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Abstract

Harmonic sinusoidal models are an essential tool for music audio signal analysis.
Bayesian harmonic models are particularly interesting, since they allow the joint
exploitation of various priors on the model parameters. However existing inference
methods often rely on specific prior distributions and remain computationally de-
manding for realistic data. In this article, we investigate a generic inference method
based on approximate factorization of the joint posterior into a product of indepen-
dent distributions on small subsets of parameters. We discuss the conditions under
which this factorization holds true and propose two criteria to choose these subsets
adaptively. We evaluate the resulting performance experimentally for the task of
multiple pitch estimation using different levels of factorization.
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1 Introduction

Music and speech involve different types of sounds, including periodic, tran-
sient and noisy sounds. Short-term stationary periodic sounds composed of
sinusoidal partials at harmonic or near-harmonic frequencies are perceptually
essential, since they contain most of the energy of musical notes and vowels.
Harmonicity means that at each instant the frequencies of the partials are
multiples of a single frequency called the fundamental frequency. Estimating
the periodic sounds underlying a given signal, i.e. estimating their fundamen-
tal frequencies and the amplitudes and phases of their partials, is required
or useful for many applications, such as speech prosody analysis [1], multiple
pitch estimation and instrument recognition [2] and low bit-rate compression
[3]. This problem is particularly difficult for polyphonic signals, i.e. signals
containing several concurrent periodic sounds, since different periodic sounds
may exhibit partials overlapping at the same frequencies.

Existing methods for polyphonic fundamental frequency estimation are often
based on one of two approaches [2]: either validation of fundamental frequency
candidates given by the peaks of a short-term auto-correlation function [4–6] or
inference of the hidden states of a probabilistic model of the signal short-term
power spectrum based on learned template spectra [7–9]. These approaches
have achieved limited performance on complex polyphonic signals so far [2,6].
Moreover neither approach provides estimates for the amplitudes and phases
of the partials, which are needed for musical instrument recognition or low
bit-rate compression.

A promising way to address these issues is to rely on a probabilistic model
of the signal waveform incorporating various prior knowledge. Two families of
such models have been proposed in the literature for music signals. One family
introduced in [10,11] models each musical note signal in state-space form by a
discrete fundamental frequency and a fixed number of damped oscillators at
harmonic frequencies with independent transition noises. Decoding is achieved
either via linear Kalman filtering or variational approximation [12], depend-
ing whether the damping factors are fixed or subject to additional transition
noises. These inference methods restrict the prior distribution of the transition
noises to be Gaussian or from a class of conjugate priors [13] respectively. An-
other family of models described in [14–16] represents musical note signals by
continuous fundamental frequency, amplitude and phase parameters, inferred
using Markov Chain Monte Carlo (MCMC) methods [13]. These methods are
applicable to all prior distributions in theory, but tend to be computationally
demanding in practice. Thus the chosen priors are mostly motivated by com-
putational issues [16]. In particular, the amplitudes of the partials are modeled
by independent uniform priors or by conjugate zero-mean Gaussian priors, so
that analytical marginalization can be performed.
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For both families of models, the above priors exhibit some differences with the
empirical parameter distributions. In particular, they do not penalize partials
with zero amplitude. This typically leads to missing estimated notes for sig-
nals composed of several notes at integer fundamental frequency ratios [14,16]
or to erroneous fundamental frequency estimates equal to a multiple or a sub-
multiple of the true fundamental frequencies [16]. To help solving these limi-
tations, we recently designed a probabilistic harmonic model involving priors
motivated by empirical parameter distributions and proposed a variant of the
diagonal Laplace method for fast inference [3], since analytical marginalization
was no longer feasible with these priors.

In this article, we propose an alternative fast inference method for proba-
bilistic harmonic models, based on approximate factorization of the joint pos-
terior into a product of independent distributions on subsets of parameters.
This method is designed for models of the form described in [14–16,3], in-
volving explicit frequency, amplitude and phase parameters. It is generic, in
that it can be applied to a wide range of priors, and adaptive, since the level
of factorization depends on the observed signal and the hypothesized notes.
This constitutes a crucial difference compared to variational approximation
methods, where the terms of the factorization are fixed a priori and their pa-
rameters can only be computed for certain classes of priors. We complete our
preliminary work [17] by discussing the extension of this method to nongaus-
sian likelihood and alternative model structures, investigating a new criterion
for the choice of the parameter subsets and providing a detailed experimental
evaluation.

The structure of the rest of the article is as follows. In section 2, we present
a possible Bayesian network structure for harmonic models and make some
mild assumptions about the parameter priors. Then, we describe the proposed
inference method in section 3 and extend it to alternative model structures. In
section 4, we evaluate its performance for the task of multiple pitch estimation
on short time frames. We conclude in section 5 and suggest some perspectives
for future research.

2 Assumptions about the model

The harmonic models in [14–16,3] are variations of the same concept. They all
represent the observed music signal as a sum of note signals, each composed
of several sinusoidal partials parametrized by a sequence of random variables
spanning successive time frames. However, the chosen variables and their con-
ditional dependency structure are slightly different for each model. For the
sake of clarity, we first discuss our approach for the model structure in [3],
which involves fewer variables. Also, we consider each signal frame separately,
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thus omitting temporal dependencies. Such dependencies could be taken into
account by replacing the priors over the variables in a frame by conditional
priors given previous frames.

