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Abstract: The last decade has seen considerable advances in our understanding of the 

genetic basis of skin disease, as a consequence of high throughput sequencing technologies 

including next generation sequencing and whole exome sequencing. We have now determined 

the genes underlying several monogenic diseases, such as harlequin ichthyosis, Olmsted 

syndrome, and exfoliative ichthyosis, which have provided unique insights into the structure 

and function of the skin. In addition, through genome wide association studies we now 

have an understanding of how low penetrance variants contribute to inflammatory skin 

diseases such as psoriasis vulgaris and atopic dermatitis, and how they contribute to underlying 

pathophysiological disease processes. In this review we discuss strategies used to unravel 

the genes underlying both monogenic and complex trait skin diseases in the last 10 years 

and the implications on mechanistic studies, diagnostics, and therapeutics. 
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1. Introduction 

The advent of high throughput single nucleotide polymorphism (SNP) genotyping and latterly, next 

generation sequencing (NGS) technology including whole exome sequencing (WES) have revolutionised 

OPEN ACCESS 

mailto:t.maruthappu@qmul.ac.uk
mailto:c.a.scott@qmul.ac.uk


Genes 2014, 5 616 

 

 

our approach to genetic diagnostics and novel gene discovery in the genodermatoses—a group of 

inherited skin disorders. 

Prior to this, technologies including linkage analysis using genome wide microsatellite panels in 

combination with candidate gene screening by PCR and Sanger sequencing have been the primary method 

for discerning new skin disease-associated loci. Successes with this approach include Hailey-Hailey 

Disease (OMIM #169600) [1], Netherton Syndrome (OMIM #256500) [2], Darier-Disease (OMIM 

#124200) [3], and Dyschromatosis symmetrica hereditaria (OMIM #127400) [4]. Candidate gene 

screening approaches have also yielded success, particularly in deciphering the keratin disorders [5]. 

However, clinical and likely genetic heterogeneity of skin diseases and the availability of DNA from 

probands only, or from small families, have hindered disease gene discovery for many disorders [6]. 

This can now be surmounted with high-density SNP homozygosity mapping for consanguineous 

recessive disorders, and in particular NGS and WES for dominant and recessive disorders, which has 

facilitated our understanding of some of the genetic make up of common diseases. 

Skin diseases are ideal for determining genotype-phenotype correlations because of the relative ease 

with which clinical and histological examination can be made. In addition, inflammatory pathways 

involved in the pathogenesis of skin diseases such as psoriasis vulgaris (PV) are relevant to a number 

of other immune-mediated diseases including inflammatory bowel disease and rheumatoid arthritis [7]. 

The genetic bases of many monogenic skin diseases have been unravelled and in this review  

we focus on examples of discoveries in cutaneous genetics, applying different strategies such as SNP 

microarray, microsatellite linkage analysis, targeted NGS and WES. Equally, it has also been informative 

in understanding the significance of de novo mutations including the unusual phenomenon of revertant 

mosaicism in the skin, where spontaneous correction of a disease-causing mutation in a somatic cell 

occurs [8]. We have also gained insights into complex trait diseases and will explore what contributions 

these have made to mechanistic insights, diagnosis and treatment of common skin diseases including 

psoriasis, atopic dermatitis (AD) (eczema), and skin cancer. 

2. Harlequin Ichthyosis 

The discovery that ABCA12 gene mutations are associated with the skin disease harlequin 

ichthyosis (HI) is an example of where SNP microarray technology was used successfully to elucidate 

the genetic locus associated with this disease [9]. 

The inherited ichthyoses are a heterogeneous group of disorders characterised by skin scaling,  

often of the whole surface, and hyperkeratosis [10]. Syndromic (affecting multiple tissues) as well as 

nonsyndromic forms of ichthyosis exist and mutations in multiple genes are associated with disease 

including TGM1 (OMIM *190195), NIPAL4 (OMIM *609383), STS (OMIM *300747), ALOX12B 

(OMIM *603741), ALOXE3 (OMIM *607206), CYP4F22 (OMIM *611495), and FLG (OMIM 

*135940) amongst others (reviewed in [10]). Autosomal recessive congenital ichthyosis (ARCI) is 

comprised of three main groups: congenital ichthyosiform erythroderma (CIE), lamellar ichthyosis 

