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Abstract

Free group outer automorphisms were shown by Bestvina and Randell to have

fixed subgroups whose rank is bounded in terms of the rank of the underlying group.

We consider the case where this upper bound is achieved and obtain combinator-

ial results about such outer automorphisms thus extending the work of Collins and

Turner. We go on to show that such automorphisms can be represented by certain

graph of group isomorphisms called Dehn Twists and also solve the conjuagacy prob-

lem in a restricted case, thus reproducing the work of Cohen and Lustig, but with

different methods.

We rely heavily on the relative train tracks of Bestvina and Randell and in fact go

on to use an analogue of these for free product automorphisms developed by Collins

and Turner. We prove an index theorem for such automorphisms which counts not

only the group elements which are fixed but also the points which are fixed at infinity

- the infinite reduced words.

Two applications of this theorem are considered, first to irreducible free group

automorphisms and then to the action of an automorphism on the boundary of a

hyperbolic group. We reduce the problem of counting the number of points fixed on

the. boundary to the case where the hyperbolic group is indecomposable and provide

an easy application to virtually free groups.
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Introduction

The theory of R-trees has been particularly rich especially in the context of free group

automorphisms. In [CV86] the outer automorphism group of the free group of rank

n, OutFn, was shown to act on a finite dimensional contractible space. The closure of

this space also turns out to be contractible (in [Sko]), compact (by [CM87]) and finite

dimensional consisting of the space of very small actions (shown in [BF]) which were

studied in [CL95]. What may be striking then is that R-trees do not appear in what

follows. Our main tool is the machinery of relative train tracks developed in [BH92]

and extended in [CT94] to the case of free product automorphisms. However, R-trees

have influenced some of this work, for instance we have a generalisation of the main

theorem in [GJLL] which is based solidly in the theory of R-trees using the analysis of

[Lev95]. The advantage of using relative train tracks is that it is quite straightforward

to generalise proofs to the case offree products while R-tree methods do not have (as

yet) free product counterparts. The disadvantage is that with arbitary free products,

one usually cannot exploit any of the rich geometry available for free groups, except

by analogy and the proofs are thus less intuitive.

After introducing relative train tracks we consider in chapter 2 free group outer

automorphisms whose fixed subgroups are in a certain sense maximal. We find good

bases for these as well as assigning posets to them which describe how to build up

maximal rank outer automorphisms from those of smaller rank.

In chapter 3, we use the ideas of the previous chapter to prove by induction that
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maximal rank outer automorphisms are in fact represented by dehn twist autornorph-

isms. This is the converse of a result of [CL]. In that paper it was also shown that

dehn twist automorphisms have a solvable conjugacy problem. This solution of the

conjugacy problem applies to the maximal rank automorphisms (not outer) studied

in [CT96J. In chapter 4 we provide an alternative solution which is combinatorial in

nature and which we hope will generalise to free products.

We then move on to consider fixed points at infinity of automorphisms of free

products. In chapter 5 we prove a close generalisation of the index theorem proved

in [GJLLJ. The main difficulty here is that the factor groups of the free product are

not assumed to be geometric - that is they do not neccessarily satisfy a hypothesis

such as hyperbolicity or automaticity. Thus a classification of infinite fixed words

(Proposition 5.1.14) is cumbersome and ad hoc.

In chapter 6 we use the method of proof of the index theorem, which is significantly

different to that in [GJLL], to describe irreducible automorphisms of free groups of

maximal index and to apply a solution of the conjugacy problem given in [Los96].

Finally, in chapter 7, we consider free products which are hyperbolic and we

consider the action of automorphisms on the boundary of such. We show that the

free product points at infinity are contained in the boundary, and we manage to

reduce the problem of studying the action of an automorphism on the boundary to

that,o.£ the factor groups. As an easy application we therefore get an index theorem
~I:1"'-&1"",

for/virtually free groups, when considered as hyperbolic groups.
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Chapter 1

Preliminaries

1.1 Relative Train Track Maps

Here we wish to present an outline of the theory of relative train track maps for free

products. The results here were proven in [CT94], which in turn was a generalisation

of the exposition in [BH92] of relative train track maps for free groups. As the free

product case includes the free group situation we explain only the former theory so

as to avoid repetition. Thus we will often give two references for facts pertaining to

relative train track maps (in fact from the two sources above) as the proofs in the

free product case are not dissimilar to the free group case. We note that if a graph

of complexes X, defined below, is actually a graph (so that we are dealing with a

free group) then we write it X. The definitions for rank in the free product case also
..
restrict to the usual definition of rank for free groups, so Theorem 1.1.2 actually has

the Bestvina-Handel theorem as a special case.

We first give a notion of rank in the free product case (this is precisely the

definition given in [CT94]). Let G = *~1Gi be a free product where all the factors

are freely indecomposable. Then if His a,subgroup of G we can write H = F, *;=1Hi,
CO()JIA~~\ oj?

where the H, are interserctions of H with}he factor groups of G and Fs is a free group
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of rank s which meets no such conjugate. (We note that it can be shown that the
CO"i\.l~()..1e')o~

intersections of H withjthe factor groups in the above decomposition can be indexed

by double coset representatives. Also, either of s or t could be 00, but since we are

primarily concerned with finite ranks we do not distinguish infinite cardinals.) See

[Kur34] for a proof or [Coh89] for a proof using Bass Serre theory.

Definition 1.1.1 If G is a group and G = *~1 Gi, where each Gi is freely indecom-

posable, then m is the Kuros rank of G ~ denoted K-rank( G). If H is a subgroup of

G, so that H = F, *]=1Hi as above, then s + t is the Kuros rank of H in G ~ denoted

K-rank(G, H).

As in [CT94] we note that this number is well defined and invariant up to auto-

morphism by [BL36]. The generalisation of the Scott Conjecture or Bestvina-Handel

Theorem is then

Theorem 1.1.2 (3.11 [CT94]) If cjJ: G -+ G is an automorphism, then

K-rank(G, FixcjJ) ~ K-rank(G)

Definition 1.1.3 Graphs of Complexes: A graph of complexes X is the union of

a graph X with a family {Cj} of 2-complexes called the factor complexes, where

Cj is the multiplication complex of a freely indecomposable group Gj which is not

isomorphic to an infinite cyclic group. Additionally we have an edge Eej joining the

factor C, to the graph X which is called the stem of Cj. We depart slightly from the

terminology of [CT94] and term the edges of X along with the stems the real edges of

X. It is clear that the fundamental group 7f1(X) is the free product of the free group

7f1(X) with the groups Gj.

Definition 1.1.4 Topological maps: A map

f: X -+ X'
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between garphs of complexes is said to be topological if it is a continuous map satisfying

the following conditions.

(1) f carries vertices to vertices.

(2) The restriction to each factor complex C, IS a homeomorphism onto a factor

complex Cj sending edges to edges.

(3) Stems are carried to stems.

(4) Every edge of X can be subdivided as [zo, Zl,··· zrl such that fl[Zi,Zi+d maps

[Zi' Zi+l] to either an edge of X or to a path ECieE~i' where e is an edge in Cj.

Furthermore, no two successive subintervals are mapped to inverse real edges or to

paths meeting the same factor complex.

Topological maps are locally injective on real edges, but it can be shown that any

continuous map between graphs of complexes is homotopic to a unique topological

map, and the process of moving to a topological map is called tightening. In the

special case where every positive iterate of our map is locally injective the map is

called a train-track map. We shall discuss these for a free group below.

If f : X -+ X is a topological homotopy equivalence and /1 is a path in X from f (v)

to v then the path induced automorphism 7r 1 (f, /1) : 7r 1 (X, v) --+ 7r 1 (X, v) is defined as:

We shall in general omit the square brackets around paths (used to denote the ho-

motopy equivalence class) and also use the notation Cl; to denote the inverse of the

path a. We shall also use this 'bar' notation for elements of the free product. We

note that if the path /1 above is the trivial path then we call 7rl (f, /1) a point induced

automorphism and write it 7rl (f, v).

Definition 1.1.5 If ¢ E AutG, then a representative of ¢ is a topological self ho-

motopy equivalence of a graph of complexes X, a path /1 in X and an isomorphism
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T : G ~ 7r1(X, v) so that the following diagram commutes:

G~7rl(X,V)

1cp 17Tj(J,/L)

G~7rl(X,V)

The basic tool for studying automorphisms of G is by topological representatives,

so one needs to ensure that some exist.

Proposition 1.1.6 ([CT94] 1.6) Every automorphism of G has topological repres-

entatives.

It is important to note that varying the path j.t corresponds to varying an auto-

morphism through its outer automorphism class. Thus results using topological rep-

resentatives are often more naturally stated in terms of outer automorphisms.

It is further shown in [CT94] that every automorphism of G has an efficient

representative. We shall outline the properties of such a representative, f : X ~ X,

below. Firstly one may define the reduced Kuros rank of a graph of complexes Z

which is not neccessarily connected. The reduced Kuros rank of Z, K-rank(Z), with

components Zl, ... ,Zk is defined to be:

Defiriition 1.1.7
k r t--{Q.)( ( 0 I

K-rank(Z) = 1 + L((K-rank(7r1 (Zi)) - 1~
i=l

(If we have a graph X with no factor complexes this quantity is called reduced rank

and is written rkX.)

It is then shown that there is an .i-invariant stratification Xo C Xl C ... Xm

of subgraphs of complexes of X, where Xo consists of the factor complexes and the

stems. The rth stratum, Hr, is the closure of Xr - Xr-l.

Given this stratification one may define the following:
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Definition 1.1.8 A path, a, is called r-legal if on reduction of J(a), no edge of Hr

is cancelled.

w-"Jk,If>i~ ... &rPlij1lrL vt~
If a, (3 C Xr are two r-legal paths, then the ordered pair (a, (3) is called a turn.

The turn is called r-legal if the path a!3 is reduced as written and r-legal. It is called

illegal otherwise.

There is an associated stratified graph of complexes L:o ~ L:l ~ ... L:m = L: and

a map p : L: --+ X inducing maps p : L:m --+ Xm· L:o is composed of factor complexes.

The images of vertices of L: are vertices of X fixed by J. The notation, L:~, is used to

denote the component of L:r containing the vertex v.

If L:r - L:r-1 is non-empty then it has a single edge Er (and possibly a factor

complex in case L(iii) below) such that p( Er) is an Indivisible Nielsen path (INP),

which is a path in X which is fixed by J and cannot be decomposed as a reduced

concatenation of fixed paths.

We may form the transition matrix, M, of J in X where after numbering the real
1ft'\D.j4.,t du..

edges of X we set the (i,j) entry of M to be the number of times thelith edge crosses

the lh. Each stratum determines a submatrix of M which is irreducible and we label

the Perron-Frobenius eigenvalue of the HT) Ar. (For a fuller discussion see [CT94],

[BH92].) The stratum is called Hr growing, level or descending as Ar is greater than

one, equal to one or zero respectively. All efficient representatives have the relative

train track properties. Namely,

Definition 1.1.9 (Relative Train Track Properties)

(1) The image of each edge of the rth stratum under J begins and ends with edges

from the rth stratum.

(2) If a ~ Xr-1 has endpoints in Hr, then [J(a)] i= 1.

(3) The J-image of an r-legal path is r-legal.

If Ar is greater than one a length is assigned to each edge in Hr a length; this
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will define an r-length on paths in X (only non-zero for paths meeting Hr). Then on

applying the map f to an r-legal path, a C Xn the r-length of a will be multiplied

by a factor Ar. If Ar = 1 then it turns out that the associated transition matrix

is a permutation matrix. In particular Hr consists of m edges, {El, ... Em}, and

f(Ei) = aiEa(i)bi, where ai, bi are paths in Xr-1 and a is a permutation of {I, ... ,m}.

Fixed paths for efficient maps have several good properties, some of which may

be deduced from the stratification and associated graph of complexes ~, but which

are actually used to prove the existence of ~ in [CT94][Proposition 3.11] and hence

1.1.2.

Proposition 1.1.10 ([CT94],2.11,3.5,3.6) INP's of height r are classified as [ol-

lows:

(aJ Hr is growing and there is a unique INP, Pr, of height r. Furthermore, Pr = ariJr,

where an {3r are r-legal paths starting and ending with edges in Hr.

(b) Hr is level and is composed of a single edge E, and

L(i}: Pr±l = Ea for some a ~ Xr-l, or

L(ii}: Pr±l = E{3E for some (3 ~ Xr-1 but not of Type L(iiiJ, or

Liiii}: Pr±l = E,x1E for some, ~ Xr-l and x an edge of a factor complex.

Additionally the important properties of reduced Kuros rank are:

1.1.11

(1) K-rank(~o) < K-rank(Xo)

(2) K-rank(~r_l) < K-rank(~r) < K-rank(1) + 1

(3) K-rank(~r-d < K-rank(~r) =} K-rank(Xr_d < K-rank(Xr)

(4) K-rank(Xr_d < K-rank(Xr).

Furthermore, 7fl(~, v) ~ Fix( 7fl(J, v)).

Thus an efficient map along with the associated graph of complexes encodes all
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the information on the fixed subgroups of the point induced automorphisms. Thus,to

study automorphisms in this way, one need only show that:

Proposition 1.1.12 ([CT94],proposition 3.3) If ¢> E AutG is represented by a

topological map f then K-rank{ G; Fix¢» ~ 2 implies that ¢> is conjugate to a point

induced automorphism by f.

1.2 Stable Train Track Maps

To conclude our preliminary discussion we focus our attention on free groups and

in particular on irreducible automorphisms. An outer automorphism <I> E OutFn, is

called irreducible if every topological representative with no valence one vertices and

no invariant forests (defined below) has an irreducible transition matrix.

A more algebraic characterisation is given in [BH92, lemma 1.3,1.16]:

Lemma 1.2.1 If there are free factors Fni' 1::;i ::;k, nl < ti, such that Fnl * Fn2 *
... * Fnk is a free factor of Fn and <I> cyclically permutes the F~i s, then <I> is reducible.

Conversely if <I> is reducible then there exist free factors of Fn permuted by <I> as above.

Let f :G -+ G be a topological self homotopy equivalence of a graph. A forest in

G is a contractible subgraph; it is not required to be connected. A subgraph Go C G

is called invariant if f (Go) ~ Go. Also note that an invariant forest is called pretrivial

if some positive iterate of f applied to each edge of the forest is a vertex. One may

collapse invariant and pretrivial forests by simply using the homotopy equivalence that

maps each component to a point. The map induced by f will again be a topological

representative.

As with relative train tracks, given a topological representative, f :G -+ G, of an

irreducible automorphism one can find the Perron Frobenius eigenvalue of the matrix

A and assign to each edge of G a length corresponding to the eigenvector associated
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to A. If A is greater than one, G then becomes a metric graph ( paths have lengths

). (Note that if A is one then J is a finite order homeomorphism.) The length of the

J-image of an edge e, is A multiplied by the length of e (see [BH92]). When discussing

lengths in the graph G we will always use the length given here. Also note that when

applying this procedure one requires that J has no invariant forests.

So far we have concentrated on describing the properties of relative train tracks

without reference to the proofs. However for irreducible automorphisms we will need

to make use of the 4 basic operations defined in [BH92, pp. 11-16]. Throughout this

J : G -+ G is a homotopy self equivalence of the graph G, which is a topological

representative of <P.

Suppose that w EGis not a vertex of G but that J(w) is, then the process of

changing the graph structure of G to make w into a vertex is called subdivision. This

is the first basic operation.

If G has a valence one vertex then there is a homotopy equivalence that collapses

the edge incident to the valence one vertex to a point. Then J induces a topological

representative .on the new graph after tightening and collapsing maximal invariant

and pretrivial forests. This operation is called a valence one homotopy.

Suppose that G has a valence two vertex, v, at the end of the edge el and at the

start of e2, and that el is at least as long as e2 (with respect to the lengths defined

above). Perform the homotopy that stretches el across el e2 and remove the vertex

that was v. Hence we end up with a graph, G', with one less edge and one less vertex.

Call the new edge of the graph e. J induces a map on G' as follows. Any edge of G'

other than e can be regarded as an edge of G so has a 'natural' J-image - we need

only replace every occurence of el with e and delete every occurence of e2. Finally

we tighten the induced map and collapse any pretrivial and invariant forests. This

operation is called a valence two homotopy.
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Now we come to the fourth operation. Suppose that two edges el and e2 start at

the same vertex with nontrivial maximal initial segments e/ respectively such that

f(el') = f(e2') and these paths end in vertices of G. We then subdivide at the

endpoints of e/, identify e.' with e2' and then collapse any pretrivial and invariant

forests. This last operation is called folding. It is called a full fold if either of e/ is

the whole edge and a partial fold otherwise.

A train track map is a relative train track, but with only one (trivial) invariant

subgraph. Thus the concept of being legal applies to the whole graph and every

edge in the graph is legal. (That is, every positive iterate of the train track map is

locally injective on the interior of edges). It is shown in [BH92, Theorem 1.7] that

any topological representative may be turned into a train track map by use of the

four basic operations. Additionally, applying the basic operations to a train track

map yields another train track map. (This fact also pertains to stable train track

maps defined below.)

Just as in the relative train track case any indivisible Nielsen path, p, can be

written afj (reduced), where a and f3 are legal paths and the turn between a and f3

is illegal. The folding of this turn is termed folding the indivisible Nielsen path p.

Given a train track map, L, the set W(f) consists of those train track maps that may

be obtained by repeatedly folding indivisible Nielsen paths. Actually we do not wish

to distinguish maps and graphs that are combinatoriallyequivalent. Two topological

maps, iI,h of graphs GI, G2 respectively, are said to be projectively equivalent if,

after rescaling the matric, there is an isometry h : Gl -t G2 taking edges to edges

and vertices to vertices such that the following diagram commutes:

Gl~G2

1h 112
GI~G2.

Then W(f) is actually the set of projective equivalence classes of the train tracks
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obtained from f by the repeated folding of INP's.

One may then define stable train track maps although the fact of their existence

is not obvious. In fact it turns out that a train track map which has the minimal

number of INP's amongst all train tracks representing the same outer automorphism

is stable. This, however, is not taken as the definition.

Definition 1.2.2 A train track map, f : G ~ G, is called stable if no partial folds

occur in the construction of W(J).

It is then shown that stable train track maps are very well behaved.

Proposition 1.2.3 If f : G ~ G is a stable train track map then f has at most one

Nielsen path and furthermore that the existence of a Nielsen path implies that there

is exactly one illegal turn in X. (Neccessarily the illegal turn occuring in the Nielsen

path).

In fact the properties of relative train track maps given in the previous section are

those of stable relative train track maps although we will not define this. Whenever

dealing with irreducible outer automorphisms, stable train track maps turn out to be

much more convenient to deal with than the ordinary kind. We make extensive use

of them in biter chapters.
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Chapter 2

Maximal Rank Outer

Automorphisms

2.1 Bases and Trees

In this section we wish to describe certain types of automorphism in a manageable

combinatorial way starting from some algebraic information on fixed subgroups.

Our starting point is to define an equivalence relation on the set of automorphisms

of the free group of rank n. In fact this equivalence relation is very natural when

considering fixed subgroups and arises in [CM89] and [BH92].

Definition 2.1.1 Two automorphisms ep and 'ljJ of Fn are said to be similar if there

is 3, commuting diagram

D __2__.. D
.L' n -----, .L' n

F ~ Fn -----, n

where 'Y is an inner automorphism. We term the equivalence classes under this

equivalence relation, similarity classes, denoting by [ep] the similarity class containing

ep.
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Note that similar automorphisms are not only conjugate in AutFn but also give

rise to the same outer automorphism. We adopt the notation rk4>, to stand for the

rank of the fixed subgroup of 4>,where the rank of a subgroup is the minimal number

of generators. (Strictly speaking the rank of a subgroup H of Fn could be infinite in

which case we would write rank H = 00.) Also if G is a connected graph we use the

notation rkG to denote rank7r1(G). As in the previous section, if G is not connected

we use the quantity,

rkG = 1+ :L)rkGi - 1)

where the sum ranges over the non contractible components of G.

We now state the main theorem of [BH92]

Theorem 2.1.2 (The Scott Conjecture or Bestvina Randell Theorem)

Let 4>1,4>2,... , 4>k be automorphisms of Fn all belonging to the same outer auto-

morphism class but to distinct similarity classes. Then,

k

L max(O, rk4>i- 1) ~ n - 1

Bearing in mind the above theorem and the fact that all the automorphisms in

a similarity class are conjugate and hence have isomorphic fixed subgroups, we make

the following definition:

Definition 2.1.3 Let [4>]be a similarity class. We then call [4>]significant if rk4>~ 2.

By 2.1.2 any outer automorphism possesses only finitely many significant simil-

arity classes and hence the following definition makes sense:

Definition 2.1.4 Let <I?be an outer automorphism of Fn, then we define

rk<I?= 1+ ~ (rk4>i- 1)

where the sum ranges over representatives of the significant similarity classes of <I?
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Theorem 2.1.2 can then be reformulated thus:

Theorem 2.1.5 Let <I>be an outer automorphism of Fn then,

rk<I>< n

We wish to consider the case where rk<I>= n and to this end we use the train track

methods of [BH92] in the same way that the case rk4>= n was considered for a single

automorphism in [CT96]. Thus we start with an outer automorphism of maximal

rank ( rk<I>= n ) and we represent this by a relative train track f on a stratified

graph X. Then by [BH92] if <I>has k significant similarity classes [4>Il,... , [4>k], then

there are vertices Vl, ... , Vk of X which are fixed by f and isomorphisms Ti, such that

the following diagrams commute:

7f1 (X, Vi) ~ r;

17r1(f,Vi) l-
7f1 (X, Vi) ~ r;

The following proposition is precisely that of [CT96, proposition 3]

(2.1)

Proposition 2.1.6 Let Hr be a growing stratum of X, then rkXr ?: rkXr_1 + 2.

This, taken with the fact from [BH92] that every stratum contains at most one

indivisible Nielsen path shows, in the same way as [CT96], that a relative train track

map representing a maximal rank outer automorphism cannot possess any growing

strata.

Now from [BH92] every indivisible Nielsen path is of the form (using the termin-

ology of [CT94])

Ea, a ~ Xr-1 Type L(i),

E(3E, (3 ~ Xr-1 Type L(ii)

19

I, '



where Hr = {E} and f(E) = ET for some T ~ Xr-1.

However in [CT96] it is shown that we may find a relative train track f for <I> in

which every Type L(i) stratum has a the trivial path and E a loop. From now on we

only consider such representatives. Hence in relative train track maps for <I> which we

consider, all indivisible Nielsen paths will be closed.

Now if for some vertex V which is fixed by t, we have that rk1T"1(I, v) ~ 2 then

there must be a Nielsen path joining V to some Vi (one of the vertices from 2.1).

This follows by the properties of reduced rank. By definition of the vertices Vi, the

only components of 2: with rank at least 2 are in fact the components containing the

vertices vi, ~Vi. As every edge of ~ maps to an indivisible Nielsen path in X, this

demonstrates our claim. Note that since all our Nielsen paths are closed then such

a v must equal vi,for some i. Thus the only point induced automorphisms which are

significant occur at one of the vertices VI, ... , Vk which we term Nielsen vertices.

These preliminary remarks aside, we now wish to construct a natural maximal

tree for our relative train track map. First we prove two lemmas.

Lemma 2.1. 7' Suppose that p is a Nielsen path of height r ~ 0 and the component of

X; containing p has rank at least two, then the initial vertex of p is a Nielsen vertex.

- - --
Proof: As p must be closed, rkX, > rkXr_1 and so rk~r = rk~r-l + 1. This last

statement follows by the properties ofreduced rank given in 1.1.11. As rk2: = rkX we

get that rk~r = rkXr for all r, and since rk~r :S rk~r-l + 1 the claim follows. In fact

the component of ~r contaning the initial vertex of p must have rank at least two, as

the vertices of 2: map to fixed vertices of X. Thus, as in the above discussion there

must be a Nielsen path from the initial vertex of p to a Nielsen vertex. As all Nielsen

paths are closed, we see that the initial vertex of p is actually a Nielsen vertex.

The next lemma is an generalisation of the result of [CT93]. Our standing assump-

tion is always that we are dealing with a relative train track map which represents a
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maximal rank outer automorphism and has no non closed Nielsen paths.

Lemma 2.1.8 Let G be a component of X; for some r, such that rkG = 1. Then

there exists a connected G' :2 G containing a Nielsen vertex v and so that f (G') ~ G',

rkG' = 1 and 7r1 (j, v) is the identity automorphism on 7r1 (G', v).

Proof: Let s be the least integer such that the component of X; containing G has

rank at least 2. Call this component G1. By definition of s,

- -rkX, = rkXs-1 + 1

and hence
- -rkI:s = rkI:s-1 + 1 (2.2)

We thus have that there exists an indivisible Nielsen path of height s and hence

H, consists of a single edge Es. Then by 2.2 we must have that for some Nielsen

vertex v,

~C!.rtt.y.
By 2.1.7 the initialeegs of E, is v. Now we let G2 be the component of G1 - int(Es)

containing G if there is more than one component, and just G1 - int(Es) otherwise.