2.1 Bayesian network structure

On each time frame, the model described in [3] exhibits the four-layer Bayesian
network structure shown in Figure 1. The observed signal frame x(t) is as-
sumed to be obtained by windowing the whole signal with a window w(t) of
length T . Each layer models x(t) at a different abstraction level.

The bottom layer represents the active notes in this frame on a discrete pitch
scale. In western music, the fundamental frequency fp of each note expressed
relatively to the sampling frequency Fs may vary across frames but remains
close to a discrete pitch of the form

µp =
440

Fs

2
p−69

12 (1)

where p is an integer on the MIDI semitone scale. Assuming no unison, i.e.

that several notes corresponding to the same discrete pitch cannot be present
at the same time, each discrete pitch p is associated with a binary activity
state Sp determining whether a note with that pitch is active or not. The
number of active notes and their pitches are thus represented by the activity
state vector S = {Sp : plow ≤ p ≤ phigh} where plow and phigh are the lowest
and highest pitches among possible instruments.

The signal sp(t) corresponding to each active note is then defined in the middle
layers for 0 ≤ t ≤ T − 1 by

sp(t) = w(t)
Mp
∑

m=1

apm cos(2πmfpt + φpm) (2)

where fp, apm and φpm are respectively its normalized fundamental frequency
and the amplitude and phase of its m-th harmonic partial. The number of
partials Mp is constrained as a function of the note pitch p to

Mp = min

(

1

2µp

,Mmax

)

(3)

so that the partials fill the whole observed frequency range up to a maximum
number of partials Mmax. The amplitudes of the partials are assumed to de-
pend on an amplitude scale factor rp accounting for the total power of the
note. The vectors of frequency, scale factor, amplitude and phase parameters
for all notes are denoted respectively by f = {fp : Sp = 1}, r = {rp : Sp = 1},
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x: observed signal frame

sp: signal of note p

e: residual

fp: fundamental frequency

rp: amplitude scale factor

apm: amplitude of partial m

φpm: phase of partial m

Sp: activity state of note p

Fig. 1. Bayesian network structure of the harmonic model in [3] on one signal frame.
Circles denote vector random variables (some of variable size) and arrows conditional
dependencies.

a = {apm : Sp = 1, 1 ≤ m ≤ Mp} and φ = {φpm : Sp = 1, 1 ≤ m ≤ Mp}.
Finally, the observed signal is modeled in the top layer as

x(t) =
∑

p s.t.Sp=1

sp(t) + e(t) (4)

where e(t) is the residual.

2.2 Assumptions about the parameter priors

The inference method proposed below is valid given some mild assumptions
about the parameter priors. Classically, we assume that the fundamental fre-
quencies fp of different notes p and the phases φpm of different partials (p,m)
are independent a priori and that the amplitudes apm of different partials are
independent a priori given the scale factors rp. We also assume that the prior
distribution of each fundamental frequency fp is close to zero outside the inter-
val [2−1/12µp, 2

1/12µp], so that it enforces proximity to the underlying discrete
pitch. Finally, we make the hypothesis that the residual e(t) has a continu-
ous distribution and that its values at distinct frequencies are independent a

priori, so that the likelihood P (x|f, a, φ) factors as

P (x|f, a, φ) =
T−1
∏

ν=0

P (Eν) (5)

where Eν are the Discrete Fourier Transform (DFT) coefficients of e(t).

Note that the ubiquitous time-domain Gaussian i.i.d. distribution satisfies this
hypothesis, since it is equivalent to a Gaussian i.i.d. distribution on the DFT
coefficients P (x|f, a, φ) = (2πσ2)−T/2∏T−1

ν=0 exp(−|Eν |
2/(2σ2)). A more general

distribution in the form of (5) and of particular interest in the following is the
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frequency-weighted Gaussian [3]

P (x|f, a, φ) = (2πσ2)−T/2
T−1
∏

ν=0

exp

(

−
γν |Eν |

2

2σ2

)

(6)

where γν are constant positive weights. This can be rewritten as P (x|f, a, φ) =
(2πσ2)−T/2 exp(−‖e‖2

γ/(2σ
2)) where ‖e‖2

γ =
∑T−1

ν=0 γν |Eν |
2 is the squared weighted

Euclidean norm of the DFT coefficients.

3 Bayesian inference via adaptive posterior factorization

Harmonic models are typically employed to solve the multiple pitch estimation
task, which consists of estimating the number of active notes and their pitches
on each time frame. In the present framework, this task translates into finding
the Maximum A Posteriori (MAP) activity state vector Ŝ = arg maxP (S|x),
which is achieved by trying a number of candidate vectors S, computing their
posterior probabilities P (S|x) and selecting the largest. These probabilities
are defined by

P (S|x) =
∫

P (S, f, r, a, φ|x) df dr da dφ (7)

where the joint posterior P (S, f, r, a, φ|x) is given by Bayes law

P (S, f, r, a, φ|x) ∝ P (x|f, a, φ)P (φ|S)P (a|r, S)P (r|S)P (f |S)P (S). (8)

In the following, we focus on the computation of the integral in (7), which is
known as the Bayesian marginalization problem [12]. We briefly recall some
existing integration methods, then introduce the proposed method in a simple
context and extend it to a more general context later on.

