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Abstract

We consider the problem of convolutive blind source separation of stereo mixtures,

where a pair of microphones records mixtures of sound sources that are convolved

with the impulse response between each source and sensor. We propose an Adap-

tive Stereo Basis (ASB) source separation method for such convolutive mixtures,

using an adaptive transform basis which is learned from the stereo mixture pair.

The stereo basis vector pairs of the transform are grouped according to the esti-

mated relative delay between the left and right channels for each basis, and the

sources are then extracted by projecting the transformed signal onto the subspace

corresponding to each group of basis vector pairs. The performance of the proposed

algorithm is compared with FD-ICA and DUET under different reverberation and

noise conditions, using both objective distortion measures and formal listening tests.
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The results indicate that the proposed stereo coding method is competitive with

both these algorithms at short and intermediate reverberation times, and offers

significantly improved performance at low noise and short reverberation times.

Key words: Blind Source Separation, Audio Source Separation, Independent

Component Analysis, DUET Algorithm, Adaptive Basis, Sparse Coding

1 Introduction

Convolutive blind audio source separation is a problem that arises when an

array of microphones records mixtures of sound sources that are convolved

with the impulse response between each source and sensor.

Several methods have been proposed to tackle this problem, either in the time

domain or in the frequency domain. Time domain methods mostly entail the

extension of existing instantaneous blind source separation (BSS) algorithms

to the convolutive case [1–3]. However, these techniques typically assume that

the source signals samples are temporally independent, which can lead to

over-whitening of the inputs.

Most work in audio blind source separation has concentrated on the frequency

domain independent component analysis (FD-ICA) method [4–9]. This ap-

proach uses the short-time Fourier transform (STFT) to transform the con-

volved signal into the time-frequency domain, with instantaneous independent
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component analysis (ICA) performed separately in each frequency bin. This

approach is typically simpler and computationally less complex than the time-

domain approach, although it may require long STFT frames to successfully

separate convolutively mixed signals. The use of separate ICA processes in

each bin also introduces the well-known permutation problem, whereby the

different frequency components of the signals become ‘swapped’ and require

permutation to realign them.

Another approach that has been found to be successful in practical applica-

tions on stereo (two-microphone) anechoic mixtures is the degenerate unmix-

ing estimation technique (DUET) [10,11]. Here the STFT is again used to

transform the signal into the time-frequency domain. The relative amplitude

and phase is used to estimate the dominant source in each time-frequency bin,

and time-frequency masking is then used to extract the source components.

While the DUET algorithm is not specifically designed for convolutive mix-

tures, some success has been observed if echoes are relatively minor. However,

performance has been observed to degrade with increasingly echoic mixtures,

and large microphone spacing can also cause problems in estimating the rela-

tive delay used by the algorithm.

In this article, we propose an Adaptive Stereo Basis (ASB) source separa-

tion method for convolutive mixtures. Instead of using a fixed time-frequency

transform such as the STFT, applied separately to each observation (micro-

phone) channel, we learn an adaptive transform based on the observed stereo

data that is applied to both channels together [12]. Many basis pairs of the

resulting transform exhibit properties suggesting that they represent the com-

ponents of individual sources, together with the filtering process from the

sources to the microphone pair. In place of the permutation problem, in the
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ASB method we have a basis selection task to perform. We tackle this using the

relative time delays between left and right channels of the stereo basis pairs,

which correspond to different directions of arrival (DOAs) of the sources. We

then have an association of each source with a subset of the stereo basis pairs,

allowing us to estimate the separated sources.

We will show that this ASB method can give significantly better perfor-

mance than FD-ICA and DUET for short reverberation times, and comparable

performance to FD-ICA and DUET algorithm at intermediate reverberation

times, even though it uses a smaller frame size than the FD-ICA and DUET

algorithms.

The structure of this paper is as follows: the convolutive BSS problem and

the FD-ICA algorithm are reviewed in Section 2, and our proposed Adap-

tive Stereo Basis method is introduced in Section 3. The performance of the

algorithm is evaluated in Section 4, followed by discussion and conclusions.