First we consider the case where v E G2 ; in this case, combined with the fact

that rk(I:v n I:s-d ~ 1 we must have a Nielsen path in G2, and as rkG2 = 1 we get

the result with G' = G2·

Next we suppose that v tj. G2, in which case E; must be a separating edge whose

terminal vertex lies in G2. In this case if we set G' = G2 U Es, then rkG' = 1 and we

again get the conclusion of the lemma as there is an indivisible Nielsen path of the

form Es/3Es, where f3 ~ Xs-1 and hence f3 ~ G2 as Es is separating. Clearly we also

have that 7r1(G',V) =< [Esf3Esl .>.

Consider now the collection C of all rank one subgraphs of X which are com-

ponents of some stratum Xr. Clearly given any two such, either one is contained in
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the other or they are disjoint. Ordering them then by inclusion, let M be the set of

maximal elements of C. So the elements of M are disjoint as subsets of X and also

any element of C is contained as a subgraph in some element of M. Then for each

element G of M we choose a single edge E of G so that G - E is contractible. We

also choose E to be in the highest stratum amongst the edges of G although this still

does not give us a unique choice for E. The collection of edges obtained in this way

we term the Type I edges.

Suppose that for some r, rkX, rkXr-1 + 1. Then the stratum Hr consists

of a single edge Er. We term the collection of all such edges Er, where Er is non

separating when removed from Xn the Type II edges. (Note it may be that in the

graph X, some edge E is non separating whilst if we restrict our attention to some

X; the same edge E is separating.)

We then set B to be the collection of all Type I and Type II edges and we set

T = X-B.

Proposition 2.1.9 For any component C of some stratum X, of X, Tn C is a

maximal tree in' C. In particular T is a maximal tree in X.

Proof: Let C be as above and let v, w be vertices of C. First we will show that there

is a path in TnC from v to w. Define B, = XrnB. Now take some path "( in C joining

the two edges v and w. Let TO be the least integer such that ,,(nB = "(nBro =/::. "(nBro-l.

In other words if we only consider the edges of"( which occur in B, "(has 'height' To.

case (i): rkXro = rkXro-1 + 1, but Hro does not consist of a Type II edge. Here we

have that Hro still consists of a single edge, but that this edge is separating in Xro.

In this case "(n B = "(n Bro-l. So we reach a contradiction.

case (i)': Hro consists of a single Type II edge. Then by definition there must be a

6 <;;: Xro-1 (possibly trivial) joining the endpoints of the Type II edge. Then replace

in "( all occurrences of the Type II edge with 6. We note that as the Type II edge lies
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in C and C is a component of some stratum we must have that 0 ~ C.

case (ii): rkXro = rkXro-1. In this case we either get that 'Y is a path which lies

entirely in Tn C or that Hro n B consists of a collection of Type I edges El, ...Ek.

These each lie in disjoint members of M, that is rank one subgraphs of X. By

definition there are paths 01, ... Ok, where each Oi joins the endpoints of E, and lies

in Xro-1. Thus we may replace each occurrence of an E; with a Oi, and as before we

get that each s, ~ C.

This describes a process of taking a path 'Y in C and replacing it after a finite

number of steps with a path which lies entirely in Tn C. Hence we have shown that

Tn C is connected and contains every vertex of Tn C. Our next step is to show that

T n C is contractible, and here we can omit the component C and just show that T

is contractible.

Start with a closed path f3 of shortest length which lies in T. Let TO be the least

integer such that f3 ~ x.;
Let A be the component of Xro containing the path f3.

case (i): rkA 2:: ~. As f3 tJ. Xro-1 we must have that rkXro = rkXro-1 + 1. Now Hro

must consist of a single edge. If this edge is separating then there must be a closed

subpath of f3 which contradicts the minimality of f3. If this edge is non separating

then it must occur in f3 by the minimality of To and this is a contradiction since we

assumed that f3 ~ T.

case (ii): rkA = 1. Here A must be contained in some subgraph G which is an element

of M. Thus there is a Type I edge E which lies in G such that G - E is contractible.

Thus f3 must contain the edge E which is a contradiction again since f3 ~ T.

Hence T n C is a maximal tree in C.

Now we get back to our automorphisms 7r1 (j,Vi). Fix one of these, 7r1 (j,VI) along

with its isomorphism 71 from 7r1 (X, vd to Fn· We then let Oi be the unique (reduced)

path in our maximal tree T from Vi to VI· Define the isomorphism a, from 7r1 (X, Vi)
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to 7fl (X, VI) to be that induced by the map which takes a closed path a at the vertex

Vi to the closed path 6ia6i. We then have the following commuting diagram:

7fl (X, Vi)
(T'

7fl(X, vd ~ r;---2..t

17r1(I,Vi) 17r1 (I,Mi) 1 <P;' ="I9i O</>I

7fl (X, Vi)
(T'

7fl (X, vd .n, Fn---2..t

where /-Li = f(bi)6i, gi = 71(/-L) and 19 denotes conjugation by g. We also call the

composition of a, and 71, 7/.

The following proposition allows us to replace our random selection of represent-

atives for the significant similarity classes of <I> with a more convenient choice.

Proposition 2.1.10 The set {<PI, <P2', <P3', ... , <p/} form a complete set of represent-

atives for the distinct significant similarity classes of <I>.

Proof: As we know that there are k significant similarity classes of <I> and that each

<Pi is conjugate to <p/, it is enough to show that the members of {<PI, <P2', <P3', ... , <Pk'}

are in pairwise distinct similarity classes. In fact, it is enough to show that the the

members of 7fl (I, /-Ld, 7fl (I, /-L2), ... , 7f) (I, /-Lk) are in pairwise distinct similarity classes.

(/-Ll is the trivial path)

Suppose instead that we have for some i "# j a commuting diagram of the form:

7fl (X, Vi) "1(3
7fl(X,Vj)~

17r1(I,Mi) 17r1 (I,Mj)

7fl (X, Vi) "1(3 7fl(X,Vj)~

where by a slight abuse of notation we consider f3 as both a group element and a

closed path in X starting at VI.

The commutivity of the above diagram then implies that
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for all closed paths a starting at VI. Clearly this can only be the case if

Recall that Mi = f (cSdcSi (cSl is the trivial path) and so a little manipulation gives us

that

which gives us a Nielsen path with endpoints Vi and "i This is a contradiction to the

fact that all our N~sen paths are closed and more generally to the fact that there

cannot be a Nielse~between Vi and Vj unless 7fl (f, Vi) and 7f1 (f, Vi) represent similar

automorphisms in Fn.

From now on we take the ¢/ and the T/ as our standard representatives of the

similarity classes and isomorphisms and we drop the dash.

We define Tij to be Tj -1 0 Ti so that we have a commuting diagram:

7fl (X, VI)

T11
Fn

Thus it is clear that Tij is induced by the map which takes a closed path a at Vi

r, Tj

to the closed path a8i~, where the path 8Jj is (after possible reduction) the unique

path in T from Vi to Vj.

Now each 7fl (X, Vi) has a 'natural' basis with respect to the maximal tree T.

Namely if E is an edge of X not in T then there are unique reduced paths aE, (3E in

T joining Vi to the initial vertex of E and to the terminal vertex of E respectively.

Then {aEE,BE\E E E} defines a basis for 7fl(X, Vi). (Remember that T = X - E.)

Let Y be the image of this basis in Fn. By the above remarks this image is the same
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for any choice of basepoint from the Vi. We shall denote by the basis element in Y

corresponding to the edge E in B, TE. (Actually TE = TiCY.EEJ3E where the paths

CY.E, (3E are as above. The image we get is independent of the basepoint chosen.) We

also note that if C is a component of some stratum X; then as Tn C is a maximal

tree in C,by 2.1.9, we also get a 'natural' basis for C. The image of this basis is then

a subset of Y.

The isomorphisms Tij act not only as isomorphisms but also as bijections between

these sets of natural basis elements even preserving the edge of B corresponding to a

specific basis element. In other words, these bases and isomorphisms make it very easy

to deduce what is happening at the group and automorphism level given information

about our relative train track.

Before we prove the main result of this section we need two lemmas.

Lemma 2.1.11 Let H, K ~ Fn and ¢> E AutFn and suppose that (H, K) f'V H *K and'" ~ -t:p' 0...alsothat ¢(H) = H, ¢(K) = K. Then if ¢(v) = V
W
, for some v, W E (H, K)bu ~

LI,':j ~"'i.c... c.f tf CN" K , ~ S~

If U [{ me h8J~8 ~h8;f, fyfWfe i05" cyclically reduced conjugate of v is fixed by ¢m for some

positive integer m.

Proof: Given such a v we may find a cyclically reduced conjugate of the form

where hi E Hand k, E K and we may assume that hI, ki =I- 1.

Then ¢r (v') is a cyclically reduced conjugate of v' for all r. Thus for some integer

m, ¢>m(v') = v'.

Lemma 2.1.12 Let X be a basis for Fn and {x} u X' ~ X. Suppose that for some

¢ E AutFn, ¢( (X~ = (X') and ¢x u;!?: some tu' E (X'). If ~Blnd v E

({x} U X') - (X') ,£¢v is a conjugate of vlthen there is a cyclically reduced conjugate

v' of v which is fixed by ¢m for some positive integer m.
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Proof: Without loss of generality we may assume that we can take a cyclically

reduced conjugate of the form

where Vi E (X') for all i and Vm =I- 1and the Ei= ±1. It suffices to show that (rV' is

cyclically reduced for all r.

For w E ({x} UX') let Iwlx denote the number of occurrences of x in w (reduced).

Now if w is cyclically reduced then

Iwlx:::; Iw91x

I¢>wlx::; Iwlx

for any g E ({x} U X')

(we note that the second property does not depend on w being cyclically reduced).

Note now that as v' begins with x, then ¢>v' is not cyclically reduced if and only if

l¢>v'lx< Iv'lx. However ¢>v'is a conjugate of v' and hence this is not possible. Moreover

we may apply exactly the same argument to oi", since we have now deduced that it

is both cyclically reduced and begins with x. Hence inductively we have shown that

¢>rv' is cyclically reduced for all r and again for some integer m, ¢>m(v') = v'.

We note that by the result of [DS75], for any automorphism ¢>of Fn and any

integer r, Fix¢> is a free factor of Fixe" and hence if we have a set of automorphisms

k k

L rk¢>i- 1 ::;L rko" - 1
1 1

Hence in the case of a maximal rank outer automorphism <P, we get the following

lemma as in [CT96].

Lemma 2.1.13 If ¢>is a representative of a significant similarity class of <P (that is

rk¢>?:: 2) and for some integer r, ¢>rv= v we actually get ¢>v= v.

We have up to now defined the set B which consists of edges which are either of

Type I or of Type II. We further define the Type III edges analogously to the Type
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II edges as follows. We call E a type III edge if it is of height r where rkXr = rkXr-1

and additionally, E is separating in Xr. Let B' denote the set of Type III edges and

let P denote the union of Band B'.

We now describe a partial order on P. Let E E P, and suppose that E has height

r. Let C be the component of X; containing E. We say that an edge in V is strictly

less than E if it occurs as edge in G - E. It is clear that this defines a partial order

on P.

Definition: If v, ware two elements of P we say that v covers w, denoted v >----t w if

whenever v ~ z > w then we have that z = v. (In other words there are no elements

between v and w.)

Definition: For v E P we define

(i)-!.v = {w E Plw < v}

(ii)::r:v = {w E Plw:s v}

Proposition 2.1.14 All Type I edges in P are minimal, all Type II edges cover

e.mctly one element of P and all Type III edges cover exactly two elements of P.

Proof: Let E be an element of P of height r in X and let C be the component of X;

containing E. Now if E is a Type I edge then C-{E} is contractible and hence cannot

contain an edge from BuB'. If E is a Type II edge then C - {E} is connected and non

contractible thus must contain an edge from BuB'. Either rkG-{E} is one, in which

case (G - {E} ) n (B uB') consists of a single Type I edge or rkG - {E} ~ 2 in which

case there is a maximal integer s such that rk(Xs n C - {E}) = rkXs_1 n C - {E}.

Here we have that H, must consist of a single edge (of BUB') which is contained

C - {E}. Thus this element is maximal in (C - {E}) n (B u B') and thus a Type II

edge covers exactly one edge. Finally if E is a Type III edge then G - {E} consists of

two non contractible components each of which (as before) contain maximal elements

of BUB' and thus we get that Type II edges cover exactly two other edges.
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Given any partially ordered set we may construct a graph corresponding to the

order. The vertices of the graph are the elements of the ordered set and given two

elements v and w we say that there is an oriented edge from v to w if v < w. Bearing

this in mind we have the following proposition.

Proposition 2.1.15 The graph corresponding to P is a tree.

Proof: It is enough to show that no element of P is covered by more than one other

element of P. (This will show that there are no cycles in P, and we know that P

must be connected since it has a maximal element. Namely this element is the unique

edge of the highest stratum in which the rank increases.) So suppose that for some

edge E E P we have that E is covered by two edges El and E2 of P and that El, E2

are of height rI, rz in X respectively. Without loss we may assume that rl > rz. Let

C, be the component of XTJ -1 containing E, for i = 1,2. Then E E Cl n C2 f (/)
and thus C2 ~ Cl as rl > r2 and in fact we must have that C2 ~ Cl - {El}. Thus

El > E2 as elements of P, which contradicts the fact that they both cover E.

We now wish to describe a labelling of the elements of P. It is important to note

that this labelling need not be unique. That is, we may have two distinct elements

of P with the same label.

Given a Type I edge the label we give it consists of a pair (y, cp) where y E Y ,

the basis we defined earlier and cp E {CPl,"" CPk}. We arrive at the label by use of

lemma 2.1.8 which supplies us with the automorphism cP which fixes the basis element

y corresponding to the Type I edge.

Type II edges are similarly labelled by pairs (y, cp) where the basis element y cor-

responds to the Type II edge as usual (via one of the isomorphisms Ti or equivalently,

via the map T). The automorphism cP is supplied to us as the point induced auto-

morphism from the initial vertex of the given Type II edge. This is clearly a Nielsen
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vertex by 2.1.7 as by properties of reduced rank there is an indivisible Nielsen path

corresponding to the Type II edge.

Type III edges are edges E of height r in X such that rkXr = rkXr-l + 1 but

which are separating in Xr. Again, the initial vertex of E must be a Nielsen vertex

and there must be an indivisible Nielsen path of height r. We label a Type III vertex

with the image in AutFn of the corresponding point induced automorphism. (This is

again an element of {(PI, ... , CPk}. )

We note that each element of Y occurs exactly once as part of a label of a member

of P. It is precisely with the Type III vertices that non uniqueness of labelling arises.

Before we describe what information there is in this labelling we need some nota-

tion.

Let S be a subset of P. We shall call the elements of P vertices in deference to

the graph structure of P. We say that CPi occurs in S if there is a Type III vertex in

S labelled by CPi or there is a Type I or II vertex labelled by (y, CPi) for some y E Y.

Similarly we say that y E Y occurs in S if there is a Type I or II vertex labelled by

(y, cp) for some cp.E {CPl,"" cpd·
Definition: For S ~ P, (S) = (y E Yly occurs in S)

Lemma 2.1.16 Let v be a Type I vertex labelled by (y, cp). Then v is covered by a

unique vertex w where either w is a Type II vertex labelled by (y', cp) for some y' E Y

or w is a Type III vertex labelled by cp. In other words cP occurs in the vertex covering

v.

Proof: The Type I vertex is actually a Type I edge, E ,in X which belongs to some

rank one subgraph, G, which in turn is a component of some stratum. Without loss

(in fact as part of the definition of a Type I edge) we may assume that G is maximal

amongst such. Following the construction of 2.1.8 we get an edge E' which is either a

Type II or III edge such that E' covers E (this is clear from the description). However
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if we review the definition we see that the automorphism which occurs in v (actually

the edge E) is the image of the point induced automorphism from the initial vertex

of E'. This is also the automorphism which labels the element in P which is E'.

We also get the following result which tells us that when we can say if vertices of

P are comparable.

Lemma 2.1.17 Let Zl, Z2 be vertices of P in which the automorphism ¢ occurs. Then

these are not comparable only if one of them is a Type I vertex covered by a Type III

vertex.

Proof: We first show that if neither of these vertices are Type I, then they must be

comparable. In this case there are edges El, E2 which give rise to the vertices Zl, Z2

of P (in fact they are the same object viewed in a different light). The fact that Zl, Z2

are not Type I and that the automorphism ¢ occurs in both means that El, E2 must

have the same initial vertex. (This is the Nielsen vertex whose corresponding point

induced automorphism has image ¢ in Fn). Without loss we assume that El is in a

higher stratum than E2. From this we immediately deduce that El is greater than

E2, as they share a common endpoint, and hence Zl is greater than Z2. Thus we have

proved the lemma in the case where neither vertex is Type I. We now proceed to

prove the lemma by contradiction. Suppose that Zl and Z2 are not comparable and

that neither is a Type I vertex covered by a Type III vertex. We may then replace

these vertices by Zl', Z2' where z/ = z; if Zi is not Type I and otherwise z/ is a Type II

vertex covering z, in which the automorphism ¢ occurs. (We have made use of 2.1.16

here.) Now it is clear that if Zl, Z2 are not comparable then neither are Zl', Z2'. We

then get the result by applying the argument above.

Corollary 2.1.18 Let Z be a Type III vertex labelled by ¢ and covering vertices v, w.

Then no automorphism except ¢ may occur in both :r:v and:r:w.
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Proof: A reiteration of the above argument yields the result.

Proposition 2.1.19 If (y, cP) labels a Type I vertex then cPy= y

If (y, cP) labels a type II vertex z, then cPy = yw where w E (-!-z). (In particular w

contains no occurrences of y). Also c/>(-!- z) = (-!- z) and hence c/>(~z) = (J z).

We have that

. { Fixc/>kl-z)* (yvy)
FIXc/>ln:z)=

FixcPlq.z)* (y)

if w of lwhere v E (-!-z)

if w = 1

and rkC/>ln:z)2:: 2. Ifrkc/>In:z) = 2 then c/>does not occur in .lz unless -!-z consists of a

single type I vertex labelled by (y', c/» for some y E Y.

Proof: If (y, c/» labels a Type I vertex then that c/>y= y is the content of 2.1.8.

Suppose then that (y, cP) labels a Type II vertex. In this case there is a Type II

edge E in X whose initial point is the Nielsen vertex Vi and there is a path f3 in our

maximal tree from the endpoint of E to Vi· Then E has a height r in X, so let C be

the component of X; containing E. By 2.1.9 f3 is a path in O. Thus all the elements

of f3 n B are strictly less than E. (Taking the order of our poset P.) This order

is also preserved by our relative train track map f and so the same is true of f (f3).

Then as f(Ef3) ~ ET f(f3), where T is a path in 0 not containing any occurrence of

E we see that c/>y= yw where w corresponds to the path 13T f (f3). We have shown

that any occurrence of an edge of B in this path is necessarily strictly less than E.

This is equivalent to the statement that w E (-!- z). The train track properties of f

give us that f(O - {E} ~ 0 - {E} as E is the highest edge (with respect to the

stratification of X) in O. Also there is an indivisible Nielsen path, of the same height

as E, which is either of the form E"(E or it is a Type L(i) indivisible Nielsen path,

in which case the edge E is a loop which is fixed by [, This proves the statement

about the nature of the fixed subgroup. To see that rkcPlaz) 2:: 2 it suffices to observe
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}L.

that rkXr = rkXr-1 + 1 and hence rkXr ~ 2. If rk.x, > 2 (and hence rk4>lazJ then

4>is point represented in C - {E} by I, However, as all Nielsen paths are closed in

our relative train track map there must be an indivisible Nielsen path of height lower

than r at the vertex Vi' This is equivalent to saying that 4>occurs in .J.. z.

If rk1>10.z) = 2 then in generale does not occur in .J.. z. If it did occur in .J.. z,

then by considering the rank of the fixed subgroup we conclude that it must occur

at a Type I vertex. By 2.1.16 we must have that .J.. Z consists precisely of this Type I

vertex.

We now proceed to prove a similar looking proposition for the Type III vertices.

Proposition 2.1.20 Let z be a vertex of P which is of Type III. Then z covers

e.'Eactlytwo vertices of P, Zl and Z2 one of which will be distinguished, say Zl, and we

have that 1>(:r:Zl)= (:r:Zl), 4>(:r:Z2)= (:r:Z2)and hence that 4>(:r:z)= (:r:z). (Note that

a z) = (:r:Zl) * a Z2) = (.J.. z)) We also have that

that rk4>lo::z2)= 1 and that 4>does not occur in :r:Z2 unless Z2 is a type I vertex labelled

. by (x, 1» for some x E X. We have that rk1>kr:zl)~ 1 and as above that ifrk1>lazl) = 1

that 1>does not OCC7.lrin :r:Zl unless Zl is a type I vertex labelled by (x, 1» for some

x E X. Also ifrk1>I(Tzl) > 1 then 1>will occur in :r:Zl.

Proof: A Type III vertex of P is really a Type III edge, E, in X. Thus E has a

height r, rkXr = rkXr-l + 1 and E is separating in Xr. Let C be the component

of X; containing E and let Cl and C2 be the two components of C - {E}. We

suppose that the initial vertex of E, which is a Nielsen vertex Vi, lies in Cl. Then

the distinguished vertex, Zl, corresponds to the to the topmost edge in Cl which is in

P. The statements of the proposition all follow easily as in the previous proposition.

For instance 1fl(C,Vi) = 1fl(Cl,Vi) * 1fl(C2 u {E},Vi) is equivalent to the statement
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that cp (JZl) = (:r:Zl), cp (JZ2) = (JZ2). We note that rkcp!crz2) = 1 since otherwise

¢ is point represented in C2, which would mean that Vi is a vertex in C2 as all our

Nielsen paths are closed. This clearly cannot happen as E is separating. The other

statements follow as in the previous proposition.

The following was proved in [GJLL]. We state a slightly stronger version, which

was also accessible with their methods.

Corollary 2.1.21 Let <I> E OutFn be a maximal rank outer automorphism then there

are elements a, b E Fn which generate a free factor of Fn and a ¢ E <I> such that:

cpa = a

¢b = bam for some integer m.

Proof: One needs only find, by 2.1.16 and 2.1.19, a Type I vertex which is covered

by a Type II vertex. If however we find that our Type I vertex is covered by a Type

III vertex, z, then we just look for a minimal element in JZl the distinguished vertex

covered by z. We know from 2.1.20 that the rank of (JZl) ~ 2 so we may proceed in

this way until we find the required Type I vertex covered by a Type II vertex.

The next proposition allows us to determine the nature of the fixed subgroups.

Proposition 2.1.22 Let w E Fn and suppose that <I> E Out.F, is a maximal rank

outer automorphism which .fixes the conjugacy class of w. Then there is a conjugate

of iu which is fixed by some cp E AutFn with rk¢ ~ 2.

Proof: We start by assuming that w is already cyclically reduced. There is no loss

of generality in doing this. We then write w in terms of our natural basis and form

the subset Y' of Y consisting of all those elements of Y which are used in the normal

form of ui. The set Y' corresponds to a set of vertices of P, namely those vertices

for which some element of Y' occurs in the vertex. (We note that each element of Y

occurs in exactly one vertex of P.) We now set Z to be the vertex of P which is the
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least upper bound for the set of vertices defined by Y'. Such an element exists since

P has a greatest element and is a tree by 2.1.15. Now if z is a type III vertex, then it

is labelled by an automorphism ¢, where rk¢ 2: 2. We may then apply lemmas 2.1.11

and 2.1.13 to get a (cyclically reduced) conjugate of w which is fixed by ¢. Similarly

if z is a Type II vertex labelled by (x, ¢), then again rk¢ 2: 2 and we apply lemmas

2.1.12 and 2.1.13 to get the result. If z is a Type I vertex labelled by (x, ¢) then by

definition of z, w E (x) and so is fixed by ¢.

Note that the conditions of the lemmas 2.1.11 and 2.1.12 are satisfied precisely

because z is a least upper bound.

It is useful to note that our constructions all respect the structure of the relative

train track map and so whenever we prove a proposition like 2.1.22 we may be more

explicit about which of our 'natural' basis elements we use in, for this example, the

conjugation of w. In fact, suppose that we take a stratum X; where rkXr = rkXr_1 +1

and we look at a component, C, of Xr· The relative train track map fixes C and in

fact induces a maximal rank automorphism. We can produce a poset as before.

However, we also have that the rth stratum will consist of a single Type II or Type III

edge which will correspond to a vertex z of our original poset. It is an easy exercise

and a consequence of 2.1.9 that the poset and labelling that we get by restricting

our map to the subgraph C is exactly the same as the 'sub-poser' :r: z of P. The

following proposition is an easy consequence of these remarks. As always ~ is an

outer automorphism of maximal rank.

Proposition 2.1.23 If z is a vertex in P, then ~I:r:z is a maximal rank automorph-

ism. In addition, the restriction of the automorphisms which occur in :r: z form a

complete set of representatives of the significant similarity classes of ~I:r:z.

