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Abstract

This thesis addresses the problem of deformable and atiécigtructure from motiorfrom
monocular uncalibrated video sequences. Structure frotiom defined as the problem of
recovering information about the 3D structure of sceneg@ddy a camera in a video sequence.
Our study aims at the challenging problem of non-rigid skgpeg. a beating heart or a smiling
face). Non-rigid structures appear constantly in our edayylife, think of a bicep curling, a
torso twisting or a smiling face. Our research seeks a genezthod to perform 3D shape
recovery purely from data, without having to rely on a preapoted model or training data.
Open problems in the field are the difficulty of the non-lineatimation, the lack of a real-time
system, large amounts of missing data in real-world videusaces, measurement noise and
strong deformations. Solving these problems would takeaubdyond the current state of the
art in non-rigid structure from motion. This dissertatioregents our contributions in the field
of non-rigid structure from motion, detailing a novel algom that enforces the exact metric
structure of the problem at each step of the minimisation fmjepting the motion matrices
onto the correct deformable or articulated meiriotion manifoldgespectively. An important
advantage of this new algorithm is its ability to handle nmgsdata which becomes crucial
when dealing with real video sequences. We present a gdniéniear estimation framework,
which improves convergence and makes use of the manifokti@ints. Finally, we demonstrate
a sequential, frame-by-frame estimation algorithm, whicbvides a 3D model and camera
parameters for each video frame, while simultaneoushdmgla model of object deformations.
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Chapter 1

Introduction

1.1 Introduction

The recovery of 3D scene information from video sequenceddray been at the core of com-
puter vision. In recent years a great variety of algorithmd gechniques have been proposed
for the reconstruction of 3D shape from uncalibrated videgugnces. It is possible in prin-
ciple to perform such reconstructions from an image paienafy two cameras from different
viewpoints, or by a single moving camera. In the case of alesingmera ifionocularvideo
sequences), if the motion of the camera were known (i.e.isf dttached to a precisely-driven
robot arm) then calculating depth would be a simple mattétiarigulation. In the more general
uncalibrated case, the camera motion itself is also urinerfiehe problem of combined infer-
ence of the 3D motion of a camera and the geometry of the steissvs is generally known as
Structure from Motior(SFM).

The fundamental assumption which has allowed solutionsgstructure from motion problem
to be achieved is that of scene rigidity. Our research is diateghe more challenging problem
of non-rigid reconstruction from a video sequence taken kingle camera. This problem is

known asNon-Rigid Structure from MotiofNRSfM). The goal of NRSfM is to infer the 3D
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shape of a deformable or articulated object when the canusitign and its internal parameters
are all unknown.

Progress in this field has been primarily motivated by itseaidnging applications in areas such
as human-robot and human-computer interaction, surme#élaathletic performance analysis,
medical imaging, computer animation for the games and fiblstries and augmented reality.
In the case of human motion, motion capture systems existhwdan recover body movements
using multiple synchronised cameras. However these sgstftan rely on markers, for example
reflective surfaces that have to be attached to the body. r@tteznatives include the use of
motion sensors, which are costly and technically complesthérmore the person must wear
them, which results in unnatural movements.

Articulated motion recovery has also been formulated asuatsire from motion problem. The
goal is to perform 3D reconstruction of the segments of aowated body, together with the
position of rotation axis and joint angles. The capture titalated motion using markers is
not viable for commercial applications such as video-garnefiuman robot interaction. The
animation industry is moving away from markers based smhgtiand embracing marker-less
approaches.

Our research focuses specifically on recovering 3D shapefofmable and articulated objects
from video sequences acquired with a single camera. Morgaresseek methods able to recover
the shape of a generic object, when no pre-defined 3D modediisble. We adopt a data-driven

approach, in which both 3D shape and deformation modelstdaegned purely from data.

1.2 The rigid case

Structure from motion (SFM) can be defined as the problemtirhasing both the motion of a

camera and the 3D geometry of the scene it views solely froagaesice of images. Commonly,
SFM methods aim at inferring 3D structure purely from 2D espondences of feature points
established throughout a sequence. When two (or moreyatdibviews of the same object are

available, 3D information can be recovered via triangalafo(]. In most interesting scenarios,
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however, calibration is not available: the camera motiod & internal parameters have to
be estimated from feature correspondences. It was showrobguet-Higgins §5] that such
reconstruction is possible for a single camera taking irmagfea rigid object from different
locations. Self-calibration methods have been devisedwddiow camera parameters to change

during the video sequence following on from the seminal wadrkaugera®t al. [40].