(LI) and HI [10]. HI (OMIM #242500) is the most severe form of ichthyosis and has a high perinatal 

mortality, with babies presenting at birth with hard scale plates with deep fissures, eclabium, and 

bilateral ectropion (reviewed in [9,11]). 
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The discovery of the genetic cause of HI was hampered by availability of DNA from only affected 

family members or from small families due to the severity of the condition, thus genetic linkage 

studies were unfeasible [9]. To investigate the genetic basis of HI, Kelsell et al. (2005) [9] used  

a SNP microarray to map a block of homozygosity on chromosome 2q35 and to identify a minimal 

region between HI patients from consanguineous parents, which contained the ABCA12 gene. ABCA12 

belongs to the ATP-binding cassette (ABC) A family of transporters, some members of which have 

been implicated in lipid transport (reviewed in [12]). 

ABCA12 was a promising gene candidate for HI because patient skin displayed aberrant lipid 

distribution [9] and missense mutations in ABCA12 were already known to be associated with another 

form of ARCI, LI [13]. PCR and Sanger sequencing of the ABCA12 gene in HI patients confirmed  

that recessive mutations were associated with HI [9,14]. Mutations in ABCA12 are now known to be 

associated with all three forms of ARCI (reviewed in [10]). However, unlike for LI and CIE, in which 

largely missense ABCA12 mutations are associated with disease [13,15,16], HI is usually associated 

with loss of function gene mutations including nonsense, frameshift, and splice site mutations, which 

severely disrupt the cellular functions of ABCA12 [9,17–19]. However, there are reports of patients 

who have ABCA12 missense mutations [9,11,18,20–22]. HI patients with homozygous loss of function 

mutations have an increased risk of mortality, indicating a survival advantage for patients with compound 

heterozygous mutations [11]. 

ABCA12 is thought to transport lipids via lamellar granules where they are processed and released 

to form lipid lamellae constituting the stratum corneum in the epidermis [14,23]. A reduction in the 

number, and structural abnormalities, of lamellar granules has been observed in HI patient skin [14,24,25]. 

In addition, characterisation of HI patient skin has shown a loss of nonpolar lipids [26] and abnormal 

glucosylceramide localization [14], and experiments with patient-derived keratinocytes showed 

aberrant glucosylceramide accumulation in lamellar granules [27], which is indicative of a lipid transport 

defect as a result of loss of ABCA12 function [14,26,27]. 

Similarly, Abca12 knockout mice models [28–30] and an abca12 knockout zebrafish model [31] 

showed features of aberrant lipid transport compared to controls (reviewed in [32]). HI skin also shows 

features of premature terminal differentiation and a decreased expression of certain proteases, which 

suggests that loss of ABCA12 disrupts keratinocyte differentiation and epidermal desquamation, 

resulting in the formation of an aberrant epidermal barrier [26]. 

Prior to the discovery of the genetic cause of HI, prenatal diagnostic investigations depended  

on obtaining a foetal biopsy for analysis by electron microscopy, and on sonography [33,34]  

(reviewed in [35]). The discovery of the genetic cause of different ichthyoses, including HI, represents 

a major milestone in the ability to perform genetic diagnosis, carrier screening, genetic counselling, 

and prenatal diagnosis. 

Current approaches to genetic screening for HI can involve screening specific exons, as there are 

some recurrent ethnic group mutations in ABCA12 [18,19] and using WES, circumventing the need for 

performing PCR and Sanger sequencing of all 53 coding exons of the ABCA12 gene. 
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3. Exfoliative Ichthyosis 

The discovery of cystatin A (CSTA) gene mutations in association with exfoliative ichthyosis [36] is 

an example of the successful implementation of combining SNP microarray analysis with targeted 

NGS to determine the genetic cause of disease. 

Autosomal recessive exfoliative ichthyosis (OMIM #607936) is characterised by palmoplantar skin 

peeling and dry scaly skin, with trauma and moisture aggravating the condition [36]. Microsatellite 

linkage analysis of two related Bedouin families initially suggested linkage of the disease to chromosome 

12q13, which contains the type II keratin cluster [37]. 