It is now clear that we may improve on 2.1.22.
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Corollary 2.1.24 Let w E (:r: z) be conjugate fixed by <I>. Then there is a u E (:r: z)

and an automorphism cp, with rkCPlq:z)2 2 which occurs in :r: z and fixes WU
•

Proof: We may either reiterate the argument of 2.1.22 or apply 2.1.23.

2.2 Refining the structure

The description given in the last section will allow us to prove almost anything we

want about maximal rank outer automorphisms of Fn, but there are ways to make

things a little bit more convenient. That is the goal of this section. Our starting

point as always is an outer automorphism of maximal rank, <I>. Suppose now that

we have a poset P, a basis {Xl,' .. ,xn} of Fn and a complete set of representatives

of the significant similarity classes of <I>, {CP1,"" cpd· Suppose that every vertex of

P is either minimal or covers exactly one or two vertices and refer to these vertices

as Type I, II and III respectively. We also suppose that there is a labelling of the

vertices of P, where Type I and Type II vertices are labelled by (x, cp) where x is an

element of our basis and cp E {CP1, ... ,cpd , and Type III automorphisms are labelled

,by one of the automorphisms in {CP1, ... , cpd· We require that a basis element occurs

in exactly one vertex. We then say that P is an allowable poset (for <I» if it satifies

the conclusions of 2.1.15, 2.1.16, 2.1.19 and 2.1.20. The results 2.1.18 and 2.1.23

must therefore also be satified by an allowable poset. Actually all of these results are

consequences of 2.1.19 and 2.1.20 as the description on how the ranks of the fixed

subgroups go up has many implications for the allowable poset.

We note that it can be shown that given an allowable poset P, for <I> it is possible

to construct a relative train track map representing <I> which gives rise to the poset,

P as in the last section. So, in a sense, what follows is as much a dicussion about

different relative train track representatives for <I> as it is about allowable posets.
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Suppose that we start with an allowable poset P and we replace one of the

elements of the basis Xi with X'i = XiWi where ui, E (.J_ z) and z is the unique vertex

of P which Xi occurs in. This has the effect of producing a new object with the

same underlying poset as P but with a different basis and so a different labelling.

We call this process right multiplication and it is clear that the resulting object is an

allowable poset. This is because the underlying poset is unchanged and the contents

of 2.1.16,2.1.19 and 2.1.20 are essentially unaffected by right multiplication as an easy

check will show. Hence we have:

Lemma 2.2.1 Performing right multiplication on an allowable poset results in an-

other allowable poset.

Right multiplication allows us to change an element of the basis but we would

also like to be able to change the representatives of our significant similarity classes

in the following way. Suppose we have a Type III vertex z in our allowable poset P

which covers the vertices v and w. Let ep be the automorphism which labels z and

suppose that ep does' not occur in 'Tw. Let 9 be an element in ('Tw). We then replace

any automorphism 'l/J which occurs in 'T w, by 'l/J' = "(g'l/J"(g and we also replace any of

our basis elements x which occur in a label with one of these 'l/J by x' = xg. Note that

.'1: does not neccessarily occur in 'T w, we only require that there is some vertex of P

labelled by (x, 'l/J) for some 'l/J which does occur in 'T w.
Similarly, suppose that we have a Type II vertex z, in which the automorphism

ep occurs and that ep does not occur in .J_ z. Let 9 E (.J_ z). We then replace ¢ with

¢' = "(g¢"(g and any basis element x which occurs with ¢ by x' = x": We call either

of these operations, changing the representative of [¢].

The effect of changing the represenative of [ep] is to change the conjugating element

between one of our automorphisms and the automorphisms which are 'below' it. This

will enable us to choose a convenient set of represenatives of the similarity classes of
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<P without disturbing the allowable poset structure. Fror this to be valid we need the

following:

Lemma 2.2.2 Changing the representative of [¢>]results in another allowable poset.

Proof: This is another tedious but easy check.

So far we have two operations which change the basis and the representatives

for <P. We now give an operation which gives a very small change to the underlying

poset. Namely, suppose we have a Type III vertex, z, which covers a Type I vertex

v. Then if ¢>is the label for z we know from 2.1.16 that there is a basis element x

so that (x, ¢» is the label for v. Also, from 2.1.19 ¢>x = x. Our operation is then to

delete the Type Ivertex v thus making z into a Type II vertex which we label (x, ¢».

We call this deleting an unnecessary Type I vertex. It is trivial to show that:

Lemma 2.2.3 The operation of deleting an unneccssary Type I vertex results in an

allowable poset.

We now wish to use these operations to get a better allowable poset. Let us

describe the situations that we wish to avoid.

Suppose that we have a Type II vertex z labelled by (x, ¢». Then ¢>x = xw for

some W E (4. z), by 2.1.19. Consider the situation where w :j:. 1 and so Fix¢>h::z=

Fix¢>l.j.z*< xvx > for some v E q.z). By 2.1.24 there is an automorphism 'Ij.J which

occurs in _}z and an element g E (_}z) such that 'Ij.J fixes vg. We call this vertex a bad

vertex if we cannot take this g to be 1.

There are two other kinds of vertices which we shall term bad. The first is where

we have a Type II vertex, z, in which the automorphism ¢>occurs but for which ¢>

does not occur in _}z. By 2.1.19 we know that rk¢>I(.j.z)= 1, and so there is a v E (_}z)

fixed by <p. Again by 2.1.24 we may find agE (_}z) and an automorphism 'Ij.J which
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occurs in .j,. z (and hence is different from c/J)so that 'IjJ fixes u", We call z bad if we

cannot take g to be 1. Similarly if we have a Type III vertex z labelled by c/Jand

covering the vertex w such that c/Jdoes not occur in :r:w then rkc/Jlaz) = 1, by 2.1.20.

As above we find an automorphism 'IjJ different from c/Jand occuring in :r:w so that 'IjJ

fixes vg for some g E (:r: w). Again we call z bad if we cannot take g to be 1.

Definition: We call an allowable poset strong if it has no bad vertices and no Type

I vertex is covered by a Type III vertex.

We now apply the operations above to get a strong allowable poset. Such an object

is an analogue of a strong right layered basis for a single maximal rank automorphism

as produced in [CT96].

Theorem 2.2.4 Given a maximal rank outer auotmorphism <I> of Fn, there exists a

strong allowable poset for <I>.

Proof: We are given an allowable poset, P, for <I> which comes from a relative train

track representative of <I>. We may assume that in this poset no Type I vertex is

covered by a Type III vertex by repeatedly deleting unneccessary Type I vertices.

We note that our other two operations do not change the underlying poset so this

condition will continue to be satisfied if we apply them. Suppose that z is a bad

vertex of P but that I z is a strong allowable poset for <I>1(tz) (if z is a Type III vertex

we assume the corresponding statement for each of the vertices that z covers). We

note that this makes sense in the light of 2.1.23. We will then show that we may

perform one of our operations on z so that :r: z is a strong allowable poset for <I>!er z).

Thus by starting at the Type I vertices and working up we will have shown the result.

So suppose that z is a bad Type II vertex. Take the case where z is labelled by

(x, c/J), c/Jfixes xvx and there is a 'IjJ fixing vg. Perform a right multiplication on P

which replaces x with x' = xg. Then c/Jfixes x'vgi' and we have got rid of a bad Type

II vertex. We note that right multiplication leaves .j,. z unaffected and so assuming
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that .J,. z was a strong allowable poset gives us that :r z is a strong allowable poset after

the right multiplication.

Now suppose that z is a bad Type III vertex labelled by ¢ and covering the

vertices v, w. Suppose that ¢ does not occur in Jwand that Jv and Jware strong

allowable posets for <I>ln:v) and <I>ln:w)respectively. Thus we are given a 'l/Joccurring

in :rwand elements v, 9 E (Jw) such that ¢ fixes v and 'l/Jfixes vg. We then change

the represenative of ¢ using the element g. This actually has the effect of leaving

¢ unchanged and replacing 'l/Jwith 'l/J' = "/g'l/J"/g (along with some other changes).

Thus both ¢ and 'l/J' fix the element v. As we have relabelled everything in Jw in a

consistent way, and that by 2.1.18 :r v is unaffected we get that J z is now a strong

allowable poset.

The remaining case of a bad Type II vertex is similar, so that we have shown

what we set out to do and we get the result.

Corollary 2.2.5 If (x, ¢) labels a Type II vertex z in a strong allowable poset then

¢.r, = .r,vh

uihere t] = "/h¢ occurs in .lz, 'l/Jv= v and ¢ .fixes XV.T.

Proof: This is a consequence of having no bad Type II vertices. We know that for

some 'l/J= "/h¢ and some g, ¢ fixes .r,g.T and 'l/Jfixes g. If ¢x = xw then

9 = 'l/Jg= gwh

and hence wh is equal to some power of the root of g, so that w = vh for some v

which is fixed by 'l/Jand so that xui: is fixed by ¢.

Corollary 2.2.6 Let P be a strong allowable poset for <I>. Then for every automorph-

ism ¢i which occurs in P there is an automorphism ¢j = "/g¢i which occurs in P and

such. that 9 E Fix¢i n Fix¢j
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Proof: Consider the subset S of vertices of P in which CPi occurs. Suppose that there

is a Type II or Type III vertex which is minimal amongst these. In other words,

there is a vertex z in which CPi occurs and such that CPi does not occur in .J_ z. We

then satisfy the conclusions of the above corollary as z cannot be a bad vertex. On

the other hand if we cannot find such a vertex then CPi must label a Type I vertex.

We then concentrate on the unique vertex z above this Type I vertex such that no

automorphism other than CPi occurs in .J_ z but such that CPj i= CPi occurs in z. Again

the fact that z is not a bad vertex gives us the conclusion.

In [CT96] a maximal rank automorphism (not outer) is considered and a good

basis is found for it. That is, a strong right layered basis.

Definition 2.2.7 Let cP be a maximal rank automorphism of Fn, then the basis

{Xl, ... , xn} is called a strong right layered basis if:

(i) CPXi = XiWi with ui, E< .'El,··· Xi-I>

(ii) For each i, ui; E Fixphi.

(iii) If ui, i= 1 then there does not exist a u E< Xl, ... Xi-I> with ui; = ii; -lcpUi.

Corollary 2.2.8 If cP is a maximal rank automorphism then there is a strong right

layered basis for cp.

Proof: The outer auotmorphism <I> corresponding to cP gives rise to a strong allowable

poset, P ~with no Type III vertex, since such a Type III vertex would have to cover

a Type I vertex. (As <I> has only one significant similarity class.) Thus P is linear

(has a linear order) and this is the same as having a right layered basis. The previous

corollary gives us a strong right layered basis.

Proposition 2.2.9 If <I> has exactly two significant similarity classes then we may

.find a strong allowable poset for <I> which is linear.
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Proof: Take a strong allowable poset P. Suppose that z is a Type III vertex labelled

by cP and covering verices v, w. Suppose that the only automorphism to occur in :r v
is cP and that there is some other automorphism 'I/J which is the only automorphism

to occur in :rw. Then since no Type III vertex can cover a Type I vertex, :r v and :rW
must be linear. Change the poset by deleting the vertex z and by placing the (unique)

minimal vertex of :r v above w. This results in another strong allowable poset and

after finitely many stages we get a linear strong allowable poset.

We may rephrase the previous proposition in less technical language as follows.

Given an outer automorphism of Fn of maximal rank and with precisely two sigini-

ficant similarity classes, we may find a basis {Xl, ... ,xn} and two representatives of

the siginficant similarity classes, cPI,cP2, with the following properties.

(i) cP2 = "(gcPI where 9 E Fixe, n FixcP2

(ii) There is a function c : {1, 2, ... ,n} --+ {1, 2} such that

c(1) = c(2)

cPc(i) < Xl, ... Xi >=< Xl, ... 'Xi > and in fact,

where Wi-l E< Xl, ... Xi-I>

In addition Wi-l E FixcP'tU FixcP2.

We can easily compute that rkcPI+ rkcP2= n+ 1. For if cPIXi = XiWi-1 then either

Wi-l E FixcPI then we have that XiWiA_IXi is fixed by cPl. Otherwise, cPIWi-lg = gWi-l

and hence cPl fixes Xi(Wi:lg)Xi' A similar computation for cP2 gives the formula on

the ranks, on adding in the contribution from g. The Wi-l are also chosen so that

we do not have a word XiU fixed, with u E< Xl, ... Xi-I> unless Wi-l = 1. This is

a consequence of 2.1.19. We note that 9 lies in the subgroup < Xl, ... Xj > where j

is chosen maximally such that the function c is constant on {1, ... , j}. In particular

j '2 2.

A natural question to ask is whether we can extend the above formulation to the
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general case. An examination of 2.2.4 shows that we can get something similar, but

with some extra complications. This arises due to the fact that in general we cannot

get rid of our Type III vertices, so that there is no natural linear order to put on the

basis.

However we can do the following. Given an outer automorphism of Fn maximal

rank we first find a strong allowable poset for it. This supplies us with a complete set

of representatives {qh, ... ,1>d of the siginificant similarity classes of <I> along with a

basis which has a partial order on it. We then impose any linear order which contains

said partial order. In general this is not unique unless we have no Type III vertices.

Using the linear order we then write the basis as {Xl, ... , z.,}. Now we define two

functions c, p from {I, 2, ... ,n} to {I, 2, ... ,k}, the idea being that on given a basis

element we get an appropriate automorphism, satisfying the following conditions.

c(l) = c(2)

1>p(i) < Xl,··· Xi >=< XI,"" Xi >

Define the elements gij so that 1>i= /'9ij1>j' Then by 2.2.5 for each 't we can

find a j so that ui, = vg;'j for some v E Fix1>j and such that XiVXi is fixed by 1>i.

By 2.2.6 for every i there must be at least one j such that .% E Fix1>in Fix1>j and

by considerations of rank there must be exactly k - 1 such pairs. (The trained eye

will spot ,a tree lurking somewhere. In the next chapter we construct Dehn twist

automorphisms from maximal rank outer automorphisms. These are certain graph of

group isomorphisms and the 'lurking' tree is a maximal tree in the graph of groups.)

We conclude with an example of a maximal rank outer automorphism and an
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allowable poset for it. Consider cjJE AutF4 =< Xl, X2, X3, X4 > defined as follows:

cjJX2 = .'L2X1
2

-!..X - X Xl-l - x (X3XI-I)'f/. 3 - 3 - . 3

cjJX4 = (X4X32)(X3
XI-

I
).

Let X = "Ixl cjJand 'ljJ = "Ix3-1 X· If <P is the outer automorphism corresponding

to cjJ(thus including X and 'ljJ) then we claim that <P is of maximal rank. Simply

considering the abelianisation will show that cjJ,X, 'ljJ lie in distinct similarity classes.

Also at the very least we see that < Xl,X2XlX2-
l >:S FixcjJ,< Xl,X3 >:S FixX and

< .'L3, .'L4X3X4 -1 >:S Fix'ljJ. Hence by 2.1.2 there is actually equality here and <P is of

maximal rank. The strong allowable poset for <1> with respect to this basis and these

representatives of the significant similarity classes is as below. (We note that the

fact that the allowable poset is strong follows by elementary checking and no general

reason).

A Strong Allowable Poset for <1>:

X/~
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Chapter 3

Dehn Twists

In [CL] it was shown that certain graph of group automorphisms give rise to maximal

rank outer automorphisms. In this section we would like to prove the converse of

this result, thus starting with purely algebraic information about a free group outer

automorphism we end up with a great deal of topological information.

3.1 Graphs. of Groups and Dehn Twists

Agraph of groups g consists of a graph r with a verex group Gv attached each vertex

v of r, an edge group Ge attached to each edge e of rand monomorphisms [« from

C; to GT(e)' A dehn twist consists of a graph of groups g and a graph of groups

automorphism 1), which is the identity on the underlying graph, the vertex groups

and the edge groups and for every edge e,

where Ie : C; ----t C; is the graph of groups monomorphism, Ze E Centre Ge and

Ze = Ze -1. Ze is called the twist or for the edge e.
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V restricts to an automorphism

for every vertex v of Q and hence induces an outer automorphism.

We further require that there be a specified maximal tree in 9 which induces the

isomorphisms,

where '"Y is a closed path at v and a is the unique path in the maximal tree from v to

w.

We also require isomorphisms Tv : 7rl(Q, v) -+ Fn, (we are only interested in the

case where the fundamental group is free) with the following commuting diagrams:

7rl(Q,V) --:»:
1o, 1¢v

7rl(Q,V) ~Fn

so that ¢v, v EV(Q) all lie in the same outer automorphism class, denoted <Pg, and

we say that V represents <Pg and also that D; represents ¢v. We also require that the

automorphisms {¢v Iv E V(Q)} lie in different similarity classes and that some subset

of these form a complete set of representatives of significant similarity classes for <Pg.

(We allow for the case where some of the ¢v have fixed subgroup of rank less than

two.)

Our dehn twists will also be standardised, that is to say that Tv (Cv) = Fix¢v

whenever rk¢v ~ 2 and that the following diagrams commute for all v, W E V(Q).
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3.2 Relation to Maximal Rank

We wish to prove that any outer automorphism of maximal rank of Fn can be rep-

resented as a dehn twist. We wish to prove this by induction and by using the

results of the previous section. In order to do this we need to be able to restrict our

automorphism to subgroups in a controlled way.

Proposition 3.2.1 Let P be a strong allowable poset for the outer automorphism <I>

and z a vertex of P. Then::r:z is a strong allowable poset for <I> I0: z) with basis consisting

of those basis elements occurring in ::r: z and with the automorphisms occurrring in ::r: z,

the representatives of the significant similarity classes of <I> Ier z)·

Proof: This is just the same result as 2.1.23 but with a strong allowable poset. We

note that we cannot create bad vertices by restricting to a subposet and hence the

above proposition holds.'

Theorem 3.2.2 Every maximal rank outer automorphism of E; can be represented

by a dehn twist.

Proof: We start with an outer automorphism <I> of maximal rank of Fn and find

a strong allowable poset, P, for <I>. We wish to prove by induction on ti that <I> is

represented by a dehn twist and that also the automorphisms induced at the vertices

of Q, namely c/Jv, include those automorphisms which occur in P. The result is clear

for ranks one and two, so our induction hypothesis is that the theorem holds for all

ranks less than n, Let z be the top vertex of P.
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case(i) z is a Type II vertex labelled by (x, ef;).

By 3.2.1 .lz is a strong allowable poset for <D!('tz). Thus we may apply the induction

hypothesis to <Dietz).

(a) rkef;~ 3

In this case we must have that rkef;1(-!- z) ~ 2 and so ef;must occur in -!- z. Hence if

9 and 1) are the graph of groups and dehn twist representing <Dietz), then ef;!(.l-z) must

be represented by some Da, for some vertex a of 9 by the induction hypothesis.

Now by 2.2.5 ef;x = xvh, where 'ljJ = 'Yh,cp occurs in -!- z, fixes v and so cp fixes xuii:

As '1/) occurs in -!- z we must have that there is a vertex b of 9 such that Db represents

We define a new dehn twist (9',1)') as follows. Change 90, by adding a free

generator:

9'a = 9a* < Y >

Then we add an edge e from a to b and put Ge ~ Z ~< C .>. Then we need the

monomorphism from 'this new edge group to the vertex groups at its endpoints.

fec = Y

Recall that v is the root of v and note that Tb-1(v E Gb by the conditions above

and hence that in our new fundamental group y = eTb-1(ve.

Now for some positive integer m, vm = V so let the twistor for e be cm. (In other

words D'e = efe(cm).)

We leave the rest of the graph of groups unchanged and we let 1)'19 = 1). 9' inher-

its a maximal tree from 9 and by setting Taea = x, we can extend the isomorphisms

'Tu defined for 9 to isomorphisms for 9'. (Here a is the unique reduced path in the

maximal tree from b to a.) We have thus defined a new standardised dehn twist and
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to prove the inductive step in this case it suffices to prove that D' a represents cp. This

is sufficient as the maximal tree lies entirely within 9. In fact it suffices to show that

T'o(D'a(eo:)) = xvh since we already know that D'aI7f](Q,a) = Da which represents cp

by the induction hypothesis.

(It is clear that the new dehn twist is standardised since the appropriate diagrams

commute by definition and a calculation of the ranks of the vertex groups gives us

that T'lL (G~) = Fixe; for all vertices u of 9'.)

Consider the commuting diagrams:

7r1(Q,b) ~7rl(Q,a) ~Fn-l

!Db !'Y(15a)aoDa 1'Yh°1>IFn_l ='lj;IFn_1

7r1(Q,b) ~7r1(Q,a) ~Fn-1
where Fn-1 = (.J... z), 0: is the unique path in the maximal tree from b to a and as usual

'Y denotes conjugation. Note that by using 2.1.19 and 2.1.20 we know that h E Fn-1.

From the above we deduce that h = Ta((15o:)o:).

Hence,

e]; (cm )Do (0:)

en,-1 (V )O:Ta-1 (h-1)

eat.; -1 (V )o:-lO:To -1 (h-1)
1 -eO:Ta- (vh)

Thus 'T'aD'a(eo:) = xvh and we have completed the inductive step in this case.

(We note that if it were the case that dn: = x we could just add a free generator

to the vertex group Ga and this would define a standardised dehn twist.)

(b) rkcp= 2.

If cp occurs in .J... z then by 2.1.19 we must have that n = 2, which we have dealt

with. Otherwise cp does not occur in L.z and by our induction hypothesis <I>lq.z) has a

standardised dehn twist 'D on the graph of groups 9, representing it. In addition each
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automorphism occurring in _J,. z is represented by some Du' Now if ¢ is represented

by some Do, then we may use the same construction as in case (a). Otherwise, since

we know that z is not a bad vertex we may find an automorphism 'lj; occurring in _J,. z

and an h E (_J,. z) n Fix¢ n Fix~ so that "(h¢ = ~. Modify (9, V) as follows: add a

valence one vertex a to 9 and an edge e from a to b, where Db is the automorphism

which represents ~1(..I.z)'

Then put

Go, =< Y >~ Z, G, =< e >~ Z

fe(e) = Tb-1(g), fe(e) = Y

Note that I, is well defined since Tb-1Fix~lu.z) = Gb' Hence y = eTb-1(g)e in the

new fundamental group. Also 9 is the root of g, so there is an intger m such that

.gm = m. The twist or for e is then cm.

We extend the given maximal tree of 9 to one in 9' by adding the edge e, and

define V' IQ = V remembering that V' (e) = ele (cm) = eTb-1 (g) . In a calculation

similar to that of 3.2 we will get that D~ represents "(li~ = ¢ and that we have a

standardised dehn twist and the completion of this case now runs as in (a).

case(ii) z is a Type III vertex labelled by ¢. Then z covers the vertices ZI and Z2, one

of which is distinguished, say ZI. By our induction hypothesis, we have standardised

dehn twists (91, Vd and (92, V2) representing <P1(JZ1)and <P1(JZ2)respectively. Now ¢

does not occur in JZ2 since a Type III vertex may not cover a Type I vertex and by

use of 2.1:20. However as z is not a bad vertex there must be a g2 E (J Z2) and an

automorphism w- = "(92¢such that g2 E Fix¢ n Fix~2' Similarly, either ¢ occurs in

J ZI or there is a gl E (JZI) n Fixe n Fix~2 such that ~l = "(91' In every case we can

assume, by using the argument in case (i) (b) if neccessary, that ¢lerZl) and ¢lq:Z2)

are represented in 91 and 92 at the vertices al and a2' We then form the graph of

g!OUPS9 by taking 91 and 92, identifying al = a2 = a and putting the vertex group

at a to be the free product of the vertex groups Gal and Go,2' Since every closed loop
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at a in 9 can be written uniquely as a concatenation of closed loops in 91 and 92 at

0,1 and 0,2, we may define the isomorphism T« from 7T1 (9, a) to Fn by its restriction

to 7Tl (91,0,1) and 7Tl (92,0,2). Taking the maximal tree in 9 to be the union, with

one vertex identified, of the maximal trees in 91 and 92 we have then defined the

isomorphisms Tu at the remaining vertices thus giving us a standardised dehn twist

representing <P. This completes the induction.

We note that our proof is constructive but that the dehn twist we actually end

up with is not neccessarily efficient as defined in [CL].
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Chapter 4

Conjugacy Problems

4.1 A Combinatorial Approach

In [CT96l a normal form is given for maximal rank outer automorphisms which is very

neat and admits a great deal of combinatorial information. However, this form is not

actually 'normalised' in the sense that there is no discussion of when two forms give

rise to conjugate automorphisms. In [CLl the conjugacy problem is solved for dehn

twist automorphisms and it is noted in that paper that maximal rank automorphims

are dehn twists. This gives a solution to the problem of deciding whether two normal

forms represent conjugate automorphisms, but in rather a circuitous manner. We

wish to give here a solution that is more direct and is also strictly combinatorial.

