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Abstract

We consider the maximization problem in the value oracle model of functions defined on
k-tuples of sets that are submodular in every orthant and r-wise monotone, where k ≥ 2 and
1 ≤ r ≤ k. We give an analysis of a deterministic greedy algorithm that shows that any such
function can be approximated to a factor of 1/(1 + r). For r = k, we give an analysis of
a randomised greedy algorithm that shows that any such function can be approximated to a
factor of 1/(1 +

√
k/2).

In the case of k = r = 2, the considered functions correspond precisely to bisubmodular
functions, in which case we obtain an approximation guarantee of 1/2. We show that, as in the
case of submodular functions, this result is the best possible in both the value query model, and
under the assumption that NP 6= RP .

Extending a result of Ando et al., we show that for any k ≥ 3 submodularity in every
orthant and pairwise monotonicity (i.e. r = 2) precisely characterize k-submodular functions.
Consequently, we obtain an approximation guarantee of 1/3 (and thus independent of k) for the
maximization problem of k-submodular functions.

1 Introduction

Given a finite nonempty set U , a set function f : 2U → R+ defined on subsets of U is called
submodular if for all S, T ⊆ U ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

Submodular functions are a key concept in operations research and combinatorial optimization [29,
28, 38, 34, 10, 24, 19]. Examples of submodular functions include cut capacity functions, matroid
rank functions, and entropy functions. Submodular functions are often considered to be a discrete
analogue of convex functions [26].

∗An extended abstract of this work appeared in the Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2014 [41].
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Both minimizing and maximizing submodular functions have been considered extensively in the
literature, in both constrained and unconstrained settings. Submodular function maximization is
easily shown to be NP-hard [34] since it generalizes many standard NP-hard problems such as the
maximum cut problem [12, 9]. In contrast, the problem of minimizing a submodular function can
be solved efficiently with only polynomially many evaluations of the function [19] either by using
the ellipsoid algorithm [13, 14], or by using one of several combinatorial algorithms that have been
obtained in the last decade [33, 20, 17, 18, 30, 22].

Following a question by Lovász [26], a generalization of submodularity to biset functions has
been introduced. Given a finite nonempty set U , a function f : 3U → R+ defined on pairs of disjoint
subsets of U is called bisubmodular if for all pairs (S1, S2) and (T1, T2) of disjoint subsets of U ,

f(S1, S2) + f(T1, T2) ≥ f((S1, S2) u (T1, T2)) + f((S1, S2) t (T1, T2)),

where we define

(S1, S2) u (T1, T2) = (S1 ∩ T1, S2 ∩ T2),

and

(S1, S2) t (T1, T2) = ((S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T1)).

Bisubmodular functions were originally studied in the context of rank functions of delta-matroids
[4, 6]. Bisubmodularity also arises in bicooperative games [3] as well as variants of sensor placement
problems and coupled feature selection problems [35]. The minimization problem for bisubmodular
functions using the ellipsoid method was solved in [32]. More recently, combinatorial [11] and
strongly combinatorial [27] algorithms for maximizing bisubmodular functions have been developed.

In this paper, we study the natural generalization of submodular and bisubmodular functions:
given a natural number k ≥ 1 and a finite nonempty set U , a function f : (k+1)U → R+ defined on
k-tuples of pairwise disjoint subsets of U is called k-submodular if for all k-tuples S = (S1, . . . , Sk)
and T = (T1, . . . , Tk) of pairwise disjoint subsets of U ,

f(S) + f(T ) ≥ f(S u T ) + f(S t T ),

where we define

S u T = (S1 ∩ T1, . . . , Sk ∩ Tk),

and

S t T = ((S1 ∪ T1) \
⋃

i∈{2,...,k}

(Si ∪ Ti), . . . , (Sk ∪ Tk) \
⋃

i∈{1,...,k−1}

(Si ∪ Ti)).

Under this definition, 1-submodularity corresponds exactly to the standard notion of submodularity
for set functions, and similarly 2-submodularity corresponds to bisubmodularity. (We note that
Ando has used the term k-submodular to study a different class of functions [1].)
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1.1 Related work

The terminology for k-submodular functions was first introduced in [15] but the concept has been
studied previously in [7]. The concept of k-submodularity is a special case of strong tree submod-
ularity [23] with the tree being a star on k + 1 vertices.

To the best of our knowledge, it is not known whether the ellipsoid method can be employed
for minimizing k-submodular functions for k ≥ 3 (some partial results can be found in [15]), let
alone whether there is a (fully) combinatorial algorithm for minimizing k-submodular functions
for k ≥ 3. However, it has recently been shown that explicitly given k-submodular functions
can be minimized in polynomial time [36]1, and these results have proved useful in the design of
fixed-parameter algorithms [40].

Some results on maximizing special cases of bisubmodular functions have appeared in Singh,
Guillory, and Bilmes [35], who showed that simple bisubmodular function can be represented as a
matroid constraint and a single submodular function, thus enabling the use of existing algorithms in
some special cases. Unfortunately they show that this approach may require that the submodular
function take negative values and so the approach does not work in general. (We note that our
definition of bisubmodularity corresponds to directed bisubmodularity in [35].)

A different generalization of bisubmodularity, called skew bisubmodularity, has proved impor-
tant in classifying finite-valued CSPs on domains with three elements [16]; this result was then
generalized by a complexity classification of finite-valued CSPs on domains of arbitrary size [37].
Explicitly given skew bisubmodular functions can be minimized efficiently by results of Thapper and
Živný [36]. The general question of whether all bisubmodular, and, more generally, k-submodular
functions can be approximately maximized was left open.

1.2 Contributions

Following the question by Lovász [26] of whether there are generalizations of submodularity that
preserve some nice properties such as efficient optimization algorithms, we consider the class of
functions that are submodular in every orthant and r-wise monotone (the precise definition is
given in Section 2), which includes as special cases bisubmodular and k-submodular functions.

Specifically, we consider the problem of maximizing bisubmodular and, more generally, k-
submodular functions in the value oracle model. We provide the first approximation guarantees for
maximizing a general bisubmodular or k-submodular function.

In Section 3, we prove that for any k ≥ 2, k-submodular functions are precisely the k-set
functions that are submodular in every orthant and pairwise monotone, thus extending the result
from [2] that showed this result for k = 2.

In Section 4, we show that the naive random algorithm that simply returns a random partition
of the ground set U is 1/4-approximation for maximizing any bisubmodular function and a 1/k-
approximation for maximizing a k-submodular function with k ≥ 3. We also show that our analysis
is tight.

In Section 5, we show that a simple greedy algorithm for maximizing k-set functions that are
submodular in every orthant and r-wise monotone for some 1 ≤ r ≤ k achieves a factor of 1/(1+r).
We also show that our analysis is tight. Consequently, this algorithm achieves a factor of 1/3 for
maximizing k-submodular functions.

1In fact, results in [36] imply that much larger classes of functions can be minimized in polynomial time, including
as one special case functions that are (strong) tree submodular, which in turn includes k-submodular functions.
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In Section 6, we develop a randomized greedy algorithm for maximizing k-set functions that
are submodular in every orthant and k-wise monotone. The algorithm is inspired by the algorithm
of Buchbinder et al. [5] for unconstrained submodular maximization. We show that this algorithm
approximates any such k-set function to a factor of 1/(1 +

√
k/2).

Finally, in Section 7, we relate our results on bisubmodular functions and existing results on
submodular functions via a known embedding of submodular functions into bisubmodular functions.
Using this embedding we can translate inapproximability results for submodular function into
analogous results for bisubmodular functions. Moreover, we show that the algorithm of Buchbinder
et al. [5] may be viewed as a special case of our algorithm applied to this embedding.

Recently, Iwata, Tanigawa, and Yoshida [21] have independently obtained a 1/k-approximation
algorithm for maximizing k-submodular functions. Here we improve this factor to 1/3, while also
considering several other algorithms and generalizations of k-submodular functions.

