
Noname manuscript No.

(will be inserted by the editor)

Algorithmic games for full ground references

Andrzej S. Murawski · Nikos Tzevelekos

Abstract We present a full classification of decidable and undecidable cases for contextual

equivalence in a finitary ML-like language equipped with full ground storage (both integers

and reference names can be stored). The simplest undecidable type is unit → unit → unit.

At the technical level, our results marry game semantics with automata-theoretic techniques

developed to handle infinite alphabets. On the automata-theoretic front, we show decidabil-

ity of the emptiness problem for register pushdown automata extended with fresh-symbol

generation.

1 Introduction

Mutable variables in which numerical values can be stored for future access and update

are the pillar of imperative programming. The memory in which the values are deposited

can be allocated statically, typically to coincide with the lifetime of the defining block, or

dynamically, on demand, with the potential to persist forever. In order to support mem-

ory management, modern programming languages feature mechanisms such as pointers or

references, which allow programmers to access memory via addresses. Languages like C

(through int*) or ML (via int ref ref) make it possible to store the addresses themselves,

which creates the need for storing references to references etc. We refer to this scenario

as full ground storage. In this paper we study an ML-like language GRef with full ground

storage, which permits the creation of references to integers as well as references to integer

references, and so on.

We concentrate on contextual equivalence1 in that setting. Reasoning about program

equivalence has been a central topic in programming language semantics since its incep-

tion. This is in no small part due to important applications, such as verification problems

(equivalence between a given implementation and a model implementation) and compiler

optimization (equivalence between the original program and its transform). Specifically, we

attack the problem of automated reasoning about our language in a finitary setting, with fi-

nite datatypes and with looping instead of recursion, where decidability questions become

interesting and the decidability/undecidability frontier can be identified. In particular, it is
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1 Two program phrases are regarded as contextually equivalent, or simply equivalent, if they can be used

interchangeably in any context without affecting the observable outcome.



possible to quantify the impact of higher-order types on decidability, which goes unnoticed

in Turing-complete frameworks.

The paper presents a complete classification of cases in which GRef program equiva-

lence is decidable. The result is phrased in terms of the syntactic shape of types. We write

θ1, · · · , θk ⊢ θ to refer to the problem of deciding contextual equivalence between two

terms M1,M2 such that x1 : θ1, · · · , xm : θm ⊢ Mi : θ (i = 1, 2). We investigate the

problem using a fully abstract game model of GRef.2 Such a model can be easily obtained

by modifying existing models of more general languages, e.g. by either adding type infor-

mation to Laird’s model of untyped references [19] or trimming down our own model for

general references [25]. The models are nominal in that moves may involve elements from

an infinite set of names to account for reference names. Additionally, each move is equipped

with a store whose domain consists of all names that have been revealed (played) thus far

and the corresponding values. Note that values of reference types also become part of the

domain of the store. This representation grows as the play unfolds and new names are en-

countered. We shall rely on the model both for decidability and undecidability results. Our

work identifies the following undecidable cases as minimal.

⊢ unit → unit → unit (unit → unit → unit) → unit ⊢ unit

⊢ ((unit → unit) → unit) → unit (((unit → unit) → unit) → unit) → unit ⊢ unit

Obviously, undecidability extends to typing judgments featuring syntactic supertypes of

those listed above (for instance, when fourth-order types appear on the left-hand side of

the turnstile or types of the shape θ1 → θ2 → θ3 occur on the right). The remaining cases

are summarized by typing judgements in which each of θ1, · · · , θm is generated by the

grammar given on the left below, and θ by the grammar on the right,

ΘL ::= β | ΘR → ΘL ΘR ::= β | Θ1 → β

where β stands any ground type and Θ1 is a first-order type, i.e. β ::= unit | int | refi int
and Θ1 ::= β | β → Θ1. We shall show that all these cases are in fact decidable. In

order to arrive at a decision procedure we rely on effective reducibility to a canonical (β-

normal) form. These forms are then inductively translated into a class of automata over

infinite alphabets that represent the associated game semantics. Finally, we show that the

representations can be effectively compared for equivalence.

The automata we use are especially designed to read moves-with-stores in a single com-

putational step. They are equipped with a finite set of registers for storing elements from

the infinite alphabet (names). Moreover, in a single transition step, the content of a subset

of registers can be pushed onto the stack (along with a symbol from the stack alphabet), to

be popped back at a later stage. We use visibly pushdown stacks [3], i.e. the alphabet can be

partitioned into letters that consistently trigger the same stack actions (push, pop or no-op).

Conceptually, the automata extend register pushdown automata [7] with the ability to gen-

erate fresh names, as opposed to their existing capability to generate names not currently

present in registers. Crucially, we can show that the emptiness problem for the extended

machine model remains decidable.

Because the stores used in game-semantic plays can grow unboundedly, one cannot

hope to construct the automata in such a way that they will accept the full game semantics

of terms. Instead we construct automata that, without loss of generality, will accept plays in

which the domains of stores are bounded in size. Each such restricted play can be taken to

2 A model is fully abstract if it captures contextual equivalence denotationally, i.e. equivalence can be

confirmed/disproved by reference to the interpretations of terms.
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represent a set of real plays compatible with the representation. Compatibility means that

values of names omitted in environment-moves (O-moves) can be filled in arbitrarily, but

values of names omitted in program-moves (P -moves) must be the same as in preceding

O-moves. That is to say, the omissions leading to bounded representation correspond to

copy-cat behaviour.

Because we work with representations of plays, we cannot simply use off-the-shelf pro-

cedures for checking program equivalence, as the same plays can be represented in differ-

ent ways: copy-cat behaviour can be modelled explicitly or implicitly via the convention.

However, taking advantage of the fact that stacks of two visibly pushdown automata over

the same partitioning of the alphabet can be synchronized, we show how to devise another

automaton that can run automata corresponding to two terms in parallel and detect inconsis-

tencies in the representations of plays. Exploiting decidability of the associated emptiness

problem, we can conclude that GRef program equivalence in the above-mentioned cases is

decidable.

This article is the journal version of [26], with full proofs and rearrangement of the ma-

terial. Also, we relate our work to what has been done after the conference version was pub-

lished. We start by introducing the language GRef in Section 2 along with a canonical form

result. Then, in Section 3 we introduce the game model of GRef (we refer the interested

reader to [28] for a detailed account of the model, which is in effect a restricted version

of game models for larger languages presented in [19,25]). The first main results are ob-

tained in Section 4 and concern undecidability of equivalence in specific fragments of GRef

via reductions to queue machine problems. Finally, in Section 5 we present a decidability

procedure for equivalence in the remaining fragment GRef,. The argument implements a

reduction to checking non-emptiness in a specific kind of automata over infinite alphabets,

the decidability of which is proved in Section 5.4.

2 GRef

We work with a finitary ML-like language GRef whose types θ are generated according to

the following grammar.

θ ::= β | θ → θ β ::= unit | γ γ ::= int | ref γ

Note that reference types are available for each type of the shape γ (full ground storage).

The language is best described as the call-by-value λ-calculus over the ground types β
augmented with finitely many constants, do-nothing command, case distinction, looping,

and reference manipulation (allocation, dereferencing, assignment). The typing rules are:

Γ ⊢ () : unit

i ∈ {0, · · · ,max}

Γ ⊢ i : int

(x : θ) ∈ Γ

Γ ⊢ x : θ

Γ ⊢ M : int Γ ⊢ N : unit

Γ ⊢ whileM doN : unit

Γ ⊢ M : int Γ ⊢ N0 : θ · · · Γ ⊢ Nmax : θ

Γ ⊢ case(M)[N0, · · · , Nmax ] : θ

Γ ⊢ M : θ → θ′ Γ ⊢ N : θ

Γ ⊢ MN : θ′

Γ ∪ {x : θ} ⊢ M : θ′

Γ ⊢ λxθ.M : θ → θ′
Γ ⊢ M : γ

Γ ⊢ refγ(M) : ref γ

Γ ⊢ M : ref γ

Γ ⊢ !M : γ

Γ ⊢ M : ref γ Γ ⊢ N : γ

Γ ⊢ M :=N : unit

In what follows, we write M ;N for the term (λzθ.N)M , where z does not occur in

N and θ matches the type of M . letx = M inN will stand for (λxθ.N)M in general.

The operational semantics of the language can be found in [25,28]. Note that, assuming

max > 0, reference equality is expressible in the above syntax [29].
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Definition 1 Given ⊢ M : unit, we write M⇓ if M evaluates to (). We say that the term-in-

context Γ ⊢ M1 : θ approximates Γ ⊢ M2 : θ (written Γ ⊢ M1
<
∼ M2) if C[M1]⇓ implies

C[M2]⇓ for any context C[−] such that ⊢ C[M1], C[M2] : unit. Two terms-in-context are

equivalent if one approximates the other (written Γ ⊢ M1
∼= M2).

We next present a canonical form result for GRef terms. Its use will become apparent

when demonstrating decidability of equivalence in the fragment GRef, of GRef, in Sec-

tion 5. The grammar below defines a notion of canonical form for GRef terms.

C ::=() | i | xref γ | λxθ.C | case(xint)[C, · · · ,C] | (while (!xref int) doC);C

| let yγ = !xref γ
inC | (xref int

:= i);C | (xref2 γ
:= yref γ);C

| let xref int = ref(0) inC | letxref2 γ = ref(yref γ) inC | let y = z () inC

| let y = z i inC | let y = z xref γ
inC | let y = z (λxθ.C) inC

Lemma 2 Let Γ ⊢ M : θ be an GRef-term. There exists a GRef-term Γ ⊢ CM : θ in

canonical form, effectively constructible from M , such that Γ ⊢ M ∼= CM .

3 Game semantics

Game semantics views computation as a dialogue between the environment (Opponent, O)

and the program (Proponent, P ). We give an overview of the fully abstract game model of

GRef [28]. Let A =
⊎

γ Aγ be a collection of countably infinite sets of reference names,

or just names. The model is constructed using mathematical objects (moves, plays, strate-

gies) that will feature names drawn from A. Although names underpin various elements of

our model, their precise nature is irrelevant. Hence, all of our definitions preserve name-

invariance, i.e. our objects are (strong) nominal sets [11,32]. Note that we do not need the

full power of the theory but mainly the basic notion of name-permutation. For an element

x belonging to a (nominal) set X , we write ν(x) for its name-support, i.e. the set of names

occurring in x. Moreover, for any x, y ∈ X , we write x ∼ y if x and y are the same

up to a permutation of A. Our model is couched in the Honda-Yoshida style of modelling

call-by-value computation [13]. Before we define what it means to play our games, let us

introduce the auxiliary concept of an arena. Q and A are used to distinguish question- and

answer-moves respectively.

Definition 3 An arena A = 〈MA, IA, λA,⊢A〉 is given by a set MA of moves, its subset

IA of initial ones, a labelling function λA : MA → {O,P} × {Q,A} and a justification

relation ⊢A ⊆ MA × (MA \ IA). These satisfy, for each m,m′ ∈ MA, the conditions:

– m ∈ IA =⇒ λA(m) = (P,A),
– m ⊢A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q,

– and m ⊢A m′ =⇒ λOP
A (m) 6= λOP

A (m′).

where we write λOP
A and λQA

A for λA post-composed with the first and second projections

respectively.

We shall use i to refer to initial moves. Let λA be the OP -complement of λA. Given

arenas A,B, the arenas A⊗B and A ⇒ B are constructed as below, where ĪA = MA \IA,
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⊢̄A = (⊢A↾ ĪA × ĪA) (and similarly for B).

MA⇒B = {⋆} ⊎MA ⊎MB λA⇒B = [ ⋆ 7→ PA, λA[iA 7→ OQ], λB ]

IA⇒B = {⋆} ⊢A⇒B = {(⋆, iA), (iA, iB)}∪ ⊢A ∪ ⊢B

MA⊗B = (IA × IB) ⊎ ĪA ⊎ ĪB λA⊗B = [(iA, iB) 7→ PA, λA ↾ ĪA, λB ↾ ĪB ]

IA⊗B = IA × IB ⊢A⊗B = {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m} ∪ ⊢̄A ∪ ⊢̄B

Let us write [i, j] for the set {i, i+ 1, · · · , j}. For each type θ we can define the corre-

sponding arena JθK.

JunitK = 〈{⋆}, {⋆},∅, ∅〉 JintK = 〈[0,max ], [0,max ], ∅, ∅〉

Jref γK = 〈Aγ ,Aγ , ∅, ∅〉 Jθ → θ′K = JθK ⇒ Jθ′K

Although types are interpreted by arenas, the actual games will be played in prearenas,

which are defined in the same way as arenas with the exception that initial moves are O-

questions. Given arenas A,B we define the prearena A → B as follows.

MA→B = MA ⊎MB λA→B = [λA[iA 7→ OQ], λB ]

IA→B = IA ⊢A→B = {(iA, iB)}∪ ⊢A ∪ ⊢B

A store is a type-sensitive finite partial function Σ : A ⇀ [0,max ] ∪ A such that

a ∈ dom(Σ) ∩ Aint implies Σ(a) ∈ [0,max ], and a ∈ dom(Σ) ∩ Aref γ implies Σ(a) ∈
dom(Σ) ∩ Aγ . We write Sto for the set of all stores. A move-with-store on a (pre)arena A
is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 4 A justified sequence on a prearena A is a sequence of moves-with-store on

A such that, apart from the first move, which must be of the form iΣ with i ∈ IA, every

move nΣ′

in s is equipped with a pointer to an earlier move mΣ such that m ⊢A n.

m is then called the justifier of n, which is represented as · · ·mΣ · · ·n · · · in drawings.

For each S ⊆ A and Σ we define Σ0(S) = S and Σi+1(S) = Σ(Σi(S))∩A (i ≥ 0).

Let Σ∗(S) =
⋃

i Σ
i(S). The set of available names of a justified sequence is defined

inductively by Av(ǫ) = ∅ and Av(smΣ) = Σ∗(Av(s) ∪ ν(m)). The view of a justified

sequence is defined by:

view(ǫ) = ǫ

view(mΣ) = mΣ

view(s mΣ t nΣ′

) = view(s)mΣnΣ′

We shall write s ⊑ s′ to mean that s is a prefix of s′.

Definition 5 Let A be a prearena. A justified sequence s on A is called a play, if it satisfies

the conditions below.

– No adjacent moves belong to the same player (Alternation).

– The justifier of each answer is the most recent unanswered question (Bracketing).

– For any s′mΣ ⊑ s with non-empty s′, the justifier of m occurs in view(s′) (Visibility).

– For any s′mΣ ⊑ s, dom(Σ) = Av(s′mΣ) (Frugality).

Definition 6 A strategy σ on a prearena A, written σ : A, is a set of even-length plays of A
satisfying:
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– If soΣpΣ
′

∈ σ then s ∈ σ (Even-prefix closure).

– If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).

– If s1p
Σ1

1 , s2p
Σ2

2 ∈ σ and s1 ∼ s2 then s1p
Σ1

1 ∼ s2p
Σ2

2 (Nominal determinacy).

GRef-terms Γ ⊢ M : θ, where Γ = {x1 : θ1, · · · , xn : θn}, are interpreted by strategies

for the prearena Jθ1K⊗ · · ·⊗ JθnK → JθK, which we shall denote by JΓ ⊢ θK. Given a set of

plays X , let us write comp(X) for the set of complete plays in X , i.e. those in which each

occurrence of a question justifies an answer. The interpretation is then fully abstract in the

following sense.

Proposition 7 ([19,25,28]) Let Γ ⊢ M1,M2 : θ be GRef-terms. Γ ⊢ M1
<
∼ M2 if, and

only if, comp(JΓ ⊢ M1 : θK) ⊆ comp(JΓ ⊢ M2 : θK). Hence, Γ ⊢ M1
∼= M2 if, and only

if, comp(JΓ ⊢ M1 : θK) = comp(JΓ ⊢ M2 : θK).

