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Abstract. The work presents a proof of convergence of the density of energy

levels to a Gaussian distribution for a wide class of quadratic forms of Fermi
operators. This general result applies also to quadratic operators with disorder,

e.g., containing random coefficients. The spacing distribution of the unfolded
spectrum is investigated numerically. For generic systems the level spacings
behave as the spacings in a Poisson process. Level clustering persists in presence

of disorder.
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1. Introduction

In a variety of situations one encounters quadratic forms in Fermi operators

Hn =

n∑
i,j=1

Aijci
†cj +

1

2
Bij(cicj − ci†cj†), (1)

where the Fermi operators ci’s obey the canonical anticommutation relations
{ci, cj} = 0, {ci, cj†} = δij , and the coefficients satisfy Aij = Aji ∈ R, Bij =
−Bij ∈ R for i, j = 1, 2, . . . . The quadratic form (1) defines a symmetric opera-
tor Hn acting on a Hilbert space of dimension 2n. This operator represents the
Hamiltonian of a system of quasifree fermions.

Such quadratic operators are of fundamental interest for several reasons. First and
foremost, these operators can be diagonalized exactly using an explicit normal modes
decomposition [23] and certain quadratic Hamiltonians are good approximations
for more complicated two-body interactions. Furthermore, fermionic models share
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2 CUNDEN, MALTSEV, AND MEZZADRI

a close relationship to interacting spins in dimension one, and they are among
the simplest systems in which quantum phase transitions occur and entanglement
measures can be computed. The literature on quasifree fermions, their relationship
to spin systems, as well as to other areas of physics such as conformal field theory
and random matrix theory is immensely vast. For a review, see [1, 10,12,20]. In the
last decades, models with disordered, i.e., containing random parameters, have also
been considered [15,28,30,31].

For quadratic forms in Fermi operators it is of interest to know whether, in the
limit of large n, the density of energy levels and the spacing distribution converge and
to identify the limit. Of course, the spacing distribution of the unfolded spectrum
requires knowledge of the density of energy levels. We discuss these questions for a
broad class of systems that includes the following examples.

(i) The standard diagonalisation scheme for spin 1/2 systems is centred on
the Jordan-Wigner transformation, which is based on the observation that
there exists a unitary mapping between the Hilbert space (C2)⊗n of n spin
1/2’s and the antisymmetric Fock space F−(Cn) of spinless fermions on n
sites. For instance, the XY model consists of n spin 1/2’s (n even) arranged
in a chain and having only nearest neighbour interactions (1/2)

∑
i(1 +

γ)σxi σ
x
i+1 +(1−γ)σyi σ

y
i+1, where σx and σy may be represented by the usual

Pauli matrices (~ = 1). Using the Jordan-Wigner map, the model can be
cast as a quadratic form in Fermi operators [23]

HXYn =

n−1∑
i=1

[(ci
†ci+1 + γc†i ci+1

†) + h.c.]. (2)

This representation is exact in the case of spin chain with free ends.
(ii) A quantum bond percolation model on a lattice Γ with n sites consists of a

tight-bind Hamiltonian of the form [7,33,34]

Hpercn =
∑
<ij>

[tijci
†cj + h.c.], (3)

where the summation runs over nearest neighbour sites and the hopping
matrix elements tij ∈ R are independent Bernoulli random variables Pr(tij =
1) = 1− Pr(tij = 0) = p ∈ (0, 1).

(iii) The Anderson model [2] is one of the simplest models incorporating the
essential competition between the hopping term (discrete Laplacian) and the
on-site disorder (random potential). For a generic lattice Γ the Anderson
Hamiltonian for noninteracting fermions can be written

HAndn =
∑
i

vic
†
i ci + t

∑
<ij>

[ci
†cj + h.c.], (4)

with random on-site potential vi ∈ R; usually vi’s are independent with
mean zero and finite variance W 2.

(iv) More general non-sparse random quasifree fermions Hamiltonian. For in-
stance one can consider the Hamiltonian (1) with Aij , Bij independent
Gaussian variables, modulo the symmetries Aij = Aji and Bij = −Bji. It
turns out that this model is related to the real Ginibre ensemble of random
matrix theory [18].
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In the traditional paradigm of condensed matter physics, the number of particles is
so large that questions on the macroscopic density of energy levels, i.e., the behaviour
of the energy levels in the ‘bulk’ very far from the ground state, are meaningless. The
situation has changed recently. Over the past few years, experimental developments
have allowed the study of systems with a small and controlled number of particles
and therefore, a direct measure of the level density might be within reach of current
experimental capabilities.

These considerations have recently triggered the attention of some authors on the
problem of convergence and universality of the limiting level density of many body
systems. In two pioneering papers, Hartmann, Mahler and Hess [19] considered
generic many body quantum systems with nearest neighbour interaction. They
proved that, provided that the energy per particle has an upper bound, the energy
distribution for almost every product state becomes a Gaussian in the limit of
infinite number of particles. More recently, Atas and Bogomolny [3, 4] investigated
numerically and theoretically the energy levels of several interacting spin 1/2 systems
and concluded that the density of levels converges to a Gaussian. Using an adaptation
of the line of reasoning in [19], Keating, Linden and Wells [21, 22, 37] proved
convergence to a Gaussian distribution for spin chains with generic pair interactions,
including the case of spin glasses, i.e., interaction with random couplings. This
result has been extended to spin systems on more general graphs by Erdös and
Schröder [13]. The algebraic identities satisfied by the Pauli matrices representing
spin 1/2’s play a key role in the proofs in [13,21,22,37].