2 Convolutive Blind Source Separation

2.1 Problem statement

Consider the problem of linear convolutive mixing, for example microphones

recording mixed sound sources in a room with delays and echoes. Here each

microphone records a linear combination of the source signals sp, at several

times and levels, as well as multipath copies (echoes) of the sources. This sce-

nario can be modelled as a finite impulse response (FIR) convolutive mixture,
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given by [4]

xq(n) =
P

∑

p=1

Lm−1
∑

l=0

aqp(l)sp(n − l), q = 1, . . . , Q (1)

where xq(n) is the signal recorded at the q-th microphone at time sample

n, sp(n) is the p-th source signal, aqp(l) denotes the impulse response of the

mixing filter from source p to sensor q, and Lm is the maximum length of

all impulse responses [13]. The source signals sp are typically assumed to

be independent. The aim of convolutive blind source separation is then to

estimate the original source signals sp(n) and the mixing process aqp(n) given

only the mixtures xq(n).

This problem can be approached by estimating a matrix of unmixing filters

wpq(k) to produce an output

yp(n) =
Q

∑

q=1

M−1
∑

k=0

wpq(k)xq(n − k) (2)

where yp(n) is an estimate of the original sources and M is the length of the

unmixing filters, which are assumed to be sufficiently long to approximately

deconvolve (1).

However, there is an inherent filtering ambiguity in this problem. Filtering

operations in the p-th source channel can typically either be considered to be

part of the source sp or in the mixing filters aqp [9]. To avoid this ambiguity

we instead consider the problem of estimating the image xqp of the source sp

at the q-th microphone, given by

xqp(n) =
Lm−1
∑

l=0

aqp(l)sp(n − l) (3)

which is the contribution to xq(n) =
∑

p xqp(n) due to the p-th source. While

this source image approach does require the images at all Q microphones to
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be estimated for each of the P sources, it has the advantage that it is uniquely

defined [9].

2.2 Frequency-domain ICA

Rather than attempting to construct the unmixing filters (2) directly in the

time domain, a popular approach is to work in a time-frequency domain in-

stead, leading to the approach known as frequency-domain ICA (FD-ICA).

In FD-ICA, we divide the input sequence into frames, and approximate the

mixing model (1) in the time-frequency domain by

x̃(f, t) = Ã(f)s̃(f, t) (4)

where s̃(f, t)and x̃(f, t) are the short-time Fourier transforms (STFTs) of the

original sources and the observations respectively, and Ã(f) is the matrix of

mixing filters.

The unmixing model (2) is then approximated by

ỹ(f, t) = W̃(f)x̃(f, t) (5)

where ỹ(f, t) are the recovered source estimates in the frequency domain, and

W̃(f) are the separating filters to be estimated. The convolutive BSS prob-

lem is thus transformed into multiple complex valued ICA problems in the

time-frequency domain, with a suitable ICA algorithm (e.g. [14–16]) used to

estimate W̃(f) separately in each frequency bin. Once we have the separated

source estimates, we can estimate the source images ˆ̃xqp(f, t) using the esti-

mate ˆ̃
A(f) = W̃−1(f) for the mixing process [9].

The use of separate ICA algorithms for each frequency bin f in (5) leads
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to the well-known permutation problem. Due to the inherent ambiguity in

the identification of the sources, any ICA algorithm can only find a set of

original sources relative to some unknown permutation. Since these are applied

independently to each frequency bin, a further process is required to match

the source estimates ỹ(f, t) at a particular frequency bin f with those at other

frequency bins.

A wide variety of methods have been proposed to address this permutation

problem [5–8]. One interesting approach is to consider the spatial arrangement

of the source and microphones: a beamforming approach [17–19]. If most of

the signal observed at the microphones arrives from the direction of the direct

path from the source, the time delay between the microphones will correspond

to the direction of arrival (DOA) of the source. The source estimates can then

be permuted so that their DOAs are aligned [17,18].

When using the beamforming approach to the permutation problem, we need

to take care to avoid spacial aliasing. Due to the narrowband nature of the

signals in each frequency bin, to ensure the estimated direction of arrival is

unique, the inter-microphone spacing must satisfy d < λmin/2 = c/(2fmax)

where fmax is the maximum frequency to be aligned. If all frequency bins are

to be aligned, fmax will be the Nyquist limit, i.e. half the sampling frequency.