We shall rely on the result for proving both undecidability and decidability results, by refer-

ring to complete plays generated by terms.

q O

⋆ P

q0 O

a P

Example 8 The name-generating term ⊢ λxunit.ref(0) : unit → ref int yields

complete plays of the shape given below (the corresponding prearena is given on

the right).

q∅ ⋆∅ q
Σ′

0

0 aΣ1

0 · · · q
Σ′

i−1

0 aΣi

i q
Σ′

i

0 · · ·

where Σ′
0 = ∅ and, for all i > 0, Σi = Σ′

i−1∪{(ai, 0)}, dom(Σ′
i) = dom(Σi). Moreover,

for any i 6= j we have ai 6= aj . Note that Σ′
i can be different from Σi, i.e. the environment

is free to change the values stored at all of the locations that have been revealed to it.

Note that in the above example the sizes of stores keep on growing indefinitely. However,

the essence of the strategy is already captured by plays of the shape q⋆q0 a
(a0,0)
0 · · · q0 a

(ai,0)
i q0 · · ·

under the assumption that, whenever a value is missing from the store of an O-move, it is

arbitrary and, for P-moves, it is the same as in the preceding O-move. Next we spell out how

a sequence of moves-with-store, not containing enough information to qualify as a play, can

be taken to represent proper plays.

Definition 9 Let s = mΣ1

1 · · ·mΣk

k be a play over Γ ⊢ θ and t = mΘ1

1 · · ·mΘk

k be a

sequence of moves-with-store. We say that s is an extension of t if Θi ⊆ Σi (1 ≤ i ≤ k)

and, for any 1 ≤ i ≤ ⌊k/2⌋, if a ∈ dom(Σ2i) \ dom(Θ2i) then Σ2i(a) = Σ2i−1(a). We

write ext(t) for the set of all extensions of t.

Because we cannot hope to encode plays with unbounded stores through automata, our

decidability results will be based on representations of plays that capture strategies via ex-

tensions.

4 Undecidability arguments

We begin with undecidable cases. Our argument will rely on queue machines, which are

finite-state devices equipped with a queue.

Definition 10 Let A be a finite alphabet. A queue machine over A is specified by 〈Q,QE , QD, init, δE , δD〉,
where Q is a finite set of states such that Q = QE ⊎ QD, init ∈ QE is the initial state,

δE : QE → Q×A is the enqueuing function, whereas δD : QD×A → Q is the dequeuing

function.
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A queue machine starts at state init with an empty queue. Whenever it reaches a state

q ∈ QE , it will progress to the state π1(δE(q)) and π2(δE(q)) will be added to the asso-

ciated queue, where π1, π2 are the first and second projections respectively. If the machine

reaches a state q ∈ QD and its queue is empty, the machine is said to halt. Otherwise, it

moves to the state δD(q, x), where x is the symbol at the head of the associated queue,

which is then removed from the queue. The halting problem for queue machines is well

known to be undecidable (e.g. [17]). By encoding computation histories of queue machines

as plays generated by GRef terms we next show that the equivalence problem for GRef

terms must be undecidable. Note that this entails undecidability of the associated notion of

term approximation.

Theorem 11 The contextual equivalence problem is undecidable in the following cases

(even in absence of looping).

– ⊢ M1
∼= M2 : unit → unit → unit

– f : (unit → unit → unit) → unit ⊢ M1
∼= M2 : unit

– f : (((unit → unit) → unit) → unit) → unit ⊢ M1
∼= M2 : unit

– ⊢ M1
∼= M2 : ((unit → unit) → unit) → unit

In the following we prove undecidability in each of the cases of Theorem 11.

⊢ unit → unit → unit: We first sketch the argument. The arena used to interpret closed

terms of type unit → unit → unit has the shape given on the right.

q

⋆

q0

⋆0

q1

⋆1

We are going to use plays from the arena to represent sequences of queue oper-

ations. Enqueuing will be represented by segments of the form q0⋆0, whereas q1⋆1
will be used to represent dequeuing. Additionally, in the latter case q1 will be justified

by ⋆0 belonging to the segment representing the enqueuing of the element that is now

being dequeued. For instance, the sequence EEDEDE, in which E,D stand for

enqueing and dequeing respectively, will be represented as follows.

q ⋆ q0 ⋆0 q0 ⋆0 q1 ⋆1 q0 ⋆0 q1 ⋆1 q0 ⋆0

Note that all such plays are complete. Given a queue machine Q, let us write hist(Q) for

the (prefix-closed) subset of (E ⊎D)∗ corresponding to all sequences of queue operations

performed by Q. Note that hist(Q) is finite if and only if Q halts. Additionally, define

hist−(Q) to be hist(Q) from which the longest sequence is removed (if hist(Q) is infinite

and the sequence in question does not exist we set hist−(Q) = hist(Q)). Note that the

sequence corresponds to a terminating run and necessarily ends in D.

Lemma 12 LetQ be a queue machine. There exist GRef terms ⊢ M,M− : unit → unit → unit

such that comp(JMK), comp(JM−K) represent hist(Q), hist−(Q) respectively.

Proof WLOG we shall assume that Q can be fitted into int (otherwise, we could use a fixed

number of variables to achieve the desired storage capacity). Let D[−] ≡ C[λx.C0[λy.C1[−]]],
where C[−], C0[−], C1[−] are given in Figure 1 (∗ is a special symbol not in the queue

alphabet and Ω is a canonical divergent term). C0[−] and C1[−] handle enqueuing and

dequeuing respectively. We take

M− ≡ D[if (!STATE ∈ QD ∧ !!LAST = ∗) thenΩ]
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C[−] = letSTATE = ref(init) in

letLAST = ref(ref(∗)) in [−]

C1[−] = if (!STATE 6∈ QD) thenΩ;

if (!!PREV 6= ∗ ∨ !SYM = ∗) thenΩ;

STATE := δD(!STATE , !SYM );

SYM := ∗; [−]

C0[−] = if (!STATE 6∈ QE) thenΩ;

STATE :=π1δE(!STATE);

let SYM = ref(π2δE(!STATE)) in

letPREV = ref(!LAST ) in

LAST := SYM ; [−]

Fig. 1 Simulating a queue machine in ⊢ unit → unit → unit. The variable STATE : ref int contains

the current state of the machine. The queue is encoded as a backwards-connected list with elements

(PREV , SYM ) : ref2 int× ref int, with last-element pointer LAST : ref2 int. Enqueuing adds a new last

element while dequeuing sets the first non-∗ symbol of the list to ∗.

and M ≡ D[()].
Note that there are only three moves that O can play: q, q0 and q1. After the initial q, P

must follow with ⋆ thanks to C[−], which will not cause divergence. Note that it declares

the variable STATE (initialized to init), whose scope spans over the whole term and which

will be updated at each step to mimic the state of Q. After q is played, it can never be played

again, but O can still play q0 or q1. These are handled by C0[−] and C1[−] respectively.

– If O plays q0 when Q is not able to enqueue, P will not respond. This is caused by

the condition !STATE 6∈ QE in C0[−]. However, if Q is in enqueuing mode, local

references SYM and PREV will be created. SYM is initialized to the symbol that

Q will add to the queue. PREV contains the name of the reference cell in which the

previously enqueued symbol was stored (as soon as the symbol is dequeued, the value

stored in that cell will be set to ∗).

The “global” reference LAST (of type ref(ref int)) is used to pass the name from one

q0⋆0 segment to the next. Hence, the current value of SYM is written to LAST as soon

as the previous value of LAST got recorded in PREV . The assignment is followed by

the value λy.C3[−], so P will respond with ⋆0.

– If O plays q1 in an enqueuing state, P will not respond due to the !STATE 6∈ QD

check in C1[−]. Furthermore, P will not reply when

– q1 is justified by ⋆0 from a block corresponding to an element that has already been

taken off the queue (!SYM = ∗);

– q1 is justified by ⋆0 from a block corresponding to elements that are still present in

the queue, but do not occur at its head (!!PREV 6= ∗).

Otherwise (i.e. if O plays q1 and justifies it with ⋆0 from the q0⋆0 corresponding to the

least recent symbol that has not been dequeued) STATE will be updated and SYM will

be set to ∗ to record the access. The strategy corresponding to M will then reply with

⋆0 (because of ()). The one associated with M− will do the same, unless Q is about to

halt. This is thanks to the (!STATE ∈ QD ∧ !!LAST = ∗) condition, which checks

whether Q is about to dequeue (!STATE ∈ QD) the empty queue (!!LAST = ∗).

Hence, M and M− both represent the behaviour of Q, except that, if Q halts, the strat-

egy corresponding to M1 will not generate the last q1⋆1 segment corresponding to the last

dequeuing operation. Consequently, M0 and M1 corresponds to hist(Q) and hist−(Q) re-

spectively. ⊓⊔

Observe that hist(Q) = hist−(Q) exactly when Q does not halt. Consequently, the problem

of deciding hist(Q) = hist−(Q) is undecidable. Thus, via Proposition 7, we can conclude
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that program equivalence is undecidable for closed terms of type unit → unit → unit. The

remaining cases are discussed below.

q
❅
❅
❅

q′
❃
❃

⋆

q0 ⋆′

⋆0

q1

⋆1

(unit → unit → unit) → unit ⊢ unit: The arena at hand has the following

shape. As before, we use q0⋆0 and q1⋆1 to represent enqueuing and dequeuing

respectively. They will be preceded by a single segment qq′. Note that this means

that no complete plays will arise until q is answered. We shall arrange for this to

happen only when the whole terminating run (if any) has been represented.

Lemma 13 Let Q be a queue machine. Then there exists a term

f : (unit → unit → unit) → unit ⊢ M : unit

such that comp(JMK) = {ǫ} if and only Q does not halt.

Proof Reusing C[−], C0[−], C1[−] from the previous case, we take M to be

C[f(λx.C0[λy.C1[()]]); test ], where test stands for if (!STATE ∈ QD ∧ !!LAST =
∗) then () elseΩ. The last condition (!STATE ∈ QD ∧ !!LAST = ∗) means

that whenever O plays ⋆′, P will not respond unless Q terminates and the termi-

nating run has been wholly represented in the play. The argument showing that

M represents Q is analogous to that for Lemma 12. ⊓⊔

Proposition 14 It is undecidable whether a given term f : (unit → unit → unit) → unit ⊢
M : unit is equivalent to ().

q
❇
❇
❇

q′
❄
❄

⋆

q0
❆
❆
⋆′

q1
❉
❉
⋆0

q2 ⋆1

⋆2

(((unit → unit) → unit) → unit) → unit ⊢ unit: The corresponding arena

has the shape given on the right. Our representation scheme in this case will

start off with qq′, enqueuing will be interpreted by q0q1 and dequeuing by q2⋆2,

where q2 is justified by q1 corresponding to the element being dequeued. Note

that sequences of this kind are not complete plays, because q, q′, q0, q1 will

remain unanswered. Hence, in the term construction it will not be possible to

answer them until a terminating run has been fully simulated. Then O’s ⋆1 will

trigger P ’s ⋆0, and ⋆′ will trigger ⋆.

Lemma 15 Let Q be a queue machine. Then there exists a term

f : (((unit → unit) → unit) → unit) → unit ⊢ MQ : unit

such that comp(JMQK) = {ǫ} if and only Q does not halt.

Proof Take MQ to be C[f(λg.C0[g(λh.C1[()])]; test)]; test . The test phrases

block P from answering ⋆1 or ⋆′ prematurely. ⊓⊔

Proposition 16 The problem of deciding whether a given term

f : (((unit → unit) → unit) → unit) → unit ⊢ M : unit

is equivalent to () is undecidable.
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q

⋆

q0
❉
❉

q1
❉
❉
⋆0

q2 ⋆1

⋆2

⊢ ((unit → unit) → unit) → unit: The corresponding arena has the shape

given on the right. Our representation scheme in this case will start off with

q⋆, enqueuing will be interpreted by q0q1 and dequeuing by q2⋆2, where q2 is

justified by q1 corresponding to the element being dequeued. Note that, apart

from q⋆, sequences of this kind are not complete plays, because q0, q1 will

remain unanswered. Hence, in the term construction it will not be possible to

answer them until a terminating run has been fully simulated. Then O’s ⋆1 will

trigger P ’s ⋆0.

Lemma 17 Let Q be a queue machine. Then there exists a term ⊢ MQ :
((unit → unit) → unit) → unit such that comp(JMQK) = {ǫ, q⋆} if and only Q does not

halt.

Proof Take MQ to be C[λf (unit→unit)→unit.C0[f(λg
unit.C1[()]); test ]]. The

test phrases block P from answering ⋆1 prematurely. ⊓⊔

Proposition 18 The problem of deciding whether a given term ⊢ M : ((unit → unit) →
unit) → unit is equivalent to λf (unit→unit)→unit.Ω is undecidable.

5 Decidability

We now focus on a fragment of GRef, called GRef,, that comprises all types that do not

fall under the undecidable cases identified earlier.

Definition 19 Suppose Γ = x1 : θ1, · · · , xm : θm. The term-in-context Γ ⊢ M : θ be-

longs to GRef, provided θ1, · · · , θm can be generated from ΘL and θ is generated from

ΘR, where ΘL ::= β | ΘR → ΘL, ΘR ::= β | Θ1 → β and Θ1 ::= β | β → Θ1.

Put otherwise, we focus on sequents of the form:

ΘR → · · · → ΘR → β ⊢ ΘR

where ΘR = (β → · · · → β) → β.

Each type θ can be written in the form θ = θn → . . . → θ1 → β, for types θ1, . . . , θn
and base type β. For brevity, we shall write θ = (θn, . . . , θ1, β). We call n the arity of θ
and denote it by ar(θ).

Definition 20 For every type θ let us define the associated set of labels Lθ as follows:

Lunit = {⋆} Lref γ = Aγ

Lint = {0, · · · ,max} Lθ→θ′ = {⋆}

We shall write L for the set of all labels.

Let us fix notation for referring to moves that are available in arenas corresponding to

GRef, typing judgments: each move can be viewed as a pair (l, t) subject to consistency

constraints induced by the subtypes which contribute them, e.g. the label corresponding to a

tag related to int must be a number from [0,max ].
More precisely, given Γ ⊢ M : θ, l ∈ L and some symbol t (determined below), we

shall say that the pair (l, t) is consistent if the following conditions are satisfied. Below we

assume that (x : θ′) ∈ Γ and θ′ ≡ (θm, · · · , θ1, β).

10



– If t = r↓ then l ∈ Lθ.

– If t = cxi then l ∈ Lθi
.

– If t = rxi then l ∈ L(θi−1,...,θ1,β).

– If t = cxj,i then l ∈ Lθj,i
, where θj ≡ θj,0 → β and θj,0 ≡ (θj,k, · · · , θj,1, β

′).
– If t = rxj,i then l ∈ Lθj,i

, where θj ≡ (βk, · · · , β1, β) → β0, θj,0 ≡ β0 and θj,i ≡
(βi−1, · · · , β1, β) for i > 0.

– If t = ci then l ∈ Lθi
, where θ ≡ θ0 → β and θ0 ≡ (θn, · · · , θ1, β

′).
– If t = ri then l ∈ Lθi

, where θ ≡ (βn, · · · , β1, β) → β0, θ0 ≡ β0 and θi ≡
(βi−1, · · · , β1, β) for i > 0.

Thus, consistent pairs (t, l) uniquely specify moves of JΓ ⊢ θK. The tag t specifies the

position of the move within the arena, while l determines its actual value. We shall write T
to refer to the set of tags.

