = 0 —see Lemma 10 and

Remark 10.

5.3.5 Asymptotic initial data for the Schwarzschild-de

Sitter spacetime

In the last section it was shown that the R × S2-conformal representation leads to

regular asymptotic data for the rescaled Weyl tensor. In this section the discussion

of the asymptotic initial data for the Schwarzschild-de Sitter spacetime is completed

for this conformal representation. To do so, one makes use of the procedure to solve

the conformal constraints at the conformal boundary, as discussed in Section 2.5.2

of Chapter 2, and the specific properties of the Schwarzschild-de Sitter spacetime.

Initial data for the Schouten tensor

Computing the Schouten tensor Sch[h] of h one obtains

Sch[h] = −1

2
dψ ⊗ dψ +

1

2
σ.
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Equivalently, in abstract index notation one writes

lij = −lilj −
1

2
hij.

Thus, recalling the solution to the conformal constraints given in equation (2.78b)

of Chapter 2, one gets

Lij = −lilj −
1

2
(1− κ2)hij.

Initial data for the connection coefficients

In order to compute the connection coefficients associated with the coframe {ωi}
recall that ω3 = dψ and {ω1,ω2} are σ-orthonormal. Equivalently, one has that

{ei} = {∂ψ, e1, e2} with

e1 =
1√
2

(m+ m̄), e2 =
i√
2

(m− m̄),

where σ = m⊗ m̄+ m̄⊗m, so that

h = −ω1 ⊗ ω1 − ω2 ⊗ ω2 − ω3 ⊗ ω3.

The connection coefficients can be obtained using the first structure equation

(5.88a) given in Appendix 5.8.1. Proceeding in this manner, by a straightforward

computation, one can show that the only non-zero connection coefficient is γ2
2
1. In

terms of the Ricci-rotation coefficients, the latter corresponds to 2
√

2 Re(α?) where

α? = −1
2
m̄aδ̄ma in the standard NP notation —see [12]. Therefore, the only no-

trivial initial data for the connection coefficients is

γ2
2
1 =
√

2(α? + ᾱ?).

Remark 40. The frame over the cylinder R × S2 introduced in this section is not

a global one. Nevertheless, it is possible to construct an atlas covering R× S2 such

that one each of the charts one has a well defined frame of the required form.

Spinorial initial data

In this section the spinorial counterpart of the asymptotic initial data computed in

the previous sections is discussed.

Spin connection coefficients

The spinorial counterpart of the asymptotic initial data constructed in the previous

sections is readily obtained by suitable contraction with the spatial Infeld-van der

Waerden symbols —see Appendix 5.8.3. Following the discussion of Section 5.3.5,
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let ω3 = dψ and let {ω1,ω2} denote a σ-orthonormal coframe. Using equations

(5.95b) of Appendix 5.8.3 one has that the spinorial coframe is given by

ωAB = σi
ABωi = (yAB + zAB)ω1 + i(yAB − zAB)ω2 − xABω3. (5.33)

Alternatively, one has that the spinorial frame is given by

eAB = xABex
3∂ψ +

√
2yABey

+m̄[ +
√

2zABez
−m[

where ex
3, ey

+, ez
− denote the only non-vanishing frame coefficients. Equation

(5.33) allows to compute the reduced connection coefficients γA
B
CD using the first

Cartan structure equation (5.94a) in Appendix 5.8.3. Alternatively, one can use the

results of Section 5.3.5 and the spatial Infeld-van der Waerden symbols to compute

γAB
CD

EF ≡ γi
j
kσAB

iσCDjσEF
k,

where

γi
j
k = δi

2δ1
jδk

2γ2
1
2 + δi

2δ2
jδk

1γ2
2
1,

with

γ2
1
2 = −

√
2(α? + ᾱ?), γ2

2
1 =
√

2(α? + ᾱ?).

Using the identities (5.95a)-(5.95b) in Appendix 5.8.3 one obtains

γAB
CD

EF = 2
√

2(α? + ᾱ?)(yAB − zAB)(yEF z
CD − yCDzEF ).

Thus, the reduced connection coefficients are given by

γAB
D
F ≡

1

2
γAB

CD
CD = (α? + ᾱ?)x

D
F (yAB − zAB). (5.34)

By computing the spinor version of the connection form γDF ≡ γAB
D
Fω

AB using

equations (5.34) and (5.33) one can readily verify that the first structure equation

is satisfied. Additionally, using the reality conditions,

xAB
† = −xAB, yAB

† = zAB, zAB
† = yAB (5.35)

one can verify that γABCD is an imaginary spinor —as is to be expected from

the space spinor formalism. The field γABCD represents the initial data for the field

ξABCD —the imaginary part of the reduced connection coefficient ΓABCD. The real

part of ΓABCD corresponds to the Weingarten spinor χABCD which, in accordance

with equation (2.78a) of Chapter 2, is given initially by

χABCD = κhABCD.
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Rewriting the reduced connection coefficients (5.34) in terms of the basic valence-4

spinors as defined in Appendix 5.8.2 one obtains for ξABCD = γABCD the explicit

expression

ξABCD = −(α? + ᾱ?)(ε
1
ABCD + ε3ABCD)

+
1

2
√

2
(α? + ᾱ?)εAC(yBD + zBD) +

1

2
√

2
(α? + ᾱ?)εBD(yAC + zAC).

Spinorial counterpart of the Schouten tensor

The spinorial counterpart of the Schouten tensor lij can be directly read from the

expressions in Section 5.3.5. Observe that the elementary spinor xAB corresponds

to the components of li with respect to the coframe (5.33) since

ωABxAB = −xABxABω3 = ω3 = dψ = l.

Replacing hij by its space spinor counterpart hABCD one obtains

lij 7→ lABCD = −xABxCD −
1

2
hABCD.

Equivalently, recalling that the space spinor counterpart of the tracefree part of a

tensor l{ij} ≡ lij − 1
3
lhij corresponds to the totally symmetric spinor l(ABCD) it

follows then from

lij = l{ij} +
1

3
lhij ,

that

lABCD = l(ABCD) +
1

3
lhABCD.

Using that l ≡ hijlij = 1
4
r, where r is the Ricci scalar of h, and that for the

metric (5.19) one has r = −2 it follows that l = −1
2
. Exploiting that l(ABCD) =

−x(ABxCD) = −2ε2ABCD one obtains

lABCD = −2ε2ABCD −
1

6
hABCD. (5.36)

Finally, recalling the expressions for the components of the spacetime Schouten

tensor, as given in equation (2.78b) of Chapter 2, one concludes

LABCD = −2ε2ABCD −
1

6
(1− 3κ2)hABCD.

Initial data for the rescaled Weyl spinor

Following the approach employed in last section, the spinorial counterpart of ex-

pression (5.32) is given by

dABCD = A?(3lABlCD + hABCD).
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However, the trace-freeness condition simplifies the last expression since dii = 0

implies that dij = d{ij}. Therefore dABCD = d(ABCD) = 3A?l(ABlCD). As the

elementary spinor xAB can be associated to the components of l respect to the

coframe (5.33) one gets that

dABCD = 3A?x(ABxCD).

This last expression can be equivalently written in terms of the basic valence-4 space

spinors, defined in Appendix 5.8.2, as

φABCD = 6mε2ABCD.

where, in the absence of a magnetic part, one has identified φABCD initially with

dABCD. Observe that A? = m has been set, consistent with the discussion of Section

5.3.4.

5.4 The solution to the asymptotic initial value

problem for the Schwarzschild-de Sitter

spacetime and perturbations

As already discussed in the introductory section, recasting explicitly the Schwarzschild-

de Sitter spacetime as a solution to the system of conformal evolution equations

(2.68a)-(2.68i) of Chapter 2 requires solving, in an explicit manner, the conformal

geodesic equations. This, as discussed in Appendix 5.6.2, is not possible in general.

Instead, an alternative approach is to study directly the conformal evolution equa-

tions (2.68a)-(2.68i) making explicit the spherical symmetry of the solution and the

asymptotic initial data corresponding to the Schwarzschild-de Sitter spacetime. This

approach does not only extract the required information about the reference solution

—in the conformal Gaussian gauge— but, in addition, is a model for the general

structure of the conformal evolution equations. The relevant analysis is discussed

in Sections 5.4.1 and 5.4.2. As a complementary analysis, the formation of singu-

larities in the evolution equations is also studied. In order to have a more compact

discussion leading to the Main Result of this chapter, the analysis of the formation

of singularities is presented in Appendix 5.7. Finally, in Section 5.4.3, the theory

of symmetric hyperbolic systems contained in [23] is used to obtain a existence and

stability result for the development of small perturbations to the asymptotic initial

data of the Schwarzschild-de Sitter spacetime.
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5.4.1 The spherically symmetric evolution equations

Hitherto, the discussion of the extended conformal Einstein field equations and the

conformal constraint equations has been completely general. Since one is interested

in analysing the Schwarzschild-de Sitter spacetime as a solution to the conformal

field equations it is necessary to incorporate specific properties of this spacetime.

The most important assumption for this analysis is that of the spherical symme-

try of the spacetime. As mentioned before, under this assumption, a generalisation

of Birkhoff’s theorem for vacuum spacetimes with de Sitter-like Cosmological con-

stant shows that the spacetime must be locally isometric to either the Nariai or the

Schwarzschild-de Sitter solutions —see [58]. As the Nariai solution is known to not

admit a smooth conformal boundary [57, 62], then the formulation of an asymptotic

initial value problem readily selects the Schwarzschild-de Sitter spacetime.

To incorporate the assumption of spherical symmetry into the conformal field

equations encoded in the spinorial zero-quantities (2.25a)-(2.25d) of Chapter 2 one

has to reexpress the requirement of spherical symmetry in terms of the space spinor

formalism. In order to ease the presentation one can simply introduce a consistent

Ansatz for spherical symmetry —a similar approach has been taken in [71]. More

precisely, one sets

φABCD = φ2 ε
2
ABCD, (5.37a)

ΘAB =
√

2Θx
T xAB, (5.37b)

ΘABCD = Θ2
S ε2ABCD +

1

3
Θh

S hABCD, (5.37c)

ξABCD = ξ1 ε
1
ABCD + ξ2 ε

2
ABCD + ξ3 ε

3
ABCD +

1

3
ξh hABCD

+
ξx√

2
(xBDεAC + xACεBD) +

ξy√
2

(yBDεAC + yACεBD)

+
ξz√

2
(zBDεAC + zACεBD), (5.37d)

χABCD = χ2 ε
2
ABCD +

1

3
χh hABCD, (5.37e)

e0AB = e0x xAB, e3AB = e3x xAB, e+AB = e+y yAB, e−AB = e−z zAB,(5.37f)

fAB = fx xAB, (5.37g)

dAB = dx xAB. (5.37h)

The elementary spinors xAB, yAB, zAB, ε2ABCD and hABCD used in the above

Ansatz are defined in Appendix 5.8.2. For further details on the construction of

a general spherically symmetric Ansatz see [27, 74]. Alternatively, one can follow

a procedure similar to that of Section 5.3.5 —by writing a consistent spherically

symmetric Ansatz for the orthonormal frame one can identify the non-vanishing

components of the required tensors. The transition to the spinorial version of

such Ansatz can be obtained by contracting appropriately with the Infeld-van der
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Waerden symbols taking into account equations (5.95a)-(5.95b), (5.92a)-(5.92d) and

(5.93b)-(5.93g) of Appendices 5.8.2 and 5.8.3.

The Ansatz for spherical symmetry encoded in equations (5.37a)-(5.37h) combined

with the evolution equations (2.68a)-(2.68i) leads, after suitable contraction with the

elementary spinors of Appendix 5.8.2, to a set of evolution equations for the fields

φ2, Θx
T , Θ2

S, Θh
S, ξ1, ξ3, ξx, ξy, ξz, e0x, e

3
x, e

+
z , e

−
y , fx.

This lengthy computation has been carried out using the suite xAct for tensor

and spinorial manipulations in Mathematica —see [75]. At the end of the day one

obtains the following evolution equations:

∂τe
0
x = 1

3
χ2e

0
x − 1

3
χhe

0
x − fx, (5.38a)

∂τe
3
x = 1

3
χ2e

3
x − 1

3
χhe

3
x, (5.38b)

∂τe
+
y = −1

6
χ2e

+
y − 1

3
χhe

+
y , (5.38c)

∂τe
−
z = −1

6
χ2e

−
z − 1

3
χhe

−
z , (5.38d)

∂τfx = 1
3
χ2fx − 1

3
χhfx + ΘT

x , (5.38e)

∂τχ2 = 1
6
χ2
2 − 2

3
χ2χh −ΘS

2 −Θφ2, (5.38f)

∂τχh = −1
6
χ2
2 − 1

3
χ2
h −ΘS

h , (5.38g)

∂τξ3 = 1
12
χ2ξ3 − 1

3
χhξ3 − 1

2
χ2ξy, (5.38h)

∂τξ1 = 1
12
χ2ξ1 − 1

3
χhξ1 − 1

2
χ2ξz, (5.38i)

∂τξx = −1
2
χ2fx −ΘT

x − 1
6
χ2ξx − 1

3
χhξx, (5.38j)

∂τξy = −1
8
χ2ξ3 + 1

12
χ2ξy − 1

3
χhξy, (5.38k)

∂τξz = −1
8
χ2ξ1 + 1

12
χ2ξz − 1

3
χhξz, (5.38l)

∂τΘ
T
x = 1

3
χ2Θ

T
x − 1

3
χhΘ

T
x + 1

3
dxφ2, (5.38m)

∂τΘ
S
2 = 1

6
χ2Θ

S
2 − 1

3
χhΘ

S
2 − 1

3
χ2Θ

S
h + Θ̇φ2, (5.38n)

∂τΘ
S
h = −1

6
χ2Θ

S
2 − 1

3
χhΘ

S
h , (5.38o)

∂τφ2 = −1
2
χ2φ2 − χhφ2. (5.38p)

The results of the analysis of Section 5.3.5 provide the asymptotic initial data for

the above spherically symmetric evolution equations. The resulting expressions are

collected in the following lemma:

Lemma 14. There exists a conformal gauge in which asymptotic initial data for the

Schwarzschild-de Sitter spacetime can be expressed, in terms of the fields defined by

the Ansatz (5.37a)-(5.37h), as

φ2 =6m, Θx
T =0, Θ2

S =− 2, Θh
S =− 1

2
(1− 3κ2),
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ξ1 =− (α? + ᾱ?), ξ3 =− (α? + ᾱ?), ξx =
1

2
√

2
(α? + ᾱ?), ξy =

1

2
√

2
(α? + ᾱ?),

ξz =
1

2
√

2
(α? + ᾱ?), χ2 =0, χh =3κ, χx =0,

e0x =0, e3x =1, e+z =1, e−y =1,

fx =0.

5.4.2 The Schwarzschild-de Sitter spacetime in the

conformal Gaussian gauge

In this section the spherically symmetric evolution equations derived in the previous

section is analysed in some detail. In particular, it is shown that there is a subsystem

of equations that decouples from the rest —which will be called the core system—

and controls the essential dynamics of the system (5.38a)-(5.38p).

As the Schwarzschild-de Sitter spacetime possesses a curvature singularity at r =

0, one expects, in general, the conformal evolution equations to develop singularities.

To explain this in more detail observe that if Schwarzschild-de Sitter spacetime

metric were written in conformal Gaussian coordinates the curvature singularity

located at r = 0 would be reached at a certain value of the unphysical proper time

τ = τ . Since the conformal evolution equations (5.38a)-(5.38p) with the initial

data of Lemma 14 describe the Schwarzschild-de Sitter spacetime in the conformal

Gaussian gauge, then, the existence of a singularity at τ should be already encoded

in equations (5.38a)-(5.38p) with the initial data of Lemma 14. Moreover, since

the two essential parameters appearing in the initial data given in Lemma 14 are

m and κ —the function α? only encodes the connection on S2— one expects, in

general, that the congruence of conformal geodesics reaches the curvature singularity

at τ = τ (m,κ). Nevertheless, numerical evaluations suggest that for κ = 0 the

core system does not develop any singularity —observe that this is consistent with

Remark 39. Furthermore, an estimation for the time of existence τ} of the solution

to the conformal evolution equations (5.38a)-(5.38p) with initial data in the case

κ = 0 is given. A discussion of the mechanism for the formation of singularities in

the core system (κ 6= 0) and the role of the parameter κ is given in Appendix 5.7.

The core system

Inspection of the system (5.38a)-(5.38p) reveals that there is a subsystem of equa-

tions that decouples from the rest. In the sequel these equations will be referred as

the core system. Defining the fields

χ ≡ 1

3

Ç
1

2
χ2 + χh

å
, L ≡ −1

3

Ç
1

2
Θ2

S + Θh
S

å
, φ ≡ 1

3
φ2, (5.39)
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the system (5.38p)-(5.38a) can be shown to imply the equations

φ̇ = −3χφ, (5.40a)

χ̇ = −χ2 + L− 1

2
Θφ, (5.40b)

L̇ = −χL− 1

2
Θ̇φ, (5.40c)

where the overdot denotes differentiation with respect to τ and

Θ(τ) =

√
|λ|
3
τ

Ç
1 +

1

2
κτ

å
, Θ̇ =

√
|λ|
3

(1 + κτ).

The initial data for this system is given by

φ(0) = 2m, χ(0) = κ, L(0) =
1

2
(1− κ2). (5.41)

As it will be seen in the remainder of this chapter, equations (5.40a)-(5.40c) with

initial data (5.41) govern the dynamics of the complete system (5.38a)-(5.38p). The

evolution of the remaining fields can be understood once the core system has been

investigated.

Analysis of the Core System

This section will be concerned with an analysis of the initial value problem for the

core system (5.40a)-(5.40c) with initial data given by (5.41). As it will be seen in

the following, the essential feature driving the dynamics of the core system (5.40a)-

(5.40c) is the fact that the function χ satisfies a Riccati equation coupled to two

further fields. One also has the following:

Observation 1. The core equation (5.40a) can be integrated to yield

φ(τ) = 2m exp
Å
−3

∫ τ

0
χ(s)ds

ã
. (5.42)

Hence, φ(τ) > 0 if m 6= 0.

In the remaining of this section, the behaviour of the core system is analysed in

the case where the extrinsic curvature of I vanishes.

As discussed in Section 5.2.2 in the case κ = 0 the conformal factor reduces to

Θ(τ) =
»
|λ|/3τ —thus, one has only one root corresponding to the initial hyper-

surface I . To simplify the notation recall that Θ̇? =
»
|λ|/3 so that Θ(τ) = Θ̇?τ .

Accordingly, the core system (5.40a)- (5.40c) can be rewritten as

φ̇ = −3χφ, (5.43a)
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χ̇ = −χ2 + L− 1

2
Θ̇?τφ, (5.43b)

L̇ = −χL− 1

2
Θ̇?φ. (5.43c)

Moreover, the initial data reduces to

χ(0) = 0, L(0) =
1

2
, φ(0) = 2m.

Observation 2. A direct inspection shows that equations (5.43a)-(5.43c) imply

that

χ(τ) = τL(τ).

This relation can be easily verified by direct substitution into equations (5.43b)

and (5.43c). Observe that L(τ) = χ(τ)/τ is well defined at I where τ = 0 and

χ(0) = 0 since the initial conditions ensure that

lim
τ→0

χ(τ)

τ
=

1

2
.

Taking into account the above observation the core system reduces to

L̇ = −τL2 − 1

2
Θ̇?φ, (5.44a)

φ̇ = −3τLφ, (5.44b)

with initial data

L(0) =
1

2
, φ(0) = 2m. (5.45)

Observation 3. One can integrate (5.44b) to

φ(τ) = 2m exp
Å
−
∫ τ

0
sL(s)ds

ã
(5.46)

and conclude that φ(τ) > 0 for τ > 0.

To prove the boundedness of the solutions to the core system one starts by proving

some basic estimates:

Lemma 15. If κ = 0, then the solution of (5.40a)-(5.40c) with initial data (5.41)

satisfies the bound

L(τ) ≥ φ(τ)

Ç
1

4m
− 1

2
Θ̇?τ

å
for τ ≥ 0.

Proof. Using equations (5.44a) and (5.44b) the following expression is derived

φL̇− Lφ̇ = 2τL2φ− 1

2
Θ̇?φ

2 ≥ −1

2
Θ̇?φ

2 for τ ≥ 0. (5.47)
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Since φ(τ) > 0 one can consider the derivative of L/φ. Notice that

φ2 d

dτ

Ç
L

φ

å
= φL̇− Lφ̇.

This observation and inequality (5.47) gives

d

dτ

Ç
L

φ

å
≥ −1

2
Θ̇? for τ ≥ 0.

Integrating the last differential inequality from τ = 0 to τ > 0 taking into account

the initial conditions leads to

L(τ) ≥ φ(τ)

Ç
1

4m
− 1

2
Θ̇?τ

å
for τ ≥ 0.

Observe that the last estimate ensures that L(τ) is non-negative for τ ∈ [0, 8m/Θ̇?].

It turns out that finding an upper bound for L(τ) is relatively simple:

Lemma 16. If κ = 0 then, for the solution of (5.40a)-(5.40c) with initial data

(5.41), one has that

L(τ) ≤ 2

τ 2 + 4
for τ ≥ 0.

Proof. Assume τ ≥ 0. Using that φ(τ) > 0 and equation (5.44a) one obtains the

differential inequality

L̇(τ) ≤ −τL2(τ).

Using that L(τ) > 0 for τ ≥ 0 one gets

L̇(τ)

L2(τ)
≤ −τ.

The last expression can be integrated giving an upper bound for L(τ):

L(τ) ≤ 2

τ 2 + 4
.

A simple bound on a finite interval can be found for the field φ(τ) as follows:

Lemma 17. If κ = 0 then, for the solution of (5.40a)-(5.40c) with initial data

(5.41) and for 0 ≤ τ ≤ 1/(2
3
»

Θ̇?m), the field φ(τ) satisfies

φ(τ) ≤ 2m

1− Θ̇?mτ 3
.
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Proof. Assume τ ≥ 0. From the estimate of Lemma 15 one has that

L ≥ −1

2
Θ̇?τφ.

Therefore

−3τLφ ≤ 3

2
Θ̇?τ

2φ2.

Using equation (5.44b) one obtains the differential inequality

φ̇ ≤ 3

2
Θ̇?τ

2φ2.

Since φ(τ) > 0 the last expression can be integrated to yield,

φ(τ) ≤ 2m

1− Θ̇?mτ 3
.

Therefore, for 0 < τ < 1/
3
»

Θ̇?m, the field, φ(τ) is bounded by above. Consequently,

one can take 0 ≤ τ ≤ 1/(2
3
»

Θ̇?m).

The results of Lemmas 15, 16 and 17 can be summarised in the following:

Lemma 18. The solution to the core system (5.40a)-(5.40c) with initial data (5.41),

in the case κ = 0, is bounded for 0 ≤ τ ≤ τ•, where

τ• ≡ min
ß8m

Θ̇?

,
1

2
3
»

Θ̇?m

™
. (5.48)

Remark 41. A plot of the numerical evaluation of the solutions to the core system

(5.40a)-(5.40c) with initial data (5.41) in the case κ = 0 is shown in Figure 5.6.

Behaviour of the remaining fields in the conformal evolution equations

In this section the analysis of the conformal evolution equations is completed. In

particular, it is shown that the dynamics of the whole evolution equations is driven

by the core system. To this end, the following fields are introduced

χ̄ ≡ 1

3
(χ2 − χh), L̄ ≡ 1

3
(ΘS

2 −ΘS
h).

The evolution equations for these variables are

˙̄χ = χ̄2 − L̄−Θφ, (5.49a)

˙̄L = χ̄L̄+ Θ̇φ, (5.49b)

with initial data

χ̄(0) = −κ, L̄(0) = −1

2
(1 + κ2).
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Figure 5.6: Numerical solution of the core system in the κ = 0 case with |λ| = 3
and m = 1/3

√
3. The solid line corresponds to φ, the dashed line to χ and the

dotted line to L. Observe that in contrast to the κ > 1 and κ < −1 cases, numeric
evaluations suggest that in the case κ = 0 the fields of the core system are bounded
for all times —see Figures 5.11 and 5.12 of Appendix 5.7.

Notice that despite these equations resembling those of the core system, the field φ

is not determined by the equations (5.49a)-(5.49b) —thus, this subsystem will be

called the supplementary system. Once the core system has been solved, φ can be

regarded as a source term for the system (5.49a)-(5.49b). If χ̄ and L̄ are known

then one can write the remaining unknowns in quadratures —the analysis of the

supplementary system (5.49a)-(5.49b) will be given later in this section. Defining

ξ+y3 ≡ ξy +
1

2
ξ3, ξ−y3 ≡ ξy −

1

2
ξ3,

ξ+z1 ≡ ξz +
1

2
ξ1, ξ−z1 ≡ ξz −

1

2
ξ1,

one finds that the equations for these fields can be formally solved to give

ξ+y3(τ) = ξ+y3(0) exp
Å
−
∫ τ

0
χ(s)ds

ã
, ξ−y3 = ξ−y3(0) exp

Å
−
∫ τ

0
χ̄(s)ds

ã
,

ξ+z1(τ) = ξ+z1(0) exp
Å
−
∫ τ

0
χ(s)ds

ã
, ξ−z1 = ξ−z1(0) exp

Å
−
∫ τ

0
χ̄(s)ds

ã
.

The role of the the subsystem formed by ΘT
x , fx and e3x is analysed in the following

result.

Lemma 19. Given asymptotic initial data for the Schwarzschild-de Sitter spacetime,

if ∂ψκ = 0 on I then

fx(τ) = ex
0(τ) = Θx

T (τ) = 0.

Proof. This result follows directly from equations (5.38a), (5.38e), (5.38m) and the

initial data given in Lemma 14. To see this, first recall that

dx ≡ xABeAB
iei(Θ) = ex

0∂0Θ + ex
3∂3Θ.
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Assuming then that e3(κ) = 0 one has that e3(Θ) = 0 and therefore

dx =
√

2ex
0Θ̇.

Observing that equations (5.38a), (5.38e) and (5.38m) form an homogeneous sys-

tem of equations for the fields ex
0, fx,Θx

T with vanishing initial data then, using a

standard existence and uniqueness argument for ordinary differential equations, it

follows that the unique solution to this subsystem is the trivial solution, namely

fx(τ) = ex
0(τ) = Θx

T (τ) = 0.

Using the result of Lemma 19 one can formally integrate equation (5.38j) to yield

ξx(τ) = ξx(0) exp
Å
−
∫ τ

0
χ(s)ds

ã
.

The frame coefficients can also be found by quadratures

e3x(τ) = e3x(0) exp
Å∫ τ

0
χ̄(s)ds

ã
, e+y (τ) = e+y (0) exp

Å
−
∫ τ

0
χ(s)ds

ã
,

e+z (τ) = e+z (0) exp
Å
−
∫ τ

0
χ(s)ds

ã
.

Since one can write

χ2 =2(χ+ χ̄), χh =2χ− χ̄, ΘS
2 =2(L̄− L), ΘS

h =− L̄− 2L,

ξy =
1

2
(ξ+y3 + ξ−y3), ξz =

1

2
(ξ+z1 + ξ−z1), ξ1 =2(ξ+z1 − ξ−z1), ξ3 =2(ξ+y3 − ξ−y3).

then, it only remains to study the behaviour of χ̄ and L̄ to completely characterise

the evolution equations (5.38a)-(5.38p).

Remark 42. In the analysis of the core system of Appendix 5.7 the mechanism for

the formation of singularities at finite time in the case κ 6= 0 is identified. Since φ

acts as a source term for the supplementary system (5.49a)-(5.49b) one expects the

solution to this system to be singular at finite time if the solutions to the core system

develop a singularity. Clearly, the behaviour of the core system is independent from

the behaviour of the supplementary system. Observe that, nevertheless, L̄ and χ̄

could blow up earlier than φ. The analysis of the supplementary system and an

estimation of a existence time is given later on in this section.

Deviation equation for the congruence

As discussed in Section 2.4.3 of Chapter 2, the evolution equations (2.68a)-(2.68h)

are derived under the assumption of the existence of a non-intersecting congruence
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of conformal geodesics. In this section the solutions to the deviation equations are

analysed.

As a consequence of Lemma 19 one has fAB = 0. Following the spirit of the space

spinor formalism, the deviation spinor zAB can be written in terms of elementary

valence 2 spinors as

z(AB) = zxxAB + zyyAB + zzzAB.

Substituting expression (5.37e) into equation (2.71b) of Chapter 2 and using the

identities given in equation (5.93g) of Appendix 5.8.2 one obtains

∂τzx = 0, ∂τzz = 0, ∂τzy = − 1

12
χ2zy −

1

6
χhzy.

One can formally integrate these equations to obtain

zx(τ) = zx?, zz(τ) = zz?, zy(τ) = zy? exp

Ç
−1

2

∫ τ

0
χ(s)ds

å
.

In the last equation, zx?, zy? and zz? denote the initial value of zx(τ), zy(τ) and zz(τ)

respectively. It follows that the deviation vector is non-zero and regular as long as

the initial data zx?, zy? and zz? are non-vanishing and χ(τ) is regular. Accordingly,

the congruence of conformal geodesics will be non-intersecting.

Analysis of the supplementary system

As in the case of the core system, the supplementary system is simpler in the gauge

in which κ = 0. In such case, direct inspection shows that equations (5.49a)-(5.49b)

imply

χ̄ = −τL̄.

This can be verified by direct substitution into equations (5.49a) and (5.49b). Notice

that L̄(τ) is well defined at I where τ = 0 and χ̄(0) = 0 since the initial conditions

ensure that

lim
τ→0

χ̄(τ)

τ
=

1

2
.

Taking into account this observation, the system (5.49a)-(5.49b) reduces to the

equation
˙̄L = −τL̄2 + Θ̇?φ, (5.50)

with initial data

L̄(0) = −1

2
. (5.51)

Using that φ is only determined by the core system, together with the analysis of

the core system given in the beginning of Section 5.4.2 one obtains the following

result:



5.4: The solution to the asymptotic initial value problem for the Schwarzschild-de
Sitter spacetime and perturbations 132

Lemma 20. The solution to equation (5.50) with initial data (5.51) is bounded for

0 ≤ τ ≤ τ} with

τ} ≡ min
¶
τ◦, τ•

©
, where τ◦ ≡

√
Θ̇
−1/2
?

Ç
π

2
+ 2 arctan

Ç
1

2
Θ̇
−1/2
?

åå
(5.52)

Proof. To prove that L̄(τ) is bounded from above one proceeds by contradiction.

Assume that L̄→∞ for some finite τ ∈ [0, τ•], then ˙̄L→∞ at τ . Now, equation

(5.50) can be rewritten as
˙̄L+ τL̄2 = Θ̇?φ.

Therefore, since τ ≥ 0, the last expression implies that φ → ∞ at τ . However,

in the analysis of the core system in Section 5.4.2 it was shown that φ is finite for

τ ∈ [0, τ•]. This is a contradiction, and one cannot have L̄ → ∞ at τ ∈ [0, τ•].

Consequently L(τ) is bounded from above for 0 ≤ τ ≤ τ•. To show that L̄(τ) is

bounded from below, for 0 ≤ τ ≤ τ◦ with τ◦ as given by relation (5.52), observe that

φ(τ) > −τ for τ ≥ 0 since φ(τ) > 0. Using this observation, equation (5.50) implies

the differential inequality
˙̄L ≥ −τ(L̄2 + Θ̇?).

Since Θ̇? > 0 one has that (L̄2 + Θ̇?) > 0. Thus, one can rewrite the last inequality

as
˙̄L

(L̄2 + Θ̇?)
≥ −τ,

which can be integrated using the initial data (5.51) to give

L(τ) ≥ −
»

Θ? tan

Ñ
1

2

»
Θ̇?τ

2 + arctan

Ñ
1

2
»

Θ̇?

éé
.

Since the function tan is bounded if its argument lies in [0, π/4] one concludes that

L(τ) is bounded from below for 0 ≤ τ ≤ τ◦. Finally, taking the minimum of τ• and

τ◦ one obtains the result.