2 Preliminaries

We denote by R+ the set of all non-negative real numbers. Let U be a ground set containing
n elements and k ≥ 1 be a fixed integer. We consider functions that assign a value in R+ to
each partial assignment of the values {1, . . . , k} to the elements of U . We can represent each such
partial assignments as vectors x in {0, . . . , k}U , where we have xe = 0 if element e ∈ U is not
assigned any value in {1, . . . , k}, and otherwise have xe equal to the value assigned to e. It will
be useful to consider the partial assignment obtained from another (possibly partial) assignment
x by “forgetting” the values assigned to all elements except for some specified set S ⊆ U . We
represent this as the vector x

∣∣
S

whose coordinates are given by
(
x
∣∣
S

)
e

= xe, for all e ∈ S and(
x
∣∣
S

)
e

= 0 for all e ∈ U \ S. Note that x
∣∣
S

is similar to the projection of x onto S, but we here
require that all coordinates e 6∈ S be set to 0, while the standard notion of projection would remove
these coordinates from the resulting vector. In particular, this means that x

∣∣
S

and x both have n
coordinates.

In order to relate our results to existing work on submodular functions, we shall also use
terminology from set functions. In this setting, we consider k-set functions, which assign a value
to each tuple of k disjoint sets S = (S1, . . . , Sk), where Si ⊆ U and Si ∩ Sj = ∅ for all i 6= j. It is
straightforward to check that the two notions are equivalent by having e ∈ Si if and only if xe = i.
Then, we have xe = 0 if and only if e does not appear in any of the sets S1, . . . , Sk.

The solution space over which we optimize our functions is thus the set of partitions of some
subset U ′ ⊆ U into k disjoint sets, where in our vector notation U ′ is equivalent to the set of
coordinates in x that are non-zero. We shall refer to a partition of the entire ground set U as
an orthant of U , and use the word partial solution to refer to a partition of some subset of U ,
to emphasize that they may not necessarily assign every element in U to a set. Given a partial
solution s and an orthant t, we say that s is in orthant t if s = t

∣∣
A

for some set A ⊆ U . That is, s
is in orthant t if and only if s agrees with t on all non-zero values.

Consider the operations min0 and max0 given by

min0(s, t)
def
=

{
0, s 6= 0, t 6= 0, s 6= t

min(s, t), otherwise
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and

max0(s, t)
def
=

{
0, s 6= 0, t 6= 0, s 6= t

max(s, t), otherwise,

where min(s, t) (respectively, max(s, t)) returns the smaller (respectively, the larger) of s and t with
respect to the usual order on the integers. Then, for vectors s and t in {0, . . . , k}U we let min0(s, t)
(respectively, max0(s, t)) denote the vector obtained from applying min0 (respectively, max0) to
s and t coordinate-wise. Using these operations we can define the general class of k-submodular
functions:

Definition 1. Given a natural number k ≥ 1 and a finite nonempty set U , a function f :
{0, . . . , k}U → R+ is called k-submodular if for all s and t in {0, . . . , k}U ,

f(s) + f(t) ≥ f(min0(s, t)) + f(max0(s, t)). (1)

Note that if s and t are both orthants, then we have min0(s, t) = max0(s, t) = id0(s, t), where
the operation id0 on each coordinate of s and t is given by id0(s, t) = s = t if s = t, and id0(s, t) = 0
otherwise. Thus, if f is a k-submodular function, we have

f(s) + f(t) ≥ 2f(id0(s, t)) (2)

for any two orthants s and t of U .

Example 2. The well-known Max-Cut problem demonstrates that maximizing (1-)submodular
functions is NP-hard, even if the objective function is given explicitly [12]. We show that the same
hardness result holds for any k ≥ 1. Consider the function f (u,v) : {0, . . . , k}{u,v} → R+ given by2

f (u,v)(xu, xv) = Jxu 6= xvK. It is easy to check that f (u,v) is k-submodular. Given a graph (V,E)
with V = {1, . . . , n}, we consider the function f(x) =

∑
{i,j}∈E f

(i,j)(xi, xj). Because f is a positive
combination of k-submodular functions, it is also k-submodular. Moreover, maximizing f amounts
to solving the Max-k-Cut problem, which is NP-hard [31].

While concise, Definition 1 gives little intuition in the traditional setting of set functions. We
now consider this setting in order to provide some intuition. Consider two partial solutions S =
(S1, . . . , Sk) and T = (T1, . . . , Tk) and let s and t be the vectors in {0, . . . , k}U representing S
and T , respectively. Consider some element e ∈ U . We have min0(se, te) = i 6= 0 precisely when
se = te = i 6= 0. Thus, the vector min0(s, t) in Definition 1 corresponds exactly to the coordinate-
wise intersection (S1 ∩ T1, . . . , Sk ∩ Tk) of S and T . Similarly, max0(se, te) = i 6= 0 precisely
when either se = te 6= 0 or when one of se, te is i 6= 0 and the other is 0. Thus, the vector
max0(s, t) corresponds exactly to the coordinate-wise union of S and T after we have removed any
element e occurring in two different sets in S and T . That is, if we set X−i =

⋃
j 6=i (Sj ∪ Tj), then

max0(s, t) corresponds to ((S1 ∪ T1) \X−1, . . . , (Sk ∪ Tk) \X−k). The removal of X−i from the ith
union effectively enforces the condition that no element occurs in two different sets in the resulting
partial solution.

2Here and throughout, we employ the Iverson bracket notation JpK to denote a value that is 1 when statement p
is true and 0 when p is false.
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The following equivalences, first observed by Cohen et al. [7], allow us to relate k-submodular
functions to existing families of set functions. When k = 2, Definition 1 requires that

f(S1, S2) + f(T1, T2) ≥ f(S1 ∩ T1, S2 ∩ T2) + f((S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T2)),

which agrees exactly with the definition of bisubmodular functions given in [10]. When k = 1, there
is only a single set in each partial solution, and hence a single non-zero value in each corresponding
vector, and so X−1 = ∅. Thus, Definition 1 requires that

f(S1) + f(T1) ≥ f(S1 ∩ T1) + f(S1 ∪ T1),

which agrees exactly with the standard definition of submodular functions [29].
It is well-known that for standard set functions submodularity is equivalent to the property of

diminishing marginal returns. Let f : 2U → R+ be a set function on U and define the marginal

value of e with respect to S as fe(S)
def
= f(S ∪ {e}) − f(S) for all S ⊆ U and e 6∈ S. Then, f is

submodular if and only if
fe(A) ≥ fe(B)

for all A ⊆ B and e 6∈ B.
We shall see that marginal returns also play an important role in characterizing k-submodular

functions. In this setting, however, we must specify not only which element we are adding to
the solution, but which set in the partition it is being added to. For a k-set function function
f : {0, . . . , k}U → R+, an element e ∈ U , and a value i ∈ {1, . . . , k}, we define the marginal value
fi,e(S) by

fi,e(S)
def
= f(S1, . . . , Si−1, Si∪{e}, Si+1, . . . , Sk)− f(S1, . . . , Sk)

for any partial solution S = (S1, . . . , Sk) such that e 6∈ Si for any i. Equivalently, in vector notation,
we have

fi,e(s)
def
= f(s + i · 1e)− f(s),

where s is any partial solution satisfying se = 0, and 1e denotes the unit vector that is 1 in
coordinate e and 0 in all other coordinates.

Definition 3. Let k ≥ 1, and 1 ≤ r ≤ k. We say that a function f : {0, . . . , k}U → R+ is:

• submodular in every orthant, if for any two partial solutions a and b in the same orthant of
U , f(a) + f(b) ≥ f(min0(a,b)) + f(max0(a,b)).

• r-wise monotone, if for any element e, any partial solution s with se = 0, and any set of r
distinct values I ∈

({1,...,k}
r

)
: ∑

i∈I
fi,e(s) ≥ 0.

We remark that the case of k = r = 1 corresponds to monotone submodular functions. In
the case of k = r = 2, Ando, Fujishige, and Naito [2] have shown that these two properties give
an exact characterization of the class of bisubmodular functions. In Section 3, we extend their
result by showing that submodularity in every orthant and pairwise monotonicity in fact precisely
characterize k-submodular functions for all k ≥ 2.
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Let us now give some justification for the terminology “submodular in every orthant.” Let x
be an orthant of U . Given a k-submodular function f , we call set function h : 2U → R+ defined
for any S ⊆ U by

h(S)
def
= f(x

∣∣
S

)

the function induced by x and f . In the language of set functions, the function h is obtained by
first assigning each element e in U to a single set Xi (where i = xe). Then, h(S) is simply the value
of f(S ∩X1, . . . , S ∩Xk). We now show f is k-submodular in an orthant (in the sense of Definition
3) if an only if the function h induced by this orthant and f is submodular.