In order to show decidability we first translate GRef, terms into automata that represent

their game semantics. A corollary of Lemma 2 is that any GRef, term can be effectively

converted to an equivalent term in canonical shape.

C ::= () | i | xref γ | λxΘ1 .C | case(xint)[C, · · · ,C] | (while (!xref int) doC);C

| let yγ = !xref γ inC | (xref int := i);C | (xref2 γ := yref γ);C

| letxref int = ref(0) inC | letxref2 γ = ref(yref γ) inC | let yΘL = z () inC
| let yΘL = z i inC | let yΘL = z xref γ inC | let yΘL = z (λxΘ1 .C) inC

Consequently, it suffices to show that program equivalence between terms in canonical form

is decidable. Accordingly, in what follows, we focus exclusively on translating terms in

canonical shape.

We next introduce a class of automata (over an infinite input alphabet) which will be the

target of our translation from canonical forms of GRef,.

5.1 A class of automata

To enable a finite specification of our automata and to describe their semantics we introduce

the following definitions. Recall that A is the set of names, partitioned as:

A =
⊎

γ
Aγ

Let C = {⋆, 0, · · · ,max} be the set of constants. Let us also fix natural numbers nr, n with

nr ≤ n, a finite set Cstack of stack symbols and a finite set T of tags, partitioned into push

tags, pop tags and no-op tags:

T = Tpush ⊎ Tpop ⊎ Tnoop

As general notation, given a partial function f , we write dom(f), cod(f) for the sets {i | f(i) defined}
and {j | ∃i. f(i) = j} respectively. For each 1 ≤ i < j ≤ n, [i, j] is the set {i, i+1, · · · , j}.

Definition 21 We introduce the following notions.

– L = C ∪ { Ri | 1 ≤ i ≤ n } is the set of symbolic labels. We use ℓ to range over its

elements.

– Reg is the set of injective partial functions ρ : {1, · · · , n} ⇀ A. Its elements are called

register assignments and we use ρ to range over them.

11



– Sto is the set of partial functions Σ : A ⇀ [0,max ] ∪ A such that dom(Σ) contains

at most n elements and, moreover, if Σ(a) = v then: if a ∈ Aint then v ∈ [0,max ]; if

a ∈ Aref γ then v ∈ Aγ ∩ dom(Σ) (i.e. Σ is closed and well-typed). Its elements will

be called stores and ranged over by Σ.

– SSto is the set of partial functions S : [1, n] ⇀ [0,max ] ∪ {R1, · · · , Rn} such that

[1, nr] ⊆ dom(S) and, for each i ∈ dom(S), depth(S, i) is well-defined (and finite).

The depth and the full value of an index i ∈ dom(S) are given respectively by:

depth(S, i) =

{
1

1 + depth(S, j)
S∗(i) =

{
S(i) if S(i) ∈ {0, ...,max}

(Rj , S
∗(j)) if S(i) = Rj

The elements of SSto will be called symbolic stores and ranged over by S.3 The depth

restriction ensures that symbolic stores are closed and acyclic.

– Sta = (Cstack × Reg)∗ is the set of stacks. We shall range over stacks by σ, and over

elements of a stack σ by (s, ρ).
– Mix is the set of partial injections π : [nr+1, n]⇀[nr+1, n].4 For each π, we write π

for the extension of π on [1, n]: π = π ∪ {(i, i) | i ∈ [1, nr]}.

– TL is the set of transition labels, taken from the set:

(P([nr+1, n])× L× Tpush × Cstack ×Mix× SSto)

∪ (P([nr+1, n])× L× Tpop × Cstack ×Mix× SSto)

∪ (P([nr+1, n])× L× Tnoop × SSto)

We range over TL by νX.(ℓ, t, φ)S , where φ can either be:

– a push pair (s, π), in which case we may also write νX.(ℓ, t)S/(s, π);
– a pop pair (s, π), in which case we may also write νX.(ℓ, t)S, (s, π);
– or a no-op (), in which case we may simply write νX.(ℓ, t)S .

We stipulate that S(j) be defined whenever νX.(ℓ, t, φ)S ∈ TL and j ∈ X or ℓ = Rj .

Moreover, we partition TL = TLpush ⊎ TLpop ⊎ TLnoop depending on the partitioning

of tags (e.g. TLpush = {νX.(ℓ, t, φ)S | t ∈ Tpush}).

We write π(S) for {(π(i), Rπ(j)) | (i, Rj) ∈ S} ∪ {(π(i), j) | (i, j) ∈ S}. Given a pair

(ρ, S) ∈ Reg × SSto we say that ρ, S are compatible if dom(S) = dom(ρ) and, for all

i ∈ dom(S),

ρ(i) ∈ Aint =⇒ S(i) ∈ {0, . . . ,max}, ρ(i) ∈ Aref γ =⇒ S(i) = Rj ∧ ρ(j) ∈ Aγ .

In such a case, we can derive the store:

Sto(ρ, S) = { (ρ(i), S(i)) | S(i) ∈ {0, ...,max} } ∪ { (ρ(i), ρ(j)) | S(i) = Rj }

Moreover, we shall be using the following notation for assignment updates,

ρ[(i1, ..., im) 7→ (z1, ..., zm)] = {(i, ρ(i)) | i ∈ X} ∪ {(ij, zj) | 1 ≤ j ≤ m, zj 6= ♯}

with X = dom(ρ)\{i1, · · · , im} and each zj ∈ A∪{♯}. Note in particular that the symbol

♯ is used for register deletions. Similar notations will be used for store and partial-injection

3 Symbolic stores represent stores by use of indices instead of actual names. For example, S(i) = Rj
means that in S the i-th name stores the j-th name.

4 Explicitly, for all i 6= j, if π(i), π(j) are both defined then π(i) 6= π(j).
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updates. Furthermore, for a store Σ and a set of names B, we define Σ ↾ B = {(a, v) ∈
Σ | a ∈ B} and Σ \ B = {(a, v) ∈ Σ | a /∈ B}. Finally, we let clo(Σ,B) be the least

set of names C such that B ⊆ C and, for all a ∈ C , if Σ(a) ∈ A then Σ(a) ∈ C . For

each symbolic store S and set of indices X , we define S ↾ X , S \X and clo(S,X) in an

analogous manner.

We can now define (nr, n)-automata, which will be used for representing game seman-

tics. An (nr, n)-automaton is equipped with n registers, the first nr of which will be read-

only, and utilises a pushdown stack where it pushes stack symbols along with full register

assignments.

Definition 22 An (nr, n)-automaton of type θ is given as a quintuple A = 〈Q, q0, ρ0, δ, F 〉
where:

– Q is a finite set of states, partitioned into QO (O-states) and QP (P -states);

– q0 ∈ QP is the initial state; F ⊆ QO is the set of final states;

– ρ0 ∈ Reg is the initial register assignment such that [1, nr] ⊆ dom(ρ0);
– δ ⊆ (QP × (TLpush ∪ TLnoop) ×QO) ∪ (QO × (TLpop ∪ TLnoop)×QP ) ∪ (QO ×

Mix×QO) ∪ (QP ×Mix×QP ) is the transition relation.

Additionally, if θ is a base type then there is a unique final state qF without outgoing transi-

tions and reachable only via no-op transitions.

Our automata operate on words over the infinite alphabet (C ∪ A) × T × Sto. We shall

write (l, t)Σ to refer to its elements. We first explain the meaning of the transition relation

informally. Suppose A is at state q1, ρ is the current register assignment and σ is the current

stack.

– If (q1, νX.(ℓ, t, φ)S , q2) ∈ δ, A will accept an input (l, t)Σ and move to state q2 if the

following steps are successful.

– If t ∈ Tpop and φ = (s, π), A will check whether the stack has the form σ =
(s, ρ′) :: σ′ with ρ(i) = ρ′(i′) ∈ A iff π(i) = i′, for all i, i′, and dom(ρ) ∩
dom(ρ′) = ∅. In such a case A will pop from the stack, that is, it will set σ = σ′

and ρ = ρ[(i1, ..., im) 7→ (ρ′(i1), ..., ρ
′(nm))], where i1, ..., im is an enlisting of

dom(ρ′) \ cod(π).
– A will update ρ with fresh names, that is, it will check whether dom(ρ) ∩ X = ∅

and, if so, it will set ρ = ρ[(i1, · · · , im) 7→ (a1, · · · , am)], where i1, · · · , im is an

enumeration of X and a1, · · · , am are distinct names such that:

• if q1 ∈ QO then a1, · · · , am /∈ ρ([1, n]) (locally fresh),

• if q1 ∈ QP then a1, · · · , am have not appeared in the current run of A (glob-

ally fresh).

– A will check if (l, Σ) corresponds to (ℓ, S) via ρ, that is, whether Σ = Sto(ρ, S)
and either ℓ = l ∈ C, or ℓ = Ri and ρ(i) = l.

– If t ∈ Tpush and φ = (s, π), A will perform a push of the registers in dom(π), after

rearranging them according to π, that is, it will set σ = (s, ρ ◦ π) :: σ.

– If (q1, π, q2) ∈ δ, for π ∈ Mix, A will reorganize the contents of registers in [nr+1, n]
according to π, that is, set ρ = ρ ◦ π, and move to q2 without reading any input symbol

(ǫ-transition).

The above is formalized next. A configuration of A is a quadruple (q, ρ, σ,H) ∈ Q̂, where

Q̂ = Q× Reg× Sta × Pfn(A) and Pfn(A) is the set of finite subsets of A.
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Definition 23 Let A = 〈Q, q0, ρ0, δ, F 〉 be an (nr, n)-automaton. The configuration graph

(Q̂,−→δ) of A is defined as follows (transitions are labelled by ǫ or elements of (C∪A)×T×

Sto). For all (q, ρ, σ,H) ∈ Q̂ and (q, νX.(ℓ, t, φ)S, q′) ∈ δ we have (q, ρ, σ,H)
(l,t)Σ

−−−−→δ

(q′, ρ′, σ′, H′) where Σ = Sto(ρ′, S) and:

– if t ∈ Tpop and φ = (s, π) then σ = (s, ρ0) :: σ
′ and

– for all i, i′, ρ(i) = ρ0(i
′) iff (i, i′) ∈ π, and dom(ρ0) ∩ dom(ρ) = ∅,

– ρ1 = ρ[(i1, ..., im) 7→ (ρ0(i1), ..., ρ0(im))]with {i1, ..., im} = dom(ρ0)\cod(π);
otherwise ρ1 = ρ;

– if X = {i1, · · · , im} then dom(ρ1) ∩ X = ∅, H1 = H ∪ {a1, · · · , am} and ρ′ =
ρ1[(i1, · · · , im) 7→ (a1, · · · , am)] where a1, · · · , am are distinct names and:

– if q ∈ QO then a1, · · · , am /∈ ρ1([1, n]),
– if q ∈ QP then a1, · · · , am /∈ ρ1([1, n]) ∪H;

– if ℓ ∈ C then l = ℓ and H′ = H1;

– if ℓ = Ri then l = ρ′(i) and H′ = H1 ∪ {l};

– if t ∈ Tpush and φ = (s, π) then σ′ = (s, ρ′ ◦ π) :: σ.

Moreover, for all (q, ρ, σ,H) ∈ Q̂ and (q, π, q′) ∈ δ we have (q, ρ, σ,H)
ǫ
−→δ (q′, ρ′, σ,H),

where ρ′ = ρ ◦ π.

The set of strings accepted by A is defined as below, where ǫ is the empty stack.

L(A) = { l ∈ ((C ∪ A)× T× Sto)∗ | (q0, ρ0, ǫ, ∅)
l

−→−→δ (q, ρ, σ,H), q ∈ F }.

We say that A is deterministic if, for any reachable configuration q̂, any x1, x2 ∈ {ǫ}∪

(C∪A)× T× Sto, and any q̂
x1−→δ q̂1, q̂

x2−→δ q̂2, if x1 = x2 then q̂1 = q̂2. The automata

specifically used for our constructions follow some stronger disciplines.

Definition 24 We say that A is strongly deterministic if:

– for each q ∈ QP there is at most one transition out of q (i.e. |δ ↾ {q}| ≤ 1), and if

(q, νX.(ℓ, t, φ)S, q′) ∈ δ then |δ ↾ {q′}| ≤ 1 and in particular q′ may only have an

outgoing transition of the form (q′, π, q′′) such that ∀π′, q′′′. (q′′, π′, q′′′) /∈ δ;

– for each q ∈ QO and (q, νXi.(ℓi, t, φ)
Si , qi) ∈ δ, i = 1, 2, if νX1.(ℓ1, S1) and

νX2.(ℓ2, S2) are equal up to permutation of indices5 inX1, X2 then νX1.(ℓ1, t, φ)
S1 =

νX2.(ℓ2, t, φ)
S2 and q1 = q2;

– for each (q, νX.(ℓ, t, φ)S , q′) ∈ δ,X is contained in clo(S,XAv) where XAv = (dom(S)\
X) ∪ {j | ℓ = Rj}.

For such an A, we may write qP
νX.(ℓ,t,φ)S;π
−−−−−−−−−→ qO for qP

νX.(ℓ,t,φ)S

−−−−−−−−→ q′O
π
−→ qO , where

qP ∈ QP , qO ∈ QO. The last condition above corresponds to frugality (cf. Definition 5):

fresh names must be reachable from names that were already available or appear in the

current transition label.

Lemma 25 If A is strongly deterministic then it is deterministic.

Proof The claim is obvious for configurations with P-states, as well as for (reachable) con-

figurations with O-states and outgoing transitions of the form q
π
−→ q′, because of the first

condition in the previous definition. For configurations with O-states and transitions of the

form q
νX.(ℓ,t,φ)S

−−−−−−−−→ q′, the second condition above ensures that each label has at most

5 Here, in fact, we refer to the alpha-equivalence relation induced by the ν binder: for example,

ν{1, 2}.(R1, {(1, R2), (2, 0), (3, 1)}) ∼α ν{5, 6}.(R6, {(3, 1), (5, 0), (6, R5)}).
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one accepting edge, as long as in each configuration each top stack element can be popped

uniquely (i.e. with at most one φ). The latter follows from the definition of configuration

graphs. ⊓⊔

Lemma 26 Given A strongly deterministic and w1, w2 ∈ L(A), if ext(w1)∩ext(w2) 6= ∅
then w1 = w2.

Proof WLOG we assume that w1, w2 have the same underlying sequence of moves. Let

w′
im

Σi be the prefix of wi of length n (i = 1, 2). We show by induction on n that Σ1 = Σ2.

By IH (if n > 1) or by definition (if n = 1) we have that w′
1 = w′

2. Moreover, by the

previous lemma, w′
1, w

′
2 lead to some common configuration q̂ of A. If n is even then, by

the first clause of Definition 24, we have that Σ1 = Σ2. If n is odd then by hypothesis we

have that Σ1, Σ2 have a common extension and, thus, using the last clause of Definition 24,

we obtain Σ1 = Σ2. ⊓⊔

Definition 27 Let A = 〈Q, q0, ρ0, δ, qF 〉 be a strongly deterministic automaton of base

type. We define the set of quasi-final states E to be the set of states that reach qF in one

step. Then E is canonically partitioned as E =
⊎

(X,ℓ,t,S)EνX.(ℓ,t)S where EνX.(ℓ,t)S =

{ q ∈ Q | (q, νX.(ℓ, t, ())S, qF ) ∈ δ } and A is uniquely determined by the structure

A− = 〈Q, q0, ρ0, δ, E〉.

5.2 Automata for GRef,

Recall we are only going to translate terms in canonical form.

Let Γ = {x1 : θ1, · · · , xm : θm} and Γ ⊢ C : θ be a GRef,-term in canonical

form. Let us write P 1
Γ⊢θ for the set of plays-with-store of length 1 over Γ ⊢ θ. Recall that

each of them will have the form iΣ0 , where i ∈ IΓ , i.e. i = (l1, · · · , lm) with li ∈ Lθi
.