For example, with fmax = 8 kHz and c = 340 m/s we get d ≤ (340/16000) m ≈

2.1 cm [13]. If uniqueness is not satisfied, for example when the microphone

spacing is too large (e.g. d ≈ 1 m), then several DOAs may correspond to a

given delay, and we will have spatial aliasing. When f > fmax we can over-

come the spacial aliasing problem either by performing DOA estimation using

only the lower band of frequencies f < fmax [20], or by using a ‘peakier’ di-

rectivity pattern method based on the MuSIC algorithm [21], as proposed by
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Mitianoudis and Davies [22]. We use the latter method in our comparative

evaluation later in this article.

2.3 Towards an adaptive basis method

In FD-ICA the STFT was used to transform the mixture signal into the time-

frequency domain to approximate the convolutive mixing process (1) by a set

of parallel instantaneous narrowband mixing processes (4). A side-effect of

the STFT is that many signals are sparse in the time-frequency domain: i.e.

signals are zero or very small more often than it might be expected from their

variances [23]. It has been noted that many ICA algorithms have improved

performance when sources are sparse [24].

The method that we propose in this article is based on the search for a trans-

form that will directly allow us to partition the transform components into

subsets corresponding to each source. If we could achieve this with the single-

channel STFT, this would be a simple filtering operation, assigning frequency

bands (subsets of frequency bins) to each source. However, since the sources

we are considering do not occupy disjoint frequency bands, we use an adaptive

transform.

In fact, we can use ICA to learn such an adaptive transform, but instead

of using it across mixtures to separate sources, we use it across time sam-

ples to search for interesting structure in the data. In an early application of

this method, Bell and Sejnowski [25] found that ICA trained on time-frames

of monophonic recordings of ‘tooth taps’ discovered features (basis vectors)

exhibiting localized time and phase structure, while those learned by e.g. prin-
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cipal components analysis (PCA) did not. Other studies on monophonic audio

signals have reported that the basis vectors learned by ICA from speech signals

are mostly well localised in time and frequency, yielding a representation that

exhibits wavelet-like bases [26,27]. The resulting representation of the sounds

transformed into this learned basis are sparse, i.e. with most coefficients close

to zero, giving a representation reminiscent of that of auditory nerve fibres

[27].

In a preliminary study [12], we investigated an extension of this technique to

stereo signals, applying an ICA algorithm to sequences of stereo time frames.

We found that many of the resulting basis vectors typically exhibited the

wavelet-like localized time and frequency representation as for the monophonic

case. However, while the frequency representation of a typical basis vector is

localized around a particular centre frequency, it is not narrowband as is the

case for STFT basis vectors, and a time-domain centre is normally observed.

Furthermore, many bases also displayed relative amplitude differences and

time delays between the two channels, suggesting that the basis vectors dis-

covered by the algorithm represent the components of individual sources and

the filtering process from the sources to each of the microphones. If this is the

case, then by partitioning these bases into subsets corresponding to each of

the sources, it should be possible to separate the original source signals from

each other. This is the principle behind the proposed Adaptive Stereo Basis

(ASB) method.
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3 Adaptive Stereo Basis method

The essence of the Adaptive Stereo Basis (ASB) method is that we wish to

find a basis transform of the stereo observation sequence, where the transform

is such that the sources are disjointly represented in the transform space. Thus

we can consider the method to be a multidimensional ICA (MICA) method

[28], also known as independent subspace analysis (ISA). We are attempting to

find a transform matrix (basis matrix) where each of the basis vectors (columns

of the basis matrix) lies within an independent subspace occupied by one of

the sources [29]. By grouping the transform basis vectors appropriately we can

then extract the sources estimates. The method therefore uses the following

sequence of steps:

(1) Reshape the observed vector sequence

(2) Learn the basis matrix

(3) Group the basis components

(4) Extract source image estimates

Each of these steps is detailed below.

3.1 Reshaping the observed vector sequence

The ASB method attempts to find a basis set that encodes both spatial and

temporal correlations in the observed data. Therefore we need to reshape

the sequence of stereo vectors x(n) into a matrix X̄, such that several stereo

sample pairs x(n1), . . . ,x(n2) are ‘stacked’ to form each vector x̄(k) of X̄.

Reshaping the input in this way allows both correlations between microphones
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Fig. 1. Reshaping of the sensor vector prior to training with ICA. In this illustration,

we have K/2 = 4 sample pairs per frame, with an overlap of T = 2 samples.

and correlations across time to be modelled.