Blaydon et al. (2011) [36] revisited this family and applied whole genome homozygosity mapping 

which revealed a common block of homozygosity between affected Bedouin patients on chromosome 

3q21 as the likely disease gene location. Sequence capture and NGS of this region was then performed 

and revealed a splice site mutation in CSTA, which was found to segregate with exfoliative ichthyosis 

in the Bedouin family. This locus was missed in the microsatellite genome scans performed by  

Hatsell et al. (2003) [37] due to markers for this region being uninformative. Sanger sequencing of 

CSTA in a different family with exfoliative ichthyosis revealed a homozygous nonsense mutation 

which also segregated with disease [36]. In a subsequent study, WES revealed a novel homozygous 

nonsense mutation in CSTA in a large family with acral peeling skin syndrome [38] with similar 

clinical features to the patients reported in Blaydon et al. (2011) [36]. 

Cystatins are cysteine protease inhibitors which are thought to have a protective function against 

endogenous and external proteases, and to potentially modulate the degradation of intra- and extracellular 

proteins (reviewed in [39]). CSTA has been identified as a constituent of the cornified envelope [40] 

and is expressed in the suprabasal layers of the epidermis, the highest expression of which is in the 

granular layer [36,41]. CSTA is secreted by keratinocytes in vitro and has also been found in sweat, 

and is believed to have a protective role by inhibiting the proteolytic activity of dust mite allergens  

Der p 1 and Der f 1 [42]. CSTA levels have also been implicated as prognostic markers in different 

cancers [43–45]. 

Characterisation of skin from exfoliative ichthyosis patients with CSTA mutations revealed widened 

intercellular gaps in the lower epidermis, whereas the upper epidermal layers appeared normal with  

no evident barrier defect [36]. Experiments using an in vitro keratinocyte cell knockdown model 

showed an adhesion defect in response to mechanical stress, and an organotypic CSTA knockdown 

model showed similar abnormalities to the patient skin [36]. This finding is indicative of CSTA having 

a key role in keratinocyte adhesion in the basal epidermal layers and that loss of CSTA causes a 

predisposition to epidermal splitting. There were no obvious abnormalities in a murine model with a 

chromosomal deletion, which included the Csta gene [46], although investigation of a skin phenotype 

was not described. 

4. Olmsted Syndrome 

The genetic basis of various skin diseases (Table 1) has been determined using exome sequencing 

technology. One example where WES enabled the identification of the underlying causative genes  

is Olmsted syndrome (OS) [47,48]. OS (OMIM #614594) is a rare disorder characterised by mutilating 
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palmoplantar keratoderma and periorificial keratosis. Additional clinical features include constriction 

of the digits, dystrophy of the nails, diffuse alopecia and a predisposition to infection and development 

of squamous cell carcinoma on keratotic lesions [47]. Different modes of inheritance have been 

hypothesised [47–50]. 

Table 1. Examples of genes associated with skin disease discovered using exome 

sequencing technology. 

Gene Disease Mode of Inheritance Reference 

AAGAB Punctate palmoplantar keratoderma Type I AD [51,52] 

ADAM10 Reticulate acropigmentation of Kitamura AD [53] 

AQP5 Nonepidermolytic palmoplantar keratoderma AD [54] 

ENPP1 Cole disease AD [55] 

EXPH5 Inherited skin fragility AR [56] 

HOXC13 Pure hair and nail ectodermal dysplasia AR [57] 

KANK2 Palmoplantar keratoderma and woolly hair AR [58] 

MBTPS2 Olmsted syndrome XLR [48] 

POFUT1 Dowling-Degos disease AD [59] 

POGLUT1 Dowling-Degos disease AD [60] 

SERPINB7 Nagashima-type palmoplantar keratosis AR [61] 

TRPV3 Olmsted syndrome AD/AR [47]/[62] 

AD: autosomal dominant; AR: autosomal recessive; XLR: X-linked recessive. 

WES was used successfully to identify mutations in the Transient Receptor Potential Cation Channel, 

Subfamily V, Member 3 (TRPV3) gene [47], and the Membrane-Bound Transcription Factor Protease, 

Site 2 (MBTPS2) gene [48] to be associated with OS. 