Moreover, the names in iΣ0 coincide with those of dom(Σ0) = ν(Σ0) and, by frugality,

ν(Σ0) = clo(Σ0, ν(i)). These can be ordered by use of register assignments, of fixed size

appropriate to contain all names in Σ0 and names created while translating GRef,-terms,

leading to the following construction.

I+Γ⊢θ = {(iΣ0, ρ0) | i
Σ0 ∈ P 1

Γ⊢θ, ν(ρ0) = ν(Σ0), ∃k. ρ0([1, k]) = ν(i)}

For brevity, we shall write each element (iΣ0 , ρ0) ∈ I+Γ⊢θ as iΣ0
ρ0

. We now instantiate the

automata defined in the previous section by using the finite set of tags T = Tpush ∪ Tpop ∪
Tnoop, where

Tpush = {ci ∈ T | i > 0} ∪ {cxi ∈ T} ∪ {cxj,i ∈ T | i > 0}

Tpop = {ri ∈ T | i > 0} ∪ {rxi ∈ T} ∪ {rxj,i ∈ T | i > 0}

Tnoop = {r↓, c0, r0, c
x
j,0, r

x
j,0}.

Moreover, we will impose the following condition on our automata. All push/pops will not

involve any registers (i.e. they will have φ = (s, ∅)), except if the tag t in question satisfies:

t ∈ {ci, ri ∈ T | i > 0} ∪ {cxj,i, r
x
j,i ∈ T | i > 0}
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Remark 28 A canonical form of GRef, will be translated into a family of automata indexed

by I+Γ⊢θ . For each iΣ0
ρ0

∈ I+Γ⊢θ , the corresponding automaton will accept exactly the words

w such that iΣ0w is a representation of a complete play induced by the canonical form. The

family will be infinite, but finite when considered up to name permutations.

For any GRef,-term Γ ⊢ C : θ in canonical form we define an I+Γ⊢θ-indexed family of

automata LC M = { LC M
i
Σ0
ρ0

| iΣ0
ρ0

∈ I+Γ⊢θ } (each of type θ) by induction on the shape of

C. In all cases LC M
i
Σ0
ρ0

will have n0 = |ν(i)| read-only registers and the initial assignment

will be ρ0. The precise number of registers can be calculated easily by reference to the

constituent automata. Let us write S0 for the symbolic store defined by S0(i) = Σ0(ρ0(i))
if Σ0(ρ0(i)) ∈ {0, . . . ,max}, and S0(i) = Rj if Σ0(ρ0(i)) = ρ0(j). The base and

inductive cases are as follows.

• L () M
i
Σ0
ρ0

= q0
(⋆,r↓)

S0

// qF .

• L i M
i
Σ0
ρ0

= q0
(i,r↓)

S0

// qF .

• Lxref γ M
i
Σ0
ρ0

= q0
(Rj ,r↓)

S0

// qF , where x ≡ xk and lk = ρ0(j).

• L case(xint)[C0, · · · ,Cmax ] MiΣ0
ρ0

= LCj M
i
Σ0
ρ0

, where x ≡ xk and lk = j.

• L (x := y);C M
i
Σ0
ρ0

= q0
π // LC M

i
Σ′′

0

ρ′
0

where x ≡ xk, y ≡ xj and Σ′
0 = Σ0[lk 7→

lj ], and the initial transition deletes all names in ρ0 which break frugality of iΣ
′
0 , that is,

π(i) = i just if ρ0(i) ∈ clo(Σ′
0, ν(i)). Moreover, ρ′0 = ρ0 ◦ π and Σ′′

0 = Σ′
0 ↾ cod(ρ′0).

• L let y = !x inC M
i
Σ0
ρ0

= q0
π // LC M

(iΣ0(lk))
Σ0

ρ′
0

where x ≡ xk and π transfers

Σ0(lk), if it is a name, to the register in position n0 + 1, and leaves all other names in ρ0
untouched. Moreover, ρ′0 = ρ0 ◦ π.

• L let yunit = z() inC M
i
Σ0
ρ0

= q0
(⋆,cz

r
)S0/(q0,∅) ; ∅ // q1

νX.(⋆,rz
r
)S,(q0,∅) // LC M(i ⋆)Σ

ρ′
0

where z has arity r and Σ ranges over stores with dom(Σ) = clo(Σ, ν(i)). These are in-

finitely many, but finitely many up to permutations of fresh names. In the transitions we pick

X,S such that there is one transition for each of the (finitely many) equivalence classes.

Moreover, ρ′0 is specified by stipulating dom(ρ′0) = [1, n0] ∪X and Σ = Sto(ρ′0, S).

• L let yint = z() inC M
i
Σ0
ρ0

= q0
(⋆,czr)

S0/(q0,∅) ; ∅ // q1
νX.(j,rzr)

S,(q0,∅) // LC M(i j)Σ
ρ′
0

with r,Σ, S,X, ρ′0 as above and j ranging over [0,max ].
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• L let yref γ = z() inC M
i
Σ0
ρ0

= q0
(⋆,cz

r
)S0/(q0,∅) ; ∅ // q1

νX.(Rj ,r
z
r
)S,(q0,∅) //

νX′.(Rn0+1,r
z
r)

S′
,(q0,∅)

,,❨❨❨❨❨
❨❨❨

❨❨❨
❨❨❨

❨❨❨
❨ LC M(i ρ0(j))

Σ

ρ′
0

LC M(i b)Σ′

ρ′′
0

where r,Σ, S,X, ρ′0 are as above, j ranges over elements of dom(S) such that ref γ =
refdepth(S,j) int, and b ∈ Aγ is a fresh name. We let Σ′ range over all stores with dom(Σ′) =
clo(Σ′, ν(i)∪{b}). We pick X ′, S′ such that there is one symbolic transition for each of the

intended transitions (b, rzr)
Σ′

and specify ρ′′0 accordingly, making sure that ρ′′0 (n0+1) = b.

• L let yΘR→ΘL = z() inC M
i
Σ0
ρ0

= q0
(⋆,czr)

S0/(q0,∅) ; ∅ // q1
νX.(⋆,rzr)

S,(q0,∅) // LC M(i ⋆)Σ
ρ′
0

[z/y]

where r,Σ, S,X, ρ′0 are as above and LC M(i ⋆)Σ
ρ′
0

[z/y] is LC M(i ⋆)Σ
ρ′
0

where we have replaced

every tag superscript y with z.

• L let y = z i inC M
i
Σ0
ρ0

and L let y = z xref γ inC M
i
Σ0
ρ0

are defined similarly to the above.

• Case of let xref2 γ = ref(yref γ) inC. Here the inductive hypothesis gives us an automaton

for Γ, x : ref2 γ ⊢ C : θ. In order to transform the latter into an automaton for our given term,

we need to hide the name corresponding to x from the automaton, until the point where the

name is eventually revealed in some move (it is also possible that the name remains private

indefinitely). This hiding of x effectively has wider repercussions as we need also to hide

any name that x exclusively points to, and so on, along with their stored values. It is therefore

useful to define a more general hiding construction.

Let A be an (nr, n)-automaton, let X0, · · · , Xh be an enumeration of all subsets of

[nr + 1, n] and let Ti,0, · · · , Ti,gi be an enumeration of all partial symbolic stores on Xi

(i.e. of all T = S ↾ Xi for some symbolic store S). For each 0 ≤ i ≤ h and 0 ≤ j ≤ gi we

define an (nr, n)-automaton A
Ti,j

Xi
to be a copy of A in which we have hidden the names in

registers Xi, while the stored restricted to the names in those registers is Ti,j . Concretely,

A
Ti,j

Xi
is a copy of A in which we have removed all transitions apart from those of the form

q1
νX.(ℓ,t,φ)S

−−−−−−−−→ q2 with q1 an O-state and such that:

S ↾ Xi = Ti,j , ∀m ∈ Xi.∀m
′ /∈ Xi. ℓ 6= Rm, S(m′) 6= Rm

and in those remaining transitions we have removed Xi from the domains of all symbolic

stores. We define νA as the (nr, n)-automaton fragment (no initial state) obtained by inter-

connecting these automata as below.

A
T0,0

X0

11

11

. . .
A

Ti,j

Xi

mm

00
. . .

A
Th,gh

Xh

nn

qq

The transitions are as follows. Let (X,T ) be an element of the above enumeration.

– For each q1
νY.(ℓ,t,φ)S

−−−−−−−→ q2 in A with q1 a P -state, add a transition from q1 in AT
X

to q2 in AT ′

X′ with label νY ′.(ℓ, t, φ)S
′

, where X ′ = (X ∪ Y ) \ Y ′, S′ = S \ X ′,

T ′ = S ↾ X ′ and Y ′ = clo(S, (dom(S) \X) ∪ {j | ℓ = Rj}).
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– For each q1
π
−→ q2 in A add a transition from q1 in AT

X to q2 in AT ′

X′ with label π, where

X ′ = π−1(X) and T ′ = π−1(T ).

Let now a ∈ Aref γ \ ν(ρ0), suppose y ≡ xk, ρ0(k
′) = lk, let Σ′

0 = Σ0[a 7→ lk] and let

n′
0 be the first empty register in ρ0. We take π0 ∈ Mix to be such that it swaps n0 + 1 and

n′
0, and fixes all other indices, and set ρ′0 = ρ0[n0 +1 7→ a, n′

0 7→ ρ0(n0+1)]. We define:

L let x = ref(y) inC M = q0
π0−−−→ νLC M

(ia)
Σ′

0

ρ′
0

where the transition π0 points to the initial

state of the ({n0 + 1}, {(n0 + 1, Rk′ )}) component of νLC M
(ia)

Σ′
0

ρ′
0

.6

• The case of letxref int = ref(0) inC is dealt with similarly to the above.

• For (while (!x)doC);C′, given the automata LC M and LC′ M, with appropriate initialisa-

tions, we construct a new automaton as follows. Suppose x ≡ xk and ρ0(k
′) = lk. If the

initial value stored for x is 0 (i.e. if Σ0(lk) = 0) then we simply return LC′ M
i
Σ0
ρ0

. Otherwise,

we need to combine the automata for C and C′ in such a away so that LC M is involved re-

peatedly (with appropriate initialisation), until it reaches a final state with a final transition

with a symbolic store assigning 0 to k′. At this point, the automaton would switch and start

simulating LC′ M. An important point in this construction is that the final transitions of LC M

are hidden in the new automaton, as the return values of the while guard are not revealed in

the semantics. This hiding implies a potential hiding of names as well: any names created in

final transitions of LC M need to be hidden as well. This latter kind of hiding is delegated to

the ν-construction that we described two cases above.

Formally, let Σ0, · · · , Σh be an enumeration (modulo permutation of fresh names) of

all stores Σ with dom(Σ) = clo(Σ, ν(i)). Recall x ≡ xk, ρ0(k
′) = lk, and recall the

presentation of an automaton given in Definition 27. We define L (while (!x)doC);C′ M
i
Σ0
ρ0

to be LC′ M
i
Σ0
ρ0

if Σ0(lk) = 0. Otherwise, we define it to be a combination of νLC M−
i
Σ0
ρ0

,

· · · , νLC M−
i
Σh
ρh

and νLC′ M
i
Σ0
ρ0

, · · · , νLC′ M
i
Σh
ρh

, with each ρi specified by Σi as above, con-

nected together as below.

νLC M−
i
Σ0
ρ0

++

//

--❬❬❬❬❬❬❬
❬❬❬❬

❬❬❬❬
❬❬❬❬

❬❬❬❬
❬❬❬❬

❬❬❬❬
❬❬❬❬

❬❬❬❬
❬❬

PP
νLC′ M

i
Σ0
ρ0. . .

. . .

νLC M−
i
Σh
ρh

kk
55❧❧❧❧❧❧❧❧❧

//

QQ
νLC′ M

i
Σh
ρh

The initial state is the one of the (∅, ∅) component of νLC M−
i
Σ0
ρ0

. Let Si be specified by

each Σi, ρi. For each quasi-final state q ∈ EνX.(⋆,r↓)S of each νLC M−
i
Σj
ρj

, there are unique

m and π such that S∗(i) = (π(Sm))∗(i) for all i ∈ [1, n0]. Let X ′ = π−1(X) and

T ′ = Sm ↾ X ′. We add a transition labelled with π:

– if S(k′) = 0, from q to the initial state of the (X ′, T ′) component of νLC′ MiΣm
ρm

,

– if S(k′) 6= 0, from q to the initial state of the (X ′, T ′) component of νLC M−
iΣm
ρm

.

6 In fact, LC M
(ia)Σ

′

ρ′
0

is an (n0 + 1, n)-automaton, but we render it into an (n0, n) one by changing each

q1
π
−→ q2 to q1

π[n0+17→n0+1]
−−−−−−−−−−−→ q2.
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• Case of λxunit→Θ1 .C. We define Lλx.C M
i
Σ0
ρ0

as an automaton which combines states

q0, q1, q2 and two modified copies of LC M(i ⋆)Σ
ρ′
0

, for each (of the finitely many relevant) Σ,

in each of which we have replaced tags r↓ by r0 and removed all transitions with tags cxi , r
x
i .

We let X,S be derived from Σ and denote the two copies by L̂C MS , L̃C MS . Each state q in

LC M(i ⋆)Σ
ρ′
0

has copies q̂, q̃ in L̂C MS , L̃C MS respectively.

q0
(⋆,r↓)

S0 ; ∅
// q1

νX.(⋆,c0)
S

// L̂C MS
done

ee
push

// q2
νX.(⋆,c0)

S

//

pop

xx
pop

′

$$
L̃C MS

done
′

ee

push
′

��

The unique final state is q1. The transitions in typewriter font are defined as follows.

– We connect every final state of L̂C MS with q1 using a transition with label ∅ (done).

Similarly for done′.

– For each sequence qA
νXA.(ℓA,cx

i
)SA/(s,∅) ;π

−−−−−−−−−−−−−−−−→ qB
νXB .(ℓB,rx

i
)SB ,(s,∅)

−−−−−−−−−−−−−−→ qC in LC M(i ⋆)Σ
ρ′
0

we add q̂A
νXA.(ℓA,ci)

SA/(q̂A,π) ; ∅
−−−−−−−−−−−−−−−−−→ q2

νXB.(ℓB,ri)
SB ,(q̂A,∅)

−−−−−−−−−−−−−−→ q̂C (push, pop) and

q̃A
νXA.(ℓA,ci)

SA/(q̃A,π) ; ∅
−−−−−−−−−−−−−−−−−→ q2

νXB.(ℓB,ri)
SB ,(q̃A,∅)

−−−−−−−−−−−−−−→ q̃C (push′, pop′).

The other cases of λxβ→Θ1 .C are dealt with in a similar way. The case of λxβ .C is treated

as above, excluding q2 and L̃C MS from the construction.

• For the case of let y = z(λxunit→Θ1 .C) inC′ it is useful to introduce a notion of automa-

ton which operates by interleaving runs from two constituent automata. Since a similar con-

struction will be of use in the next section, we give a general notion of automaton which can

combine runs either by matching or by interleaving them. We define these generalised au-

tomata and give the construction of the one corresponding to let y = z(λxunit→Θ1 .C) inC′.

Generalised automata can be reduced to equivalent ones.

Let nr ≤ n1, n2 and set n′ = n1 + n2 − nr. For each i ∈ [nr + 1, n2] we define its

shift i+ = i + n1 − nr; note that i+ ∈ [n1 + 1, n′]. We also fix a fresh label symbol X,

which is used to indicate the automaton that will not advance in a given transition. For any

set X , we write XX for (X ⊎ {X})2 \ {(X,X)}.