Remark 43. Numerical evaluations of the solutions to the supplementary system

show that it should be possible to improve Lemmas 18 and 20 and conclude that the

solutions do not blow up in finite time. These results, however, will not be required

to formulate the Main Result of this thesis.

5.4.3 Perturbations of the Schwarzschild-de Sitter

spacetime

In the sequel, one will consider perturbations of the Schwarzschild-de Sitter space-

time which can be covered by a congruence of conformal geodesics so that Lemma

6 of Chapter 2 can be applied. In particular, this means that the functional form
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of the conformal factor is the same for for both the background and the perturbed

spacetime.

The discussion of Section 5.3.4 brings to the foreground the difficulties in setting

up an asymptotic initial value problem for the Schwarzschild-de Sitter spacetime in

a representation in which the initial hypersurface contains the asymptotic points Q
and Q′: on the one hand, the initial data for the rescaled Weyl tensor is singular

at both Q and Q′; and, on the other hand, the curves in a congruence of timelike

conformal geodesics become asymptotically null as they approach Q and Q′ —see

Appendix 5.6.

Consistent with the above remarks, the analysis of the conformal evolution equa-

tions (2.68a)-(2.68h) has been obtained in a conformal representation in which the

metric on I is the standard one on R× S2. In this particular conformal represen-

tation the asymptotic points Q and Q′ are at infinity respect to the 3-metric of I

and the initial data for the Schwarzschild-de Sitter spacetime is homogeneous. In

this section non-linear perturbations of the Schwarzschild-de Sitter spacetime are

analysed by means of suitably posed initial value problems. More precisely, one is

interested in analysing the development of perturbed initial data close to that of the

Schwarzschild-de Sitter spacetime in the above described conformal representation.

Then, using the conformal evolution equations (2.68a)-(2.68h) and the theory of first

order symmetry hyperbolic systems contained in [23] one can obtain a existence and

stability result for a reference solution corresponding to the asymptotic region of

the Schwarzschild-de Sitter spacetime —see Figure 5.1.

Perturbations of asymptotic data for the Schwarzschild-de Sitter

spacetime

In what follows, let S denote a 3-dimensional manifold with S ≈ R × S2. By

assumption, there exists a diffeomorphism ψ : S → R× S2 which can used to pull-

back a coordinate system x = (xα) on R × S2 to obtain a coordinate system on S
—i.e. Ûx = ψ∗x = x ◦ ψ. Exploiting the fact that ψ is a diffeomorphism one can

define not only the pull-back ψ∗ : T ∗(R × S2) → T ∗S but also the push-forward of

its inverse (ψ−1)∗ : T (R × S2) → TS. Using this mapping, one can push-forward

vector fields ci on T (R × S2) and pull-back their covector fields αi on T ∗(R × S2)

via Ûci = (ψ−1)∗ci, Ùαi = ψ∗αi.

In a slight abuse of notation, the fields Ûci and Ùαi will be simply denoted by ci and

αi.

In the following, all the fields discussed previously for the exact Schwarzschild-de

Sitter spacetime will be referred as the background solution. This fields will be dis-

tinguished with a ˚ over the Kernel letter —e.g. h̊ will denote the standard metric
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on R×S2 given in equation (5.19). Similarly, the perturbation to the corresponding

field will be identified with a ˘ over the Kernel letter. Notice that although the

frame {ci} is h̊-orthonormal, it is not necessarily orthogonal respect to the intrinsic

3-metric h on S.

Let {ei} denote a h-orthonormal frame over TS and let {ωi} be the associate

cobasis. Assume that there exist vector fields {ĕi} such that an h-orthonormal

frame {ei} is related to an h̊-orthonormal frame {ci} through the relation

ei = ci + ĕi.

This last requirement is equivalent to introducing coordinates on S such that

h = h̊+ h̆. (5.53)

Now, consider a solution

(hij , χij , Li, Lij , dijk, dij)

to the asymptotic conformal constraint equations (2.77a)-(2.77i) of Chapter 2 which

is, in some sense to be determined, close to initial data for the Schwarzschild-de

Sitter spacetime so that one can write

hij |S = h̊ij|S + h̆ij|S , χij|S = χ̊ij|S + χ̆ij|S , Li|S = L̊i|S + L̆i|S
Lij |S = L̊ij|S + L̆ij|S , dijk|S = d̊ijk|S + d̆ijk|S , dij|S = d̊ij|S + d̆ij|S .

A spinorial version of these data can be obtained using the spatial Infeld-van der

Waerden symbols. Accordingly, one writes

ηABCD|S = η̊ABCD|S + η̆ABCD|S , µABCD|S = µ̆ABCD|S , (5.54a)

LABCD|S = L̊ABCD|S + L̆ABCD|S , ξABCD|S = ξ̊ABCD|S + ξ̆ABCD|S ,(5.54b)

LAB|S = L̆AB|S , χABCD|S = χ̊ABCD|S + χ̆ABCD|S , (5.54c)

eAB|S = e̊AB|S + ĕAB|S , fAB|S = f̆AB|S . (5.54d)

Observe that all the objects appearing in expressions (5.54a)-(5.54d) are scalars.

Using the notation introduced in Section 5.2.3, the initial data (5.54a)-(5.54d) can

be compactly denoted by

u|S = ů|S + ŭ|S .
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ŭn? = 0 ŭn? = ǔ?

ŭn

ŭn? = 0

ŭn = 0 ŭn = 0

Figure 5.7: Schematic depiction of the extended data. The perturbed initial data ǔ0
?

coincides with ǔ? on S0. In the transition region, Z0 \ S0, ǔ0
? is extended smoothly

until it vanishes on S \Z0. The domain of dependence of the original data on S0 is
represented by the shaded area while the domain of dependence of the extended data
on Z0 corresponds to the outer dashed triangle.

The basic cylinder

Consider the following countable covers of R×S2 with sets of the form In ≡ [−1
2
τ}+

1
2
τ}n,

1
2
τ} + 1

2
τ}n]× S2 and Yn = [−τ} + 1

2
τ}n, τ} + 1

2
τ}n]× S2 with n ∈ Z:

R× S2 =
⋃
n∈Z

In =
⋃
n∈Z

Yn.

Additionally, notice that In ⊂ Yn. In the sequel, the sets I0 = [−1
2
τ},

1
2
τ}]× S2 and

Y0 ≡ [−τ}, τ}]× S2 will be called the basic cylinder and the extended basic cylinder,

respectively. The diffeomorphism ψ : S → R × S2 of last subsection allow us to

define the collection of sets Zn ≡ ψ−1(Yn) and Sn ≡ ψ−1(In) which can be used to

obtain countable covers of S:

S =
⋃
n∈Z
Sn =

⋃
n∈Z
Zn.

To have a more compact notation let u?, ů? and ǔ? represent u|S , ů|S and ǔ|S so

that given perturbed initial data on S one can write

u? = ů? + ŭ?.

Now, define

un? = ů? + ŭn? ,

with

ǔn? =


ǔ? x ∈ Sn ,
h(x)ǔ? x ∈ Zn \ Sn,
0 x ∈ S \ Zn,

(5.55)

where h(x) is smooth function such that h(x) = 1 for x ∈ ∂Sn and h(x) = 0 for

x ∈ ∂Zn. Notice that on Sn the initial data un? satisfies the conformal constraint

equations while it does not in Zn \ Sn. However, due to the finite speed of propa-

gation property the corresponding solution arising from this data on the domain of

dependence of Sn is not influenced by the extended data on Zn \ Sn.
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Observe that (R× S2, h̊) possesses a translation symmetry that can be exploited

to regard initial data on each Zn as initial data on Z0. To see this more clearly,

notice that Yn can be obtained by translation of the extended basic cylinder Y0.

Consequently, for each Yn there exist a bijection Ψn : Y0 → Yn. Moreover, the

diffeomorphism ψ : S → R × S2, in turn, induces a bijection ϕn : Z0 → Zn. Thus,

one can exploit ϕn to pullback initial data on Zn to Z0. In other words, ϕn∗ (ǔ
n
? ) can

be taken as a collection of perturbed initial data on Z0.

Controlling the size of the perturbation

In this subsection the necessary notions and definitions to measure the size of the

perturbation of the initial data are introduced. The discussion will be given for initial

data on Z0 ≈ Y0 for conciseness. Nevertheless, as discussed above, any perturbation

on Zn can be pulled-back to Z0. Let A ≡ {(φ+,U+), (φ−,U−)} with φ+ : U+ → R3

and φ− : U− → R3 be an atlas for Y0. Let V+ ⊂ U+, V− ⊂ U− be closed sets such

that Y0 ⊂ V+ ∪ V−. In addition, define the functions

η+(x) =

1 x ∈ φ1(V+)

0 x ∈ R3/φ1(V+)
, η−(x) =

1 x ∈ φ2(V−)

0 x ∈ R3/φ2(V−)
. (5.56)

Observe that any point p ∈ Z0 is described in local coordinates by xp = (φ ◦ ψ)(p)

with xp ∈ φ(U) where ψ : S → R× S2 is the diffeomorphism of the last subsection

and (φ,U) ∈ A. Consequently, any smooth function Q : Z0 → CN can be regarded

in local coordinates as Q(x) : φ(U)→ CN . Let Qi(x) denote the restriction of Q(x)

to one the open sets φi(Ui) for i = +,−. Then, we define the norm of Q as

‖ Q ‖Z0,m≡‖ η+(x)Q+(x) ‖R3,m + ‖ η−(x)Q−(x) ‖R3,m

where

‖ Q ‖R3,m=

(
m∑
l=0

3∑
α1,...,αl

∫
R3

(∂α1 ...∂αl
Q)2dµ

)1/2

.

where dµ is the volume form associated to the Euclidean metric δ on R3. Now, one

can use these notions to define Sobolev norms for any quantity QK with K being an

arbitrary string of frame spinor indices as

‖ QK ‖S0,m≡
∑
κ

‖ Qκ ‖Z0,m .

In the last expression m is a positive integer and the sum is carried over all the

independent components of QK which have been denoted by Qκ.
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Formulation of the evolution problems

Consistent with the split (5.54a)-(5.54d) for the initial data, one looks for solutions

to the conformal evolution equations (5.5a)-(5.5b) of the form

ηABCD = η̊ABCD + η̆ABCD, µABCD = µ̆ABCD, (5.57a)

LABCD = L̊ABCD + L̆ABCD, ξABCD = ξ̊ABCD + ξ̆ABCD, (5.57b)

LAB = L̆AB, χABCD = χ̊ABCD + χ̆ABCD, (5.57c)

eAB = cAB + ĕAB, fAB = f̆AB. (5.57d)

Following with the notation introduced before, the perturbed initial data ǔ in Z0

—as given in equation (5.55)— will be represented as ǔ0
? and the development of

such data will be denoted by ǔ0. Now, let

‖ ŭ0
? ‖Z0,m≡‖ χ̆ABCD ‖Z0,m + ‖ ξ̆ABCD ‖Z0,m + ‖ L̆ABCD ‖Z0,m + ‖ L̆AB ‖Z0,m

+ ‖ ĕAB ‖Z0,m + ‖ f̆AB ‖Z0,m + ‖ φ̆ABCD ‖Z0,m .

Perturbations on the extended basic cylinder

The main analysis of the background solution in Section 5.4.2 was performed in

a conformal representation in which the asymptotic initial data is homogeneous

and the extrinsic curvature of I vanishes —i.e. κ = 0. The general evolution

equations (5.5a)-(5.5b) consist of transport equations for υ coupled with a system

of partial differential equations for φ. However, as shown in Section 5.4.2, the

assumption of spherical symmetry implies that the only independent component of

the spinorial field φABCD is φ2. Consequently, the system (5.5a)-(5.5b) reduces,

for the background fields ů = (υ̊, φ̊), to a system of ordinary differential equations.

The Piccard-Lindelöf theorem can be applied to discuss local existence of the latter

system. However, one does not have, a priori, control on the smallness of the

existence time. To obtain statements concerning the existence time of the perturbed

solution, one recalls that the discussion of the evolution equations of Section 5.4.2

shows that the components of solution ů are regular for τ ∈ [0, τ}] with τ} as given

in equation (5.52), so that the guaranteed existence time is not arbitrarily small.

The analysis of the core system in Section 5.4.2 was restricted to the case κ = 0,

in which the conformal boundary has vanishing extrinsic curvature. In this case, an

explicit existence time τ} for the solution to the conformal evolution equations was

obtained. In contrast, the analysis given in Appendix 5.7 shows that in general, for

κ 6= 0, the core system develops a singularity at finite τ . Since the results given

in Section 5.4.2 for the conformal deviation equations hold not only for κ = 0, but

for any κ as long as ∂ψκ = 0, one has that the congruence of conformal geodesics is

non-intersecting in the κ 6= 0 case as well. This shows that, the singularities in the
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core system in the case κ 6= 0 are not gauge singularities.

In this section it is shown how one can exploit these observations, together with

the theory for symmetric hyperbolic systems, to prove the existence of solutions

to the general conformal evolution equations with the same existence time τ} for

small perturbations of asymptotic initial data close to that of the Schwarzschild-de

Sitter reference solution. By construction, the development of this perturbed data

will be contained in the domain of influence which corresponds, in this case, to the

asymptotic region of the spacetime —see Figure 5.9.

Taking into account the above remarks and using the theory of symmetric hy-

perbolic systems contained in [23] on Z0 —see Figure 5.8— one can formulate the

following lemma

Lemma 21 (existence and Cauchy stability for perturbations of asymp-

totic initial data for the Schwarzschild-de Sitter spacetime on the ex-

tended basic cylinder). Let u? = ů? + ŭ? denote asymptotic initial data for the

extended conformal Einstein field equations on a 3-dimensional manifold S ≈ R×S2

where ů? denotes the asymptotic initial data for the Schwarzschild-de Sitter space-

time (subextremal, extremal and hyperextremal cases) with κ = 0 in which the

asymptotic points Q and Q′ are at infinity —κ encodes the trace of the extrinsic

curvature of S. Let ψ : S → R × S2 be a diffeomorphism and define the sets

I0 ≡ [−1
2
τ},

1
2
τ}] × S2, Y0 ≡ [−τ}, τ}] × S2. Additionally, let S0 ≡ ψ−1(I0) and

Z0 ≡ ψ−1(Y0) and u0
? = ů? + ǔ0

? with ǔ0
? as in equation (5.55). Then, for m ≥ 4

and τ} as given in equation (5.52), there exists ε > 0 such that:

(i) for ||ŭ0
?||Z0,m < ε , there exist a unique solution ŭ0 to the conformal evolution

equations (5.7a)-(5.7b) with a minimal existence interval [0, τ}] and

ŭ0 ∈ Cm−2([0, τ}]×Z0,CN),

and the associated congruence of conformal geodesics contains no conjugate

points in [0, τ}];

(ii) given a sequence of perturbed data {(n)ŭ0
?} such that

‖(n) ŭ0
? ‖Z0,m→ 0 as n→∞,

then the corresponding solutions {(n)ŭ0} have a minimum existence interval

[0, τ}] and it holds that

‖(n) ŭ0 ‖Z0,m→ 0 as n→∞

uniformly in τ ∈ [0, τ}] as n→∞.
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Proof. Points (i) and (ii) are a direct application of the theory contained in [23]

where it is used that the background solution ů is regular on τ ∈ [0, τ}]. The initial

data for the Schwarzschild-de Sitter spacetime encoded in u? is in a representation in

which the points Q and Q′ are at infinity. Observe that the asymptotic initial data,

as derived in Section 5.3.5, for the subextremal, extremal and hyperextremal cases

are formally the same —in particular, notice that the initial data for the electric

part of the rescaled Weyl tensor contains information about the mass m while the

conformal factor Θ carries information about λ. The arguments in the analysis of

Section 5.4.2 are irrespective of the relation between λ and m. The key observation

in the proof is that one can apply the general theory of symmetric hyperbolic systems

of [23] for each open set and chart of an atlas for Y0. Then, these local solutions can

be patched together to obtain the required global solution over [0, τ}] × Z0 —it is

sufficient to cover Y0 with two patches as discussed in previous subsections. Details

of a similar construction in the context of characteristic problems can be found in

[17].

5.4.4 Main result

As briefly mentioned in Section 5.4.3 the translation invariance of (R× S2, h̊) allow

us to define a bijection ϕn : Z0 → Zn and regard ϕn∗ (ǔ
n
? ) as initial data on Z0. In

addition, due to the coordinate invariance, the conformal evolution equations when

acted by the pullback ϕn∗ can be shown to coincide with the evolution equations

over Z0 as there is no explicit spatial coordinates in the equations and the partial

derivatives are invariant when considering the change of coordinates induced by ϕn.

Therefore, the restriction of the initial value problem on Zn induces an initial value

problem on Z0 with initial data ϕn∗ (ǔ
n
? ).

Remark 44. Notice that, in general, ϕn∗ (ǔ
n
? ) do not coincide with each other as

they represent general perturbations of the initial data.

Observe that one can follow the discussion of Section 5.4.3 to define the norm

‖ ǔ? ‖S,m, by replacing Z0 and Y0 by S and R×S2, respectively. In addition, notice

that

‖ ǔ? ‖S,m< ε,

for ε > 0, implies that there exist some 0 < ε′ < ε such that

‖ ϕn∗ ǔn? ‖Z0,m< ε′.

With the last observation one can then apply the theory of symmetric hyperbolic

systems contained in [23] to obtain an analogous result to that of Lemma 21 for each

ϕn∗ ǔ
n
? . Let wn denote the corresponding developments of the perturbed initial data

ϕn∗ ǔ
n
? on Z0. The theory of symmetric hyperbolic systems of [23] ensures that these
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S0 S1 S2S−1S−2

ŭ0 ŭ1 ŭ2ŭ−1ŭ−2

Figure 5.8: Schematic depiction of the sets Sn ⊂ Zn and their corresponding do-
mains of dependence. The translation invariance of (R × S2, h̊) can be exploited
to regard each Yn as a copy of the Y0. Theory of symmetric hyperbolic systems of
[23] can be applied to Z0 exploiting the minimal existence time τ} to obtain a local
solution ŭ0. Moreover, each of the developments ŭn share the same existence time
of ŭ0. To obtain a global solution depending on the original initial data given on
each Sn one has to consider a smaller time of existence 0 < τ\ < τ}. Removing
the overlapping regions appropriately, these local solutions can be patched together
to obtain a global solution ŭ.

developments share a minimal existence time τ} —see proof of Lemma 21. In order

to recast the solution wn as a solution on [0, τ}] × Zn define ϕnτ : [0, τ}] × Z0 →
[0, τ}] × Zn by requiring that the action of ϕn to remain constant along conformal

geodesics. Then, one can use the pullback of the inverse of ϕnτ to define a solution

on [0, τ}]×Zn as ǔn ≡ ((ϕnτ )−1)∗(w
n).

Remark 45. Recall that S =
⋃
n∈Z Sn so one can construct a solution depending

only on data given in Sn by removing the part of the solution determined by the

extended data in Zn \ Sn. Notice that, this may require shrinking the time of

existence to some τ\ with 0 < τ\ < τ}.

Remark 46. Observe that the initial data ϕn∗ ǔ
n+1
? and ϕn∗ ǔ

n
? coincide on

Qn ≡ Sn
⋂
Sn+1,

therefore, as a consequence of the uniqueness property for symmetric hyperbolic

system one has that the developments ǔn and ǔn+1 coincide in the corresponding

domain of dependence of Qn.

Remark 46 shows that if one is to construct a a global solution by adding each

individual contribution ǔn one has to excise not only the part of the solution arising

from the extended data given on Zn \Sn but also the solution ǔn+1 in the domain of

dependence of Qn. To do so, let Jn ≡ (−1
4
τ}+ 1

2
τ}n,

1
4
τ}+ 1

2
τ}n)× S2 and consider

the sets Jn ≡ ψ−1(Jn). Then the global solution over [0, τ\]× S is given by

ǔ =
∑
n∈Z

pn(x) (5.58)
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where

pn(x) =

ǔ
n x ∈ [0, τ\]× Jn

0 x 6∈ [0, τ\]× Jn.
(5.59)

The above discussion leads to the following theorem:

Theorem 3 (existence and Cauchy stability for perturbations of asymp-

totic initial data for the Schwarzschild-de Sitter spacetime). Let u? =

ů? + ŭ? denote asymptotic initial data for the extended conformal Einstein field

equations on a 3-dimensional manifold S ≈ R × S2 where ů? denotes the asymp-

totic initial data for the Schwarzschild-de Sitter spacetime (subextremal, extremal

and hyperextremal cases) with κ = 0 in which the asymptotic points Q and Q′ are

at infinity —κ encodes the trace of the extrinsic curvature of S. Then, for m ≥ 4

and for some 0 < τ\ < τ} with τ} as given in equation (5.52), there exists ε > 0

such that:

(i) for ||ŭ?||S,m < ε , there exist a unique solution ŭ to the conformal evolution

equations (5.7a)-(5.7b) with a minimal existence interval [0, τ\] and

ŭ ∈ Cm−2([0, τ\]× S,CN),

and the associated congruence of conformal geodesics contains no conjugate

points in [0, τ\];

(ii) given a sequence of perturbed data {(n)ŭ?} such that

‖(n) ŭ? ‖S,m→ 0 as n→∞,

then the corresponding solutions {(n)ŭ} have a minimum existence interval

[0, τ\] and it holds that

‖(n) ŭ ‖S,m→ 0 as n→∞

uniformly in τ ∈ [0, τ\] as n→∞;

(iii) the solution u = ů + ŭ is unique in [0, τ\] × S and implies a Cm−2 solution

(M̃τ\ , g̃) to the Einstein vacuum equations with the same de Sitter-like Cos-

mological constant as the background solution where

M̃τ\ ≡ (0, τ\)× S.

Moreover, the hypersurface I ≡ {0} × S represents the conformal boundary

of the spacetime.

Proof. To prove points (i) and (ii) observe that the smallness assumption on the

initial data ‖ ǔ? ‖S,m< ε ensures in particular that there exist 0 < ε′ < ε such that
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‖ ϕn∗ ǔn? ‖Z0,m< ε′. Then, one can apply the theory contained in [23] to obtain an

analogous result to that of Lemma 21 for a collection of perturbed initial data ϕn∗ ǔ
n
?

on Z0. The theory of [23] ensures that the corresponding developments wn share

the same minimal existence time τ} —see the proof and previous discussion leading

to Lemma 21. The previously defined map ϕnτ : [0, τ}] × Z0 → [0, τ}] × Zn can be

used to recast the corresponding developments wn in [0, τ}]×Z0 as solutions ǔn on

[0, τ}]×Zn. Observe that one can remove the part of the solution arising from the

extended data on Zn \ Sn considering the solution on [0, τ\] × Sn for some τ\ with

0 < τ\ < τ} . Then a global solution depending only on the original data ǔ? can

be constructed. In order to obtain the required global solution over [0, τ\] × S one

defines ǔ adding each individual contribution ǔn as in equation (5.58). The function

pn(x) has a double purpose, in the one hand, it removes the part of the solution

arising from the extended data on Zn \ Sn and, in the other hand, it ensures that

the solution is not added more than once in the overlapping regions. The resulting

solution will belong to Hm
loc for fixed τ and as a consequence of Sobolev embedding

theorems

ŭ ∈ Cm−2([0, τ\]× S,CN).

Given a sequence {(n)ǔ?} one can identify sequences {(n)(ϕn′∗ ǔn
′
? )} with n, n′ ∈ Z.

Then, one can apply the theory of [23] as it was done in Lemma 21. The global

solutions {(n)ǔ} are constructed as in equation (5.58). To prove point (iii) first

observe that from Lemma 8 of Chapter 2 the solution to the conformal evolution

system (5.7a)-(5.7b) implies a solution u = ů+ŭ to the extended conformal Einstein

field equations on [0, τ\] × S if u? = ů? + ŭ? solves the conformal constraint equa-

tions on the initial hypersurface. This solution implies, using Lemma 3 of Chapter

2, a solution to the Einstein field equations whenever the conformal factor is not

vanishing. General results of the theory of asymptotics implies then that the ini-

tial hypersurface S can be interpreted as the conformal boundary of the physical

spacetime (M̃τ\ , g̃) —see [12, 13].

Remark 47. An explicit class of perturbed asymptotic initial data sets can be

constructed, keeping the initial metric fixed to be standard one on R×S2, using the

analysis of [42] as follows: introduce Cartesian coordinates (xα) in R3 with origin

located at a fiduciary position Q and define a polar coordinate via ρ2 ≡ δαβx
αxβ.

Let li = xi/ρ and denote by mi and m̄i a pair of complex null vector such that the

flat metric on R3 reads

h́ij = −lilj − 2mim̄j.

The general solution of the equation

D́id́ij = 0,

where D́i is the Levi-Civita connection of the flat metric on R3, can be parametrised
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(a)

I

(b)

I τ = 0

τ = τ}

τ = τCH

Figure 5.9: Schematic depiction of the development of perturbed initial data for the
Schwarzschild-de Sitter spacetime and the congruence of conformal geodesics. In (a)
the evolution of asymptotic initial data is depicted in the conformal representation
in which the asymptotic points Q and Q′ are at a finite distance respect to the metric
on I . Figure (b) shows a schematic depiction of the evolution of asymptotic initial
data in the conformal representation in which Theorem 3 has been formulated. In
contrast to the conformal representation leading to Figure (a) , the initial data is
homogeneous and formally identical for the subextremal, extremal or hyperextremal
cases. In both diagrams, the dashed line corresponds to the location of a hypothetical
Cauchy horizon of the development.

as

ρ3d́ij = ξ(3lilj + h́ij) +
√

2η1l(im̄j) +
√

2η̄1l(imj) + µ̄2mimj + µ2m̄im̄j (5.60)

with

ξ = ð̄2λR2 + A+ ρQ+
1

ρ
P,

η1 = −2ρ∂ρð̄λR2 + ð̄λI2 + ρðQ− 1

ρ
ðP + iðJ,

µ2 = 2ρ∂ρ(ρ∂ρλ
R
2 )− 2λR2 + ðð̄λR2 − ρ∂ρλI2.

where A, P , Q, J are arbitrary constants, λR2 = Re(λ2(x
α)) and λI2 = iIm(λ2(x

α))

with λ2(x
α) representing a smooth function of spin-weight 2 —see [42] for a detailed

derivation and [12] for definitions of the ð and ð̄ operators. Let d́
(λ)
ij denote the

part of d́ij associated with λ2 —namely setting A = Q = P = 0 in equation

(5.60). Observe that d́
(λ)
ij can have, in general, any behaviour near Q —see [42].

However, setting λ2 = O(ρn) with n ≥ 3 the term d́
(λ)
ij is regular near Q. Using the

frame version of the conformal transformation rule of Lemma 13 and either equation

(5.29) or (5.30) one can verify that the corresponding term in the S3-representation

is d̄
(λ)
ij = O(ρn+3). Similarly, using the conformal transformation formulae, given

in Section 5.3.3, relating the S3 and R × S2-representations of the initial data, one

obtains d
(λ)
ij = O(ρn+6). Observe that regular behaviour of perturbed initial data in

the R × S2-representation does not necessarily correspond to regular behaviour in

the S3-representation nor in the R3-representation.
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5.5 Conclusions

This chapter contains an analysis of the Schwarzschild-de Sitter family of space-

times as a solution to the extended conformal Einstein field equations expressed in

terms of a conformal Gaussian system. Given that, in principle, it is not possible

to explicitly express the spacetimes in this gauge, an alternative strategy has been

adopted; formulating an asymptotic initial value problem for a spherically symmet-

ric spacetime with a de Sitter-like Cosmological constant. The generalisation of

Birkhoff’s theorem to vacuum spacetimes with Cosmological constant then ensures

that the resulting solutions are necessarily a member of the Schwarzschild-de Sitter

spacetime.

As part of the formulation of an asymptotic initial value problem for the Schwarzschild-

de Sitter spacetime it was necessary to specify suitable initial data for the conformal

evolution equations. The rather simple form that the conformal constraint equa-

tions acquire in the framework considered in this chapter allows to study in detail

the conformal properties of the Schwarzschild-de Sitter spacetime at the conformal

boundary and, in particular, at the asymptotic points where the conformal bound-

ary meets the horizons. The key observation from this analysis is that the conformal

structure is singular at these points and cannot be regularised in an obvious manner.

Accordingly, any satisfactory formulation of the asymptotic initial value problem will

exclude these points.

An interesting property of the conformal evolution equations under the assump-

tion of spherical symmetry is that the system reduces to a set of transport equations

along the conformal geodesics covering the spacetime. The essential dynamics, and

in particular the formation of singularities in the solutions to this system, is gov-

erned by a core system of three equations —one of them a Riccati equation. As

discussed in Appendix 5.7, this core system provides a mechanism for the formation

of singularities in the exact solution. The analysis of the core system allows not

only to study the properties on the Schwarzschild-de Sitter spacetime expressed in

terms of a conformal Gaussian gauge system, but also to understand the effects that

the gauge data has on the properties of the conformal representation arising as a

solution to the conformal evolution equations. Despite the fact that the core system

discussed in this chapter is related to the spherical symmetry assumption, it is of

interest to explore the whether or not the exist an analogous structure in the general

equations —without spherical symmetry.

The conformal representation of the Schwarzschild-de Sitter spacetime obtained

in this chapter has been used to show that it is possible to construct, say, future

asymptotically de Sitter solutions to the Einstein vacuum Einstein with a minimum

existence time —as measured by the proper time of the conformal geodesics used to

construct the gauge system— which can be understood as perturbations of a mem-

ber of the Schwarzschild-de Sitter family of spacetimes. As already mentioned in
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the main text, it is an interesting problem to determine the maximal Cauchy devel-

opment to these spacetimes. In order to obtain the maximal Cauchy development of

suitably small perturbations of asymptotic data for the Schwarzschild-de Sitter one

would require the use of more refined methods of the theory of hyperbolic partial

differential equations as one is, basically, confronted with a global existence prob-

lem for the conformal evolution equations. In this respect, it could be conjectured

that the time symmetric conformal representation in which κ = 0 together with the

global stability methods of [76] should allow to make inroads into this issue. Closely

related to the construction of the maximal development of perturbations of asymp-

totic initial data of the Schwarzschild-de Sitter spacetime is the question whether

there is a Cauchy horizon associated to the boundary of this development. If this

is the case, one would like to investigate the properties of this horizon. Intuitively,

the answer to these issues should depend on the relation between the asymptotic

points Q and Q′ and the conformal structure of the spacetime. In particular, one

would like to know whether the singularities of the rescaled Weyl tensor at these

points generically propagate along the boundary of the perturbed solution —notice,

that they do not for the background solution. If one were able to use the R × S2-

representation of the conformal boundary of perturbations of asymptotic initial data

for the Schwarzschild-de Sitter to construct a maximal development and to gain suf-

ficient control on the asymptotic behaviour of the various conformal fields, one could

then rescale this solution to obtain a representation with a conformal boundary of

the form S3 \ {Q,Q′}. As discussed in the main text, in this representation some

fields are singular at Q and Q′. This observation suggests that this construction

could shed some light regarding the propagation (or lack thereof) of singularities

near the asymptotic points Q and Q′.