To make this specific, the observed stereo vector sequence x(n) is reshaped

into a K × kmax matrix, where successive frames of K/2 stereo sample vectors

are taken from each mixture, with an overlap of T samples (Figure 1). Thus,

the (i, k)-th element of the new matrix, X̄, is given by

[X̄]i,k =























x1 ((k − 1)Z + (i + 1)/2) : i odd

x2 ((k − 1)Z + i/2) : i even

(6)

where Z = K/2 − T , and i ∈ {1, . . . , K}, and k ∈ {1, . . . , kmax}.
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3.2 Learning the basis matrix

We now wish to construct an unmixing matrix W̄ ∈ R
K×K so that each of the

components of the vector sequence ȳ(k) = W̄x̄(k) will contain activity from

only one of the underlying P sources. We would like the activity of each source

to be represented by some subset of components of ȳ, where these component

subsets are mutually exclusive. Therefore this is an multidimensional ICA

(independent subspace analysis) problem. To solve this multidimensional ICA

problem, we use an ICA algorithm to find the unmixing matrix W̄, followed

by a clustering algorithm to group the rows of W̄ into subsets corresponding

to each source.

For the ICA algorithm we use the natural gradient maximum likelihood (ML)

algorithm [12]:

∆W̄ = η
(

I − E{f(ȳ)ȳT}
)

W̄ (7)

where η is the learning rate, and f(ȳ) = −∇ȳ log p(ȳ) is the ML activation

function, using p(ȳ) =
∏P

p=1 p(ȳp) for some prior p(ȳp). We use the generalized

exponential prior p(ȳp) ∝ exp(−|ȳp|
α) where the exponent α is estimated

through maximum likelihood [30].

Given a learned unmixing matrix W̄, we can consider the (reshaped) obser-

vation vectors x̄ to be represented by scalar combinations of basis vectors āk

which are the columns of the inverse unmixing matrix Ā = W̄−1. To give a

direct physical interpretation in terms of the two stereo microphone channels

we de-interleave the basis vectors āk to extract the stereo basis vector pairs

a
(1)
k , a

(2)
k using

[a
(1)
k ]n = [āk]2n−1, [a

(2)
k ]n = [āk]2n, n = 1, . . . , K/2. (8)
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Fig. 2. Examples of stereo basis vector pairs extracted with the adaptive stereo basis

algorithm.

Figure 2 shows some of the basis vector pairs obtained from a stereo mix-

ture generated when two male speech signals were synthetically mixed using

a source image technique, in low noise and low reverberation conditions (see

Section 4). This figure illustrates that the basis vector pairs encode how the

extracted features are received at the microphones. Many of the basis vectors

are localised in time, and they seem to capture information about time-delay

and amplitude differences that characterise the mixing channel. This observa-

tion, together with measurements of the relative time delay (see Fig. 3 below),

suggests that the convolutive nature of the mixing process has been captured

by the algorithm, and that each basis vector pair relates to a particular source.

3.3 Grouping the basis components

Having extracted a set of basis vectors āk, we now need to group these together

into subsets that correspond to each source we wish to extract. As for FD-ICA,

we could use a variety of methods to perform this grouping. In earlier work we
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used a higher-order correlation (F-correlation) between component activities

to perform this grouping [12]. However, in Figure 2 we observe that the stereo

basis vector pairs tend to be relatively wideband, and exhibit a clear relative

time delay between the left and right channels. In this article we therefore

propose to group the basis vectors into subsets based on their time delay, or

direction of arrival (DOA), as we saw has already been used for FD-ICA.

For each basis pair k we find the time delay τk between the vectors in the pair,

using the generalised cross-correlation with phase transform (GCC-PHAT)

algorithm [31]

Rk(τ) =
∫

∞

−∞

A
(1)
k (ω)A

(2)
k (ω)∗

|A
(1)
k (ω)A

(2)
k (ω)∗|

ejωτdω (9)

where A
(1)
k (ω), A

(2)
k (ω) are the Fourier transforms of the stereo basis vector

pairs a
(1)
k and a

(2)
k respectively. We have observed that the function Rk(τ)

typically exhibits a single sharp peak at the lag corresponding to the time

delay between the two signals. In contrast to the STFT bases used in the

FD-ICA algorithm, which exhibits multiple peaks leading to the spatial alias-

ing problem, this single peak is consistent with the ASB basis vectors being

relatively wideband, and with a dominant DOA, hence avoiding the spatial

aliasing problem.