Our goal here is to show that the density of energy levels of a wide class of
quadratic Fermi operators (both deterministic and random) converges to a Gaussian
distribution in the limit of large n. The proof of this universal result relies on the
connection between the spectrum of Hn and the subset-sum structure arising in the
normal modes decomposition. This result explains some of the previous conjectural
statements and numerical observations by Atas and Bogomolny on the level density
of certain (nonrandom) spin systems. Additionally we provide a uniform bound
(based on a Berry-Esseen inequality) on the rate of convergence.

We also consider the level spacing distribution of such operators. Numerical
investigation shows that both deterministic and random models exhibit level cluster-
ing (Poisson statistics); this behavior is compatible with the celebrated Berry-Tabor
philosophy for generic integrable systems [8], even in presence of disorder. In the
course of the paper we also present a few short examples illustrating the general
theorems.

The paper is organised as follows. In Section 2 we set the notation and review
the consequences of the normal modes decomposition. Then, in Section 3 we present
our main results on the limiting density of energy levels and the rate of convergence
to the limit. In Sections 4, 5, 6 and 7 we apply the general theorems to the examples
(i), (ii), (iii) and (iv) discussed above, thus illustrating in physical models the
universality of Theorems 1 and Corollary 1. Finally, in Section 8 we present the
numerical observations on the level spacing distribution.

Notation. We shall denote by rk (k = 1, 2, . . . ) a collection of i.i.d. binary
variables with Pr(rk = 1/2) = Pr(rk = −1/2) = 1/2. Expectation with respect to
the rk’s will be denoted by E[·]. By ‖ · ‖op we shall indicate the usual operator
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norm (the largest singular value). The projection onto the first n coordinates will
be denoted by Pn = diag(1, 1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . . ).

2. Generalities on Fermi operators

Let us order the 2n eigenvalues of Hn as

E1,n ≤ E2,n ≤ · · · ≤ E2n−1,n ≤ E2n,n. (5)

For a quadratic Hamiltonian (1) it is possible to write a normal modes decomposition.
More precisely, using a canonical transformation [23, Appendix A] the operator Hn
can be written as

Hn =

n∑
k=1

λk,n

(
η†kηk −

1

2

)
+Kn, (6)

where the normal modes ηk, η
†
k are Fermi operators, the elementary excitations

λk,n ≥ 0 are the singular values of Pn(A+B)Pn and Kn = TrPnAPn/2.

The following well-known properties of the Fermi operators ηk, η†k are immediate

consequences of the canonical anticommutation relations [27]. First, the η†kηk are

Hermitian operators with eigenvalues 0 and 1. Second, ηk (η†k) acts as a lowering

(raising) operator on the normalised eigenvectors of η†kηk with eigenvalue 1 (0).

Moreover, the η†kηk’s form a set of mutually commuting operators and therefore
they can be simultaneously diagonalised. These three facts imply that there exists

a normalised vector |0〉 (the vacuum state) which is an eigenvector of all the η†kηk’s

with corresponding eigenvalue zero: η†kηk |0〉 = 0. A set of 2n normalised eigenvectors

of η†kηk (k = 1, . . . , n) can be built up by exciting the vacuum state; the normalised

vector |α1α2 · · ·αn〉 = (η†1)α1(η†2)α2 · · · (η†n)αn |0〉 with αk = 0 or 1, is an eigenvector

of η†kηk with eigenvalue αk. Therefore, from (6) we have

Hn |α1α2 · · ·αn〉 =

(
Kn +

n∑
k=1

αkλk,n −
1

2

n∑
k=1

λk,n

)
|α1α2 · · ·αn〉 . (7)

The spectrum of Hn is constructed by exciting the ground state energy E1,n =
Kn − 1/2

∑
k λk,n by the elementary excitations λk,n. Hence the spectrum is

characterised in terms of the subset sums of elementary excitations as follows: E is
an eigenvalue of Hn if and only if

∃S ⊆ {1, . . . , n} such that E = Kn +
1

2

(∑
k∈S

λk,n −
∑
k/∈S

λk,n

)
. (8)

The density of energy levels is defined as the empirical normalised measure

1

2n

2n∑
k=1

δ(E − Ek,n), (9)

and from (8) it follows that

1

2n

2n∑
k=1

δ(E − Ek,n) =
1

2n

∑
r1,...,rn∈{± 1

2}

δ

(
E −

n∑
k=1

rkλk,n −Kn

)
. (10)
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Up to a shift, the empirical measure of Ek,n is given by the distribution of the sum
of n independent variables r1λ1,n, . . . , rnλn,n. In fact, it is possible to compute the
Fourier transform of (10):

ˆ
1

2n

2n∑
k=1

δ(E − Ek,n)eitEdE = eitKn
n∏
k=1

E[eitrkλk,n ]

= eitKn
n∏
k=1

(
1

2
eitλk,n/2 +

1

2
e−itλk,n/2

)

= eitKn
n∏
k=1

cos

(
tλk,n

2

)
. (11)

This computation shows that the empirical distribution of the energy levels Ek is
the distribution of a sum of independent random variables. It is then plausible that
for large n, after a suitable rescaling, the distribution of energy levels converges to
a Gaussian. After all, the many body Hamiltonian (6) is a sum of single particle
(commuting) operators and the total spectrum is given by the sum of the individual
spectra. In the following section we specify exact conditions for this convergence.
Note that the variables rkλk’s are independent but not identically distributed, e.g.
E[rkλk,n] = 0 and E[(rkλk)2] = λ2k,n/4.