The factorisation method proposed by Tomasi and Kanadé] has been one of the most influ-
ential works in structure from motion. It recovers 3D shapearfa monocular video sequence
assuming an orthographic camera projection model. The@griphic camera model is an ap-
proximation of the more general perspective camera modighide when the relief of the object
is small compared to its distance from the camera. The usa affene camera model allows
the factorisation algorithm to reconstruct the 3D struetand camera motion consistent with

feature tracking data in all the frames with a linear method.

The factorisation method was extended to the case of maliiifiglependent moving objects by
Costeira and Kanadé §]. A factorisation approach is possible also in the case ®@fpiiojective
camera model as shown by Sturm and Trigg%/]]. Perspective reconstruction was achieved by

defining and computing an additional unknown for each paialied theperspective depth

The reconstruction of rigid scenes is now a well understaotdlpm, with a wide variety of real-
world applications in many different areas from robot natiign to cinema post-production. The
success of the factorisation algorithm for rigid SFM duet$csimplicity sparked interest in the

community to extend it to the case of non-rigid motion.

Non-rigid structure from motion seeks to relax the rigidigsumption and reconstruct the time-
varying 3D shape of an object. In this thesis we focus on tlaletging problem of recovering

deformable and articulated objects from video sequendesthy a single camera. Both the
scene structure and camera movements are not known befdreliée seek to model generic
objects, with a goal of recovering both a model for the deftioms and the non-rigid 3D shape

purely from 2D correspondences.
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To

(a) Rigid case (b) Deformable case

Figure 1.1: Triangulation from two frames of a video seq@erithe camera moves around the
object. If the object is rigid the triangulation problem ighiyposed, but it is under constrained
if the object is deforming.

1.3 Non Rigid Structure from Motion

In the case where the shape of the object in the scene chamgesiroe, reconstructing the
3D position of a feature point from two different images isidiposed problem, as shown in
Figurel.1 An object is deformable if relative point positions are nohstant during the video
sequence. Take for example a smiling face or a beating Heattjre points tracked on the
surface of such objects do not move rigidly in space. Thigpknconsideration makes it clear
that the problem is equivalent to reconstructing from alsirignage. The non-rigid structure

from motion problem, is thus an ill-posed problem by its veajure.

The key insight that has allowed the reconstruction of defdile scenes is the assumption that
deformations are not arbitrary: points in 3D move togethatan the effect of physical forces.
For most real world objects, the deformations can be madi@tesmall displacements from a
mean shape. Figurk?2 shows the popular low-rank basis shapes model introducedsrdyler

et al. [15], where the shape configuration is explained as a linear owtibn of a set of modes
of deformation, or bases, each weighted by time-varyindfictents. This model has proven
successful in reconstructing many real-world objects, factorisation framework, where both

the model and the coefficients are unknown. This linear maliiglvs a factorisation approach
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for the non-rigid structure from motion problem.

Non-rigid factorisation uses the assumption of a low-raaki®¥ shapes model to express the
feature point tracks as the product of a motion matrix, esging time-varying camera pose and
model coefficients, with a shape matrix, encoding the ptessitndes of deformation. Unfortu-
nately, this approach results in a non-linear estimatiablem. The non-linear constraints on
camera pose, together with the non-linearities inducechbyntixing of shape coefficients and
camera parameters make the estimation problem difficultstMbthe research in this field is
aimed at solving the estimation problem. Bregitrl [15] formulate the reconstruction in a
linear way, by computing an affine decomposition using demgualue decomposition (SVD)
and then computing an invertible upgrade matrix to enfaneecbnstraints on the camera matri-
ces (calledmetric constraints It was shown by Brandl[Z] that such linear methods are prone
to fail in the presence of noise. Xiaat al. [128 show theoretically that linear methods would
fail to cope with noise, due to the process of computing arrage matrix. They show that
more constraints are needed to be able to solve the problelosed-form, and propose a linear
method to exploit such constraints. Also, a closed-formtsmh based on SVD does not provide
a result for the case of missing data: when 2D feature poimtsug of view in the image, or
when features are occluded or not tracked successfulljod&approaches that do not compute
an upgrade matrix try to solve the non-linear estimatiorfam directly [L12, 1, 35, 36, 8, 111].