The upper plot in Figure 3 illustrates the time-delay estimates obtained with

GCC-PHAT, for all basis vector pairs from which those shown in Figure 2

were selected. The histogram of the estimated time-delays is shown in the

lower plot of Figure 3. The figure shows that the directions of the two sources

(corresponding to a delay of about 9 and −9 samples) are clearly visible, and

most basis functions have time delays closely associated with one of the two

directions of arrival.
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Fig. 3. Plot of the time delays estimated for all basis vectors (upper plot), and its

histogram (lower plot).

To group the basis vectors, we use the K-means clustering algorithm to find

the time delay ‘centroid’ Tp, p = 1, . . . , P corresponding to each of the P

sources.

We then construct the index sets γp = {k | (Tp − ∆) ≤ τk ≤ (Tp + ∆)} corre-

sponding to basis vectors with delays within some threshold ∆ of the cluster

centroid, reserving a ‘discard’ cluster γ0 = {k | k /∈ γp, p = 1, . . . , P} for ‘noise’

basis vectors which will not be associated with any of the P sources. In our ‘re-

shaped’ space of vectors x̄, we therefore have a subspace Ep = span{āk, k ∈ γp}

corresponding to each source.

3.4 Extracting the source image estimates

To extract the separate source estimates, we project the reshaped vector se-

quence x̄(n) into each of the P subspaces Ep as follows. We construct a set
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of mask matrices H(p) = diag(h
(p)
1 , . . . , h

(p)
K ) for p = 1, . . . , P , with the mask

values given by

h
(p)
k =























1 if k ∈ γp

0 otherwise

for k = 1, . . . , K. Thus the diagonal elements of H(p) are one or zero depend-

ing on whether or not a transform component is considered to belong to the

subspace Ep corresponding to the p-th source. Note that, in contrast to the

time-frequency mask used in the DUET algorithm [11], which depends both

on the frequency bin index f and the time frame index t, the ASB masking

matrix H(p) operates across basis pair indices k only and is independent of the

time frame.

We then form the orthogonal projection matrices Pp = ĀHpW̄ = W̄−1HpW̄

which is clearly a projection since P2
p = Pp, and where the column span of Pp

is the subspace Ep. The estimated (reshaped) image ˆ̄xp of the p-th source is

given by

ˆ̄xp = Ppx̄ = ĀHpW̄x̄. (10)

Finally, we de-interleave ˆ̄xp, using the reverse of the process described in Sec-

tion 3.1. This de-interleaving process involves overlapping blocks, similar to

overlapping windows in the inverse STFT, so we take averages of the overlap-

ping blocks, which reduces blocking artefacts. De-interleaving ˆ̄xp in this way

yields the source image x̂p = [x̂1p, x̂2p, . . . , x̂Qp]
T , i.e. the vector of images of

the p-th source at all Q microphones.
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Fig. 4. Experimental setup for simulated speech recordings. The reverberation times

were set to either 20 ms, 80 ms or 320 ms.

4 Evaluation

4.1 Experimental setup

We evaluated the proposed ASB algorithm and compared with FD-ICA and

DUET on several mixtures of two male speech sources. The speech sources

were sampled at 16 kHz with a duration of 1 minute each.

To allow us to control the room Reverberation Time (RT) and the Input

Signal-to-Noise Ratio (ISNR), the sources were mixed using simulated room

impulse responses, determined by the image technique [32] using McGovern’s

RIR Matlab function 1 . The positions of the microphones and the loudspeakers

are illustrated in Figure 4. Six different mixing conditions were obtained by

varying RT between 20 ms (320 samples), 80 ms (1280 samples) and 320 ms

(5120 samples), and adding white noise to the mixture with ISNRs of 40 dB

and 20 dB.

1 http://2pi.us/code/rir.m
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We chose the STFT frame lengths separately for each algorithm, but fixed

for all the reverberation times tested. We used the FD-ICA algorithm with

the MuSIC-based permutation alignment algorithm described by Mitianoudis

and Davies [9], setting the STFT frame size to 2048 samples, which was pre-

viously found to be appropriate for this algorithm at a 16kHz sampling rate

[9,33]. For the DUET algorithm we used an STFT frame size of 1024 samples,

which was found by Yilmaz and Rickard [11] to give the best separation per-

formance at 16 kHz. For the proposed adaptive stereo basis algorithm, we used

an adaptive basis frame size of 512 samples, to be consistent with preliminary

experiments which indicated that this would be sufficient for separation at a

16 kHz sampling rate with reasonable room reverberation times [33]. Excerpts

of the original mixture and source signals and of the estimated source signals

are available for listening on our demo web page 2 .