Before stating the main theorems we conclude this section with a last computation
to prepare the ground to what follows. If we knew that the limiting level density is
Gaussian then the limit would be identified by its mean and variance. The moments
of the counting measure (9) are related to traces of powers of Hn by the following
identity

1

2n
TrHpn =

ˆ
1

2n

2n∑
k=1

δ(E − Ek,n)EpdE. (12)

In particular, mean and variance are given by the traces of the first two powers
TrHn and TrH2

n. A direct computation of these traces is possible using Wick’s
calculus. The only non-traceless products of Fermi operators that we need are

Tr(c†i cj) = 2n−1δij , (13)

Tr(c†i cjc
†
kcl) = 2n−2(δijδkl + δilδjk), (14)

Tr(cicjc
†
kc
†
l ) = 2n−2(δilδjk − δikδjl); (15)

using (13)-(15) one finds

1

2n
TrHn =

1

2

n∑
i=1

Aii, and
1

2n
(
TrH2

n − (TrHn)2
)

=
1

4

n∑
i,j=1

(A2
ij +B2

ij). (16)

The above quantities are mean and variance of the finite-n level density.

3. Main results

Theorem 1 (Density of energy levels). Let Hn be the quadratic form (1). Assume
that, denoting Xn = Pn(A+B)Pn, the following conditions are true:

i) lim
n→∞

n−1/4‖Xn‖op = 0;

ii) lim
n→∞

1

4n
Tr(XT

nXn) = σ2 <∞.
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Then, the density of shifted and rescaled energy levels

νn(E) =
1

2n

2n∑
k=1

δ

(
Ek,n −Kn√

n
− E

)
(17)

weakly converges, as n→∞, to a centred Gaussian probability measure with variance
σ2:

dνn(E) ⇀
1√

2πσ2
e−

E2

2σ2 dE. (18)

Theorem 1 can be proved by checking the Feller-Lindeberg conditions [14] in the
central limit theorem for independent nonidentical random variables. We present
however a more direct proof based on elementary computations. Hypothesis i) of
Theorem 1 can be rephrased as

λk,n = o(n1/4) for all k, (19)

meaning that the elementary excitations do not grow too fast with n. This assump-
tion is similar (but in sense weaker) to the condition of finite energy per particle in
Hartmann, Mahler and Hess theorem [19]. Note also that

σ2 = lim
n→∞

1

4n
Tr(XT

nXn) = lim
n→∞

1

4n

n∑
k=1

λ2k,n = lim
n→∞

1

4n

n∑
i,j=1

(A2
ij +B2

ij), (20)

according to (16). Hypothesis ii) is thus a condition on the second moment of the
density of energy levels.

Proof of Theorem 1. Let λk,n (k = 1, . . . , n) be the singular values of Xn. Repeating
the computation in (11) we findˆ

eitEdνn(E) =

n∏
k=1

cos

(
tλk,n
2
√
n

)
. (21)

The key point to appraise (21) is the following identity.

Claim. Let (ui)i∈N be a sequence of complex numbers such that

lim
n→∞

n−1/2 max
1≤i≤n

|ui| = 0, (22)

and the following limit exists and is finite

S = lim
n→∞

1

n

n∑
i=1

ui. (23)

Then

lim
n→∞

n∏
i=1

(
1 +

ui
n

)
= eS . (24)

(A generalization of the identity lim
n→∞

(
1 + u

n

)n
= eu.)

If we accept the claim, we can prove the theorem as follows. For any fixed t ∈ R:
n∏
k=1

cos

(
tλk,n
2
√
n

)
=

n∏
k=1

(
1− 1

2

t2λ2k,n
4n

(1 + o(1))

)
. (25)

By the claim and hypotheses i) and ii) (using maxk λ
2
k,n = ‖XT

nXn‖op) the last ex-

pression converges to exp(−σ2t2/2) and by Lévy’s continuity theorem this proves (18).
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It remains to prove the claim. We adapt a proof given in [24, Lemma A.5]. Set

Pn =

n∏
i=1

(
1 +

ui
n

)
, Sn =

1

n

n∑
i=1

ui, Mn = max
1≤i≤n

|ui|. (26)

Note that the function log(1 + z) + z has a double zero at z = 0. Hence

L(z) = (log(1 + z) + z)/z2 (27)

is analytic in the open disk |z| < 1 (in particular it is continuous and bounded).
The finite product can be written as

Pn = eSn exp

{
n∑
i=1

(ui
n

)2
L
(ui
n

)}
. (28)

Therefore

Pn − eSn = eSn

(
exp

{
n∑
i=1

(ui
n

)2
L
(ui
n

)}
− 1

)
. (29)

By continuity there exists 0 < R < 1 such that L(R) = 1. From (22) it follows that,
for n sufficiently large, Mn/n ≤ R and by the maximum principle |L(uin )| ≤ 1. We
conclude that, for large n, ∣∣Pn − eSn ∣∣ ≤ |eSn |M2

n

n
e
M2
n
n (30)

since for any z, |ez − 1| ≤ |z|e|z|. By (22) and (23) the above inequality implies the
claim (24). �

The following result provides a uniform bound on the discrepancy between the
finite-N empirical density of energy levels and the limiting Gaussian (in the sense
of Kolmogorov distance between probability distributions).

Proposition 1. Denote

s2n =
1

4n
Tr(XT

nXn), ρ3n =
1

8n3/2
Tr((XT

nXn)3/2). (31)

Then for all n the following bound on the distance between the counting measure of
the normalised energy levels Ek,n/sn and the standard Gaussian distribution holds

sup
E

∣∣∣∣∣ 1

2n
#

{
k :

Ek,n −Kn

sn
< E

}
− 1√

2π

ˆ E

−∞
e−

x2

2 dx

∣∣∣∣∣ ≤ C√
n

ρ3n

s
3/2
n

, (32)

for an absolute constant C that may be chosen as C = 6.