5.6 Appendix: The asymptotic points Q and Q′

and conformal geodesics in the

Schwarzschild-de Sitter spacetime

5.6.1 Analysis of the asymptotic points Q and Q′

In Section 5.3.2 it was shown that there exist a conformal representation of the

Schwarzschild-de Sitter spacetime in which the metric at the conformal boundary

is ~ —i.e. the standard metric on S3. In addition, it was observed that the North

and South poles of S3 correspond to special points in the conformal structure that

have been labelled as Q and Q′. These asymptotic regions are represented in the

Penrose diagram for the subextremal, extremal and hyperextremal Schwarzschild-de

Sitter spacetime as the points where the conformal boundary and the Cosmological

horizon, Killing horizon and singularity, respectively, seem to meet —see Figures 5.3
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and 5.4 and 5.5. As discussed in Section 5.3.2 these points correspond to (Ū , V̄ ) =

(±π
2
,±π

2
) for which the tortoise coordinate r is not well defined. In Section 5.3.4 it

was shown that in the conformal representation in which the initial metric is ~ the

data for the electric part of the rescaled Weyl tensord̄ij , as given in equation (5.31),

is singular precisely at Q and Q′. Observe that written in spinorial terms the initial

data for the rescaled Weyl spinor in this conformal representation is given by

φ̄ABCD =
6m»

1− ω2(ξ)
ε2ABCD

which is singular at both Q and Q′. This situation resembles that of the geometry

near spacelike infinity i0 of the Minkowski spacetime and the construction of the

cylinder at infinity given in [27] which allows to regularise the data for the rescaled

Weyl spinor. However, some experimentation reveals that this type of regularisation

procedure (in contrast with the analysis of Schwarzschild spacetime given in [27])

cannot be implemented in the analysis of the Schwarzschild-de Sitter spacetime

without spoiling the regular behaviour of the conformal factor. Since the hyperbolic

reduction procedure for the extended conformal Einstein field equations is based

on the existence of a congruence of conformal geodesics in spacetime, the singular

behaviour of the initial data for the rescaled Weyl spinor suggest that the congruence

of conformal geodesics does not cover the region of the spacetime corresponding to

Q and Q′. To clarify this point, in the remaining of this section the behaviour of

conformal geodesics as they approach the asymptotic points Q and Q′ is analysed.

5.6.2 Geodesics in Schwarzschild-de Sitter spacetime

The method for the hyperbolic reduction for the extended conformal Einstein field

equations available in the literature requires adapting the gauge to a congruence

of conformal geodesics. The behaviour of metric geodesics in the Schwarzschild-

de Sitter spacetime has been already studied [77, 78] and an analysis of conformal

geodesics in Schwarzschild-de Sitter and anti-de-Sitter spacetimes is carried out in

[79]. In static coordinates (t, r, θ, ϕ) the equation for radial timelike geodesics, (θ =

θ?, ϕ = ϕ?) with θ? and ϕ? constant, are

dr

dτ̃
=
»
γ2 − F (r),

dt

dτ̃
=

γ

F (r)
. (5.62)

The first equation can be formally integrated as

τ̃ − τ̃? =
∫ r

r?

1»
γ2 − F (s)

ds (5.63)

where τ̃ is the g̃SdS-proper time and γ is a constant of motion which can be identified

with the energy of a particle moving along the geodesic. The equation for t can
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be solved once equation (5.63) has been integrated. As pointed out in [66, 68],

by choosing γ = 1 one can explicitly solve this integral. However in general, for

arbitrary γ, the integral is complicated and cannot be written in terms of elementary

functions. A side observation is that if r 6= rb and r 6= rc then the curves of constant

t correspond to geodesics with γ = 0. Finally, its worth noticing that geodesics with

constant r are characterised by the condition

γ2 − F (r) = 0. (5.64)

This last type of curves, which will be called critical curves, are analysed in Section

5.6.4. In general, the properties of conformal geodesics differ from their metric coun-

terparts. However, in the case of an Einstein spacetime with spacelike conformal

boundary any conformal geodesic leaving I orthogonally is, up to reparametrisa-

tion, a metric geodesic —see [39] and Lemma 7 of Chapter 2.

5.6.3 A special class of conformal geodesics in the

Schwarzschild-de Sitter spacetime

As briefly mentioned in Section 5.6.2 and pointed out in [66, 68], in general, the

integral (5.63) cannot be written in terms of elementary functions except for the

special case when γ = 1 where it yields

r(τ̃) = Ceτ̃
Ç

1−
Ç

3m

2|λ|

å
C−3e−3τ̃

å2/3

, (5.65)

where C is an integration constant. The last expression is valid irrespective of

the relation between m and λ. One can also use this expression to integrate the

second equation in (5.62) to obtain the geodesic parametrised as (r(τ̃), t(τ̃)). The

integration of t will not be required for the purposes of the analysis of this section. A

complete analysis of conformal geodesics in the Schwarzschild-de Sitter and anti-de

Sitter spacetimes will be given in [79]. By virtue of Lemma 7 one can recast the

geodesic with γ = 1 as a conformal geodesic by reparametrising it in terms of the

unphysical proper time as determined by equation (2.42) given in Lemma 7 and

equation (5.4) of Section 5.2.2 . A straightforward computation yields

τ̃(τ) =

√
3

|λ| ln
∣∣∣∣ τ

2 + κτ

∣∣∣∣ . (5.66)

Equivalently, assuming either κ > 0 and τ ≥ 0 or κ < 0 and 0 ≤ τ ≤ −2/κ one

obtains in both cases

τ(τ̃) =
2 exp

Å  |λ|
3
τ̃
ã

1− κ exp
Å  |λ|

3
τ̃
ã . (5.67)



5.6: Appendix: The asymptotic points Q and Q′ and conformal geodesics in the
Schwarzschild-de Sitter spacetime 148

From the last expression one can verify that

lim
τ̃→−∞

τ(τ̃) = 0, lim
τ→∞

τ(τ̃) = −2/κ,

as expected. Rewriting equation (5.65) in terms of the unphysical proper time one

obtains

r(τ) =
1

(m|λ|)2/3
(m|λ|C3τ 3 − 6(2 + κτ)3)2/3

Cτ(τ + 2κτ)
. (5.68)

From the last expressions one can verify that one has r → ∞ as τ → 0 and τ →
−2/κ. The location of the singularity r = 0 is determined by

τ =
2

(m|λ|)1/3C − κ.

Recalling that C is an integration constant which depends on the initial data for

the congruence, since the only freedom left in the conformal factor is encoded in κ,

one realises that C = C(κ). So one cannot draw any precise conclusion about the

location of the singularity unless one further identifies explicitly C(κ). In particular,

considering constant κ and setting C to be proportional to κ, say C = (2κ+1)

(m|λ|)1/3κ for

some proportionality constant κ, one obtains

τ =
1

κκ
,

which is in agreement the with the qualitative behaviour of the core system as

shown in Figures 5.6, 5.11, and 5.12. Notice, however, that the arguments of the

core system given in Section 5.4.2 and Appendix 5.7 do not rely on integrating (5.63)

explicitly.

5.6.4 Critical curves on the Schwarzschild-de Sitter

spacetime

In order to clarify the role of the asymptotic points, in this section it is shown that

there are not timelike conformal geodesics reaching Q and Q′ orthogonally. More

precisely, it is shown that a timelike conformal geodesic becomes asymptotically

null as it approaches either Q or Q′. This is in stark tension with the conditions for

constructing a conformal Gaussian system of coordinates in the neighbourhood of

Q and Q′.
As shown in the Penrose diagram of Figure 5.10 in the subextremal case the curves

of constant t = t? accumulate in the bifurcation spheres B and B′ while the curves

of constant r accumulate in the asymptotic points Q and Q′. By contrast, in the

extremal case the curves with constant t = t? approach the asymptotic points Q and

Q′ —see [69] for an extensive discussion on the Penrose diagram for Schwarzschild-

de Sitter spacetime. It follows from the geodesic equation (5.62) that the curves of
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a) b)

Q Q′

Q Q′

P

Q′Q

B B′

Figure 5.10: Curves of constant r and t in the Schwarzschild-de Sitter spacetime.
a) Curves with constant t and r (red and blue respectively) are plotted on the Penrose
diagram of the Subextremal Schwarzschild-de Sitter spacetime. Curves of constant t
accumulate at the bifurcation spheres B, B′ while the curves of constant r accumulate
at the asymptotic points Q and Q′. b) Curves with constant t and r (red and blue
respectively) are plotted on the Penrose diagram of the extremal Schwarzschild-de
Sitter spacetime. In contrast with the subextremal case, curves with constant t in
starting from some r? < 3m accumulate at the asymptotic points Q and Q′ while
those starting from r? > 3m accumulate at P. The hyperextremal case is qualitatively
similar to the extremal one and has been omitted.

constant r correspond to geodesics whenever the condition (5.64) is satisfied, this

equation explicitly reads

|λ|r3 + 3(γ2 − 1)r + 6m = 0. (5.69)

Observe that for γ = 1 the last condition reduces to |λ|r3 + 6m = 0 which cannot

be solved for positive r.

In this section an analysis of the behaviour of the critical curves on the Schwarzschild-

de Sitter spacetime is performed. Notice that in the hyperextremal case the are no

timelike geodesics with constant r since for |λ| > 1/9m2 one has strictly F (r) < 0

so that the condition (5.64) can never be satisfied.

Critical curves in the extremal Schwarzschild-de Sitter spacetime

To start the analysis consider the simpler case in which |λ| = 1/9m2 so that F (r)

is given as in equation (5.12) and the condition (5.64) reduces to considering r =

3m and γ = 0. Observe that the curves with γ = 0 and r 6= 3m correspond to

curves with constant t = t? which, as discussed in previous paragraphs, approach

asymptotically the points Q and Q′. Notice that for γ = 0 the expression (5.63) can

easily be integrated to yield

τ̃ − τ̃? = 3m ln (H(r)/H(r?)) (5.70)
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where

H(r) ≡
√

3r +
√
r + 6m

(
√

3r −
√
r + 6m)(

√
r +
√
r + 6m)2

√
3
.

Observe that equation (5.70), as pointed out in [68], implies that the geodesics with

γ = 0 never cross the horizon since τ̃ → ∞ as r → 3m. For simplicity, let M? ≡
H(r?) + exp(τ̃?/3m) with r? 6= 3m so that τ̃ = 3m ln |H(r)/M?|. Reparametrising

using equation (5.67) and that |λ| = 1/9m2 renders

τ(r) =
2W (r)

Mp
? − κW (r)

with W (r) = H(r)1/
√
3. Using L’Hôpital rule one can verify that τ → −2/κ as

r → 3m. To analyse the behaviour of these curves as they approach the points Q
and Q′ one considers r such that r = 3m+ ε . Then, one has for small ε > 0 that

W (r) =
Å m

r − 3m

ã1/√3 ÇC1

m
+
C2

m2
(r − 3m) +O((r − 3m)2)

å
where C1 and C2 are numerical factors whose explicit form is not relevant for the

subsequent discussion. Hence, to leading order W (r) = C/εp where C is a non-zero

constant depending on m only and p = 1/
√

3. Consequently, to leading order

dτ

dε
= − pCκεp−2

(Mp
? εp − κC)

− pCε

Mp
? εp − κC

.

Therefore, since p < 2 one has that dτ/dε diverges as ε → 0 so that the curves

with γ = 0 become tangent to the horizon as they approach Q or Q′ —that is,

they become null as they approach Q or Q′. This is analogous to the behaviour

of the critical curve in the Schwarzschild spacetime pointed out in [35], and the

subextremal Reissner-Nordström spacetime in [80] —in contrast, in the extremal

Reissner-Nordström spacetime one has dτ/dε = 0 as ε→ 0 as discussed in [80] .

Critical curves in the subextremal Schwarzschild-de Sitter spacetime

For the subextremal case one could parametrise the roots of the depressed cubic

(5.69) using Vieta’s formulae and choose some γ 6= 1 for which there is at least one

positive root. However, notice that fixing a value for γ is equivalent to prescribe

initial data for the congruence:

t(τ̃) = t?, r(τ̃) = r?,
dr

dτ̃

∣∣∣∣
r?

=
»
γ2 − F (r?),

dt

dτ̃

∣∣∣∣
r?

=
γ

F (r?)
. (5.71)

Restricting the analysis to the static region rb < r? < rc for which F (r?) > 0 and

setting
dr

dτ̃

∣∣∣∣
r?

= 0,
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one gets

γ =
»
F (r?),

and condition (5.64) is equivalent to

F (r?)− F (r) =
|λ|(r − r?)

3r
Q(r),

where Q(r) is the polynomial

Q(r) ≡ r2 + r?r −
6m

|λ|r?
.

Notice that Q(r) can be factorised as

Q(r) = (r − α−(r?))(r − α+(r?)),

where

α±(r?) ≡
r?
2

(
−1±

√
1 +

24m

|λ|r3?

)
.

In addition, observe that

Q(r?) > 0 for r~ < r? < rc,

Q(r?) < 0, for rb < r? < r~,

Q(r?) = 0, for r? = r~,

where r~ ≡
(
3m
|λ|

)1/3
. In the extremal case one has rb = rc = r~ = 3m. The curve

r = r~, as in the extremal case, will be called the critical curve. With the above

notation the integral (5.63) can be then rewritten as

τ̃ − τ̃? =
∫ r

r?

 
s

(s− r?)(s− α−(r?))(s− α+(r?))
ds. (5.72)

To study the behaviour close to the critical curve consider r? = (1 + ε)r~ For small

ε > 0 and considering s > r? one can expand the right hand side of equation (5.72)

in Taylor series as

τ̃ − τ̃? =
∫ r

r?

 
s

s+ 2r~

Ç
1

s− r~
− 3r2~sε

2

2(s− r~)3

å
ds+O(ε3). (5.73)

Integrating one obtains

τ̃ − τ̃? = − 2√
3

arctanh

Ñ
√

3

√
1 + ε

3 + ε

é
+ 2 ln

(»
r~(1 + ε) +

»
r~(3 + ε)

)
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− 2√
3

arctanh

Ç
3r

r + 2r~

å
+ 2 ln

(√
r +

»
r + 2r~

)
− 3

4
r~
»

1 + 2r~(1 + 2ε)

−3

4
r~

2
»

1 + 2r~
(2r − r~)ε2

(r~ − r)2
+O(ε3).

As ε → 0 the last expression diverges —as is to be expected. The divergent term

can be expanded for small ε > 0 as

arctanh

Ñ
√

3

√
1 + ε

3 + ε

é
=

1

2
ln

Ç∣∣∣∣−6

ε
+ 4 +

ε

6
+O(ε2)

∣∣∣∣
å

and the second term can be expanded as

ln
(»

r~(1 + ε) +
»
r~(3 + ε)

)
= ln

Ä
(1 +

√
3)
√
r~
ä

+
ε

2
√

3
− ε2

6
√

3
+O(ε3).

Hence, to leading order one has

τ̃(r) =
1√
3

ln ε+ f(r) +O(ε)

where

f(r) = τ̃? + 2 ln
Ä
(1 +

√
3)
√
r~
ä
− 2√

3
arctanh

Ç
3r

r + 2r~

å
+ 2 ln

(√
r +

»
r + 2r~

)
− 3

4
r~
»

1 + 2r~.

Reparametrising respect to the unphysical proper time using (5.67) one gets

τ(r) =
2 exp

(»
|λ|/3f(r) +O(ε)

)
εp

1− κ exp
(»
|λ|/3f(r) +O(ε)

)
εp

with p = 1/
√

3. Thus one gets

dτ

dε
=

2p exp
(»
|λ|/3f(r) +O(ε)

)
εp−1(

1− exp
(»
|λ|/3f(r) +O(ε)

)
κεp

)2 .
Observe that since p < 1 then one has that dτ/dε diverges as ε→ 0.

5.7 Appendix: The conformal evolution equations

in the case κ 6= 0 and reparametrisations

In Section 5.4.2 the case κ = 0 was analysed —this corresponds to a conformal

boundary with vanishing extrinsic curvature. Nevertheless, as discussed in Section

5.2.2, κ is a conformal gauge quantity arising from the conformal transformation
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properties of the conformal field equations. Consequently, it is of interest to analyse

the behaviour of the core system in the case κ 6= 0. For simplicity, in the remainder

of this section, κ will be assumed to be a constant on the initial hypersurface cor-

responding to τ = 0. In first instance, the analysis will be restricted to |κ| > 1 and

then it will be discussed how to exploit the conformal covariance of the equations

to extend these results for κ ∈ [−1, 0) ∪ (0, 1].

5.7.1 Analysis of the core system with κ > 1

To start the discussion of this case observe that, for κ > 1, one has that Θ(τ) ≥ 0

and Θ̇(τ) > 0 for τ ≥ 0. Using this simple observation and the core equations

(5.40a)-(5.40c) one obtains the following:

Lemma 22. For a solution to the core system (5.40a)-(5.40c) with initial data given

by (5.41) and κ > 1 one has that L(τ) < 0 for τ ≥ 0.

Proof. One proceeds by contradiction. Assume that there exists 0 < τL < ∞ such

that L(τL) = 0. Without loss of generality one can assume that τL corresponds to

the first zero of L(τ). Since for κ > 1 one has L(0) < 0 then by continuity it follows

that L̇(τL) ≥ 0 —L̇(τL) cannot be negative since this would imply that L(τ) crossed

the τ -axis at some time τ < τL but this is not possible since τL is the first zero of

L(τ). It follows then from equation (5.40c) that

0 ≤ L̇(τL) = −χ(τL)L(τL)− 1

2
Θ̇(τL)φ(τL).

Since L(τL) = 0 and Θ̇(τL) > 0, the last inequality implies that φ(τL) ≤ 0 but this

is a contradiction since it is already known from Observation 1 —which is valid for

any value of κ— that φ(τ) > 0 for any τ .

Observation 4. Using that Θ̇(τ) ≥ 0 for κ > 1 and τ ≥ 0 and that φ(τ) > 0 one

derives from equation (5.40c) the differential inequality

L̇(τ) ≤ −χ(τ)L(τ).

Observing Lemma 22 one has that L(τ) < 0. Thus, one can formally integrate

the last differential inequality and obtain

L(τ) ≤ L(0) exp
Å
−
∫ τ

0
χ(s)ds

ã
. (5.74)

With these observations one can show that the function χ(τ) which is initially

positive must necessarily have a zero.
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Lemma 23. For a solution to the core system (5.40a)-(5.40c) with initial data given

by (5.41) and κ > 1 there exist 0 < τχ <∞ such that χ(τχ) = 0.

Proof. One proceeds again by contradiction. Assume that χ(τ) never vanishes. Since

χ(0) = κ > 0 then χ(τ) > 0 for τ ≥ 0. From Lemma 22 it follows that L(τ) < 0. In

addition, one knows that Θ(τ)φ(τ) ≥ 0. With these observations equation (5.40b)

gives

χ̇(τ) < −χ2(τ) for τ > 0.

Since one is assuming that χ(τ) never vanishes then

χ̇(τ)

χ2(τ)
< −1.

Integrating from 0 to τ > 0 and using the initial data (5.41) one gets

χ(τ) <
1

τ + 1/κ
for τ > 0. (5.75)

In a similar way, one can consider equation (5.40b) and obtain the differential in-

equality

χ̇(τ) < −1

2
Θ(τ)φ(τ) for τ ≥ 0.

Using now equation (5.42) one gets

χ̇ < −mΘ(τ) exp
Å
−3

∫ τ

0
χ(s)ds

ã
for τ ≥ 0.

Integrating the from 0 to τ > 0 renders

χ(τ) < κ−m
∫ τ

0
Θ(s) exp

Å
−3

∫ s

0
χ(s′)ds′

ã
ds for τ ≥ 0. (5.76)

On the other hand, integrating expression (5.75) one has∫ τ

0
χ(s)ds < ln (κτ + 1) .

Consequently,

−mΘ(τ) exp
Å
−3

∫ τ

0
χ(s′)ds′

ã
< −m

√
|λ|
3

τ(1 + 1
2
κτ)

(1 + κτ)3
.

Integrating one obtains

−m
∫ τ

0
Θ(s) exp

Å
−3

∫ s

0
χ(s′)ds′

ã
ds < − m

2κ2

√
|λ|
3

Ç
1

(κτ + 1)2
+ ln(κτ + 1)− 1

å
.
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Substituting the above result into the inequality (5.76) one obtains

χ(τ) < κ− m

2κ2

√
|λ|
3

Ç
1

(κτ + 1)2
+ ln(κτ + 1)− 1

å
.

The right hand side of the last expression becomes negative for some sufficiently

large τ . This is a contradiction as it was assumed that χ(τ) never vanishes and

χ(0) > 0.

Observation 5. Combining Lemma 22 and Observation 1, one concludes that

L(τ) < 0 and Θ(τ)φ(τ) > 0 for τ > 0. Using these properties in equation (5.40b)

renders

χ̇(τ) < 0 for τ ≥ 0.

Thus, χ(τ) is always decreasing. From Lemma 23 one knows that there exists a

finite τχ > 0 such that χ(τχ) = 0. Then, by continuity, for any τ > τχ one has that

χ(τ) < 0 .

With this last observation one is in the position of proving the main result of this

section:

Proposition 5. There exists 0 < τ <∞ such that the solution of (5.40a)-(5.40c)

with initial data given by (5.41) and κ > 1 satisfies

χ→ −∞, L→ −∞, φ→∞ as τ → τ .

Proof. From Lemma 23 one knows that there exists a finite τχ for which χ(τ) van-

ishes. By Observation 5, one has that χ(τ♦) < 0 for any τ♦ > τχ. Let χ♦ ≡ χ(τ♦) < 0.

One can assume that χ♦ is finite, otherwise there is nothing to prove. Now, using

Lemma 22 and that Θ(τ)φ(τ) > 0 one obtains

χ̇(τ) < −χ2(τ) for τ ≥ 0.

Using that χ(τ) < 0 for any τ > τ♦ one obtains

χ̇(τ)

χ2(τ)
< −1.

Integrating the last expression form τ = τ♦ to τ > τ♦ renders

χ(τ) <
1

τ − τ♦ + 1/χ♦
for τ > τ♦. (5.77)

From inequality (5.77) one can conclude that χ(τ) → −∞ for some finite time

τ < τ♦ − 1/χ♦. Additionally, observe that τ♦ − 1/χ♦ > τ♦ > 0 since χ♦ < 0 .
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Figure 5.11: Numerical solutions of the core system (5.40a) -(5.40c) with initial
data given by (5.41) in the case κ = 2 and |λ| = 3, m = 1/3

√
3. The solid line

describes the evolution of φ, the dashed line that of χ and the dotted line that of L.
One can observe the formation of a singularity at τ ≈ 2.6392.

Now, given that χ→ −∞ as τ → τ it follows from equation (5.42) that φ→∞ as

τ → τ . Similarly, from inequality (5.74) and that L(0) < 0 it follows that L→ −∞
as τ → τ .

Remark 48. A plot of the numerical evaluation of the solutions to the core system

(5.40a)-(5.40c) with initial data (5.41) in the case κ > 1 can be seen in Figure 5.11.

5.7.2 Analysis of the core system with κ < −1

In this section a similar approach to that followed in Section 5.7.1 is used to show that

the fields in the core system diverge for some finite time if κ < −1. An interesting

feature of this case is that, assuming one knows that there exists a singularity in the

development, there exists an a priori upper bound for the time of its appearance

—namely, the location of second component of the conformal boundary at τ = 2/|κ|.
As a byproduct of the analysis of this section an improvement of this basic bound

is obtained.

An important remark concerning the case κ < −1 is that if τ ∈ [0, 1/|κ|] then

both Θ(τ) and Θ̇(τ) are non-negative. Based on this observation the first result in

this section is:

Lemma 24. If κ < −1 then the solution to the core system (5.40a)-(5.40c) with

initial data (5.41) satisfies L(τ) < 0 for τ ∈ [0, 1/|κ|].

Proof. One proceeds by contradiction. Assume that there exists 0 < τL ≤ 1/|κ|
such that L(τL) = 0. Without loss of generality one can assume that τL is the first

zero of L(τ). Since L(0) < 0 for κ < −1 then by continuity L̇(τL) ≥ 0. Therefore,
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proceeding as in Lemma 22 one gets from equation (5.40c)

0 ≤ L̇(τL) = −χ(τL)L(τL)− 1

2
Θ̇(τL)φ(τL) for τ ∈ [0, 1/|κ|].

Since L(τL) = 0 and Θ̇(τL) > 0 the last inequality implies that φ(τL) ≤ 0. This is a

contradiction since φ(τ) > 0 —cfr. Observation 1.

Lemma 25. If κ < −1 then the solution to the core system (5.40a)-(5.40c) with

initial data (5.41) satisfies χ(τ) < 0 for τ ∈ [0, 1/|κ|].
Proof. Again, one proceeds by contradiction. Assume that there exists 0 < τχ ≤
1/|κ| such that χ(τχ) = 0. Without lost of generality one can assume that τχ is

the first zero of χ(τ). Then, by continuity, one has that χ̇(τχ) ≥ 0. Using equation

(5.40b) one has

0 ≤ χ̇(τχ) = −χ(τχ)2 + L(τχ)− 1

2
Θ(τχ)φ(τχ) for τ ∈ [0, 1/|κ|].

Therefore, since χ(τχ) = 0 one has

L(τχ) ≥ 1

2
Θ(τχ)φ(τχ) > 0.

This is a contradiction since by Lemma 24 one has that L(τ) < 0 for τ ∈ [0, 1/|κ|].

Observation 6. Proceeding as in Observation 4 one readily has that for κ < −1

L(τ) ≤ L(0) exp
Å
−
∫ τ

0
χ(s)ds

ã
for τ ∈ (0, 1/|κ|].

This last observation is used, in turn, to prove the main result of this section:

Proposition 6. If κ < −1, then for the solution of (5.40a)-(5.40c) with initial data

(5.41) there exists 0 < τ < 1/|κ| such that

χ(τ)→ −∞, L(τ)→ −∞, and φ(τ)→∞ as τ → τ .

Proof. Consider equation (5.40b) on the interval τ ∈ [0, 1/|κ|]. Using Lemma 24

one knows that L(τ) < 0. This observation and the fact that φ(τ) > 0 leads to the

differential inequality

χ̇(τ) < −χ2(τ) for τ ∈ [0, 1/|κ|].

Since by Lemma 25, one knows that χ(τ) 6= 0 for τ ∈ [0, 1/|κ|] one can rewrite the

last expression as
χ̇(τ)

χ2(τ)
< −1 for τ ∈ [0, 1/|κ|].
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Figure 5.12: Numerical solution of the core system (5.40a)-(5.40c) with |λ| = 3,
m = 1/3

√
3 in the case κ = −2. The solid line corresponds to φ, the dashed line to

χ and the dotted line to L. One can observe a singularity at τ ≈ 0.4203.

Integrating from τ = 0 to 1/|κ| and using the initial data (5.41) one gets

χ(τ) <
1

τ
− 1

|κ| . (5.78)

From inequality (5.78) one concludes that χ(τ) → −∞ for some 0 < τ ≤ 1/|κ|.
Finally, using Observation 6 and Observation 1 one concludes that L(τ)→ −∞ and

φ(τ)→∞ as τ → τ for some 0 < τ ≤ 1/|κ|.

Notice that this upper bound for the location of the singularity is not trivial and

improves the basic bound τ ≤ 2/|κ| given by the location of the second component

of the conformal boundary.

Remark 49. A plot of the numerical evaluation of the solutions to the core system

(5.40a)-(5.40c) with initial data (5.41) in the case κ < −1 can be seen in Figure

5.12.

5.7.3 Exploiting the conformal gauge

In Lemma 19 it was shown that if ∂ψκ = 0 then the evolution equations imply, in

particular, fx = 0. Due to the spherical symmetry Ansatz, the component fx is

the only potentially non-zero component of f . Thus, one concludes that f = 0.

In Section this section this feature will be exploited to extract further information

about κ and s. These results are then used to discuss the conformal gauge freedom

of the extended conformal field equations and the role played by reparametrisations

of conformal geodesics.

The relation between the Weyl and Levi-Civita connections

As discussed in Section 2.2.1 of Chapter 2, the Weyl connection ∇̂ expressing the

extended conformal field equations is related to the Levi-Civita connection ∇ of the
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unphysical metric g via the 1-form f . If f vanishes then ∇̂ = ∇. Exploiting this

simple observation one obtain the following results:

Lemma 26. If f = 0 then the conformal gauge conditions (2.34) and (2.35) imply

that s = Θ̈. Moreover, s is constant along the conformal geodesics.

Proof. As discussed in Section 2.2.1 of Chapter 2, if f = 0 then L̂ab = Lab and

Γ̂a
c
b = Γa

c
b. Using the conformal gauge condition (2.34) it follows that L0a = 0

and Γ0
a
b = 0. Now, the standard vacuum conformal field equations (2.7c) and

(2.7d) render

∇0∇0Θ + ΘL00 − sη00 = 0, (5.79a)

∇0s = −L0b∇bΘ. (5.79b)

Using L0a = 0 and Γ0
a
b = 0 in equation (5.79a) one concludes Θ̈ = s. Similarly,

from equation (5.79b) one gets ṡ = 0. Therefore s is constant along the conformal

geodesics.

Remark 50. In the asymptotic initial value problem the initial value of s is given

by s? =
»
|λ|/3κ —see equation (2.78a). Thus, if f = 0 then s =

»
|λ|/3κ along the

conformal geodesics.

Finally, one has the following:

Lemma 27. In the asymptotic initial value problem, if f = 0, then the confor-

mal gauge conditions (2.34) and (2.35) together with the conformal Einstein field

equations imply that ei(κ) = 0 —that is, κ is a constant.

Proof. Using f = 0 and the gauge conditions (2.34) one gets from the conformal

field equation (2.7g) that

6Θs− 3Θ̇2 + 3δijeiΘejΘ = λ. (5.80)

Using Lemma 26 one has s = Θ̈. Therefore, substituting Θ(τ) = Θ̇?τ(1+κτ/2) into

equation (5.80) and recalling Θ̇? =
»
|λ|/3 one obtains

τ 4δijei(κ)ej(κ) = 0.

Observe that the last equation is trivially satisfied on I as τ = 0. Off the initial

hypersurface, where τ 6= 0, the last equation implies

δijei(κ)ej(κ) = 0.

Therefore, one concludes that ei(κ) = 0.
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Changing the conformal gauge

The analysis of the core system given in Sections 5.7.1, 5.7.2 and Section 5.4.2

covers the cases for which |κ| > 1 and κ = 0. As a consequence of the conformal

covariance of the extended conformal Einstein field equations one has the freedom of

performing conformal rescalings and of reparametrising the conformal geodesics —

thus, effectively changing the representative of the conformal class [g̃] one is working

with. This conformal freedom can be exploited to extend the analysis given in

Sections 5.7.1 and 5.7.2 to the case where κ ∈ [−1, 0) ∪ (0, 1].

Following the discussion in the previous paragraph, any two spacetimes (M, g)

and (M̄, ḡ) with g = Θ2g̃ and ḡ = Θ̄2g̃ representing two solutions to the extended

conformal Einstein field equations for different choices of parameter κ are confor-

mally related. From Lemmas 5 and 6 of Chapter 2 one has that

Θ(τ) =

√
|λ|
3
τ
Å

1 +
1

2
κτ
ã
, Θ̄(τ̄) =

√
|λ|
3
τ̄
Å

1 +
1

2
κ̄τ̄
ã
, (5.81)

with

τ̄ =
aτ

cτ + d
. (5.82)

The free parameter b in the fractional transformation of Lemma 5 has been set

to b = 0 in order to ensure that Θ and Θ̄ vanish at τ = 0 and τ̄ = 0, respectively.

Thus, the conformal boundary I is equivalently represented by the hypersurfaces

with τ = 0 or τ̄ = 0. As g and ḡ are conformally related one can write

ḡ = ω2g with ω ≡ Θ̄Θ−1.

Using equations (5.81) and (5.82) one obtains, after a calculation, that

ω(τ) =

a

Ç
1 +

aκ̄τ

2(cτ + d)

åÇ
(cτ + d)

Ç
1 +

1

2
κτ

åå . (5.83)

The conformal transformation law for the field s can be seen to be given by

s̄ = ω−1s+ ω−2∇cω∇cΘ +
1

2
ω−3Θ∇cω∇cω.

As discussed in Section 5.7.3, in the analysis of the Schwarzschild-de Sitter space-

time one can assume that ∂ψκ = 0 and f = 0. Now, Lemmas 26 and 27 imply

that s =
»
|λ|/3κ and s̄ =

»
|λ|/3κ̄ are constant. Exploiting this observation, the

transformation law for s can be read as an equation for ω —namely

Θω̇2 + 2ωΘ̇ω̇ + ω2s− ω3s̄ = 0. (5.84)
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Substituting expression (5.83) into equation (5.84) one gets the condition

2c+ aκ̄− dκ = 0. (5.85)

One can read equation (5.85) as the transformation law for κ̄ so that

κ̄ =
dκ− 2c

a
.