3.1 Sampling-based vs. full factorization-based integration

A number of sampling techniques are available to compute such integrals [12].
However they appear unsatisfactory in this context. Numerical integration on
a uniform grid is accurate for distributions of a few parameters, but intractable
here since the number of parameters is typically of the order of one hundred.
Integration via importance sampling [18] is computationally demanding, since
the variance of the importance weights, which is proportional to that of the
estimate, increases sharply with the number of parameters [12]. Sampling of
the joint posterior via reversible jump MCMC [13] is also demanding [16].

Fast inference can be achieved at the cost of lower accuracy by estimating the
MAP parameter values (f̂ , r̂, â, φ̂) = arg maxf,r,a,φ P (S, f, r, a, φ|x) associated
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with each candidate activity state vector S using some nonlinear optimization
algorithm and approximating the joint posterior around these values by a
simpler distribution which can be integrated analytically or by tabulation.
The fastest techniques include the diagonal Laplace approximation [19], which
relies on full factorization of the posterior into a product of parameter-wise
univariate Gaussian distributions, and its variant proposed in [3] with a specific
univariate nongaussian distribution for the phase parameters. The full Laplace
approximation [19] performs poorly here due to unbounded integration over
the phase parameters [17].

The proposed inference method aims to bridge the gap between sampling-
based and full factorization-based techniques by partially factoring the joint
posterior into a product of distributions over subsets of a few parameters and
integrating these distributions via sampling. Various levels of factorization can
be obtained depending on the MAP parameter values.

3.2 Conditional posterior factorization over the partials

For simplicity, let us assume initially that the harmonic partials of the hypoth-
esized active notes have “different enough” frequencies and that the likelihood
is a frequency-weighted Gaussian as in (6). These two assumptions are relaxed
later on. The former is generally true for a single hypothesized active note,
but almost never for several active notes. Mathematically, it leads to the as-
sumption that the windowed complex sinusoidal signals

zpm(t) = w(t)e2iπmfpt (9)

corresponding to different partials are mutually orthogonal

〈zpm, zp′m′〉γ = 0 ∀(p,m) 6= (p′,m′) (10)

according to the dot product 〈., .〉γ consistent with the weighted Euclidean
norm ‖.‖γ defined in Section 2.2. This dot product is defined for two signals
z(t) and z′(t) by

〈z, z′〉γ =
T−1
∑

ν=0

γνZνZ̄
′
ν (11)

where Zν and Z ′
ν are the DFT coefficients of z(t) and z′(t) and Z̄ ′

ν is the com-
plex conjugate of Z ′

ν . The orthogonality property (10) formalizes the fact that
partials with “different enough” frequencies have almost disjoint frequency
supports and can be assumed to hold true for all possible frequency weights
γν . When the frequencies of the partials are not too close to Nyquist, the neg-
ative frequency sinusoidal signals z̄pm(t) = w(t)e−2iπmfpt are also orthogonal
to their positive counterparts: 〈zpm, z̄p′m′〉γ = 0 for all (p,m) and (p′,m′). The
observed signal x(t) can then be decomposed into a sum of sinusoidal signals
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at the frequencies of the hypothesized partials by orthogonal projection onto
the two-dimensional subspaces spanned by (zpm, z̄pm)

x(t) =
1

2

∑

p,m

ãpm(eiφ̃pmzpm(t) + e−iφ̃pm z̄pm(t)) + ẽ(t). (12)

The projection coefficients given by

ãpmeiφ̃pm = 2
〈x, zpm〉γ
‖zpm‖2

γ

(13)

represent the amplitude and phase values of each partial leading to the minimum-
norm residual ẽ(t). Given hypothesized values apm and φpm, the corresponding
residual e(t) can be decomposed as a sum of mutually orthogonal terms

e(t) =
1

2

∑

p,m

(

ãpmeiφ̃pm − apmeiφpm

)

zpm(t)

+
(

ãpme−iφ̃pm − apme−iφpm

)

z̄pm(t) + ẽ(t). (14)

The squared norm of the residual then equals by analytical computation

‖e‖2
γ =

∑

p,m

Dpm + D0 (15)

with D0 = ‖ẽ‖2
γ and

Dpm =
1

2
‖zpm‖

2
γ

(

(apm − ãpm)2 + 4ãpmapm sin2 φpm − φ̃pm

2

)

. (16)

Using (8) and the relationship between P (x|f, a, φ) and ‖e‖2
γ , this leads to

the exact factorization of the joint posterior into a product of partial-wise
bivariate conditional distributions over amplitude and phase parameters

P (S, f, r, a, φ|x) ∝ P0(x, f)P (r|S)P (f |S)P (S)

×
∏

p,m

Ppm(apm, φpm; x, fp)P (apm|rp)P (φpm) (17)

where P0(x, f) = (2πσ2)−T/2 e−D0/(2σ2) depends on f only and Ppm(apm, φpm; x, fp) =
exp(−Dpm/(2σ2)) is a bivariate parametric distribution that can be quickly
computed, since it depends on three hyper-parameters only: ‖zpm‖

2
γ , ãpm and

φ̃pm. The top part of Figure 2 illustrates the validity of this factorization.