Proof. To prove (32) we use a classical Berry-Esseen inequality for independent
nonidentically distributed variables. The empirical distribution of the shifted energy
levels is the same as the empirical distribution of the sum of independent centred
random variables x1, . . . , xn with the position

xk = rkλk,n, (33)

where r1, r2, . . . are i.i.d. binary variables (note that the xk’s are not identically
distributed). Denote by Fn the cumulative distribution of the normalised sum
(x1 + · · ·+ xn)/(

∑n
k=1 E[x2k])1/2. Then for all x and n∣∣∣∣Fn(x)− 1√

2π

ˆ x

−∞
e−y

2/2dy

∣∣∣∣ ≤ C√
n

∑n
k=1 E|xk|3

(
∑n
k=1 Ex

2
k)3/2

, (34)
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where C ≤ 6 (see Ch. XVI.5, Theorem 2 in [14]). An elementary computation shows
that

Ex2k =
λ2k,n

4
and E|xk|3 =

λ3k,n
8
, (35)

where the expectation value is taken with respect to r1, . . . , rn. This concludes the
proof, since the λk,n’s are (up to a rescaling) the singular values of Xn. �

Example 1. We show that the rate n−1/2 in (32) is optimal. Suppose that Aij =
ξδij (ξ ∈ R) and Bij = 0. Hence, the quadratic form reads

Hn = ξ

n∑
k=1

η†kηk. (36)

In this case the elementary excitations λk,n are all equal to ξ and empirical distribu-
tion of the energy level Ek,n is given by the distribution of the sum of i.i.d. variables
xk = ξrk with rk as above. Therefore we have

1

2n

2n∑
k=1

δ

(
E − Ek,n − ξn/2√

n

)
= Eδ

(
E − 1√

n

n∑
k=1

xk

)
. (37)

By the central limit theorem for i.i.d. random variables, 1√
n

∑n
k=1 xk converges to

a Gaussian variable with mean 0 and variance ξ2/4 (compare with Theorem 1).
Moreover, by Chebychev inequality

∑n
k=1 xk ∈ (−ξ

√
n, ξ
√
n) with probability at least

3/4 and therefore each value in this interval is taken with probability proportional to
1

ξ
√
n

. Hence, the distribution of the discrete random variable
∑n
k=1 xk has jumps

of size n−1/2. On the other hand the Gaussian distribution is continuous. So the
error in the Gaussian approximation is at least given by the size of the jumps which
matches with the bound in (32).

Theorem 1 can be adapted to deal with random quadratic Fermi Hamiltonians
(see the examples (ii), (iii) and (iv) presented in the introduction). Let (Ω,F ,P)
be a probability space. The expectation with respect to P will be denoted by E.
Let us suppose that A(ω) and B(ω) (ω ∈ Ω) are random double arrays of real
numbers satisfying A(ω)ij = A(ω)ji and B(ω)ij = −B(ω)ji. Hence (1) defines a
sequence of random quadratic forms Hn(ω) in Fermi operators. Our approach to
proving convergence to a Gaussian limit consists of two steps: firstly, we average
over fictitious binary variables (using Theorem 1) for a given realization of the
disorder (A(ω)ij and B(ω)ij); then, if the first average in the limit of large n is
independent of the realization ω, we can average over the disorder (i.e. with respect
to P). Note that all random variables are defined on the same probability space.
We have the following result as a corollary of Theorem 1.

Corollary 1. Let Hn(ω) be the random quadratic form (1) defined by A(ω) and
B(ω). Let Xn(ω) = Pn(A(ω) +B(ω))Pn and assume that the following conditions
hold true P-almost surely:

i) lim
n→∞

n−1/4‖Xn(ω)‖op = 0;

ii) lim
n→∞

1

4n
Tr(Xn(ω)TXn(ω)) = σ2 ∈ R.



QUADRATIC FORMS OF FERMI OPERATORS 9

Then, the sequence of density of rescaled energy levels

νn(E;ω) =
1

2n

2n∑
k=1

δ

(
Ek,n(ω)−Kn(ω)√

n
− E

)
(38)

weakly converges in average, as n→∞, to a centred Gaussian probability measure
with variance σ2. (This means that

E
ˆ
f(E)dνn(E;ω)→ 1√

2πσ2

ˆ
f(E)e−

E2

2σ2 dE, (39)

as n→∞, for all f bounded and continuous.)

Proof. The proof is based on the representation of the shifted energy levels in terms
of the set of fictitious independent binary variables rk

Ek,n(ω)−Kn(ω) =

n∑
k=1

rkλk,n(ω), (40)

where λk,n(ω) are the singular values of Xn(ω).
Let us introduce the sets

S1 =
{
ω : lim

n→∞
n−1/4‖Xn(ω)‖op = 0

}
, (41)

S2 =

{
ω : lim

n→∞

1

4n
Tr(Xn(ω)TXn(ω)) = σ2

}
, (42)

S = S1 ∩ S2. (43)

By hypothesis P(Si) = 1 for i = 1, 2, and therefore P(S) = 1. Hence, if ω ∈ S, by
Theorem 1 ˆ

eitEdνn(E;ω)→ e−
σ2t2

2 . (44)

The above convergence holds P-almost surely (for all ω ∈ S). Moreover the function
x 7→ exp(ix) is absolutely bounded and therefore the almost sure convergence can
be promoted to convergence in mean