In order to have a meaningful transformation law between τ̄ and τ , neither a nor d

can vanish. Substituting equation (5.85) into the reparametrisation formula (5.82)

and expression (5.83) one can observe that a/d actually corresponds to ω(0) ≡ ω?.

Therefore, one has that

τ̄(τ) =
2ω?τ

(ω?κ̄− κ)τ − 2
, ω(τ) =

4ω?Ä
(ω?κ̄− κ)τ − 2

ä2 . (5.86)

From the last expression one can identify ω̇? ≡ ω̇(0) = ω?(ω?κ̄− κ). In addition,

notice that τ̄ → ∞ and ω → ∞ as τ → 2/(ω?κ̄ − κ). Therefore, the hypersurface

defined by τ = 2/(ω?κ̄ − κ) is at an infinite distance from the conformal boundary

as measured with respect to the ḡ-proper time.

Remark 51. An alternative approach to deduce equations (5.85) and (5.86) is to

write Θ̄(τ̄(τ)) = ω(τ)Θ(τ) and use equations (5.81) and (5.82) to identify κ and ω.

5.8 Appendix: Cartan’s structure equations and

space spinor formalism

In this appendix a brief discussion of Cartan’s structure equations and the space

spinor formalism is given.

5.8.1 Cartan’s structure equations in frame formalism

Consider a h-orthonormal frame {ei} with corresponding coframe {ωi}. By con-

struction, one has 〈ωi, ej〉 = δi
j . The connection coefficients of the Levi-Civita

connection D of h respect to this frame are defined as

〈ωj , Diek〉 ≡ γi
j
k.

As a consequence of the metricity of D it follows that γijk = −γikj . The connection

form is accordingly defined as

γjk ≡ γi
j
k ∧ ωi. (5.87)
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With these definitions, the first and second Cartan’s structure equations are, respec-

tively, given by

dωi = −γij ∧ ωj , (5.88a)

dγij = −γik ∧ γkj + Ωi
j , (5.88b)

where Ωi
j is the curvature 2-form defined as

Ωi
j ≡ Rijklω

k ∧ ωl. (5.89)

5.8.2 Basic spinors

In the space spinor formalism, given a spin basis {εAA} where A=0,1, any of the

spinorial fields appearing in the extended conformal Einstein field equations can be

decomposed in terms of basic irreducible spinors. The basic valence-2 symmetric

spinors are:

xAB ≡
√

2ε(A
0εB)

1, yAB ≡ −
1√
2
ε(A

1εB)
1, zAB ≡

1√
2
ε(A

0εB)
0. (5.90)

The basic valence 4 spinors are given by

εACxBD + εBDxAC , εACyBD + εBDyAC , εACzBD + εBDzAC ,(5.91a)

hABCD ≡ −εA(CεD)B, εiABCD = ε(A
(EεB

F εC
GεD)

H)i . (5.91b)

In the last expression (ABCD)i indicates that an i number of indices are set equal to

1 after symmetrisation. Any valence 4 spinor ζABCD with the symmetries ζ(AB)(CD)

can be expanded in terms of these basic spinors. One has the identities

xABxCD = 2ε2ABCD, yAByCD =
1

2
ε4ABCD, zABzCD =

1

2
ε0ABCD,(5.92a)

xAByCD = −ε3ABCD +
1

2
√

2
(εAByBD + εBDyAC), (5.92b)

xABzCD = ε1ABCD −
1

2
√

2
(εABzBD + εBDzAC), (5.92c)

yABzCD = −1

2
ε4ABCD −

1

4
√

2
(εABxBD + εBDxAC)− 1

6
hABCD. (5.92d)

Another set of identities used in the main text is given by

xABx
AB = 1, xABy

AB = 0, (5.93a)

xABz
AB = 0, zABz

AB = 0, yABz
AB = −1

2
, (5.93b)

xA
QxBQ =

1

2
εAB, yA

QxBQ =
1√
2
yAB, (5.93c)
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zA
QxBQ = − 1√

2
zAB, yA

QyBQ = 0, (5.93d)

yA
QzBQ = − 1

2
√

2
xAB +

1

4
εAB, zA

QzBQ = 0, (5.93e)

ε2ABCDx
CD = −1

3
xAB, ε2ABCDy

CD =
1

6
yAB, (5.93f)

ε2ABCDz
CD =

1

6
zAB. (5.93g)

These identities and a more exhaustive list has been given in [81].

5.8.3 Cartan’s structure equations in spinor form

The space spinor counterpart of coframe and connection coefficients can be ob-

tained succinctly by contraction with the spatial Infeld-van der Waerden sym-

bols —see equation (2.52) of Chapter 2, as ωAB ≡ ωiσi
AB and γAB

CD
EF =

γi
j
kσ
i
ABσj

CDσkEF . With these definitions the spinorial version of the Cartan

structure equations is given by

dωAB = −γAB ∧ ωBE − γBE ∧ ωAE, (5.94a)

dγAB = −γAE ∧ γEB + ΩAB, (5.94b)

where

γAB ≡
1

2
γCD

AQ
BQω

CD,

and ΩAB is the spinor version of the curvature 2-form, with

ΩAB ≡
1

2
rABCDEFω

CD ∧ ωEF .

In the last expression the spinor rABCDEF can be decomposed as

rABCDEF =

Ç
1

2
sABCD −

1

12
rhABCE

å
εDF +

Ç
1

2
sABDF −

1

12
rhABDF

å
εCE

where sABCD and r correspond to the space spinor version of the trace-free part of

the Ricci tensor and Ricci scalar of h, respectively.

To relate the previous discussion with the basic spinors xAB, yAB and zAB, ob-

serve that using equation (5.90) and the expression for the spatial Infeld-van der

Waerden symbols as given in equation (2.52) one obtains that

σAB
1 = −zAB − yAB, σAB

2 = i(zAB − yAB), σAB
3 = xAB, (5.95a)

σAB1 = zAB + yAB, σAB2 = i(−zAB + yAB), σAB3 = −xAB. (5.95b)



6 Asymptotic initial data for the

Kerr-de Sitter spacetime

6.1 Introduction

In Chapter 5 the asymptotic initial value problem for the Schwarzschild-de Sitter

spacetime was studied. One of the main features that was exploited in this analysis

was the fact that, in the appropriate conformal representation the induced metric at

the conformal boundary is conformally flat. Despite the fact that in the representa-

tion in which the initial 3-metric h is the standard metric on S3 the initial data for

the rescaled Weyl spinor is singular at the asymptotic points Q and Q′ it was shown

that there exist a conformal representation in which the initial data for the rescaled

Weyl spinor is regular. In view of these remarks, it is natural to explore if one can

perform a similar analysis for the Kerr-de Sitter spacetime. In this short chapter this

question in explored. Therefore, this discussion represents a partial generalisation

of the analysis given in Chapter 5. In this chapter, in particular, asymptotic initial

data for the Kerr-de Sitter spacetime in a conformal representation for which this

initial data is regular is given. Then, using the theory on symmetric hyperbolic sys-

tems of [23] one obtains a local existence result of small perturbations of asymptotic

initial data close to the Kerr-de Sitter spacetime. Nevertheless, in contrast with the

analysis given in Chapter 5 an estimation of the time of existence is not given.

6.2 The Kerr-de Sitter spacetime and its

conformal structure

In this section, the general properties of the Kerr-de Sitter spacetime that will be

relevant for the main analysis of this chapter are discussed.

6.2.1 The Kerr-de Sitter spacetime

The Kerr-de Sitter spacetime is an axisymmetric solution to the vacuum Einstein

field equations —as given in equation (5.1)— with a de-Sitter like Cosmological

constant. The metric of the Kerr-de Sitter spacetime in Boyer-Lindquist-type coor-

164
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dinates (t, r, θ, ϕ) is described by the line element

g̃KdS =
∆r

∆2
λ%

2

Ä
dt− a sin2 θdϕ

ä
⊗
Ä
dt− a sin2 θdϕ

ä
− %2

∆r

dr ⊗ dr − %2

∆θ

dθ ⊗ dθ−

∆θ sin2 θ

∆2
λ%

2

Å
adt−

Ä
r2 + a2

ä
dϕ
ã
⊗
Å
adt−

Ä
r2 + a2

ä
dϕ
ã
, (6.1)

where,

%2 ≡ r2 + a2 cos2 θ, ∆r ≡ (r2 + a2)
Å

1− 1

3
|λ|r2

ã
− 2mr,

∆θ ≡ 1 +
1

3
|λ|a2 cos2 θ, ∆λ ≡ 1 +

1

3
|λ|a2,

with t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ [0, π], and ϕ ∈ [0, 2π) —see [20, 82]. As in

the conventions used in this thesis λ < 0 for a de-Sitter value of the Cosmological

constant the above expressions are written in terms of |λ| to avoid confusion. This

solution reduces to the Schwarzschild-de Sitter spacetime when a = 0 and to the

de Sitter spacetime when m = 0 —see [82]. The location of the black hole and

cosmological horizons is determined by the condition

∆r = (r − r+)(r − r−)(r − rc)(r − rf ) = 0, (6.2)

where r± corresponds to the Kerr black hole horizons while rc correspond to a

cosmological horizon. Additionally rf < 0 represents an additional cosmological

horizon. Notice, nevertheless, that the curvature singularity is located at r = 0

—see [82]. The principal null directions ˜̀ and ñ of the Kerr-de Sitter spacetimes

have been determined in [82]. In accordance with the signature conventions used in

this thesis, these vectors are given in Boyer-Lindquist coordinates by

˜̀ =
1√
2

∆λ(a
2 + r2)»
|∆r| %

∂t +
1√
2

»
|∆r|
%

∂r +
1√
2

a∆λ»
|∆r| %

∂ϕ, (6.3a)

ñ =
1√
2

∆λ(a
2 + r2)»
|∆r| %

∂t −
1√
2

»
|∆r|
%

∂r +
1√
2

a∆λ»
|∆r|%

∂ϕ. (6.3b)

A direct computation using the metric (6.1) shows that one can complement {l̃, ñ},
as given above, with the following pair of complex null vectors

m̃ =
1√
2

∆λa sin θ√
∆θ %

∂t +
i√
2

√
∆θ

%
∂θ +

1√
2

∆λ√
∆θ% sin θ

∂ϕ, (6.3c)

¯̃m =
1√
2

∆λa sin θ√
∆θ %

∂t −
i√
2

√
∆θ

%
∂θ +

1√
2

∆λ√
∆θ% sin θ

∂ϕ. (6.3d)
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It can be verified that { ˜̀, ñ, m̃, ¯̃m} satisfies the pairings

m̃a ¯̃ma = ¯̃mam̃a = −1, (6.4)

l̃aña = ñal̃
a =

 1 ∆r > 0,

−1 ∆r < 0,
(6.5)

while all the other contractions vanish. Consequently, { ˜̀, ñ, m̃, ¯̃m} constitutes a

null tetrad adapted to the principal null directions of the Kerr-de Sitter spacetime.

With this information at hand one can compute the Weyl curvature components

using the NP formalism. A straight forward computation using that

Ψ2 =
1

2
Cabcd

Ä
ñal̃bñcl̃d − ñal̃bm̃c ¯̃md

ä
, (6.6)

renders

Ψ2 =
m

(r − ia cos θ)3
, (6.7)

while Ψ1 = Ψ3 = Ψ4 = 0. This is consistent with the fact that the Kerr-de Sitter

spacetime is of Petrov type D. Moreover, Ψ2 as given in (6.7) coincides with the

corresponding expression for the Kerr spacetime. Observe that the information

about the Cosmological constant λ is contained in the null tetrad as determined by

expressions (6.3a)-(6.3d).

6.3 The rescaled Weyl spinor for Petrov type D

spacetimes

Given a conformal rescaling

g = Ξ2g̃ (6.8)

and a spin dyad {ε̃AA} associated to the physical null tetrad {l̃, ñ, m̃, ¯̃m} one can

define an unphysical spin dyad {εAA} via

εA
A = Ξ−1/2ε̃A

A. (6.9)

Observe that this choice is not unique and equation (6.9) gives equal conformal

weight to the elements of the spin basis. The corresponding unphysical null tetrad

{l,n,m, m̄} is related to the physical null tetrad via

la = Ξl̃a, na = Ξña, ma = Ξm̃a, m̄a = Ξ ¯̃ma. (6.10)

As in the case of the spin dyad, this choice is not unique but gives equal conformal

weight to both l and n —consistent with equation (6.9). If the spacetime (M̃, g̃)
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is of Petrov type D and the associated spin basis {ε̃AA} correspond to the principal

null directions then the Weyl spinor can be expressed as

ΨABCD = Ψ2õ(AõB ι̃C ι̃D). (6.11)

The Weyl spinor corresponds to the spinor counterpart of the anti-self dual Weyl

tensor Cabcd
Cabcd ≡ Cabcd + iC∗abcd (6.12)

where, Cabcd is the Weyl tensor and C∗abcd = 1
2
εab

efCefcd is the left-dual Weyl tensor.

Consequently, the tensor equivalent of equation (6.11) is given by

Cabcd = Ψ2

Å
ṼabŨab + ŨabṼcd + W̃abW̃cd

ã
, (6.13)

where Cabcd is the anti-self dual Weyl tensor while Ṽab, Ũab and W̃ab are a basis

of self-dual bivectors related to the null tetrad —see [83] for a discussion on the

decomposition of the Weyl tensor in terms of self-dual 2-forms:

Ũab = −l̃a ¯̃mb + l̃b ¯̃ma, (6.14a)

Ṽab = ñam̃b − ñbm̃a, (6.14b)

W̃ab = m̃a
¯̃mb − m̃b

¯̃ma − ñal̃b + ñbl̃a. (6.14c)

As consequence of equation (6.12) one can obtain an expression for the Weyl tensor

Cabcd replacing Ψ2 with Re(Ψ2) in equation (6.13). Since the rescaled Weyl spinor

associated to the conformal representation (6.8) is defined via

φABCD = Ξ−1ΨABCD,

using equation (6.9) one concludes that the components of the rescaled Weyl spinor

respect to the unphysical spin basis {εAA} are related to the components of the

Weyl spinor in the physical spin basis {ε̃AA} through

φABCD = Ξ−3ΨABCD. (6.15)

Consequently, the only non-zero component of the rescaled Weyl spinor is given by

φ2 = Ξ−3Ψ2. (6.16)

Next, define an Hermitian τAA′ spinor via

τAA
′ ≡ ε0

Aε0′
A′ + ε1

Aε1′
A′ . (6.17)
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The spinor τAA
′

with normalisation τAA
′
τAA′ = 2 corresponds to the spinor coun-

terpart of a timelike vector
√

2τa and can be used to perform a space spinor split as

discussed in Sections 2.4.1 and 2.4.2 of Chapter 2 to decompose the rescaled Weyl

spinor in electric and magnetic parts. A straightforward computation shows then

that the electric and magnetic parts of the rescaled Weyl spinor respect to τAA
′

as

determined by equation (6.17) read

ηABCD = 3(φ2 + φ̄2)o(AoBιCιD), µABCD = −3i(φ2 − φ̄2)o(AoBιCιD). (6.18)

In tensorial notation using equations (6.13) and (6.10) one arrives at

dabcd = Ξ−3Re(Ψ2)
Å
VabUab + UabVcd +WabWcd

ã
,

where

Vab = Ξ2Ṽab, Uab = Ξ2Ũab, Wab = Ξ2W̃ab.

For the subsequent discussion it will be useful at this point to define timelike and

spacelike covectors associated to the principal null tetrad via

s̃a ≡
1√
2

(l̃a + ña), τ̃a ≡
1√
2

(l̃a − ña).

Observe that

g̃abs̃as̃b = −g̃abτ̃aτ̃b =

 1 l̃aña = 1,

−1 l̃aña = −1.

while all the other contractions vanish. Similarly, one defines the corresponding

unphysical counterparts through

sa = Ξs̃a, τa = Ξτ̃a, (6.19)

satisfying the pairings

gabsasb = −gabτaτb =

 1 lana = 1,

−1 lana = −1,
(6.20)

while all the other contractions vanish. For conciseness, consider the case lana = −1

in which τa is timelike. Respect to this vector one can define the projector tensor as

hab ≡ gab − τaτb. (6.21)

The electric and magnetic parts Eab and Bab of the rescaled Weyl spinor dabcd respect

to τa are defined via

Eab ≡ τ qτ dha
phb

cdpqcd, B∗ab ≡ τ bτ dhp
ahq

cd∗abcd (6.22)
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A direct computation using equations (6.10), (6.14a)-(6.14c), (6.20) and (6.21) shows

that for a Petrov type D spacetime one can rewrite the electric part of the rescaled

Weyl tensor as

Eab =
1

2
Re(φ2)(3sasb + hab). (6.23)

A computation along the above lines leads to an analogous expression for the mag-

netic part of the rescaled Weyl tensor. Nevertheless, this calculation is not pursued

further as such expressions will not be required in the subsequent analysis.

6.4 The R× S2-conformal representation

As discussed in Chapter 5, to derive the asymptotic initial data for the conformal

Einstein field equations it is necessary to identify a representative of the conformal

class [h] and a trace-free tensor dij satisfying Didij = 0 where D denotes the co-

variant derivative of h. The tensor dij encodes the initial data electric part of the

rescaled Weyl tensor dabcd. In the discussion of the asymptotic initial value problem

for the Schwarzschild-de Sitter spacetime given in Chapter 5, it was shown that the

conformal representation for which the induced metric at the conformal boundary

is the standard metric for R×S2 leads to a regular representation of the asymptotic

initial data for the Schwarzschild-de Sitter spacetime. As discussed in Chapter 5

this is in stark contrast with the representation of asymptotic initial data for the

Schwarzschild-de Sitter spacetime for which the induced metric at the conformal

boundary h corresponds to the standard metric on S3 —in this representation the

initial data for the electric part of the rescaled Weyl tensor diverges at the North and

South poles of S3. In this section a similar approach is followed to obtain a regular

representation of the asymptotic initial data for the Kerr-de Sitter spacetime.

6.4.1 Asymptotic initial data-tensorial description

In analogy to the case of the Schwarzschild-de Sitter spacetime one considers the

conformal rescaling Ûg = ÙΞ2g̃KdS

where ÙΞ = 1/r and uses the conformal factor as a coordinate. In other words, one

introduces ξ ≡ 1/r as a new coordinate. Following the discussion of Section 6.3, in

this representation the only non-zero component of the rescaled Weyl spinor —see

equation (6.16), reads

φ2 =
m

(1− iaξ cos θ)3
.

Observe that, in this representation the asymptotic initial data for the non-zero

component of the rescaled Weyl spinor does not contain information about the
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angular momentum a nor the Cosmological constant λ as

φ2|I = m.

Using equation (6.18) one concludes that the only non-zero component of the electric

part of the rescaled Weyl spinor is then given by

η2|I = 6m, (6.24)

while the the magnetic part of the rescaled Weyl spinor vanishes at I . Despite the

fact that the use of spinors leads directly to the above conclusions it is instructive to

recover this discussion from the tensorial expression (6.13). Additionally, analysing

the behaviour of the null frame at the conformal boundary is better carried out in

tensor frame notation. To do so, observe that the physical timelike and spacelike

covectors s̃a and τ̃a are given in Boyer-Lindquist coordinates by

τ̃a = −sgn(∆r)%»
|∆r|

dr, s̃a =
sgn(∆r)

»
|∆r|

∆λ%

Ä
dt− a sin2 θdϕ

ä
.

In the coordinate system (t, ξ, θ, ϕ) their unphysical counterparts sa = ÙΞs̃a and

τa = ÙΞτ̃a read

τa =
sgn(∆r)

√
a2ξ2 cos2 θ + 1»

|(a2ξ2 + 1)(ξ2 − λ/3)− 2mξ3|
dξ,

sa =
sgn(∆r)

»
|(a2ξ2 + 1)(ξ2 − λ/3)− 2mξ3|
∆λ

√
a2ξ2 cos2 θ + 1

Ä
dt− a sin2 θdϕ

ä
.

Since for r > rc one has that ∆r < 0 it follows that τa is timelike and sa is spacelike

in the asymptotic region. Furthermore, at the conformal boundary I one has

τa|I = −
√

3

|λ|dξ, sa|I = − 1

∆λ

√
|λ|
3

Ä
dt− a sin2 θdϕ

ä
. (6.25)

Notice that τa is parallel to dÙΞ. In other words, τa is orthogonal to I . The induced

metric at the conformal boundary can be found writingÛg = ÙΞg̃KdS,
in the coordinates (t, ξ, θ, ϕ) and considering the limit ξ → 0. A direct computation

yields

h = − |λ|
3∆2

λ

(dt− a sin2 θdϕ)⊗ (dt− a sin2 θdϕ)− 1

∆θ

dθ ⊗ dθ − ∆θ sin2 θ

∆2
λ

dϕ⊗ dϕ.

(6.26)
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The last computation has also been reported in [84] and [24]. A direct computation

shows that h is conformally flat as the Cotton tensor of h vanishes. From the metric

(6.26) one readily identifies an orthonormal basis for h;

h = −ω3 ⊗ ω3 − ω1 ⊗ ω1 − ω2 ⊗ ω2,

where

ω3 =
1

∆λ

√
|λ|
3

Ä
dt− a sin2 θdϕ

ä
, ω1 =

1√
∆θ

dθ, ω2 =

√
∆θ sin θ

∆λ

dϕ.

Observe that the covector ω3
a corresponds to sa|I as given in equation (6.25). With

this information, observe that the initial data for the electric part of the rescaled

Weyl tensor Eab|I can be directly read off from equations (6.23), (6.26) and (6.25).

On the other hand, as discussed in Chapter 5 the initial data for the magnetic

rescaled Weyl tensor can be read off from the Cotton tensor of the induced metric

at the conformal boundary h. As h is conformally flat it follows that the initial data

for the magnetic part of the rescaled Weyl tensor vanishes. This is in agreement with

the observation, as discussed above, that for a Petrov type D spacetime the initial

data for magnetic part of the rescaled Weyl spinor corresponds to the imaginary

part of φ2|I —see equation (6.18)— which vanishes in this case. To complete

the asymptotic initial data observe that the frame dual to {ωa} determined by

〈ωa, eb〉 = δb
a is given by

e3 = ∆λ

√
3

|λ|∂t, e1 =
»

∆θ∂θ, e2 =
∆λ√
∆θ

(csc θ∂ϕ + a sin θ∂t).

The components of the 3-dimensional Schouten tensor lij ≡ rij − 1
4
rhij respect to

this frame read

l33 =
1

2
(∆λ −∆θ − 1), l11 =

1

2
(3∆θ −∆λ − 1),

l22 =
1

2
(3∆θ −∆λ − 1), l32 = −a

 
λ

3

»
∆θ sin θ,

while all the other components vanish. The only non-zero connection coefficients

respect to the frame this frame are

γ212 =
cot θ√

∆θ

(2∆θ −∆λ), γ123 = −γ213 = −γ312 = a

√
|λ|
3

cos θ,

Finally, for completeness, one can compute the Friedrich scalar in this conformal

representation to obtain Ûs =
1

4
ı∇cı∇cÙΞ +

1

24
R̃ÙΞ. (6.27)
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Recalling the conformal transformation law for the Ricci scalarÙR− 1ÙΞ2
R̃ = − 6ÙΞı∇c

ı∇cÙΞ +
12ÙΞ2

ı∇c
ÙΞı∇cÙΞ, (6.28)

one observes that that the Friedrich scalar can be rewritten asÛs =
1

24ÙΞR̃ +
1

2ÙΞı∇c
ÙΞı∇cÙΞ. (6.29)

Alternatively one can write the last expression asÛs =
1

24ÙΞR̃ +
1

2ÙΞ3
g̃ac∇̃a

ÙΞ∇̃c
ÙΞ. (6.30)

A direct computation using the above expression rendersÛs =
ξ(3− a2λ+ a2λ cos θ2 − 6mξ + 3a2ξ2)

6(1 + a2 cos θ2ξ2)
. (6.31)

Thus one concludes that, in this conformal representation, the Friedrich scalar Ûs
vanishes at the conformal boundary. Observe that as a consequence of the conformal

constraint equations, given in Section 2.5.2 of Chapter 2, one has then χij = 0 at

I .

6.4.2 Asymptotic initial data; spinorial description

The initial data for the electric and magnetic part of the rescaled Weyl is

ηABCD = 6mo(AoBιCιD), µABCD = 0.

As discussed before, the only non-zero contribution to the initial data for the rescaled

Weyl spinor comes from its electric part. In terms of the valence-4 basic spinors of

the space spinor formalism —see Appendix 5.8.2 of Chapter 5, the initial data for

the rescaled Weyl spinor then reads

φABCD = 6mε2ABCD.

The spinorial counterpart of the other objects described in the previous section can

be found by suitable contraction with the Infeld-van der Waerden symbols using

that

TAB
CD

EF = γi
j
kσ
i
ABσj

CDσkEF , (6.32)

for a generic spatial tensor Ti
j
k with components Ti

j
k. Following the conventions

used in Chapter 5 for the frame, one introduces a pair of complex null vectors e+
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and e− determined by

e+ ≡
1√
2

(e1 − ie2), e− ≡
1√
2

(e1 + ie2).

A direct computation using equation (6.32) and equation (5.95a)-(5.95b) given in

Appendix of Chapter 5 to express the spatial Infeld-van der Waerden symbols in

terms of of the basic valence-2 symmetric spinors renders

eAB = xABe3 −
√

2yABe− −
√

2zABe+.

A similar computation then shows that the spinorial counterpart of the connection

coefficients γi
j
k can be encoded in

γAB
CD

HF = 2i
Å
γ123xHF (yCDzAB − yABzCD) + γ123xCD(−yHF zAB

+ yABzHF )− (γ123xAB + iγ212(yAB − zAB))(yHzCD − yCDzHF )
ã
.

The reduced connection defined as γAB
C
F ≡ 1

2
γAB

CD
CF is given by

γABDF =
1√
2
γ212xDF (yAB−xDF zAB)+γ123

i√
2

Å
−xABxDF+2

Å
yDF zAB+yABzDF

ãã
.

This can be rewritten in its irreducible parts by introducing the basic valence-4

spinors —see Appendix 5.8.2 of Chapter 5. A computation renders

γABDF = −γ212
Å 1√

2
(ε1ABCF+ε3ABDF )+

1

4
(yBF εAD+yADεBF )+

1

4
(zBF εAD+zADεBF )

ã
− i
√

2γ123

Å
2ε2ABDF +

1

3
hABDF

ã
.

Additionally, using the reality conditions (5.35) given in Chapter 5, it can be verified

that γABCD is an imaginary spinor —as is to be expected from the space spinor

formalism. The last spinor corresponds to the initial data for the spinor field ξABCD

representing the imaginary part of the reduced connection ΓABCD. The real part of

ΓABCD is encoded in the Weingarten spinor χABCD whose initial data is given by

χABCD = κhABCD.

The spinorial counterpart of the 3-dimensional Schouten tensor is

lABCD = l33xABxCD + 2l11(yCDzAB + yABzCD)− il23xCD(yAB − zAB),

which written in its irreducible parts is
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lABCD = 2l33ε
2
ABCD − 2l11

Å
ε2ABCD +

1

3
hABCD

ã
+ il23

Å
ε1ABCD + ε3ABCD +

1

2
√

2
(yBDεAC + yACεBD) +

1

2
√

2
(zBCεAC + zACεBD)

ã
.

Thus, using that Lij = lij + 1
2
κ2hij , one obtains

LABCD = 2l33ε
2
ABCD − l11

Å
− 2ε2ABCD +

4− 3κ2

6
hABCD

ã
+ il23

Å
ε1ABCD + ε3ABCD +

1

2
√

2
(yBDεAC + yACεBD) +

1

2
√

2
(zBCεAC + zACεBD)

ã
.

6.4.3 Changing the conformal representation

The most important feature of the asymptotic initial data discussed in Section 6.4.1

is the fact that the h is conformally flat. Tracefree tensors satisfying the equation

Didij = 0 (6.33)

have been analysed in the conformally flat setting in [42]. The conformal invariance

of the last equation —see Lemma 13 of Chapter 5, reduces the problem to that of

analysing the above equation in a flat background, in other words for h = −δ, and

then suitably rescaling the solution. In [42], all smooth solutions to equation (6.33)

in flat space have been parametrised in terms of five quantities: A, J , P , Q and λ2

where the first four quantities are constants while λ2 denotes an arbitrary smooth

function of spin-weight two. The latter quantity can be expressed alternatively as

λ2 = ð2λ0 where λ0 is a smooth scalar function of spin-weight zero and ð and ð̄
denote the ð and ð̄ operators of the Newman-Penrose formalism —see [12] for a

general discussion on the Newman-Penrose formalism. In Section 5.3.4 of Chapter 5

the solution to equation (6.33) on R3 subject to the condition (5.25) was discussed.

In this paragraph, the latter discussion is extended —dropping the spherical sym-

metry condition encoded in equation (5.25)— adapting the analysis given in [42] to

the present setting and notation. Consider the equation

D̀id̀ij = 0, (6.34)

where h̀ ≡ −δ is the flat metric. Following [42], one can introduce Cartesian coor-

dinates (xα) with the origin of R3 located at a fiduciary position O. Additionally,

one can introduce polar coordinates defined via ρ = δαβx
αxβ. The flat metric in

these coordinates reads

h̀ = −dρ⊗ dρ− ρ2σ. (6.35)
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where σ is the standard metric on S2. Considering an arbitrary pair of complex null

vectors m and m̄ such that

σ] = (m⊗ m̄+ m̄⊗m)

and denoting the radial direction ∂ρ by n one reexpresses the metric as h̀] = −n⊗
n−σ. Introducing a spin-dyad adapted to the above described frame one can express

the metric in terms of the basic valence-2 spinors of the space spinor formalism as

h̀ABCD = −x̀ABx̀BC − 2ỳAB z̀CD − 2ỳCDz̀AB.

With this notation the general solution to equation (6.34) can be expressed in the

space spinor formalism as

ρ3d̀ABCD = 6ξὲ2ABCD + 2η1ὲ
1
ABCD − 2η1ὲ

3
ABCD + 2µ̄2ὲ

4
ABCD + 2µ2ὲ

0
ABCD

where

ξ = ð̄2λR2 + A+ ρQ+
1

ρ
P,

η1 = −2ρ∂ρð̄λR2 + ð̄λI2 + ρðQ− 1

ρ
ðP + iðJ,

µ2 = 2ρ∂ρ(ρ∂ρλ
R
2 )− 2λR2 + ðð̄λR2 − ρ∂ρλI2.

with λR2 = Re(λ2) and λI2 = iIm(λ2) —see [42] for a detailed derivation. To extend

the above result to the conformally flat setting introduce ei and ēi denoting a h

and h̄ orthonormal frames, with

h = ω2h̄,

so that

ēi = ωei. (6.37)

Using equation (6.37) one observes that the frame version of the transformation law

for TT-tensors given in Lemma 13 of Chapter 5 reads

dij = ω−3d̄ij . (6.38)

From the discussion of Sections 6.4.1 and 6.4.2 one knows that there exist a

representation in which the asymptotic initial data for the rescaled Weyl spinor for

the Kerr-de Sitter spacetime can be expressed as

φABCD = 6mε2ABCD,

and the induced metric at the conformal boundary is determined by equation (6.26).
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As the Cotton tensor of h vanishes, there exists a conformal factor ω such that

h̀ = ω2h

with h and h̀ given by equations (6.26) and (6.35) respectively. Consequently, one

concludes that in the representation in which the induced metric at the conformal

boundary is flat, h̀ = −δ, the initial data for the rescaled Weyl spinor reads

φ̀ABCD = ω−3φABCD

in other words, the initial data for the Kerr-de Sitter spacetime in the flat representa-

tion is determined by four constants A,P,Q, J and a smooth function of spin-weight

2, λ2 = λR2 + λI2, satisfying

ð̄2λR2 + A+ ρQ+
1

ρ
P =

m

ρ3ω3
, (6.39a)

−2ρ∂ρð̄λR2 + ð̄λI2 + ρðQ− 1

ρ
ðP + iðJ = 0, (6.39b)

2ρ∂ρ(ρ∂ρλ
R
2 )− 2λR2 + ðð̄λR2 − ρ∂ρλI2 = 0. (6.39c)

In Section 5.3.4 of Chapter 5 it was shown that for the Schwarzschild-de Sitter

spacetime ω = ρ−1. This in turn, using equations (6.39a)-(6.39c), imply P = Q =

J = λ2 = 0 and A = m which then characterise the asymptotic initial data for the

Schwarzschild-de Sitter spacetime. For the Kerr-de Sitter spacetime the conformal

factor ω cannot be determined explicitly and the discussion for the Schwarzschild-de

Sitter spacetime given in Chapter 5 suggests that the initial data for the rescaled

Weyl spinor will be singular in the flat representation. Consequently, the discussion

of the initial data will be restricted to the one associated with conformal represen-

tation described in Sections 6.4.1 and 6.4.2.