Lin et al. (2012) performed WES of an OS patient and her unaffected parents and identified a novel 

de novo heterozygous mutation p.G573S in TRPV3 [47]. Screening for TRPV3 mutations in five other 

OS patients revealed that three were heterozygous for p.G573S, one heterozygous for p.G573C and 

one heterozygous for p.W692G [47]. 

TRPV3 is a member of the TRPV cation channel family, and is known to be expressed in various 

tissue types including skin and hair follicles [63–65]. The murine TRPV3 mutants p.G573S and p.G573C 

were discovered in spontaneous hairless rodent strains that develop dermatitis, a trait inherited in an 

autosomal dominant manner [66]. Trpv3 knockout mice display wavy hair, curly whiskers and a defective 

skin barrier, and it is believed that TRPV3 associates with TGF-α/EGFR in a signalling pathway to 

modulate keratinocyte differentiation and hair morphogenesis [67]. 

In vitro functional studies with the three OS-associated TRPV3 mutants indicated that they are gain 

of function mutants, creating constitutively open channels and causing increased cell death of cells 

expressing the mutants [47]. Similar results were obtained in in vitro expression studies with the murine 

TRPV3 mutants p.G573S and p.G573C [68]. It has been hypothesised that in vivo the mutants may 

cause apoptosis and subsequent keratoderma in patients, and could contribute to their pruritis [47]. 

A subsequent study using WES revealed the recurrent TRPV3 mutation p.G573S in sporadic  

OS [69]. Screening by Sanger sequencing has also revealed a homozygous mutation in an OS patient, 
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indicating recessive inheritance [62]. Both recessive [70] and sporadic [71] TRPV3 mutations have 

been associated with atypical OS with erythromelalgia. 

Exome sequencing of two affected males reported previously in a consanguineous pedigree [72]  

in which OS followed a suggested X-linked recessive inheritance pattern, revealed a novel MBTPS2 

gene mutation which segregated with disease in the family [48]. This discovery expands the number of 

disorders attributed to MBTPS2 gene mutations, as other mutations in this gene are associated with 

ichthyosis follicularis with atrichia and photophobia (IFAP) syndrome [73–75], BRESEK/BRESHECK 

syndrome [76], and keratosis follicularis spinulosa decalvans (KFSD) [77]. 

MBTPS1 and MBTPS2 are involved in activating signalling proteins such as the transcription 

factors SREBPS, enabling cells to respond to sterols [78,79] and in the processing of ATF6, which is  

a component of the unfolded protein response (UPR) [80]. In vitro functional studies with IFAP and 

KFSD MBTPS2 mutants revealed decreased sterol responsiveness compared to wild-type [73,77], and 

mutants which caused the greatest impairment of enzyme activity seemed to be associated with 

increased disease severity in patients [73]. 

5. Complex Traits of the Skin 

In the last 10 years there have been landmark discoveries in our understanding of the genetic basis 

and pathophysiology of inflammatory skin diseases, most notably PV and AD. Both are common, 

complex diseases, in which a host of environmental factors can trigger disease in genetically susceptible 

individuals [81,82]. Inflammatory dermatoses are associated with both a significant burden on healthcare 

resources and patients’ quality of life [83,84]. 

Identification of susceptibility loci for PV and AD have resulted from developments in genome 

wide association studies (GWAS), which have been applied to all common disorders. Information  

has been generated by the HapMap and 1000 Genomes projects, in parallel with the technology to 

genotype multiple individual DNA samples at one million or more loci, allowing SNPs to be reviewed 

and enabling comparisons of allele frequency between large numbers of cases and controls to identify 

those which confer risk of disease [85]. The development of DNA microarray based genotyping allows 

up to a million SNPs to be tested simultaneously. 

6. Psoriasis 

PV is a common and chronic inflammatory disease, which can affect the skin, nails and joints.  