E
ˆ
eitEdνn(E;ω)→ e−

σ2t2

2 . (45)

The proof is completed by using Lévy’s continuity theorem. �

Classes of random matrix ensembles which include quantum spin glasses (random
two-spin interaction) on generic graphs have been recently considered in [13,21,22,37].
For these Hamiltonians, using the algebraic identities for Pauli matrices, it has
been proved that the limiting spectral density, as the graph cardinality increases, is
Gaussian. For spin 1/2’s with nearest neighbourhood random interaction, by the
Jordan-Wigner transformation, those systems are equivalent to random quadratic
forms of Fermi operators and our method provides an alternative proof of these
results. For generic Hamiltonians Hn, the inverse Jordan-Wigner transformation
maps the problem to spin 1/2 systems with more complicated interactions not
considered in previous works. Our method of proof relies on the subset sum
structure in the spectrum of quadratic Fermi operators and it is sufficiently robust
to be extended to a large class of random Hamiltonians. An exceptional example of
random Hamiltonian that does not exhibit a Gaussian limit is presented below.
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Example 2. Let us consider the Hamiltonian (36) of Example 1, but suppose now
that ξ = ξ(ω) is a bounded centred random variables with 0 < Var(ξ2) < ∞. Of
course µ = 0, but 1

4nTr(Xn(ω)TXn(ω)) = ξ2(ω) is a random variable. The rescaled
density of states νn(E;ω) converges P-almost surely to a centred Gaussian density
with (random) variance ξ2(ω); nevertheless we have no convergence in mean.

In the following sections we discuss explicit examples in detail. In Section 4 we
illustrate the method on spin 1/2’s systems with fixed nonrandom couplings. We
consider in detail the XY model with free boundary conditions and the Ising model
with transverse field studied in [3]. Then, we present our results for the quantum
percolation models and the Anderson models (Section 5). In Section 6 we establish
the connection between non-sparse Gaussian quadratic operators and the Ginibre
ensemble of random matrix theory. Finally, in Section 7 we apply our theorem to
other random band models. The level spacing distribution is discussed in Section 8.

4. Spin chains

As described in the introduction, chains of interacting spin 1/2’s can be mapped
to systems of spinless fermions. We shall apply our theorems to those systems.

The paradigmatic example is provided by the XY chain, a canonical toy model
for quantum spin systems routinely used as a first example to illustrate new concepts.
Assuming free boundary conditions, the Hamiltonian of the XY -model for n spins
can be written as (2). In this model A and B have a tridiagonal form

PnAPn =



0 1 0
1 0 1
· · ·
· · ·
· · ·

1 0 1
0 1 0


, PnBPn =



0 γ 0
−γ 0 γ

· · ·
· · ·
· · ·
−γ 0 γ

0 −γ 0


;

Note that Aii = 0 (hence Kn = 0). The elementary excitations are [23]

λk,n = 2
√

1− (1− γ2) sin2 θk,n, (46)

where the θk,n’s are solution of a transcendental equation [23, Eq. (2.64e)]. It is
clear that |λk,n| ≤ 2 and

σ2 = lim
n→∞

1

4n

n∑
i,j=1

(A2
ij +B2

ij) =
1

2
(1 + γ2), (47)

and therefore the density of energy levels of the XY model converges to

1

2n

2n∑
k=1

δ
(
E − Ek,n/

√
n
)
⇀

1√
π(1 + γ2)

e
− E2

(1+γ2) dE. (48)

Similar considerations can be extended in presence of external fields. For simplicity
we consider the Ising model in transverse field −

∑n
j=1 σ

x
j σ

x
j+1 + hσzj , where h ≥ 0

is the external magnetic field. The problem can be reduced to a quadratic form in
Fermi operators whose normal modes decomposition has

λk,n = 2
√

1− 2h cos θk,n + h2, (49)
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with phases θk,n = 2π(k−1)
n − π, (k = 1, . . . , n) equidistributed. Now |λk,n| ≤ (2 + h)

and

lim
n→∞

1

4n

n∑
k=1

λ2k,n = (1 + h2). (50)

We conclude that

1

2n

2n∑
k=1

δ
(
E − Ek,n/

√
n
)
⇀

1√
2π(1 + h2)

e
− E2

2(1+h2) dE, (51)

according to [3, Eq. (20)]. Of course, at zero magnetic field h = 0 we recover the
limit density (48) of the XY model in the Ising limit γ → 1.

5. Quantum bond percolation and Anderson models

A quantum bond percolation model (3) can be cast in the form

Hpercn =

n∑
i,j=1

Aij(ω)c†i cj , (52)

where i, j ∈ V denotes the vertices (sites) of a graph Γ = (V,E) and Aij(ω) =
tij(ω)1(i,j)∈E is the adjacency matrix of Γ weighted by random independent Bernoulli
variables P(tij = 1) = 1− P(tij = 0) = p ∈ (0, 1) on a probability space (Ω,F ,P).
We assume that the graph Γ is a connected regular lattice; in particular, Γ does not
contain loops (therefore Aii = 0) and the degree of the vertices is constant d(i) = d,
where d(i) is the number of neighbours of i ∈ V . (d is called coordination number
of the lattice.)