Notice that the above discussion is consistent with the characterisations of asymp-

totically Kerr-de Sitter like spacetimes given in [85]. In the latter reference, Kerr-de

Sitter-like spacetimes are characterised in terms of a conformal Killing vector vi at

I arising from a Killing vector Xi on (M̃, g̃) where g̃ is a solution to the Einstein

field equations with positive Cosmological constant. In [85] it is shown that the

so-called rescaled Mars-Simon tensor vanishes if the following conditions hold

Cij =

 
λ

3
Cmag|v|−5(vivj + |v|21

3
hij), (6.40a)

dij = Cel|v|−5(vivj + |v|21

3
hij), (6.40b)

where |v|2 ≡ viv
i, Cij is the Cotton-York tensor of the induced metric at the confor-

mal boundary, dij denotes the electric part of the rescaled Weyl tensor and Cel and

Cmag are two undetermined constants —see [85] for a detailed discussion. Equa-
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tions (6.40a) and (6.40b) have been adapted to the signature conventions used in

this thesis. Notice additionally that, the second expression can be written using the

space spinor formalism as

dABCD = Cel|v|−5v(ABvCD).

This is consistent with the discussion of Section 6.4.1 if the spin-dyad εA
A is aligned

with the conformal Killing vector vi so that, up to a normalisation factor, vAB

corresponds to xAB.

6.5 Perturbations of the Kerr-de Sitter spacetime

In the following, a similar discussion to that given in Chapter 5 for perturbations of

the Schwarzschild-de Sitter spacetime will be given. In particular, one will consider

perturbations of the Kerr-de Sitter spacetimes which can be covered by a congru-

ence of conformal geodesics. The last assumption implies, in particular, that the

functional form of the conformal factor will be the same as that of the background so-

lution. Observe that the asymptotic initial data obtained in Sections 6.4.1 and 6.4.2

correspond to a conformal representation in which the initial hypersurface τ = 0

representing I is topologically R × S2 with a metric h given by (6.26). Contrast

with the case of the Schwarzschild-de Sitter spacetime, analysed in Chapter 5, in

which the initial hypersurface is not only topologically but also metrically R×S2. In

this section non-linear perturbations of the Kerr-de Sitter spacetimes are analysed

by means of a suitably posed initial value problem. In other words, the develop-

ment of perturbed initial data close to that of the Kerr-de Sitter spacetime, in the

above described conformal representation, is discussed. In view of the symmetric

hyperbolicity of the conformal evolution equations (5.5a)-(5.5b) of Chapter 5 one

can exploit the theory of first order symmetry hyperbolic systems contained in [23]

to obtain an existence result for the asymptotic region of the Kerr-de Sitter space-

time. Proceeding in an analogous way as in Section 5.4.3 of Chapter 5 one obtains

the following result

Theorem 4 (existence of perturbations of asymptotic initial data for the

Kerr-de Sitter spacetime). Let u? = ů? + ŭ? denote asymptotic initial data

for the extended conformal Einstein field equations on a 3-dimensional manifold

S ≈ R × S2 where ů? denotes the asymptotic initial data for the Kerr-de Sitter

spacetime in the time-symmetric conformal representation κ = 0. Then, for m ≥ 4

there exist a small τ◦ > 0 and ε > 0 such that:

(i) for ||ŭ?||S,m < ε , there exist a unique solution ŭ to the conformal evolution
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equations (5.5a)-(5.5b) with a minimal existence interval [0, τ◦] and

ŭ ∈ Cm−2([0, τ◦]× S,CN),

and the associated congruence of conformal geodesics contains no conjugate

points in [0, τ◦];

(ii) the solution u = ů + ŭ is unique in [0, τ◦] × S and implies a Cm−2 solution

(M̃τ◦ , g̃) to the Einstein vacuum equations with the same de Sitter-like Cos-

mological constant as the background solution where

M̃τ◦ ≡ (0, τ◦)× S.

Moreover, the hypersurface I ≡ {0} × S represents the conformal boundary

of the spacetime.

Proof. The proof of this theorem is analogous to that given for the Schwarzschild-de

Sitter spacetime in Theorem 3.

6.6 Conclusions

In this chapter an analysis of perturbations of the Kerr-de Sitter spacetime arising

from suitably posed asymptotic initial value problems is given. To do so, initial

data for the conformal Einstein field equations representing asymptotic initial data

for the Kerr-de Sitter spacetime was found. Then, by introducing the appropriate

norms —see Section 5.4.3 of Chapter 5— small perturbations of asymptotic initial

data close to that of the Kerr-de Sitter spacetime were considered. Exploiting the

structure of the conformal evolution equations and the theory of symmetric hyper-

bolic systems contained in [23] an existence result for perturbations of the Kerr-de

Sitter spacetime valid in their corresponding asymptotic region was obtained. The

asymptotic initial data for the Kerr-de Sitter spacetime discussed in this chapter

was obtained in the time symmetric conformal representation κ = 0 —alternatively

characterised by the vanishing of the Friedrich scalar at I . Nonetheless, the confor-

mal properties of the conformal constraint equations open the possibility to consider

other conformal representations. In particular, as the induced metric at the con-

formal boundary of the Kerr-de Sitter spacetime h is conformally flat, one could in

principle consider a representation in which h̀ is the flat metric. In the latter repre-

sentation, all smooth solutions of the Gauss constraint (TT-tensors) determining the

initial data for the electric part of the rescaled Weyl tensor have been parametrised

in terms of four constants A, J , Q, P and a smooth complex function of spin weight

two λ2 in [42]. As discussed in more detail in Chapter 5 and briefly in this chapter,

for the Schwarzschild-de Sitter spacetime, the constant A can be identified with the
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mass parameter m of the exact solution. Intuition would suggest that the initial

data for the electric part of the rescaled Weyl tensor spinor for the Kerr-de Sitter

spacetime could be obtained by simple superposition of the solution containing with

A 6= 0 and J 6= 0 and all the other parameters vanishing. Nevertheless, as shown in

this chapter this is not the case as the asymptotic initial data for electric part of the

rescaled Weyl spinor for the Kerr-de Sitter spacetime in this conformal representa-

tion is characterised by equations (6.39a)-(6.39c). Moreover, it would be interesting

to investigate the representation for which the initial data for the induced metric at

the conformal boundary is the standard metric of S3 since, as discussed in Chapter 5,

in this conformal representation the asymptotic initial data for the Schwarzschild-

de Sitter spacetime is singular in the region of the spacetime where the horizons

meet the conformal boundary. The singular behaviour of dij is not observed here

as in the R× S2-representation the points where the conformal boundary meets the

horizon (asymptotic points) are send to infinity. By working on this representation

the smallness requirement on the initial data, using the theory contained in [23],

imposes certain decay of the perturbations at these points. Despite the results of

this chapter constitute a generalisation of the analysis given in Chapter 5 for the

Schwarzschild-de Sitter spacetime, in the latter chapter an analysis of the time of

existence for the solutions was given, the latter requires a deeper analysis of the

conformal evolution equations describing the exact Kerr-de Sitter spacetime as a

solution to the extended conformal Einstein field equations expressed in terms of a

conformal Gaussian system. An analysis addressing the above raised questions for

the Kerr-de Sitter spacetime will be addressed elsewhere. Nevertheless, this chap-

ter shows that it is possible to construct future asymptotically de Sitter spacetimes

whose asymptotic initial data lies on an open ball close to the Kerr-de Sitter space-

time. In particular, the latter implies that the initial data for the induced metric

at the conformal boundary of the perturbed spacetimes is not necessarily confor-

mally flat, and consequently, according to the theory of asymptotics given in [24]

these spacetimes represent non-trivial examples for the theory of asymptotics for de

Sitter-like spacetimes allowing for gravitational radiation at I .



7 Zero rest-mass fields and the

Newman-Penrose constants on

flat space

7.1 Introduction

The concept of asymptotic simplicity is central for the understanding of isolated

systems in general relativity. In this regard, Penrose’s proposal [33] is an attempt

to characterise the fall-off behaviour of the gravitational field in a geometric manner

—see also [34]. As discussed in Chapter 1, in Penrose’s proposal to study the asymp-

totic region of the physical spacetime (M̃, g̃) satisfying the Einstein field equations

one considers an unphysical spacetime (M, g), where g and g̃ are related via

g = Ξ2g̃,

The set of points where Ξ = 0 but dΞ 6= 0 is called the conformal boundary. If g̃

satisfies the vacuum Einstein field equations (with vanishing Cosmological constant)

near I , then the conformal boundary defines a smooth null hypersurface ofM and

one calls I null infinity —see [12, 34]. One can identify two disjoint pieces of I :

I − and I + correspond to the past and future end points of null geodesics. If every

null geodesic acquires two distinct endpoints at I , the spacetime (M̃, g̃) is said to

be asymptotically simple —see [12, 13, 34] for precise definitions. The Minkowski

spacetime, (R4, η̃) is the prototypical example of an asymptotically simple space-

time. In the standard conformal representation of the Minkowski spacetime, the

unphysical spacetime can be identified with the Einstein cylinder (ME, gE) where

ME ≈ R× S3 and

gE = dT ⊗ dT − dψ ⊗ dψ − sin2 ψσ, Ξ = cos(T ) + cos(ψ),

where −π < T < π, 0 < ψ < π and σ is the standard metric on S2. In this conformal

representation I ± correspond to the sets of points on the Einstein cylinder,ME ≡
R×S3, for which 0 < ψ < π and T = ±(π−ψ). One can directly verify that Ξ|I± =

0 while dΞ|I± 6= 0 —see [12]. Consequently, a special region in the conformal

structure of the Minkowski spacetime is spatial infinity i0 for which both Ξ|i0 and

180
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dΞ|i0 vanish. In this conformal representation, spatial infinity corresponds to a point

in the Einstein cylinder with coordinates ψ = π and T = 0.

A natural problem to be considered is the existence of spacetimes whose conformal

structure resembles that of the Minkowski spacetime. The conformal Einstein field

equations introduced originally in [11] provide a convenient framework for discussing

global existence of asymptotically simple solutions to the Einstein field equations.

An important application of these equations is the proof of the semi-global non-

linear stability of the Minkowski spacetime given in [11]. In the latter work, the

evolution of perturbed initial data close to exact Minkowski data is analysed. Nev-

ertheless, the initial data is not prescribed on a Cauchy hypersurface S̃ but on a

hyperboloid H̃ whose conformal extension inM intersects I —see Chapter 4 for a

similar discussion of the non-linear stability the Milne spacetime. Therefore, an open

problem in the framework of the conformal Einstein field equations is the analysis

of the evolution of initial data prescribed on a Cauchy hypersurface S intersect-

ing i0 —see [10] for the proof of the global non-linear stability of the Minkowski

spacetime employing different methods. One of the main difficulties in establishing

a global result for the stability of the Minkowski spacetime using conformal meth-

ods lies on the fact that the initial data for the conformal Einstein field equations

is not smooth at i0. This is not unexpected since, as observed by Penrose —see

[33, 86]— the conformal structure of spacetimes with non-vanishing mass becomes

singular at spatial infinity —in the sense that the rescaled Weyl tensor becomes

singular at i0. A milestone in the resolution of this problem is the construction,

originally introduced in [27], of a new representation of spatial infinity known as the

cylinder at spatial infinity. In this representation, spatial infinity is not represented

as a point but as set whose topology is that of a cylinder. This representation is

well adapted to exploit the properties of curves with special conformal properties:

conformal geodesics. In addition, it allows to formulate a regular finite initial value

problem for the conformal Einstein field equations. Other approaches for analysing

the gravitational field near spatial infinity using different representations of spatial

infinity have been also proposed in literature —see [87–90].

The framework of the cylinder at spatial infinity and its connection with the con-

formal Einstein field equations have been exploited in an analysis of the gravitational

Newman-Penrose (NP) constants in [81]. The NP constants, originally introduced

in [91], are defined in terms of integrals over cuts C ≈ S2 of I . The integrands in the

expressions defining the NP constants are, however, written in a particular gauge

adapted to I (the so-called NP-gauge) while the natural gauge used in the frame-

work of the cylinder at spatial infinity (the so-called F-gauge in [81]), is adapted

to a congruence of conformal geodesics and hinged at a Cauchy hypersurface S.

This fact, which at first instance looks as an obstacle to analyse the NP constants,

turns out to be advantageous since, once the relation between the NP-gauge and
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the F-gauge is clarified, one can relate the initial data prescribed on S with the

gravitational NP constants at I .

In a recent work [28], the authors exploit the notion of these conserved quantities

at I to make inroads into the problem of the information paradox —see [92–94].

In the [28], the concept of soft hair is motivated by means of an analysis of the

conservation laws and symmetries of abelian gauge theories in Minkowski space.

These conservation laws correspond essentially to the electromagnetic version of the

gravitational NP constants. With this motivation, in this chapter zero rest-mass

fields propagating on flat space and their corresponding NP constants are studied.

The discussion of this chapter is based on

Gaspeŕın E. and Valiente Kroon J.A., “Zero rest-mass fields and the Newman-

Penrose constants on flat space,”ArXiv e-prints (Aug., 2016) , arXiv:1608.05716

[gr-qc].

In this chapter, two physically relevant fields are analysed: the spin-1 and spin-2

zero rest-mass fields. The spin-1 field provides a description of the electromagnetic

field while the spin-2 field on the Minkowski spacetime describes linearised gravity.

It is shown how the framework of the cylinder at spatial infinity can be exploited to

relate the corresponding NP constants with the initial data on a Cauchy hypersur-

face intersecting i0 —see Propositions 11 and 12 for the spin-1 case and Proposition

13 and 14 for the spin-2 case. Additionally, it is shown that, for the class of ini-

tial data considered, the NP constants at I + and I − coincide —see Theorems 5

and 3. Moreover, it is discussed how this identification arises from a delicate inter-

play between the evolution and constraint equations associated to these fields. In

particular, the analysis given in this chapter highlights the connection between the

smoothness of the fields at null infinity and the finiteness of the conserved quantities.

7.2 The cylinder at spatial infinity and the

F-gauge

In this section a conformal representation of the Minkowski spacetime that is adapted

to a congruence of conformal geodesics is discussed. This conformal representation,

introduced originally in [27], is well suited for analysing the behaviour of fields near

spatial infinity. In broad terms, in this representation spatial infinity i0, which cor-

responds to a point in the standard compactification of the Minkowski spacetime, is

blown up to a set I with the topology of R× S2. In the subsequent discussion this

representation will be referred as the cylinder at spatial infinity. The discussion of

the cylinder at spatial infinity as presented in [27] is given in the language of fibre

bundles. In particular, the construction of the so-called extended bundle space is

http://arxiv.org/abs/1608.05716
http://arxiv.org/abs/1608.05716
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required —see [27, 95]. Nevertheless, a discussion which does not make use of this

construction is presented in the following.

7.2.1 The cylinder at spatial infinity

Consider the Minkowski metric η̃ in Cartesian coordinates x̃α = (t̃, x̃i),

η̃ = ηµνdx̃
µ ⊗ dx̃ν ,

where ηµν = diag(1,−1,−1,−1). Introducing polar coordinates defined by ρ̃2 =

δijx̃
ix̃j where δij = diag(1,1,1), and an arbitrary choice of coordinates on S2, the

metric η̃ can be written as

η̃ = dt̃⊗ dt̃− dρ̃⊗ dρ̃− ρ̃2σ,

with t̃ ∈ (−∞,∞), ρ̃ ∈ [0,∞) and σ denotes the standard metric on S2. A common

procedure to obtain a conformal representation of the Minkowski spacetime close to

i0 is to introduce inversion coordinates xα = (t, xi) defined by —see [12],

xµ = −x̃µ/X̃2, X̃2 ≡ η̃µν x̃
µx̃ν .

The inverse transformation is given by

x̃µ = −xµ/X2, X2 = ηµνx
µxν .

Using these coordinates one readily identifies the following conformal representation

of the Minkowski spacetime

gI = Ξ2 η̃, (7.1)

where gI = ηµνdx
µ ⊗ dxν and Ξ = X2. Notice, additionally that, X2 = 1/X̃2.

Introducing an unphysical polar coordinate defined as ρ2 = δijx
ixj, one observes

that the rescaled metric gI and conformal factor Ξ read

gI = dt⊗ dt− dρ⊗ dρ− ρ2σ, Ξ = t2 − ρ2, (7.2)

with t ∈ (−∞,∞) and ρ ∈ (0,∞). In this conformal representation, spatial infinity

i0 corresponds to a point located at the origin. For future reference, observe that t̃

and ρ̃ are related to t and ρ via

t̃ = − t

t2 − ρ2 , ρ̃ =
ρ

t2 − ρ2 . (7.3)
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Then, one introduces a time coordinate τ defined via t = ρτ . In the coordinate

system determined by τ and ρ the metric gI is written as

gI = ρ2dτ ⊗ dτ − (1− τ 2)dρ⊗ dρ+ ρτdρ⊗ dτ + ρτdτ ⊗ dρ− ρ2σ.

The required conformal representation is obtained by considering the rescaled metric

gC ≡
1

ρ2
gI . (7.4)

Introducing %? ≡ − ln ρ the metric gC explicitly reads

gC = dτ ⊗ dτ − (1− τ 2)d%? ⊗ d%? − τdτ ⊗ d%? − τd%? ⊗ dτ − σ.

Observe that spatial infinity i0, which is at infinity respect to the metric gC , corre-

sponds to a set which has the topology of R× S2 —see [27, 95]. In what follows the

coordinates (τ, ρ) will be preferred and will be referred as the F-coordinates. Fol-

lowing the conformal rescalings previously introduced one considers the conformal

extension (M, gC) where

gC = Θ2η̃, Θ = ρ(1− τ 2),

and

M≡ {p ∈ R4 | − 1 ≤ τ ≤ 1, ρ(p) ≥ 0}.

In this representation future and past null infinity are located at

I + ≡ {p ∈M | τ(p) = 1}, I − ≡ {p ∈M | τ(p) = −1},

and the physical Minkowski spacetime can be identified with the region

M̃ ≡ {p ∈M | − 1 < τ(p) < 1, ρ(p) > 0}.

In addition, the following sets will be distinguished:

I ≡ {p ∈M | |τ(p)| < 1, ρ(p) = 0}, I0 ≡ {p ∈M | τ(p) = 0, ρ(p) = 0},

I+ ≡ {p ∈M | τ(p) = 1, ρ(p) = 0}, I− ≡ {p ∈M | τ(p) = −1, ρ(p) = 0}.

Notice that spatial infinity i0, which originally was a point in the gI−representation,

can be identified with the set I in the gC−representation. In addition, one can

intuitively think of the critical sets I+ and I− as the region where spatial infinity

“touches” I + and I − respectively. Similarly, I0 represents the intersection of i0

and the initial hypersurface S ≡ {τ = 0}—see Figure 7.1. See also [27, 81] and [95]

for further discussion of the framework of the cylinder at spatial infinity implemented
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a) b)

S
ei

eτ

I0

I+

I−

I +

I −

e′00′

e′11′

C

I +

N

i0

Figure 7.1: Figure a) illustrates the geometric setting in which the NP-frame e′AA′
is constructed: e′11′ is paralelly propagated along I + while e′00′ is tangent to the
generators of a null hypersurface N transverse to I +. On C = N ∩I + a complex
null frame e01′ and e10′ is chosen and paralelly propagated along N . Figure b) shows
a schematic depiction of the cylinder at spatial infinity and the F-frame {eτ , ei}.
In this representation spatial infinity i0 is blown-up to a set I with the topology of
R × S2. The location of I0 = S ∩ I and the critical sets I± where the cylinder at
spatial infinity I meets future and past null infinity I ± are also shown in this figure.

for stationary spacetimes.

7.2.2 The F-gauge

In this section a brief discussion of the so-called F-gauge is provided —see [81, 95]

for a discussion of the F-gauge in the language of fibre bundles. Following the

philosophy of the previous section the discussion presented here will not make use of

the extended bundle space —see [81, 95] for definitions. One of the motivations for

the introduction of this gauge is that it exploits the properties of conformal geodesics.

More precisely, in this framework, one introduces an orthonormal frame (from which

one can construct an associated null frame) whose timelike leg corresponds to the

tangent of a conformal geodesic starting from a fiduciary spacelike hypersurface

S = {τ = 0} —see Section 2.3.2 in Chapter 2.

To start the discussion, consider the conformal extension (M, gC) of the Minkowski

spacetime and the F-coordinate system introduced in Section 7.2.1. Observe that

the induced metric on the surface Q ≡ {τ = τ?, ρ = ρ?, }, with τ?, ρ? fixed, is

the standard metric on S2. Consequently, one can introduce a complex null frame

{∂+,∂−} on Q as described in Appendix 7.9. To propagate this frame off Q one

requires that

[∂τ ,∂±] = 0, [∂ρ,∂±] = 0.

Taking into account the above construction one writes, in spinorial notation, the
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spacetime frame

e00′ =

√
2

2

Ä
(1− τ)∂τ + ρ∂ρ

ä
, e11′ =

√
2

2

Ä
(1 + τ)∂τ − ρ∂ρ

ä
, (7.5a)

e01′ =

√
2

2
∂+, e10′ =

√
2

2
∂−. (7.5b)

The corresponding dual coframe is given by

ω00′ =

√
2

2

Å
dτ − 1

ρ

Ä
1− τ

ä
dρ
ã
, ω11′ =

√
2

2

Å
dτ +

1

ρ

Ä
1 + τ

ä
dρ
ã
,

ω01′ =
√

2ω+, ω10′ =
√

2ω−.

One can directly verify that

gC = εABεA′B′ω
AA′ωBB

′
.

The above construction and frame will be referred in the following discussion as the

F-gauge. A direct computation using the Cartan structure equations shows that the

only non-zero reduced connection coefficients are given by

Γ00′
1
1 = Γ11′

1
1 =

√
2

4
, Γ00′

0
0 = Γ11′

0
0 = −

√
2

4
,

Γ10′
1
1 = −Γ10′

0
0 =

√
2

4
$, Γ01′

0
0 = −Γ01′

1
1 =

√
2

4
$.

7.3 The electromagnetic field in the F-gauge

In this section the Maxwell equations on (M, gC) are discussed. After rewriting

the equations in terms of the ð and ð̄ operators, a general solution is obtained by

expanding the fields in spin-weighted spherical harmonics. The resulting equations

for the coefficients of the expansion, satisfy ordinary differential equations which

can be explicitly solved in terms of special functions. The analysis given here is

similar to the one for the Maxwell field on a Schwarzschild background in [96] and

the gravitational field in [27]. Notice that, in contrast with the analysis presented

in this section, in the latter references the equations and relevant structures are

lifted to the extended bundle space. Additionally, the initial data considered in this

analysis is generic and in particular is not assumed to be time symmetric.

7.3.1 The spinorial Maxwell equations

The Maxwell equations in the 2-spinor formalism take the form of the spin-1 equation

∇A′
AφAB = 0. (7.6)
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Let εA
A with ε0

A = oA and ε1
A = ιA denote a spin dyad adapted to the F-gauge

so that eAA′
AA′ = εA

AεA′
A, corresponds to the null frame introduced in Section

7.2.2. A direct computation shows that equation (7.6) implies a set of equations

for the components of φAB respect to εA
A: φ0 ≡ φABo

AoB, φ1 ≡ φABo
AιB and

φ2 ≡ φABι
AιB, which can be split into a system of evolution equations

(1 + τ)∂τφ0 − ρ∂ρφ0 − ∂+φ1 = −φ0, (7.7a)

∂τφ1 −
1

2

Ä
∂+φ2 + ∂−φ0

ä
=

1

2

Ä
$φ2 +$φ0

ä
, (7.7b)

(1− τ)∂τφ2 + ρ∂ρφ2 − ∂−φ1 = φ2, (7.7c)

and a constraint equation

τ∂τφ1 − ρ∂ρφ1 +
1

2

Ä
∂−φ0 − ∂+φ2

ä
=

1

2

Ä
$φ2 −$φ0

ä
. (7.7d)

One can systematically solve the above equations decomposing the fields φ0, φ1, φ2

in spin-weighted spherical harmonics. To do so, one has to rewrite these equations

in terms of the ð and ð̄ operators of Newman and Penrose. Using equation (7.106)

of Appendix 7.10 and the fact that φ0, φ1 and φ2 have spin weights 1, 0 and -1,

respectively, one finds that equations (7.7a)-(7.7d) can be rewritten as the following

evolution equations

(1 + τ)∂τφ0 − ρ∂ρφ0 + ðφ1 = −φ0, (7.8a)

∂τφ1 +
1

2

Ä
ðφ2 + ð̄φ0

ä
= 0, (7.8b)

(1− τ)∂τφ2 + ρ∂ρφ2 + ð̄φ1 = φ2, (7.8c)

and the constraint equation

τ∂τφ1 − ρ∂ρφ1 +
1

2

Ä
ðφ2 − ð̄φ0

ä
= 0. (7.8d)

7.3.2 The transport equations for the electromagnetic field

on the cylinder at spatial infinity

In order to analyse the behaviour of solutions of the Maxwell equations in a neigh-

bourhood of the cylinder at spatial infinity one assumes that φ0, φ1 and φ2 are

smooth functions of τ and ρ. Moreover, taking into account equation (7.108) of

Appendix 7.10 one makes the Ansatz:

Assumption 1. The components of the Maxwell field admit a Taylor-like expansion



7.3: The electromagnetic field in the F-gauge 188

around ρ = 0 of the form

φn =
∞∑

p=|1−n|

p∑
`=|1−n|

∑̀
m=−`

1

p!
an,p;`,m(τ)Y1−n;`−1,mρ

p, (7.9)

where an,p;`m : R→ C and with n = 0, 1, 2.

Remark 52. Recalling that Ys′;`′,m′ = 0 for l′ < |s′|, one notices that the lowest

order in the expansion for φ0 is O(ρ2). This observation will play a role in Section

7.6 when the electromagnetic NP constants are computed in terms of the initial

data. Expression (7.9) is not the most general Ansatz which is compatible with the

Maxwell constraints. However, more general expansions, like

φn =
∞∑

p=|1−n|

p∑
`=|1−n|

∑̀
m=−`

1

p!
an,p;`,m(τ)Y1−n;`,mρ

p,

which follow from general multipolar expansions in electrostatics and magnetostatics

and allow for higher harmonics at each order in p can be seen to have, in general,

divergent Newman-Penrose constants.

To simplify the notation of the subsequent analysis let

φ(p)
n ≡

∂pφn
∂ρp

∣∣∣∣∣∣
ρ=0

, (7.10)

with n = 0, 1, 2. Formally differentiating equations (7.8a)-(7.8d) with respect to ρ

and evaluating at the cylinder I one obtains

(1 + τ)φ̇p0 − (p− 1)φp0 + ðφp1 = 0, (7.11a)

φ̇
(p)
1 +

1

2

Ä
ðφ(p)

2 + ð̄φ(p)
0

ä
= 0, (7.11b)

(1− τ)φ̇
(p)
2 + (p− 1)φ

(p)
2 + ð̄φ(p)

1 = 0, (7.11c)

τ φ̇
(p)
1 − pφ(p)

1 +
1

2

Ä
ðφ(p)

2 − ð̄φ(p)
0

ä
= 0, (7.11d)

where the dot denotes a derivative respect to τ . Using equations (7.109a)-(7.109b)

of Appendix 7.10 and the expansions encoded in equation (7.9) one obtains the

following equations for an,p;`m:

(1 + τ)ȧ0,p;`m +
»
`(`+ 1)a1,p;`m − (p− 1)a0,p;`m = 0, (7.12)

ȧ1,p;`m +
1

2

»
`(`+ 1)(a2,p;`m − a0,p;`m) = 0, (7.13)

(1− τ)ȧ2,p;`m −
»
`(`+ 1)a1,p;`m + (p− 1)a2,p;`,m = 0, (7.14)

τ ȧ1,p;`m −
1

2

»
`(`+ 1)(a2,p;`m + a0,p;`m)− pa1,p;`m = 0, (7.15)
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for p ≥ 1, 1 ≤ ` ≤ p, −` ≤ m ≤ `. Notice that equations (7.12)-(7.15) correspond,

essentially, to the homogeneous part of the equations reported in [96]. Furthermore,

a1,p;`,m can be solved from (7.13) and (7.15) in terms of a0,p;`m and a2,p;`,m to obtain

a1,p;`m =

»
`(`+ 1)

2p

Ä
(1− τ)a2,p;`.m + (1 + τ)a0,p;`,m

ä
. (7.16)

Substituting a1,p;`,m as given in (7.16) into equations (7.12) and (7.14) one obtains

(1 + τ)ȧ0,p;`,m +
Å 1

2p
`(`+ 1)(1 + τ)− (p− 1)

ã
a0,p;`,m +

1

2p
`(`+ 1)(1− τ)a2,p;`m = 0,

(7.17a)

(1− τ)ȧ2,p;`m −
1

2p
`(`+ 1)(1 + τ)a0,p;`m −

Å 1

2p
`(`+ 1)(1− τ)− (p− 1)

ã
a2,p;`m = 0.

(7.17b)

At this point one can follow the procedure discussed in [96] to obtain a fundamental

matrix for the system (7.17a)-(7.17b): a direct computation shows that one can de-

couple the last system of first order equations and obtain the second order equations

(1− τ 2)ä0,p;`,m + 2(1− (1− p)τ)ȧ0,p;`,m + (p+ `)(`− p+ 1)a0,p;`,m = 0, (7.18a)

(1− τ 2)ä2,p;`,m − 2(1 + (1− p)τ)ȧ2,p;`,m + (p+ `)(`− p+ 1)a2,p;`,m = 0. (7.18b)

Dropping temporarily the subindices p, `,m observe that, if a2(τ) solves (7.18b) then

a2(−τ) solves equation (7.18a). Equations (7.18a)-(7.18b) are particular examples

of Jacobi ordinary differential equations. Following the discussion of [96] one obtains

the following:

Proposition 7. For p ≥ 2, ` < p, −` ≤ m ≤ ` the solutions to the Jacobi equations

(7.18a)-(7.18b) are polynomial in τ . For p ≥ 2, ` = p, −p ≤ m ≤ p one has

a0,p;p,m(τ) =

Ç
1− τ

2

åp+1 Ç1 + τ

2

åp−1 Ç
Cp,m + C~p,m

∫ τ

0

ds

(1 + s)p(1− s)p+2

å
,

(7.19a)

a2,p;p,m(τ) =

Ç
1 + τ

2

åp+1 Ç1− τ
2

åp−1 Ç
Dp,m +D~p,m

∫ τ

0

ds

(1− s)p(1 + s)p+2

å
.

(7.19b)

where Cp,m, C~p,m and Dp,m, D~p,m are integration constants.

Remark 53. Observe that, for non-vanishing C~p,m andD~p,m, the solutions a0,p;p,m(τ)

and a2,p;p,m(τ) with p ≥ 2, −p ≤ m ≤ p, contain terms which diverge logarithmically

near τ = ±1.

Remark 54. The expressions of Proposition 7 are solutions to the Jacobi equations.
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To obtain a solution to the original system it is necessary to evaluate these expres-

sions in the coupled system (7.17a)-(7.17b). In turn, this gives rise to restrictions

on the integration constants.

Remark 55. The convergence of the expansions encoded in (7.9) follows from the

results of [97].