We start with two automorphisms (not outer automorphisms), ¢ and '1/) of Fn of

maximal rank. We also have strong right layered bases for these automorphisms and

our goal is to recognise if there is another automorphism X of E; and a commuting

diagram:
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xFn~Fn

¢1 ¢1
xFn---Fn·

To remind ourselves, we say that {Xl, ... ,xn} is a strong right layered basis for

1; if

where for each i ui; E< XI, ... , .Ti-l > nFix1; and also that Wi is cyclically reduced

and that there does not exist a u E< XI,···, Xi-l > such that ui; = u1;u unless

ui; = 1. The ui, are called the right multipliers. (Technically the requirement that the

multipliers be cyclically reduced is not part of the definition. However, the proof, in

[CT96], of the existence of a strong right layered basis does produce cyclically reduced

multipliers and we shall henceforth assume that this is part of the definition.)

We also have a strong right layered basis {YI, ... ,Yn} for 'IjJ with right multipliers

The next two lemmas are elementary and state that right layered bases are well

behaved. From now on we assume that 1; and '1/) are maximal rank automorphisms

with strong right layered bases as above.

Lemma 4.1.1 Let W E< XI,···, Xi > then the number of occurences of Xi in W is

equal to the number of oecurences of Xi in dn», (As always we count these occurrences

in the reduced words.)

Proof: The lemma is clear if the number of these occurrences is 0 or 1. If the lemma

is false then on applying 1; to w there must be cancellation between an adjacent pair

of Xi. For cancellation to occur this adjacent pair must be opposite in sign and hence

we must have a (reduced) subword of ui, xivXi±l, such that v E< XI, ... , Xi-I> in
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whose image one of the Xi cancel. The only way for this to happen is if ¢VWi 1

which implies that v = 1 and so that XiVXi±1 is not reduced.

The next lemma is proved in [CT96]. We restate it here for convenience. Recall

that W denotes the root of w.

Lemma 4.1.2 Let b E Fix(')'wi¢) n {XI, ... , xi-d, for some ui; i= 1. Then b E< ib, ».

Proof: It is clear that rk¢I<Xl,...,Xi_l>= i-1, by inspection and that since ui, is fixed,

ui; E Fix(rWi¢) n {XI, ... , Xi-I}. By the strong form of the Scott Conjecture 2.1.5

if rk(rwi¢)I{xl, ...,xi_d ~ 2 then (rwi¢)I{xl, ...,xi-d is similar to ¢I{xl,...,xi-d and so that

there is a u E {Xl, ... ,xi-d such that ui, = u¢u. Hence the result.

We now prove the key ingredient of our solution. For the purposes of the next

proposition we assume that ¢ and 'l/J are conjugate under the automorphism X an that

x, is a member of the right layered basis for ¢ with ui, i= 1. (Equivalently Xi tj. Fixo.)

Proposition 4.1.3 XXi = O'.gfJ for some 0'., fJ E Fix'l/J and where 9 is either Yj±l or

9 = (YjaYk)±l for some k < j with v/ = Vk±l and a E {Yl, ... , Yk-l}.

Proof: Consider the word XXi in terms of the basis {Yl, ... ,Yn}. We can decompose

this as a reduced word in the following manner, for some integer i.

where 0'., fJ E Fix'l/J, t E< YI,···, Yj-l > and u E< Yl,···, Yj .>. Additionally we

choose 0'., fJ iJ so that 10'.1+ IfJl is maximal. We thus consider two cases depending on

whether Yj has positive or negative exponent in the above decomposition.

case{i) We have a commuting diagram as follows:
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Xi X__ + atYju(3

xt __ ____:_x~",p(t)y)~(u),8 =
atYju(3x( Wi)

Now as we know that ui, E Fix</>we have that X(Wi) E Fix~ and hence that the

following word is fixed by ~:

By 4.1.1, after reduction, the word YjVj~(u) must begin with Yj and thus we get that

if t~(t) i=- 1 then as t E {Yl,"" Yj-d we get that yu E Fix~ which is a contradiction

to the maximality of a and (3. Hence t E Fix~ and so t = 1, again by the maximality

of a and (3.

Thus we get that the following word is fixed by ~:

(4.1)

We wish to show now that u does not contain any occurrence of Yj. We prove

this by contradiction and we split the proof into two cases depending on whether the

first occurrence of Yj in u has positive or negative exponent.

(1) u = ayjb where a E {Yl, ... Y.i-l}, b E {Yl, ... Yj}·

By 4.1 we know that

by·av '~(a)y'v ·~(b)J.7 J .7

is fixed by e. Now if aVj~(a) = 1 then ya is fixed by ~ which is a contradiction to the

maximalty of a. Hence (wj~(a) i=- 1. However, by 4.1.1, Y.ivj~(b) begins with Yj after

reduction and hence yjb is fixed whcih is again a contradiction to the maximality of

(3. So this situation cannot arise and we move on to the next case.
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(2) u = aYj-1b where a E {Yl,'" Yj-l}, s « {Yl,'" Yj}·

By 4.1 we have that

is fixed by 'ljJ and as above we deduce that aVj'ljJ(a) =I=- 1 and hence that b E Fix'ljJ

which implies that b = 1.

Now by 4.1.2 we get that

(4.2)

However consider the following,

'ljJ(Vj'ljJ(a)a) = 'ljJ((avj'ljJ(a))li)

= (avj'ljJ(a))~a by 4.2

= 'ljJ(a)avj

Thus we see that vj'ljJ(a)a E Fixbvj'ljJ)I{Yl,...,Yj_d and hence by 4.1.2 that

We immdiately get that

and hence that a E< Vj >. This means that Yjafh E Fix'ljJ which is in contradiction

to the maximality of o. Thus we conclude that u cannot contain any ocurrence of
,.

the letter Yj and thus that u E {Yl,"" Yj-l}'

Now if u = 1 we would be done as then the image of Xi under X would satisfy the

conditions of the proposition so we assume that u =I=- 1 and we attempt to show that

there is a k < j such that Vk and Vj are conjugate by a word a, and that u = aYk.

We continue in the same manner by looking at the highest letter that occurs in

u and almost as before we consider separately the cases where the last occurrence of

said letter has positive or negative exponent.
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(1) u = aYkb where k < j, a E {Yl, ... , yd and b E {Yl, ... , Yk-l}.

Now consider,

'lj;((UVj'lj;(U))il)

(UVj'lj;(u))'IjJ(u), by 4.1

'lj;(U)fLVj

and hence that Vj'lj;(u)u E Fixbvj'lj;) n {Yl, ... , Yj-d· So that by 4.1.2 Vj'lj;(u)u E<

(4.3)

Vj > and in fact that 'lj;(u) U E< Vj ». In terms of the decom posi tion of u this means

that,

If vk'lj;(b)b = 1 then we can easily compute that Ykb E Fix'lj;which is a contradiction

to the maximality of fl. On the other hand if vk'lj;(b)b =1= 1 then by 4.1.1 a E Fix'lj; and

hence Vj cannot be cyclically reduced. Thus u cannot have this form.

(2) u = allkb where k < j, a E {Yl, ... , Yd and bE {Yl, ... , Yk-d·

As above we get that 'lj;(u)u E< Vj > and writing this in terms of the decompos-

ition,

If 'lj;(/))b =1= 1 we again get that Vj is not cyclically reduced, so we conclude that

b « Fix'lj; and so b = 1, by the maximality of fl·

Rewriting the above equation we get,

(4.4)

We may reiterate the above arguments to show that a can have no occurrence of

a letter Ym with m ~ k, in the following manner.
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Suppose that 0,= a1Ymb1 where 0,1 E {Y1, ... , Ym} and b E {Y1, ... , Ym-1}. Then,

If vm'ljJ(b1)v-kb1 = 1 then Ymb1Yk E Fix'ljJ which contradicts the maximality of {3.

(Remember that b = 1.) Thus we get that 0,1 E Fix'ljJand thus that Vj is not cyclically

reduced. Hence a may not have this form.

If on the other hand a = a1y~b1 where 0,1 E {Y1, ... , Ym} and bE {Y1, ... , Ym-1}.

Then,

Here we argue that if 'ljJ(b1)Vkb1 = 1 then b1Yk E Fix'ljJ which is in contradiction

to the maximality of {3, (Remember that we are still dealing with the situation where

u = ay",) and that otherwise Vj is not cyclically reduced. Hence we conclude that

a E {Yl, .. ·,Yk-1}

By repeating the calculation of 4.3, using that aVk'ljJ(a) E Fix'ljJ and

a E {Y1, ... , Yk-1} we get that 'ljJ(a)a E< Vk >. However we know from 4.4 that there

is an integerr with 'ljJ(a)ihii = v/ and so,

and hence that

A a A ±1Vj' = Vk

This concludes case (i).

case(ii) This is similar to case (i) but with the exponent of Yj being negative. In other

words our commuting diagram is now,
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Xi _:_X::___~ atifJu(3

x.t. x~",p(t)'ljJ:(u),6 =
atYju(3x( Wi)

where, as before, t E {Yl,' .. ,Yj-l}, u E {Yl,' .. ,Yj} and a, (3 E Fix~. Additionally,

atYju(3 is reduced as written and lal + 1(31 is maximal.

As before we know that ui, E Fixc;i>and thus that the following word is fixed by

~:

Retreading now familiar arguments, we see that if l'ljJ(t)vj = 1, then tYj E Fix~ in

contradiction of the maximality of a and so by use of 4.1.1 we conclude that u E Fix~

and so u = 1 by the maximality of 13.

By 4.1.2 we get that t~(t)Vj E< Vj >::; Fix~. We also have that tVj~(f) E Fix~

by the following calculation:

~((Vj'ljJ(f)t)t)

(~(f)tVj)'IjJ(f) as tVj~(f) E< Vj »< Fix~

tVj~(f)

We may then reiterate the argument of the previous section to show that either

t = 1 or 1: = Yka for some k < j and where v/' = Vk±l and a E {Yl,' .. ,Yk-d. This

completes the proposition.

We wish now to get rid of the unpleasantness in the previous proposition and

deduce that if two maximal rank automorphisms are conjugate then the image of

a non fixed basis element is, up to sign and fixed elements, another basis element.

First we prove a two lemmas, the first of which was proved in [CT96] and which we

reproduce here for completeness.
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Lemma 4.1.4 Let g E Fixl,i>n {Xl, ,Xi} and suppose that Xi tJ_ Fixe. Then g =

UIU2 ... Urn where each 1 =J- Uj E ({Xl, , Xi-I} nFixl,i»U < .T(U\Xi > and this product

is reduced as written.

Proof: We note that this is actually a consequence of train track properties and the

strong right layered basis, but we give a combinatorial proof. If g E {Xl,"" xi-d

3
we are done. If not let Ul be the shortest initial subword of t which either ends in

,Xi or such that the next letter of J is Xi· If no such nontrivial subword exists, put

Ul = ~. If Ul E {Xl, ... ,xi-d then by 4.1.1 we also get that Ul E Fixe. If Ul = XiUU,

with U E {Xl,"" Xi-I} then by 4.1.2 U E< Wi ». The only other possibilities for Ul

are that Ul = XiU or Ul = UXi where U E {Xl,"" Xi- d· However in each of these

cases, by the definition of Ul and an application of 4.1.1 we see that XiU E Fixl,i>.This

is turn implies that UWi'ljJ(U) = 1 in contradiction of our hypotheses, as we have a

strong right layered basis. Hence the lemma.

Lemma 4.1.5 If u" = w, where v and ware cyclically reduced .fixed words, then

a E Fix'ljJ.

Proof: Since we know that both v and ware cyclically reduced, we must be able to

write a = vT a' for some r and some a' which is a subword of v. Therefore it is enough

to show that a' is fixed by 'ljJ. In addition to the fact that a' is a subword of v, we

also have that val E Fix'ljJ and is cyclically reduced.

Now look at the integer i such that, v E {Xl, ... ,xd - {Xl, ... 'Xi-d.

Suppose that Xi E Fix'ljJ. Then we may write v = Ul ... Urn, where the Uj are

alternately in < Xi > and {Xl,"" Xi- d· However using 4.1.1 we see that if Uj E

{Xl, ... ,xi-d then Uj is fixed. Then a' = Ul ... Ukgl where Uk+l = o9lg2' Hence,

g2Uk+2· .. UrnUl ... 'U~E Fix'l/J.

If Uk+l E< x; > then we are done. Otherwise Uk+l E {Xl,"" .Ti-d and 1 =J- Uk+2 E<

x, ». Thus g2 E Fix'ljJ and so 091and a' are fixed by 'ljJ.
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Suppose that instead, Xi (j_ Fix'lj!. Using 4.1.4, we may write,

V = Ul ... Urn where each 1 i= Uj E ({Xl,"" xi-d n Fix¢)U < X(WiXi > for some i.

Then a' = Ul ... Ukgl where Uk+l = glg2' If Uk+l E {XI,"" xi-d then as before

we get that a' is fixed. Otherwise Uk+l = Xihlh2Xi, where hlh2 E< Wi > and gl =

:Eihl' However as val is fixed we get a contradiction in this case, using either 4.1.1 or

4.1.4. Thus we have shown that a is fixed.

Now we have the improvement of 4.1.3,

Proposition 4.1.6 Suppose that ¢ and i] are conjugate under X. If Xi (j_ Fix¢, then

for some i.
XXi = ay/1 j3 where a, j3 E Fix'lj!.

Proof: Our first step is to show that if the proposition does not hold, then there

exist iI, i2 such that XXi! = aYjaYk ±l j3 and XXi2 = a'Yk ±l j3', for some j > k. Let

IT denote the natural abelianisation map from E; to the free abelian group of rank

n. Divide the basis elements Yl, ... ,Yn into two disjoint sets A = {Yj IVj = I} and

B,= {Yjlvj i: I}. Then by 4.1.4 (and a trivial inductive argument), IT(Fix'lj!)= IT(A).

Now IT(X(Xi)), which we label Zi, as i goes from 1 to ti is a basis for the free group of

rank n as is IT(Yj) 1 ::; j ::; n, By 4.1.3 we have that for each i, either z; E IT(A) or

Zi = IT(Yj) + gi for Yj E Band gi E IT(Fix'lj!)= IT(A) or z, = IT(Yj) - IT(Yk) + gi, where

j > k, Yj, u» E Band gi E IT(Fix'lj!)= IT(A). This last statement is a consequence of

4.1.5.

It is now clear by inspection that we can find the required Xi! and Xi2 with,

aYjaYk±lj3

a'Yk±lj3'
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where j > k and a, (3, a', (3' E Fix?jl. Also a E Fix?jln{Yl, ... Yk-l}. Now remembering

that v/ E< Vi > we have,

X(Wij) E <!3(YkVkYk)±I(3>

X(Xi2Wi2Xi2) E < a'(YkVkYk)±IQ,_' > .

Plainly then,

where I E Fix?jl. Now if I t/. {XI, ... ,Xi2-r} then clearly Wij will not be cyclically

reduced and so we get a contradiction. Thus I E {Xl, ... , Xi2}' but by 4.1.4 we know

that occurences of Xi2 in I must come in adjacent pairs of opposing sign. Hence in all

cases, Wij will not be cyclically reduced in contradiction to the properties of a right

layered basis. Thus we have proved the proposition.

Now for the main theorem,

Theorem 4.1.7 Given two maximal rank automorphisms, ¢ and?jl with strong right

layered bases, there exists an algorithm to decide whether they are conjugate in AutFn.

Proof: For convenience we assume that (using our previous notation) for some r,

Wl = W2 = . : . = ui; = 1.= VI = ... = Vr· Also Wj i= 1 for j > r (and hence Vj i= 1 for

j > r). First we consider permutations a of r + 1, ... , n. For each i > r we choose

an ti = ±1 and then attempt to find, using Whitehead's algorithm, an isomorphism,

Xl, from Fix4> to Fix?jl which sends, for some a, (3 E Fix?jl, iu, to Va(i/ and xiw(fi to

Ya(i)Va(i)Y;(i/i if ti = 1. If ti = -1 then we require that Xl sends ui; to to Ya(i)V;(i)Y~i/

and sends xiw(fi to V;(i) Q. We then define X(Xi) to be Xl (Xi) if i :::::;r and to aYa(i)(3

otherwise. If we have found Xl with the above properties, then 4>and ?jI are conjugate

under this X.

Conversely if 4>and ?jI are conjugate, then by 4.1.6 for each i > r , X(Xi) =

aYa(i)±I(3. We can easily see that for X(Xi) to be a basis of Fn, a must be a permuta-

tion. We can also see that X induces an isomorphism between Fix4> and Fix?jl, Xl as
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above. Thus by considering all the finitely many possibilities of a and fi we will find

an automorphism which conjugates ¢ to 'ljJ. So we are done.

The attentive reader will have noticed that the above Theorem does not quite

solve the conjugacy problem for maximal rank automorphisms since it assumes that

we have a strong right layered basis. Given a maximal rank automorphism it is

algorithmically possible to find a basis, {Xl, ... ,xn} such that,

¢Xl Xl

¢X2 X2W2

where ui; E Fix¢n < Xl, ... ,Xi-I> and ui, is cyclically reduced. We know that there

is such a basis, so we may search through all possible bases ( if we do not care for

the speed of our algorithm!) until we find one. The point being that we do not know

for any ui, whether or not there exists a u E < .Tl,.··, Xi-l > with UWi¢( u) = 1.

(We note that given i;1 right layered basis, one in which the multipliers just lie in the

correct subgroup and no more, we can find a basis as above. The process is descibed

in' [CT96] arid is also the content of 2.1.19.) We would like to show that the above

basis is strongly right layered, but this is not neccessarily the case. For suppose that

for some i, ui; = glg2 where both gl and g2 are fixed by ¢ and that for some j > i,

Wj = g2g}. Then the basis will fail to be strongly right layered but in a very easily

correctible way. If we have that the above situation occurs (where the products are

reduced as written) then we replace Xj, by x/ = Xjthxi E Fix¢. As we only look for

reduced products there is clearly an algorithm to do this, so we assume that our basis

has this additional property.

We now claim that the basis above is a strong right layered basis.

Proposition 4.1.8 The basis described above is a strong right layered basis for ¢.
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Proof: We merely need to show that for each ui; i- 1 there does not exist a u E

{XI,"" Xi-I} with ucjy(u) = w. We prove this by induction noting that WI = 1, so

the induction does start. Suppose then that {Xl, ... ,Xi-r} is a strong right layered

basis for cjyI<Xl ,... ,Xi-l >, we will show that the same is true for i. If ui; = 1, then we

are done. Suppose then that ui; i- 1 and that there exists au E< Xl, ... ,Xi-I> with

ucjy(u) = Wi. As we have done before we look for the last occurence of the highest

letter occuring in u, We additionally assume that u is the shortest amongst such

words with the above propery.

case (i) u = axjb, where a E< XI, ... , .'Ej > b E< XI,·.·, Xj-l > and j < i. Then,

We note that by the induction hypotheses bcjy(b)wj i- 1 and so by 4.1.1 (which does

not actually require a strong right layered basis) we get that a E Fixcjyand that ui,

is not cyclically reduced, which is a contradiction. Hence u cannot be written in this

form.

case (ii) u = axjb, where a E< XI,.·., Xj > b E< XI, ... , Xj-l > and j < i. This

time,

Wi = ucjy(u) = a.fjbcjy(b)xjwjcjy(a).

Now if bcjy(b) i- 1 then ui. is not cyclically reduced, by 4.1.1. If, on the other hand

bcjy(b) = 1, then we deduce that b = 1 by the minirnality of u. Hence,

Again by the minimality of u, we deduce that Wj i- 1. We repeat a calculation we

have done before,

cjy(Wjcjy(a)a) cjy((awjcjy(a))a

(awjcjy(a))¢(a) ,asawjcjy(a) E Fixcjy

cjy(a)awj.
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Thus by 4.1.2 and our inductive hypotheses, ¢(a)a E< Wj .>. Hence Wia E< Wj >

and so by 4.1.5 a E Fix¢. Thus we have that ui, = w/'. By the minmality of u and

as in, and Wj are cyclically reduced we see that a is an initial subword of Wj. Thus

Wj = aa', where a, a' E Fix¢ and ui; = a' a. This is precisely the situation which we

have avoided, as discussed in the comments before this propostion. Thus we have

proved the proposition.

We have thus shown the following:

Corollary 4.1.9 The conjugacy problem for automorphisms of maximal rank is solv-

able.

As commented previously, it is shown in [CL] that the conjugacy problem for

outer automorphisms of maximal rank is solvable. (Actually, there it is proven for

dehn twists, but by 3.2.2 these are the same.) This, together with some partial

results indicate that the above methods will work for relative train track maps which

represent maximal rank outer automorphisms, or at least some prudent choice of

relative train tracks.

What is interesting about our proof is that it is entirely combinatorial and so one

might hope to extend the result to maximal rank automorphisms of free products. In

[CT96], it is shown that if ¢ is a maximal rank automorphism of the free product C.

Then we can write C = Cl * ... * Cn such that,

¢C i = C i if C i '¥- Z
¢(Xi) = XiWi where ui; E Cl * ... * Ci-l, if G, ~ Z =< Xi >

Additionally, Fix'Ywi¢lnGl*",*Gi_l~ Z or C ).iCjAi

We wish to discuss the conjugacy problem for maximal rank automorphisms of

free products. Firstly we must have that the conjugacy problem be solvable in each
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of the automorphism groups of the factor groups. For the next condition consider the

following illustrative set of examples.

Let G = H *Z where H is indecomposable and not infinite cyclic, and Z =< X >.

Define two maximal rank automorphisms (h, (h defined as follows. <PI/ H = <P2/H =

identity and for some hI, h2 E H, <PiX = xh.: Suppose that there is an a E H with

hI = ah2<p2(a), then by defining XH = identity and XX = xa we see that <PIand <P2

are conjuagate under X.

We say that the twisted conjugacy problem is solvable in H if given hI, h2 E H

and <P E AutH with Fixe, Fix(rhl<P), Fix(rh2<P) # {I} then it is decidable whether

there is an a E H with hI = ah2<P( a).

We believe it can then be shown, using methods similar to those above, that if

the conjugacy problem is solvable for maximal rank automorphisms of G then the

twisted conjugacy problem is solvable in each of the factor groups. We conjecture

that this is also a sufficient condition.
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Chapter 5

Index Theorem

5.1 The Attractivity of Infinite Fixed Words

The following theorem is the free product analogue of the index theorem for finitely

generated free groups by [GJLL]. It can be seen as a refinement of the Bestvina-

Handel theorem [BH92] later extended by Collins and. Turner to Free Products in

[CT94].

Recall that for a subgroup H of a free product, G = Gl * G2 * ... * Gk * Fr, where

the G, are freely indecomposable groups and F; is a finitely generated free group of

rank r with basis {Yl, ... , Yr} we have a notion of Kuros rank of H in G written

K(H; G). Collins and Turner then prove that for cp E AutG K(Fixcp; G) ::; k + r .

(1.1.2)

Our goal is to study the dynamics of an automorphism of G on its infinite reduced

words, that is an infinite sequence of letters of G, ala2a3 ... such that every product

aiai+l is reduced as written. This means that either a; and ai+l belong to different

factors or they are both basis elements in the free group and a, =1= ai+l-l.

As in [Coo87] we can define a topology on G using the word metric. This space is

not, however, compact although automorphisms of G still act uniformly continuously.
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Given two possibly infinite words, Y and Z, we define Y I\Z to be the longest common

initial subword of Y and Z. This allows us to turn our free product G into a metric

space. Namely,

_ { (1 + IY 1\ Z I) -1 if Y 1= Z
deY, Z) - .

o otherwise

We set BG to be the set of reduced infinite fixed words and for any H c G, BH to be

the set of X E BG such that for every integer N there is awE Hand Iw 1\ XI ~ N.

Then, as in the free group case, free product automorphisms have the bounded

cancellation and uniform continuity properties (see [Gol90J).

Theorem 5.1.1 (Bounded Cancellation) Given p ~ 0 there is a q ~ 0 such that

for some x, x' E G, if Ix 1\ x'I:::; p then I¢x 1\ ¢x'l :::;q. Note that we set B¢ to be the

constant we get on setting p = 0 and B = max(B¢, B¢-l).

We also have the related property of uniform continuity:

Theorem 5.1.2 (Uniform Continuity) Given q ~ 0 there is a p ~ 0 such that if

Ix 1\ x'I ~ p then I¢x 1\ ¢.x'l ~ q.

Hence it is possible to define the action of an automorphism on the infinite reduced

words. Moreover, the properties of Uniform continuity and Bounded cancellation still

apply when infinite reduced words are considered. If X is such a word and ¢ E AutG,

then ¢X is defined to be limi-too ¢Xi where Xi is the initial subword of X of length

i. That this limit exists is a consequence of Uniform Continuity. Additionally for

any sequence of words {Wi} such that ui, -+ X, then limi-too ¢Wi = ¢X. (Again a

consequence of uniform continuity.)