Denoting by (â, φ̂) = arg maxa,φ P (S, f, r, a, φ|x) the vectors of estimated MAP
amplitude and phase parameter values associated with S, f and r and by
âpm = {âp′m′ : (p′,m′) 6= (p,m)} and φ̂pm = {φ̂p′m′ : (p′,m′) 6= (p,m)} the
same vectors minus one coefficient corresponding to partial (p,m), the above
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expression can be equivalently rewritten as proved in Appendix A as

P (S, f, r, a, φ|x) = P (S, f, r, â, φ̂|x)
∏

p,m

P (apm, φpm|S, f, rp, âpm, φ̂pm, x)

P (âpm, φ̂pm|S, f, rp, âpm, φ̂pm, x)
. (18)

This equation holds under the assumptions that the likelihood is frequency-
weighted Gaussian and that the partials of the hypothesized active notes are
orthogonal signals. It admits the following interpretation: the first term is the
maximum of the joint posterior with fixed S, f and r and the quotient terms
describe the decrease of this posterior around its maximum as proportional to
the posterior distribution of the parameters of each partial with the parameters
of other partials being fixed. In theory, this equation holds also for any value
of â and φ̂ distinct from the actual MAP parameter values.

In practice, perfect orthogonality never happens. Nevertheless, this equation
remains approximately valid under the more general assumptions that the
partials of the hypothesized active notes have “different enough” frequencies
and that the likelihood satisfies (5), although quick computation of the quo-
tient terms by orthogonal projection is not feasible anymore with nongaussian
likelihood. Indeed, when the amplitude parameters are not too far from their
MAP values, the DFT coefficients of each partial signal are close to zero except
for a few DFT bins ν around the frequency of that partial. The sets of bins
associated with different partials are disjoint. Therefore the likelihood P (Eν)
in a given bin depends mostly on the parameters of a single partial, which
leads to (18) after simple analytical computation. Note that this factorization
holds as soon as the MAP amplitude values are not grossly overestimated,
otherwise the frequency support of different partials might overlap due to sec-
ondary lobes. In particular, it holds when the joint posterior is multimodal
and a local maximum was estimated instead of the global maximum.

3.3 Conditional posterior factorization over subsets of partials

In the general case where some partials of the hypothesized active notes may
have close frequencies, the terms of (18) can still be computed but this equa-
tion may not hold true anymore, as shown in the middle part of Figure 2. It
is however possible to group partials into disjoint subsets such that partials
from different subsets have “different enough” frequencies. These subsets can
be iteratively created as follows: a partial (p,m) is assigned to a previously
created subset g if there exists a partial (p′,m′) ∈ g such that

|mfp − m′fp′| ≤ fmax (19)

where fmax is a manually set frequency threshold, otherwise it forms a new sin-
gleton subset. Provided that the likelihood satisfies (5) and that the MAP am-
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Fig. 2. Joint posterior distribution P (apm, ap′m′ |S, f̂ , r̂, âpmp′m′ , φ̂, x) of the ampli-
tudes of two partials given the MAP values of other parameters, using the priors
defined in [3] and assuming 60 dB ground truth amplitudes with no other partials at
the same frequencies. Dark areas denote high probability. Top: partials at different
frequencies with mean prior amplitudes of 50 dB and 60 dB. Middle: partials at the
same frequency with identical mean prior amplitudes of 60 dB. Bottom: partials at
the same frequency with mean prior amplitudes of 40 dB and 60 dB. The posterior
dependence between apm and ap′m′ equals 0, 0.99 and 0.093 bits respectively.

plitude values are not grossly overestimated, similar arguments as above lead
to the approximate factorization of the posterior into a product of multivari-
ate conditional distributions over subsets of amplitude and phase parameters
ag = {apm, (p,m) ∈ g} and φg = {φpm, (p,m) ∈ g}

P (S, f, r, a, φ|x) ≈ P (S, f, r, â, φ̂|x)
∏

g

P (ag, φg|S, f, r, âg, φ̂g, x)

P (âg, φ̂g|S, f, r, âg, φ̂g, x)
. (20)

Each quotient term can be quickly computed by orthogonal projection in the
particular case where the likelihood is frequency-weighted Gaussian.

A higher threshold fmax increases the accuracy of this equation, but also leads
to larger subsets. In practice, it is often possible to obtain a factored expression
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of similar accuracy with smaller subsets. Indeed there exist some situations
where partials at close frequencies may still be associated with different sub-
sets. An example of such a situation is given in the bottom part of Figure 2
and discussed in [17]. Denoting by the vectors y and y′ two disjoint subsets
of variables and by ŷ and ŷ′ their estimated MAP values given the rest of the
variables y′′, we assess the accuracy of the approximation of the joint poste-
rior distribution P (y, y′|y′′) by the factored distribution P (y|ŷ′, y′′)P (y′|ŷ, y′′)
using the Kullback-Leibler divergence [12]

D(y, y′) =
∫

P (y, y′|y′′) log2

P (y, y′|y′′)

P (y|ŷ′, y′′)P (y′|ŷ, y′′)
dy dy′. (21)

This quantity is always positive and equal to zero only when the approximation
is exact. It can be seen as a measure of the local posterior dependence between
y and y′ expressed in bits. Indeed, it is analogous to mutual information [12],
except that the marginal distribution of each variable is replaced here by
its posterior distribution given the estimated MAP value of the other. This
suggests that partials (p,m) and (p′,m′) are to be grouped in the same subset
if

D({apm, φpm}, {ap′m′ , φp′m′}) ≥ cmin (22)

where cmin is a manually set threshold. Compared to mutual information,
this criterion is tractable for a wide range of distributions. However, it is
less accurate when three or more partials overlap at a given frequency and
the joint posterior is multimodal, since misestimation of the MAP parameter
values of one partial may affect the estimated posterior dependence between
the parameters of other partials. This may in turn affect the determination of
the parameter subsets, hence the accuracy of (20).