It is characterised by immune-mediated epidermal hyperproliferation [86]. It is a highly heritable 

disease, with increased concordance in monozygotic versus dizygotic twins (65%–72% versus 15%–30% 

respectively) [87]. During the last 10 years, almost 40 GWAS-identified novel psoriasis-susceptibility 

loci have been identified and more recently, the genes within these loci and their significance to the 

pathophysiology of PV are becoming clearer [88]. Interestingly, several show clustering to a distinct 

segment of the inflammatory cascade [89]. Psoriasis susceptibility locus 1 (PSORS1), located on  

the MHC region on chromosome 6p21, has been most consistently identified in GWAS with a  

significant odds ratio of 3.0 [90]. Genes implicated within this 250 kb interval include HLA-C (human  

leukocyte antigen C), CCHCR1 (coiled-coil α-helical rod protein 1), and CDSN (corneodesmosin). 

These were considered as potential disease-associated genes due to their function and the presence  
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of disease-associated SNPs within their coding sequence [91]. Identification of the causal disease 

susceptibility allele was extremely challenging, ultimately Nair et al. (2006) sequenced the entire 

PSORS1 region in individuals bearing different HLA-C alleles to identify SNPs unique to the PSORS1 

haplotype. They indicated that HLA-Cw6 was the major PSORS1 disease allele [92], reflecting the 

importance of antigen presentation in the pathophysiology of PV. 

Identification of susceptibility loci has contributed to our understanding of PV pathogenesis, which 

appears to involve the innate and adaptive immune responses. Pathways that have been identified in 

various studies include IL12/IL17 axis activation (IL23R, IL12B, IL23A, and TRAF31P2), type 1 

interferon induction (IFIH1, RNF114, and TYK2) and NF-κB signaling (CARD14, REL, NFKBIA, 

TNFAIP3, and TNF1P) [89,90,92–97]. Of particular interest is the Th1-Th17 axis, involving the recently 

described subset of IL17 expressing T cells (Th17) [98] which is thought to play a major role in the 

development and maintenance of psoriatic plaques [97]. 

IL12 and IL23 are cytokines that induce naïve CD4
+
 lymphocytes to differentiate into type 1 helper 

cells and type 17 helper cells, both of which are key mediators of PV [97]. IL12 and IL23 share a common 

p40 subunit encoded by the IL12B gene. In mice, injection of IL23 results in epidermal hyperplasia, 

which is mediated by IL22 produced by Th17 cells. This shows similarities to phenomena observed in 

humans [99]. GWAS have identified three SNPs with strong evidence of association with PV mapping 

near IL12B, IL23A (encoding the p19 subunit of IL23) and IL23R (encoding a subunit of the IL23 

receptor) [94] raising the possibility that dysregulated IL23 signaling could lead to chronic immune 

responses within epithelial cells. Ustekinumab (Stelara
®

) is a human IgG1κ monoclonal antibody 

against the p40 subunit of the IL12 and IL23 cytokines that has demonstrated significant improvement 

in outcome measures for the treatment of PV in Phase III clinical trials [100]. A significant proportion 

of patients had at least 90% improvement in their psoriasis area-and-severity index (PASI) score,  

with a proportion experiencing complete clearance by 12 weeks [100]. These findings also establish a 

central role for the IL12/IL23 p40 cytokines in the pathophysiology of PV. 

Another approach to utilise the discoveries gained from GWAS studies is personalised medicine. 

For example, patients with PV who carry risk variants in IL12B may benefit preferably from a 

monoclonal antibody targeting its p40 subunit, e.g., Ustekinumab. Studies using molecular profiling of 

PV and clinical phenotyping to predict treatment response have shown promise [101] and larger studies 

are underway. This is one example of how PV has been used as a paradigm for autoimmune disease 

and for proof-of-principle studies of targeted biologic therapies, because of the ease of accessing the 

skin and objectively measuring disease severity and responses to treatment. 