Suppose we are given an infinite word X which is fixed by ¢. We shall always let

Xi denote the finite .initial word of X of length i and let Xi denote the ith letter of X
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or equivalently the terminal letter of Xi. Now we have that cjJXi = Xk(i).Zi where the

k(i) is chosen maximally and by bounded cancellation we have that IZil ::; B where

B is the bounded cancellation constant. Similarly «<x, = Xh(i)Yi where IYiI < B.

We put ui; = Xi -lcjJXi and Vi = Xi -lcjJ-l Xi.

Since X is fixed, k(i) --t 00 and we say that X is algebraically attracting for cjJif

k(i) - i --t 00. We say that X is algebraically repelling for cjJif h(i) - i --t 00.

We also have a notion of topological attractivity. We say that X is topologic-

ally attracting for cjJif there exists an integer N such that if IY 1\ X I ~ N then

limn-too cjJnY = X, and we call X topologically repelling if the corresponding state-

ment is true of cjJ-l.

That these notions do not in general coincide is an interesting departure from the

free group case. K-~(G/i~~)
We may define the index of an automorphism, i(c/J), to be /K(Fi:r;~, ay + a~)

where a( c/J) denotes the number of equivalence classes of topologically attracting fixed

infinite words for the automorphism. Two infinite attracting reduced words, X, Y,

for cjJare said to be equivalent ifthere exists a (finite) word, W E FixcjJwith wX = Y.

Then for <I> E Out G we define i(<I» = 1 + L:(i(cjJ) - 1) where the sum is taken over

a set of representatives for the positive similarity classes of <I>. It is not a priori clear

that this number is finite.

(We recall that two automorphisms cjJ,'ljJ of G are said to be similar if there is a

commuting diagram:

G~G

!¢ !V)
G~G

where I is an inner automorphism. A similarity class is an equivalence class under

this relation. It is clear that the index of similar automorphisms is the same and hence

a positive similarity class is one in which each automorphism has positive index.)
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The above definition is in terms of topologically attracting fixed infinite words.

For free products this is not the same as its algebraic counterpart.

Consider the group G = HI * H2 * Z. Where both HI and H2 are isomorphic to

Z EBZ, and we have that' : HI -+ H2 is a fixed isomorphism between them. Let e be

the automorphism of HI defined by the matrix G~).
Labelling the generator of the infinite cyclic factor x, we define the automorphism

a of G as follows.

For all h E HI, ali = (eh)' E H2 and oh' = h, for all h' E H2. On the infinite

cyclic factor we have ax = xg, where 9 = (1,1) E HI.

lt is clear that a possesses no fixed words but the following reduced infinite word

is fixed by a:

.rg( (}g)' {}g( (}2 g)' {}2g ...

This word is neither algebraically attracting (applying a to a subword of length k

always results in a subword of length k + 1) nor is a limit of fixed words. We note

that we are using the free product length here which ignores the fact that the words

(}n(g) are arbitrarily long in terms of the generators of HI and assigns to each of them

a length of one. In fact our proof will show that this is indeed always the case. It

may thus be tempting to abandon the free product length for a length based entirely

on the generators of the factors. We do not do this since for this to work we would

first require that our groups be finitely generated (we make no such requirement) and

moreover we would need the length with respect to the generators to be in some sense

well behaved. For example we would need to assume that the group were hyperbolic

or automatic (as in the above example). The free product length has the advantage

of having the bounded cancellation and uniform continuity properties regardless of

the factor groups involved. We finally note that in the above example we could have

used any group in place of Z EBZ as long as it had an automorphism of infinite order.
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Hence the notion of topological attractivity is weaker than its algebraic coun-

terpart but will be sufficient for our purposes. From now on when we use the term

attracting it will be assumed that we refer to the topological notion. In this way we

have the important analogue of [GJLL, proposition 1.1]. However, before we prove

this we need some technical lemmas.

Now it is proved in [CT88, proposition 2.4] that there are certain restrictions

on the images of free product words. The following is a restatement of their result.

Although the statement there concerns only finite words Y, the result is easily deduced

for infinite words by Uniform continuity.

Lemma 5.1.3 Given a non cyclic factor of G say Gi, then cp(Gi) = GY: for some

non cyclic factor Gik and some u; E G. Suppose for some possibly infinite word Y,

where this product is reduced as written and x E Gik.

Then either

(i) Y begins with a letter from Gi, or

(ii) there is a .finite set of letters L, and a constant, r, depending only on cpsuch that

x is a product of at most r letters from L.

Note that for our purposes we asumme that the set L contains all the letters

which occur in the normal form of the ii, in the lemma and also all the letters which

occur in the words CPYi±l, where {Yl, ... ,Yr} is the basis of F; and that Yi±l E L for

all i. We also assume that L is closed under taking inverses.

The following lemma deals with controlling the words Zi.

Lemma 5.1.4 If k(i) > k(i - 1), then Zi occurs as a (terminal) subword of CPXi.

Proof: Now, CPXi = Zi-=-\Xk(i-l)+l ... Xk(i)Zi. This product is not necessarily reduced as

written, however Xk(i-l)+l ... Xk(i)Zi is reduced and also by definition, the first letter
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of Zi-l cannot be the same as Xk(i-l)+l although it could be in the same factor.

Hence Zi-::"\Xk(i-l)+I ... Xk(i) ends with a letter in the same factor as Xk(i) and thus no

cancellation can occur with Zi'

Now it is convenient to deal with a well behaved sequence i; which is defined as

follows. Let io be the least integer such that k( io) > 0 and inductively let k( ir+d be

the least integer such that k(ir+d > k(ir). We immediately have that ir > ir-l and

k(ir) > k(ir -1) and so lemma 5.1.4 applies. We also have

Lemma 5.1.5 ir+l - i; :s: C for some constant C independent of r .

Proof: By uniform continuity there is a constant C such that if Iwl ~ C then I¢wl >
3B where B is the bounded cancellation constant. Suppose that ir+l - i; > C, then

I¢Xir+1-11 = 1¢(Xd¢(Xir+l ... Xir+l-dl > k(ir) -2B+3B = k(ir) +B, using bounded

cancellation and the fact that 1¢(Xir+1 ... Xir+l-dl > 3B. However k(ir+l - 1) :s: k(ir)

and hence IZi"+l -11 > B, which is a contradiction.

Now a little more notation. Suppose we have a finite set of letters S. Then we

define another finite set of letters SI = S and inductively we define Si+l = Si Si.

where we mean SS to be all the products xx' where x, x' E S and in the same factor.

We assume that 1 E S and so SCSI and that our sets are closed under taking

mverses.

Definition 5.1.6 We also need the following notation. If Gi is a non cyclic factor of

G, then by the Kuros subgroup theorem, the image of Gi, under an automorphism

is the conjugate of another non cyclic factor. If x is a letter in a non cyclic factor

of G then we write dn: = [¢x]tLx, where we have that [¢.T] will be another letter in a

non cyclic factor and this product is reduced as written. This decomposition is then

unique.
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The next two lemmas will be used later to set up an inductive step that will enable

us to show that certain fixed infinite words are attracting.

Lemma 5.1.7 Let S be a finite set of letters such that L c S. Suppose for some k,

Xk rf. s>. Then for some j we have that

(i) [¢Xj] rf. S.
(ii) 1¢(Xj_dJ.L(xj)-l /\ XI ~ k - 1.

(iii) 1¢(Xj_dJ.L(xj)-I[¢Xj]/\ XI ~ k - 1.

(iv) If for some integer i, k(i) ~ k then, j :S i.

Proof: Let m be the least integer such that k (im) ~ k. Then k (im - 1) ::S k (im- d <

k ::S k(im). Now,

lf this is reduced as written or if k > k( im - 1) + 1 then, as in lemma 5.1.4,

Xk occurs in the image of Xim and hence as L c SC we have that Xim is a letter

from a non cyclic factor, that Xk = [¢Xim] and that conditions (ii) and (iii) in the

statement of the theorem hold. So suppose that neither of these is the case. Then

k = k(im - 1)+ 1= k(im-I) + 1 and we can write Zim-l = zZ' where this product is

reduced and z is in the same non cyclic factor as Xk = Xk(im-I)+I, but not equal to it.

Thus (Z-IXk) occurs in the image of ¢Xim and we have two possibilities:

(a) (Z-lXk) rJ. SC-l or,

(b) (Z-lXk) E SC-l which implies that Z-I rJ. SC-l since we know that Xk rf. Sc.

lf (a) holds then we are done with j = im. Condition (i) is immediate and con-

ditions (ii) and (iii) follow on noting that ¢(Xim-I)J.L(Xim)-1 = Xk(im-l)Zim_IZ,-l =

Xk-IZ and similarly ¢(Xim-dJ.L(Xim)-I[¢Xim] = Xk(im_1)Zim_lZ,-lz-lxk = Xk.

So we suppose that (b) holds and so Z-I rJ. SC-I. Now if k(im - 1) > k(im - 2)

then by lemma 5.1.4, z occurs in the image of Xim-I and so much as before we get that

conditions (i)-(iii) hold with j = im - 1. Otherwise k(im - 1) :S k(im - 2). Note that
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in this case we must have that im - 1 > im-1 since as noted k (im-1) > k (im-1 - 1), by

the comments after 5.1.4 . However we claim that here k(im - 1) = k(im - 2) since

if k(im - 1) < k(im - 2) then k - 1 = k(im - 1) < k(im - 2) :::;k(im-d = k - 1.

To review, k(im - 1) = k(im - 2) = k - 1 = k(im-d and im-1 :::; im - 2. The

argument then proceeds as before. If z occurs in the image of Xi;"-l then we are done.

Otherwise we must have that Zim -2 = z' Z" where z and z' are in the same factor.

If z = z' then we shift attention to Xim -2 remembering that z = z' fj_ SC-1 ::J SC-2.

If z of- z' then Z,-lZ occurs in the image of Xim-l (since rjJXim-1 = Z,,-lZ,-lzZ'). As

before we get two possibilities:

(a) Z,-l z tf. SC-2 in which case we are done with j = im - 1, or

(b) z,-lz E SC-2 and hence Z,-l fj_ SC-2

It is clear that we may repeat this argument, at each stage lowering the candidate

for our possible j and reducing the index, l of our set st. However we always reach

a positive conclusion if at some stage we get that k(j) > k(j - 1) but we know that

k(im-d > k(im-1 -1) and hence we reach a positive conclusion after at most C steps.

This is also why our sets Si are always well defined.

The next lemma is central in describing how little cancellation occurs under cer-

tain assumptions and will be key in determining attractivity properties. First we need

to make the definition that ensures the 'small cancellation'.

Let x be a letter of G. We say that x has property P if the following conditions

hold.

a) x fj_ L

b) If y, y' E LT and both are in the same factor as [rjJx] then y [rjJx]y' fj_ LT. Or

equivalently [rjJx] tf. L3T
c) Again, if y, y' E LT and both are in the same factor as [rjJx], then [rjJ(y[rjJx]y')] fj_

(Note that these are the same Land r as in lemma 5.1.4.)
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Lemma 5.1.8 Suppose for some) that Xj has property P and that there is an i 2 i.

such that

1¢(Xj_d/1(xj)-l /\ XI 2 i, and 1¢(Xj_1)/1(Xj)-1[¢Xj]/\ XI 2 i

Then there is a ]1 > i such that

(i) 1¢(XjZ) /\ XI ~ ]1 - 1, and 1¢2(Xjz) /\ XI ~ ]1, whenever Z is a possibly infinite

word such that XjZ is reduced.

(ii) 1¢(Xj1-1)/1(XjJ-1 /\ XI 2 )1, and 1¢(Xh-1)/1(.Thr
1[¢Xh]/\ XI 2 )1,

(iii) There are x, x' E LT such that xj[ = x[¢Xj]x'.

Proof: Let Z be a possibly infinite word such that XjZ is reduced as written.

Consider ¢(XjZ) = ¢(Xj_d/1(Xj)-l[¢Xj]/1(Xj)¢(Z).

Now by lemma 5.1.3 and property P, [¢Xj] is not entirely cancelled in this product

and so we can find y, y' E U (possibly trivial) so that

¢(XjZ) = Xjw(Y[¢Xj]YI)Z', for some words wand Z' so that this product is

reduced (if we count (Y[¢.Tj]Y') as a single letter). Note that Xj occurs as an initial

subword by our hypotheses and in fact IXjw /\ XI 2 i since [¢Xj] does not entirely

cancel. Also keep in mind that y is independent of Z and that, ¢(Xj_d/1(Xj)-l[¢Xj] =
Xjw(Y[¢Xj]); Now we apply ¢ again,

¢2(XjZ) = ¢(Xj-1)/1(Xj )-1 [¢Xj]/1(Xj )¢(w )¢(Y[¢Xj]YI)¢(Z')

= Xjw(Y[¢Xj])f1(Xj )¢(W )¢(Y[¢Xj]YI)¢(Z')

Applying lemma 5.1.3 again we can find a y" E U such that

for some w', where this product is reduced on counting the bracketed term as a

single letter. Note that property P ensures that the bracketed term is non trivial. Now

~eobserve that if w' = /1(Y[¢Xj]yl) and (Y[¢Xj]yll) and [¢(Y[¢Xj]yl)] are in the same
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factor then by lemma 5.1.4 (Y[¢Xj]yfl) E LT which contradicts part (b) of property P

and hence:

where either W2 =1= 1 or [¢Xj] and [¢2Xj] are in different factors and otherwise the

product is reduced as written with y"', z E LT.

Yet another use of lemma 5.1.3 yields that,

where the bracketed terms are non trivial, by parts (b) and (c) of property P

respectively, and they are either in different factors or W2 =1= 1. We also have from

lemma 5.1.3 that z' E LT and otherwise this product is reduced.

Now we claim that the required XlI is just (Y[¢Xj]Y"')· Firstly it is clear that

this does not depend on Z. Then observe that Xjw(Y[¢Xj]yfll) is always a subword

of ¢2(XjZ) and hence a subword of ¢2(X) = X, so we do have that (Y[¢Xj]Y"') = XlI

for some jj > i. (Our hypotheses guarantee that IXjw 1\ XI ~ i.)

The rest of the lemma follows on noting that

where in this last product either W2 =1= 1 or Xj! and Zl are in different factors and

is otherwise reduced and

The following proposition is central to the discussion, however the proof is trivial.

Proposition 5.1.9 There is a finite set oj letters M such that iJ X tf. M then X E G

satisfies property P
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Let Mo = M and inductively Mi+l = ¢i+l LMi¢i+1 L, where ¢L denotes the finite

set of letters that occur in the reduced images of letters in L and much as before,

¢i+1LMi¢i+l L is the set of all products xmx' where x, x' E ¢i+l L and m E M, and

we assume that 1 E M that M C M, for all i and that these sets are closed under

taking inverses. Let N, be the finite set of letters such that [<fJiy] E M, implies that

y E Ni, That is, N, is the set of preimages of M, under ¢i. Hence if x ~ Ni then

¢ix ~ Mi' Now we say that a letter Zl is a descendent of Z if there are y, y' E L such

that Zl = Y[¢Z]y', and in general that Zk is a k-descendent of Z if there are letters

Z = ZO, Zl, "'Zk such that Zi+l is a descendent of Zi· We have thus defined N, so that

if x ~ Ni then all i-descendents of x have property P. Thus we get the following

corollary to proposition 5.1.9.

Corollary 5.1.10 There is a .finite set N such that if x ~ N then all k-descendents

ojx have properiu P for 1 :::;k :::;C + 1. (C + 1 is the constant from lemma 5.1.5)

Lemma 5.1.11 Sv,ppose that for some i, k(i) ~ i andk(i) > k(i - 1) and also that

some letter of ui, is not a member of NC+1. Then there exist integers i = io < il <

...< iC+l such that

and,

for ° < k < C whenever x.,Z is reduced.

Proof: Now lemma 5.1.7 along with lemma 5.1.4 (if for some letter Z of Zi, Z ~ N

then [¢Xi] = Z ~ N) provide us with the hypotheses necessary in order to apply

lemma 5.1.8, given our choice of the set N and corollary 5.1.10, but in fact we can

apply lemma 5.1.8 C times in order to reach the conclusion of the lemma.
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So far we have given conditions to help show attractivity given we can exclude ele-

ments from a finite set. The next proposition shows how we can obtain this exclusion

and is exactly the same as in [GJLL, proposition 1.1].

Proposition 5.1.12 Suppose that there is an integer B and a .finite set of letters A

such that for infinitely many uu, IWil ::; B and every letter of ui; is a member of A.

Then X E 8Fix4>.

Proof: There are only finitely many words with the above properties and hence

we have a sequence Wjk which are all the same. Thus for every k, Xjo -l4>(Xjo)

Xjk -l4>(Xjk) and so XjkXjo -1 E Fix4>and as]o is fixed X.ikXjo -1 ----+ X.

Our final lemma before the main proposition of this section lets us deal with the

case contrary to lemma 5.1.11 when k(i) < i.

Lemma 5.1.13 Suppose that k(i - 1) < k(i) < i and that h(k(i)) < k(i), then there

is a .finite set of letters A such that either every letter of Vk(i) belongs to A or every

letter of ui, belongs to A.

Proof: Now Vk(i) = Xk(i) -l ... Xh(k(i)+l -1Yh(k(i)). By definition of Yi we must have that

Vk(i) begins with a letter in the same factor as Xk(i) and hence Xi -1 ... Xk(i)+1-1Vk(i) is

reduced as written. However, 4>Xi = Xk(i)Zi and 4>-1Xk(i) = Xh(k(i)) Yh(k(i)) and so

A.-1Z -1 -1 -1
'f' i = .Ti ... Xk(i)+1 Vk(i)

- Now by lemma 5.1.4 Z, is a terminal subword of 4>Xi. Now either Xi E S or it belongs

to a non cyclic factor of G, but in either case at most one letter of Z, does not belong

to L and this letter will be in a non cyclic factor. Then by enlarging our set suitably

'Ye see that we have a finite set of letters A' such that every letter of 4>-1Z,-1 belongs

to A' with the exception of at most one. Hence either every letter of Vk(i) belongs
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to A' or each of Xk(i)+1' ... , Xi belongs to A'. In the latter case there are only finitely

many possibilities for Zi and thus by enlarging our set once more, to a set A, we will

have that every letter of ui; belongs to A.

The main proposition is now relatively easy to prove.

Proposition 5.1.14 The following are equivalent:

(1) X is a topologically attracting or repelling infinite .fixed word for ¢

(2) X tj. 8Fix¢.

Proof: That (1) implies (2) is clear as X E 8Fix¢ means that for any N E N

there must exist aYE Fix¢ such that IY 1\ X I ~ N and so as limn-too ¢nY

limn-too ¢-ny = Y we cannot satisfy (1).

The implication (2) implies (1) is quite different from the free group case since

we have that in general there may be infinitely many words of any finite length.

So we are given an infinite fixed word X and we know that X tj. 8Fix¢. We first

fix a )0, using proposition 5.1.12, such that for all i > )0, if IWil ::; 2B + C then some

letter of ui, does not belong to NC+1.

We then look for some i > )0 + C = such that k( i) ~ i. If there is such an i we

claim that our word is attracting. Assume there is such an i and choose the greatest

r such that i; ::;i. Then we know that i; > )0 and that k(ir) ~ k(i) ~ i ~ i.: If

IWirl> 2B + C then k(ir) - ir > B + C and IY 1\ XI ~ ir implies that I¢(Y) 1\ XI ~

ir + C ~ ir+l by bounded cancellation and lemma 5.1.5. Thus we would also get that

k( ir+d ~ ir+l and this would form an inductive step. If however IWir I ::; 2B + C

then by lemma 5;1.11 there are integers ir = mo < tti, < ... < mC+l such that if

IY 1\ XI ~ m, then I¢Y 1\ XI ~ ms+l - 1 and 1¢2Y 1\ XI ~ ms+l· Thus if

IY 1\ XI ~ ir

then

79



Also here we have that k(ir+1) 2': ir+1 since we may find an s with m, ::;ir+1 < ms+!

and so k (ir+ d 2': ms+ 1 - 1 2': ir+!, using lemma 5.1.11.

We can proceed by induction to show that X is a topologicaly attracting word

for ¢.

If then we cannot show that X is attracting or repelling 9Y this method then for

some j' we have that for all i 2': i', k( i) < i and h( i) < i. By uniform continuity we

may choose j' large enough so that for all i > j' we also have that h( k (i)) < k (i).

We may also find a constant D such that if Iwl ::; B then 1¢-lwl ::; D (Remember

that B is a cancellation constant for both ¢ and ¢-1.) Suppose for some i > i' that

IVk(i)1 > B+D. Then k(i)-h(k(i)) > D and hence 1¢-l(Xk(i)Zi)J\XI < h(k(i))+D <

k(i) < i which is a contradiction. Thus IVk(i)I is bounded for all i > i'. Similarly, if

IWil> B + D then i - k(i) > D and 1¢-l(Xk(i)Zi) J\XI ::; h(k(i) + D < k(i) + D < i.

Hence IWil is also bounded for all i > j'. Then by lemma 5.1.13 and proposition

5.1.12 we get that X E oFix¢ which contradicts our hypothesis.

Thus for arbitrarily large i we have that either i :::::;k(i) or i ::;h(i). Note that

since an infinite word cannot be both attracting and repelling only one of these can

occur.

Corollary 5.1.15 Let X be an attracting .fixed in.finite word. Then there is a .finite

subiuord X' of X such that limn-too ¢nX' = X and if IY J\XI 2': IX'I then I¢Y J\XI 2':

IX'I. In particular X' is a subword of ¢X'.

Proof We simply apply the techniques of proposition 5.1.14 noting that for some

i we must have that k(i) 2': i since X is attracting.

Corollary 5.1.16 Let X be an attracting fixed infinite word, let S be a finite set of

letters and let N be an integer. Then there is an integer io such that for all i 2': io

either
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(i) k(i) ~ i + N, or

(ii) There is a j > i and an element 9 E G such that both Xj and 9 lie in the

same non free factor and so that Xj_1(Xjg) ::; cp(Xi) and Xjg ~ s.

Proof This is clear on applying the argument of 5.1.14 and on noting the details

of 5.1.11 and 5.1.8.

5.2 Main Theorem

We wish to consider a slightly different object from a free product, but which nev-

ertheless holds many of the same properties. In this section we consider topological

maps on graphs of complexes whose fundamenatl group is a finite free product as

above and which induce an automorphism on the fundamental group. From now on

we assume that all our topological maps are homotopy equivalences. In particular re-

lative train track maps are such. In effect we are studying the fundamental groupoid

of the graph of groups and we wish to state our results in terms of paths which are

not necessarily closed.

So suppose that the we have a topological map, f then one still has a notion

of path length and maximal common initial paths of paths which start from some

common vertex v. We assign to each real edge and stem a length of one and to each

element of one of the complexes we also assign a length of one. We write, ipi for the

length of the path p and p 1\ q for the maximal common initial subpath of p and q

when they start at the same vertex. We may also consider infinite reduced paths -

an infinite sequence XOXl ... , where each Xi is either a real edge or a stem or an an

element of a complex and additionally each pair XiXi+l is reduced as a path. Note

that an infinite path corresponds precisely to an infinite closed path in a finite graph,

but we distinguish between the two as it is important to take possibly non closed

subpaths of the former. We may deduce the properties of Bounded Cancellation and
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Uniform Continuity for topological maps from the corresponding property for the

automorphism they induce.

Proposition 5.2.1 Let f be a topological homotopy self equivalence of a graph of

complexes g. Let v be a vertex of 9 .fixed by f and p, q be paths in 9 starting at the

vertex v and so that the product pq is defined. (p is neccessarily closed.) Then there

is a constant B sucli that,

If(pq)1 ~ Ipi+ Iql- B.

Proof: First suppose that both p and q are closed. Then they both induce elements

of 7rl (9, v) and we have the bounded cancellation constant, B7rJ (J) for the automorph-

ism induced by f. As 9 is finite, there is a constant M, such that any path, (not

neccessarily closed) of length M in 9 gives rise to a word of length at least 1 in 7rl (9).

The result then holds in this case with B = M B7rJ (J). If q is not closed we may find

a path s such that qs is closed and there is a constant C which does not depend on

q such that If(s)1 :S C. Then,

If(pq)1 + C ~ If(pqs)1 > If(p)1 + If(qs)l- MB7r1(J)

> If(p)1 + If(q)l- MB7rl (f) - C.

So the result holds with B = M B7r1(.f) + 2C.

Proposition 5.2.2 Let p, q be paths storiiru; at the vertex v which is .fixed by f.

Given an integer N, there exists an uiiqer KN (not depending on p and q) such that

whenever Ip 1\ ql ~ KN then If(p) 1\ f(q)1 ~ N.

Proof: Let C and M be the constants from the proof of the above proposition. Let

sp, Sq be paths in 9 so that pSp and qSq are closed. By possibly increasing C, we

may assume that both Sp and Sq are paths of length at most C. (C will still only

depend on f and g.) To avoid confusion we shall use the notation, 11'1*, to denote
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the word length of I when it is a closed path in 9 but considered as an element of the

fundamental group. Then by bounded cancellation for autmorphisms we know that

there exists a constant K, such that if Ipsp 1\ qSql* 2: K, then If(psp) 1\ f(qsq) 1* 2:

M(N + C). Then if Ip 1\ ql 2: M(KI + C) we get that Ipsp 1\ qSql* 2: K1. However

when If(psp) 1\ f(qsq)l* 2: M(N + C) we deduce that If(p) 1\ f(q)1 2: N. Thus the

proposition holds with KN = M(KI + C).