A generalised (nr, n1, n2)-automaton is given as a quintuple A = 〈Q, q0, ρ0, δ, F 〉,
where these components are defined as for an (nr, n

′)-automaton except that now:

– δ ⊆ (QP × (TLpush ∪TLnoop)
X×QO)∪ (QO× (TLpop ∪TLnoop)

X×QP )∪ (QO ×
MixX ×QO) ∪ (QP ×MixX ×QP ),

– ρ0 ∈ Reg2 where Reg2 contains all ρ : [1, n′] ⇀ A such that ρ ↾ [1, n1] and ρ ↾

([1, nr] ∪ [n1+1, n′]) are both injective.

Moreover, apart from the usual partitioning to O- and P-states, Q is partitioned to normal

and divergent states: Q = QN ⊎QD. There is a map div : QN ∩QP → QD ∩QP , while

q0 ∈ QN .

The automaton operates on words over the alphabet (C∪A)×T×Sto, with configura-

tions given by tuples (q, ρ, σ,H,Σ), where now ρ ∈ Reg2, Σ ∈ Sto and the stack σ is an

element of Sta2 = (CX

stack × Reg2)∗. We define projections and pairings for moving from

the generalised setting to the ordinary one and vice versa:
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– for each ρ ∈ Reg2 let π1(ρ) = ρ ↾ [1, n1] and π2(ρ) = ρ ↾ [1, nr] ∪ {(i, ρ(i+)) | i ∈ [nr+1, n2]};

moreover, for each ρ1, ρ2 ∈ Reg let 〈ρ1, ρ2〉 = ρ1 ∪ {(i+, ρ2(i)) | i ∈ [nr + 1, n2]};

– for each (s1, s2, ρ) :: σ ∈ Sta2 we set πi((s1, s2, ρ) :: σ) = (si, πi(ρ)) :: πi(σ), and

πi(ǫ) = ǫ, for i = 1, 2; moreover, let 〈(s1, ρ1) :: σ1, (s2, ρ2) :: σ2〉 = (s1, s2, 〈ρ1, ρ2〉) ::
〈σ1, σ2〉 and 〈ǫ, ǫ〉 = ǫ.

The automaton induces the following configuration graph. The initial configuration is (q0, ρ0, ǫ, ∅, ∅).

For each (q, ρ, σ,H,Σ) and (q, νX1.(ℓ1, t1, φ1)
S1 , νX2.(ℓ2, t2, φ2)

S2 , q′) ∈ δ if q
νXi.(ℓi,ti,φi)

Si

−−−−−−−−−−→

q′ induces (q, πi(ρ), πi(σ),H)
(li,ti)

Σi

−−−−−→ (q′, ρi, σi, Hi) on an ordinary (nr, ni)-automaton

where

1. (l1, t1) = (l2, t2),
2. if q ∈ QP then Σ[Σ1] ∪Σ[Σ2] is well-defined,7

3. if q ∈ QO then Σ1 ∪Σ2 is well-defined,

then (q, ρ, σ,H,Σ)
(l1,t1)

Σ1∪Σ2

−−−−−−−−→ (q′, 〈ρ1, ρ2〉, 〈σ1, σ2〉,H1 ∪ H2, Σ1 ∪ Σ2). Moreover,

in case q ∈ QP ∩ QN and conditions 1,2 above cannot be satisfied by any combination of

li, ti, Σi then the automaton diverges, that is, (q, ρ, σ,H,Σ)
ǫ
−→ (div(q), ρ, σ,H,Σ).

If (q, νX1.(ℓ1, t1, φ1)
S1 ,X, q′) ∈ δ with (q, π1(ρ), π1(σ),H)

(l1,t1)
Σ1

−−−−−−→ (q′, ρ1, σ1, H1)

in an (nr, n1)-automaton, we have (q, ρ, σ,H,Σ)
(l1,t1)

Σ′

−−−−−−→ (q′, 〈ρ1, π2(ρ)〉, 〈σ1, σ2〉,H1, Σ
′)

where Σ′ = Σ[Σ1] ↾ cod(〈ρ1, π2(ρ)〉) and:

σ2 =





(X, ∅) :: π2(σ) if t1 ∈ Tpush

σ′ if t1 ∈ Tpop and π2(σ) = (s2, ρ
′
2) :: σ

′

π2(σ) if t1 ∈ Tnoop

For each (q, π′
1, π

′
2, q

′) ∈ δ we have (q, ρ, σ,H,Σ)
ǫ
−→ (q′, 〈ρ1, ρ2〉, σ, H,Σ′) with ρi =

πi(ρ) ◦ π′
i and Σ′ = Σ ↾ cod(〈ρ1, ρ2〉). If (q, π′

1,X, q′) ∈ δ then (q, ρ, σ,H,Σ)
ǫ
−→

(q′, 〈ρ1, π2(ρ)〉, σ,H,Σ ↾ cod(〈ρ1, π2(ρ)〉)). For each (q,X, z, q′) ∈ δ we do the analo-

gous of the symmetric case above.

Note in particular that if A only contains transitions which include X then we can

drop the component Σ in configurations and disregard divergence. In fact, any (nr, n1)-
automaton can be rendered into an (nr, n1, n2)-automaton by simply changing each transi-

tion (q, z, q′) to (q, z,X, q′). The dual applies to every (nr, n2)-automaton.

We now proceed with the case of let y = z(λxunit→Θ1 .C) inC′. The corresponding au-

tomaton will first read a move indicating that z is being called (tag czr). After that, a detour

to λx.C will be an option, which O can initiate with a move tagged with cz,0r . Modelling

the detour is analogous to the interpretation of λx.C. Once the detour is completed or the

possibility is not exercised, O can play a move tagged with rzr corresponding to the return

by z (tagged rzr ). This will trigger a transition to the automaton for C′, in which we need to

modify labels by replacing y with z and to allow for detours to λx.C each time C′ makes a

transition on a P-move corresponding to y. Note that this is consistent with the behaviour of

the corresponding strategy, due to the visibility and well-bracketing conditions.

Technically, for each Σ′ and related S′, X ′, ρ′′0 , we consider two modified copies of

LC′ MiΣ′

ρ′′
0

in which:

7 i.e. we stipulate that Σ1, Σ2 agree on common names, while values of private names remain unchanged.

This stems from the fact that we do not compare plays but, rather, representations thereof.
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– all O-states q for which there are qA
νXA.(ℓA,tA,φA)SA ;π
−−−−−−−−−−−−−−→ q

νXB.(ℓB,tB,φB)SB

−−−−−−−−−−−−−→ qB
in LC′ MiΣ′

ρ′′
0

, with tA having superscript y, are tagged as qC′ ;

– we replace tag superscripts y with z.

We set n2 to be the maximum number of registers in these automata, and let n = n1+n2−

n0 with n1 defined below. We denote the two copies by L̂C′ MS′ and L̃C′ MS′ respectively

and consider them to be (n0, n1, n2)-automata. In the first one we write states as q̂, while

the other one has (the same) states in form q̃.

For each tagged state q̂C′ of L̂C′ MS′ , and each Σ and related X,S, ρ′0, consider the automa-

ton LC M(i⋆)Σ
ρ′
0

. We set n1 to be the maximum number of registers in these automata. We

define a modified copy of each LC M(i⋆)Σ
ρ′
0

by:

– removing all transitions of the form qA
νXA.(ℓA,cxi ,φA)SA ;π
−−−−−−−−−−−−−→ qB

νXB.(ℓB,rxi ,φB)SB

−−−−−−−−−−−→ qC ;

– replacing all tags r↓ by rzr,0, where r is the arity of z.

For each q in LC M(i⋆)Σ
ρ′
0

we denote the resulting automaton by LC M
q̂
C′

S , considered as an

(n0, n1, n2)-automaton, and its states by (q, q̂C′ , S). We construct another copy LC M
q̃
C′

S

following the same routine, albeit for each state q̃C′ of L̃C′ MS′ .

We construct an (n0, n1, n2)-automaton for L let y = z(λx.C) inC′ M
i
Σ0
ρ0

as follows.

q0
(⋆,cz

r
)S0/(q0,∅) ; ∅ // q1

νX.(⋆,cz
r,0

)S

// L̂C MS
done

ee
push

// q2
νX.(⋆,cz

r,0
)S

//

pop

~~

pop
′

%%
L̃C MS

done
′

gg

push
′

��

L̂C′ MS′

νX.(⋆,czr,0)
S

// LC M
q̂
C′

S
done

hh

push

))
L̃C′ MS′

νX.(⋆,czr,0)
S

//

pop
′

%%

pop

��
LC M

q̃
C′

S
done

′ii

push
′

��

νX′.(⋆,rzr)
S′

,(q0,∅)

All the arrows above represent transitions in the first partition of the automaton (but we

have omitted the RHS X for economy), and the same goes for all transitions inside subau-

tomata involving C. The transitions in subautomata coming from C′ contribute to the second

component. We connect each state q̂C′ of L̂C′ MS′ with the initial state of LC M
q̂
C′

S (for each

relevant S,S′), using a transition with label νX.(⋆, czr,0)
S . Similarly for the transition of

the same label between L̃C′ MS′ and LC M
q̃
C′

S . The transitions in typewriter font in the first

line of the diagram are as in the previous case. Those of the second line are explained below.

– We connect every final state of each LC M
q̂
C′

S with q̂C′ using a transition with label ∅
(done). Similarly for done′.

– For each qC′ , S and each qA
νXA.(ℓA,cx

i
)SA/(s,∅) ;π

−−−−−−−−−−−−−−−−→ qB
νXB.(ℓB,rx

i
)SB ,(s,∅)

−−−−−−−−−−−−−−→ qC in

LC M(i⋆)Σ
ρ′
0

we add (push, pop)

(qA, q̂C′ , S)
νXA.(ℓA,czr,i)

SA/φA ; ∅
−−−−−−−−−−−−−−−→ q̂C′

νXB .(ℓB,rzr,i)
SB ,φB

−−−−−−−−−−−−−→ (qC , q̂C′ , S)

with φA = ((qA, q̂C′ , S), π) and φB = ((qB, q̂C′ , S), ∅). We also add (push′, pop′)

(qA, q̃C′ , S)
νXA.(ℓA,czr,i)

SA/φA ; ∅
−−−−−−−−−−−−−−−→ q̃C′

νXB(ℓB,rzr,i)
SB ,φB

−−−−−−−−−−−−−→ (qC , q̃C′ , S) setting φA =
((qA, q̃C′ , S), π) and φB = ((qB, q̃C′ , S), ∅).
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The other cases of let y = z(λxβ→Θ1 .C) inC′ are dealt with in a similar way.

Observe that the basic cases in our construction yield strongly deterministic automata.

Moreover, strong determinacy is preserved in the inductive cases. This is obvious in cases

without interaction between different sub-automata. Moreover, in the cases of letx = ref(y) inC
and (while (!x)doC);C′, the connections between different components are made from

states which end up having unique outgoing transitions. The same holds also for the cases of

λx.C and let y = z(λx.C) inC′, with the addition that now there are also new pop transi-

tions to be taken into account which, however, operate on fresh stack symbols and therefore

do not interfere with the constituent automata. In the latter case, the reduction from the

generalised interleaving automaton to the ordinary one preserves strong determinacy.

Recall from Remark 28 that L · · · M and J· · ·K merely differ by the absence of initial moves

in L · · · M. Consequently, the constructions outlined above imply the following lemma.

Lemma 29 Let Γ ⊢ C : θ be a GRef,-term in canonical form. For each j = iΣ0
ρ0

∈
I+Γ⊢θ , there exists a deterministic (|ν(i)|,mj)-automaton Aj of type θ with initial register

assignment ρ0 such that
⋃

w∈L(Aj)
ext(iΣ0w) = comp(JΓ ⊢ C : θK)∩P iΣ0

Γ⊢θ, where P iΣ0

Γ⊢θ

is the set of plays over JΓ ⊢ θK that start from iΣ0 .

5.3 Reduction of inclusion into emptiness

The aim of this section is to establish the following result.

Lemma 30 Let Γ ⊢ C1,C2 : θ be GRef,-terms in canonical form. For each j = iΣ0
ρ0

∈
I+Γ⊢θ , there exists a deterministic (|ν(i)|, nj)-automaton Bj with initial register assignment

ρ0 such that L(Bj) = ∅ iff comp(JΓ ⊢ C1 : θK) ∩ P iΣ0

Γ⊢θ ⊆ JΓ ⊢ C2 : θK.

Suppose Γ ⊢ C1,C2 : θ be GRef,-terms in canonical form and let A1 and A2 be the

automata representing their respective semantics for a given initial move iΣ0 . We construct

an automaton A′ such that:
(
comp(JΓ ⊢ C1 : θK) ∩ P iΣ0

Γ⊢θ 6⊆ comp(JΓ ⊢ C2 : θK) ∩ P iΣ0

Γ⊢θ

)
⇐⇒ L(A′) 6= ∅

The idea behind the construction of A′ is the following. We arrange so that the automaton

behaves as a product automaton for A1 and A2, i.e. an automaton accepting their common

strings (with possible extensions to stores on each side). The constructed automaton has the

additional feature that, for each transition of A1, it checks whether the transition can be

replicated by A2. If it can, then the automaton continues behaving as a product automaton.

If the transition cannot be replicated then the automaton switches to divergence mode where

it behaves as A1. The automaton accepts just if it reaches a final state in the divergence

mode. The latter is justified by the fact that, in such a case, the automaton has detected a

string in A1 which A2 cannot replicate and which leads to a complete play of JC1K.

Suppose now each Ai is an (nr, ni)-automaton given by Ai = 〈Qi, q0i, ρ0i, δi, Fi〉
and assume that ρ01 = ρ02. We first construct a generalised (nr, n1, n2)-automaton A =
〈Q, q0, ρ0, δ, F 〉 that operates equivalently to our target automaton A′ described above. In

particular, we set:

Q = Q1∪ (Q1O ×Q2O)∪ (Q1P ×Q2P ), q0 = (q01, q02), ρ0 = 〈ρ01, ρ02〉, F = F1,

with QN = (Q1O × Q2O) ∪ (Q1P × Q2P ), QD = Q1 and div the first projection. For

each (q1, q2) ∈ Q we include in δ precisely the following transitions.
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– If qi
πi−→ q′i, for i = 1, 2, then (q1, q2)

π1,π2−−−−→ (q′1, q
′
2). Otherwise, if q1

π
−→ q′1 then

(q1, q2)
π,X
−−→ (q′1, q2), and if q2

π
−→ q′2 then (q1, q2)

X,π
−−→ (q1, q

′
2).

– If qi
νXi.(ℓi,ti,φi)

Si

−−−−−−−−−−→ q′i, i = 1, 2, then (q1, q2)
νX1.(ℓ1,t1,φ1)

S1 ,νX2.(ℓ2,t2,φ2)
S2

−−−−−−−−−−−−−−−−−−−−−−−→ (q′1, q
′
2).

– If q1
νX1.(ℓ1,t1,φ1)

S1

−−−−−−−−−−−→ q′1 then q1
νX1.(ℓ1,t1,φ1)

S1 ,X
−−−−−−−−−−−−−→ q′1.

– If q1
π1−→ q′1 then q1

π1,∅−−−→ q′1.