It is well known that the largest eigenvalue of the adjacency matrix of a graph
is bounded by the maximal degree. This implies that ‖

√
XT
nXn‖op ≤ d. We then

compute

lim
n→∞

1

4n
Tr(XT

nXn) = lim
n→∞

1

4n

n∑
i,j=1

(i,j)∈E

t2ij(ω) = lim
n→∞

1

4n

n∑
i=1

n∑
j∈d(i)

t2ij(ω) =
dp

4
, (53)

for P-almost all ω. Therefore, by Corollary 1 we have

1

2n

2n∑
k=1

δ
(
E − Ek,n/

√
n
)
⇀

√
2

πdp
e−

2E2

dp dE. (54)

A very similar analysis can be performed for the Anderson model HAndn on a regular
lattice defined in Eq. (4). The coefficients are Aij(ω) = δijvi(ω) + t1(i,j)∈E and

Bij = 0. The vi’s are i.i.d. variables with mean zero and variance W 2. By the
strong law of large numbers we find

lim
n→∞

1

4n

n∑
i,j=1

A2
ij(ω) = lim

n→∞

1

4n

 n∑
i

v2i (ω) +

n∑
i,j=1

(i,j)∈E

t2

 =
1

4

(
W 2 + dt2

)
, (55)

for P-almost all ω.
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6. Gaussian quadratic forms and the Ginibre ensemble

Let us consider the Hamiltonian (1) with random coefficients Aij(ω), Bij(ω), ω ∈
Ω. We consider the case of Aij(ω) = aij(ω)/

√
n, Bij(ω) = bij(ω)/

√
n independent

Gaussian variables, modulo the symmetries aij = aji and bij = −bji with mean and
variance

E[aij ] = E[bij ] = 0, E[a2ij ] = (1 + δij)s
2, E[b2ij ] = (1− δij)s2. (56)

For Gaussian random variables the problem is simplified thanks to the following
observation: if Z1, Z2 are independent and identically distributed normal variables,
then (Z1 + Z2) and (Z1 − Z2) are independent normal variables. Therefore the
entries of the n×n matrix Xn(ω) = Pn(A(ω)+B(ω))Pn are i.i.d. Gaussian variables;
hence

Xn
d
=

√
2s2

n
G, (57)

where Gij are i.i.d. standard real Gaussian variable (G is a random matrix belonging
to the real Ginibre ensemble [18]). We have therefore established that the elementary
excitations λk,n (k = 1, . . . , n) of a quadratic form with i.i.d. Gaussian coefficients are
distributed as the singular values of a real Ginibre matrix G(ω) of size n (equivalently,
λ2k,n are the eigenvalues of a real n× n Wishart matrix W(ω) = GT (ω)G(ω)).

It is well-known that the singular values of n× n Ginibre matrice whose entries
are O(1) are typically of order O(

√
n). We therefore rescaled the coefficients Aij , Bij

by
√
n to get a sensible limit for the density of energy levels. In fact, using classical

asymptotic results on the extreme singular values of random matrices with i.i.d.
entries [5,17], we know that with probability 1 all the elementary excitations λk,n(ω)
lie in a fixed interval for large n. More precisely we have

lim
n→∞

max
k=1,...,n

λk,n(ω) =
√

2s2, (58)

for P-almost all ω. By the strong law of large numbers we also have

lim
n→∞

1

4n
Tr(XT

n (ω)Xn(ω)) = lim
n→∞

s2

2n2

n∑
i,j=1

G2ij(ω) =
s2

2
, (59)

for P-almost all ω, and by Corollary 1 we conclude that for n→∞

E
1

2n

2n∑
k=1

δ

(
E − Ek,n −Kn√

n

)
⇀

1√
πs2

e−
E2

s2 dE. (60)

In the rest of this section we use the relation with the Ginibre ensemble to obtain
results on the gound state energy and energy gap. The steps of proof are elementary
and they borrow the difficult technical statements from previously known results in
random matrix theory. Under the above assumptions of Aij and Bij , we have that√

n

2s2
(λ1,n, λ2,n, . . . , λn,n)

d
= (x1, x2, . . . , xn), (61)

where the joint probability density of the n random variables xk’s is

2nCn
∏
i<j

|x2i − x2j |
∏
k

e−x
2
k/2dxk, C−1n =

√
2n2

πn

n∏
i=1

Γ

(
n− i+ 1

2

)2

(62)

The joint law (62) is the eigenvalue distribution of the orthogonal chiral ensemble
of random matrices. It is usually denoted as chOE, see [16, Chapter 3.1] and [36].
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As n → ∞, the empirical distribution of the rescaled variables xk/
√
n converges

almost surely to the quarter law [25,38]

1

n

n∑
k=1

δ

(
x− xk√

n

)
→ 1

π

√
4− x21(0,2)(x)dx a.s.. (63)

From these results we derive now a few properties of the ground state of Hn. The
ground state energy is the lowest level E1,n and we denote by ∆n = E2,n − E1,n

the ground state energy gap.

Proposition 2 (Ground state energy and ground state energy gap). Let Aij(ω)
and Bij(ω) independent standard Gaussian variables as above (see eq. (56)). Then,
as n→∞,

i) the rescaled ground state energy converges

3π

(2n)3/2
E1,n → −s a.s.; (64)

ii) The rescaled energy gap
√
n/2s2∆n converges in distribution to a random

variable whose probability density function is

f(x) = (1 + x)e−
x2

2 −x, x ≥ 0. (65)

By the same proof one shows the almost sure convergence of the rescaled
largest energy level n−3/2E2n,n. Therefore, the numerical range of Hn is roughly

(−an3/2, an3/2) with a = (23/2/3π)s. Note that ∆n = O(n−1/2). Hence the system
is gapless.