4.2 Objective evaluation

We evaluated the performance of each method using the objective criteria of

Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), Signal-

to-Noise Ratio (SNR) and Signal-to-Artefacts Ratio (SAR) as defined in [34].

SDR measures the difference between an estimated source and a target source

allowing for possible linear filtering between the estimated and target source.

We allowed for time-invariant filtering of filter length 1024 samples when cal-

culating SDR. SIR, SNR and SAR provide a more detailed diagnosis of the

performance by distinguishing between the elements of the total distortion

which are due to unwanted interfering sources (SIR), remaining mixing noise

2 http://www.elec.qmul.ac.uk/people/mariaj/asb demo/
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(SNR) and other artefacts (SAR). Additive noise will be included within the

SNR measure.

The SDR, SIR, SNR and SAR criteria are defined in [34] on a per-source

basis. To gain a single figure for all sources, we averaged the criteria across all

microphones and all sources. The results are presented in Table 1.

In an earlier preliminary investigation [33], we found that the objective SDR

measures did not always correspond to our perceived quality of the separa-

tion. This difference may be due to the calculation of the objective criteria

requires a reconstruction filter to be estimated, which is non-trivial for convo-

lutive mixing or to distortions which are perceptually minor but which are not

allowed for by the (linear, time-invariant) filter [34]. For the present study, we

therefore conducted a formal subjective listening test to give a more definitive

comparison of the relative performance of the three algorithms.

4.3 Evaluation using listening tests

Listening tests are common in audio coding, with standardized test proce-

dures such as MUSHRA (MUltiple Stimulus test with Hidden Reference and

Anchors) [35], but have not yet found widespread use in the source separation

community.

For the listening test conducted here, we adapted the MUSHRA standard and

built a Matlab graphical interface to allow subjects to listen to the stimuli

and input their scores [36]. Subjects were asked to assess the basic quality of

each stimulus, a term used to mean the overall perceived quality of the sound,

including all possible types of distortion. Each subject was asked to grade the
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Table 1

Objective performance of FD-ICA, DUET and ASB with default frame sizes on

simulated speech recordings. All values are expressed in decibels (dB). Bold numbers

indicate the best SDR for each mixing condition. See text for comments.

Mixing

conditions

ISNR 40 dB 20 dB

RT 20 ms 80 ms 320 ms 20 ms 80 ms 320 ms

FD-ICA

SDR 7.0 11.2 6.3 6.2 6.5 4.2

SIR 10.4 16.1 9.1 12.3 14.0 9.1

SNR 19.1 19.9 28.9 26.7 10.7 25.8

SAR 11.1 14.2 10.3 7.7 11.4 7.0

DUET

SDR 7.9 8.2 5.3 6.3 5.7 3.5

SIR 13.4 13.8 10.0 14.7 12.7 8.9

SNR 21.0 21.0 20.3 11.8 11.8 11.5

SAR 10.3 10.2 7.9 9.3 9.0 7.3

ASB

SDR 15.4 7.7 1.3 8.3 6.8 -4.2

SIR 25.7 16.3 8.9 19.7 17.8 7.4

SNR 20.2 28.0 22.9 12.5 26.3 16.9

SAR 18.2 9.8 4.2 12.6 7.5 -2.1

basic quality of the estimated sources compared to a given target source on

a scale between 0 and 100, where 100 corresponded to the target source and

0 to the worst estimated source over all conditions. For more details on the
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listening test procedure, see [36].
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Fig. 5. Subjective performance of FD-ICA, DUET and ASB with default frame sizes

on simulated speech recordings with ISNR=40 dB. Bars indicate 95% confidence

intervals. SDR values are displayed below for comparison. See text for comments.
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Fig. 6. Subjective performance of FD-ICA, DUET and ASB with default frame sizes

on simulated speech recordings with ISNR=20 dB. Bars indicate 95% confidence

intervals. SDR values are displayed below for comparison. See text for comments.

