Tackling the MDR-TB epidemic in Ukraine: every little helps … and much more needed
Burman, M; Nikolayevsky, V; Kontsevaya, I; Molina-Moya, B; Rzhepishevska, O; Guglielmetti, L

© The Author 2017.

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/25525

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk
Correspondence

Tackling the MDR-TB epidemic in Ukraine: every little helps … and much more needed

Dear Editor,

The 2016 TBnet Academy, a meeting to support collaboration and learning about tuberculosis (TB) amongst students, doctors and researchers from across Europe, was held in Odessa, Ukraine. We witnessed first-hand the commitment of local healthcare professionals to tackle the increasing multi-drug-resistant TB (MDR-TB) burden. Ukraine is one of the WHO’s 30 high-burden countries for MDR-TB.1 In 2014, 8000 patients started on MDR-TB treatment, accounting for 22% of all new TB cases.1

We write this letter to share the progress being made locally, to highlight the difficulties being faced, and to call for ever stronger international collaboration to tackle the MDR-TB epidemic.

Access to key laboratory diagnostics has improved significantly within Ukraine. Since 2011 rapid liquid culture (BACTEC MGIT, Becton Dickinson, USA) and molecular tools (GeneXpert, Cepheid, USA), procured by the Global Fund, are being systematically introduced across the country. Ukraine has developed a national electronic TB register and the renovation of TB facilities and have also developed new tools (GeneXpert, Cepheid, USA) and molecular (BACTEC MGIT, Becton Dickinson, USA) and molecular diagnostics. The renovation of TB facilities has improved the coverage of anti-retroviral therapy (ART) for HIV/TB co-infected patients. Local initiatives have led to the allocation of regional funds for the renovation of TB facilities and have also developed new international collaborations (http://cordis.europa.eu/project/rcn/108387_en.html).

Unfortunately, the impact of the military conflict and the resultant economic downturn puts the progress in TB control at significant risk.3 Due to rising inflation salaries for healthcare workers (HCWs) have effectively fallen by a third making the retention of HCWs skilled in TB ever more challenging (http://data.worldbank.org/indicator/FPCPL.TOTL.ZG?locations=UA). We also observed shortages of drugs (rifampicin), basic infection control equipment for staff and limited access to HIV testing for TB patients. Many are only provided with one of the two tests required to be offered ARTs, thus denying access to live-saving treatment. Hospital facilities are still limited and overcrowded while the management of MDR/extensively drug-resistant (XDR)-TB patients in communal rooms is a major risk for nosocomial transmission.3 Newly approved MDR-TB drugs, such as Bedaquiline and Delamanid, are not yet available in Ukraine, despite the country participating in clinical trials to prove the efficacy of Bedaquiline. This lack of access to new and existing reserve drugs contributes to poor cure rates amongst MDR/XDR-TB patients.4

The End TB strategy identifies the need for ‘political commitment’ to ‘support global TB… control’.5 With increasing political isolationism across Europe and beyond, one thing is clear: to tackle the rise of MDR-TB better international collaboration is essential.

Ukraine illustrates the benefits that international collaboration and support can bring to TB control within a country, but is a stark reminder of the threat to global health posed by MDR-TB. As a group of students and doctors, and researchers from across Europe, we call for increased international funding, collaboration and expertise exchange to ensure that we succeed in the fight against TB and MDR-TB.

Submitted on behalf of the Attendees of the 2016 TBnet Academy (a full list of attendees is available as supplementary data).

Supplementary data

Supplementary data are available at the Journal of Public Health online.

References

Matthew Burman1, Vladyslav Nikolayevskyy2,3,
Irina Kontsevaya4, Barbara Molina-Moya5,
Olena Rzepishewska6, Lorenzo Guglielmetti7,8
1Centre for Primary Care and Public Health, Queen
Mary University of London, London, UK
2Public Health England, National Mycobacterium
Reference Service South, London, UK
3Imperial College, London, UK
4Department of Medicine, Infectious Diseases and
Immunity, Imperial College London, London, UK
5Institut Germans Trias i Pujol (IGTP), Universitat
Autònoma de Barcelona, Barcelona, Spain
6Department of Chemistry, Umeå University,
Umeå, Sweden
7Centre Hospitalier de Bligny, Briis-sous-Forges, France
8Center of Immunology and Infectious Diseases,
Sorbonne Université, Paris, France

Address correspondence to Matthew Burman,
E-mail: m.burman@qmul.ac.uk
doi: 10.1093/pubmed/fdx014