Lemma 31 For C1,C2,A1,A2 and A as above:

(comp(JΓ ⊢ C1 : θK) ∩ P iΣ0

Γ⊢θ 6⊆ comp(JΓ ⊢ C2 : θK) ∩ P iΣ0

Γ⊢θ) ⇐⇒ L(A) 6= ∅

Proof Suppose wA ∈ L(A). By construction of A, the accepting run for wA yields an

accepting run for w1 in A1 via first projection. By Lemma 29, we have ext(iΣ0w1) ⊆

comp(JΓ ⊢ C1 : θK). Consider iΣ0w ∈ P iΣ0

Γ⊢θ that extends iΣ0wA. We have iΣ0w ∈
ext(iΣ0w1) and thus iΣ0w ∈ comp(JΓ ⊢ C1 : θK). On the other hand, via the second

projection of the accepting run for wA up to the point of switching to divergence mode,

we obtain a run of A2 which, however, may only be resumed in A2 by a different (up to

extension) P-move than that required by wA. Hence, iΣ0w /∈ JΓ ⊢ C2 : θK. Conversely, let

iΣ0w ∈ comp(JΓ ⊢ C1 : θK)\ JΓ ⊢ C2 : θK and let iΣ0w′xy be its least prefix that appears

in JΓ ⊢ C1 : θK \ JΓ ⊢ C2 : θK. By construction, our automata are closed under legal O- to

P-transitions, so A2 must accept (a representation of) iΣ0w′x and fail to process y. On the

other hand, A1 will be able to process a whole representation of iΣ0w. Thus, A will operate

as product automaton until iΣ0w′x and then enter divergence mode and continue as A1.

Consequently, A will accept some iΣ0w̃ such that iΣ0w ∈ ext(iΣ0w̃), i.e. L(A) 6= ∅. ⊓⊔

Determinacy extends to generalised automata in the obvious way: an automaton is deter-

ministic if its configuration graph is. The notion of strong determinacy extends the following

manner. By construction, the automaton A above is strongly deterministic.

Definition 32 Let A = 〈Q, q0, ρ0, δ, F 〉 be a generalised (nr, n1, n2)-automaton. We say

that A is strongly deterministic if:

– for each q ∈ QP there is at most one transition out of q (i.e. |δ ↾ {q}| ≤ 1), and if

(q, z1, z2, q
′) ∈ δ with either of z1, z2 of the form νX.(ℓ, t, φ)S then |δ ↾ {q′}| ≤ 1 and

in particular q′ may only have an outgoing transition (q′, z′1, z
′
2, q

′′) such that z′i ∈ Mix

iff zi 6= X and, for all (q′′, z′′1 , z
′′
2 , q

′′′) ∈ δ, z′′1 , z
′′
2 /∈ Mix;

– for each q ∈ QO and (q, zi1, zi2, qi) ∈ δ with zi1, zi2 6∈ Mix, i = 1, 2,

– if z11 ∼α z21 and z12 ∼α z22 then z11 = z21, z12 = z22 and q1 = q2;8

– if z11, z12 6= X then z21, z22 6= X;

– of z11 = X 6= z12 and z21 6= X = z22 then z12 and z21 contain different tags;

– for each (q, z1, z2, q
′) ∈ δ, if either of z1, z2 is of the form νX.(ℓ, t, φ)S then X is

contained in clo(S,XAv) where XAv = (dom(S) \X) ∪ {j | ℓ = Rj}.

Lemma 33 If A is strongly deterministic then it is deterministic.

Proof Again, cases with P- to O-transitions and transitions with rearrangements are taken

care of by the first condition above. The case of O- to P-transition in one component fol-

lows from the second condition as in Lemma 25, using the first and last subcases of the

8 Here we use the alpha-equivalence relation under the ν binder mentioned in Definition 24.
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second condition above. Finally, if such transitions happen in both components and in-

duce, say, q̂
(l,t)Σ

−−−−→ q̂i, i = 1, 2, where q̂ has state q, let these be combination of tran-

sitions with labels (l, t)Σ11 and (l, t)Σ12 , and of (l, t)Σ21 and (l, t)Σ22 respectively (here

the second index specifies the component). We have Σ = Σ11 ∪ Σ12 = Σ21 ∪ Σ22.

Consider the associated νXij .(ℓ, t, φij)
Sij , for i, j = 1, 2, and in particular the ordi-

nary transitions (q, νXi1.(ℓ, t, φi1)
Si1 , q1). Since they are both accepting from q̂, it must

be that φ11 = φ21. Moreover, as Σ11 and Σ21 agree on their common names, S11 and

S21 may only disagree on X11, X21. But, by frugality, the latter are reachable from the in-

dices of available registers and therefore S11 = S21, modulo permutation of fresh indices.

Thus, νX11.(ℓ, t, φ11)
S11 ∼α νX21.(ℓ, t, φ21)

S21 and, similarly, νX12.(ℓ, t, φ12)
S12 ∼α

νX22.(ℓ, t, φ22)
S22 . By strong determinacy we get q1 = q2 and thus q̂1 = q̂2. ⊓⊔

The operation of a generalised automaton can be faithfully simulated by a corresponding

ordinary automaton. More precisely, we can show that from a given generalised automaton

A we can effectively construct a bisimilar ordinary one.

Let G1, G2 be labelled directed graphs with nodes selected from sets of configurations

Q̂1, Q̂2 respectively, and labels selected from the set {ǫ} ∪ (L × T × Sto). Moreover, let

each Gi have initial configuration q̂0i and final configurations Q̂iF . We say that a relation

R ⊆ Q̂1 × Q̂2 is a simulation if, for all q̂1Rq̂2:

– if q̂1 ∈ Q̂1F then q̂2 ∈ Q̂2F ,

– if q̂1
l
−→G1

q̂′1, some l ∈ {ǫ} ∪ (L× T× Sto), then q̂2
l
−→G2

q̂′2 for some q̂′1Rq̂′2.

We say that R is a bisimulation if both R and R−1 are simulations. Moreover, G1 and G2

are bisimilar, written G1 ∼ G2, if there is a bisimulation R such that q̂01Rq̂02.

In particular, we say that A and A′ are bisimilar, written A ∼ A′, if their configuration

graphs are bisimilar.

Lemma 34 Let A be a (nr, n1, n2)-automaton and set n′ = n1 + n2 − nr. We can ef-

fectively construct a (nr, n
′)-automaton A′ such that A ∼ A′. Moreover, if A is strongly

deterministic then so is A′.

The construction of A′ is presented in Appendix B. Combining Lemmata 31 and 34,

and using the fact that bisimilarity implies language equivalence, we obtain the following.

Lemma 35 Let Γ ⊢ C1,C2 : θ be GRef,-terms in canonical form. For each j = iΣ0
ρ0

∈
I+Γ⊢θ , there exists a deterministic (|ν(i)|,nj)-automaton A′

j with initial register assignment

ρ0 such that L(A′
j) = ∅ if and only if comp(JΓ ⊢ C1 : θK) ∩ P iΣ0

Γ⊢θ ⊆ comp(JΓ ⊢

C2 : θK) ∩ P iΣ0

Γ⊢θ .

Lemma 30 then follows as a corollary.

5.4 Emptiness for fresh pushdown register automata

Returning to Lemma 30, note that, although I+Γ⊢θ is an infinite set, there exists a finite subset

J ⊆ I+Γ⊢θ such that {Aj}j∈J already captures comp(JΓ ⊢ C : θK), because up to name-

permutation there are only finitely many initial moves. Consequently, we only need finitely

many of them to check whether Γ ⊢ C1
<
∼C2. By Lemma 30, to achieve this we need to be

able to decide the emptiness problem for (nr, n)-automata.
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To show decidability, we translate (nr, n)-automata into an extended variant of push-

down register automata [7] (PDRA) over infinite alphabets. They are similar to (nr, n)-
automata in that they are equipped with registers and a stack. However, there are a few

differences.

– PDRA can only process one name in a computational step, while (nr, n)-automata read

a label, a tag and a store in a single step. This can easily be overcome by decomposing

transitions of our automata into a bounded number of steps (the existence of the bound

follows from the fact that symbolic stores in our transition function are bounded).

– All registers in PDRA must be full, while (nr, n)-automata admit empty registers. This

difference can be compensated by populating registers with dummy names, while stor-

ing information about which register is deemed to be empty in the finite state.

– (nr, n) allow for rearrangments of registers in a single ǫ-step. Again this can be decom-

posed into a sequence of ǫ-transitions of an PDRA by using the stack.

– (nr, n) have the ability to create globally fresh names (guaranteed not to have been en-

countered in the whole computational run), while PDRA can only create locally fresh

names (through the so-called reassignment), which are guaranteed not to occur in the

present register assignment. This discrepancy cannot be dealt with easily and we pro-

vide a separate argument why the emptiness problems for the extension of PDRA with

(globally) fresh-name generation remains decidable.

We start off with a generalisation of pushdown register automata [7] to data words. That is

to say, in a non-epsilon step, the automaton reads a pair consisting of a tag (taken from a

finite set of tags) and a value, which comes from the infinite alphabet. The latter will often

be referred to as a name. Such pairs are also pushed on the stack. Decidability of emptiness

in absence of fresh-name generation was already shown in [7] in the tag-free case, but the

generalisation to tags is rather cosmetic, since they can be emulated with fixed names. Let

Σ be an infinite alphabet and T a finite set of tags with a distinguished bottom-of-stack tag

⊥.

Definition 36 An r-register pushdown automaton (PDRA)A over (Σ, T ) is a tuple 〈Q, qin , u, ρ, µ, F 〉,
where

– Q is a finite set of states;

– qin ∈ Q is the initial state;

– u : {1, · · · , r} → Σ is an injection, called the initial assignment;

– ρ : Q → {1, · · · , r} is a partial function called the reassignment;

– µ is the transition relation, which is a mapping from

Q× ((T × {1, · · · , r}) ∪ {ǫ})× (T × {1, · · · , r})

to finite subsets of Q× (T × {1, · · · , r})∗;

– F ⊆ Q is the set of final states.

A configuration is a triple (q,R, S) such that q ∈ Q, R : {1, · · · , r} → Σ is injective and

S ∈ (T ×Σ)∗. The last component represents the stack content (the leftmost symbol stands

for the top of the stack). A configuration is initial if q = qin , R = u and S = [(⊥, u(r))]. A

configuration is final if q ∈ F . A generalised run of A is a sequence C0
x1→ . . .

xk→ Ck such

that each Cj = (qi, Ri, Si) (0 ≤ j ≤ k) is a configuration, q0 = qin , S0 = [(⊥,R0(r))],
each xj ∈ {ǫ} ∪ (T × Σ) (1 ≤ j ≤ k), and each Cj (0 < j ≤ k) is obtained from Cj−1

and xj according to µ. Note that in generalised runs R0 is left unspecified. This will make

working with them slightly simpler, because they will be closed under bijective renamings.
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A run is simply a generalised run such that C0 is initial. In an accepting run we also have

qk ∈ F .

We shall say that two generalised runs are related if they are of the same length and

the corresponding steps rely on the same elements of µ. Consequently, related generalised

runs differ only in the names they involve (respective states and tags must be the same). We

will be interested in characterizing generalised runs that are related to each other. Below we

introduce several definitions that will make this possible.

Suppose R is a generalised run of length k. Let us assign timestamps from the set

{1, · · · , r + k} to all occurrences of names in R. They will indicate at which step the

names were introduced into the run. Note that this can happen only in two ways: via the

initial assignment in C0 or reassignment through ρ. In other cases timestamps will be inher-

ited from previous steps. Thus we can associate timestamps with occurrences of names in

generalised runs as follows:

– the occurrence of R0(i) in R0 is timestamped with i for each 1 ≤ i ≤ r, the occurrence

of R0(r) in S0 is timestamped with r;

– if a name is generated in step 1 ≤ j ≤ k through reassignment, its occurrence in Rj

gets timestamp r + j, otherwise occurrences of names in registers inherit timestamps

from preceding configurations;

– a name that was just pushed on the stack inherits the timestamp it had in the register

before being pushed, the timestamps of other names on the stack are inherited from

preceding configurations.

In what follows we shall refer to timestamps using notation such as tRj(i) or ttop(Sj). Let

us write T ⊆ {1, · · · , r + k} for the set of all timestamps used to mark occurrences of

names of R.

Remark 37 Note that, due to the stack discipline, whenever the same names are present

on the stack in a configuration of a run, the associated sequence of timestaps, from top

to bottom, must be non-increasing. Additionally, if the same name occurs in a register, its

timestamp will not be smaller than the timestamps of occurrences of the same name on the

stack.

We can replace all occurrences of names in R with their timestamps to obtain what we shall

call a symbolic run: Csym
0

xsym

1→ · · ·
xsym

k→ Csym

k . Recall that states and tags will remain the

same as in R. Observe the following fact.

Lemma 38 Two generalised runs are related if and only if the corresponding symbolic runs

are the same.

Next we characterize assignments α : T → Σ (of names to timestamps), which can be used

to convert a symbolic run generated from R into a generalised run related to R.

– First, the initial register assignment must be injective: α(i) 6= α(j) for 1 ≤ i < j ≤ r.

– The second set of constraints comes from reassignment steps, where it must be ensured

that the reassigned name is different from those currently present in registers: if ρ(qi)
(0 ≤ i < k) is defined then we require that α(tRi+1(ρ(qi))) 6= α(tRi(j)) for any

1 ≤ j ≤ r.

– The third set of constraints is induced by popping during transitions: the name on top

of the stack must match the content of a suitable register, as specified by µ: if the pas-

sage from qi to qi+1 (0 ≤ i < k) relies on an element of µ(qi, (t1, i1), (t2, i2)) or

µ(qi, ǫ, (t2, i2)) then α(ttop(Si)) = α(tRi+1(i2)).
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Altogether, above we have extracted from R a set of conditions characterizing runs related

to R, in terms of which names introduced into a run must be equal or unequal.

Lemma 39 Generalised runs related to R are in 1-1 correspondence with α : T → Σ
satisfying the above constraints.

Below we single out a special family of such maps. Intuitively, we shall focus on generalised

runs in which as many names as possible are used.

Let us define =R to be the smallest equivalence relation such that if ‘α(i) = α(j)’
belongs to the third set of constraints we have i =R j. α′ : T → Σ will be called distinctive

if, for all i, j ∈ T, we have α′(i) = α′(j) if and only if i =R j.

Remark 40 Note that every distinctive α′ satisfies the first two kinds of constraints and,

hence, gives rise to a generalised run. By definition distinctive maps α′ exist and are deter-

mined uniquely up to name-permutation. In particular, there exists a distinctive α′ that is

compatible with the initial register assignment in R.

The following property of distinctive maps will play a role in a future argument.

Lemma 41 Let α′ be distinctive, i ∈ T and ki = min {j | i =R j}. Then for all j < ki we

have α′(j) 6= α′(ki) = α′(i). In other words, α′(ki) is fresh.

Proof Take j < ki. By definition of ki, it is not the case that i =R j. Because α′ is

distinctive, we must have α′(j) 6= α′(ki). On the other hand, ki =R i, so by distinctiveness

α′(ki) = α′(i). ⊓⊔

Definition 42 A fresh PDRA (FPDRA) A over (Σ, T ) is defined in the same way as a

PDRA except that the (partial) reassignment function has the form ρ : Q → {1, · · · , r} ×
{L,G}. Whenever π2(ρ(q)) = L (locally fresh), A must generate a name that is currently

not present in registers. If π2(ρ(q)) = G (globally fresh) then the name must in addition

not have occurred before in the present run (in particular, it will not occur on the stack).

We shall show that the emptiness problem for FPDRA is decidable by referring to the anal-

ogous result for PDRA [7]. Let A = 〈Q, qin , u, ρ, µ, F 〉 be a FPDRA over (Σ, T ). Next

we are going to define an PDRA A′ = 〈Q′, qin
′

, u′, ρ′, µ′, F ′ 〉 such that there exists an

accepting run of A iff there exists one for A′.

A′ will mimic steps made by A except that it will not be able to generate globally fresh

names, so it will use locally fresh ones instead. In addition, A′ will maintain information

about such names by flagging registers and stack elements.

– A flagged register signifies the fact that in A the generated name would be different

from any name currently occurring on the stack.

– A flagged name on the stack means that in A all names underneath it would be different.