Proof of Proposition 2. The ground state energy is given by (see (8))

E1,n = Kn −
1

2

n∑
k=1

λk,n. (66)

By the law of large numbers n−3/2Kn = n−2
∑n
i=1 aii converges to zero almost

surely. Using (61) and the quarter law (63) the following almost sure convergence
holds

− 1

2n

n∑
k=1

λk,n√
n
→ −s

ˆ 2

0

dx

π
x
√

4− x2 = − 8

3π
s. (67)

This proves (64). The ground state energy gap is given by the smallest elementary
excitation

∆n = min
k=1,...,n

λk,n =
√

2s2/n min
k=1,...,n

xk, (68)

where x1, . . . , xn are distributed according to (62). The large n distribution of
(n−1 mink x

2
k) is given in [11, Corollary 3.1]. The claim (65) follows. �

Remark. We expect that one could generalize this analysis to non-Gaussian variables
whose first four moments match the Gaussian moments using Lindenberg exchange
strategy. Using this technique one can replace the Gaussian variables aij and bij
one at a time by random variables from a desired distribution. This approach is
widely used to prove versions of the four moment theorem [35].
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7. Other random band quadratic forms

In this section we show that Corollary 1 applies to the case when A and B are
random band arrays. We introduce a parameter Wn ≥ 1 which corresponds to the
number of non-zero diagonals, i.e. Aij = Bij = 0 if |i− j| > Wn.

We normalize Aij(ω), Bij(ω) to ensure that condition (ii) of Corollary 1 is
satisfied. To compute the normalization of the matrix entries in terms of Wn we
want

σ = lim
n→∞

1

4n
Tr(XT

n (ω)Xn(ω)) = lim
n→∞

1

4n

n∑
i,j=1

(Aij(ω) +Bij(ω))2 (69)

to be finite and non-random. If there are Wn non-zero diagonals, the matrix
Xn has on the order of nWn non-zero entries, in the sense that we can take
Aij(ω) = aij(ω)/

√
Wn, Bij(ω) = bij(ω)/

√
Wn with aij and bij i.i.d. standardized

random variables to achieve the finite limit in (69). Here we do not need aij and bij
to be Gaussian.

We now show that condition (i) of Corollary 1 is also satisfied and therefore the
density of energy levels of random band quadratic forms converges to a Gaussian.
Suppose that Wn = o(n1/2) and that aij (and bij) has exponential decay, in the sense

that there exists δ > 0 such that Eeδ|aij | <∞. Then, letting Xn = Pn(A+B)Pn,

lim
n→∞

n−1/4‖Xn‖op = 0 P−a.s. . (70)

We proceed to a proof of (70) by showing that for all L > 0

∞∑
n=1

P(n−1/4‖Xn‖op > L) <∞, (71)

that implies (70) by the Borel-Cantelli lemma. Note that by triangle inequality
‖Xn‖op ≤ ‖PnAPn‖op + ‖PnBPn‖op. The argument will be identical for the two
terms on the right hand side so we will focus on the first one. For a symmetric
matrix, the operator norm is equal to the largest modulus of the eigenvalues and it
is therefore dominated by any matrix norm. In particular:

‖PnAPn‖op = sup
‖ψ‖2=1

〈ψ,Aψ〉 ≤ sup
‖ψ‖1=1

〈ψ,Aψ〉 = max
1≤i≤n

n∑
j=1

|Aij |

Let Zi =
∑n
j=1 |Aij | =

∑
j |aij |/

√
Wn. Then using that the Zi’s are identically

distributed, by the union bound we obtain

P( max
1≤i≤n

Zi > L) ≤ nP(Z1 > L) = nP(

n∑
j=1

|a1j | > L
√
Wn). (72)

Since |a1j |, j = 1, . . . , n are i.i.d. random variables, we can apply a Chernoff bound
to get

P(n−1/4‖Xn‖op > L) ≤ 2neC
′Wne−δL

√
n1/2Wn , (73)

by which we conclude that (71) holds true. For more general sharp concentration
inequalities on the operator norm of random matrices see, for instance, [6].
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Figure 1. XY chain of n = 22 spins with free ends. Left:
Distribution of the rescaled energy levels; the solid line is the
limiting Gaussian density (48). Right: spacing distribution for
the unfolded spectrum; the solid line is the negative exponential
exp(−x) (no fit).
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Figure 2. Random quadratic form with i.i.d. Gaussian coeffi-
cients. Here n = 22 and s = 1. Left: Distribution of the rescaled
energy levels; the solid line is the limiting Gaussian density (60).
Right: spacing distribution for the unfolded spectrum; the solid
line is the negative exponential exp(−x) (no fit).

8. Level clustering

One of the most commonly studied statistical measure of a given spectrum is the
level spacing distribution P (x), i.e., the distribution of gaps between consecutive
levels. The first step to unravel meaningful information from the spacings is to unfold
the spectrum in such a way that the average level spacing in the neighbourhood
of each transformed level is unity. In other words, the unfolding procedure is the
scaling transformation that removes the irrelevant effects of the varying local mean
density. A natural way to unfold the spectrum is by mapping each level Ek,n into
a new variable ek,n defined as the fraction of energy levels in the spectrum below
Ek,n. In practice, the variation of the density of levels needed for the unfolding is
included by fitting the integrated level density or, when explicitly known, by using
the limiting level density as an approximation.