Rare variants with large effect have been observed in families where PV segregates as an apparent 

Mendelian trait. The psoriasis susceptibility locus 2 (PSORS2) was first mapped in 1994 to human 

chromosomal region 17q25-qter in a large family of European ancestry [102]. More recently, it has 

been shown that PSORS2 is due to gain of function mutations in the caspase recruitment domain 

family member 14 (CARD14) [96] using linkage analysis, targeted and exome capture in combination 

with NGS. On the basis of these findings, further work has uncovered rare missense variations in CARD14 

linked to PV using a large case-control study [95]. CARD14 encodes a NF-κB activator within the skin 

epidermis. The mutations identified lie within the coiled-coiled domain of CARD14 and result in 

enhanced NF-κB activity compared with wild-type CARD14 [95]. 
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Generalised pustular psoriasis (GPP) can present with an acute, widespread and life-threatening 

eruption associated with fever and leukocytosis. It has long been considered a variant of PV. Mutations 

in IL36RN, which encodes the IL36 receptor antagonist and abrogates downstream activation of  

NF-κB signaling, have been shown to underlie GPP in consanguineous pedigrees of North African 

origin [103]. This mutation results in enhanced production of IL1, IL6, and IL8 inflammatory cytokines, 

which may contribute to the profound systemic inflammatory response seen clinically in these  

patients [103]. Similar recessive mutations in IL36RN have not been observed in patients with PV 

alone [104]. Genetic studies suggest that in fact, PV and GPP are etiologically distinct clinical entities, 

which consequently have important therapeutic implications [105]. 

7. Atopic Dermatitis (Eczema) 

AD is a chronic inflammatory skin disease characterised by disturbed skin barrier function and  

dry, itchy skin. Its prevalence worldwide is increasing and in some countries affects almost 20% of  

children [106]. Like PV, concordance is observed in twin studies with rates of 0.72–0.86 in monozygotic 

and 0.21–0.23 in dizygotic twin pairs [107]. A complex interplay between environmental, genetic and 

immunological factors, as for many common disorders, all contribute to susceptibility and severity. 

The filaggrin story is central to our understanding of AD and ichthyosis vulgaris (IV). It exemplifies 

how the study of a monogenic disorder can translate to a complex trait disease. In 2006, null mutations 

in the filaggrin gene FLG were first identified in Irish families with IV, which often causes dry, scaly 

skin and is also a strong genetic risk factor for AD [108]. Histological evidence for the possible lack  

of filaggrin in IV dates back to 1985 [109] however these preliminary studies were hindered by  

the daunting size and repetitive nature of FLG, particularly exon 3. The McLean group developed a 

successful strategy to analyse this locus with the use of long range PCR to amplify exon 3 in combination 

with short specific PCRs to amplify remaining overlapping fragments that were then used to reconstruct 

the repetitive sequence [108]. Further research has identified significant associations of FLG mutations 

with atopic asthma, allergic rhinitis and peanut allergy [110], as well as early onset and increased 

severity of AD [111]. These studies have been reproduced in a variety of geographical populations, 

including European, Japanese, Taiwanese, Chinese, and Korean [112–114]. Indeed, the correlation 

between FLG mutations and AD is considered one of the most robust examples of genotype-phenotype 

relationship in complex trait disease with an odds ratio of up to 13.4 [115]. 

Filaggrin plays a key role in epidermal barrier function. Briefly, its degradation products act  

as ―natural moisturising factors‖ in the skin and assist the formation of a flattened granular cell  

layer upon keratinocyte terminal differentiation [116]. Studies describing murine models of filaggrin 

haploinsufficiency have shown skin barrier impairment and enhanced sensitisation to percutaneous 

allergens [117,118]. The significant effect of FLG mutations on AD risk highlights the role of impaired 

skin barrier function in the pathogenesis of atopic diseases. Filaggrin replacement therapies could 

prove significant in the management of AD. Recently, Otsuka et al. (2014) [119] identified a novel 

compound JTC801, with potential therapeutic applicability. This has been shown to increase expression 

of filaggrin in both human and murine keratinocytes and, when administered orally, it can hinder the 

development of AD-like inflammation in the NC/nga AD mouse model [119]. 
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Although the AD spotlight has focused largely on filaggrin, several other genes have been implicated 

in the pathogenesis of this disorder. To date, a total of 19 genome-wide significant (p < 5 × 10
−8

) 

susceptibility loci have been identified through GWAS [120]. The first GWAS data was published  

in 2009 and included 939 cases and 975 controls in addition to 270 complete nuclear families with  

two affected siblings [121]. It identified a novel susceptibility locus in 11q13.5, located 38 kb downstream 

of C11orf30. The peak association was observed 68 kb upstream of the leucine rich repeat containing 

32 gene (LRRC32) which has been shown to be expressed in activated human regulatory T cells [122]. 