Lemma 4. Let (X1, . . . , Xk) be an orthant of U , with vector representation x. Then, f is k-
submodular in the orthant x if and only if the function h induced by x and f is submodular.

Proof. Let A and B be two subsets of U , with associated partial solutions a = x
∣∣
A

and b = x
∣∣
B

in orthant x. Then, note that e ∈ A ∩ B if and only min(ae, be) is non-zero, and e ∈ A ∪ B if and
only if max(ae, be) is non-zero. Moreover, since a and b agree on all non-zero coordinates, we have
min0(a,b) = min(a,b) and max0(a,b) = max(a,b). Hence,

h(A ∪B) = f(x
∣∣
A∪B) = f(max(x

∣∣
A
,x
∣∣
B

)) = f(max0(x
∣∣
A
,x
∣∣
B

)) = f(max0(a,b)),

h(A ∩B) = f(x
∣∣
A∩B) = f(min(x

∣∣
A
,x
∣∣
B

)) = f(min0(x
∣∣
A
,x
∣∣
B

)) = f(min0(a,b)).

Thus, we have
h(A) + h(B) ≥ h(A ∩B) + h(A ∪B)

for any A,B ⊆ U if and only if

f(a) + f(b) ≥ f(min0(a,b)) + f(max0(a,b))

for the associated partial solutions a,b in orthant x.

Many of our proofs will use this connection between the standard notion of submodularity and
the k-set functions in Definition 1. Specifically, we shall make use of the following result from Lee,
Sviridenko, and Vondrák [25], which we restate here.

Lemma 5 ([25, Lemma 1.1]). Let f be a non-negative submodular function on U . Let S,C ⊆ U
and let {T`}t`=1 be a collection of subsets of C \S such that each element of C \S appears in exactly
p of these subsets. Then

t∑
`=1

[f(S ∪ T`)− f(S)] ≥ p[f(S ∪ C)− f(S)].

In fact, the following weaker statement will be sufficient for our purposes:

Corollary 6 (of Lemma 5). Let f be a non-negative submodular function on U . Let S,C ⊆ U and
let {T`}t`=1 be a collection of subsets of C \ S such that each element of C \ S appears in exactly p
of these subsets. Then

t∑
`=1

f(S ∪ T`) ≥ pf(S ∪ C).
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Proof. Add
∑t

`=1 f(S) to each side of the inequality in Lemma 5. This gives

t∑
`=1

f(S ∪ T`) ≥ p · f(S ∪ C)− p · f(S) +

t∑
`=1

f(S)

= p · f(S ∪ C) + (t− p) · f(S)

≥ p · f(S ∪ C),

since p ≤ t.

3 Characterization of k-Submodularity

Theorem 7. Let f : {0, . . . , k}U → R+ be a k-set function, where k ≥ 2. Then, f is k-submodular
if and only if f is submodular in every orthant and pairwise monotone.

In order to prove Theorem 7, we shall make use of the following lemma, which allows us to
generalize pairwise monotonicity to solutions that disagree on the placement of multiple elements
e.

Lemma 8. Let k ≥ 2 and suppose that f : {0, . . . , k}U → R+ is submodular in every orthant and
pairwise monotone. Let a and b in {0, . . . , k}U satisfy 0 6= ae 6= be 6= 0 for all e ∈ I and ae = be
for all e ∈ U \ I, and define c = a

∣∣
U\I = b

∣∣
U\I . Then, f(a) + f(b) ≥ 2f(c).

Proof. The proof is by induction on the size of I. In the case that |I| = 0, the claim is trivial.
Suppose, then, that |I| = p > 0 and so I contains at least 1 element e. We can represent a and b
as a = c + x, and b = c + y where x and y are vectors in {0, . . . , 1}U satisfying 0 6= xe 6= ye 6= 0
for all e ∈ I, and xe = ye = 0 for all e ∈ U \ I.

Let e ∈ I be some element on which a and b disagree. We define x̄ = x
∣∣
I\{e}, ȳ = y

∣∣
{e}, and

z = x̄ + ȳ. Then, we have

f(a) +f(b) = f(c+x) +f(c+y) = [f(c+x) +f(c+z)] + [f(c+y) +f(c+z)]−2f(c+z). (3)

The solutions c + x and c + z disagree on precisely the single element e in I and are non-zero for
this element. Thus, by the induction hypothesis

f(c + x) + f(c + z) ≥ 2f(c + x̄). (4)

Similarly, c + y and c + z disagree on precisely those p− 1 elements in I \ {e} and are non-zero for
these elements. Thus, by the induction hypothesis

f(c + y) + f(c + z) ≥ 2f(c + ȳ). (5)

Combining (3), (4), and (5) we obtain

f(a) + f(b) ≥ 2f(c + x̄) + 2f(c + ȳ)− 2f(c + z). (6)

Now, we note that c + x̄ and c + ȳ are both in the orthant c + z. Thus, from submodularity in
every orthant,

f(c + x̄) + f(c + ȳ) ≥ f(min0(c + x̄, c + ȳ)) + f(max0(c + x̄, c + ȳ)) = f(c) + f(c + z). (7)

Combining (6) and (7) we obtain

f(a) + f(b) ≥ 2f(c) + 2f(c + z)− 2f(c + z) = 2f(c).
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We now return to the proof of the Theorem 7.

Proof of Theorem 7. We begin by showing that necessity of the two properties. Suppose that f
is k-submodular. Then, submodularity in every orthant follows directly from (1). For pairwise
monotonicity, let s satisfy se = 0. Consider any pair of distinct values i, j from {1, . . . , k}, and let
si = s + i · 1e and sj = s + j · 1e. Then,

fi,e(s) + fj,e(s) = f(si)− f(s) + f(sj)− f(s)

≥ f(min0(s
i, sj)) + f(max0(s

i, sj))− 2f(s)

= f(s) + f(s)− 2f(s).

We now show that submodularity in every orthant and pairwise monotonicity imply k-sub-
modularity. Let f be a function that is submodular in every orthant and pairwise monotone, and
consider two arbitrary vectors x and y in {0, . . . , k}U . Let I be the set of all elements e ∈ U for
which xe 6= 0, ye 6= 0 and xe 6= ye. We can write

f(x) + f(y) = f(x) + f(y
∣∣
U\I) + f(y) + f(max0(x,y))− f(y

∣∣
U\I)− f(max0(x,y)). (8)

We note that x and y
∣∣
U\I are in the same orthant, since they agree on all non-zero coordinates.

Thus,

f(x) + f(y
∣∣
U\I) ≥ f(min0(x,y

∣∣
U\I)) + f(max0(x,y

∣∣
U\I))

= f(min0(x,y)) + f(max0(x,y) + x
∣∣
I
), (9)

where in the final equation we have used the fact that for all e ∈ I, xe 6= 0, ye 6= 0 and xe 6= ye and
so min0(xi, yi) = max0(xi, yi) = 0. Similarly, we have y and max0(x,y) in the same orthant, and
so

f(y) + f(max0(x,y)) ≥ f(min0(y,max0(x,y))) + f(max0(y,max0(x,y)))

= f(y
∣∣
U\I) + f(max0(x,y) + y

∣∣
I
). (10)

Combining (8), (9), and (10), we obtain

f(x) + f(y) ≥ f(min0(x,y)) + f(max0(x,y) + x
∣∣
I
) + f(max0(x,y) + y

∣∣
I
)− f(max0(x,y)). (11)

Finally, from Lemma 8 we have:

f(max0(x,y) + x
∣∣
I
) + f(max0(x,y) + y

∣∣
I
) ≥ 2f(max0(x,y). (12)

Combining (11) and (12) then gives

f(x) + f(y) ≥ f(min0(x,y)) + f(max0(x,y)).

We now provide an example of a natural class of k-set functions which are submodular in every
orthant and k-wise monotone but not k-submodular.