We have numerically studied the level spacing distribution for a few instances
of quadratic Fermi operators. Fig. 1 reports our findings for the XY chain with
n = 22 spins and free boundary conditions. As illustrated in the left panel, the
histogram representing the numerical empirical measure of the energy levels is almost
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indistinguishable from the limiting Gaussian density. For this reason we have used
the limiting Gaussian density in (48) to unfold the spectrum. P (x) of the unfolded
spectrum is shown on the right panel of Fig. 1 (we considered about 105 levels in the
bulk of the spectrum). We observe that P (x) is maximum at x = 0 indicating level
clustering and it is likely to be the negative exponential P (x) ' e−x characteristic
of the Poisson process. We have also studied other spin models obtaining similar
results. This was to be expected since the XY model and its variants are integrable.
Poisson statistics have also been numerically observed in previous works for other
spin systems integrable by Bethe ansatz, including the Heisenberg chain, the t-J
model and the Hubbard model. See, e.g., [29].

We have performed the same investigation for random quadratic forms with
independent Gaussian coefficients (see Section 6), where the elementary excitations
λk,n of the normal modes are distributed as the singular values of the real Ginibre
ensemble (61). Our findings are reported in Fig. 2. Again, the Gaussian limit (60)
is a convincing approximation of the numerical level density even for moderate
values of n (left panel). The level spacing in the unfolded spectrum (about 105

levels in the bulk) is well described by a negative exponential. Note that the
elementary excitations λk,n repel as the eigenvalues of random matrices (see eq.
(62)); nevertheless, the energy levels Ek,n are given by the subset sums of the λk,n’s
and this structure dominates the repulsion and enhances the presence of small gaps.
At first, this result may be surprising for those working in the field of random
matrices or spectral theory of disordered systems. For generic chaotic systems one
usually expects level repulsion. We felt natural to provide a theoretical argument to
explain the ‘lack of repulsion’ for disordered quasifree fermions.

As argued theoretically by Berry and Tabor [8], the energy spectrum of a classically
integrable Hamiltonian system represents a sequence of completely uncorrelated
numbers and the spectral fluctuations obey Poissonian statistics. The original
argument in [8] is based on the fact that for integrable systems it is possible to
perform a canonical transformation into action-angle coordinates. The semiclassical
approximation consists in quantizing the action variables so that the quantum
energy levels of a classically integrable system are given by the classical Hamiltonian
evaluated at points of a lattice (in some cases this quantization rule is exact).
Therefore, the level spacings or, more generally, the number statistics of energy
levels are related to the problem of counting the number of lattice points enclosed
by the Hamiltonian level sets. A computation based on Poisson summation formula
then suggests that P (x) ' exp(−x) for generic integrable systems. This scheme
applies only to ‘generic’ systems, and some notable exceptions are quite well known.

Later, this way of reasoning has been extended beyond Hamiltonian mechanics.
For instance, the standard argument for Poisson statistics in the case of spin
integrable models is as follows [29]. If a Bethe ansatz holds, the energy levels of the
systems are characterised by a set of quasimomenta (that reduce to real momenta
for noninteracting spin systems). Typically, these quasi-momenta are the solutions
of a set of non-linear equations and therefore the possible quasi-momenta are likely
to repel one another, namely they lie on a quasilattice. The level statistics again
reduces to the statistics of the lattice positions and the same argument as [8] leads
to Poisson statistics.

Coming back to the models considered in this paper, we observe that quadratic
forms in Fermi operators describe systems of noninteracting Fermi oscillators and are
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integrable via an exact normal modes decomposition. The existence of the normal
modes for quasifree fermions corresponds to the existence of action-angle variables
in Hamiltonian mechanics and quasi-momenta in the Bethe ansatz solutions for
spin systems. The presence of disorder, e.g., randomness in the parameters, is
immaterial regarding the integrability of the model. This explains why spectra of
generic quadratic Fermi operators, even with randomness, should follow Poisson
statistics.

A more quantitative argument explaining the Poisson statistics for quasifree
fermions is based on the idea of ‘superposition of independent spectra’ of Rosenzweig
and Porter [32] and Berry and Robnik [9]. Note that the Hamiltonian (6) commutes

with the number operator N =
∑
k η
†
kηk and therefore Hn can be block-diagonalized

in such a way that each block corresponds to a sector of the Hilbert space with a
fixed number m of particles (or number of excited modes), where m = 0, . . . , n. The
sector labeled by m contains

(
n
m

)
eigenstates whose eigenvalues are given by the

subset sums over sets of cardinality m. In formulae, the level density (9) can be
written as a superposition of (n+ 1) spectra

1

2n

2n∑
k=1

δ(E − Ek,n) =
1

n+ 1

n∑
m=0

µ(m)
n (74)

where the m-particles energy density µ
(m)
n is the normalised counting measure on the(

n
m

)
energy levels of the m-sector. The idea now is to compute the gap probability,

i.e., the probability of finding no level in a given interval. Let us consider a large

number L of individual spectra µ
(m)
n where m, the number of particles, goes off to

infinity as n does. If one makes the assumption that the individual spectral µ
(m)
n

are almost uncorrelated, so that the global gap distribution almost factorizes, using
the limit theorem in [9,32] one concludes that the gap probability (and hence the
level spacing distribution) is given by a negative exponential. We have not been
able to carry out a rigorous analysis of this naive reasoning.

As in the case of Hamiltonian systems, it is not difficult to exhibit exceptional
quasifree fermion models deviating from the expected Poisson statistics. One
exceptional model is presented below.

Example 3. Consider again the model (36)of Examples 1 and 2 with ξ fixed or
random. One immediately sees that the energy gaps between consecutive levels is
constant Ek+1,n−Ek,n = ξ. Hence, the level spacing distribution after the unfolding
of the spectrum (neglecting degeneracy of levels) is a delta measure centred at 1.
It is easy to verify that this model does not satisfy the conditions for the limiting
theorem on superposition of independent spectra [9, 32].
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