Figure 3 depicts the distribution of posterior dependence between the param-
eters of two partials as a function of their frequency difference measured in
number of DFT bins. The choice of the frame length T affects the measured
frequency difference. However, the distribution for a given frequency difference
remains roughly independent of the frame length. On average, posterior de-
pendence tends to decrease with increasing frequency difference and exhibits
smaller values for differences corresponding to certain zeroes of the DFT of
the window w(t). Most importantly, for a given frequency difference, poste-
rior dependence values differing by up to three orders of magnitude can be
observed. This shows that there exist many situations in practice where the
parameters of two partials at close frequencies are much less dependent than
average, so that the size of the parameter subsets can effectively be reduced.
This figure can also be exploited to speed up the estimation of the subsets by
avoiding the computation of the posterior dependence between partials whose
frequency difference is above a certain threshold, chosen so that the posterior
dependence is guaranteed to be larger than cmin.
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Fig. 3. Posterior dependence between the parameters of two partials as a function
of their frequency difference measured in number of DFT bins. The black curve and
the gray area denote respectively the median and the two-tailed 95th percentile of
the values computed for all the data of Section 4.1.

3.4 An exploitable posterior factorization

The conditional factorization (20) can be exploited for numerical integration of
the posterior, either by sampling on a uniform grid or by importance sampling.
Indeed integration over amplitude and phase parameters can be achieved by
multiplying lower dimension integrals over the parameters of each subset of
partials. Using sampling on a uniform grid and denoting by N the number
of grid points for each scalar variable, P the number of hypothesized notes,
M =

∑

p Mp their total number of partials and G the size of the largest subset
of partials, this results in a maximum complexity of O(M

G
N2P+2G). This is

smaller than the complexity of O(N2P+2M) associated with straightforward
integration of the joint posterior, but still intractable.

In order to get faster integration, additional parameter dependencies must be
removed. A natural approach consists of computing the MAP values (f̂ , r̂, â, φ̂) =
arg maxf,r,a,φ P (S, f, r, a, φ|x) of all parameters, replacing the free fundamen-
tal frequency and scale factor parameters f and r in the quotient terms of
(20) by their MAP values and factoring the first term of (20) over individual
parameters fp and rp. This gives

P (S, f, r, a, φ|x) ≈ P (S, f̂ , r̂, â, φ̂|x)
∏

p

P (fp|S, f̂p, â, φ̂, x)

P (f̂p|S, f̂p, â, φ̂, x)

×
∏

p

P (rp|S, âp)

P (r̂p|S, âp)

∏

g

P (ag, φg|S, f̂ , r̂, âg, φ̂g, x)

P (âg, φ̂g|S, f̂ , r̂, âg, φ̂g, x)
. (23)

This equation allows approximate numerical integration of the posterior with
a maximum complexity of O(M

G
N2G). Although it is not straightforward to

justify mathematically, this additional approximation appears experimentally
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valid under the assumption that the prior distribution of fundamental fre-
quency parameters enforces proximity to the underlying discrete pitches. For
instance, the posterior dependence between fundamental frequencies and other
parameters or between scale factors and other parameters for the data of Sec-
tion 4.1 was above the best setting of cmin determined in that section in less
than 4% of the cases, so that the error introduced by factorization of the joint
posterior over fundamental frequency and scale factor parameters was gener-
ally smaller than that introduced by factorization over amplitude and phase
parameters. Similarly to above, this equation may become inaccurate due to
a different grouping of the partials when three or more partials overlap at a
given frequency and the MAP amplitude and phase values â and φ̂ are mises-
timated. However, misestimation of the MAP fundamental frequencies f̂ has
little effect, since it affects mostly the grouping of upper frequency partials
which are generally independent a posteriori due to their small amplitude.

3.5 Summary of the proposed inference method

To sum up, the proposed inference method is as follows. For each signal frame
x(t) and each candidate activity state vector S

(1) estimate the MAP parameter values (f̂ , r̂, â, φ̂) by nonlinear optimization
(2) either

• group the partials into disjoint subsets g according to the frequency
difference criterion (19) or

• compute the posterior dependence criterion (22) between all partials
with small frequency difference and group them into disjoint subsets g
according to this criterion

(3) compute the integral of each term of the factored posterior (23) via nu-
merical integration and multiply these integrals to obtain P (S|x)

Various algorithms can be used to address each step. In the following, the MAP
parameter values were computed using the subspace trust region optimization
algorithm implemented in Matlab’s lsqnonlin function 2 . This algorithm was
initialized with the parameter values fp = µp, apm = ãpm and φpm = φ̃pm

defined in (1) and (13). The posterior dependence was computed for all pairs
of partials with frequency difference smaller than 2.5 bins by numerical inte-
gration on a uniform grid with 11 points per variable, that is about 1.5 × 104

samples per pair of partials. Each term of the factored posterior was subse-
quently integrated by sampling on a uniform grid with N points per variable,
resulting in a total of Ntot = N2P +

∑

g N2|g| samples per candidate activity
state vector where |g| denotes the number of partials in subset g. We also tried

2 http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/lsqnonlin.html
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integration of these terms via importance sampling [18], but this did not sig-
nificantly affect performance, although this led to an increase in computation
time.