7.3.3 Initial data for the Maxwell equations

Evaluating the constraint equation (7.8d) at τ = 0 gives the following equation

ρ∂ρφ1 −
1

2

Ä
ðφ2 − ð̄φ0

ä
= 0. (7.20)

Consistent with the expressions encoded in equation (7.9) one considers on the initial

hypersurface S fields φn|S , with n = 0, 1, 2, which can be expanded as

φn|S =
∞∑

p=|1−n|

p∑
`=|1−n|

∑̀
m=−`

1

p!
an,p;`,m(0)Y1−n;`−1mρ

p. (7.21)

Observe that once a0,p;`,m(0) and a2,p;`,m(0) are given, a1,p;`,m(0) is already deter-

mined by virtue of equation (7.16) as

a1,p;`m(0) =

»
`(`+ 1)

2p

Ä
a2,p;`.m(0) + a0,p;`,m(0)

ä
.

In addition, observe that equations (7.17a)-(7.17b) are first order while equations

(7.18a)-(7.18b) are second order. Consequently, the initial data ȧ0,p,`,m(0) and

ȧ2,p,`,m(0) are determined, by virtue of equations (7.17a)-(7.17b) restricted to S,

by the initial data a0,p,`,m(0) and a2,p,`,m(0).

The following remark plays an important role for the subsequent discussion of the

electromagnetic NP constants:

Remark 56. For general p, ` and m, the free data is encoded in a0,p,`,m(0) and

a2,p;`,m(0). Nevertheless, for p = `, a direct substitution of the solution (7.19a)-

(7.19b) into equations (7.17a)-(7.17b) shows that C~p,m = D~p,m = 0 with p ≥ 2,

−p ≤ m ≤ p. Consequently, the potentially divergent terms in expressions (7.19a)-

(7.19b) do not contribute to the electromagnetic field. Additionally, one has that

a0,p;p,m(0) = a2,p;p,m(0) = Cp,m = Dp,m, (7.22)

with p ≥ 2, −p ≤ m ≤ p. Observe that the initial data considered is generic and the

restriction (7.22) is a consequence of the interplay of the evolution and constraint

equations. In other words, this condition does not arise from restricting the class of

initial data.
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7.4 The massless spin-2 field equations in the

F-gauge

In Section 7.3 the Maxwell equations (in the F-gauge) were discussed, these cor-

respond in spinorial formalism to the spin-1 equations. In this section, a similar

analysis is performed for a spin-2 field propagating on the Minkowski spacetime.

As discussed in [98] the spin-2 equations on the Minkowski spacetime can be used

to describe the linearised gravitational field. In [98] these equations were written

in terms the lifts of the relevant structures to the extended bundle space. In this

section, following the spirit of this chapter, the equations will be discussed without

making use of these structures. In a similar way as in the electromagnetic case stud-

ied in Section 7.3, after rewriting the equations in terms of the ð and ð̄ operators, a

general solution is obtained by expanding the fields in spin-weighted spherical har-

monics. The resulting equations for the coefficients of the expansion satisfy ordinary

differential equations which can be explicitly solved in terms of special functions.

7.4.1 The spin-2 equation

As discussed in [98], the linearised gravitational field over the Minkowski spacetime

can be described with the so-called massless spin-2 field equation

∇A′
AφABCD = 0. (7.23)

Following an approach analogous to the one described in Section 7.3.1 for the electro-

magnetic field, it can be shown that equation (7.23) implies the following evolution

equations for the components of the spinor φABCD

(1 + τ)∂τφ0 − ρ∂ρφ0 − ∂+φ1 + $̄φ1 = −2φ0, (7.24a)

∂τφ1 −
1

2
∂+φ2 −

1

2
∂−φ0 −$φ0 = −φ1, (7.24b)

∂τφ2 −
1

2
∂−φ1 −

1

2
∂+φ3 −

1

2
$φ1 −

1

2
$̄φ3 = 0, (7.24c)

∂τφ3 −
1

2
∂+φ4 −

1

2
∂−φ2 − $̄φ4 = φ3, (7.24d)

(1− τ)∂τφ4 + ρ∂ρφ4 − ∂−φ3 +$φ3 = 2φ4, (7.24e)

and the constraint equations

τ∂τφ1 − ρ∂ρφ1 −
1

2
∂+φ2 +

1

2
∂−φ0 +$φ0 = 0, (7.25a)

τ∂τφ2 − ρ∂ρφ2 −
1

2
∂+φ3 +

1

2
∂−φ1 −

1

2
$̄φ3 +

1

2
$φ1 = 0, (7.25b)

τ∂τφ3 − ρ∂ρφ3 −
1

2
∂+φ4 +

1

2
∂−φ2 − $̄φ4 = 0, (7.25c)
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where the five components φ0, φ1, φ2, φ3 and φ4, given by

φ0 ≡ φABCDo
AoBoCoD, φ1 ≡ φABCDo

AoBoCιD,

φ2 ≡ φABCDo
AoBιCιD, φ3 ≡ φABCDo

AιBιCιD,

φ4 ≡ φABCDι
AιBιCιD,

have spin weight of 2, 1, 0,−1,−2 respectively. Taking into account this observation

and equations (7.106) and (7.107) given in Appendix 7.10 one can rewrite (7.24a)-

(7.25c) in terms of the ð and ð̄ as done for the electromagnetic case. A direct

computation renders the following evolution equations

(1 + τ)∂τφ0 − ρ∂ρφ0 + ðφ1 = −2φ0, (7.26a)

∂τφ1 +
1

2
ð̄φ0 +

1

2
ðφ2 = −φ1, (7.26b)

∂τφ2 +
1

2
ð̄φ1 +

1

2
ðφ3 = 0, (7.26c)

∂τφ3 +
1

2
ð̄φ2 +

1

2
ðφ4 = φ3, (7.26d)

(1− τ)∂τφ4 + ρ∂ρφ4 + ð̄φ3 = 2φ4, (7.26e)

and the constraint equations

τ∂τφ1 − ρ∂ρφ1 +
1

2
ðφ2 −

1

2
ð̄φ0 = 0, (7.27a)

τ∂τφ2 − ρ∂ρφ2 +
1

2
ðφ3 −

1

2
ð̄φ1 = 0, (7.27b)

τ∂τφ3 − ρ∂ρφ3 +
1

2
ðφ4 −

1

2
ð̄φ2 = 0. (7.27c)

With the equations already written in this way, one can follow the discussion of

[98] for parametrising the solutions to equations (7.26a)-(7.27c).

7.4.2 The transport equations for the massless spin-2 field

on the cylinder at spatial infinity

One proceeds in analogous way as in the electromagnetic case and assumes that the

fields φn with n = 0, 1, 2, 3, 4, are smooth functions of τ and ρ. Taking into account

equation (7.108) of Appendix 7.10, it is assumed one can express the components

of the linearised gravitational field in a Taylor-like expansion around ρ = 0. More

precisely, we make the Ansatz:

Assumption 2. In what follows it is assumed that the components of the spin-2
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field have the expansions

φn =
∞∑

p=|2−n|

p∑
`=|2−n|

∑̀
m=−`

1

p!
an,p;`,m(τ)Y2−n;`−1,mρ

p (7.28)

where an,p;`,m : R→ C and n = 0, . . . , 4.

Remark 57. Recalling that Ys′;`′,m′ = 0 for l′ < |s′| then one notices that the

lowest order in the expansion for φ0 is O(ρ3). As in the case of the spin-1 field,

one can consider more general expressions which are compatible with the spin-2

constraints which admit higher harmonics at every order. Some experimentation

reveals, however, that these more general expansions lead to divergent NP constants

—cf. Remark 52.

For the remaining part of this section, the p-th derivative respect to ρ of the

fields φn with n = 0, 1, 2, 3, 4 evaluated at the cylinder I, is denoted using the same

notation as in equation (7.10). Then, by formally differentiating equations (7.26a)-

(7.27c) respect to ρ and evaluating at the cylinder I, one obtains the equations

(1 + τ)∂τφ
(p)
0 + ðφ(p)

1 (p− 2)φ
(p)
0 = 0, (7.29a)

∂τφ
(p)
1 +

1

2
ð̄φ(p)

0 +
1

2
ðφ(p)

2 + φ
(p)
1 = 0, (7.29b)

∂τφ2 +
1

2
ð̄φ(p)

1 +
1

2
ðφ(p)

3 = 0, (7.29c)

∂τφ3 +
1

2
ð̄φ(p)

2 +
1

2
ðφ(p)

4 − φ(p)
3 = 0, (7.29d)

(1− τ)∂τφ
(p)
4 + ð̄φ(p)

3 + (p− 2)φ
(p)
4 = 0, (7.29e)

and

τ∂τφ1 +
1

2
ðφ(p)

2 −
1

2
ð̄φ(p)

0 − pφ(p)
1 = 0, (7.30a)

τ∂τφ2 +
1

2
ðφ(p)

3 −
1

2
ð̄φ(p)

1 − pφ(p)
2 = 0, (7.30b)

τ∂τφ3 +
1

2
ðφ(p)

4 −
1

2
ð̄φ(p)

2 − pφ(p)
3 = 0. (7.30c)

The last set of equations along with the expansion (7.28), in turn, imply the following

equations for an,p;`,m with p ≥ 2 and 2 ≤ ` ≤ p:

(1 + τ)ȧ0 + λ1a1 − (p− 2)a0 = 0, (7.31a)

ȧ1 −
1

2
λ1a0 +

1

2
λ0a2 + a1 = 0, (7.31b)

ȧ2 −
1

2
λ0a1 +

1

2
λ0a3 = 0, (7.31c)

ȧ3 −
1

2
λ0a2 +

1

2
λ1a4 − a3 = 0, (7.31d)
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(1− τ)ȧ4 − λ1a3 + (p− 2)a4 = 0, (7.31e)

and

τ ȧ1 +
1

2
λ0a2 +

1

2
λ1a0 − pa1 = 0, (7.32a)

τ ȧ2 +
1

2
λ0a3 +

1

2
λ0a1 − pa2 = 0, (7.32b)

τ ȧ3 +
1

2
λ1a4 +

1

2
λ0a2 − pa3 = 0, (7.32c)

where λ1 ≡
»

(`− 1)(`+ 2) and λ0 ≡
»
`(`+ 1) and the labels p; `,m have been

suppressed for conciseness. From equations (7.31b)-(7.31d) and (7.32a)-(7.32c) one

obtains an algebraic system which can be written as


p+ τ −1

2
(1− τ)λ0 0

−1
2
(1 + τ)λ0 p −1

2
(1− τ)λ0

0 −1
2
(1 + τ)λ0 p− τ




a1

a2

a3

 =
1

2
λ1


(1 + τ)a0

0

(1− τ)a4

 . (7.33)

Solving the above system and substituting a0, a1 and a3 written in terms of a0 and

a4 into equations (7.31a) and (7.31e) one obtains

(1 + τ)ȧ0 + (−(p− 2) + f(τ, p, `))a0 + g(τ, p, `)a4 = 0, (7.34a)

(1− τ)ȧ4 + (−(p− 2) + f(−τ, p, `))a4 + g(−τ, p, `)a0 = 0, (7.34b)

where

f(τ, p, `) ≡ (1 + τ)(`− 1)(`+ 2)[4p2 − 4pτ + `(`+ 1)(τ 2 − 1)]

4p(2p2 − `(`+ 1) + (`− 1)(`+ 2)τ 2)
,

g(τ, p, `) ≡ (1− τ)3`(`+ 1)(`− 1)(`+ 2)

4p(2p2 − `(`+ 1) + (`− 1)(`+ 2)τ 2)
.

Together, the last equations entail the decoupled equations

(1− τ 2)ä0 + (4 + 2(p− 1)τ)ȧ0 + (p+ `)(p− `+ 1)a0 = 0, (7.35a)

(1− τ 2)ä4 + (−4 + 2(p− 1)τ)ȧ4 + (p+ `)(p− `+ 1)a4 = 0. (7.35b)

It can be verified that if a0(τ) solves (7.35a) then a0(−τ) solves equation (7.35b). As

in the electromagnetic case, these equations are Jacobi ordinary differential equa-

tions. For the solutions to these equations one has the following:
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Proposition 8. For p ≥ 3, p > `, −` ≤ m ≤ ` the solutions to equations (7.35a)-

(7.35b) are polynomial. For p ≥ 3, p = `, −p ≤ m ≤ p one has

a0,p;p,m(τ) =

Ç
1− τ

2

åp+2 Ç1 + τ

2

åp−2 Ç
Cp,m + C~p,m

∫ τ

0

ds

(1 + s)p−1(1− s)p+3

å
,

(7.36a)

a4,p;p,m(τ) =

Ç
1 + τ

2

åp+2 Ç1− τ
2

åp−2 Ç
Dp,m +D~p,m

∫ τ

0

ds

(1− s)p−1(1 + s)p+3

å
.

(7.36b)

where Cp,m, C~p,m and Dp,m, D~p,m are integration constants.

Remark 58. Notice that for non-vanishing C~p,m and D~p,m the above solution di-

verges logarithmically near τ = ±1. The expressions of Proposition 8 are solutions

to the Jacobi equations. To obtain a solution to the original system it is necessary

to evaluate these expressions in the coupled system (7.34a)-(7.34b). In turn, this

shows that the integration constants are not independent of each other.

Remark 59. The convergence of the expansions (7.28) follows from the results

given in [98].

7.4.3 Initial data for the spin-2 equations

Consistent with equations (7.28) one considers on the initial hypersurface S fields

φn|S , with n = 0, 1, 2, 3, 4 which can be expanded as

φn|S =
∞∑

p=|2−n|

p∑
`=|2−n|

∑̀
m=−`

1

p!
an,p;`,m(0)Y2−n;`−1mρ

p. (7.37)

Observe that, by virtue of equation (7.33), the initial data a1,p;`,m(0), a2,p;`,m(0)

and a3,p;`,m(0) are determined by a0,p,`,m(0) and a4,p,`,m(0). In addition, notice that,

equations (7.34a)-(7.34b) are first order while equations (7.35a)-(7.35b) are second

order. Therefore, the initial data ȧ0,p,`,m(0) and ȧ4,p,`,m(0) are determined, as a

consequence of equations (7.34a)-(7.34b) restricted to S, by the initial data a0,p,`,m(0)

and a4,p,`,m(0). The following remarks plays an important role for the subsequent

discussion of the spin-2 NP constants:

Remark 60. For general p, ` and m, the free initial data is encoded in a0,p,`,m(0) and

a4,p;`,m(0). However, for p = `, a direct substitution of the solution (7.36a)-(7.36b)

into equations (7.34a)-(7.34b) shows that C~p,m = D~p,m and Cp,m = Dp,m. In other

words, for p ≥ 3, −p ≤ m ≤ p,

a0,p,p,m(0) = a4,p,p,m(0). (7.38)
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Remark 61. In contrast with the electromagnetic case, in principle, initial data

with C~p,m = D~p,m 6= 0, is admissible and consequently, for generic initial data

the appearance of logarithmic singularities is expected. Nevertheless, for the com-

putation of the NP constants C~p,m = D~p,m = 0 will be assumed —otherwise the

expressions defining the NP constants diverge —see Section 7.7.

Remark 62. The solutions to the constraint equations correspond, in tensor frame

notation to solutions to the equation

Diφij = 0,

where Di denotes the covariant Levi-Civita derivative of the metric hij intrinsic to

the initial hypersurface S and φij corresponds to the tensorial counterpart of the

field φABCD. In the conformally flat setting, the solutions to these equations are

known —see [42]. Moreover, in the latter reference, a general parametrisation to the

solutions to this equation was given. Consequently, one could, in principle, rewrite

the initial data considered in this section using this parametrisation.

7.5 The NP-gauge

In this section, an adapted frame satisfying the NP-gauge conditions and Bondi co-

ordinates are constructed for the conformal extension (M, gI) introduced in Section

7.2.1. For convenience of the reader, a general discussion of the NP-gauge conditions

and the construction of Bondi coordinates is provided in the first part of this section.

7.5.1 The NP-gauge conditions and Bondi coordinates

This section provides a general discussion of the NP-gauge conditions and the con-

struction of Bondi coordinates. A more comprehensive discussion of these gauge

conditions and their consequences can be found in [12, 13, 81].

Let (M, g,Ξ) denote a conformal extension of an asymptotically simple space-

time (M̃, g̃) where g̃ satisfies the vacuum Einstein field equations with vanishing

Cosmological constant. It is a general result in the theory of asymptotics that for

vacuum spacetimes with vanishing Cosmological constant the conformal boundary

I , with locus given by Ξ = 0, consists of two disjoint null hypersurfaces I + and I −

each one having the topology of R× S2—see [12, 13]. In this section the discussion

will be particularised to I +. Nevertheless, the time dual results and construc-

tions can be formulated for I − in an analogous manner. To simplify the notation,

the symbol ' will be used to denote equality at I , e.g. if w is a scalar field on

M that vanishes at I one writes w ' 0. Let {ěAA′} denote a frame satisfying

g(ěAA′ , ěBB′) = εABεA′B′ in a neighbourhood U ⊂ M of I +. Additionally, let

Γ̌AA′
B
C denote the reduced connection coefficients of the Levi-Civita connection of
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g defined with respect to ěAA′ . The frame ěAA′ is an adapted frame at I + if the

following conditions hold:

(i) The vector ě11′ is tangent to and parallely propagated along I +, i.e.,

∇̌11′ ě11′ ' 0.

(ii) On U there exists a smooth function u inducing an affine parameter on the

null generators of I +, namely ě11′(u) ' 1. The vector ě00′ is then defined as

ě00′ = g(du, ·) so that it is tangent to the null generators of the hypersurfaces

transverse to I defined by

Nu◦ ≡ {p ∈ U | u(p) = u◦},

with constant u◦.

(iii) The frame {ěAA′} is tangent to the cuts Cu◦ ≡ Nu◦ ∩I + ≈ S2 and parallely

propagated along Nu◦ , namely

∇̌00′ ěAA′ = 0 on Nu◦ .

Conditions (i)-(iii) can be encoded in the following requirements on the reduced

connection coefficients Γ̌AA′CD:

Proposition 9 (adapted frame at I +). Let (M, g,Ξ) be a conformal extension

of an asymptotically simple spacetime (M̃, g̃) with vanishing Cosmological constant.

On a neighbourhood U ⊂ M of I + it is always possible to find a g-null frame

{ěAA′} for which

Γ̌10′11 ' 0, Γ̌11′11 ' 0, (7.39a)

Γ̌1000 = ¯̌Γ1′0′0′0′ , Γ̌11′00 = ¯̌Γ1′00′1′ + Γ̌01′01, Γ̌00′AB = 0 on U . (7.39b)

The conformal freedom of the setting, i.e. the fact that instead of (M, g,Ξ) one

can consider (M′, g′,Ξ′) with

g′ 7→ θ2g, Ξ 7→ Ξ′ = θΞ,

can be exploited to obtain an improved frame e′AA′ leading to further simplifications

to the conditions given in Proposition 9. If in addition, one introduces an arbitrary

function κ constant along the generators of I + and sets

e′11′ ' θ−2κě11′ , on I +, (7.40)

one is lead to define an affine parameter u′(u) such that e′11′ is parallely propagated

and e′11′(u
′) = 1. This in turn implies du′/du = κ−1θ2 which, integrating along the
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null generators of I +, renders

u′(u) =
1

κ

∫ u

u?
θ2(s)ds+ u′?, (7.41)

where the integration constants u? and u′? identify a fiduciary cut C? ≡ Cu? . Observ-

ing that equation (7.40) also holds on C?, one prescribes the remaining part of the

frame on C? as

e′00′ = κ−1ě00′ , e′01′ = θ−1ě01, e′10′ = θ−1ě10′ on C?. (7.42)

Observe that, using equations (7.40) and (7.42), it can be verified that g(e′AA′ , e
′
BB′) =

εAA′εBB′ on C?. Using these expressions, one can exploit the freedom in choosing

κ and θ along with the conformal transformation laws for the relevant fields (con-

nection coefficients and curvature spinors) and a general rotation of e′01′ and e′10′ of

the form

e′01′ 7→ eice′01′ , e′10′ 7→ e-ice10′ , (7.43)

where c is a scalar function such that c = 0 at C?, to obtain a improved frame e′AA′

that satisfies the following conditions:

Proposition 10 (NP-gauge conditions at I +). Let (M̃, g̃) be an asymptoti-

cally simple spacetime. Locally, it is always possible to find a conformal extension

(M′, g′,Ξ′) for which there exist a g′-null frame {e′AA′} such that the reduced spin

connection coefficients of the Levi-Civita connection of g′ with respect to e′AA′ satisfy

the gauge conditions:

Γ′00′BC ' 0, Γ′11′BC ' 0, (7.44a)

Γ′01′11 ' 0, Γ′10′00 ' 0, Γ′10′11 ' 0, (7.44b)

Γ̄′1′00′1′ + Γ01′01 ' 0. (7.44c)

Moreover, for the curvature one has

R′ ' 0, Φ′12 ' 0, Φ′22 ' 0. (7.44d)

where R′ and Φ′AA′BB′ are, respectively, the Ricci scalar and the components (with

respect to e′AA′) of the trace-free Ricci spinor of the Levi-Civita connection of g′.

Additionally, e′00′(Ξ
′) is constant on I +.

A frame e′AA′ satisfying the conditions of Proposition 10 will be said to be a NP-

frame. The proof of this proposition can be found in [81] and [13]. The proof, in

addition gives a procedure to determine θ and κ by prescribing data on C? which

is extended along I solving ordinary differential equations. Observing equations

(7.40), (7.42) and (7.43) one concludes that in general, frames ěAA′ and e′AA′ of

Propositions 9 and 10 respectively, are related via a conformal transformation g′ =
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θ2g and a Lorentz transformation encoded in (κ, c) so that

e′11′ ' θ−2κě11′ , e′00′ = κ−1ě00′ , e′01′ = eicθ−1ě01, e′10′ = e−icθ−1ě10′ on U .

The function κ corresponds a boost while c encodes a spin.

In the discussion of the NP-gauge, is customary to complete the construction

introducing Bondi coordinates as follows: choose an arbitrary coordinate system

ϑa with a = 2, 3 on the cut C? ≈ S2. Extend this coordinate system to I + so

that they remain constant along its null generators. Recalling that u′, as defined

in equation (7.41), corresponds to an affine parameter along the generators of I +

fixed by the condition e′11′(u
′) = 1, is then natural to use as an affine parameter

on the hypersurfaces Nu, transverse to I +, a parameter r′ fixed by the conditions

e′00′(r
′) = 1 and r′ ' 0. Using r′ and u′ defined as previously described, (r′, u′, ϑa)

defines a Bondi coordinate system.

7.5.2 The NP frame and Bondi coordinates for the

conformal extension (M, gI)

To implement the procedure described in Section 7.5.1 for the conformal extension

(M, gI) it is convenient to introduce null coordinates u = t − ρ and v = t + ρ.

Observe that the unphysical null coordinates u and v are related to the physical

null coordinates ũ = t̃ − ρ̃ and ṽ = t̃ + ρ̃ via u = −1/ũ and v = −1/ṽ. In these

coordinates, the metric gI and conformal factor Ξ read

gI =
1

2
(du⊗ dv + dv ⊗ du)− 1

4
(v − u)2σ, Ξ = uv.

In this representation, future null infinity I + is located at v = 0 while past null

infinity I − is located at u = 0. Additionally, a gI-null frame is given by

ě00′ =
√

2∂v, ě11′ =
√

2∂u, ě01′ =

√
2

v − u∂+, ě10′ =

√
2

v − u∂−.

A direct computation using the Cartan structure equations, one can verify that the

only non-zero spin coefficients are

Γ̌10′10 = −
√

2

2

$

v − u, Γ̌01′10 =

√
2

2

$

v − u, Γ̌01′11 = Γ̌10′00 = −
√

2

v − u.

A direct inspection reveals that the frame {ěAA′} does satisfy all the conditions of

Proposition 10. In order to construct a frame satisfying the conditions defining the

NP gauge one has to introduce a conformal rescaling a Lorentz transformation as

follows: consider a conformal rescaling

g′ = θ2gI , (7.45)
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and the following g′-null frame,

e′00 = κ−1ě00′ , e′11′ = κθ−2ě11′ , e′01′ = θ−1eicě01′ , e′10′ = θ−1e-icě10′ . (7.46)

Some experimentation reveals that setting

θ =
2

v − u, κ =
4u2

(v − u)2
, c = 0,

one obtains the non-zero spin coefficients

Γ′11′10 =

√
2uv

u− v , Γ′10′10 = −
√

2

4
$, Γ′01′10 =

√
2

4
$. (7.47)

In addition, observe that Γ′11′10 ' 0. A further computation, using the NP-equations

as given in [12] and equation (7.102) of Appendix 7.9, shows that

R′ = 0, Φ′00 = Φ′01 = Φ′02 = Φ′22 = 0, Φ′11 =
1

2
.

An inspection of the conditions of Proposition 10 shows that e′AA′ constitutes a frame

in the NP-gauge. To round up the discussion one can introduce Bondi coordinates

(r′, u′) fixed by the requirements

e′00′(r
′) = 1, e11′(u

′) = 1, r′ ' 0.

A direct computation shows that

r′ =
4√
2

Å uv

u− v
ã
, u′ = − 1√

2

1

u
.

In these coordinates the frame e′AA′ reads

e′00′ = ∂r′ , e′11′ = −1

2
r′2∂r′+∂u′ , e′01′ =

√
2

2
∂+, e′01′ =

√
2

2
∂−. (7.48)

Observe that the Bondi coordinates (r′, u′) are related to the physical coordinates ρ̃

and ũ, as introduced in Section 7.2.1, through

r′ = − 2√
2

1

ρ̃
, u′ =

1√
2
ũ.

For future reference, notice that in the physical coordinates (ρ̃, ũ) the NP-frame

e′AA′ is given by

e′00′ =
√

2ρ̃2∂ρ̃, e′11′ =
√

2∂ũ −
√

2∂ρ̃, e′01′ =

√
2

2
∂+, e′01′ =

√
2

2
∂−. (7.49)
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7.5.3 Relating the NP-gauge to the F-gauge

In general, a frame in the F-gauge and the NP-gauge will not coincide since, while the

former is based on a Cauchy hypersurface, the latter is adapted to I —see Figure

7.1. However, as gC and g′ are conformally related, g′ = κ2gC , then the frames eAA′

and e′AA′ are related through a conformal rescaling and a Lorentz transformation

e′AA′ = κ−1ΛBAΛ̄B
′
A′eBB′ . (7.50)

To determine explicitly κ and ΛAB observe that the frame ěAA′ , introduced in

Section 7.5.2, written in the F-coordinates, reads

ě00′ =

√
2

2ρ

Å
(1−τ)∂τ+ρ∂ρ

ã
, ě11′ =

√
2

2ρ

Å
(1+τ)∂τ−ρ∂ρ

ã
, ě01′ =

√
2

2ρ
∂+, ě10′ =

√
2

2ρ
∂−.

In addition, one has

θ =
1

ρ
, κ = (1− τ)2. (7.51)

Then, from a direct comparison of equation (7.4) and (7.45) one concludes that

g′ = gC . (7.52)

Moreover, using equations (7.46) and (7.51) the NP frame {e′AA′} in the F-coordinates

reads

e′00′ =

√
2

2

1

ρ(1− τ)2

Å
(1− τ)∂τ + ρ∂ρ

ã
, e′11′ =

√
2

2
ρ(1− τ)2

Å
(1 + τ)∂τ − ρ∂ρ

ã
,

e′01′ =

√
2

2
∂+, e′10′ =

√
2

2
∂−.

Comparing the last expressions for e′AA′ and eAA′ as given in equations (7.5a)-(7.5b)

one concludes that

Λ0
0 =

1

ρ1/2(1− τ)
, Λ1

1 = ρ1/2(1− τ), κ = 1. (7.53)

7.6 The electromagnetic NP constants

Consider the Minkowski spacetime (M̃, η̃) described through the physical coordi-

nates (ũ, ρ̃) as defined in Sections 7.2.1 and 7.5.2. In these coordinates one has

η̃ = dũ⊗ dũ+ dũ⊗ dρ̃+ dρ̃⊗ dũ− ρ̃2σ.
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From equations (7.1) and (7.45) one has that g′ = θ2Ξ2η̃ and using equations (7.2),

(7.3) and (7.51) one concludes that

g′ =
1

ρ̃2
η̃. (7.54)

Let ε′A
A, with ε′0

A = o′A and ε′1
A = ι′A, denote a spin dyad so that e′AA′

AA′ =

ε′A
Aε′A′

A′ constitutes the NP-frame given in equation (7.49). Let {õA, ι̃A} denote a

spin dyad denoted by ε̃A
A and defined via

oA = ρ̃õA, ιA = ι̃A. (7.55)

Notice that, by virtue of equation (7.54), the spin dyad ε̃A
A is normalised respect

to η̃. To introduce the electromagnetic NP constants as defined in [91] consider the

physical Maxwell spinor φ̃AB satisfying

∇̃A′
Aφ̃AB = 0,

where ∇̃AA′ denotes the Levi-Civita connection respect to η̃. The components the

physical Maxwell spinor respect to the spin dyad ε̃A
A will be denoted, as usual, by

φ̃0 ≡ φ̃AB õ
AõB, φ̃1 ≡ φ̃AB õ

Aι̃B, φ̃2 ≡ φ̃AB ι̃
Aι̃B.

Assumption 3. Following [91], the φ̃0 component is assumed to have an expansion

φ̃0 =
N∑
n=0

φ̃n0
ρ̃3+n

+ o
Å 1

ρ̃3+N

ã
, (7.56)

where the coefficients φ̃n0 do not depend on ρ̃.

The electromagnetic NP constants are defined through the following integrals over

cuts C of null infinity:

F n,k
m ≡

∫
C
Ȳ1;n+1,mφ̃

n+1
0 dS,

where n, m ∈ Z with n ≥ 0, |m| ≤ n + 1 and dS denotes the area element respect

to σ. In flat space, F n
m are absolutely conserved in the sense that their value is

independent of the cut C on which they are evaluated —see [91]. From these, only

those given by n = 0 and m = −1, 0, 1 are conserved in the general non-linear

Einstein Maxwell theory —see [91].

7.6.1 Translation to the F-gauge

In view of equation (7.54), one has that, as a consequence of the standard conformal

transformation law for the spin-1 equation —see [12], the spinor φ′AB, satisfying

∇′A′Aφ′AB = 0,
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where ∇′AA′ is the Levi-Civita connection of g′, is related to φ̃AB via

φ′AB = ρ̃φ̃AB. (7.57)

Therefore, using equations (7.56), (7.55) and (7.57), one obtains

φ′0 =
N∑
n=0

φ̃n0
ρ̃n

+ o
Å 1

ρ̃N

ã
,

where φ′0 ≡ φ′ABo
′Ao′B. From equation (7.49), one has that e′00′ =

√
2ρ̃2∂ρ̃ and

consequently
1√
2
e′00′(φ

′
0) = −φ̃1

0 + o(ρ̃−1).

The repeated application of e′00′ to the above relation shows that in general

1

2q/2
e
′(q)
00′ (φ

′
0) = (−1)qq! φ̃q0 +

N∑
i=q+1

(−1)q
(i+ 1)!

(i− q + 1)!

φ̃i0
ρ̃i−q

+ o
Å 1

ρ̃N−q

ã
,

where e
(q)
00′(φ

′
0) denotes q consecutive applications of e′00′ to φ0. Thus, the quantities

F n
m can be written as

F n
m =

(−1)n+1

(n+ 1)! 2(n+1)/2

∫
C
Ȳ1;n+1,m e

′(n+1)
00′ (φ′0) dS. (7.58)

Observe that the constants F n
m in the previous equation are expressed in terms of

g′-associated quantities. In order to obtain a general expression for the electromag-

netic NP quantities in the F-gauge one has to rewrite expression (7.58) in terms of

gC-related quantities. As discussed before, the frames eAA′ and e′AA′ are related

through a conformal rescaling and a Lorentz transformation as given in equation

(7.50). For the sake of generality, the first part of the discussion will be carried out

for general κ and ΛAB.