Eight subjects took part in the listening tests, and each complete listening

test took between about 1 and 2 hours, including breaks. The algorithm de-

velopers who had already heard the stimuli were excluded from the listening

test. Listeners were not pre-screened for auditory losses, but there was no evi-

dence for any listener exhibiting a response significantly different from those of

the other listeners. The results of all listeners were retained for the statistical

calculations. The test results are shown in Figures 5 and 6.
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4.4 Analysis of results

In the objective comparison (Table 1), we see that with short reverbera-

tion times (RT=20 ms) our proposed method outperforms both FD-ICA and

DUET by more than 7 dB SDR in relatively clean conditions (ISNR=40 dB)

and by about 2 dB SDR in more noisy conditions (ISNR=20 dB). The re-

sults of the listening tests (Figures 5 and 6) are generally consistent with the

objective criteria, confirming that the proposed ASB algorithm performs sig-

nificantly better than FD-ICA and DUET in clean, less reverberant, conditions

(ISNR=40 dB, RT=20 ms).

For intermediate reverberation times (RT=80 ms), all algorithms show compa-

rable objective performance, although with FD-ICA exhibiting higher objec-

tive performance in less noisy conditions (ISNR=40 dB). However, the listen-

ing tests indicate that ASB and FD-ICA have similar subjective performance,

even though the frame size for ASB (512 samples) is much smaller than for

FD-ICA (2048 samples) with DUET giving slightly lower performance than

the other algorithms.

In the most reverberant conditions tested, the FD-ICA algorithm gave high-

est performance. Further investigation of the reason for the negative SDR for

the ASB algorithm in noisy reverberant conditions (ISNR=20 dB, RT=320

ms), indicated that the unsupervised K-means clustering algorithm used in

the proposed algorithm failed to find one of the source clusters. Supervised

clustering based on the true source directions improved the SDR to -0.6 dB,

but this remained lower than with FD-ICA and DUET in this case. Super-

vised clustering did not change the performance of the proposed algorithm
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significantly in other conditions.

5 Discussion

5.1 Algorithm comparison

FD-ICA with beamforming-based source matching, DUET and the proposed

adaptive stereo basis (ASB) algorithms are based on an essentially similar

approach. A transformation is applied on the observed data in order to find

a set of basis vectors, followed by direction-based clustering to associate each

vector with a source. However, they exhibit some differences that become

important when applied to realistic mixtures. We summarize their respective

advantages and limitations below.

The main characteristic of ASB is that it is based on an adaptive transform

of the observed data, where the basis vectors are estimated from the data.

Conversely, FD-ICA and the DUET algorithm use the STFT, a fixed time-

frequency transform. Thus we believe that ASB has the potential to provide

a sparser representation of the data, and hence improve performance.

DUET and ASB achieve separation by clustering the dictionary elements, the

former according to phase (delay) and amplitude information, and the latter

according to phase only. FD-ICA with beamforming also uses phase informa-

tion to align the permutations across all frequencies. Both FD-ICA and DUET

suffer from phase ambiguities in the upper frequencies. To avoid this problem,

DUET was designed under the assumption that the microphone separation,

d, is small enough so that phase ambiguities do not arise [11]. Clearly, this
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assumption cannot always be satisfied, particularly when the problem is truly

blind (i.e. the microphone separation is not known, and cannot be controlled),

or for certain applications, such as for CD recordings where phase ambiguities

would arise with a sensor spacing of less than 1cm at 44.1 kHz [37]. To help

select the correct phase difference between the two sensors where phase am-

biguities are possible, a modified version of DUET has been proposed which

uses amplitude differences in the high frequency range [37]. In the ASB algo-

rithm we found experimentally that the basis vectors learned by the algorithm

are typically time-localized rather than narrowband. It is therefore possible to

identify a unique time delay between the left and right channels, using in our

case the GCC-PHAT algorithm, and the phase ambiguity problem does not

arise.

DUET was developed for anechoic mixing, and can have difficulties dealing

with echoic (convolutive) mixing. Histograms obtained from anechoic mixtures

are typically well localised, with distinct peak regions corresponding to the

sources, while they are more spread out for echoic mixtures [11]. Conversely,

ASB does not make any specific assumptions regarding the mixing channel.

The learned basis pairs should automatically capture the nature of the channel,

so we would expect the method to be able to deal with reverberation. However,

the performance of the ASB algorithm does degrade with longer reverberation

times (RT = 80 ms and above), perhaps due to the current frame size limit:

80 ms is equivalent to 1280 samples, compared to the currently feasible frame

size of 512 samples in the ASB algorithm.
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5.2 Training the basis set

In comparison to methods that used a fixed basis, the adaptive stereo basis

algorithm requires the fitting of an ICA model to the frames of stereo data.