Register flags will be stored inside the extended state, flags for names on the stack will be

assigned by appending F to the associated tag. The way the flags are managed is described

below.

– Whenever a locally fresh name is generated instead of a globally fresh name, the corre-

sponding register will remain flagged as long as its content is not pushed on the stack.

– When a sequence of names is pushed on the stack, for each name that comes from a

flagged register, we flag the rightmost (deepest) of its occurrences in the sequence. The

registers in question become untagged.
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– A name can be popped only if it occurs in an unflagged register. If the name is flagged

on the stack, we then add a flag to the register. Note that we do not allow A′ to follow

A, if this would entail popping a symbol that occurs in a flagged register.

Next we present the construction formally. A′ will be an PDRA over (Σ, T ′), where:

T ′ = T ∪ (T × {F}) qin
′

= (qin , ∅) F ′ = F × 2{1,··· ,r}

Q′ = Q× 2{1,··· ,r} u′ = u ρ′ = ρ ◦ π1

To define µ′, we use t1, t2 to range over T and tf2 , c
f
1 , · · · , c

f
n for elements of T ′. Whenever

we use tf to refer to elements of T ′, by dropping the superscript and writing t we mean to

refer to the underlying tag from T .

((p, Y ), (cf1 , j1) · · · (c
f
n, jn)) ∈ µ′((q,X), (tf1 , i1), (t

f
2 , i2))

if (p, (c1, j1) · · · (cn, jn)) ∈ µ(q, (t1, i1), (t2, i2)) and i2 6∈ X , Y = X ′ \ {j1, · · · , jn}
where

X ′ = X ∪ {π1(ρ(q)) | π2(ρ(q)) = G} ∪ {i2 | tf2 ∈ T × {F}},

and, for all i = 1, · · · , n,

cfi =

{
(ci, F ) ji ∈ X ′, ∀i<l≤n jl 6= ji

ci otherwise.

Lemma 43 A has an accepting run if and only if A′ has one.

Proof Suppose there exists an accepting run of A. The same run is then accepting for A′.

This is because whenever a register is flagged in A′, it will indeed contain a name not

present on the stack, and if a name is flagged on the stack the name will not occur below.

Consequently, whenever a step of A depends on matching a name on top of the stack with a

register, the corresponding register in A′ will not be flagged. Thus, every step of A can be

simulated by A′.

Suppose we have an accepting run R of A′. As A′-transitions are transitions of A
enriched with some information, it suffices to show that the locally fresh names generated

instead of globally fresh names are globally fresh. This need not be the case for R, but will

show how to rename R so that another A′-run emerges, which does enjoy the property.

Let us consider a step of R in which a locally fresh name is used as a substitute for a

globally fresh one. Let t be the timestamp assigned to that name. We show that t′ =R t
implies t′ ≥ t. For a start, we note that the ‘α(i) = α(j)’ constraints generated before

time t concern i, j strictly smaller than t. We show that all the equational constraints that

affect [t]=R
later concern timestamps that are at least t. We analyze the history of the name

timestamped t during the run.

– Unless the name is pushed immediately on the stack, it will stay flagged in registers for

a number of steps. Thus no pops will rely on it. Hence no constraints using α(t) will be

generated.

– After the name is pushed on the stack, its deepest occurrence in the push sequence

will be flagged. The register will be unflagged but, as long as the flagged occurrence

remains on the stack, all equational constraints that rely on the same name will involve

timestamps greater than or equal to t (see Remark 37).
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– When the flagged occurrence with timestap t is eventually popped (if at all), there must

be a register containing the same name, but this occurrence will bear a timestamp t′ such

that t′ ≥ t and will become flagged. From then on the reasoning can be repeated for t′

and, since t′ ≥ t, we can conclude that future constraints affecting [t′]=R
= [t]=R

will

not involve timestamps smaller than t′.

So, for each timestamp t corresponding to a globally fresh name in A, we have [t]=R
⊆

[t,∞). Consequently, by Remark 40, in every related distinctive run, names with that times-

tamp will indeed be different from all names used by the automaton earlier, i.e. they will be

globally fresh. Moreover, there exists a distinctive run whose initial assignment is u. That

run is thus also a run of A (after erasing the flag information). ⊓⊔

The above result reduces the emptiness problem for FPDRA to the analogous problem for

PDRA. As the latter is decidable [7], we obtain the following.

Lemma 44 The emptiness problem for FPDRA is decidable.

Finally, summing up, we obtain the desired decidability result.

Theorem 45 Program approximation (and thus program equivalence) is decidable for GRef,-

terms.

Proof Let Γ ⊢ M1,M2 : θ be GRef,-terms. By Lemma 2, they can be converted into

canonical forms Γ ⊢ CM1
,CM2

: θ such that Γ ⊢ M1
<
∼ M2 if and only if Γ ⊢ CM1

<
∼ CM2

.

By Lemma 30 and our observations at the beginning of Subsection 5.4, the problem of de-

termining whether Γ ⊢ CM1
<
∼ CM2

holds can be reduced to the emptiness problem for

a finite number of FPDRA, all effectively constructible from CM1
,CM2

. Because FPDRA

emptiness is decidable by Lemma 44, program approximation is decidable for GRef,. ⊓⊔

6 Related and further work

In this paper we achieved a full characterisation of decidability of program equivalence

in GRef, a higher-order language with full ground storage. Moreover, for the decidable

fragment that we identified, we devised a decidability procedure which builds on automata-

based representations of terms.

The investigations into models and reasoning principles for storage have a long his-

tory. In this quest, storage of names was regarded by researchers as an indispensable in-

termediate step towards capturing realistic languages with dynamic-allocated storage, such

as ML or Java. Relational methods and environmental bisimulations for reasoning about

program equivalence in settings similar to ours were studied in [30,5,16,2,9,31], albeit

without decidability results. More foundational work included labelled transition system se-

mantics [15] and game semantics [19,25]. In both cases, it turned out that the addition of

name storage simplified reasoning, be it bisimulation-based or game-semantic. In the former

case, bisimulation was even unsound without full ground storage. In the latter case, the game

model of integer storage [23] turned out more intricate (complicated store abstractions) than

that for full ground or general storage [19,25].

As for decidability results, we studied finitary Reduced ML (integer storage only) in [24],

yet only judgements of the form · · · , β → β, · · · ⊢ β were tackled due to intricacies re-

lated to store abstractions (in absence of full ground storage, names cannot be remembered

by programs). A closely related language, called RML [1] (integer storage but with bad
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references) was studied in [20,14,8], but no full classification has emerged yet. Interest-

ingly, closed terms of first-order type become decidable in this setting [8], in contrast to

unit → unit → unit for GRef. Finally, the approach presented herein was pursued for In-

terface Middleweight Java [22] and implemented in the equivalence checker Conneqct [21].

We note that, in presence of higher-order references and boolean storage, even termination

is undecidable [27].

Apart from the semantics and programming languages community, program equiva-

lence has been extensively examined in the context of regression verification [12,4,18,6,

10]. There, the focus is put on sound methods for proving that newer versions of the same

code fragment do not introduce new behaviours, outside the code specification. In termi-

nology used in this paper, the property that is being verified is program approximation.

Regression verification is based on strong abstraction techniques which are sound for ap-

proximation, and is typically applied to ground languages and code (i.e. no higher-order

functions). In the future, we would like to expand the use of game models for checking

equivalence to larger language fragments, where equivalence in undecidable. In doing so,

we would abandon decidability and restrict ourselves to sound verification routines, using

similar abstraction techniques.
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A Canonical forms for GRef

In this section we prove Lemma 2:

Let Γ ⊢ M : θ be an GRef-term. There exists a GRef-term Γ ⊢ CM : θ in canonical form,

effectively constructible from M , such that Γ ⊢ M ∼= CM .

We prove two auxiliary results first, both of which are special cases of Lemma 2.

Lemma 46 Any identifier xθ satisfies Lemma 2. Moreover, when θ ≡ θ1 → θ2, the canonical form is of the

form λyθ1 .C.

Proof Induction with respect to type structure. If θ is a base type, we can take Cxunit to be () and Cxint to be

case(xint)[0, · · · ,max ]. xref γ is already in canonical form. For θ ≡ θ1 → θ2 we use the η-expansion rule

xθ1→θ2 ∼= λzθ1 .let yθ2 = xzθ1 in y

and appeal to the inductive hypothesis for zθ1 and yθ2 . This suffices for θ1 ≡ unit, ref , θ′1 → θ′2. For

θ1 ≡ int we additionally observe that

let y = x(case(z)[0, · · · ,max ]) in y
∼=

case(z)[let y = x 0 in y, · · · , let y = xmax in y].

⊓⊔

Lemma 47 Suppose C1,C2 are canonical forms. Then let yθ = C1 inC2, if typable, satisfies Lemma 2.

Proof Induction with respect to the structure of θ.
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– θ ≡ unit. Using the equivalences listed below, we reason by induction on the structure of C1, which

can take one of the following shapes: (), case(xint)[C0, · · · , Cmax ] or let · · · inC9. Note that free

identifiers of type unit never occur in canonical forms, hence the first equivalence.

let y = () inC2
∼= C2

let y = case(xint)[C0, · · · , Cmax ] inC2
∼= case(x)[let y = C0 inC2, · · · , let y = Cmax inC2]

let y = (let · · · inC) inC2
∼= let · · · in (let y = C inC2)

– θ ≡ int. We reason by induction on the structure of C1, which can take one of the following shapes:

i, case(xint)[C0, · · · , Cmax ] or let · · · inC. The last two cases are dealt with as before. For let y =
i inC2, note that, whenever identifiers yint occur freely in canonical forms, it is always as part of a sub-

term of the form case(yint)[C0, · · · ,Cmax ]. Given a canonical form C we write Cy,i for the canonical

term obtained from C by replacing each of its subterms of the form case(yint)[C0, · · · ,Cmax ] with Ci

(i.e. by removing y and branches corresponding to y 6= i). Then

let y = i inC2
∼= Cy,i

2 .

– θ ≡ ref γ. We reason by induction on the structure of C1, which can take one of the following shapes:

xref γ , case(x)[C0, · · · , Cmax ] or let · · · inC. The last two inductive cases are dealt with as before.

For let y = xref γ inC2 we observe that C2[x/y] is in canonical form and

let y = xref γ inC2
∼= C2[x/y].

– θ ≡ θ1 → θ2. As earlier, we reason by induction on the structure of C1, which can now take one of

the following shapes: λxθ
1.C, case(xint)[C0, · · · , Cmax ] or let · · · inC. We can deal with the last two

cases as before. The first one requires a separate argument, though.

Suppose C1 ≡ λxθ1
1 .C1. Let us substitute C1 for the rightmost occurrence of y in C2. This will create

a non-canonical subterm in C2 of the form let xθ2 = (λxθ1
1 .C1)C inC2 ≡ let xθ2 = (let xθ1

1 =

C inC1) inC2. By inductive hypothesis for θ1, let xθ1
1 = C inC1 can be converted to canonical form,

say, C3. Consequently, the non-canonical subterm letxθ2 = (λxθ1
1 .C1)C inC2 can be converted to

letxθ2 = C3 inC2, which — by inductive hypothesis for θ2 — can also be converted to canonical form.

Thus, we have shown how to recover canonical forms after substitution for the rightmost occurrence of y.

Because of the choice of the rightmost occurrence, the transformation does not involve terms containing

other occurrences of y, so it will also decrease their overall number in C2 by one. Consequently, by

repeated substitution for rightmost occurrences one can eventually arrive at a canonical form for let yθ =

(λxθ1
1 .C1) inC2. ⊓⊔

Now we are ready to prove Lemma 2.

Proof (Lemma 2) We proceed by induction on term structure.

– (), i are already in canonical form.

– For case(M)[N0, · · · , Nmax ] we simply appeal to Lemma 47 for

letxint = CM in case(x)[CN0
, · · · ,CNmax

].

– For !M we apply Lemma 47 to

let xref γ = CM in (let yγ =!x inCyγ ).

– For M :=N , depending on whether N ’s type is int or ref γ, we appeal to Lemma 47 for

let yint = CN in case(y)[(xref int :=0); (), · · · , (xref int :=max ); ()]

or

let yref γ = CN in ((xref ref γ := yref γ); ())

to obtain C and then invoke the same lemma for letx = CM inC.

9 Cases of the form (· · · );C are covered by the let · · · inC clause.
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– For ref(M), depending on whether M ’s type is int or ref γ, we invoke Lemma 47 for

let yint = CM in letx = ref(0) in case(y)[(x :=0); x, · · · , (x :=max ); x].

or

let yref γ = CM in letxref ref γ = ref(yref γ) inCx.

– For whileM doN , we note that whileM doN is equivalent to

let z = ref(0) in (z :=M ;while (!z) do (N ; z :=M)),

where z is fresh. We can find a canonical form for the latter term by appealing to the inductive hypothesis

and previous lemmas.

By the preceding case, we can obtain Cz :=M . Using Lemma 47 we find CN;z :=M . Note that while (!z) doCN;z :=M

is then a canonical form. Next we can invoke Lemma 47 again for Cz :=M and while (!z) doCN;z :=M

to obtain C. let z = ref(0) inC is then a suitable canonical form for whileM doN .

– For λxθ.M we can use λxθ .CM .

– Finally, we handle application MN . By inductive hypothesis we obtain CM which must take one of the

following shapes: λxθ.C, case(x)[C0, · · · , Cmax ] or let · · · inC. Using the equivalences below (and

Lemma 47) we can then reason by induction on the possible structure of CM .

(λxθ.C)N ∼= letx = CN inC
(case(x)[C0, · · · , Cmax ])N ∼= case(x)[C0N, · · · , CmaxN ]

(let · · · inC)N ∼= let · · · inCN

⊓⊔

B Reduction via spans

This section shows how to reduce generalised automata to ordinary ones. We shall achieve this via bisimula-

tion equivalence, using a notion of correspondence between different name environments called span.

Let A = 〈Q, q0, ρ0, δ, F 〉 be a (nr, n1, n2)-automaton and set n′ = n1 + n2 − nr. We proceed to

construct an (nr, n′)-automaton A′ such that A ∼ A′. The automaton will simulate A and in particular it

will encode the pair of register assignments of the latter into a single one. For this, it will use an auxiliary

environment component. Let N1 = [nr + 1, n1], N2 = [nr + 1, n2] and N ′ = [nr + 1, n′]. We call

(X1, R,X2) ∈ P(N1)× P(N1 ×N2 × {1, 2})× P(N2)

a span on N1, N2 if:

– (i, j, z), (i′, j′, z′) ∈ R implies that i = i′ ⇐⇒ j = j′, and i = i′ =⇒ z = z′,
– dom(R) = {i | ∃j, z. (i, j, z) ∈ R} ⊆ X1 and cod(R) = {j | ∃i, z. (i, j, z) ∈ R} ⊆ X2.

We write N1 ⇋ N2 for the set of spans on N1, N2. By abuse of notation, we write R for the whole of

(X1, R,X2), in which case we also use the notation xdom(R) = X1 and xcod(R) = X2. We also define

a map R : [1, n′] → [1, n′]:

R = {(i, i), (j+, i) | (i, j,1) ∈ R} ∪ {(i, i) | i ∈ (N1 \ dom(R)) ∪ [1, nr]}

∪ {(i, j+), (j+, j+) | (i, j, 2) ∈ R} ∪ {(j+, j+) | j ∈ N2 \ cod(R)}

The notation extends to other domains containing indices, e.g. for labels: R(Ri) = RR(i) and R(ℓ) = ℓ if ℓ

is not a register.