9



Example 9. Let f (u,v) : {0, . . . , k}{u,v} → R+ be given by:

f (u,v)(xu, xv) =


0, xu = xv = 0
1
k

∑k
i=1Jxu < iK = k−xu

k , xu 6= 0, xv = 0
1
k

∑k
i=1Ji < xvK = xv−1

k , xu = 0, xv 6= 0

Jxu < xvK, otherwise.

The function f (u,v) has the following intuitive interpretation: we begin with the valued constraint
Jxu < xvK, where xu and xv range over {1, . . . , k}. This gives a function that is defined on all
orthants. We extend the function to partial assignments by setting f (u,v)(0, 0) = 0, and otherwise
assigning f (u,v)(xu, 0) and f (u,v)(0, xv) the probability that xu > i and i > xv, respectively, when i
is chosen uniformly at random from {1, . . . , k}.

The function f (u,v) arises in the following graph layout problem: we are given a directed graph
G = (V,E) and a number k, and we wish to partition V into k layers so that as many directed
edges as possible travel from a lower- to a higher-numbered layer. This problem is equivalent to
maximizing the function f(x) : {0, . . . , k}V → R+ given by f(x) =

∑
(u,v)∈E f

(u,v)(xu, xv) Although
this function allows some vertices to remain unassigned, k-wise monotonicity implies that there is
always a maximizer of f that is an orthant.

We now show that f (u,v) is submodular in every orthant and k-wise monotone. Fix an orthant
(xu = i, xv = j), where i, j ∈ {1, . . . , k}, and let h be the submodular function induced by f (u,v)

and this orthant. If i ≥ j, we have

hu(∅) = h({u})− h(∅) =
k − i
k

hv(∅) = h({v})− h(∅) =
j − 1

k

hu({v}) = h({u, v})− h({v}) = −j − 1

k
hv({u}) = h({u, v})− h(∅) = −k − i

k
,

while if i < j (and hence i ≤ j − 1), we have:

hu(∅) = h({u})− h(∅) =
k − i
k

= 1− i

k
hv(∅) = h({v})− h(∅) =

j − 1

k
≥ i

k

hu({v}) = h({u, v})− h({v}) = 1− j − 1

k
≤ 1− i

k
hv({u}) = h({u, v})− h(∅) = 1− k − i

k
=
i

k
.

In all cases, we observe that the marginals of h are decreasing, and so h is a submodular function.

In order to show that f (u,v) is k-wise monotone, we note that f
(u,v)
i,e (0, 0) is non-negative for

all values of i and e, and so
∑k

i=1 f
(u,v)
i,e (0, 0) ≥ 0 for all e ∈ {u, v}. For the remaining marginals,

suppose that j 6= 0. Then, for we have

k∑
i=1

f
(u,v)
i,u (0, j) =

k∑
i=1

Ji < jK− 1

k

j∑
p=1

Jp < jK

 =
k∑
i=1

Ji < jK−
k∑
p=1

Jp < jK = 0,

k∑
i=1

f
(u,v)
i,v (j, 0) =

k∑
i=1

Jj < iK− 1

k

j∑
p=1

Jj < pK

 =

k∑
i=1

Jj < iK−
k∑
p=1

Jj < pK = 0.

10



4 The Naive Random Algorithm

We now consider the performance of the naive random algorithm for maximizing a k-submodular
function f : {0, . . . , k}U → R+. Note that pairwise monotonicity of f , guaranteed by Theorem 7,
implies that any partial solution S ∈ {0, . . . , k}U can be extended greedily to an orthant of U
without any loss in the value of f , since for every element e 6∈ S, we must have fi,e(S) ≥ 0 for some
i ∈ {1, . . . , k}. Thus, we may assume without loss of generality that f takes its maximum value
on some orthant o. We now consider the expected performance of a random algorithm that simply
selects an orthant of U uniformly at random.

Theorem 10. Let f : {0, . . . , k}U → R+ be a k-submodular function attaining its maximum value
on orthant o, and let x be an orthant of U selected uniformly at random. Then, E[f(x)] ≥ 1

4f(o)
if k = 2, and E[f(x)] ≥ 1

kf(o) if k ≥ 3.

We present the analysis for the case in which k ≥ 3 first, as it is simpler and will aid in
motivating some of the constructions used for the case k = 2.

4.1 Analysis for k ≥ 3

Let h : 2U → R+ be the submodular function induced by o and f . For each e ∈ U we consider a
fixed permutation πe on the set {1, . . . , k} with the property that πe(oe) = oe and πe(z) 6= z for all
z ∈ {1, . . . , k} \ {oe}.3 Then, we denote by π(x) the vector (πe(xe))e∈U .

Let P (A) be the set of orthants of U that agree with o on exactly those coordinates e ∈ A. The
following lemma allows us to relate the sum of the values of all partitions in P (A) to the value of
o.

Lemma 11. For each set A ⊆ U , ∑
x∈P (A)

f(x) ≥ (k − 1)n−|A|h(A).

Proof. Consider the sum
∑

x∈P (A) f(π(x)). Because πe(xe) = oe if and only if xe = oe already, we
have π(x) ∈ P (A) if and only if x ∈ P (A). Then, because each πe is a bijection, we have∑

x∈P (A)

f(x) =
∑

x∈P (A)

f(π(x)),

and so,

∑
x∈P (A)

f(x) =
1

2

 ∑
x∈P (A)

f(x) +
∑

x∈P (A)

f(π(x))

 =
1

2

∑
x∈P (A)

[f(x) + f(π(x))] . (13)

Now, we note that x and π(x) are both orthants. Thus, from (2) we have

f(x) + f(π(x)) ≥ 2id0(x, π(x)).

3Such a permutation can be obtained by taking, for example, πe(oe) = oe, πe(oe − 1) = oe + 1, and π(z) = z + 1
mod k for all other z ∈ {1, . . . , k}.
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Consider an arbitrary coordinate e ∈ U . If e ∈ A we have xe = oe and so πe(xe) = xe and
hence id0(xe, πe(xe)) = xe. If e 6∈ A, then we have xe 6= oe and so πe(xe) 6= xe and hence
id0(xe, πe(xe)) = 0. Thus,

2id0(x, π(x)) = 2f(o
∣∣
A

) = 2h(A).

Combining this with (13) we have,∑
x∈P (A)

f(x) =
1

2

∑
x∈P (A)

[f(x) + f(π(x))] ≥
∑

x∈P (A)

h(A) = (k − 1)n−|A|h(A),

since there are precisely k − 1 choices i 6= oe for xe for each of the n− |A| coordinates e 6∈ A.

We now complete the proof of Theorem 10 in the case k ≥ 3. We formulate the expectation as

E[f(x)] =
1

kn

n∑
i=0

∑
A∈(Ui )

∑
x∈P (A)

f(x).

Using Lemma 11 we obtain

n∑
i=0

∑
A∈(Ui )

∑
x∈P (A)

f(x) ≥
n∑
i=0

∑
A∈(Ui )

(k − 1)n−ih(A). (14)

Consider a fixed value i ∈ {0, . . . , n}. Each element e ∈ U appears in exactly
(
n−1
i−1
)

of the
(
n
i

)
sets

A ∈
(
U
i

)
. Because h is submodular, Corollary 6 then implies that

∑
A∈(Ui )

h(A) ≥
(
n− 1

i− 1

)
h(U) =

(
n− 1

i− 1

)
f(o). (15)

Combining (14) and (15) with our formulation of E[f(x)] we obtain:

E[f(x)] ≥ 1

kn

n∑
i=0

(
n− 1

i− 1

)
(k − 1)n−if(o)

=
(k − 1)n−1

kn

n∑
i=0

(
n− 1

i− 1

)
(k − 1)−(i−1)f(o)

=
(k − 1)n−1

kn

n−1∑
i=0

(
n− 1

i

)
(k − 1)−if(o)

=
(k − 1)n−1

kn
·
(

1 +
1

k − 1

)n−1
· f(o)

=
(k − 1)n−1

kn
· kn−1

(k − 1)n−1
· f(o)

=
1

k
· f(o).
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4.2 Analysis for k = 2

Now we consider the case in which f is a bisubmodular function, i.e. the case of k = 2. In the
previous analysis of k-submodular functions for k ≥ 3 we used a bijection πe on {1, . . . , k} with the
property that πe(oe) = oe and πe(z) 6= z for all z 6= oe. However, when k = 2, no such bijection
exists and we must adopt a different approach.