3.6 Extension to alternative model structures

The proposed marginalization could be extended to alternative harmonic model
structures, such as those described in [14–16]. Indeed, the approximate poste-
rior independence property of partials at different frequencies remains valid.

Among all structural differences, these models consider the number of partials
per note Mp as a random variable subject to a certain prior. With narrow fun-
damental frequency priors as in [14,15], the proposed method can be directly
applied to compute the integrals of the joint posterior for each value of Mp.
Note that this results in little additional cost compared to fixed Mp. Indeed,
when increasing or decreasing Mp by one, only one subset of partials needs to
be updated, while the integral over the other subsets remains constant. With
wider fundamental frequency priors as in [16], the posterior becomes multi-
modal with local maxima at all fundamental frequencies present in the signal
and rational multiples of these. Amplitude and phase parameters then exhibit
a strong dependence with fundamental frequency parameters. The proposed
method can still be applied by splitting the fundamental frequency range into
disjoint narrow bands, similar to the semitone bands considered above, and
summing the integrals of the joint posterior within each band.

Another difference is that the models in [15,16] involve additional parameters,
namely one global inharmonicity parameter and one spectral shape parameter
per note in [15] and one local inharmonicity parameter per partial in [16].
The proposed method can be directly applied in the second case by grouping
local inharmonicity parameters with amplitude and phase parameters from the
same partials, yielding a maximum complexity of O(M

G
N3G). We believe that it

could also be applied in the first case after additional factorization of the joint
posterior over global inharmonicity and spectral shape parameters. Indeed
these parameters are physically similar to fundamental frequency and scale
factor parameters and should exhibit a similar level of posterior dependence
with other parameters.

Finally, the models in [14–16] describe the likelihood by a Gaussian whose
variance is considered as a random variable. Although this distribution does
not satisfy (5), the proposed method can still be applied after additional fac-
torization of the posterior over this variance parameter. We believe that this
factorization remains approximately accurate provided that the posterior dis-
tribution of the variance is unimodal and narrow.
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4 Evaluation

The precision of the integral estimates obtained by the proposed marginal-
ization method cannot be assessed for realistic signals, since ground truth
integral values are not available. However, the aim of marginalization is often
not to compute the exact values of the state posteriors P (S|x), but rather to
provide accurate multiple pitch estimation, that is to select the right MAP ac-
tivity state vector Ŝ. Therefore we evaluated the performance of the proposed
method with respect to the latter task. The variant of the diagonal Laplace
method employed in [3] was also evaluated for comparison.

4.1 Training data and evaluation procedure

The parameter priors were chosen as in [3], without assuming knowledge of the
true number of active notes on each frame: the activity states Sp were modeled
by Bernoulli priors, the fundamental frequencies fp, the scale factors rp and the
amplitudes of the partials apm by log-Gaussian priors, the phases of the partials
φpm by uniform priors and the likelihood by a frequency-weighted Gaussian.
Note that the prior over apm helps to avoid partials with zero amplitude. The
means and variances of these priors were learned on a subset of the RWC
Musical Instrument Database 3 consisting of isolated notes from five wind
instruments (flute, oboe, clarinet, trombone and bassoon) with MIDI pitches
ranging from plow = 34 to phigh = 96 and about 500 to 3000 signal frames per
pitch.

For each frame, each active note in the MAP state vector Ŝ was considered to
be correct if it was actually present in the test signal. Performance was then
classically assessed by the F -measure F = 2RP/(R+P ) in percent, where the
recall R is the ratio of the total number of correct notes over all frames divided
by the true number of active notes and the precision P is the proportion of
correct notes among the estimated active notes [20,6]. The computation time
was measured for a Matlab 7.5 implementation on a 1.2 GHz dual core laptop.

4.2 Results with one-note and two-note signals

A first experiment was run on one-note and two-note single-frame signals gen-
erated by selecting and mixing isolated note signals from the five above wind
instruments taken from the University of Iowa Musical Instrument Samples

3 http://staff.aist.go.jp/m.goto/RWC-MDB/

15



database 4 . More precisely, the test set included 100 one-note signals spanning
all discrete pitches from p = 40 to 87 and 100 two-note signals corresponding
to all possible pitch intervals between 1 and 25 semitones with four different
bass pitches p = 40, 47, 54 and 61. All signals were sampled at 22.05 kHz and
cut to a single frame using a Hanning window w(t) of length T = 1024 (46
ms). In order to avoid testing all possible activity state vectors S, 6 candidate
vectors (3 with one active note and 3 with two active notes) were automati-
cally pre-selected for each test signal as those minimizing the residual of the
orthogonal projection of the observed magnitude spectrum onto the subspace
spanned by the mean magnitude spectra of active notes, derived from the
amplitude prior as explained in [3]. The thresholds fmax and cmin were varied
between 0 and 2 bins and between 103 and 10−1.5 bits respectively, resulting
in a variation of the maximum number of partials per subset from one to
three. The average number Ntot of integration samples per test signal and per
candidate was varied between 105 and 107.