Thus if v is a vertex fixed by I, then f acts on the infinite reduced paths starting

at v, by arguments that are the same as for the case of an automorphism. An infinite

reduced word X which is fixed by f is called topologically attracting if there exists

an integer i such that whenever Y is a path starting at the same vertex as X with

IY 1\ X I 2: i then limn-too ¢nY = X. So the notion of topologically attracting fixed

infinite path is well defined but one must remember that it refers to subpaths and not

only subwords. One may as in the group case define a topology on the set of finite

and infinite paths and. as there, if H is a subset of pa~b;e use the notation

oH to denote the infinite paths which are limits of pat'hs )r{jH.
It is easy to see that we also have an analogue of 5.1.3 and hence the whole

argument of the previous section may be used in this context and so we have an

analogue of proposition 5.1.14 and of corollary 5.1.15.

~ se,tC- '"t u"l ~\U_c. J
Proposition 5.2.3 Let f be a topttogical~wp (8"f gl tJ'tJ,TfI 9 where all the factor groups

are indecomposable and let v be a .fixed ueriex of f. Suppose that X is an infinite fixed

path starting at v, then the following are equivalent:

(1) X is a topologically attracting or repelling fixed in.finite path.

(2) X rt. oFixf

We also have the analogue of corollary 5.1.15

83



Proposition 5.2.4 Let X be an attracting .fixed infinite path. Then there is a finite

subpath X' of X such that limn-too I" X' = X and if Y is a path with IY 1\ XI ~ IX'I
then limn-too fn(y) = X and If(Y) 1\ XI ~ IX'I· In particular X' is a subpath of x.

Now suppose that we have a finite graph of complexes, ~ as above and that 1; is

an automorphism of the free product G which is isomorphic to the fundamental group

of this graph of complexes. Further suppose that f is a topological self homotopy

equi valence of 9 ,vis a vertex of g, f.1 is a path from v to f (v) and T is an isomorphism

between G and 7r1(9, v) such that the following diagram commutes:

G .i.; 7r1(9, v)

1¢ l1Tj(f,~)

G .z., 7r1(9,V)

Let X be an attracting fixed infinite word for 1; and let r be the reduced path

that X traces out in g. Let ri denote the initial subpath of r of length i.We then

have the following:

Lemma 5.2.5 There is an mo such that for all m ~ mo, i(rm)

after reduction of (Prm), this product is reduced and Y # 1.

Proof: Now 1;Xi = Xk(i)Zi and we know from 5.1.16 that for any choice of integer N

and any finite set S c G there is an io such that for all i ~io either k(i) ~ i + N or

k(i) ~ i or there is a,j > i such that Xj lies in a factor group and Xj_1(Xjg) ~ 1;(Xj)

where 9 is in the same factor group as Xj and (Xjg) ~ S. We assume that a maximal

tree in 9 has been chosen. Then given a rm there is a unique path, p in the maximal

tree so that rmP is closed. Thus rmP corresponds to a subword of X when regarded

as a group element. We may choose an mo such that whenever m ~ mo then this

subword of X has length at least io (as a word). Given m ~ mo, let i be the length of
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the subword corresponding to "'Imp. Now if N is large enough and k(i) 2 i+ N then

since we know that

we must get that not only is "'1m a subpath of Xk(i)Zi (once we reduce it as a

path), but also that "'1m is a subpath of Xk(i) ZiJ1J (p-l ) as there are only finitely many

choices for p. Suppose on the other hand that for some j > i,

as above, where Xj and g lie in the same vertex group and (Xjg) tf_ S, where S

is some finite set. Then if we write this a a reduced path for a start we must have

that "'1m is a subpath of Xj-1 (Xjg)Z and in fact Xj-1 corresponds to a path "'In, where

n 2 m which does not get cancelled. In addition (Xjg) will correspond to an element

in a vertex group and will also not get cancelled. If we choose our set, S to be

large enough then we will guarantee that in the product (Xjg)ZJ1J(p-l) the element

corresponding to (Xjg) in the vertex group will not get cancelled when we reduce this

as a free product.

Thus by a careful choice of Nand S and a use of 5.1.16 we may find an mo

such that for all m ::::mo, "'1m ~ f.1,f("'!m). We conclude the proof by noting that if

"'1m= J1J("'!m) for infinitely many m then "'I and hence X may be written as the limit

of of sequence of fixed paths (words) for .t (¢).

Our starting point is thus representing our free product automorphism as a relat-

ive train track map. We call the graph of complexes 9 and the homotopy equivalence

l. We then show that if the index is positive then our automorphism is point repres-

ented. That is, there is some fixed vertex v E 9 and a homotopy equivalence T such

that the following diagram commutes.
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G T 1Tl(Q,V)---+

17r1(J,V)

T 1Tl(Q,V)---+G

Note that 1Tl (j, v) denotes the point induced automorphism.

We then show that any attracting infinite path is equivalent to one which is

generated by a single edge and hence using an euler characteristic argument we obtain

the theorem.

Our first stage then is to show that any automorphism of positive index is point

represented. As in [CT94] we can always represent our automorphism by 1Tl (j, J-l) for

some path u. We pick a vertex v in 9 and a lift v of v in the universal cover 9 of G.

(We note that we can think of our graph of groups topologically, the universal cover

is then the topological one, that is a 2 - complex. This universal cover is obtained

by first finding the universal cover of the underlying graph and then to each vertex

which is a lift of a factor group we attach in the universal cover the Cayley complex

of the respective group. The Cayley complex just being the Cayley graph of a group

with 2 - cells added for every relation in the group.) We call the lifts of vertex groups

countries as in [CT94] . When referring to edges and vertices in 9 we shall always

mean edges and vertices which do not lie in any country.

We let 'Tl : 9 --7 9 be the covering map and if u and ware points of 9 then [u, w]

be any path in 9 from u to w

We identify the covering translation group T with 1Tl (Q, v) in the natural way.

(An element t E T is identified with the group element 'Tl[v, t(v).) We then define

(j : T --7 T. So that the following diagram commutes.
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9 __L, 9

It 1(j(t)
9 __L, 9

If we choose a lift v of v and the lift of f with I-" = rJ[v, f(v)], then (1 is conjugate

to 7f1 (1, p) under the natural isomorphism.

T--7f1(9,v)

1(j !7f] (.f,/L)
T --7f1 (9, v)

Then as in [CT94, Proposition 3.2] ¢ is point represented by f if and only if J has a

fixed point.

We thus argue that if J is fixed point free (that is having no fixed points outside

countries) then 7f1(1, p) cannot have positive index. As in [CT94, Proposition 3.3] we

can define an orientation on edges E in 9 by choosing an interior point wEE and

using the direction of the first partial edge in the reduced path from w to !(w). This

is well defined if J is fixed point free. The following lemma is true even if we drop
, -

the hypothesis that f is fixed point free, but we do not actually need this.

Lemma 5.2.6 Let X be an fo'Ri.firR,~f,~ attracting fixed infinite word for 7f1 (1, 1-") which
- -

we repre~ent as a path l' in 9 starting from the vertex v and suppose that f is fixed

point free. Then all but a .finite number of edges of l' (in g) are oriented along "I.

Proof: By 5.2.5 there is an mo such that for all m 2: mo, fbm) = (p-1'Ym)Y, where

Y =I- 1. Let E be an edge of l' with endpoints u and W. Then rJ[v, ij,] = "In and

eta[v, w] = 'Yn+1 for some n. Suppose that n 2: mo. Then
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where these are reduced paths and PI, P2 are non trivial. Hence j(E) ~ Pl-
l EP2

where this product is not necessarily reduced. It does however imply that either there
- -is a fixed point in the interior of E or E is oriented along i,and so we are done.

It is shown in [CT94, proposition 3.3] that this orientation (we still assume that

.i is fixed point free) satisfies the following:

(i) At each vertex that is not in a country, exactly one edge is oriented out. (ii)

Among the edges incident to a particular country, at most one is directed out. (iii)

There is at most one country with no outwardly directed edges.

We then proceed as in [CT94, proposition 3.3],

Proposition 5.2.7 If the index of (j is positive then f has a .fixed point.

Proof: The case where J{ - rank(T, Fi.T((j)) ~ 2 is standard. So we shall assume

that this is not the case. Now we consider 9 = Q/Fix((r Since t.i = .it for all

t E Fix(j, 9 inherits the edge directions from Q. Let G be the graph obtained from

9' by collapsing all the countries. Now (iii) guarantees that at most one country in

9 is essential. Then WI (9) = WI (G) * WI (C) where C is the essential country and

otherwise WI (9) = WI (G). In the former case we must have that the edge directions in

G have asink. Now an attracting fixed infinite word will produce an infinite oriented

ray in G. The orientation is given by lemma 5.2.6 and the fact that this is a ray is

a consequence of the fact that the word is not a limit of fixed words. Thus since we

assume that (j has positive index we must have that G contains either a sink and an

infinite outward oriented ray or two infinite oriented rays or a loop and an infinite

outward oriented ray. In each case if we consider a path between the two objects in

question we get a contradiction to property (i) above.
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We have thus shown that any automorphism of positive index can be point rep-

resented by our relative train track map. (In fact our proof also shows that if our

automorphism has two attracting fixed infinite words then it can also be point rep-

resented). We note that by our proof this fixed vertex is not contained in a country.

This can be stated in a slightly different form.

Corollary 5.2.8 Let the pair (J,9) be a relative train track map and suppose that

C is an f -invariant component of 9. Suppose further that for some path p in C,

7f1 (f Ie, p) has positive index or has two attracting .fixed in.finite words, then there is

a path a in C such that f(a) = p-Ia.

The next step is to look at a relative train track map and consider attracting

fixed infinite paths which start at fixed points. It is important that although our

paths are infinite that they are regarded as paths and not just words since it is

important to consider subpaths. Our aim is to reduce the counting of equivalence

classes of attracting fixed infinite paths to the counting of edges. Here we say that

two attracting infinite fixed paths.X, and X2, starting at possibly different vertices

are equivalent if there is a fixed path, p, such that pXI = X2. If Xl and X2 start

from the same vertex then this restricts to the equivalence relation we have already

encountered for attracting fixed infinite words. (We note that Xl is attracting as a

path if and only if it is attracting as a word. This is an easy consequence of 5.2.3 and

5.1.14.) Otherwise we note that p defines a natural conjugacy between 7f1(J, v) and

7f1(J,W) (where v and ware the initial vertices for Xl and X2 respectively) under

which Xl gets sent to X2 and hence the equivalence class of attracting fixed words

containing Xl gets sent to that containing X2. So if ¢ is an automorphism of positive

index, there is vertex, v, fixed by f such that ¢ is represented by 7f1 (J, v). We call

two vertices Nielsen equivalent if there is a Nielsen path connecting them. Let U

be the set of vertices which are Nielsen equivalent to v. (Note no element of U can
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lie in a factor complex.) From the above remarks, there is a bijection between the

equivalence classes of fixed infinite paths starting from some vertex in U and the

equivalence classes of fixed infinite words of cp.

First we note that an attracting fixed infinite path can be given a height with

respect to the strata of the relative train track. The lowe~t stratum C(9) consists

just of factor complexes and stems which are permuted up to homeomorphism. It is

thus clear that no attracting infinite path can have height 0, and must always contain

real edges.

So start with the case that we are given an attracting fixed infinite path, X,

of height r where Hr is a level stratum. Since the transition matrix of Hr is a

permutation matrix and X is fixed we must have that Hr consists of a single edge

and subdivision of fixed points means that Hr = E and f(E) = Er for some path

r C 9r-l'

Using the attractivity properties of X we easily get that X is equivalent to an

attracting fixed infinite word Xo where either Xo has height ~ r -lor the first edge of

Xo is E and every other edge of Xo lies in 9r-l. Now suppose we have two attracting

fixed infinite paths both of which are of the form E...... Let C be the component

of 9r-l containing the endpoint of E. Then we get that 7fl(flc, r) either has two

inequivalent attracting fixed infinite paths or there is an indivisible Nielsen path of

height r. In either case we can apply corollary 5.2.8 to obtain a path a C C with

f(a) = r-1a. The following is then immediate:

Proposition 5.2.9 Let X be an attracting .fixed infinite path of height r where Hr

is level then either (i) There is exactly one attracting infinite path of height r and no

INP's of height r or, (ii) There is an INP of height r and any attracting .fixed infinite

paths of height r are equivalent to attracting infinite paths of height ~ r - 1.

It is interesting to note that in case (i) above we have that the infinite attracting
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fixed infinite path is actually limn--+oot" (E).

Next we deal with the growing case:

Proposition 5.2.10 Let X be an attracting infinite path of height r where Hr is a

growing stratum, then X is equivalent to an attracting infinite word Xl where either

Xl has height:::; r - 1 or there is an edge E E Hr such that E is the .first edge of

f(E) and limn--+oofn(E) = Xl·

Proof: Let X' be the subpath of X as provided by corollary 5.2.4. Write X' as a

concatenation of maximal length r-legal paths. X' = al ...ak.
-1 -.1-

Then f(al) = 0'1 Tl, ... , f(ai) = Ti-IaiTi, ... , f(ak) = Tk-Iak, where all these

products are reduced and the Ti are the paths that cancel. Thus f(X') = al ...ak

but X' :::;f(X') hence each a, must be non trivial and each turn (ai, ai+d must be an

illegal turn in Hr. Again using the fact that f(X') ~ X' we get that al = aI, a2 =
0'2, ..... , ak :::;ak. and hence

So we get a fixed point somewhere in the path ak, and hence there is a ak' :::;ak

with f(ak')= Tk_l-Ia/ and so al ...ak' is a fixed path and X is equivalent to

where ak = a{ak". Write'Y = ak". Now if'Y C Yr-l then we are done. Otherwise

we know that 'Yis r-legal and without loss of generality we may assume that the first

edge of 'Yis in Hr for otherwise 'Ywill have an initial fixed subpath. (Remember that

'Y:::;f ('Y)). So if E is the first edge of 'Ywe get that

lim f(ry) = lim f(E)n--+oo n--+oo

since 'Yis an r legal path. It is then clear that E :::;f(E) and we are done.

Bearing in mind the above proposition we have the following,
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Definition 5.2.11 Suppose that E is the edge of a growing stratum and X is an

attracting fixed infinite path. Then we say that E generates X if, X = limn-Hxl fn(E)

and E is the first edge in its image.

The following is an easy corollary to the previous two propositions

Corollary 5.2.12

a(7rl(f,v)):S; LE(u)
uEU .

where U is the set of vertices Nielsen equivalent to v, and E( u) is the number of

oriented real edges starting at u.

So corollary 5.2.12 almost proves the index theorem. The only difficulty is in

taking account of Nielsen paths, which should limit the number of possible attracting

fixed infinite paths. Now by if we have an INP p of height r where Hr is a growing

stratum then p = O'.{3-1, where a and {3 are r-legal paths and the turn between a and

fJ is the only r-illegal turn in p.

Furthermore we have:

Lemma 5.2.13 Let p be an INP of height r where Hr is a growing stratum, p = O'.{3-1

(i) a begins and ends with edges in Hr, and similarly for (J.

(ii) a and {3 end with distinct edges.

(iii) a and (J start with distinct edges.

Proof: (i) is easily proved since if a has an initial subpath contained in Qr-1 then

this subpath must be fixed by the properties of a relative train track. This however

contradicts the fact that p is indivisible. We also know that a and {3 end with edges

from Hr since the turn between them is r-illegal.

. (ii) is clear since O'.{3-1 is reduced as written.
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It only remains to show that a and (3 start with distinct edges. Now, f (a) = txr

and f({3) = {3T for some path T C Qr-l' Hence if they start with the same edge

(which must be an edge of Hr) then without loss of generality, a must be an initial

subpath of {3. This is because a and {3 are r-legal and Hr is growing.

So a = {3{3' for some r-legal path (3' which ends with an edge of Hr. However we

must have that f({3') = T-1{3'T and since f({3) = {3T we deduce that T is an initial

subpath of {3'T as {3{3' is r-legal and (3'T is reduced. This tells us that the r length of

f({3') cannot be more than the r length of {3' which is a contradiction as {3' is r-Iegal

and the last edge of {3' lies in Hr.

Now we can attach to an equivalence class of attracting infinite paths a height,

namely the height of the lowest path. That the number of these equivalence classes

is affected by the number of INPs is the content of the next proposition.

Proposition 5.2.14 Let Hr be a growing stratum with an INP p = ajj then,

(i) The initial edges of a and {3 do not generate inequivalent attracting fixed infinite

paths.

(ii) The initial edges of a and jj do not both generate attracting .fixed infinite paths.

Proof: Let ia,ta, i(3 and t(3 be the initial and terminal edges of a and (3 respectively.

Now by lemma 5.2.13 all of these edges lie in Hn they are not however all necessarily

distinct. We do know that io: =1= i(3 and to: =1= t(3. Now as f(a) = ar and f({3) = (3T

and we know by the relative train track properties that

(a) The terminal edge of T lies in Hr and,

(b) The terminal edge of T is the same as the terminal edges of f(ta) and f(t(3).

Thus not both of t~ and t~ can generate attracting infinite paths and we have proved

(ii).

Now suppose that i(3 generates an attracting infinite path X. Then

X = lim fn (i(3) = lim fn ({3)
n--+oo n--+oo
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as f3 is an r-legal path. But then

pX = lim fn(pf3) = lim fn(a)
n--+oo n--+oo

and so if either in or if} generates an infinite attracting infinite path then they both

do, but these paths are in the same equivalence class. This finishes the proof.

A simple euler characteristic argument almost proves the index theorem. If we

have a fixed vertex v such that ITl(f, v) is an automorphism of positive index, U is

the set of vertices which are Nielsen equivalent to v and K is the number of INP's

with endpoints at U then certainly,

a(ITl(J, v)) - 2 S LE(u) - K S L -!U! + 1 (5.1)
uEU uEU

These inequalities follow because if we have an INP of height r then either: (i)Hr

is level and so an attracting fixed infinite path of height r is equivalent to one of

lower height or, (ii) Hr is growing and the distinct initial edges of an INP do not give

rise to inequivalent attracting fixed infinite paths. (Note that K = !U! - 1+ K -
rank( ITl(Q, v : Fix+, (f, v).)

, To prove the index 'theorem we need to make full use of the graph of complexes

discussed in chapter 1, which are used in [CT94] to prove the free product analogue

of the Scott conjecture.

Recall that a graph of complexes ~ is constructed with a map p : ~ ---t 9 so that

the image of every vertex is a vertex fixed by f and the image of every edge is an

INP. The notation ~r is used to denote the sub-graph of complexes of ~ generated by

the preimages of INP's of height at most r, and ~~ the component of ~r containing

the vertex v. Recall that if Z is a connected graph of complexes, then

K-rank(Z) = K-rank(ITl (Z).
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If Z has non contractible components, Z1, ... , Zp then,

p

K(Z) = 1 + :L)K-rank(Zi) - 1).
i=l

Suppose that Z1 ~ Z2 then,

Lemma 5.2.15 (3.10 [CT94]) K(Z1) < K(Z2)'

The inequality is strict if and only if either

(i) there is a path in Z2 meeting Z2 - Z1 whose endpoints lie in non contractible

components of Z1 or,

(ii) there is a complex in Z2 - Z1 which is attached at a vertex of a non contractible

component of Z1'

In [CT94] it is then shown that p induces an isomorphism, pl~v : ~v --t Fixsr, (f, v)

and that

K(~o) < K(Qo)

I{(~r) - I{(~r-d < I{(Qr) - K(Qr-d·
(5.2)

Recall that we have assigned a height to each equivalence class of attracting

fixed inifinite paths (the least among the heights in the class) and that each such

corresponds to an edge. (For growing strata, they are generated by a single edge and

for level strata there is exactly one edge corresponding to the attracting fixed infinite

path of least height.) We define

i(~~) = K-rank~~ + a(~~)/2,

where a(~~) is the number of equivalence classes of attracting fixed inifinite paths of

height at most r and which correspond to an edge whose initial vertex is a vertex in

~~. Then,

I(~r) = 1 +Lmax(O, i(~n - 1),

where the sum ranges over the components of ~r'
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Note: Throughout this f : 9 -+ 9 is a relative train track map as described in

chapter 1. However, in the following theorem we make a counting argument that will

be simplified if we make some restrictions.

Suppose that p = nf3 is an INP of height T, where Hr is a growing stratum. So

f(n) = ccr and f(f3) = f3T and n,f3 are r-legal paths. Let '!1J be the vertex at which

the illegal turn of Hr occurs (the endpoint of nand 13) and let t«. tf3 be the first edges

of a and 13 respectively. By 5.2.14, the first edge of f(ta) is the same as the first

edge of f(tf3) which is just the first edge of f. We may thus subdivide these edges,

t; = t~t~ and tf3 = t~t~ so that f(t~) = f(t~) and then identify t~ and t~ to form

a new edge til. This is an operation called folding (as in the irreducible case) which

induces a new topological map which is actually another relative train track map as

discussed in [CT94] and [BH92]. For the purposes of the next theorem we assume

that w, the vertex at which the illegal turn of the INP occurs, is not a vertex of 9r-i,

is incident to at least 3 edges of Hr and that one of these is the initial edge of T. Since

we may perform the above folding operation we know that every outer automorphism

has a relative train track representative with the above property. Thus, although we

only prove the following theorem for such relative train tracks, it will be sufficient for

our purposes.

Theorem 5.2.16

Proof: We shall actually prove, for each T, an equation as in 5.2,

As 90 consists of factor complexes and their stems there can be no attracting fixed

infinite paths of height 0, so I(~r) = K(~r) and the result follows by 5.2. If Hr

is either a descending stratum or a level stratum with an INP then there can be no
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equivalence classes of attracting fixed infinite words of height r and so again the result

follows by that of 5.2. Suppose then that Hr is a level stratum with no INP, then

In the former case there is nothing to prove. In the latter case, Hr consists of a single
-

edge E such that f(E) = ET for some T E Yr-l· Let v be the initial vertex of E.

By the equation above, we must have that i(~~_l) 2:: 1 and hence there is either a

closed fixed path at v contained in Yr-l or there is an attracting fixed infinite word

starting at v and contained in Yr-l. In either case, v must lie in a non contractible

component of Or-I. Also, as E occurs as the first edge of an attracting fixed inifinite

path but by the discussion before 5.2.9 E only occurs once in this path. Hence the

terminal vertex of E lies in a non contractible component of Or-I. Thus in this case,

The only situation left to consider is where Hr is a growing stratum. This is by far

the most difficult and we shall need to define various quantities. (Recall that Hr is a

collection of real edges.)

For every oriented edge E E Hr define r(E) as follows:

(i) If there is a loop (reduced) in On with E as its first edge and meeting no non

contractible component of Or-l then r(E) = 1.

(ii) If there is a path (reduced) with E as its first edge and ending in a non contractible

component of Yr-l then, r(E) = l.

(iii) r(E) = 0 otherwise.

Then for each vertex, v, of Hr let,

r(v) = Li(E)=v r(E), if v lies in some non contractible component of Or-I and

r(v) = max(O, (Li(E)=v r(E)) - 2) otherwise.

Note that i(E) denotes the initial vertex of E and that the sums above are taken

over edges of Hr. (In fact r (E) is only defined if E E Hr.)
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Then we define,

r(1ir) = L r(v).
vE1lr

Proof of Claim: If no vertex of 1-lr lies in Yr-l then this is clear as we have a type of
-

euler characteristic. Similarly, if no vertex of 1-lr lies in a non contractible component

of Yr-l or if every vertex, v, which does has r(v) = 0, then the claim is clear. (One

can reduce these cases to the previous one by using 5.2.15.)

So we suppose that there is a vertex, v, of calH r which lies in a non contractible

component of Yr-I and which is the initial vertex of the edge E E 1-lr and r(E) = 1.

Form the graph Y; from Yr by removing the edge E and 1-l~ similarly.

To prove the claim it will be enough to show that r(1-lr) ~ r(1-l~) + 2 since by the

definition of E it is clear that,

Thus by repeatedly removing edges we will have shown the claim. We consider Y; a

sub-graph of complexes of Yr and we use subscripts r1l,. and ru; to distinguish these

quantities when applied to the same edge (or vertex).

Now, by our hypotheses, there is a vertex, v, which is the initial vertex of the

edge E E 1-lr with tn,(E) = 1. Hence, either there is a reduced loop in Yr whose first

edge is E or there is a reduced path whose first edge is E and which ends in a non

contractible component of Yr-l. In both cases call the path p, and let w be the first

vertex of 'H; crossed by p with tu. (w) > O. (In the case where p is a loop it could

be that v = w.) By definition of w there is an edge e with initial vertex ui, such that

tn; (e) = 1 and e is the edge pointing back along the path p toward v. Potentially,
o

rn; (e) =f. although this is not neccessarily the case. (It is clear that e is distinct from

E as an oriented edge.)
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Now consider an edge f of Hr, which is distinct from E and e with initial vertex

u. Suppose that T'Hr (u) > 0 and that T'HT (1) = 1. We shall show that T'H~ (1) = 1.