Suppose again that f attains its maximum on orthant o ∈ {1, 2}U . For a value v ∈ {1, 2} we

let v̄
def
= (v mod 2) + 1 (i.e. the other value in {1, 2}). Then, for any disjoint subsets A and B of

U we define the (partial) solution T (A,B) by

T (A,B)i =


oi, i ∈ A
ōi, i ∈ B
0, otherwise

.

It will simplify our analysis to work with with symmetrized values, which depend only on the
sizes of the sets A and B chosen. We define

Fi,j =

(
n

i

)−1(n− i
j

)−1 ∑
A∈(Ui )

∑
B∈(U\Aj )

[f(T (A,B))].

Then, Fi,j gives the average value of f over all partial solutions on i+ j elements that agree with
o on exactly i and disagree with it on exactly j elements. In particular, we have Fn,0 = f(o), and

Fi,n−i =
(
n
i

)−1∑
A∈(Ui )

f(T (A,U \A)). Our next lemma relates these two values.

Lemma 12. For all i such that 0 ≤ i ≤ n,

Fi,n−i ≥
i(i− 1)

n(n− 1)
Fn,0. (16)

Proof. We prove 2 separate inequalities which together imply the lemma. First, we shall show that
for all 1 ≤ i ≤ n− 1,

Fi,n−i ≥ Fi−1,n−i−1. (17)

We do this by showing that a related inequality holds for arbitrary sets of the appropriate size, and
then average over all possible sets to obtain (17). Fix 1 ≤ i ≤ n− 1 and let A be any subset of U
of size i+ 1. Set B = U \A and let x and y any two distinct elements in A. Consider the solutions
T (A− x,B + x) and T (A− y,B + y)4. They are both orthants and agree on all elements except x
and y. Thus, from (2), the inequality

f(T (A− x,B + x)) + f(T (A− y,B + y)) ≥ 2id0(T (A− x,B + x), T (A− y,B + y))

= 2f(T (A− x− y,B))

holds for any such choice of A, x, and y, where |A| = i+ 1 and |B| = |U \A| = n− i−1. Averaging
the resulting inequalities over all possible choices for A, B = U \ A, x, and y and dividing both
sides by 2 then gives (17).

4Here, we employ the shorthand A+ x for A ∪ {x} and A− x for A \ {x}.
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Next, we show that for any 1 ≤ i ≤ n− 1,

Fi−1,n−i−1 ≥
i− 1

i+ 1
Fi+1,n−i−1. (18)

Again fix i ≥ 1, let A be any subset of U of size i + 1 and set B = U \ A. Let h be the
submodular function induced by the orthant T (A,B) and f . Note then, that we can express h as
h(X) = T (A ∩X,B ∩X)). We consider the sum:∑

C∈(A2)

[f(T (A \ C,B))− T (∅, B)] =
∑
C∈(A2)

[h(U \ C)− h(B)]

Each element of A appears in exactly
(|A|−1

2

)
=
(
i
2

)
of the sets U \ C above (one for each way to

choose a two element set C from the remaining |A| − 1 elements). Applying Corollary 6 we then
obtain ∑

C∈(A2)

h(U \ C) ≥
(
i

2

)
h(U) =

(
i

2

)
T (A,B).

Altogether, we obtain the inequality∑
C∈(A2)

f(T \ C,B) ≥
(
i

2

)
T (A,B),

valid for any choice of A, with |A| = i+ 1, and |B| = |U \A| = n− i− 1. Averaging the resulting
inequalities over all possible choices for A, we obtain(

i+ 1

2

)
Fi−1,n−i−1 ≥

(
i

2

)
Fi+1,n−i−1,

which is equivalent to (18).
Combining (17) and (18) then gives the symmetrized inequality

Fi,n−i ≥
i− 1

i+ 1
Fi+1,n−i−1. (19)

The desired inequality (16) then follows from reverse induction on i. If i = n, then (16) is trivial.
For the inductive step, we suppose that 1 ≤ i ≤ n − 1. Then, applying (19) followed by the
induction hypothesis gives

Fi,n−i ≥
i− 1

i+ 1
Fi+1,n−i−1 ≥

i− 1

i+ 1
· (i+ 1)i

n(n− 1)
Fn,0 =

i(i− 1)

n(n− 1)
Fn,0.

If i = 0, we cannot apply (19). In this case, however, (16) follows directly from non-negativity of
f .

We now complete the proof of Theorem 10 in the case that k = 2. We can formulate the
expectation in terms of our symmetric notation as

E[f(x)] = 2−n
n∑
i=0

∑
A∈(Ui )

T (A,U \A) = 2−n
n∑
i=0

(
n

i

)
Fi,n−i.
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Then, we have

2−n
n∑
i=0

(
n

i

)
Fi,n−i ≥ 2−n

n∑
i=2

(
n

i

)
Fi,n−i

≥ 2−n
n∑
i=2

(
n

i

)
i(i− 1)

n(n− 1)
Fn,0

= 2−n
n∑
i=2

(
n− 2

i− 2

)
Fn,0

= 2−n
n−2∑
i=0

(
n− 2

i

)
Fn,0

= 2−n · 2n−2Fn,0

=
1

4
f(o),

where the first inequality follows from non-negativity of f (and hence of F ) and the second inequality
follows from Lemma 12.

Example 13. As a tight example for k = 2, we consider the function f (u,v) defined as in Example
9 for the special case in which k = 2. Then, the resulting function is submodular in every orthant
and 2-wise monotone and hence must be bisubmodular. Moreover, the probability that a random
orthant will set xu = 1, and xv = 2 is 1

4 , and the function has value 0 for all other orthants. Thus,

E[f (u,v)(x)] = 1
4 , whereas the maximum value is 1.

This example is easily extended to ground sets U = {u} ∪ V of arbitrary size, by setting
f(x) =

∑
v∈V f

(u,v)(xu, xv). This function is also bisubmodular as it is a positive combination of
bisubmodular functions. Moreover, the assignment setting xu = 1 and xv = 2 for all v ∈ V has
value |V |, but by linearity of expectation a uniform random assignment has expected value only
1
4 |V |.

Example 14. As a tight example for k ≥ 3, we consider the single-argument k-submodular function
f (e) : {0, . . . , k}{e} given by f(xe) = Jxe = 1K. It is easy to verify that this function is indeed k-
submodular. Moreover, a uniform random assignment sets xe = 1 with probability only 1

k , and so

E[f (e)(xe)] = 1
k . Similar to the previous example, we can generalize to an arbitrary ground set U

by setting f(x) =
∑

e∈U f
(e)(xe). We note also that the value 1 in the definition of each f (e) can

be replaced by any value p ∈ {1, . . . , k}.

5 A Deterministic Greedy Algorithm

In this section we consider a deterministic greedy algorithm for maximizing a k-set function f :
{0, . . . , k}U → R+, that is submodular in every orthant and r-wise monotone for some 1 ≤ r ≤ k,
where k ≥ 2. As a special case, we obtain an approximation algorithm for k-submodular functions.

The algorithm begins with the initial solution s = 0 and considers elements of the ground set U
in some arbitrary order, permanently setting se = i for each element e, based on the increase that
this gives in f . Specifically, the algorithm sets se to the value i that yields the largest marginal
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Deterministic Greedy

s← 0
for each e ∈ U do

for i = 1 to k do
yi ← fi,e(s)

y = max(y1, . . . , yk)
Let q be the smallest value from {1, . . . , k} so that yi = y.
se ← q

return s

increase fi,e(S) in f with respect to the current solution s. If there is more than one option we set
se the smallest such i giving the maximal increase.

Theorem 15. Let s be the solution produced by the deterministic greedy algorithm on some instance
f : {0, . . . , k}U → R+ that is submodular in every orthant and r-wise monotone for some 1 ≤ r ≤ k,
and let o be the optimal solution for this instance. Then,

(1 + r)f(s) ≥ f(o).