With one-note signals, the proposed method gave perfect results for all settings
of fmax, cmin and Ntot, as expected by any reasonable fundamental frequency
estimator. The method in [3] also provided perfect results with a faster average
computation time of 0.55 s per candidate, mostly due to the optimization of
the MAP parameters.

The results with two-note signals are depicted in Figure 4. The performance
of the proposed method with many integration samples Ntot = 107 increases
from F=93.4% (R=89.0%, P=98.3%) to F=96.9% (R=94.5%, P=99.5%) for
both grouping criteria when the average number of partials per subset in-
creases. This difference is statistically significant, as confirmed by a McNemar’s
p value [21] of 10−3. By comparison, the method in [3] achieved a performance
of F=92.6% (R=88.0%, P=97.8%), which is not statistically different from
that of the proposed method with a single partial per subset. The best setting
for the proposed method consists of using the posterior dependence criterion
with cmin ≃ 100 bits. Indeed, this criterion generally results in smaller subsets
of partials, thus allowing a larger number N of integration samples per vari-
able for a given total integration cost Ntot. The resulting increased accuracy
translates into the fact that the performance curve with Ntot = 105 wanders
less around the curve with Ntot = 107 for this criterion than for the frequency
difference criterion. The above value of cmin is the largest one yielding maxi-
mum performance, resulting in as little as 7% of partials found within subsets
of two partials for two-note candidates and no partials found within subsets
of three or more. For this setting, the computation time with Ntot = 105 or
equivalently N = 15 was equal to 1.0 s per candidate on average. This can be
split into about 0.55 s for the optimization of the MAP parameters, 0.1 s for
the computation of the posterior dependence between the partials and 0.35 s

4 http://theremin.music.uiowa.edu/MIS.html
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for the numerical integration of the terms of the factored posterior. This is
much faster than previously reported computation times for MCMC methods
with similar models, e.g. 1080 s per active note with T = 6000 using a 2.6
GHz dual core computer in [16], corresponding to about 800 s per test signal
for two-note signals of length T = 1024 with our computer.
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Fig. 4. Multiple pitch estimation results on two-note signals using adaptive posterior
factorization based on posterior dependence (left) or frequency difference (right)
between partials. Top: F -measure for various numbers of integration samples (plain:
Ntot = 107, dashed: Ntot = 106, dash-dotted: Ntot = 105). Bottom: Percentage of
partials from two-notes candidates within subsets of size 1, 2 or 3. The percentage
for subsets of size 3 equals 0.2% for cmin = 10−1.5 bits, 1% for fmax = 2 bins and 0
in all other cases. All partials from one-note candidates form singleton subsets.

The pitch estimation errors made by the proposed method and the method in
[3] are compared in Figure 5. Errors arise mostly in two situations well known
to be difficult [2]: pitch intervals of 12, 19 or 24 semitones, corresponding to
integer fundamental frequency ratios of 2, 3 or 4, and pitch intervals of 1 to
10 semitones with medium or low pitch bass. These errors can be explained
respectively by the fact that all the partials of one note overlap with the par-
tials of the other and that the frequency resolution is too small to distinguish
multiple notes at low fundamental frequencies. The proposed method reduced
the number of errors in both situations. In particular, correct estimation was
achieved for some pitch intervals of 19 semitones and all intervals of 24 semi-
tones, while such intervals would typically result in estimation errors for other
models based on uniform or zero-mean Gaussian amplitude priors [14,16].
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Fig. 5. Comparison of pitch estimation errors on two-note signals using adaptive
posterior factorization with the best setting or the diagonal Laplace variant method
in [3]. White, gray and black squares denote respectively accurate estimation for
both methods, accurate estimation for the proposed method only and erroneous
estimation for both methods. There are no cases where [3] was accurate but the
proposed method was not.

4.3 Results with real-world signals

In order to estimate the potential performance of the proposed method on
real-world data, a second experiment was run on the data for the multiple
fundamental frequency estimation task of the 2007 Music Information Re-
trieval Evaluation Exchange (MIREX) 5 . These data consist of public and
hidden excerpts of recordings and monophonic pitch annotations of individ-
ual instrument parts of a wind quintet by Beethoven. Four test signals with
two to five instruments were generated by successively summing together the
parts of flute, clarinet, bassoon, horn and oboe of the first 17 s of the public
excerpt. These signals were then resampled at 22.05 kHz and framed with
half-overlapping Hanning windows of length T = 1024 (46 ms). A variable
number of candidate activity state vectors S with zero to five active notes
was automatically pre-selected for each frame using the iterative state jump
algorithm employed in [3], resulting in 23 candidates per frame on average.
Inference was performed using the best settings determined above, namely
cmin = 100 bits and N = 15, leading to subsets of one to three partials.

The results are detailed in Table 1. On average, the proposed method ran in
17 h and achieved F = 70.0%, while the method in [3] ran in 6 h and achieved
F = 68.7%. The similarity between these performance figures suggests that
full posterior factorization can work nearly as well as adaptive posterior fac-
torization in practice. One reason for this is that the pitch intervals for which
an improvement was observed in the first experiment occur more rarely in this
experiment. These figures are in line with the top ones reported at MIREX.
For instance, the best method [6] achieved F=73% on hidden excerpts of the
same data, while exploiting additional temporal priors.