Remark 63. In [91] it is shown that the Newman-Penrose constants at I + of a

purely outgoing field propagating on Minkowksi spacetime vanish. A more recent

discussion of this phenomenon was given in [99]. As discussed in [99], if φ̃out0 is a

purely retarded field then it can be expressed as

φ̃out0 = K
∞∑
`=2

∑̀
m=−`

Y2;`,mρ̃
(`−2)(∂ρ̃ − 2∂ũ)

`−2
(
b`m(ũ)

ρ̃`+3

)
(7.59)

where b`m(ũ) are smooth functions which depend only on ũ and K is an unimportant

numerical constant. A short argument given in Proposition 3 of [99] shows that

the NP constants associated to the latter field vanish —see also [91]. In order to

compare (7.59) with the formal expansion for φ̃0 implied by Assumption 2 observe
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that, recalling that ũ = t̃− ρ̃, equations in (7.3) render

ρ =
ρ̃

ũ(ũ+ 2ρ̃)
, τ = − ρ̃+ ũ

ρ̃
. (7.60)

In addition, notice that the discussion of Section 7.5 implies that

φ̃0 = ρ̃−3(Λ0
0)4φ0. (7.61)

Therefore, using equations (7.60), (7.61) and (7.53) one sees that the formal expan-

sions (7.28) imply

φ̃0 =
ũ2ρ̃2

(ũ+ 2ρ̃)2

∞∑
p=2

p∑
`=2

∑̀
m=−`

Y2;`−1,m
p!

ρ̃p−3

ũp(ũ+ 2ρ̃)p
a0,p;`,m

Ç
ρ̃+ ũ

ρ̃

å
, (7.62)

where that a0,p;`,m is the solution to the differential equation (7.18a). These solutions

can be written explicitly in terms of Jacobi polynomials —see [96]. Expanding the

first few terms in expressions (7.62) and (7.59) one can check that by Assumption 2

does not imply purely retarded fields.

Remark 64. The time dual of Remark 63 follows mutatis mutandis : the NP con-

stants on I − of a purely the advanced field φ̃in4 vanish. The formal expansions of

Assumption 2 do not imply purely advanced fields.

Explicit computation of the first three constants

Let εA
A, with ε0

A = oA and ε1
A = ιA, denote a spin dyad normalised respect to gC

as defined in Section 7.3. As a consequence of equation (7.50), the spin dyads εA
A

and ε′A
A, giving rise to eAA′ and e′AA′ , are related via

ε′A
A = κ−1/2ΛBAεB

A. (7.63)

Additionally, the spinor field φAB, satisfying

∇A′
AφAB = 0,

where ∇AA′ is the Levi-Civita connection respect to gC , is related to φ′AB via

φ′AB = κ−1φAB.

Therefore, one has that

φ′0 = κ−2ΛC0ΛD0φCD,

where φCD ≡ εC
CεD

DφCD. Using the Leibniz rule one obtains
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e′00(φ′0) = κ−2
Å

ΛC0ΛD0e
′
00′(φCD) + 2φCDΛC0e

′
00′(Λ

D
0)

− 2κ−1ΛC0ΛD0φCDe
′
00′(κ)

ã
. (7.64)

Notice that, in the above expression, all the quantities except for the frame

derivative e′00 are gC-related quantities, namely, given in the F-gauge and the F-

coordinates. Using equation (7.50) one can expand expression (7.64). This leads to

the following expression for the conserved quantities:

F 0
m = − 1√

2

∫
C
Ȳ1;1,mκ

−3
Å

ΛC0ΛD0ΛB0Λ̄B
′
0′eBB′(φCD)

+ 2κφCDΛC0e
′
00′(Λ

D
0)− 2ΛC0ΛD0φCDe

′
00(κ)

ã
dS. (7.65)

for m = −1, 0, 1. These correspond to the three electromagnetic NP quantities that

remain conserved in the non-linear Einstein Maxwell theory. The last expression

represents the electromagnetic counterpart of the gravitational NP quantities in the

F-gauge as reported in [81] in equation (III.5). The last expression is general can

be used, in principle, to find the electromagnetic NP constants in the F-gauge in

the non-linear case. Nevertheless, particularising the discussion to the case analysed

in this chapter simplifies the expressions considerably. To verify this, observe that,

using the results of Section 7.5.3, equation (7.64) reduces to

e′00′(φ
′
0) = (Λ0

0)4(e00′(φ0)) + 2φ0(Λ0
0)e′00′(Λ0

0). (7.66)

Using equations (7.5a) and (7.53) one observes that

e′00′(Λ0
0) =

√
2

4

Å
Λ0

0
ã3
, (7.67)

and more generally

e
′(n)
00′ (Λ0

0) =

Ñ√
2

4

én

(2n− 1)!!(Λ0
0)2n+1. (7.68)

Using equation (7.67) one gets

e′00′(φ
′
0) = (Λ0

0)4
Å
e00′(φ0) +

√
2

2
φ0

ã
. (7.69)

In order to write explicitly the first term of the last expression one uses equation

(7.5a) and obtains

e00′(φ0) =
1√
2

Å
(1− τ)∂τφ0 + ρ∂ρφ0

ã
. (7.70)
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Substituting equations (7.53) and (7.70) into equation (7.69) renders

e′00′(φ
′
0) =

1√
2
ρ−2(1− τ)−4

Å
(1− τ)∂τφ0 + ρ∂ρφ0 + φ0

ã
.

Using the last expression, the quantities F 0
m as determined in equation (7.58) are

rewritten as

F 0
m = lim

ρ→0
τ→1

Ñ
− 1

2

∫
S2
Ȳ1;1,mρ

−2(1− τ)−4
Å

(1− τ)∂τφ0 + ρ∂ρφ0 + φ0

ã
dS

é
. (7.71)

Substituting the expansion (7.9) for φ0 into equation (7.71) and using the orthogo-

nality relation ∫
S2
Ys;`′,m′Ȳs;`,m = δ`,`′δm,m′ , (7.72)

one obtains

F 0
m = lim

τ→1

Ñ
− 1

2× 2!
(1− τ)−4

Å
(1− τ)ȧ0,2;2,m + 3a0,2;2,m

ãé
. (7.73)

Using the solution for a0,p;`,m as given in equation (7.19a) and the discussion of

the initial data of Section 7.3.3 showing that C~p,m = 0, one gets

F 0
m = − 1

2× 2!× 16
C2,m. (7.74)

where C2,m is the integration constant of Proposition 7.

Remark 65. As discussed in Section 7.3.3 the condition C~p,m = 0 with p ≥ 2,

−p ≤ m ≤ p, does not represent a restriction on the class of initial data but arises

as a necessary condition ensuring that the solutions (7.19a)-(7.19b) to the Jacobi

equation correspond to a solution to the original equations (7.17a)-(7.17b). In the

spin-2 case the analogous condition, in contrast, does represent a restriction on the

class of initial data.

Proceeding in an analogous way, one can compute the next set of constants in the

hierarchy, i.e., F 1
m. A direct computation using equations (7.69) and (7.67) renders

e
′(2)
00 (φ′0) =

Ä
Λ0

0
ä6Å
e
(2)
00′(φ0) +

3
√

2

2
e00′(φ0) + φ0

ã
. (7.75)

Using expression (7.5a) one has

e
(2)
00′(φ0) =

1

2

Å
(1−τ)2∂2

τφ0+2ρ(1−τ)∂τ∂ρφ0+ρ2∂2
ρφ0−(1−τ)∂τφ0+ρ∂ρφ0

ã
. (7.76)

Substituting equations, (7.53), (7.70) and (7.76) into (7.75) renders
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e
′(2)
00′ (φ

′
0) =

1

2
ρ−3(1− τ)−6

Å
(1− τ)2∂2

τφ0 + 2ρ(1− τ)∂τ∂ρφ0 + ρ2∂2
ρφ0

+ 2(1− τ)∂τφ0 + 4ρ∂ρφ0 + 2φ0

ã
.

Using the last expression the integral of equation (7.58) reads

F 1
m = lim

ρ→0
τ→1

Ñ
1

8

∫
S2
Ȳ1;2,mρ

−3(1− τ)−6
Å

(1− τ)2∂2
τφ0 + 2ρ(1− τ)∂τ∂ρφ0

+ ρ2∂2
ρφ0 + 2(1− τ)∂τφ0 + 4ρ∂ρφ0 + 2φ0

ã
dS

é
. (7.77)

Exploiting the orthogonality conditions (7.72) one gets

F 1
m = lim

τ→1

Ñ
1

8× 3!
(1− τ)−6

Å
(1− τ)2ä0,3;3,m + 6(1− τ)ȧ0,3;3,m + 20a0,3;3,m

ãé
. (7.78)

Consequently, using equation (7.19a) with C~p,m = 0 —see Remark 65, one obtains

F 1
m =

1

8× 3!× 32
C3,m.

where C3,m is the integration constant of Proposition 7. It is instructive to find

explicitly one order more in this hierarchy —namely F 2
m. A computation using

equations (7.75) and (7.67) renders

e
′(3)
00′ (φ

′
0) =

Ä
Λ0

0
ä8Ñ

e
(3)
00′(φ0) + 3

√
2e

(2)
00′(φ0) +

11

2
e00′(φ0) +

3
√

2

2
φ0

é
. (7.79)

Applying e00′ to equation (7.76) one obtains

e
(3)
00′(φ0) =

1

2
√

2

Å
(1− τ)3∂3

τφ0 + ρ3∂3
ρφ0 + 3ρ(1− τ)2∂ρ∂

2
τφ0

+ 3ρ2(1− τ)∂2
ρ∂τφ0 − 3(1− τ)2∂2

τφ0 + 3ρ2∂2
ρφ0

+ (1− τ)∂τφ0 + ρ∂ρφ0

ã
. (7.80)

Using the last expression along with equations (7.53), (7.70), (7.76) one gets

e
′(3)
00′ (φ

′
0) =

1

2
√

2
ρ−4(1− τ)−8

Å
(1− τ)3∂3

τ (φ0) + ρ3∂3
ρ(φ0) + 3ρ2(1− τ)∂2

ρ∂τ (φ0)

+ 3ρ(1− τ)2∂ρ∂
2
τ (φ0) + 9ρ2∂2

ρ(φ0) + 3(1− τ)2∂2
τ (φ0) + 12ρ(1− τ)∂ρ∂τ (φ0)

+ 18ρ∂ρ(φ0) + 6(1− τ)∂τ (φ0) + 6φ0

ã
.

Consequently, the quantities F 2
m as given in equation (7.58) read
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F 2
m = lim

ρ→0
τ→1

Ñ
1

48

∫
S2
Ȳ1;3,mρ

−4(1− τ)−8
Å

(1− τ)3∂3
τ (φ0) + ρ3∂3

ρ(φ0)

+3ρ2(1−τ)∂2
ρ∂τ (φ0)+3ρ(1−τ)2∂ρ∂

2
τ (φ0)+9ρ2∂2

ρ(φ0)+3(1−τ)2∂2
τ (φ0)

+ 12ρ(1− τ)∂ρ∂τ (φ0) + 18ρ∂ρ(φ0) + 6(1− τ)∂τ (φ0) + 6φ0

ã
dS

é
. (7.81)

Exploiting the orthogonality condition (7.72) the last expression simplifies to

F 2
m = lim

τ→1

Ñ
1

48× 4!
(1− τ)−8

Å
(1− τ)3

...
a 0,4;4,m + 15(1− τ)2ä0,4;4,m

+ 90(1− τ)ȧ0,4;4,m + 210a0,4;4,m

ãé
. (7.82)

Finally, using equation (7.19a) with C~p,m = 0 —see Remark 65, one obtains

F 2
m =

3

48× 4!× 128
C4,m.

where C4,m is the integration constant of Proposition 7.

The general case

The previous discussion suggests that, in principle, it should be possible to obtain

a general formula for F n
m. Revisiting the calculation of F 0

m, F 1
m and F 2

m one can

obtain the following results concerning the overall structure of the electromagnetic

NP constants in flat space:

Lemma 28. For any integer n ≥ 1

e
′(n)
00′ (φ

′
0) =

Å
Λ0

0
ã2(n+1) n∑

i=1

Aie
(i)
00′(φ0)

for some coefficients Ai independent of ρ and τ .

Proof. To prove this result one proceeds by induction. Equations (7.69), (7.75) and

(7.79) already show that the result is valid for n = 1, n = 2 and n = 3. This

constitutes the basis of induction. Now, assume that

e
′(n)
00′ (φ

′
0) =

Å
Λ0

0
ã2(n+1) n∑

i=1

Aie
(i)
00′(φ0),

then, applying e′00′ to the last expression one has

e
′(n+1)
00′ (φ′0) =

Å
Λ0

0
ã2(n+1) n∑

i=1

Aie
′
00′(e

(i)
00′(φ0))+2(n+1)

Å
Λ0

0
ã2n+1Å

e′00′Λ0
0
ã n∑
i=1

Aie
(i)
00′(φ0).
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Using equations (7.50), (7.53) and (7.67) one obtains

e
′(n+1)
00′ (φ′0) =

Å
Λ0

0
ã2(n+2) n∑

i=1

Aie
(i+1)
00′ (φ0) +

√
2

2
(n+ 1)

Å
Λ0

0
ã2(n+2) n∑

i=1

Aie
(i)
00′(φ0).

One can rearrange the last expression into

e
′(n+1)
00′ (φ′0) =

Å
Λ0

0
ã2(n+2) n+1∑

i=1

Āie
(i)
00′(φ0),

where Ā1 = A1 and Āi =
√
2
2

(n+ 1)Ai + Ai−1 for i ≥ 2.

Lemma 29. For any integer n ≥ 1

e
(n)
00′(φ0) =

k=n∑
i+j=k
k=1

Bijρ
i(1− τ)j∂(i)

ρ ∂
(j)
τ φ0,

for some coefficients Bij independent of ρ and τ .

Proof. As in the proof of Lemma 28, one argues inductively. Equations (7.70), (7.76)

and (7.80) serve as the basis of induction. Assume that

e
(n)
00′(φ0) =

k=n∑
i+j=k
k=1

Bijρ
i(1− τ)j∂(i)

ρ ∂
(j)
τ φ0.

then, applying e00′ to the last expression renders

e
(n+1)
00′ (φ0) =

k=n∑
i+j=k
k=1

Bij

Å
ρi(1− τ)je00′(∂

(i)
ρ ∂

(j)
τ φ0) + (∂(i)

ρ ∂
(j)
τ φ0)e00′(ρ

i(1− τ)j)
ã
.

Using that

e00′(ρ
i(1− τ)j) =

1√
2

(i+ j)ρi(1− τ)j

and

e00′(∂
(i)
ρ ∂

(j)
τ φ0) =

1√
2

Å
(1− τ)∂(i)

ρ ∂
(j+1)
τ φ0 + ρ∂(i+1)

ρ ∂jτφ0

ã
,

one obtains

e
(n+1)
00′ (φ0) =

k=n∑
i+j=k
k=1

1√
2
Bij

Å
ρi(1− τ)j+1∂(i)

ρ ∂
(j+1)
τ φ0 + ρi+1(1− τ)j∂(i+1)

ρ ∂(j)
τ φ0

+ (i+ j)ρi(1− τ)j∂(i)
ρ ∂

(j)
τ φ0

ã
.
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The last expression can be rearranged as

e
(n+1)
00′ (φ0) =

k=n+1∑
i+j=k
k=1

B̄ijρ
i(1− τ)j∂(i)

ρ ∂
(j)
τ φ0,

for some coefficients B̄ij which depend only on Bij, i and j.

Remark 66. In the following the label + is added to the constants F n+
m to remind

that the quantities correspond to the NP constants at I +.

Proposition 11. If the electromagnetic constants F n
m

+ at I + are finite, then F n
m

+

depends only on the initial datum a0;n+2,n+2,m(0) —that is, one has

F n
m

+ = Q+(m,n)Cn+2,m,

where Q+(m,n) is a numerical coefficient and Cn+2,m is the integration constant of

Proposition 7.

Proof. Using equation (7.53) and the results from Lemmas 28 and 29 one has that

e
′(n)
00′ (φ

′
0) = ρ−(n+1)(1− τ)−2(n+1)

n∑
q=1

k=q∑
i+j=k
k=1

Eijρ
i(1− τ)j∂(i)

ρ ∂
(j)
τ φ0,

for some coefficients Eij independent of ρ and τ . Using the expansion for φ0 given

in equation (7.9) one has

e
′(n)
00′ (φ

′
0) = ρ−(n+1)(1− τ)−2(n+1)

n∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=1

p∑
`′=1

`′∑
m′=−`′

 1

p!
Eijρ

i(1− τ)jY1;`′−1,m′

∂(i)
ρ ∂

(j)
τ (ρpa0,p;`′,m′(τ))

.
Noticing that

∂(i)
ρ ∂

(j)
τ (ρpa0,p;`′,m′(τ)) = ∂(i)

ρ (ρp)∂(j)
τ (a0,p;`′,m′(τ)), (7.83)

and using that

∂(i)
ρ ρ

p =
(p+ 1)!

(p− i+ 1)!
ρp−i, (7.84)

one finds

e
′(n)
00′ (φ

′
0) = (1− τ)−2(n+1)

n∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=1

p∑
`′=1

`′∑
m′=−`′

Eijp ρp−(n+1)(1− τ)j
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Y1;`′−1,m∂
(j)
τ (a0,p;`′,m′(τ))

,
where Eijp = Eij(p+ 1)/(p− i+ 1)!. Notice that, the terms with p < n+ 1 diverge

when ρ→ 0 while the terms with p > n+ 1 vanish when ρ→ 0. Integrating the last

expression with Ȳ1;n,m and using the the orthogonality condition (7.72) one obtains

∫
S2
Ȳ1;n,me

′(n)
00′ (φ

′
0)dS = (1−τ)−2(n+1)

n∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=1

p∑
`′=1

`′∑
m′=−`′

Eijp ρp−(n+1)(1−τ)j

δ`′−1,nδm′,m∂
(j)
τ (a0,p;`′,m′(τ))

.
Noticing that only the terms with `′ = n + 1 and m = m′ contribute to the sum

and recalling that `′ ≤ p one realises that all the potentially diverging terms with

p < n+ 1 vanish. Taking this into account this observation one concludes that

lim
ρ→0

∫
S2
Ȳ1;n,me

′(n)
00′ (φ

′
0)dS = (1−τ)−2(n+1)

n∑
q=1

k=q∑
i+j=k
k=1

Eijn+1(1−τ)j∂(j)
τ (a0,n+1;n+1,m(τ)).

Taking into account the expression for the electromagnetic NP quantities F n
m in the

F-gauge as given in equation (7.58), consistently with this definition, one replaces n

with n+ 1 to obtain

F n+
m = lim

τ→1

ï
(1− τ)−2(n+2)

n+1∑
q=1

k=q∑
i+j=k
k=1

Eijn+2(1− τ)j∂(j)
τ (a0,n+2;n+2,m(τ))

ò
. (7.85)

Therefore, if F n
m is finite then it can only depend on the initial datum a0;n+2,n+2,m(0).

Moreover, since C~n+2,m = 0. One concludes that

F n+
m = Q+(m,n)Cn+2,m,

where Q+(m,n) is a numerical coefficient and Cn+2,m is the integration constant of

Proposition 7.

Remark 67. Notice that to show that F n
m

+ is always finite then one would need to

analyse the limit given in equation (7.85). This, however, requires a detailed analysis

of the coefficients Eijp which in addition would determine explicitly the numerical

coefficient Q+(m,n). The latter requires a lengthy computation which will not be

pursued here.
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7.6.2 The constants at I −

The analysis carried out in Sections 7.5 and 7.6 for the electromagnetic constants

defined at I +, can be performed in a completely analogous way for I −. To do

so, consider a formal replacement τ → −τ and consistently ∂τ → −∂τ . Upon this

formal replacement the roles of ` = e00′ and n = e11′ as defined in (7.5a) and φ0

and φ2 are essentially interchanged. Then, following the discussion of Sections 7.5.3

and 7.6, one obtains mutatis mutandis the time dual of Proposition 11:

Proposition 12. If the electromagnetic constants F n
m
− at I − are finite, then F n

m
−

depends only on the initial datum a2;n+2,n+2,m(0). Moreover,

F n
m
− = Q−(m,n)Dn+2,m,

where Q−(m,n) is a numerical coefficient and Dn+2,m is the integration constant of

Proposition 7.

Finally, recalling the results of Propositions 11 and 12 and the discussion of the

initial data given in Section 7.3.3 one obtains the following:

Theorem 5. If the electromagnetic NP constants F n
m

+ and F n
m
− at I + and I −,

are finite, then, up to a numerical factor Q+(m,n)/Q−(m,n), coincide.

Remark 68. Observe that the conclusion of Theorem 5, which at first instance

would seem to hold only for time-symmetric data, holds for generic initial data and

is a consequence of the interplay between the evolution and constraint equations as

discussed in Section 7.3.3.

Remark 69. The computations at order n = 0, 1, 2 given in Section 7.6.1 suggest

that in fact Q+(m,n) = Q−(m,n). Nevertheless, explicitly determining these factors

require a lengthy computation which will not be pursued here.

7.7 The NP constants for the massless spin-2 field

In this section an analogous analysis to that given in Section 7.6 is performed for the

case of the spin-2 massless field. The same notation as the one introduced in Section

7.6 will be used. In particular, the spin dyads ε̃A
A, ε

′
A
A and εA

A associated to η̃,

g′ and gC will be employed. To introduce the gravitational NP constants originally

introduced in [91], let φ̃0, φ̃1, φ̃2, φ̃3 and φ̃4 denote the components of the spin-2

massless field φ̃ABCD respect to ε̃A
A. The spin-2 equation reads

∇̃A′
Aφ̃ABCD = 0. (7.86)
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Assumption 4. Following [91], the component φ0 is assumed to have the expansion

φ̃0 =
N∑
n=0

φ̃n0
ρ̃5+n

+ o
Å 1

ρ̃5+N

ã
, (7.87)

where the coefficients φ̃n0 do not depend on ρ̃.

As already mentioned, the field φ̃ABCD provides a description of the linearised

gravitational field over the Minkowski spacetime. In the full non-linear theory,

the linear field φ̃ABCD is replaced by the Weyl spinor ΨABCD and the analogue of

equation (7.86) encodes the second Bianchi identity in vacuum —see [91]. The spin-2

NP quantities are defined through the following integrals over cuts C of null infinity:

Gn
m ≡

∫
C
Ȳ2;n+2,mφ̃

n+1
0 dS,

where n,m ∈ Z with n ≥ 0, |m| ≤ n + 2 and dS denotes the area element respect

to σ. The NP constants Gn
m are absolutely conserved in the sense that their value

is independent on the cut C on which they are evaluated.

Remark 70. In particular, the constants G0
m are also conserved in the full non-

linear case of the gravitational field where φ̃0 is replaced by the component Ψ0 of

the Weyl spinor ΨABCD —see [91]. These are the only constants of the hierarchy

which are generically inherited in the non-linear case.

7.7.1 Translation to the F-gauge

An expression for the gravitational NP constants in the F-gauge has been given in

Section III of [81]. In order to provide a self-contained discussion and for the ease

of comparison with the analysis made in Section 7.6 the analogue of Formula (III.5)

of [81] will be derived in accordance with the notation and conventions used in this

chapter. In view of equation (7.54), one has that, as a consequence of the standard

conformal transformation law for the spin-2 equation —see [12], the spinor φ′ABCD,

satisfying

∇′A′Aφ′ABCD = 0,

where ∇′AA′ is the Levi-Civita connection of g′, is related to φABCD via

φ′ABCD = ρ̃φ̃ABCD. (7.88)

Therefore, using equations (7.87),(7.55) and (7.88), one obtains

φ′0 =
N∑
n=0

φ̃n0
ρ̃n

+ o
Å 1

ρ̃N

ã
,
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where φ′0 ≡ φ′ABCDo
′Ao′Bo′Co′D. Using the last expansion and recalling that e′00′ =√

2ρ̃2∂ρ̃ one obtains, after consecutive applications of e′00′ , the expression

Gn
m = − (−1)n+1

(n+ 1)!2(n+1)/2

∫
C
Ȳ2;n+2,me

′(n+1)
00′ (φ′0)dS. (7.89)

To derive an expression for the spin-2 NP constants in the F-gauge one recalls

the relation between the g′ and gC representations and their associated spin dyads

encoded in equation (7.63). Once again, as a consequence of the conformal trans-

formation laws for the spin-2 equation one has that the spinor field φABCD related

to φ′ABCD through

φ′ABCD = κ−1φABCD,

satisfies

∇A′
AφABCD = 0,

where ∇AA′ represents the Levi-Civita connection respect to gC . Additionally, one

has that

φ′0 = κ−3ΛA0ΛB0ΛC0ΛD0φABCD,

where φABCD ≡ εA
AεB

BεC
CεD

DφABCD .

Explicit computation of the first constant

Using equation (7.89) and the Leibniz rule one obtains the analogue of Equation

(III.5) of [81] written in accordance with the notation and conventions used in this

thesis

G0
m = − 1√

2

∫
C
Ȳ2;2,mκ

−4
Å

ΛA0ΛB0ΛC0ΛD0

Ä
ΛE0Λ̄E

′
0′eEE′(φABCD)

− 3φABCDe
′
00′(κ)

ä
+ 4κΛA0ΛB0ΛC0φABCDe

′
00′(Λ

D
0)
ã

dS. (7.90)

Particularising the discussion to the case of the Minkowski spacetime, simplifies

the expressions considerably. To see this, observe that, using the results of Section

7.5.3 and equation (7.67) one has that

e′00′(φ
′
0) = (Λ0

0)6(e00′(φ0) +
√

2φ0). (7.91)

A direct computation using equation (7.5a) and (7.69) renders

e′00′(φ
′
0) =

√
2

ρ3(1− τ)6

Å1

2
(1− τ)∂τφ0 +

1

2
ρ∂ρφ0 + φ0

ã
.

Using the last expression, the quantities G0
m as determined in equation (7.89) are
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rewritten as

G0
m = lim

ρ→0
τ→1

Ñ
− 1

2

∫
S2
Ȳ2;2,mρ

−3(1− τ)−6
Å

(1− τ)∂τφ0 + ρ∂ρφ0 + 2φ0

ã
dS

é
. (7.92)

Substituting the expansion for φ0 as succinctly encoded in (7.28)

φ0 =
∞∑
p=2

p∑
`=2

∑̀
m=−`

1

p!
a0,p;`,m(τ)Y2;`−1mρ

p, (7.93)

into equation (7.71) renders

G0
m = lim

ρ→0
τ→1

Ñ
−1

2
(1−τ)−6

∞∑
p=2

p∑
`=2

∑̀
m=−`

1

p!
ρn−3

∫
S2
Ȳ2;2,m

Å
(1−τ)ȧ0,p;`,m+(p+2)a0,p;`,m

ã
dS

é
.

Using the orthogonality relation (7.72) one obtains

G0
m = lim

τ→1

Ñ
− 1

2× 3!
(1− τ)−6

Å
(1− τ)ȧ0,3;3,m + 5a0,3;3,m

ãé
.

Remark 71. The above expression is general and makes no assumption on the form

of the initial data. An explicit calculation shows, however, that the limit will diverge

unless one discards the logarithmic part of the solution in (7.36a). This observation

brings to the forefront the close relation between the regularity at the conformal

boundary (and in particular at i0) and the NP constants.

The previous remark motivates the following assumption:

Assumption 5. The initial data (7.37) is assumed to satisfy the regularity condition

C~p,m = D~p,m = 0 for p ≥ 3, −p ≤ m ≤ p.

so that no logarithmic singularities arise in the solutions to the Jacobi equation

(7.34a)-(7.34b).

Substituting the solution for a0,p;`,m as given in equation (7.36a) for p = ` = 3,

taking into account the discussion of the initial data of Section 7.4.3 and setting

C~3,m = 0, consistent with Assumption 5, one obtains

G0
m = − 1

2× 3!× 64
C3,m. (7.94)

where C3,m is the integration constant of Proposition 8.
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The general case

One can obtain in similar way to compute higher constants in the hierarchy Gn
m. In

order to obtain a general expression for the overall structure of Gn
m one proceeds

inductively —in a similar way to the discussion of the electromagnetic NP constants

F n
m.

Lemma 30. For any integer n ≥ 1

e
′(n)
00′ (φ

′
0) =

Å
Λ0

0
ã2(n+2) n∑

i=1

Aie
(i)
00′(φ0)

for some coefficients Ai independent of ρ and τ .

Proof. As before, one argues by induction. Equation (7.91) for the case n = 0

constitutes the basis of induction. Assuming that

e
′(n)
00′ (φ

′
0) =

Å
Λ0

0
ã2(n+2) n∑

i=1

Aie
(i)
00′(φ0),

and applying e′00′ one obtains

e
′(n+1)
00′ (φ′0) =

Å
Λ0

0
ã2(n+2) n∑

i=1

Aie
′
00′(e

(i)
00′(φ0))

+ 2(n+ 2)
Å

Λ0
0
ã2n+3Å

e′00′Λ0
0
ã n∑
i=1

Aie
(i)
00′(φ0).

Making use of equations (7.50), (7.53) and (7.67) one gets

e
′(n+1)
00′ (φ′0) =

Å
Λ0

0
ã2(n+3) n∑

i=1

Aie
(i+1)
00′ (φ0) +

√
2

2
(n+ 1)

Å
Λ0

0
ã2(n+3) n∑

i=1

Aie
(i)
00′(φ0).

One can rearrange the last expression into

e
′(n+1)
00′ (φ′0) =

Å
Λ0

0
ã2(n+3) n+1∑

i=1

Āie
(i)
00′(φ0),

where Ā1 = A1 and Āi =
√
2
2

(n+ 2)Ai + Ai−1 for i ≥ 2.

Remark 72. Observe that the conclusion of Lemma 29 in Section 7.6 is valid for

any scalar field φ onM. Consequently, it can be applied without further change for

the spin-2 case.

Proposition 13. If the NP constants Gn
m

+ associated to a spin-2 field on the

Minkowski spacetime at I + are finite, then Gn
m

+ depends only on the initial da-

tum a0;n+3,n+3,m(0) —that is, one has

Gn
m

+ = Q+(m,n)Cn+3,m,
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where Q+(m,n) is a numerical coefficient and Cn+3,m is the integration constant of

Proposition 8.

Proof. Taking into account Remark 72 and equation (7.53) one obtains using Lem-

mas 29 and 30 that

e
′(n)
00′ (φ

′
0) = ρ−(n+2)(1− τ)−2(n+2)

n∑
q=1

k=q∑
i+j=k
k=1

Eijρ
i(1− τ)j∂(i)

ρ ∂
(j)
τ φ0,

for some coefficients Eij independent of ρ and τ . Using the expansion for φ0 given

in equation (7.93) one has

e
′(n)
00′ (φ

′
0) = ρ−(n+2)(1− τ)−2(n+2)

n∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=2

p∑
`′=2

`′∑
m′=−`′

 1

p!
Eijρ

i(1− τ)jY2;`′−1,m′

∂(i)
ρ ∂

(j)
τ (ρpa0,p;`′,m′(τ))

.
Using equations (7.83) and (7.84) one finds

e
′(n)
00′ (φ

′
0) = (1− τ)−2(n+2)

n∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=2

p∑
`′=2

`′∑
m′=−`′

Eijp ρp−(n+2)(1− τ)j

Y2;`′−1,m∂
(j)
τ (a0,p;`′,m′(τ))

,
where Eijp = Eij(p + 1)/(p − i + 1)!. In view of the expression for the spin-2 NP

constants given in equation (7.89), one replaces n with n+ 1 to obtain

e
′(n+1)
00′ (φ′0) = (1− τ)−2(n+3)

n+1∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=2

p∑
`′=2

`′∑
m′=−`′

Eijp ρp−(n+3)(1− τ)j

Y2;`′−1,m∂
(j)
τ (a0,p;`′,m′(τ))

.
Integrating the last expression with Ȳ2;n+2,m and using the the orthogonality condi-

tion (7.72) one obtains

∫
S2
Ȳ2;n+2,me

′(n+1)
00′ (φ′0)dS = (1−τ)−2(n+3)

n+1∑
q=1

k=q∑
i+j=k
k=1

∞∑
p=2

p∑
`′=2

`′∑
m′=−`′

Eijpδ`′−1,n+2δm′,m

ρp−(n+3)(1− τ)j∂(j)
τ (a0,p;`′,m′(τ))

.
Observe that only the terms with `′ = n + 3 and m = m′ contribute to the sum
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and `′ ≤ p, consequently all the potentially diverging terms with p < n + 3 vanish.