Let PI be the path associated with f. So PI is either a loop whose first edge is .f or

a path whose first edge is .f and which ends in a non contractible component of Yr.

The only way that T'H~ (1) =1= 1 is if PI is a path containing the edge E, and without

loss we may assume that the last edge of PI is E and that otherwise every edge of PI

lies in H~. Now we know that there is a path from v to w starting with the edge E

and ending with the edge e and otherwise involving no occurence of either (or their

inverses). This is just a subpath of p, given above. Neither f nor J may occur in this

last path since we know that every vertex u' E Hr which is crossed on this path has

r n, ('u') = 0 and by hypothesis, u = i(1) and T'Hr (u) > o. Thus there is a reduced

path, PI C Y;, whose first edge is f which ends at w. If u = w or w lies in a non

contractible component of Yr-l then we are done. Otherwise call the last edge of PI'

e'. As T'Hr (w) > 0, there is an edge el =1= e, e' with initial vertex ui. (Also el =1= E as

in this case w does not lie in a non contractible component of Yr-l and so w =1= v.)

Thus PIP~l is a reduced path which lies in Y; and hence PfP~J;I is a path in Y; which
(after reduction) is a loop whose first edge is f. In every case, we get that ru: (1) = 1.

Hence we have shown that

which implies that,

This completes the proof of the claim.

To complete the argument we now show that,

(5.3)

By 5.2.10, if we are given an equivalence class of attracting fixed infinite paths of

height T, then there is a fixed infinite path in this class which is generated by a single
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edge E E Hr, with E ::; f(E). Furthermore, as E is the first edge of an infinite path,

r(E) = 1. Thus we associate to each equivalence dass of attracting fixed infinite

words a unique edge, E E Hr, with r(E) = 1. Suppose that u is a vertex of Hr which

is not the endpoint of the INP of height r. If i(~~_l) > 0 then u must lie in a non

contractible component of Yr-l, since either there is a dosed Nielsen path at u or

there is an attracting fixed infinite path at u (of height r - 1). Then,

i(~~) - i(~~_l):::; L r(E)/2:::; r(u)/2.
i(E)=u

max(O, i(~~) - 1) < (L r(E)/2) - 1 :::;r(u)/2.
i(E)=u

If there is no INP of height r, we may then add these inequalities to deduce 5.3.

Suppose then that there is an INP, p = a/3 of height r connecting vertices VI and

7)2 and let w be the vertex at which the illegal turn of p occurs. Let Ea and Ef3 be

the first edges of a and (3. Now, Ea is the first edge in f(Ea) and this is an r-legal

path. Thus fn(Ea), is arbitrarily long and always has Ea as its first edge. Thus

r(Ea) = 1 and similarly r(Ef3) = 1. Recall now the note before the statement of this

theorem. This guarantees that we have an edge t E Hr, which has initial vertex w

and is the first edge of T. By the same argument, r(t) = 1. Let ta, tf3 be the first

edges of a and /3. We know that one of these edges does not generate an attracting

fixed infinite path. Also, if Ea =I- E' E Hr has initial vertex VI and r(E') = 1 then

dearly r(to,) = 1, by concatenating paths and a similar condition holds for V2. We

are now in a position to prove, 5.3, in the case where there is an INP of height r.

Suppose that, i(~~:_l) = i(~~:_l) = 0 and without loss, that r(vJ) ~ r(v2). If Ef3 is the

only edge with initial vertex, V2 with r(Ef3) = 1, then as Ea and Ef3 cannot generate

inequivalent attracting fixed infinite paths (5.2.14),

max(O, i(~~l) - 1) < ( L r(E)/2) - 1 < r(vJ)/2.
i(E)=Vl
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If however, there is an edge E' i- E(3 with initial vertex V2 and r(E') = 1 then as

there is a similar edge for VI (or we are back in the previous case) r(w) > o. But as

t does not generate an attracting fixed infinite path,

max(O, i(L:~) - 1) < (L:i(E)=w r(E)/2) - 1 - 1/2

< r(w)/2 - 1/2,

and as before (Ea and E(3 do not generate inequivalent attracting fixed inifinite paths),

max(O, i(L:~l) - 1) < (L:i(E)=Vl r(E)/2) + (L:i(E)=V2 r(E)/2) - 1 - 1/2

< r( VI)/2 + r( V2) /2 + 1/2.

Hence in either of these cases, we deduce 5.3. The case where i(L:~:_I) i- i(L:~:_I) = 0

is similar to the above, so we are left with considering the situation where,

i(L:~:_I)' i(L:~:_I)> o. As before, this means that both VI and V2 must lie in noncon-

tractible components of Yr-I and so r(ta) = r(t(3) = 1. Thus we repeat the calculation

above,

max(O, i(L:~) - 1) < (L:i(E)=W r(E)/2) - 1 - 1/2

< r(w)/2 - 1/2.

Also,

< 1 - 1/2 + L:i(E)=Vl r(E)/2 + L:i(E)=Vl r(E)/2

< r(vd +r(v2) + 1/2.

where the above sum takes into account the effect of the INP and the fact that Ea

and E(3 cannot generate inequivalent attracting fixed infinite words. If there is a

Nielsen path connecting VI to V2 in Yr-I, we may replace the first expression by,

i(L:~l) - i(L:~:_I).

Adding these inequalities we get 5.3. We note that we have tacitly assumed that

the vertices VI,V2, ware distinct, but that the arguments are changed only superficially

if we drop this assumption. Thus we have proved the theorem.
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Theorem 5.2.17 (Index Theorem) If <Pis an outer automorphism of a finite free

product G then,

Proof: Recall that

i(<P):S K-rank( G).

i(<P)= 1+LK-rank(G : Fixo) + a(¢)j2 - 1

where the sum is taken over a set of representatives of the positive similarity classes

of <P. There is a relative train track representative, f : Q -+ Q, of <P,satisfying the

conclusion of the above theorem. Any positive similarity class is point represented by

f and distinct similarity classes are represented on Nielsen inequivalent vertices (the

proof of this is as in 2.1.10). If v is a vertex fixed by f then the number of equivalence

classes of attracting fixed infinite paths starting at a vertex Nielsen equivalent to v

is equal to the number of equivalence classes of attracting fixed infinite words for

7r1 (1, v) so,

and thus,

i(<P)= i(7r1 (1)) = I(~) :S I(~) :S I(Q) = K-rank( G).
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Chapter 6

Irreducible Automorphisms

6.1 Train Tracks and Maximal Index

We now turn our attention and the proof of the previous section to the case of free

groups and in particular irreducible automorphisms of maximal index. We start by

representing our irreducible automorphism, cp,asa stable train track map f on a graph

G. Actually this only defines an outer automorphism so we also have a vertex v which
5"- l.:} ~kt1IM....{;il~

is fixed by f (by ~HiH't' ) and t=:
"" 7fl(G,V)r; -=-t

1¢ l1fJ(J,V)
"" 7fl(G,V)Fn -=-t

We shall show that under the assumption that cp is an irreducible automorphism

of maximal index very specific information can be obtained about the train track

which represents it. Throughout the rest of the section cp is such an automorphism

with a train track representative and a diagram as above.

Lemma 6.1.1 f must have an INP, p, which has one endpoint at u.
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Proof: Suppose that there is no INP with an endpoint at v, then we know that

Fixd. = 1 and hence that a(¢) = 2n. We also know from the previous section that

attractive fixed words for ¢ correspond to edges E which start at v and such that

E :::;f(E), by 5.2.10 . Thus the valence of v is 2n and so G must be a rose ( a wedge

of ti circles) with v as the principal vertex. Additionally, for every (oriented) edge E

in G, E :::;f(E). However in this case f does not define a homotopy equivalence and

thus we get a contradiction.

We wish to simplify the situation even further, by reducing our analysis to the

situation where the only vertices of G are the endpoints or endpoint of the INP p

according to whether or not p is closed. This is the content of the next lemma.

Lemma 6.1.2 Let ¢ be an irreducible automorphism of maximal index of Fn. Then

¢ has a stable train track representative f on a graph G with an INP p such that the

only vertices of G are the endpoints of p.

(We note that thus G has 1 vertex precisely when Fixd: i=- {1} but we do not

preclude the possibility that if G has 2 vertices then one of these has valence 2.

However the endpoints of INP's are the only vertices that we allow to have valence

2.)

Proof: We note that lemma 6.1.1 gives us a stable train track representative of

¢ and an INP p with one endpoint at v. Let us first consider the case where p is not

closed and joins v to a vertex w, where these have valencies ri; and n.; respectively.

Now by assumption a(¢) = 2n since Fix¢ = {1}. (Stable train tracks have at most

one INP.) By 5.1 we get that

ri; +nw -12:: a(¢) = 2n

However note that if the illegal turn of p occurs at v or w then we get the stricter

inequality (using 5:2.14)
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nv + nw - 2 ~ a(cp) = 2n

In the latter case we have that, by an euler characteristic argument, v and w

are the only vertices of G and hence we are done. In the former case there must

be another vertex y of G with valence ny ~ 3 at which the illegal turn of p occurs.

Another euler characteristic argument leads us to conclude that v,w and yare the

only vertices of G and that ny = 3.

In the case where p is closed we get that a(cp) = 2n - 2 and hence that

n; - 1 ~ a(cp) = 2n - 2

As before if the illegal turn of p occurs at v then

In the latter case the graph G has exactly one vertex, namely v. In the former

case there G has two vertices v and y where the illegal turn of p occurs at y and

ny = 3. For both the problem situations, that is when we have a vertex y of valence

3, we fold the illegal turn of p which occurs at the vertex y and follow this by a

valence 2 homotopy at the vertex produced by the folding. Note that as the train

track is stable the fold must be full and hence we remove the vertex y and are left

with a stable train track whose only vertices are at the endpoints of p.

Let us consider the case where the graph G, given by lemma 6.1.1, is a rose. This

can happen in one of two ways: either p is a closed INP and G has exactly one vertex

or p is not closed, G has two vertices and without loss of generality the vertex w

(which is an endpoint of p) has valence two and the illegal turn of p must occur at v.

In either case it is possible to obtain a basis of Fn and a very neat description of

the images of the basis under cp. Since G is a rose label the edges of G, El, ...En. In

the case where G has a valence two vertex we have also subdivided one of these edges
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say Ej = E' E". In this case we assume that p ends at the valence two vertex and

that the last edge of p is E'. By 5.2·.14 and 5.2.10, we have that for all the oriented

edges of G except one, E ~ f (E) and that the exception to this is part of the illegal

turn of p. Since the illegal turn of p must occur at a vertex of valence at least three

we assume without loss that En -1 1:. f(En -1). Now if we let Xi E Fn correspond to

E, and 9 E Fn correspond to p if p is closed and to pE" otherwise, we get:

If ¢ is a maximal index automorphism represented on the rose then there is a

basis .Tl, X2, ... , Xn and an element 9 E Fn such that

(i) ¢Xi = Xi".Xi for 1 ~ i ~n - 1

(ii) ¢xn = Xn",Xl, and

(iii) The words ¢kXi±l, 1 ~ i ~n, k ~ 0 are all 'naturally' reduced. (6.1)

That is, applying ¢ to each letter of ¢k-1Xi±1 and then concatenating,

results in a reduced word.

Then we have that each of limk-too ¢kXi±l for 1 ~ .i ~ n - 1 and limk-too ¢kxn is

an attracting fixed infinite word.

The role of the element 9 is different in the two cases and derives from the INP p.

If Fix¢ = {1},. then lim~-too ¢k 9 is an attracting infinite fixed word and two attracting

infinite words are equivalent only if they are equal (the attracting infinite words listed

above are a complete set). This is the case where p is not closed and a(¢) = 2n.

If Fi-x¢ i=- 1 then Fix¢ = {g}, p is closed and for some i and j limk-too ¢kXi =

9 limk-too ¢k X j .

The other case given by lemma 6.1.1 is where the graph G has exactly two vertices

each of valence at least three and there is an INP connecting them. Using our standard

arguments we know that for every oriented edge E bar one, E ~ f(E). (Using 5.2.14

and 5.2.10)

For some unique edge e we have that f (e) = e...e' where e' i=- e and that {e-1 , e,-l}
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is the unique illegal turn of G. Note that since 1is a stable train track map this means

that all folds are full and hence that e' i= e-1. We assume that the illegal turn of p

occurs at the vertex wand hence that both e and e' end at w.

We now wish to describe the automorphism 7fl(j, v) with respect to some 'nice'

basis. This is quite elementary, however the statement has to allow for several similar

but distinct cases.

We label the edges of G as follows: the edges which start and end at the vertex

v are labelled Ai. (Note that there is a choice of orientation involved.) The edges

which start and end at the vertex ware labelled B, and the edges which start at v

and end at ware labelled Ck.

We then choose one of the connecting edges Co to be our maximal tree and we

arrive at a basis of 7fl(G, v) which is {xd U {Yj} U {zd where

Yj c::= Coe.c,-1
Zk c::= CkCo -1 for Ck i= Co

If we define the element h E 7fl(G,v) so that h c::= 1(CO)Co-1 then we get that

with the exception of one of the basis elements.

Yj 1--7 hYj ... yjh-1

ti:'Zk 1--7 Zk.·· Zk

where each of these products is reduced as written. Also note that since Co ::;

1(Co) then h cannot begin with Xi±1 nor can it begin with Zk, although it can begin

wit.h zi,-lor y/1. The exception in the above statement occurs due to our edge e

since e-1 1:. f(e-1), and to the illegal turn {e", el-I}.

First we suppose that e, e' i= C«. We then get that e = Ck for some Ck i= Co or
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that for some i, e = B/I.

If e = Ck then we have

where the letter a corresponds to the edge e' and hence either a = Zk' for some

k' # k or a = y/l for some j.

Otherwise (still assuming that e, e' # Co) we have that e = B/I for some j and

so

where again, a is the letter corresponding to the edge e' and either Q, = Zk for

some k or Q, = Yj,±l for some j' # j.

The case where Co = e or e' is slightly more complicated. First we suppose that

the illegal turn is {Co-1, CI-1} and we use the fact that f is a stable train track map

so that all folds are full. Hence either .f (Co-1) is an initial subpath of .f (Cl -1) or vice

versa. In the former case,

where the letter a is either zk -lor x, ±l

In the latter case we can write h = h'w where w begins with Zl and then,

We note that if we instead took Cl to be our maximal tree, we turn this case into the

previous one, avoiding this part of the analysis.

The final cases occur where the illegal turn is {Co-I, B/I}. We shall just deal

'with the case where B,-1 forms part of the illegal turn and simply state the results

for the other case since it is very similar.
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As before, we use the fact that f is a stable train track to deduce that either

f(Co) has f(Ej) as a terminal subpath or vice versa. In the former case we write

where m 2: 1 is chosen maximally so that p does not have f(Ej) as a terminal

subword. Additionally we know that p begins with Co. Thus we can write h = h'wm

where w begins with Yj and so,

If this product is reduced as written then we are done. Otherwise a little further

analysis is needed and we subdivide Co into m+ 1 paths, C, CO(l), CO(2), ... , cs=. The

subdivision is such that f(C) = p and f(CO(i) = f(Ej). We then perform a sequence of

m foldings, in effect folding each CO(i))with Ej. A rewriting occurs at each stage but

it is clear that Ej survives and it's image may be folded. We finally arrive at a stable

train track map l' on a graph G' whose topology is the same as that of G. We shall

denote the image of an edge e E G, in G' by e*. By assumption we have that the path

f(C)f(Ej)f(C-1) is not reduced and hence that either {C*-l, E/-1} or {C*-1, E/}

is the unique illegal turn in G'. However we may then take preimages of these turns in

G to deduce that f(C) is a terminal subpath of either f(Ej) or f(Ej -1). (Remember

that by definition f(Ej) and f(Ej-1) cannot be terminal subpaths of f(C).) Hence

for some path q, either

We can easily see that only the first of these can occur since f(Co) = f(C)f(Ej)m

and is reduced. We recall that we may write h = h'io"' where the first letter of w is

:jh: In addition we get that w = w'h' and so that

Yj r-+ h'w'
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Note that had we assumed that Bj formed part of the illegal turn then we would have

that h = h' z where z begins with Yj-1 and that Yj -1 H h' zh,-1 and hence if we put

w = Z-1 then wends with Yj and

and if this is not reduced we may write z = Zlh' and so if w' = ZI-1 then

Ih,-1Yj HW, .

Note that the folding operations can be applied in both the cases considered above.

Hence if we are only interested in choosing a good basis we can skip the case where

f(B/1 is a terminal subpath of f(Co) turning this into one of the other cases.

The last case to consider is where f(Co) is a terminal subpath of f(Bj) so we may

write

where P is a path whose first letter is Bj.

As always this path is reduced as written. Now as f(Co) and f(Bj) end with the

same edge, this edge must be either Co or Bj as there exists exactly one oriented edge

E with E i f(E). Using this fact agian tells us that f(Co) begins with Co and f(Bj)

begins with B; from which we deduce that p begins with B, and ends with Ck-1 for

some k =1= 0 or Ai±1 for some i. Thus the path f(Co)p is reduced. If we then let z be

the group element corresponding to the closed path CoP, then z begins with Yj and

ends with Zk -1 for some k or Xi±1 for some i and

Yj H hz.

Had we assumed in this case that f( Co) were a terminal subword of f(Bj -1) then

we would have found a group element Z-1 whose first letter was Yj -1 and whose last

Jetter was zk -1 for some k or Xi±1 for some i and then

n:'Yj Hz.
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An important observation to be made after this analysis is that if we regard our

basis elements as paths in the graphG then the image of each of these paths is always

legal even if the paths themselves are not necessarily.

We now collect these results in the following proposition. We note that the

products given are always reduced as written.

Proposition 6.1.3 Let cjJ be a maximal index irreducible automorphism of Fn. Then

either cjJ has a stable train track representative on a rose and has the form described in

6.1 or Fn has a basis {xd U {Yj} U {zd, which has a special element e E {Yj} U {Zk},

together with elements g, h E Fn where h does not begin with .'Ei±l or Zk and where

g-lcjJ(g) = tc+. Then for except for the special element e

Yj H hYj ... yjh-1

h-1Zk H Zk... Zk

For the special element one of the following occurs:

(i) e H e ... oh:" where a E {zd U {Yj±l} - {e±l}

(ii) eH he ah-1 where a E {zd U {y/l} - {e±l}

(iii) e H e a where a E {Xi±l} U {Zk -I} - {e±l}

(iv) e H he a where a E {Zk -I} U {Xi±l} - {e±l}.

Furthermore for each basis element a, cjJk(a) is 'naturally reduced' for all k ~ 1.

That is to say that if we apply cjJ to each of the letters of cjJk-la in reduced form and

then concatenate the result is reduced as written.

Notes on proof: The proof for this is actually given above. The only points to note

are that the element g is taken from the INP p. Actually we have that g ~ pGa-I.

-The statement that each cjJk(a) is naturally reduced is just a statement about train

tracks and that each image of a basis path is legal. We have reduced the number
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of cases outlined above by either changin the maximal tree, repeated folding or by

relabelling a Yj to Yj -1. However we could have gone futher and got rid of the fourth

case by folding and switching the role of the vertices v and w. It is clear that the above

automorphism has 2n attracting fixed infinite words. Each basis element except for e

defines exactly two attracting infinite words. (This is clear for the Xi and Zk. For the

Yj we need to pre multiply by g. In other words limk--+oo¢k(gYj) is a fixed attracting

infinite word. This will work for Yj -1 and Zk -1 similarly.) In the same way e will get

us one fixed attracting infinite word. The last one comes from the edge Co and is

seen on the group level as limk--+ooqih.
We note that we have the following commuting diagram:

D _'Y_9__... D
£n ----, £n

D _'Y_9__... D
£n ----, £n

where by '"'19 we mean conjugation by g. Our choice of orientation has meant that

we have discarded the basis arrived at by conjugating by g. This basis would have a

similar form to the one above, but with the role of the x~s and yjs swapped round as

~ell as the z~s going in the other 'direction'.

One last thing to note is that if an automorphism is given as in the proposition

then it is clear that we may construct a train track map which represents it. We

simply construct a graph with two vertices, v and w. We place loops labelled Ai

at v so that the number corresponds to the number of Xi, and similarly loops Ej at

w which correspond to the Yj and edges from v to w corresponding to the Zk and

labelled by Ci, Pick a connecting edge Co, and we construct a train track map f on
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this graph by the identification

CoBjCo -1 ~ Yj

CkCo -1 ~ Zk

I(Co)Co -1 ~ h

These conditions are enough to construct .f and the statement of the proposition

ensures that 1 is a train track map.

6.2 Rank Two Automorphisms

We now wish to comment on the rank 2 case which is always more simple and show
I~

that maximal ~ outer automorphisms are particularly easy to describe.

Recall that a reducible outer automorphism permutes some non trivial set of free

factors of the group. In rank 2 an outer automorphism will be reducible if it fixes the

conjugacy class of some primitive element (up to inversion) or F2 = A * B for some

non trivial free factors A and B which are interchanged by the automorphism.

Thus consider an outer automorphism, <I>, of F2 of maximal index. It is easy to

check that in the reducible case the only possibilities are that <I> contains an auto-

morphism cP of maximal rank. In the irreducible case, an finite order automorphism

cannot have maximal index. This is because in a stable train track representative

it permutes all the edges, so cannot have a fixed infinite word or a Nielsen path.

Hence we are left with the case where <I> is irreducible, and it has a stable train track

representative whose transition matrix has Perron Frobenius eigenvalue greater than

one. We wish to show that <I> has a stable train track representative on the rose.

Suppose first that a stable train track representative for <I>, I, G, does not support

"an INP. From the index formula <I> has at most 2 similarity classes of positive index

and we know that each of these will be point represented in the stable train track.
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Let v be a vertex of G fixed by f. By 5.2.10, the number of equivalence classes of

attracting infinite words a(7f!(j, v))· is bounded by the the number of edges E with

initial vertex v and with E :::;:f(E). Since there is no INP, there must be two fixed

vertices in the graph each the initial vertex of 3 such oriented edges. (In rank 2 a

graph cannot have a vertex of valence more than 3 unless it is the rose.) However,

this accounts for all the oriented edges of the graph and so f cannot be a homotopy

equivalence. Thus if <I> has a stable train track representative, (j,G), where G is not

a rose, then f must support an INP. Each vertex of the graph has valence 3, and the

illegal turn of the INP, must occur at a vertex of valence at least 3. Hence the illegal

turn occurs at a vertex of exactly 3 and as in the previous section, we may fold the

INP at the illegal turn and then perform a valence 2 homotopy at the newly created

vertex. We end up with a graph with one less vertex. In rank 2 there are only three

graphs to consider, and reducing the number of vertices always gets us a rose. So <I>

has a stable train track representative on a rose, (j,R2)' Again we argue that f must

support an INP. If not, then we know that an automorphism point representative an

a vertex which is not the principle vertex cannot have positive index (it has valence

2). Hence the automorphism induced at the principle vertex has maximal index and

we use the previous section to concluded that there must be an INP. The unique

illegal turn then occurs at the principal vertex. Label the edges of R2, A, B. Without

loss we may say that the illegal turn of f is {A, B}. Thus f (A) connot contain any

occurence of the subwords AB or BA and similarly for f(B). Hence, after possibly

reorienting the edges, we see that f(A) and f(B) are positive.

We claim that there is a basis {a, b} of F2 and a ¢ E <I> (the automorphism point

represented on the principal vertx of the rose) such that

(i) ¢is a positive automorphism.

-(ii) ¢a begins and ends with a, ¢b begins with b and ends with a.

The first statement follows from the statement that ¢ is point represented at the
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principle vertex of a rose. If the INP of I, has an endpoint at the principle vertex,

then cP has maximal index and (ii) follows from the previous section. Otherwise, we

know that an automorphism point represented at a vertex of valence 2, has index at

most 3/2, and this is only if the INP has an endpoint at that vertex. (Recall that the

distinct first and last edges of the INP do not generate inequivalent attracting fixed

infinite paths.) Hence for <I> to have maximal index, cP would have index of 3/2, and

(ii) follows in this case as well, by 5.2.10.

An easy inductive argument shows that any automorphism satisfying (i) and (ii)

can be written as a product of the two elementary Nielsen transformations

a i-f a and a i-f ab

b i-f ba b i-f b

Another easy induction will show that any automorphism which can be written as

a product of the above two Nielsen transformations not only has the form described

above, but also fixes the commutator aba-1b-1. Hence we have shown the following:

Corollary 6.2.1 Let <I> be a maximal index irreducible outer automorphism of F2

then there is a cPE <I> of maximal index and either cPhas maximal rank or there is a

basis {a, b} of F2 such that

(i) cPis positive with respect to this basis.