The role of a span is to allow us to simulate a pair of register assignments in a single one. (X1, R,X2)
represents a pair of assignments where the first one has domain X1 and the second one X2. Moreover, R
relates the common names: e.g. if (i, j, z) ∈ R then register i in the first assignment contains the same

name, say a, as register j in the second one. Finally, the index z specifies in which part of the simulating

assignment does a really occur. For example, the pair of register assignments (suppose nr = 0 for simplicity,

and n1 = n2 = 3),

ρ1 = {(2, b), (3, a)}, ρ2 = {(1, d), (2, a), (3, e)}
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can be represented by the single assignment

ρ = {(2, b), (3, a), (4, d), (6, e)}

with related span R = ({2, 3}, {(3, 2, 1)}, {1, 2, 3}). This is because ρ1 has domain {2, 3}, ρ2 has domain

{1, 2, 3}, and the only common name is a = ρ1(3) = ρ2(2), and is stored in the first half of ρ. The map

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 3), (6, 6)} then allows us to reconstruct ρ1, ρ2 by:

〈ρ1, ρ2〉 = {(2, b), (3, a), (4, d), (5, a), (6, e)} = ρ ◦R

In effect, R maps each index of the extended register 〈ρ1, ρ2〉 to its “real” position in ρ.

If ρ1, ρ2 are register assignments of size n1, n2 respectively and with common [1, nr]-part then we can

obtain the span which accommodates all common names to the left by:

ρ1 ↔ ρ2 = (dom(ρ1) ∩N1, {(i, j,1) | i ∈ N1, j ∈ N2, ρ1(i) = ρ2(j)}, dom(ρ2) ∩N2)

The single register assignment which simulates ρ1 and ρ2 via ρ1 ↔ ρ2 is then given by ρ = 〈ρ1, ρ2〉 ◦

{(i, i) | (ρ1 ↔ ρ2)(i) = i}.

If R : N1 ⇋ N2 and π1, π2 ∈ Mix then we define the update of R with respect to the two (componen-

twise) rearrangements π1 and π2:

R[π1, π2] = ({i | π1(i) ∈ xdom(R)}, R′, {j | π2(j) ∈ xcod(R)})

R′ = {(i, j, z) | (π1(i), π2(j), z) ∈ R}

Moreover, we extend the shift notation componentwise to other constructions, e.g. for symbolic stores: S+ =
{(i+, Rj+ ) | (i, Rj) ∈ S} ∪ {(i+, j) | (i, j) ∈ S}. Finally, if π, π′ ∈ Mix then we let π[π′] = π′ ∪

{(i, π(i)) | i /∈ dom(π′)}.

For A given as above, we define an (nr, n′)-automaton A′ = 〈Q′, q′0, ρ
′
0, δ

′, F ′〉 by:

Q′ = Q× (N1 ⇋ N2)× SSto

q′0 = (q0, R0, ∅) R0 = π1(ρ0) ↔ π2(ρ0)

ρ′0 = ρ0 ◦ {(i, i) | R0(i) = i} F ′ = {(q, R, S) ∈ Q′ | q ∈ F}

The crux of the construction is the definition of δ′. The automaton will simulate the generalised automaton

using one copy of each common name. R will be used as a record of common/private names between the two

register components of A, and as a specifier of which part of the registers do the common names appear in.

Moreover, the automaton will operate with a stack belonging to Sta′ = (CX

stack
× (N1 ⇋ N2)× Reg)∗ . In

order to simulate A’s matching conditions for stores, A′ will use, apart from R, a symbolic store S (which

will simulate to the store Σ appearing in configurations of A).

For each (q,R, S) ∈ Q′ we include in δ′ precisely the following transitions.

If q
π1,π2−−−−→ q′ then (q, R, S)

(π1∪π+
2
)[π]

−−−−−−−−→ (q′, R′, S′), where π = {(j+, i) | (i, π2(j), 1) ∈ R, i /∈

cod(π1)}∪{(i, j+) | (π1(i), j, 2) ∈ R, j /∈ cod(π2)}, R′ = R[π1, π2] and S′ = S ◦π.10 If q
π1,X−−−→ q′

then do the same, with π2 = id (the identity injection). Dually if q
X,π2−−−→ q′.

If q ∈ QP and q
νX1.(ℓ1,t1,φ1)

S1 ,νX2.(ℓ2,t2,φ2)
S2

−−−−−−−−−−−−−−−−−−−−−−−−−→ q′ then if t1 = t2 and for some R′ : N1 ⇋ N2:11

– R′ = (xdom(R) ⊎ X1, R ⊎ R′′, xcod(R) ⊎ X2) where dom(R′′) = X1, cod(R′′) = X2 and for

all (i, j, z) ∈ R′′ we have z = 1,

– R′(ℓ1) = R′(ℓ+2 ) and, for all (i, j, z) ∈ R′, R′(S1(i)) = R′(S2(j)+),
– for all i ∈ dom(S1) \ dom(R′), S1(i) = S(i),

10 Note here that rearrangements π1 and π2 kept intact except for the case when a name which is supposed

to be shared from the two parts of the current assignment is deleted in the part that actually contains it but is

retained in the other one. In such a case, the name is not deleted but copied to the other part of the assignment

(this is what π achieves).
11 Here we match all freshly created names and store them in the first component of the assignment. More-

over, we match labels and symbolic stores (on related indices) according to the new R′. For private indices we

stipulate that values remain unchanged (this corresponds to Σ[Σ2]∪Σ[Σ2] being consistent in the definition

of generalised automata).
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– for all j ∈ dom(S2) \ dom(R′), S2(j) = S(j),

then (q, R, S)
νX1.(ℓ,t1,φ)

S′

−−−−−−−−−−→ (q′, R′, S′), where:

– ℓ = R′(ℓ1) and S′ = R′(S1) ∪ R′(S+
2 ),

– if t1 ∈ Tnoop then φ = (), and if t1 ∈ Tpush and, say,φi = (si, πi) then φ = ((s1, s2, R′[π1, π2]), (π1∪

π+
2 )[π]) with π = {(i, j+) | (π1(i), j, 2) ∈ R′, j /∈ cod(π2)} ∪ {(j+, i) | (i, π2(j), 1) ∈ R′, i /∈

cod(π1)};

otherwise, if q ∈ QN then switch to divergence mode, i.e. (q,R, S)
id
−→ (div(q), R, S).

If q ∈ QP and q
νX1.(ℓ1,t1,φ1)

S1 ,X
−−−−−−−−−−−−−−→ q′ then (q,R, S)

νX1.(ℓ,t1,φ)
S′

−−−−−−−−−−→ (q′, S′, R′), where:

– ℓ = R′(ℓ1) and S′ = R′(S1),
– if t1 ∈ Tnoop then φ = (), and if t1 ∈ Tpush and, say,φ1 = (s1, π1) then φ = ((s1,X, R′[π1, ∅]), π1[π])

with π = {(i, j+) | (π1(i), j,2) ∈ R′}.

Dually if q
X,νX2.(ℓ2,t2,φ2)

S2

−−−−−−−−−−−−−−→ q′.

If q ∈ QO and q
νX1.(ℓ1,t,φ1)

S1 ,νX2.(ℓ2,t,φ2)
S2

−−−−−−−−−−−−−−−−−−−−−−−→ q′ then for all R′, Rp, R̂ : N1 ⇋ N2 and π ∈ Mix

such that:

– if t ∈ Tnoop then R̂ = R, and if t ∈ Tpop and, say, φi = (si, πi) then, assuming that the popped

symbol will be (s1, s2, Rp):
– R, π1, π2 and Rp should be consistent, that is:12

• for each (i, j, z) ∈ R, if π1(i), π2(j) are both defined or π1(i) ∈ dom(Rp) or π2(j) ∈
cod(Rp) then (π1(i), π2(j), z′) ∈ Rp, for some z′,

• for each (i, j, z) ∈ Rp if π−1
1 (i), π−1

2 (j) are both defined or π−1
1 (i) ∈ dom(R) or

π−1
2 (j) ∈ cod(R) then (π−1

1 (i), π−1
2 (j), z′) ∈ R, for some z′;

– the new pop injection π is of the form π = πA1 ∪ πA2 ∪ πB1 ∪ πB2 where:13

• πA1 = {(R(i), Rp(π1(i))) | i ∈ dom(π1)},

• πA2 = {(R(j+), Rp(π2(j)+)) | j ∈ dom(π2)},

• πB1 ⊆ (xdom(R) \ dom(R)) × (xcod(Rp) \ cod(Rp))+ ,

• πB2 ⊆ (xcod(R) \ cod(R))+ × (xdom(Rp) \ dom(Rp));

– the span R̂ obtained after popping is then computed by xdom(R̂) = xdom(R) ∪ (xdom(Rp) \

cod(π)), xcod(R̂) = xcod(R)∪ (xcod(Rp) \ {j | j+ ∈ cod(π)}) and R̂ = R∪RA1 ∪RA2 ∪
RA3 ∪RB where:

• RA1 = {(i, j, z) ∈ Rp | i /∈ cod(π1), j /∈ cod(π2)},

• RA2 = {(π−1
1 (i), j, 1) | (i, j, z) ∈ Rp, i ∈ cod(π1), j /∈ cod(π2)},

• RA3 = {(i, π−1
2 (j), 2) | (i, j, z) ∈ Rp, i /∈ cod(π1), j ∈ cod(π2)},

• RB = {(i, j, 1) | (i, j+) ∈ πB1} ∪ {(i, j, 2) | (j+, i) ∈ πB2};

– the span R′ obtained after the transition satisfies the conditions:

– xdom(R′) = xdom(R̂) ⊎X1 and xcod(R′) = xcod(R̂) ⊎X2,

– R̂ ⊆ R′ and R′ \ R̂ = RC ∪ RC1 ∪ RC2 where:14

• RC ⊆ X1 ×X2 × {1},

• RC1 ⊆ (xdom(R̂) \ dom(R̂))×X2 × {1},

• RC2 ⊆ X1 × (xcod(R̂) \ cod(R̂)) × {2},

– R′(ℓ1) = R′(ℓ2) and, for all (i, j, z) ∈ R′, if S1(i), S2(j) are both defined then R′(S1(i)) =

R′(S2(j)+);

12 i.e. if two registers in the stack are related (by Rp) and each is related to a register in the machine

registers (by π1, π2) then the latter must also be related (by R); and viceversa. This condition ensures that

we can correctly compute the span Rp pertaining to the register assignment after popping.
13 Here we take into account the fact that, when popping, new matchings may occur between private regis-

ters in the ith component of private machine registers and the īth component of the stack registers (cf. πB1

and πB2).
14 Since X1 and X2 are filled with componentwise locally fresh names, we allow for new matchings

between private registers in the ith component and indices in Xī (cf. RC1 and RC2). Intuitively, when the

ith component creates a locally fresh name, it may very well be that the created name is in fact one of the

private names of the īth component.
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include (q, R, S)
νX.(ℓ,t,φ)S

′

−−−−−−−−−→ (q′, R′, S′), where:

– X = (X1 \ dom(RC2)) ∪ (X2 \ (cod(RC) ∪ cod(RC1)))
+ ,

– ℓ = R′(ℓ1) and S′ = R′(S1) ∪ R′(S+
2 ),

– if t ∈ Tnoop then φ = (), and if t ∈ Tpop then φ = ((s1, s2, Rp), π).

If q ∈ QO and q
νX1.(ℓ1,t,φ1)

S1 ,X
−−−−−−−−−−−−−→ q′ then for all s2 and all R′, Rp, R̂ : N1 ⇋ N2 and π ∈ Mix such

that:15

– if t ∈ Tnoop then R̂ = R, and if t ∈ Tpop and, say, φ1 = (s1, π1) then, assuming that the popped

symbol will be (s1, s2, Rp):
– R, π1, π2 and Rp should be consistent, that is, there is no (i, j, z) ∈ R such that π1(i) ∈

dom(Rp);
– the new pop injection π is of the form π = πA1 ∪ πB1 ∪ πB2 where:

• πA1 = {(R(i), Rp(π1(i))) | i ∈ dom(π1)},

• πB1 ⊆ (xdom(R) \ dom(R)) × (xcod(Rp) \ cod(Rp))+ ,

• πB2 ⊆ (xcod(R) \ cod(R))+ × (xdom(Rp) \ dom(Rp));

– the span R̂ obtained after popping is given by xdom(R̂) = xdom(R) ∪ (xdom(Rp) \ cod(π)),

xcod(R̂) = xcod(R) ∪ (xcod(Rp) \ {j | j+ ∈ cod(π)}) and R̂ = R ∪ RA1 ∪ RA2 ∪ RB

where:

• RA1 = {(i, j, z) ∈ Rp | i /∈ cod(π1)},

• RA2 = {(π−1
1 (i), j, 1) | (i, j, z) ∈ Rp, i ∈ cod(π1)},

• RB = {(i, j, 1) | (i, j+) ∈ πB1} ∪ {(i, j, 2) | (j+, i) ∈ πB2};
– the span R′ obtained after the transition satisfies the conditions:16

– xdom(R′) = xdom(R̂) ⊎X1 and xcod(R′) = xcod(R̂),

– R̂ ⊆ R′ and R′ \ R̂ ⊆ X1 × (xcod(R̂) \ cod(R̂)) × {2};

include (q, R, S)
νX.(ℓ,t,φ)S

′

−−−−−−−−−→ (q′, R′, S′), where:

– X = X1 \ dom(R′ \ R̂), ℓ = R′(ℓ1) and S′ = S[R′(S1)],
– if t ∈ Tnoop then φ = (), and if t ∈ Tpop then φ = ((s1, s2, Rp), π).

Dually if q
X,νX2.(ℓ2,t,φ2)

S2

−−−−−−−−−−−−−→ q′.
Let us remark that reachable nodes ((q, R, S), ρ, σ,H) in the configuration graph of A′, apart from the

initial one, satisfy dom(S) = dom(ρ) = R(xdom(R) ∪ xcod(R)) while all elements (s1, s2, R, ρ) of σ

also satisfy dom(ρ) = R(xdom(R) ∪ xcod(R)). We arrive at the following.

Lemma 48 For A and A′ as above, A ∼ A′.

Proof Consider the relation R between configurations of A and A′ defined by:

R = {((q, ρ, σ, H,Σ), ((q, R, S), ρ′, σ′,H)) | ρ = ρ′ ◦R, Σ =′ Sto(ρ′, S), σ = ev(σ′),

(q, ρ, σ,H,Σ), ((q, R, S), ρ′, σ′, H) reachable}

where ev is given by ev(ǫ) = ǫ and ev((s1, s2, R, ρ) :: σ) = (s1, s2, ρ ◦ R) :: ev(σ), and by Σ =′

Sto(ρ′, S) we mean Σ = S = ∅ or Σ = Sto(ρ′, S). By case analysis we can show that R is a bisimulation.

Moreover, ((q0, ρ0, ǫ, ∅, ∅), ((q0, R0, ∅), ρ′0, ǫ, ∅)) ∈ R, and therefore A ∼ A′. ⊓⊔

In moving from A to A′, each transition of the former may yield several transitions of the latter, in

the case of O- to P-transitions. From these transitions, though, those that have the same label (up to ∼α)

are allowed to range solely because of the choice of the final R′. In case A is strongly deterministic, these

choices are unique up to ∼α: we make a canonical choice to allocate all common fresh names on the first

component of the assignment, while frugality ensures that all fresh names are reachable from those already

available, which are uniquely specified from the given R and R̂. Thus, if A is strongly deterministic then so

is A′.

15 Note here that, although the pop happens in the first component, it may be the case that the stack top

contains a non-X symbol in its second component (e.g. in the product construction this can happen because

the automaton is allowed to move to divergence mode while the stack is non-empty), in which case we need

to range over all possible such symbols.
16 As in the previous case, new matchings may occur in this step because of a locally fresh name created

in an index from X1 being matched with a private name of the second component of the current assignment.

Similar matchings may also occur above when popping.
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