Proof. Our analysis considers 2 sequences of n solutions. First let, s(j) be the algorithm’s solution
after j elements of U have been considered, and let U (j) be the set of elements that have been
considered. Let o(j) = o

∣∣
U\U(j) + s(j) be a partial solution that agrees with s(j) on the placement of

the elements considered by the greedy algorithm in its first j phases and with o on the placement
of all other elements. Note that in particular we have o(0) = o and o(n) = s. Our analysis of the
greedy algorithm will bound the loss in f(o(j)) incurred at the each stage by the improvement in
s(j) made by the algorithm. In Lemma 16, we show that for every 0 ≤ j ≤ n, f(o(j))−f(o(j+1)) ≤
r[f(s(j+1))− f(s(j))].

Summing this inequality from j = 0 to n− 1, we obtain

n−1∑
j=0

[
f(o(j))− f(o(j+1))

]
≤ r

n−1∑
j=0

[
f(s(j+1))− f(s(j))

]
.

Telescoping the summations on each side, we then have

f(o(0))− f(o(n)) ≤ r
[
f(s(n))− f(s(0))

]
.

The theorem then follows immediately from the facts o(0) = o, o(n) = s(n) = s, and s(0) ≥ 0.

It remains to show the following inequality.

Lemma 16. For 0 ≤ j ≤ n− 1,

f(o(j))− f(o(j+1)) ≤ r
[
f(s(j+1))− f(s(j))

]
.
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Proof. Let e be the element considered in the (j + 1)th phase of the algorithm.
We define the solution t = o

∣∣
U\U(j+1) + s(j), and let ai = fi,e(t) for 1 ≤ i ≤ k. Then, we note

that for any value i, t + i · 1e and s(j) + i · 1e are in the same orthant. For some value i, let h be
the submodular function induced by this orthant and f . Then h must be submodular, and so

yi = fi,e(s
(j)) = he(U

(j)) ≥ he(U \ {e}) = fi,e(t) = ai.

Suppose that in the optimal solution we have oe = p but the greedy algorithm sets se ← q. Then,
we observe that f(o(j)) = f(t) + fp,e(t) and f(o(j+1)) = f(t) + fq,e(t), and so

f(o(j))− f(o(j+1)) = fp,e(t)− fq,e(t) = ap − aq.

Similarly,
f(s(j+1))− f(s(j)) = fp,e(s

(j)) = yj .

By r-wise monotonicity, for any I ⊆ {1, . . . , k} with |I| = r we have
∑

`∈I a` ≥ 0 and thus
−aq ≤

∑
`∈I\{q} a`. Therefore, ap − aq ≤ ap +

∑
`∈I\{q} a` ≤ r · yq as ai ≤ yi for every 1 ≤ i ≤ k

and yq = max(y1, . . . , yk).

Combining Theorem 7 and Theorem 15 gives us the following.

Corollary 17. Let s be the solution produced by the deterministic greedy algorithm for some k-
submodular function f : {0, . . . , k}U → R+, and let o be an optimal solution for this instance.
Then,

1

3
f(s) ≥ f(o).

The following is a tight example for Theorem 15.

Example 18. Let 0 ≤ r ≤ k and consider the function f (u,v) : {0, . . . , k}{u,v} → R+ given by
f (u,v)(xu, xv) = 1

r+1Jxu 6= 0K + r
r+1Jxu 6= 1 ∧ xv = 2K. We shall first show that f (u,v) is submodular

in every orthant and r-wise monotone.
Fix an orthant (xu = i, xv = j) with j 6= 2, and let h be the function induced by f (u,v) and this

orthant. Then, the marginals of h are given by:

hu(∅) = h({u})− h(∅) = 1
r+1 hv(∅) = h({v})− h(∅) = 0

hu({v}) = h({u, v})− h({v}) = 1
r+1 hv({u}) = h({u, v})− h({u}) = 0.

Now, fix an orthant (xu = i, xv = 2), and let h be the function induced by f (u,v) and this orthant.
We have

hu(∅) = h({u})− h(∅) = 1
r+1 hv(∅) = h({v})− h(∅) = r

r+1

hu({v}) = h({u, v})− h({v}) = 1
r+1 −

r
r+1Ji = 1K hv({u}) = h({u, v})− h({u}) = r

r+1Ji 6= 1K.

In all cases, the marginals of h are decreasing, and so f (u,v) is submodular in every orthant. We
now show that f (u,v) is r-wise monotone. The marginals of f (u,v) are non-negative, except the one
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obtained by setting xu from 0 to 1 in the case that xv = 2. Thus, the only non-trivial case is that
in which xv = 2, and I is a set of r distinct values with 1 ∈ I. In this case,∑

i∈I
[f

(u,v)
i,u (0, 2)] = f (u,v)(1, 2)− f (u,v)(0, 2) +

∑
i∈I\{1}

[f (u,v)(i, 2)− f (u,v)(0, 2)]

=
1

r + 1
− r

r + 1
+ (r − 1) · 1

r + 1
= 0.

Now, we analyze the performance of the deterministic greedy algorithm on f (u,v). We suppose,
without loss of generality, that the algorithm considers u before v. When u is considered, we have

s = 0 and f
(u,v)
i,u (0, 0) = 1

r+1 for all i ∈ {1, . . . , k}, and so the algorithm sets su = 1. In the next

iteration, we have f
(u,v)
i,v (1, 0) = 0 for all values i ∈ {1, . . . , k}, and so the algorithm set sv = 1 and

returns s = (1, 1). We then have f (u,v)(s) = 1
r+1 , but f (u,v)(2, 2) = 1. As in previous examples,

we can easily obtain a function over ground sets of arbitrary size by summing the values of several
different functions f (u,v).

6 A Randomized Greedy Algorithm

In this section we consider the performance of a simple randomized greedy algorithm for maximizing
a k-set function that is submodular in every orthant and k-wise monotone. Our algorithm is inspired
by the algorithm of Buchbinder et al. [5] for unconstrained submodular maximization. It begins
with the initial solution s = 0 and considers elements of the ground set U in some arbitrary order,
permanently setting se to some value i ∈ {1, . . . , k}, based on the marginal increase in f that
this yields. Specifically, the algorithm randomly sets se = i with probability proportional to the
resulting marginal increase fi,e(s) in f with respect to the current solution s. If fi,e(s) < 0, we set
se = i with probability 0. Note that Theorem 7 shows that we cannot have fi,e(s) < 0 for all i, but
it may be the case that fi,e(s) = 0 for all i. In this case, we set se = 1.

Randomized Greedy

s← 0
for each e ∈ U do

for i = 1 to k do
yi ← max(0, fi,e(s))

β =
∑k

i=1 yi
if β 6= 0 then

Let q ∈ {1, . . . , k} be chosen randomly, with Pr[i = `] = x`
β for all ` ∈ {1, . . . , k}.

se ← q
else

se ← 1

return s

Theorem 19. Let f : {0, . . . , k}U be a k-set function that is submodular in every orthant and
k-wise monotone, where k ≥ 2. Let o be orthant of U that maximizes f and let s be the orthant

18



produced by the randomized greedy algorithm. Then,(
1 +

√
k

2

)
E[f(s)] ≥ f(o).

Proof. As in the analysis of the deterministic greedy algorithm, we considers 2 sequences of n
solutions. Let s(j), and o(j) be defined as in the proof of Theorem 15, and note that s (and hence each
s(j)) is now a random variable depending on the random choices made by the algorithm. In Lemma
20, we bound the expected decrease E[f(o(j)) − f(o(j+1))] relative to the increase E[f(s(j+1)) −
f(s(j))] in each iteration. Specifically, we show that

E[f(o(j))− f(o(j+1))] ≤
√
k

2
E[f(s(j+1))− f(s(j))] (20)

for all j. Summing the resulting inequalities for j = 0 to n, we then obtain

n∑
j=0

E[f(o(j))− f(o(j+1))] ≤
√
k

2

n∑
j=0

E[f(s(j+1))− f(s(j))],

which simplifies to

E[f(o(0))]− E[f(o(n))] ≤
√
k

2

(
E[f(s(n))]− E[f(s(0))]

)
≤
√
k

2
E[f(s(n))].

The theorem then follows from the definitions o(0) = o, and s(n) = o(n) = s.