5 http://www.music-ir.org/mirex2007/
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Table 1
Multiple pitch estimation results on real-world signals.

Method
Number of
instruments

R (%) P (%) F (%)
Average time per
candidate state (s)

Total
time (h)

Adaptive
posterior
factoriza-

tion

2 87.0 91.8 89.3 1.8 8

3 60.1 86.2 70.9 5.2 24

4 51.2 82.2 63.1 5.4 26

5 42.2 85.4 56.5 5.5 28

Diagonal
Laplace
variant

[3]

2 86.2 91.3 88.6 0.8 4

3 59.3 85.9 70.1 1.4 6

4 49.4 81.5 61.5 1.5 7

5 40.4 84.1 54.6 1.3 6

5 Conclusion

We proposed a fast inference method for Bayesian harmonic models based on
approximate factorization of the joint posterior into a product of distributions
over disjoint parameter subsets and numerical integration of these distribu-
tions. A local posterior dependence criterion was exploited to determine rel-
evant subsets. Although factorization based on this criterion is theoretically
feasible for any Bayesian model, it does not necessarily provide small subsets,
which are needed for subsequent numerical integration. The key property of
harmonic models demonstrated here is that the parameters of partials with
different frequencies are approximately independent a posteriori. Compared
to classical inference methods such as MCMC and variational approximation,
this method is tractable for a wide range of priors and allows a variable level
of factorization depending on the observed signal and the hypothesized notes.
However, the resulting marginal probability estimates are intrinsically less ac-
curate. Hence we believe that it is most beneficial when classical methods are
intractable due to the chosen priors. Our experiments suggest that approxi-
mate inference with priors motivated by empirical parameter distributions can
provide better pitch transcription results than exact inference with standard
priors motivated by computational issues.

To improve the accuracy of the factorization, it would be interesting to in-
vestigate transformations of the parameters resulting in a smaller posterior
dependence. The minimization of the dependence between subsets of random
variables described by a sequence of samples is known as the Independent Sub-
space Analysis (ISA) problem and can be solved in the case of linear transfor-
mations by Independent Component Analysis (ICA) followed by grouping of
the transformed variables [22]. This approach could easily be combined with
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subsequent integration based on importance sampling, and this may also allow
other Bayesian models, which do not readily satisfy the posterior independence
property, to benefit from the proposed inference method.
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A Proof of equation (18)

We start from the expression of joint posterior in (17). On the one hand, by
evaluating (17) with a = â and φ = φ̂, we obtain

P (S, f, r, â, φ̂|x) ∝ P0(x, f)P (r|S)P (f |S)P (S)

×
∏

p,m

Ppm(âpm, φ̂pm; x, fp)P (âpm|rp)P (φ̂pm). (A.1)

After dividing (17) by (A.1), we get

P (S, f, r, a, φ|x)

P (S, f, r, â, φ̂|x)
=
∏

p,m

Ppm(apm, φpm; x, fp)P (apm|rp)P (φpm)

Ppm(âpm, φ̂pm; x, fp)P (âpm|rp)P (φ̂pm)
. (A.2)

On the other hand, by evaluating (17) with ap′m′ = âp′m′ and φp′m′ = φ̂p′m′ for
all partials (p′,m′) except (p,m), we have

P (S, f, r, apm, âpm, φpm, φ̂pm|x) ∝ P0(x, f)P (r|S)P (f |S)P (S)

× Ppm(apm, φpm; x, fp)P (apm|rp)P (φpm)

×
∏

(p′,m′) 6=(p,m)

Pp′m′(âp′m′ , φ̂p′m′ ; x, fp′)P (âp′m′ |rp′)P (φ̂p′m′). (A.3)

Using Bayes law, this leads to

P (apm, φpm|S, f, rp, âpm, φ̂pm, x) ∝ P0(x, f)Ppm(apm, φpm; x, fp)P (apm|rp)P (φpm)

×
∏

(p′,m′) 6=(p,m)

Pp′m′(âp′m′ , φ̂p′m′ ; x, fp′). (A.4)
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When evaluating this expression for apm = âpm and φpm = φ̂pm, we get

P (âpm, φ̂pm|S, f, rp, âpm, φ̂pm, x) ∝ P0(x, f)Ppm(âpm, φ̂pm; x, fp)P (âpm|rp)P (φ̂pm)

×
∏

(p′,m′) 6=(p,m)

Pp′m′(âp′m′ , φ̂p′m′ ; x, fp′). (A.5)

After dividing (A.4) by (A.5), we conclude that

P (apm, φpm|S, f, rp, âpm, φ̂pm, x)

P (âpm, φ̂pm|S, f, rp, âpm, φ̂pm, x)
=

Ppm(apm, φpm; x, fp)P (apm|rp)P (φpm)

Ppm(âpm, φ̂pm; x, fp)P (âpm|rp)P (φ̂pm)
.

(A.6)
The target result (18) is then readily obtained by replacing (A.6) into (A.2).
Note that the fact that â and φ̂ are the MAP amplitude and phase parameter
values associated with S, f and r is not used within this proof.
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