Carriers have a risk of developing AD that is 1.47 times that of controls [121]. A 2011 Meta analysis 

of GWAS for AD included 5606 cases and 20565 controls and an additional 5419 cases and 19833 controls 

in a validation study [114]. Three novel risk loci reached genome-wide significance: rs479844 upstream 

of ovo-like zinc finger 1 (OVOL1), rs2164983 near actin-like 9 (ACTL9) and rs2897442 in kinesin 

family member 3A (KIF3A). They also confirmed association with the FLG locus. OVOL1 disruption 

in mice leads to keratinocyte hyperproliferation and hair shaft abnormalities [93]. It is thought to play  

a role in regulating epidermal proliferation and loricrin expression, impairing premature terminal 

differentiation [123]. KIF3A associated SNPs map within a cluster of cytokine and immune mediated 

genes including Th2 cytokine genes: IL13 and IL4. These cytokines have been implicated in other 

autoimmune and inflammatory diseases including PV [124], Crohn’s Disease [125] and asthma [125]. 

Increased levels of Th2 cytokines such as these have been reported in AD as well as greater levels  

of mRNA expression in acute skin lesions compared with unaffected skin in patients [126–128].  

These GWAS findings highlight the role of skin barrier function (FLG), epidermal proliferation and 

differentiation (OVOL1) and the adaptive immune system response (IL13-RAD50, LRRC32) in the 

pathophysiology of AD. 

Despite these promising discoveries, less than 20% of disease variance has been explained [129]. 

The phenomenon of ―missing heritability‖ has been observed across other complex diseases and suggests 

that unmapped common and rare variants with small effect size in GWAS as well as genetic interactions 

may contribute to the remaining heritability [129]. Epigenetic studies focusing on the contribution of 

DNA and chromatin methylation may also explain the role that they play in the formation and progression 

of complex diseases by regulating gene expression [130]. Future work integrating GWAS and epigenetic 

data may provide insights into our understanding of complex trait disease. In summary, GWAS data 

reinforces the concept that multiple low risk variants are most likely to contribute to AD and PV, but 

that larger sample sizes may be necessary to identify them. 

8. Conclusions 

The post-Human Genome Project era has seen remarkable advances in our understanding of  

genes underlying both rare and common skin disease. Such insights have proved significant beyond 

the field of dermatology because of shared mechanisms of disease for example, PV and inflammatory 

bowel disease. The wider relevance of skin disease is highlighted by the fact that skin is frequently  

a marker of internal disease. For example, mutations in ADAM17 not only cause inflammatory skin  

and bowel disease but increased susceptibility to infection and cardiomyopathy [131]. Similarly, the 

study of tylosis with oesophageal cancer, an autosomal dominant cancer syndrome that presents with 

skin thickening of the palms and soles, has brought to light the role of the inactive rhomboid family 
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member iRHOM2 in cancer pathophysiology [132] and wound healing [133]. This also highlights  

that mechanistic studies are facilitated by the relative ease with which patient material can be obtained 

by skin biopsy to derive cell lines for functional studies. 

Skin disease is particularly remarkable for its intragenic heterogeneity, for example distinct 

dominant and recessive mutations in the desmosomal Desmoplakin gene DSP can result in a spectrum 

of disease phenotypes ranging from arrhythmogenic right ventricular cardiomyopathy (ARVC) and 

striate palmoplantar keratoderma to palmoplantar keratoderma with woolly hair and ARVC (reviewed 

in [134]). 

GWAS, WES and whole genome sequencing (WGS) involving increasingly larger cohorts of ethnically 

diverse populations may also identify additional low and high penetrance variants that contribute to 

phenotypic variability. WGS is becoming increasingly affordable and offers scope to become the most 

cost-effective method for genetic diagnostics. In parallel, advances in bioinformatics and statistics are 

necessary to analyse the vast quantity of data generated by these studies, and distinguish significant 

findings. We may also see a move towards re-classification of skin diseases and malignancies based on 

genome sequence and subsequently, a targeted therapeutic approach to optimise treatment outcome. 
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