Taking this into account one concludes that

lim
ρ→0

∫
S2
Ȳ2;n+3,me

′(n+1)
00′ (φ′0)dS = (1−τ)−2(n+3)

n+1∑
q=1

k=q∑
i+j=k
k=1

Eijn+3(1−τ)j∂(j)
τ (a0,n+3;n+3,m(τ)).

Therefore, one concludes that

Gn
m

+ = lim
τ→1

ï
(1− τ)−2(n+3)

n+1∑
q=1

k=q∑
i+j=k
k=1

Eijn+3(1− τ)j∂(j)
τ (a0,n+3;n+3,m(τ))

ò
(7.95)

At this point, a necessary condition for the above limit to be finite is to set C~n+3,m =

0 to avoid the appearance of logarithmic singularities. In accordance with Assump-

tion 5 one concludes that, if Gn
m is finite then it can only depend on the initial datum

a0;n+3,n+3,m(0). Moreover,

Gn
m

+ = Q+(m,n)Cn+3,m,

where Q+(m,n) is a numerical coefficient and Cn+3,m is the integration constant

of Proposition 8. In the last line the label + has been added to remind that the

quantities correspond to the NP constants at I +.

Remark 73. Notice that Assumption 5 is a necessary condition if the full hierarchy

of constants Gn
m

+ is required. Nevertheless, if one is only interested on a finite

subset of these constants, say Gn
m

+ at fixed order n′, then the restriction imposed by

Assumption 5 to the initial data can be relaxed to C~p,m = D~p,m = 0 for p = n′ + 3,

−p ≤ m ≤ p.

7.7.2 The constants on I −

The time dual result can be obtained succinctly considering a formal replacement

τ → −τ and consistently ∂τ → −∂τ . As previously discussed, upon this formal

replacement the roles of ` = e00′ and n = e11′ as defined in (7.5a) and φ0 and φ4

are essentially interchanged. Finally, one obtains mutatis mutandis that the time

dual of Proposition 13

Proposition 14. If the NP constants Gn
m
− associated to a spin-2 field on the

Minkowski spacetime at I − are finite, then Gn
m
− depends only on the initial da-

tum a4;n+3,n+3,m(0) —that is, one has

Gn
m
− = Q−(m,n)Dn+3,m,

where Q−(m,n) is a numerical coefficient and Dn+3,m is the integration constant of
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Proposition 8.

Remark 74. A necessary condition for Gn
m
± to be finite is that the regularity con-

dition of Assumption 5 is satisfied —see Remark 73. Nevertheless, to show that this

condition is sufficient requires a detailed analysis of the coefficients Eijn+3 in equa-

tion (7.95), which in addition would determine explicitly the numerical coefficient

Q±(m,n). The latter requires a lengthy computation which will not be pursued

here.

Recalling Propositions 13 and 14 and the discussion of the initial data given in

Section 7.4.3 one obtains the following:

Main Result 3. If the spin-2 NP constants Gn
m

+ and Gn
m
− at I + and I − in

Minkowski spacetime, are finite, then, up to a numerical factor Q+(m,n)/Q−(m,n),

coincide.

Remark 75. This conclusion, which at first instance would seem to hold only for

time-symmetric data, is a consequence of the field equations and, as discussed in

Section 7.4.3, holds for generic initial data satisfying the regularity condition given

in Assumption 5 —see also Remark 73.

Remark 76. A similar symmetric behaviour has been observed in the gravitational

case in [100]. In that reference the Newman-Penrose constants at future and past null

infinity of the spacetime arising from Bowen-York initial data have been computed.

7.7.3 The time symmetric case

It is of interest to analyse the case when the initial data is time-symmetric. An

analysis of a spin-2 field on Minkowski spacetime with time-symmetric initial data

in the framework of the cylinder at spatial infinity was given in [98]. In this reference

it is shown that for time-symmetric initial data one has, for p ≥ 3, −p ≤ m ≤ p ,

that

a0,p,p,m(0) = −a4,p,p,m(0). (7.96)

Nevertheless, as shown in Section 7.4.3 if the regularity condition C~p,m = D~p,m = 0

holds, then necessarily a0,p,p,m(0) = a4,p,p,m(0). Combining this observation with the

condition (7.96) valid for time-symmetric data, one concludes, for p ≥ 3, −p ≤ m ≤
m, that

a0,p,p,m(0) = a4,p,p,m(0) = 0. (7.97)

Therefore Cp,m = Dp,m = 0 and using Propositions 13 and 14 one concludes that all

the constants in the hierarchy Gn
m
± vanish.

Proposition 15. Given time-symmetric initial data for the spin-2 field on the

Minkowski spacetime, if the regularity conditions (7.97) hold for p ≥ 3, then the
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gravitational NP constants at I + and I −, denoted by Gn
m

+ and Gn
m
−, are finite

and vanish —that is, one has that

Gn
m

+ = Gn
m
− = 0.

Remark 77. In the time-symmetric case the regularity condition of Assumption

5 imposes conditions on initial data which can be written covariantly in terms of

the value of the linearised Bach tensor and its derivatives at spatial infinity. More

precisely, in the time-symmetric case, the regularity condition C~p,m = D~p,m = 0 at

fix order p is equivalent to

D(AqBq ...DA1B1BABCD)(i
0) = 0, q = 0...p,

where BABCD is the linearised Bach spinor given in terms of φABCD via

BABCD = 2DE(AΩφBCD)
E + ΩDE(AφBCD)

E,

where Ω = ρ2 and D is the Levi-Civita connection respect to the induced metric

by gC at S —see Section 7.1. This result was given in [96] and follows from direct

linearisation of Theorem 4.1 in [27]. In the non-linear case the above regularity

condition is a necessary but not sufficient condition for the regularity of I as shown

in [101].

Remark 78. Whether or not there exists an analogous covariant representation of

the regularity condition of Assumption 5 for the non time-symmetric case is still a

research question which is not investigated in this thesis.

7.8 Conclusions

In this chapter the correspondence between initial data given on a Cauchy hypersur-

face S intersecting i0 on Minkowski spacetime for the spin-1 (electromagnetic) and

spin-2 fields and their associated NP constants was analysed. This analysis has been

done for the full hierarchy of NP constants F n
m and Gn

m in the Minkowski spacetime.

For the electromagnetic case, it was shown that, once the initial data for the

Maxwell spinor is written as an expansion of the form (7.21), the electromagnetic

NP constants F n
m

+ at I + can be identified with the initial datum a0,p;`,m(0) with

p = ` = n+2. Since 1 ≤ ` ≤ p, one concludes that F n
m are in correspondence with the

highest harmonic but are irrespective of the initial data for the lower modes ` < p.

In an analogous way, one can identify the electromagnetic NP constants F n
m
− at I −

with the initial datum a2,p;`,m(0). Notice that the only restriction imposed on the

initial data is to have the appropriate decay at infinity so that the electromagnetic

NP constants can be defined. Apart from this requirement, the initial data encoded
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in (7.21) is completely general. As a by-product of the analysis of Section 7.6

and the discussion of the field equations given in Section 7.3.3 one concludes that

the electromagnetic NP constants at I + and I − coincide —up to an irrelevant

numerical factor. In this discussion, the field equations S played a dual role: on the

one hand they allow to conclude that for p = ` one has that C~p,m = D~p,m = 0 so that

the potentially singular part of the solutions (7.19a) and (7.19b) does not contribute

to the electromagnetic field. On the other hand, the field equations further imply

that a0,p;`,m(0) = a2,p;`,m(0) = Cp,m = Dp,m. This last observation is the one which

ultimately relates the electromagnetic NP constants at I + and I −. Observe that

this result is irrespective of the initial data being time symmetric or not.

An analogous analysis was performed for a spin-2 field on a Minkowski back-

ground. In contrast with the electromagnetic case, for the spin-2 field, the divergent

terms at τ = ±1 in expressions (7.36a)-(7.36b) are solutions which contribute to the

field. In other words, C~p,m = D~p,m 6= 0 represents, in principle, admissible initial

data. Consequently, for generic initial data, logarithmic singularities at null infin-

ity arise. In such cases the spin-2 field does not have the appropriate decay and

the associated NP constants are divergent. Thus, if the initial data for the field

is written as an expansion of the form (7.37) and satisfy the regularity condition

C~p,m = D~p,m = 0, then the spin-2 NP constants Gn
m

+ and Gn
m
− at I + and I − can

be identified with the initial data a0,n+3;n+3,m(0) and a4,n+3,n+3,m(0), respectively.

Moreover, as discussed in Section 7.4.3, if the regularity condition is satisfied, the

field equations imply that a0,p,p,m(0) = a4,p,p,m(0). Consequently, up to a numerical

constant, Gn
m

+ and Gn
m
− coincide. Notice that this result is irrespective of the initial

data being time symmetric or not. Furthermore, a direct consequence of this anal-

ysis is that, for time-symmetric data satisfying the regularity condition, the spin-2

NP constants vanish.

7.9 Appendix: The connection on S2

In this section expressions for the connection coefficients (of the Levi-Civita connec-

tion) respect to a complex null frame which do not make reference to any particular

coordinate system on S2 are obtained. To do so, the Cartan structure equations

as given in Appendix 5.8 of Chapter 5 will be employed. Let {∂+,∂−} be a com-

plex null frame on S2 with corresponding dual covectors {ω+,ω−}. Namely, one

considers

σ = 2(ω+ ⊗ ω− + ω− ⊗ ω+), σ] =
1

2
(∂+ ⊗ ∂− + ∂− ⊗ ∂+),
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where σ and σ] denote the covariant and contravariant version of the standard

metric on S2. Furthermore, one assumes that

∂+ = ∂−, (7.98)

and consequently ω+ = ω−. To start the discussion observe that [∂+,∂−] and its

complex conjugate can be expressed as a linear combination of the basis vectors ∂+

and ∂−. A direct inspection, taking into account the condition encoded in equation

(7.98), reveals that

[∂+,∂−] = $∂+ −$∂−, (7.99)

where $ is a scalar field over S2. Using the no-torsion condition of the Levi-Civita

connection /∇ on S2 one obtains from equation (7.99) that

/∇+∂− − /∇−∂+ = $∂+ −$∂−, (7.100)

where /∇+ and /∇− denote a covariant derivative in the direction of ∂+ and ∂−

respectively. Using equation (7.100) and the metricity conditions /∇+σ = 0, /∇−σ =

0, one finds that the only non-zero connection coefficients are all encoded in the

scalar field $:

Γ−
−
− = Γ+

+
+ = −Γ−

+
+ = −Γ+

−− = $.

The connection can be compactly encoded in the curvature 1-form γab as defined

in equations (5.89) and (5.87) in Appendix 5.8 of Chapter 5. A direct computation

renders

γ+
+ = γ−− = $ω+ −$ω−, γ+

− = γ−+ = 0.

Using the first Cartan structure equation as given in equation (5.88a) in Appendix

5.8 of Chapter 5, one obtains

dω+ = −$ω+ ∧ ω−, dω− = $ω+ ∧ ω−. (7.101)

For completeness, using the above expressions and the second Cartan structure

equation as given in (5.88b) in Appendix 5.8 of Chapter 5, one can directly compute

the curvature form Ωa
b:

Ω+
+ = Ω−− = −2(|$|2 +

1

2
(∂+$ + ∂−$))ω+ ∧ ω−.

Notice that in order to find further information about $ one can exploit the fact

that the Riemann curvature for maximally symmetric spaces (N ,h) is given by

Rabcd =
1

2
R(habhbd − hadhbc),
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where R is the Ricci scalar of the Levi-Civita connection of the metric h on N .

Since the Ricci scalar for S2 is R = −2, using equations (5.89) and (5.87) as given

in Appendix 5.8 of Chapter 5, one finds that

Ω+
+ = Ω−− = 2ω+ ∧ ω−.

Consequently, one concludes that the scalar field $ satisfies

|$|2 +
1

2
(∂+$ + ∂−$) = −1. (7.102)

7.10 Appendix: The ð and ð̄ operators

In this appendix, the operators ∂+ and ∂− are written in terms of the ð and ð̄
operators of Newman and Penrose. To fix the notation and conventions, let ðP
and ð̄P denote the ð and ð̄ operators as defined in [12]. In the language of the

NP-formalism [12, 29, 102], given a null frame represented by {l,n,m, m̄} their

corresponding covariant directional derivatives are denoted by {D,∆, δ, δ̄}. The

operators ðP and ð̄P acting on a quantity η with spin weight s can be written in

terms of the δ and δ̄ derivatives as —see [12],

ðPη = δη + s(ᾱ− β)η, ð̄Pη = δ̄η − s(α− β̄)η, (7.103)

where α and β denote the spin coefficients as defined in the NP formalism. The

action of the directional derivatives δ and δ̄ on the vectors m and m̄, projected into

the tangent space T (Q) ⊂ T (M) spanned by m and m̄, is encoded in

δma = −(ᾱ− β)ma, δm̄a = (ᾱ− β)m̄a on Q. (7.104)

The directional derivatives /∇+ and /∇− as defined on Appendix 7.9 are related to δ

and δ̄ via

δ =
1√
2
/∇+, δ̄ =

1√
2
/∇−.

It follows from the discussion of Appendix 7.9 and equation (7.104) that

ᾱ− β = − 1√
2
$, on Q (7.105)

Using equations (7.104) and (7.105) one obtains

/∇+η =
√

2ðPη + s$η, /∇−η =
√

2ð̄Pη − s$η, (7.106)
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To align the discussion with the conventions of [81, 96, 98] is convenient to define ð
and ð̄ by rescaling ðP and ð̄P as

ð ≡ − 1√
2
ðP , ð̄ ≡ − 1√

2
ð̄P . (7.107)

The corresponding eigenfunctions Ys;`m of the operator ðð̄, defining the spin-weighted

spherical harmonics, will be assumed to be rescaled in accordance with equation

(7.107). Exploiting that {Ys;`m}, with 0 ≤ |s| ≤ ` and −` ≤ m ≤ `, form a complete

basis for functions of spin-weight s over S2, given a scalar field ξ : Q → R, with

spin-weight s, one can expand ξ as

ξ =
∞∑
`=s

∑̀
m=−`

Cs`m Ys;`m. (7.108)

In addition, one has that

ð(Ys;`m) =
»

(`− s)(`+ s+ 1) Ys+1;`,m, (7.109a)

ð̄(Ys;`,m) = −
»

(`+ s)(`− s+ 1) Ys−1;`m. (7.109b)

Notice that equation (7.108) as well as equations (7.109a)-(7.109b) do not depend

on the specific choice of coordinates on Q.



8 Conclusions, perspectives and

future work

In this thesis a variety of applications of the conformal Einstein field equations has

been given. These equations were motivated and presented in Chapters 1 and 2 re-

spectively. The main strength of the use of the conformal Einstein field equations as

a tool for the analysis of global properties of solutions to the Einstein field equations

resides in their behaviour under conformal transformations. This property, in turn,

opens the possibility to study the physical spacetime (M̃, g̃) through the analysis of

its conformal extension (M, g). From the point of view of the initial value problem

it allows to reduce, in certain cases, global problems into local problems, e.g., the

proof of the global non-linear stability of the de-Sitter spacetime given in [9] and

the semiglobal non-linear stability of the Minkowski spacetime given in [8]. More-

over, it allows to formulate asymptotic initial value problems, i.e., an initial value

problem in which the initial data is given at the conformal boundary. From a more

physical point of view, to be able to analyse the behaviour of the gravitational field

at the conformal boundary is of great important as several quantities of physical

interest such as the Bondi mass, the Newman-Penrose constants and the notion of

gravitational radiation are defined in terms of structures at I .

As discussed in Chapter 2, there are two versions of the conformal Einstein field

equations: the standard conformal Einstein field equations and the extended confor-

mal Einstein field equations. In the former case the gauge is fixed by introducing

gauge source functions while in the latter by exploiting the notion of conformal

Gaussian systems of coordinates. In both cases, one obtains a first order system of

symmetric hyperbolic evolution equations. Nevertheless, in the classical discussion

of the Cauchy problem in general relativity in [4], the hyperbolic reduction of the

Einstein field equations using harmonic coordinates —corresponding to a particular

choice of the coordinate gauge source function— renders a system of wave equations

for the metric components. Consequently, in this regard, it is natural to obtain

a second order hyperbolic reduction for the conformal Einstein field equations. In

[18], a system of wave equations equivalent to the metric formulation of the con-

formal Einstein field equations has been given. In the latter reference the gauge is

fixed exploiting a generalised wave-map gauge and is closer in spirit to the classical

treatment of the Cauchy problem in General Relativity.

225
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Chapter 3 contains the first application of the conformal Einstein field equations

discussed in this thesis. In this chapter, a second order hyperbolic reduction of

the spinorial formulation of the conformal Einstein field equations was given. The

analysis given in this chapter shows how the spinorial formulation leads to a sys-

tematic construction of the wave equations for the relevant fields. The use of the

spinorial formulation is advantageous as it gives access to a wider set of gauge source

functions (coordinate, frame and conformal gauge source functions). Moreover, in

the spinorial formulation, the equations posses a simpler algebraic structure than

in the metric formulation. In particular, the equation for the rescaled Weyl spinor,

which can be regarded as the most fundamental field in the equations, satisfies a

particularly simple wave equation. Chapter 4 constitutes an application of the wave

equations introduced in Chapter 3. In this chapter small perturbations of hyper-

boloidal initial data of the Milne spacetime were discussed. This analysis is similar

to the discussion of the Minkowski spacetime given in [8]. Notice that the analysis

given in Chapter 3 is restricted to the vacuum case. Nevertheless, the standard con-

formal Einstein field equations can be formulated for some suitable matter models

for which the energy-momentum tensor is tracefree. Consequently, a natural gener-

alisation to the analysis given in Chapter 3 is to obtain a system of wave equations

for the standard conformal Einstein field equations coupled with tracefree matter,

e.g., the electromagnetic field. Additionally, in view of the discussion of the extended

Einstein field equations in Chapter 2 an open problem is whether it is possible to

use conformal Gaussian systems of coordinates to obtain a system of wave equations

for the fields in the extended conformal Einstein field equations.

Presumably, one of the most important questions for conformal methods in Gen-

eral Relativity is whether the conformal Einstein field equations can be employed not

only for the analysis of asymptotically simple spacetimes —say as in [8, 9, 11, 57]—

but if they can be used to make inroads into the stability analysis of black hole

spacetimes. From the physical point of view, observations have established that the

Cosmological constant is positive in our universe. Consequently, spacetimes describ-

ing isolated systems embedded in a de-Sitter universe constitutes a class of physi-

cally relevant spacetimes to be analysed. In this regard, in Chapter 5 constitutes

an application of conformal methods for the stability analysis of non-linear pertur-

bations of the Schwarzschild-de Sitter spacetime. In this chapter, initial data for an

asymptotic initial value problem —initial data given on the (spacelike) conformal

boundary— for the Schwarzschild-de Sitter spacetime was obtained. In particu-

lar, it was shown how the initial data allows to understand the singular behaviour

of the conformal structure at the asymptotic points Q and Q′ where the horizons

of the Schwarzschild-de Sitter spacetime meet the conformal boundary. Using the

insights gained from the analysis of the Schwarzschild-de Sitter spacetime in a con-

formal Gaussian gauge, non-linear perturbations close to the Schwarzschild-de Sitter
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spacetime in the asymptotic region were considered. It was shown that small enough

perturbations of asymptotic initial data for the Schwarzschild de-Sitter spacetime

give rise to a solution to the Einstein field equations which exists to the future and

has an asymptotic structure similar to that of the Schwarzschild-de Sitter spacetime.

The analysis given in Chapter 5 shows some of the main features and difficulties in

using the conformal Einstein field equations in the analysis of perturbations of black

hole spacetimes particularly for those with de-Sitter like asymptotics. Despite the

fact this result does not fully address the outstanding stability of the Schwarzschild-

de Sitter, the constructed class of solutions is non-trivial. Moreover, these per-

turbed spacetimes constitute a large class of asymptotically Schwarzschild-de Sit-

ter spacetimes —see [24] for a definition of asymptotically Schwarzschild-de Sitter

spacetime— which are dynamical and represent non-trivial examples of spacetimes

allowing for gravitational radiation at I . In particular, for the non-linear pertur-

bations of the Schwarzschild de-Sitter spacetime analysed in Chapter 5 the induced

metrics at the conformal boundary hab are, in principle, in contrast with the exact

Schwarzschild-de Sitter asymptotic datum h̊ab, not conformally flat, as hab can lie

anywhere in an open ball centred at h̊ab in terms of suitably defined norms. Conse-

quently they serve as non-trivial examples for the theory of asymptotics for de-Sitter

like spacetimes introduced in [24, 103, 104].

Nonetheless, the result obtained in Chapter 5 does not exhaust the full domain

of dependence associated to this asymptotic initial value problem. Thus, a natural

generalisation of these results is to obtain the maximal Cauchy development of the

small perturbed data discussed in Chapter 5. A possible approach would be to

exploit the time-symmetric conformal representation in which κ = 0 and use the

global stability methods contained in [76]. Related to this problem is the question

of whether there exist a Cauchy horizon associated to this development and if the

singularities in the rescaled Weyl tensor at the asymptotic pointsQ andQ′ propagate

through this boundary. To perform an analysis of the gravitational field close to the

asymptotic points a possible venue would be to exploit the mean curvature foliation

of the Schwarzschild-de Sitter spacetime discussed in [105, 106]. As discussed in [105]

there exist a particular hypersurface of this foliation for which the extrinsic curvature

is pure trace and the induced 3-metric metric is formally the same as the 3-metric

in the the time-symmetric slice in the Schwarzschild spacetime. This hypersurface

has an asymptotic end which, in this case, corresponds to one the asymptotic points

in the Schwarzschild-de Sitter spacetime —see the Figure 2 in [105] and Figures 2

and 3 in [106]. Analysing the evolution of initial data for the conformal Einstein

field equation on this slice and exploiting the techniques used to analyse spatial

infinity —the framework of the cylinder at spatial infinity as discussed in [27]—

would bee useful in understanding the behaviour of the gravitational field close to

the asymptotic points Q and Q′.
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In Chapter 6 small perturbations of the Kerr-de Sitter spacetime were discussed.

This constitutes a partial generalisation of the analysis of Chapter 5. Following the

spirit of Chapter 5 an asymptotic initial value problem was formulated and small

perturbations of exact asymptotic initial data for the Kerr-de Sitter spacetime were

considered. Then, using the theory of symmetric hyperbolic systems contained in

[23] an existence result for small perturbations was obtained. Nevertheless, the

discussion given in Chapter 6 only constitutes a partial generalisation of the results

given in Chapter 5 as the conformal evolution equations governing the exact Kerr-de

Sitter spacetime in the conformal Gaussian gauge were not analysed. In particular,

notice that, in contrast with the analysis give in Chapter 5, an estimation of the

time of existence of the solutions was not obtained. Instead, the emphasis of the

analysis of Chapter 6 was on discussing the existence of conformal representation

for which the associated asymptotic initial data is regular. In this regard, the most

important observation is that although in this case the initial 3-metric h does not

correspond to the standard metric on R× S2, as in the case of the Schwarzschild-de

Sitter spacetime, it is conformally flat. Additionally, it was shown that, similar

to the case of the Schwarzschild-de Sitter spacetime, this conformal representation

is associated to the time-symmetric representation for which κ = 0 —equivalently

characterised by the vanishing of the Friedrich scalar at I . It is of interest to

investigate whether the initial data for the rescaled Weyl tensor becomes singular

at the asymptotic points Q and Q′ in other conformal representation; in particular

in the S3/{Q,Q′} conformal representation. To clarify this point, one would need

to analyse the behaviour of the conformal factor relating both representations. This

analysis will be done elsewhere.

An additional observation related to the analysis of the Kerr-de Sitter spacetime

using conformal methods is that, despite that at first sight the conformal Einstein

field equations expressed in components respect to an arbitrary frame seem to be

very complicated, symmetry assumptions —spherical symmetry in the case of the

Schwarzschild-de Sitter spacetime— can reduce the the number of equations to be

analysed. In the case of Petrov type D spacetimes, the symmetry of the spacetime

is closely related to the existence of Killing spinors. In this regard, it is of interest

to analyse the relation of symmetries at conformal infinity in de-Sitter like space-

times. In other words conformal Killing vectors and Killing spinors at the conformal

boundary in de-Sitter like spacetimes —e.g., the Schwarzschild de-Sitter and Kerr-

de Sitter spacetimes. In [85] an analysis has been given exploiting the unphysical

Killing initial data equations introduced in [72, 107] and a characterisation of the

Kerr-de Sitter spacetime via the Mars-Simon tensor —see [108]. Nevertheless, as

Killing spinors can be considered as a more fundamental quantity than Killing vec-

tors, it is natural to try to find a similar characterisation as the one given in [85] but

exploiting the notion of Killing spinors instead. Furthermore, as the Mars-Simon
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tensor and the rescaled Mars-Simon tensor introduced in [85] share the same sym-

metries of the Weyl tensor, a spinorial approach seems appropriate. The interplay

between the existence of Killing spinors at the conformal boundary of de-Sitter like

spacetimes can potentially be related with the properties of the asymptotic initial

data for these spacetimes. These notions can be, ultimately, useful for making in-

roads into the resolution of the uniqueness problem of black holes with a de-Sitter

like Cosmological constant.

One of the conclusions from the analysis of the global structure of spacetimes

using the conformal methods can be condensed in the observation that, generically,

initial data for the conformal Einstein field equations will not be smooth at least in

one point in the conformal extension of the spacetime. In the case of the proof of the

semiglobal non-linear stability of the Minkowski spacetime of [8] this point corre-

sponds to spatial infinity i0; for the Schwarzschild-de Sitter spacetime the asymptotic

points Q and Q′. In the case of the problem of spatial infinity i0, a milestone in the

resolution of this problem is the construction, originally introduced in [27], of a new

representation of spatial infinity known as the cylinder at spatial infinity. In this

representation, spatial infinity is not represented as a point but as set whose topol-

ogy is that of a cylinder. In addition, it allows to formulate a regular finite initial

value problem for the conformal Einstein field equations. In this regard, Chapter

7 represents an application of the framework of the cylinder at spatial infinity into

the analysis of the Newman-Penrose constants. The analysis of these constants has

gained some interest recently due to the discussion given in [28] where the concept

of soft-hair on black holes is put forward. In the latter reference, the discussion is

motivated by analysing the Maxwell equations on a flat background and relating

conserved charges which are constructed as surface integrals of the electromagnetic

field at future and past null infinity. These quantities correspond, essentially, to the

electromagnetic Newman-Penrose constants on flat space. With this motivation, in

Chapter 7 the framework of the cylinder at spatial infinity was used to clarify the

correspondence between data on a spacelike hypersurface for the spin-1 and spin-2

fields —the former represents the Maxwell spinor and the latter can be interpreted

as the linearised gravitational field— propagating on a Minkowski background and

the value of their corresponding Newman-Penrose constants at future and past null

infinity. In particular, it was shown that the electromagnetic NP constants at future

and past null infinity case, are related to each other as they arise from the same

terms in the initial data. Moreover, it was shown that this observation is true for

data which is not necessarily time-symmetric. A similar result was obtained for the

NP constants associated to the spin-2 field. However, in the latter case, for generic

initial data, logarithmic singularities at null infinity arise. In such case, the inte-

grals defining the NP constants are divergent unless one imposes an regularisation

condition restricting the initial data.
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Most of the applications of the conformal Einstein field equations for the sta-

bility analysis of solutions to the Einstein field equations make use of the theory

of symmetric hyperbolic systems contained in [23]. Nevertheless, to make inroads

in to the resolution of the outstanding problem on the full global non-linear sta-

bility of black hole spacetimes, say the Kerr-de Sitter spacetime, one first needs

to implement more refined theory of partial differential equations and have more

control on the behaviour of the perturbations by obtaining suitable estimates. The

natural approach would be to import some techniques used in the vector field meth-

ods approach used in [10, 61, 109, 110]. Combining these two different approaches;

the conformal Einstein field equations and the standard vector field method, is a

promising venue as one could exploit the strengths of both approaches. In the cur-

rent standard applications of vector field methods for analysing perturbations of

de-Sitter like spacetimes containing black holes —see [61]— determining the loca-

tion of the conformal boundary is a delicate issue. In contrast, using the extended

conformal Einstein field equations and conformal Gaussian systems of coordinates

can be advantageous as in the formulation of the asymptotic initial value problem

studied in Chapter 5 one has apriori knowledge of the location of the conformal

boundary. Since the implementation of vector field methods for analysing black

hole spacetimes using the conformal Einstein field equations would be a long term

program, in order to make inroads into this problem one can start with a more mod-

est problem in which one can probe and test these techniques now in the conformal

setting. In this regard, one can start considering perturbations of spacetimes which

can be conformally embedded into the Einstein cylinder, e.g., the de-Sitter space-

time. One could then use vector field methods to analyse the extended conformal

Einstein field equations to obtain more detailed information about the behaviour

of the perturbations than that obtained by direct application of theory symmetric

hyperbolic systems contained in [23].
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2059.
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[56] Anderson M.T. and Chruściel P.T., “Asymptotically simple solutions of the
vacuum Einstein equations in even dimensions,” Comm. Math. Phys. 260
(2005) 557.

[57] Friedrich H., “Geometric Asymptotics and Beyond,”Surv. Diff. Geom. 20
(Aug., 2015) 37–74.

[58] Schleich K. and Witt D.M., “A simple proof of Birkhoff’s theorem for
cosmological constant,”Journal of Mathematical Physics 51 (Nov., 2010)
112502–112502.

[59] Andersson L. and Galloway G.J., “dS/CFT and spacetime topology,” Adv.
Theor. Math. Phys. 6 (2003) 307–327.

[60] Galloway G.J., “Cosmological spacetimes with Λ > 0,” Contemp. Math 359
(2004) .

[61] Schlue V., “Global Results for Linear Waves on Expanding Kerr and
Schwarzschild de Sitter Cosmologies,” Commun. Math. Phys. 334 (2015)
no. 2, 977–1023.

[62] Beyer F., “Non-genericity of the Nariai solutions: I. Asymptotics and
spatially homogeneous perturbations,” Class. Quantum Grav. 26 (2009)
235015.

http://dx.doi.org/http://dx.doi.org/10.1016/S0764-4442(99)80108-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0764-4442(99)80108-6
http://www.sciencedirect.com/science/article/pii/S0764444299801086
http://www.sciencedirect.com/science/article/pii/S0764444299801086
http://www.jstor.org/stable/25098990
http://www.jstor.org/stable/3597374
http://dx.doi.org/10.1063/1.3503447
http://dx.doi.org/10.1063/1.3503447
http://dx.doi.org/10.1063/1.3503447
http://dx.doi.org/10.1007/s00220-014-2154-2
http://dx.doi.org/10.1007/s00220-014-2154-2


Bibliography 235

[63] Beyer F., “Non-genericity of the Nariai solutions: II. Investigations within
the gowdy class,” Class. Quantum Grav. 26 (2009) 235016.
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[71] Lübbe C. and Valiente Kroon J., “Spherically symmetric anti-de Sitter-like
Einstein-Yang-Mills spacetimes,” Phys. Rev. D 90 (2014) 024021.

[72] Paetz T.T., “Killing Initial Data on spacelike conformal boundaries,” J.
Geom. Phys. 106 (2016) 51–69.

[73] Beig R. and O’Murchadha N., “The momentum constraints of general
relativity and spatial conformal isometries,” Comm. Math. Phys. 176 (1996)
723.

[74] Valiente Kroon J.A., “Global evaluations of static black hole spacetimes.” In
preparation, 2017.
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