We now show that inequality (20) must hold.

Lemma 20. For any 0 ≤ j ≤ n,

E[f(o(j))− f(o(j+1))] ≤
√
k

2
E[f(s(j+1))− f(s(j))].

Proof. Let e be the element of U considered by the randomized greedy algorithm in the (j + 1)th
phase, and let U (j) and o(j) be defined as in the proof of Theorems 19 and 15. We condition on
an arbitrary, fixed value for both s(j), o(j), and consider the expectation over choices the algorithm
makes for e. Because our result will hold for an arbitrary s(j) or o(j) it then extends to the
expectation over the first j choices made by the algorithm.

As in the proof of Lemma 16, we define the solution t = o
∣∣
U(j−1) + s(j−1), and set ai = fi,e(t)

for 1 ≤ j ≤ k. Let the values yi be defined as in the algorithm. Then, as in the proof of Lemma
16, submodularity of f in every orthant implies that

ai ≤ yi for every i ∈ {1, . . . , k}. (21)

Moreover, r-wise monotonicity of f implies that∑
i∈I

ai ≥ 0 for all I ∈
(
{1, . . . , k}

r

)
. (22)
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Finally, by the construction of Algorithm 6, we have yi ≥ 0 for each 1 ≤ i ≤ k.
Now, let suppose that in the optimal solution oe = p but the greedy algorithm sets se ← q.

Then, we have f(o(j)) = f(t) + fp,e(t) and f(o(j+1)) = f(t) + fq,e(t), and so, as in the proof of
Lemma 16,

f(o(j))− f(o(j+1)) = fp,e(t)− fq,e(t) = ap − aq,

and

f(s(j+1))− f(s(j)) = fq,e(s
(j)) = yq.

For any given value q, the probability that the greedy algorithm makes such a choice is precisely
yq/β, and so

E[f(s(j+1))− f(s(j))] =
1

β

∑
i

y2i ,

and

E[f(o(j))− f(o(j+1))] =
1

β

∑
i

yi(ap − ai) =
1

β

∑
i 6=p

yi(ap − ai).

In order to prove the lemma it is thus sufficient to show that

∑
i 6=p

yj(ap − ai) ≤
√
k

2

∑
i

y2i . (23)

For any value of y1, . . . , yk, the left hand side of (23) is upper bounded by the optimal value of the
following linear program in a1, . . . , ak, whose constraints are given by (21) and (22):

maximize
∑
i 6=p

yi(ap − ai)

subject to ai ≤ yi, for 1 ≤ i ≤ k∑
i∈I

ai ≥ 0, for all I ∈
(
{1, . . . , k}

r

)
We consider an optimal, extreme-point solution a∗1, . . . , a

∗
k for this program. We first note that by

increasing ap we cannot violate the final constraint and can only increase the objective, and so we
may assume that a∗p = yp. Of the remaining k constraints, k− 1 must be tight, of which k− 2 must
be of the first type. Hence, for all i except at most 1 value ` 6= p, we in fact have a∗i = yi. This
accounts for k − 1 total tight constraints. The final tight constraint must imply either a∗` = y` or∑

i a
∗
i = 0. Because a∗i = yi for all i 6= `, the latter is equivalent to a∗` = −

∑
i 6=` yi. Moreover,

because yi ≥ 0 for all i, setting a∗` = −
∑

i 6=` yi always gives an objective value at least as large as
setting a∗` = y`. Thus, we can characterize the optimal solution to this linear program by a∗i = yi
for all i 6= `, and a∗` = −

∑
i 6=` yi, where ` is some value distinct from p.
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Returning to (23), we have∑
i 6=p

yi(ap − ai) ≤
∑
i 6=p

yi(a
∗
p − a∗i )

=
∑
i 6=p,`

yi(yp − yi) + y`

yp +
∑
i 6=`

yi


= 2y`yp +

∑
i 6=p,`

[y`yi + ypyi − y2i ],

for any y1, . . . , yk ≥ 0. In order to prove (23) it then suffices to show that

0 ≤ α
∑
i

y2i − 2y`yp −
∑
i 6=p,`

[y`yi + ypyi − y2i ], (24)

where α =
√

k
2 . This follows directly from the fact that the right hand side of (24) can be written

as the following sum of squares:

(y` − yp)2 +
∑
j 6=o,`

(√
α− 1

k − 2
y` −

√
α+ 1

2
yi

)2

+
∑
j 6=o,`

(√
α− 1

k − 2
yp −

√
α+ 1

2
yi

)2

. (25)

In order to verify that this is the case, we note that

(y` − yp)2 = y2` − 2y`yp + y2p

and (√
α− 1

k − 2
y` −

√
α+ 1

2
yi

)2

=
α− 1

k − 2
y2` − 2

√
(α− 1)(α+ 1)

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
α2 − 1

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
k
2 − 1

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
k−2
2

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
1

4
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − y`yi +

α+ 1

2
y2i ,

and, similarly,(√
α− 1

k − 2
yp −

√
α+ 1

2
yi

)2

=
α− 1

k − 2
y2p − ypyi +

α+ 1

2
y2i
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Thus, (25) is equal to

y2` − 2y`yp + y2p +
∑
i 6=p,`

[
α− 1

k − 2
y2` − y`yi +

α+ 1

2
y2i

]
+
∑
i 6=p,`

[
α− 1

k − 2
y2p − ypyi +

α+ 1

2
y2i

]

= y2` − 2y`yp + y2p + (α− 1)y2` + (α− 1)y2p −
∑
i 6=p,`

[
y`yi −

α+ 1

2
y2i

]
−
∑
i 6=p,`

[
ypyi −

α+ 1

2
y2i

]
= y2` − 2y`yp + y2p + (α− 1)y2` + (α− 1)y2p −

∑
i 6=p,`

[
y`yi + ypyi − (α+ 1)y2i

]
= αy2` + αy2p − 2y`yp + α

∑
i 6=p,`

y2i −
∑
i 6=p,`

[
y`yi + ypyi − y2i

]
= α

∑
i

y2i − 2y`yp −
∑
i 6=p,`

[
y`yi + ypyi − y2i

]
.

The guarantees we obtain for the randomized greedy algorithm are better than for the deter-
ministic greedy algorithm on r-wise monotone k-set functions only when k is small or r is large.
While we do not have a tight example for the randomized greedy algorithm on r-wise monotone
k-set functions for every fixed value of r and k, the following example confirms that the random-
ized algorithm can indeed perform worse than the deterministic algorithm for k-submodular (i.e.
pairwise monotone) functions, once k grows large enough. This behavior is somewhat unintuitive,
as the randomized greedy algorithm has an expected approximation ratio of 1/2 for bisubmodular
functions, while the deterministic greedy algorithm has an approximation ratio of only 1/3.

Example 21. Consider the weighted set-coverage function f (u,v) : {0, . . . , k}{u,v} → R+ given as
follows. We have a universe {a, b} where a has weight 1 and b has weight γ = 1√

k−1 . Additionally,

we have sets S1 = {a} and Si = {b} for every 2 ≤ i ≤ k, and Ti = {b}, for every 1 ≤ i ≤ k.
The value of f (u,v)(xu, xv) is then simply the total weight of all elements in Su ∪ Tv. The function
induced by f (u,v) and any orthant is then a weighted set coverage function, and so is submodular.
Moreover, all marginals of f (u,v) are non-negative and so f (u,v) is trivially r-wise monotone for any
r.

We now consider the performance of the randomized greedy algorithm on f (u,v). We suppose,
without loss of generality, that the greedy algorithm considers u before v. Initially we have s = 0,
and in the first phase, the algorithm sets su ← 1 with probability 1

1+(k−1)γ and for each 2 ≤ i ≤ k,

sets su ← i with probability γ
1+(k−1)γ . In the next step, the algorithm considers v. We note that

all the sets Ti are identical, and so the algorithm’s particular choice in this phase does not affect
the final value of the function. The solution s produced by the algorithm has value 1 + γ if su = 1
and γ otherwise. Thus, the expected value of solution produced by the algorithm is:

1 + γ + (k − 1)γ2

1 + (k − 1)γ
=

2 + γ

1 + (k − 1)γ
.