This involves additional computational expense, and also leads to a potential

problem of overfitting due to the large effective dimensionality of the model.

The first problem, that of computational expense, is partly due to the use of

a stochastic gradient optimisation in the current implementation. We expect

that some reduction in computation time would be possible through the use

of second-order derivatives (i.e. curvature) to improve the convergence of ICA

[16]. Note also that it is only the system identification stage which requires

this computational expense; the separation step is relatively straightforward.

The second problem, that of overfitting, is potentially more serious as it is an

intrinsic limitation of the model in its present form. For example, in our ex-

periments, the ICA weight matrix had 512×512 entries and thus required the

optimisation of 262144 parameters. At 16 kHz, a two-channel signal requires

approximately 8.2 s to deliver this many samples. Our one-minute signals sup-

plied less than 8 times as much data as there were parameters to be optimised,

which is rather low and may lead to overfitting.

In applications where the mixing system is known to be stable for long periods,

sufficient training data could be collected to avoid overfitting. However, this

would of course bring us back to the computational expense of fitting an ICA

model to such a large amount of data. Alternatively, there are several struc-

tural aspects of the system that could potentially be exploited to regularise or

constrain the ICA model [38]. For a further possibility, since the frames used

25



to train the model are extracted from a longer signal which is assumed to be

stationary, there should be no privileged times within the frame. This type

of shift invariance has been exploited in single-channel sparse coding [39] and

could possibly be adapted for use here.

6 Conclusions

We have considered the problem of convolutive blind audio source separation,

and we have presented a stereo coding method. The method is based on the

identification of stereo basis vectors adapted to the data. The basis functions

are mostly temporally localized, and can be clustered according to directions

of arrival (DOA). Separation can then be performed using binary masking on

the resulting basis components.

The performance of the algorithm was compared to that of frequency domain

ICA (FD-ICA) and the DUET algorithm, using speech signals mixed in a

simulated room. Evaluation was performed using both objective measures and

subjective listening tests.

The results of both the objective SDR comparison and the formal listening

tests indicate that the proposed stereo coding method is competitive with both

FD-ICA and the DUET algorithm at short and intermediate reverberation

times, and significantly outperforms either of the other algorithms with low

noise and short reverberation times (RT = 20 ms or 320 samples) of the same

order as the frame size used in the ASB algorithm (512 samples). However,

the performance of ASB on more echoic rooms (RT above 80 ms) indicates

there is still more work to be done. The adaptive basis means that method is
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currently computationally intensive, limiting the frame size and hence limiting

its performance for long reverberation times.

In future work, we plan to explore frame sizes longer than 512 samples. To

ameliorate the increased computation time involved, we plan to investigate

ways to partially structure the ICA bases to allow faster and more robust

learning. Other methods may prove useful to learn the basis vector sets, such

as the recent K-SVD algorithm [40]. We believe the proposed adaptive stereo

basis method is interesting and promising, although further investigation is

required in order to reduce the computation cost and improve its robustness

to noise and reverberation.
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A Constructing source image estimates for the DUET algorithm

The DUET algorithm [10,11] performs separation of stereo sources in the

time-frequency domain. Using estimates of relative amplitude and delay pa-

rameters, a set of binary time-frequency masks Mp(f, t), p = 1, . . . , P is then

constructed to perform separation of the sources sp, either by masking one of

the microphones, or via maximum likelihood (ML) source estimation [11].

In this article, we wish to measure separation performance on the images of the

sources at the microphones as in Equation (3). For the evaluation in Section 4,

we directly calculate the image ˆ̃xqp(f, t) of the p-th estimated source observed

at the q-th microphone using

ˆ̃xqp(f, t) = Mp(f, t)x̃q(f, t), ∀f, t. (A.1)
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The time-domain estimate x̂qp(n) is obtained by inverting the STFT for each

source/microphone pair.

Conceptually this approach uses DUET time-frequency masking to directly

calculate an estimate of the image xqp of source sp at the q-th microphone,

without calculating a single source estimate as an intermediate stage. We have

observed that attempting to construct source images from a single estimated

source can produce poor results for echoic convolutive mixtures, perhaps due

to inaccurate estimates of the mixing delays in such situations.
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