(i) cP.fixes aba1-b-1

(iii) cPa= a ... a and cPb= b... a.

Note: It is also clear that an automorphism as above has maximal index since

each of limk-tCXlcPka±l, limk-tCXlcPkbis an infinite attracting infinite word. Also, if cPis

an automorphism of maximal rank, then there is a basis {a, b} of F2, such that,

cPa a

cPb ban , for some n

and hence may also be written as a product of the above Nielsen transformations.
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6.3 Normal Forms

We use in this section a solution of the conjugacy problem, given in [Los96] to de-

termine how unique the form in proposition 6.1.3 is. One could in fact just state the

algorithm given there from which one could determine whether two irreducible auto-

morphisms of maximal index are conjugate, however we wish to give a more direct

formulation for this special case.

We start by defining a few terms. In [Los96] a forward evolution path is defined

to be a sequence of marked topological representatives for some irreducible outer

automorphism <1>;

where each transformation (li,Gi) -t Ui+l, Gi+d is either the collapsing of an

invariant or pretrivial forest or a folding or a quasi folding operation as defined in

[Los96]. The folding and quasi-folding operations are the same as the folding operation

of [BH92] except that the collapsing of pretrivial and invariant forests is not part of

the operation and if the fold occurs at a valence 3 vertex, it is immediately followed

by a valence 2 homotopy at the newly created vertex. To avoid confusion we shall

use the term quasi-folding for the foldings defined in [Los96] and folding for foldings

in the sense of [BH92], as given in chapter 1. Another point to note is that in [Los96]

the vertices of graphs .are assumed to have a valence of at least 3. We shall assume

that this is the case from now on, but in fact this is not a real restriction since we

may apply valence 1 and valence 2 homotopies to any topological map.

Then a backward evolution path is defined to be a forward evolution path in

reverse and an evolution path is a sequence of marked topological representatives

where each transformation is either a forward or a backwards evolution path. An

elementary evolution path is an evolution path in which every transformation in the
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sequnce is either a quasi folding or a collapsing.

In [Los96, Theorem 3.3.1] it is proved that if <P is an irreducible outer automorph-

ism of Fn then;

Theorem 6.3.1 Let (j, G) and (j', G') be topological representatives of <P then there

is an evolution path connecting them.

This is actually improved upon there. If (j, G) is a topological representative of

an irrducible outer automorphism, then >.(j) is the largest eigenvalue of the transition

matrix for f. It is then shown that,

Theorem 6.3.2 Let (j, G) and (j', G') be topological representatives of <P then there

is an elementary evolution path,

(j,G) = (jo,Go) --+ (h,Gd --+ ... --+ (jt,Gt) = (j',G'),

where for all i, >'(ji) < max(>.(j), >.(j')).

Note that an evolution path is said to connect two marked topological represent-

atives if the said representatives occur at each end of the sequence.

For our purposes we would like a slightly different formulation of this theorem.

Definition 6.3.3 A special fold is a fold as in [BH92]' followed by a valence 2 homo-

topy if the fold creates a velence 2 vertex.

The point of the above definition is that it combines the two slightly different notions

of foldings in [BH92] and [Los96] to enable us to state the results of the former for

train track maps.

We define a special forward evolution path to be a sequence of marked topological

Tepresentatives where each transformation is a special folding. The terms special

backward evolution path and special evolution path are defined analogously.
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Now, for our irreducible outer automorphism <I> we let T(<I» denote the set of

projective equivalence classes of train track representatives of <I> and let ST( <I» denote

the subset defined by the stable train track representatives of <I>. Recall that two

graphs are projectively equivalent if they have the same combinatorial structure and

it is possible to relabel the edges of one graphg to turn it into the other. Two

topological maps, (f, C) and (f', C'), are said to be projectivel equivalent if there

exists such a relabelling h : C ----+ C' making the following diagram commute:

G~G

!h I !h
C'~C'

In [Los96] train track maps are defined to be topological maps (without valence

1 or 2 vertices) representing an irreducible outer automorphism where the maximum

eigenvalue of the transition matrix is minimal amongst all such. In [BH92] it is

further required that the toplogical map have no invariant forests and this latter is

the definition we use. We need the following lemma (contained in [Los96, 3.4.5]) to

compensate for this difference.

Lemma 6.3.4 The operation of collapsing an invariant forest commutes with that of

quasi-folding.

We then get an easy corollary to 6.3.2:

Corollary 6.3.5 Let (f, C), (f', C') E T(<I» [resp. ST(<I»), then there is a special

evolution path connecting them where each term of the sequence is in T( <I» (resp.

ST(<I»).

Proof: This is clear as train tracks do not have invariant or pretrivial forests and the

fact that special folds preserve the property of being a train track or a stable train

track.

118



Also it is possible to apply the proof of [Los96, Theorem 4.2] to our situation and

get,

Proposition 6.3.6 Given two irreducible outer automorphisms, cl> and \If, of Fn the

following are equivalent:

(i) T(cl» = T('l1) (resp. ST(<I» = ST('l1),

(ii) T( <1» n T(\lI) is non empty (ST( <1» n ST(\lI) is non empty),

(iii) cl> and \If are conjugate in OutFn.

We now endow ST( <1» with an oriented graph structure. The vertices are the

elements of ST ( <1» and there is an oriented edge from (J, C, T) to (f', C' ,T') if there

is a special folding operation taking (f, C, T) to (f', C', T'). Then 6.3.5 tells us that

ST( cl» is connected. Now if we consider those outer automorphisms whose stable

train track representatives support an INP then, as these maps have exactly one

illegal turn (which is the illegal turn of the INP), each vertex of ST(<I» has exactly

one outgoing edge. Hence the fundamental group of ST( <1» as a graph is infinite

cyclic. We know that this situation occurs if <I> is the outer automorphism of some

maximal index automorphism and so this gives us a particularly easy algorithm for

determining whether two marked stable train tracks give rise to the same maximal

index automorphism. (We note that given two normal forms as in 6.1.3, it is relatively

easy to construct train track maps representing them and to make the train track maps

stable. Thus the algorithm given below is very easy to apply.)

We recall that ST( cl» is finite as there are only finitely many matrices of a given

Perron-Frobenius eigenvalue and size, and so as every vertex of ST(cl» has exactly

one outward edge if we follow the directions of edges from any vertex we must end

up circling the topological core of ST (<I> ).

We are now in a position to state the algorithm which determines whether two

irreducible maximal index auto mar ph isms are conjugate. Our starting point will be
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a stable train track representative.

Algorithm (Train Track)

Let cp, 'ljJ be irreducible automorphisms of Fn of maximal index and <J> and W be the

corresponding outer automorphisms with marked stable train track representatives.

Repeatedly fold the unique illegal turn of stable train track maps (that is, fold the

INP) until we get a repetition (remembering to perform a valence 2 homotopy if we

create a valence 2 vertex). As in the remarks after 6.3.5 we are then able to list the

cores of ST( <J» and ST(w) and futhermore we know that <J> is conjugate in Out(Fn)

to w if and only if ST( <J» and ST(w) are the same (this is due to 6.3.6) and hence

they are conjugate if and only if the cores of these graphs are equivalent and in fact

it is enough for the cores to coincide. Thus having listed the elements in the core we

just check to see if an element of one is equivalent to an element of the other and

this establishes a conjugacy between <J> and w. By the index theorem 5.2.17 this also

gives us a conjugacy between cp and 'ljJ as index is preserved by isomorphism.

We now give an example of how to find the core for ST( <J» where <J> is a maximal

index irreducible outer automorphism. We start with the following stable train track

map.

A

B

figure 1

A f-----7 AB-lGB-l A

B f-----7 BA-lBG-lB

G f-----7 GB-1AB-1AB-1GB-1A
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This is clearly a train track map whose only illegal turn is {A -1,C-l }. It is

actually quite easy to check that this is a stable train track map and in fact the

following calculations demonstrate that there are finitely many projective equivalence

classes of this train track map. We note that the path AB-lCA-l BC-l is an INP.

If we fold the INP, by first subdividing C = ClC2, where C2 H AB-lCB-lA and

then identifying C2 with A we get the following stable train track map:

A

c

B

figure 2

A I----t AB-lClAB-l A

B I----t BA-l BA-lCl-l B

Cl I----t ClAB-l AB-l

A quasi-folding operation at a valence three vertex incorporates a valence two

homotopy across, in our case, A. However, in the case of train track maps this is

equivalent to a reverse subdivision at the new valence 2 vertex. This, while clear,

may also be checked by inspection. We remove the valence 2 vertex and we have an

edge E corresponding to AB-l and an edge D corresponding to Cl and the following

stable train track map:
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E

D

figure 3

D t------)- D E2

E t------)- ED E2D E2

We note that we have an INP DED-l E-l which we proceed to fold. As before

we subdivide the edge E into edges El and E2 so that El maps to EDE2 and then

fold E2 with D and we get the resultant train track map:

El

D

figure 4

D t------)- DElDElD

El t------)- ElD2 ElDElD

We now relabel the edge D by the letter F and we relabel El by G, so that,

FH FGFGF

GH GF2GFGF

The INP is then FGF-lG-l which we fold by subdividing G into Gl and G2,

'where Gl maps to GF and then fold G2 with F. Again as this is a full fold we end

up with a rose where the edges are labelled F and Gl and the map is given by:
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F

figure 5

F f---------t FG1F2G1F2

G f---------t G1F2

It is easy to see that the train track map given in figure 5 is equivalent to the one

given in figure 3 where the equvalence is given by

and hence we have found the core of ST(1)). Establishing whether this auto-

morphism is conjugate to another automorphism W just involves following the same

procedure, finding -the core of ST(W) and seeing whether there is an equivalence

between elements of the core. We note that this algorithm works for any irreducible

outer automorphism whose stable train track maps have an INP, as then any stable

train track representative will have a unique illegal turn. Furthermore we note that

the results of section 2 can be extended to the case of outer automorphisms, but that

then the final statements become very complicated.

The Core of ST (1>)
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E

o

Equivalent train track maps

F ~E

GI~D

F ~ FGIF
2GIF2

GI~GIF2

Fold the INP; DEDI E-I and relabel
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Chapter 7

Hyperbolic Groups

In this chapter our goal is to apply the result of Theorem 5.2.17 to the situation where

our free product G is also a hyperbolic group and to try to get information about the

action of an automorphism cl> on the boundary of G.

Given a finitely generated group G and a generating set A of G we form the Cayley

graph, rA (G) in the usual manner. We abbreviate this to r where no confusion will

arise. A metric is defined on r by letting each edge have length one (in fact each edge

is realised by a closed .unit interval) and we define a metric d on r, the path metric

by setting d(x, y) to be the length of the shortest path joining x and y. For g E G

we have that IglA = d(g, 1). Also if g, hE G then d(g, h) = Igh-1IA. We note that we

are now dealing with the geometric realisation of r
Given a basepointw E r there is an inner product

(x·Y)w = 1/2(d(x, w) + d(y, w) - d(x, y)).

We say that G is cS-hyperbolic or just hyperbolic, if there is a constant cS2 0

such that

'ix, y, z E r, (x.Y)w 2 min{ (.T.Z)w, (z,y)w} - cS (7.1)

For our purposes it is sufficient to note that this definition is indepedent of the
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choice of both basepoint and generating set. (Although these result in different values

of c5.)

A sequence of points {x(in c r is said to converge to infinity if

lim (x(i).x(j)) = 00.
l,J-tOO

This is clearly independent of the basepoint chosen since, I(x.y)w - (x.Y)w11 <

d(w,w').

Then define an equivalence relation on sequences which converge to infinity by

{.T(in '" {y(i)} iff

lim (x(i).y(i)) = 00.
l-tOO

This relation is clearly reflexive and symmetric and the hyperbolicity ensures that

it is transitive. The boundary 8G of G is the set of equivalence classes of sequences

which tend to infinity. Note that this is not the same as the set of infinite reduced

words defined in chapter 5 - it is in general much bigger.

Now if {x( in is a sequence which tends to infinity, then any subsequence also

tends to infinity arid moreover is equivalent to the original. Also {x( i)} is clearly

equivalent to a sequence all of whose elements are vertices of r or in other words

elements of G. This is due to the fact that we can find a sequence {x'(in of vertices

withd(x(i), x'(i)) ::; 1/2 for all i. Given these comments from now on we assume that

our chosen basepoint is the identity element of the group. Additionally, whenever we

take a point of 8G and a sequence {x(in in it's equivalence class we will assume that

each x(i) is a vertex in the Cayley graph and in particular, each x(i) will be a group

element. If x E 8G then a sequence {Xi} is said to tend to x, Xi -+ x, if {xd Ex.

If x Er, then Xi -+ x if this holds with the usual topology. The inner product can

then be extended to the boundary,

-Definition 7.0.7 Let x, Y E r u 8G, then

(x.Y)s = in! {liminf(xi·Yi)},
l
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where the infimum is taken over all pairs of sequences Xi ---t :1: and Yi ---t y.

Some properties of the inner product,

Lemma 7.0.8 (4.5,4.6 [ABC+9l]) (1) If X E rand Y E r u eo then (x.y)s

inf{liminfi(x.Yi)} where the infimum is taken over all sequences Yi ---t y. (ie. it is

enough to consider the constant sequence at x).

(2) For x, Y E r, (x.y)s = (x.y)

(3) For x, Y E r u aG, (x.Y)s = 00 implies that X = Y E aGo

(4) iF x, Y E aG and Xi ---t X, Yi ---t Y then

(X:Y)s ~ liminf(xi·Yi) ~ (x.Y)s + 26.
z

As the extended inner product has all these properties (and more) the subscript

is dropped.

Now there is a topology on ruaG which has the following as a basis (see [ABC+91,

Proposition 4.S]).

(1) Br(x) = {y E fld(y,x) < r}, for each X Er,

(2) N.T,k = {y E r u aGI(x.y) > k} for each X E aGo

Clearly this extends the topology on r which is a dense subspace of r u aGo Now

if et E AutG then et induces a pseudo isometry on r so is defined on r u aGo

For a fuller treatment of the above material we refer the reader to [GroSS],

[CDP90] and in particular [ABC+91] which account we have followed most closely.

We now restrict our attention to the situation where G = Gl * G2 * ... Gn is our

hyperbolic group. We fix a generating set A for each factor, and the union of these is

the generating for G, which we call A. We now have two concepts of length in G. We

shall denote by Igl the length of the element g with respect to the generating set A.

ln other words d(g, 1) = Igl. We also have the free product length which we denote
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Now we have analysed to some extent infinite reduced words in G. Given such

an infinite reduced word X, we can form a subsequence Xi of group elements, where

Xi is as before the initial subword of X of length i (with respect to 1.1*).
The next lemma tells us that we may regard infinite reduced words as elements of

aGo Note that for w E G, Wk denotes the initial subword of w of free product length

k and that this is taken to be w if k ~ Iwl*. Also as in Chapter 5 we take w 1\ w' to

be the longest (in free product length) initial common subword of wand w'.

Lemma 7.0.9 Let {y(i)} be a sequence which tends to infinity and X an infinite

reduced word then,

(i) Iy(i)kl::; (y(i).y(j)) ::; Iy(ih+ll where k = Iy(i) 1\ y(j)I*

(ii) {Xd tends to infinity.

(iii) {y(i)} rv {Xi} if and only if IX 1\ y!l* is unbounded.

Proof: (i) We may write y(i) = y(ihaz and y(j) --:-y(ihbz' where a and beach

belong to, perhaps the same, single factor b-1a =I- 1 and the products are reduced as

written. This follows from the definition of y( i) 1\ y(j). Then, remembering that we

always take our basepoint to be 1,

Iy(ihl + lal + Izl + Iy(ihl + Ibl+ Iz'l- Iz,-lb-1azl

2ly(ihl + 10,1 + Ibl+ Izl + Iz'l- Iz'l- Izl - Ib-1al

2ly(ihl + lal + Ibl - Ib-1al

Since Ibl - lal ::; Ib-1al ::; lal + Ibl we have proved (i).

2(y(i).y(j) )

To prove (ii) note that Xi is a subword of Xj if i ::; j and so by using (i) we get

that

In fact by repeating the argument of the first part we see that this is actually an

equality. Thus we have proved (ii).
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To prove (iii) we consider the first implication. So suppose that {y(i)} rv {Xi}.

By (i) we know that

and thus Iy(i) I\XI* is not bounded since (Xi.y(i)) -+ 00. In fact this also shows that

Iy(i) 1\ XI* -+ 00 as i -+ 00.

Conversely, suppose that Iy(i) 1\ XI* is unbounded. Then,

(Xi.y(i)) > min{(y(i).y(j)), (Xi.y(j))} - 8

> min{(y(i).y(j)), IXkl} - 8,

"where k = IXi l\y(j)I* = min{IX l\y(j)I*,i}

and the first inequality is due to 7.1, the second is simply part (i) of this lemma.

Given K ~ 0 we may find an N ~ K + 8 such that (y(i).y(j)) ~ K + 8. (Since

{y(i)} tends to infinity.) We may also find a jo ~ N such that IX 1\ y(jo)1 ~ K + 8.

(Since IX 1\ y(j) I is unbounded.) Thus by the above inequality we have that for all

i ~N, (y(i).Xi) ~ -K. Hence {y(i)} rv {Xd.

By the above lemma we may consider infinite reduced words of C a subset of ac
which we shall denote Coo. (By part (iii), two infinite reduced words cannot have the

same image in ac.)
Now if a E AutC and x E r u ac then ax is defined. x is said to be attracting

for a if there is an open set U (in the topology given above) containing x and such

that for every y E U, limn--+oo¢ny = .T. We then get the following proposition.

Proposition 7.0.10 Let X be an infinite reduced word .fixed by a E AutC. Then X

is attracting in the sense of 5.1.14 if and only if it is attracting in r u ac .

.Proof: If {y(i)} is a sequence in C then by 7.0.9,
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where kn = lim inf, lany(i) 1\ Xil* = lim inf, lany(i) 1\ XI*. By 7.0.8 this implies that

if X is attracting for a in one topology then it is attracting in the other and vice

versa. (We note that we use the fact that if x E r then there is an x' E G such that

j(.T.Xi) - (X'.Xi)j :::; 1, to apply the above inequality to the whole of r.)

With the above proposition we may apply the results of 5, in particular The-

orem 5.1.14 to the situation where G is a hyperbolic group. However not every point

in the boundary of G is an infinite reduced word. The obvious exceptions arise from

the factor groups (recall that a free product is hyperbolic if and only if its factor groups

are also). In general then we would expect that the boundary of G contain not only

the infinite reduced words "but also copies of the boundaries of its factor groups and

all their conjugates. We say that y E fJ(Gj
W
) if there is a sequence {y(i)} E Y such

that each y(i) E G]", The content of the next theorem is that these are all.

Theorem 7.0.11 The boundary of G consists of the infinite reduced words and those

points in fJ(Gi
W
), where G, is a factor of G and W E G.

Proof: Let {y(i)} be a sequnce of elements of G which tends to infinity. We will

show that either this sequence is equivalent to one which lies completely in Gi
w for

some factor Gi and some w E Gi or there is an infinite reduced word X such that

Iy(i) 1\ X], -+ 00. For each g E G let,

ng = liminf Ig 1\ y(i)I*·
t

Suppose that the. set {ngjg E G} is bounded. Then let ti = max{ngjg E G}. Then we

may find a go E G such that n90 = n, By choosing such a go of minimal free product

length we also get that go is a subword of all but finitely many y(i). Suppose that

there is a g1 which is also subword of infinitely many y(i) and that jg11*> jgol*, which

in particular means that go is a proper subword of 91. Since ngO = max{ngj9 E G} we

must also have that there are infinitely many y( i) which do not have 91 as a subword.
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Hence we may find infinitely many pairs of integers i,j such that y(i)l\y(j) = gOl\gl =

go. Thus for these pairs we get, by 7.0.9 that

(y(i).y(j)) :::;Igll.

However, this is in contradiction to the fact that {y(i)} is a sequence which converges

to infinity. Thus by passing to a subsequence if neccessary we may write,

y(i) = goa(i)z(i)

where the product is reduced as written and each a( i) lies in a single factor and they

arc all distinct. We note that if a( i) and aU) lie in distinct factors then

(y(i), y(j)) = Igol.

Thus by passing to a further subsequence we may assume that all the a(i) lie in the

same factor, 't Hence,

(y(i).y(j)) = Igol+ (a(i).a(j)) :::;Igoa(i)1 :::;Igoa(i)go-ll.

It is then clear that {goa(i)go-l} is a sequence which converges to infinity and is

equivalent to {y(i)}, since by 7.0.9, (goa(i)go-l.y(i)) ~ Igoa(i)l. Thus if {nglg E G}

is bounded we see that {y(i)} is equivalent to a sequence which lies entirely in ~w !'£
tfor some/ w.

On the other hand 'we will show that if {nglg E G} is not bounded then {y(i)}

will be an infinite reduced word. (This is to say that there is an infinite reduced

word X such that {y(i)} is equivalent to {Xi} .) By the hypotheses we may find a

sequence of elements w(i) E G such that {nw(i)} is a strictly increasing sequence of

positive integers. By choosing, as before, the elements w(i) to be of minimal length

we may assume that each w(i) is a subword of all but finitely many of the {y(i)}.

Since we also have that Iw(i+ 1)1*> Iw(i)I*, we get that each w(i) is a strict subword
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of w(i + 1). Hence the sequence w(i) defines an infinite reduced word X. In fact each

w(i) is a subword of X and hence Iy(i) 1\ XI* is unbounded. Thus by 7.0.9 we are

done.

We now consider the action of an automorphism a on DG. For those points in

Goo, the infinite reduced words, we may apply 5.1.14 to show that these must all be

either attracting, repelling or the limit of a sequence of fixed elements. By the above

theorem other points of DG lie in DGi
w for some integer i and some w E G. Clearly,

in this case G, must be a non infinite cyclic factor of G, since otherwise we are in

fact looking at an infinite reduced word. Also, if w-1w' E Gi, then DGiw = ecr. So

we assume, when considering points in DGi W that w does not begin with an element

from G;

Now we recall that if Gj is a non infinite cyclic factor of G and a an automorphism

of G then Gj is sent by a to a conjugate of possibly a different non cyclic factor. Thus

if a E Gj, we write orz = uj-1aj(a)uj where this product is reduced as written. We

then get the following,

Proposition 7.0.12 If a fixes a point of DG/J, then aw = W.TUj (not neccessarily

reduced), where Ixl is bounded independently of ui,

(We note that a consequence of this proposition is that a(Gj
W
) = Gj

w.)

Proof: Consider the sequence {aiW} C G/u and suppose that {aiW} rv {aaiW}, We

write eau" = b.", where b, is in the same factor as aj(ai) and the product is reduced

as written. (Note that if we anticipate the result we see that b, may not be aj(ad

but an internal conjugate of it.) First we claim that v = w, since otherwise we apply

7.0.9 to get,

which contradicts our assumptions. We get the same inequality if a; and bi lie in

different non cyclic factors. Combining these we see that w-1a(w)uj-l E Gj. Thus
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eau = WXUj where x E Cj. If this is reduced we apply 5.1.3 to get the result.

Otherwise since we asssume that W does not end with an element from Cj and Uj

does not begin with one, we must have that x = 1.

Suppose that we attempted to count the number of fixed points of n on the

boundary. It is fairly natural to consider the equivalence of fixed points under the

action of the fixed subgroup. By the above proposition, under this equivalence, we

only need to consider finitely many of the 'factor boundaries' BCj '". This is because,

if we have a fixed point in BCj
W then nw = WXUj, and there are finitely many

possibilities for x. If we also have a w' such that nw' = W'XUj then w'w-1 E Fixo.

This reduces the problem of studying the fixed points of n on the boundary of a free

product, to that of studying the possible actions on the boundaries of indecomposable

groups. It seems likely that this problem is amenable, especially in the torsion free

case as here the indecomposable groups will be one-ended and hence have connected

and locally connected boundary

We finally give an" easy corollary of the above results for some virtually free

groups. In the finitely generated case they are actually hyperbolic since they contain

a hyperbolic subgroup of finite index. We consider finitely generated groups which

can be written as the free product of finite and infinite cyclic groups - in other

words, virtually free groups which are free products. We note that it is clear that the

boundary of a finite group is empty. We thus have the following.

Theorem 3.7 Let C be a finitely generated free product of finite and infinite cyclic

groups and n E AutC. Then regarding C as a hyperbolic group we have that the

points on the boundary fixed by n are either:

(i) Attracting

(ii/ Repelling

(iii) The limit of fixed elements of c.
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Suppose C = Cl * C2 * ... Gi, where each Ci is either finite or infinite cyclic. Set

r( Gi) to be the maximal number of generators for any subgroup of Ci and r( G) to be

the maximum of these. Set a(o;) to be the number of equivalence classes of attracting

fixed points on the boundary of G for Q. The equivalence is given by the action of

the fixed subgroup. \Ve then have the following:

Theorem 5.8 1/r(G) (# qeneraiors of Fixo:) + a(0'.)/2 ~ k .

Proof: This is merely a corollary of 5·2·J1.
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