The optimal value of f (u,v) is 1 + γ and so the expected approximation ratio of the randomized
greedy algorithm on f (u,v) is

α =
2 + γ

1 + (k − 1)γ
· 1

1 + γ
=

2 + γ

1 + (k − 1)γ + γ + (k − 1)γ2
=

2 + γ

2 + kγ
.
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In particular, for all k ≥ 21, we have α < 1/3. For large k, α is approximately 1/

(
1 +

√
k
4

)
. In the

appendix, we show that the randomized greedy algorithm does indeed attain a similar, improved
ratio for k-submodular functions.

7 Conclusion

In the preceding sections we have considered the problem of maximizing k-submodular functions
by both a random partition and two simple simple greedy algorithms. In the case of maximizing a
bisubmodular function, we obtained the same approximation ratios as those already known in the
submodular case: 1/4 for the naive random solution [9] and 1/2 via a randomized greedy approach
[5]. We can make this correspondence more explicit by considering the following embedding of a
submodular function into a bisubmodular function. Given a submodular function g : 2U → R+, we
consider the biset function f : 3U → R+ defined by

f(S, T )
def
= g(S) + g(U \ T )− g(U). (26)

This embedding has been studied by Fujishige and Iwata, who show that the function f is bisub-
modular and has the following property: if (S, T ) is a minimizer (maximizer) of f then both S
and U \ T are minimizers (maximizers) of g [11]. Thus, exact 2-submodular function minimization
(maximization) is a generalization of 1-submodular function minimization (maximization). We can
in fact show a stronger result: that this embedding preserves approximability.

Suppose that some algorithm gives a α-approximation for bisubmodular maximization. Then,
consider an arbitrary submodular function g and let f be the embedding of g defined as in (26). Let
O = (O1, O2) be a maximizer f , and suppose that the algorithm returns a solution S = (S1, S2).
Then, since f is pairwise monotone, we can greedily extend S to a partition S′ = (S′1, S

′
2) of U .

Similarly, we can assume without loss of generality that O is a partition of U . Then, we have
f(U \ S′2) = f(S′1) and f(U \O2) = f(O2), and so

g(S′1) =
1

2

(
g(S′1) + g(U \ S′1)

)
=

1

2

(
f(S′1, S

′
2) + g(U)

)
≥ 1

2
(αf(O1, O2) + g(U))

=
1

2
(αg(O1) + αg(U \O2) + (1− α)g(U))

≥ 1

2
(αg(O1) + αg(U \O2))

= αg(O1).

Since O1 is a maximizer of g, the resulting algorithm is an α-approximation for maximizing g.
Hence, the 1/2 + ε inapproximability results of [9, 8] hold for bisubmodular maximization as well,
in both the value oracle setting and under the assumption that NP 6= RP .

The embedding (26) also allows us to provide new intuition for the performance of the ran-
domized greedy algorithm for submodular maximization considered by Buchbinder et al. [5]. This
algorithm maintains 2 solutions, S1 and S2 which are initially ∅ and U . At each step, it considers
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an element e, and either adds e to S1 or removes e from S2, with probability proportional to the
resulting increase in the submodular function in either case.

In comparison, we consider the case in which we embed a submodular function g into a bisub-
modular function f using (26) and then run the greedy algorithm of Section 6 on f . Suppose at
some step we have a current solution T = (T1, T2) and we consider element e, and define S1 = T1 and
S2 = U \T2. The algorithm will add e to either T1 or T2 with probability proportional to the result-
ing increase in f . In the first case, this increase is precisely g(T1 + e)− g(T1) = g(S1 + e)− g(S1),
and adding e to T1 corresponds to adding e to S1. In the second case this increase is precisely
g(U \ T2)− g(U \ (T2 + e)) = g(S2)− g(S2− e) and adding e to T1 corresponds to removing e from
S1. Thus, the operation of the algorithm of Buchbinder et al. [5] may be viewed as that of the
natural, straightforward randomized greedy algorithm presented in Section 6, viewed through the
lens of the embedding (26).

An interesting open question is whether the symmetry gap technique from [39, 8] can be gen-
eralized to obtain hardness results for k-submodular maximization for k ≥ 3, and, more generally,
for maximizing k-set functions that are submodular in every orthant and r-wise monotone for some
1 ≤ r ≤ k.
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A Improved Analysis of Algorithm 6 for k-Submodular Functions

In the case that f is in fact pairwise monotone (and, hence, k-submodular), we can prove the
following stronger form of Lemma 20.

Lemma 22. Suppose that f is k-submodular. Then, for any 0 ≤ j ≤ n,

E[f(o(j))− f(o(j+1))] ≤ αE[f(s(j+1))− f(s(j))].

where α = max(1,
√

k−1
4 ).

Proof. Using the same notation as in the proof of Lemma 20, we shall now show∑
i 6=p

yi(ap − ai) ≤ α
∑
i

y2i , (27)

where α = max(1,
√

k−1
4 ). As in the proof of Lemma 20, we note that for any value of y1, . . . , yk,

the left hand side of (27) is upper bounded by the optimal value of a linear program in a1, . . . , ak.
Now, however, because f is pairwise monotone, we replace the (22) with

(
k
2

)
constraints of the form

of ai + a` ≥ 0. This gives the program

maximize
∑
i 6=p

yj(ap − ai)

subject to ai ≤ yi 1 ≤ i ≤ k

ai + a` ≥ 0 ∀{i, `} ∈
(
{1, . . . , k}

2

)
.

Consider an optimal solution for this program. We note that increasing ap cannot violate any
constraint ap+a` ≥ 0, and will increase the objective. Thus, we may assume that a∗p = yp ≥ 0. We
now consider 2 cases.

First, suppose that we have a∗` = −t < 0 for some ` ∈ {1, . . . , k} and some value t > 0. Because
a∗i + a∗` ≥ 0 for all i 6= `, there can be at most one such `. Moreover, we must have a∗i ≥ t for
all i 6= `. For any value i 6∈ {`, p}, we note that decreasing a∗i can only increase the objective of

27



our linear program. Thus, in this case, we may assume that a∗i = t for all i 6∈ {`, p}, a` = −t and
ap = yp. We can then rewrite our objective as:

∑
i 6=p

yiyp + t

y` − ∑
j 6=`,p

yj

 . (28)

Because t > 0, we must have y` ≥
∑

j 6=`,p yj (otherwise, we could increase (28) by decreasing t).
Moreover, we must have t ≤ yp, since otherwise we would have a∗p + a∗` = yp − t < 0. Hence, we
have:

∑
i 6=p

yiyp + t

y` − ∑
j 6=`,p

yj

 ≤∑
i 6=p

yiyp + ypy` − yp
∑
j 6=`,p

yj = 2ypy` ≤ y2p + y2` ≤
∑
i

y2i ,

and we have proved (27) with α = 1.
Next, suppose that ai ≥ 0 for all i ∈ {1, . . . , k}. Then, the objective of our program satisfies∑

i 6=p
yi(ap − ai) ≤

∑
i 6=p

yiap

=
∑
i 6=p

yiyp

=
1

2
√
k − 1

· 2
√
k − 1yp

∑
i 6=p

yi

≤ 1

2
√
k − 1

(k − 1)y2p +

∑
i 6=p

yi

2
≤ 1

2
√
k − 1

(k − 1)y2p + (k − 1)
∑
i 6=p

y2i


=

√
k − 1

2

∑
i

y2i ,

where the second inequality follows from a2 + b2 ≥ 2ab for any real numbers a and b, and third
inequality follows from the Cauchy-Schwarz inequality. Thus, we have proved (27) with α =√

k−1
4 .

By replacing Lemma 20 with Lemma 22, in the proof of Theorem 19, we obtain the following
result.

Theorem 23. Let f : {0, . . . , k}U be a k-submodular set function. Let o be an orthant of U that
maximizes f and let s be the orthant of U produced by the randomized greedy algorithm. Then,

(1 + α)E[f(s)] ≥ f(o),

for α = max(1,
√

k−1
4 ).
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