However, they also make use of additional constraints irmotitain robust solutions. Imposing
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Figure 1.3: Motion capture with reflective markers requixpansive infrared cameras and com-
plicated setup

for example smoothness priors1[2, 1, 3€], or statistical priors [11, 8], or priors on the rigid
component $5]. Imposing such additional constraints allows solutiambé robust to noise and

missing data.

Our first contribution deals with the difficulty of imposinge metric constraints. We propose
an algorithm to enforce the metric constraints without cotimg an invertible upgrade matrix.
We demonstrate its robustness to noise and missing data mehasurements, even without the
imposition of additional smoothness or statistical pridk& contribute a speed-up computation
method that makes use of smoothness priors, when such prampiicable. We extended this
idea into a general framework for bilinear estimation withnifold constraints. In addition, we
contribute a novel formulation suitable for sequentiahfeaby-frame non-rigid structure from
motion, which breaks free from the common requirement ofatfent methods of processing

the data in batch.
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1.4 Motivation

The pursue of this research is motivated by recent prognetbeiareas of deformable and artic-
ulated motion recovery and by the need for model free and endirke approaches. The human
body shows great variety of deformations and articulatedianpresearch on human motion

recovery is of great interest and with a very active reseaochmunity.

With no doubt success in solving open problems in this fieldldidead to many useful appli-
cations, marker-less motion tracking for computer gramhieo analysis for various applica-
tions: from medical to surveillance. We also see a possipf#i@ation of this project in the
field of humanoid robotics, where the recovery of the 3D humation can be used to train a
humanoid robot, controlled by the movements of a human tperfainally, we see applications
in the field of human-robot and robot-robot interaction, vehéhe motion data can be used to

coordinate the work of the interacting agents.

We propose novel algorithms to advance the field of non-gidgcture from motion to overcome
the current challenges such as the ambiguities in the meadliestimation, the lack of a real-
time system, and the ability to deal with large amounts ofsing data in real-world video

sequences. Those efforts are also directed at eliminatmgnfrared markers currently used in
motion capture systems available today. Those system®oaomly very expensive and difficult

to use, they also require a complicated setup, as can berséggurel.3 The person has to

wear special clothes and put reflective markers on it thateitracked using infrared cameras.
In the example in the Figure, the system is composed of 12 renedur research aims at
finding a solution to the more challenging problem of monacuéconstruction. In many cases
only one camera is available, for example, in post-proogssiovies and television recordings,
in laptops and digital phones, consumer cameras, and incalédiaging such as laparoscopy,

where only one camera is available to capture images.
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Figure 1.4: Motion capture systems applied in the movie stigu infrared markers are used
together with a multi-camera system of infrared cameramattktthe position of the body, while

a camera focused on the face captures facial expressiobs,restargeted on the 3D animation
character. Images copyright Twentieth Century Fox.

Figure 1.5: Medical imaging applications of non-rigid stiure from motion vary from robotic
surgery (Left), brain MRI scan (Middle), to laparoscopy dRt). Images copyright (left to
right) Intuitive Surgical, Massachusetts General Ho$gienter for Morphometric Analysis and
Paodavy Medical Services.

1.5 Applications

In recent years, the movie industry has shown great intereébe techniques and methods that
computer vision provides for reconstructing the shape aoiiom of deformable and articulated
objects. One of the motivations for motion capture in the mdavwdustry lies in the application
called augmented reality. The technique consists in ciegfwamera motion in order to insert
a virtual object in the scene, such as rendering a compudghgrs model onto the image, as
shown in Figurel.6. The knowledge of the camera position is crucial for theualtobject to

perform a realistic trajectory in the final movie. Anothetioaale for capturing motion per-
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Figure 1.6: Another example of motion capture system aggliemovies. This augmented
reality application consist in capturing the body movenwdihe actors with the help of infrared
markers. Such movements are augmented with a series of &atoin models. All occlusions
must be handled manually by the graphic artists. ImagesrighgyWalt Disney Pictures.

formed by actors is motion re-targeting, as shown in Figure The work by graphic artists
to animate the virtual character is greatly reduced, if trdal expressions of the actors are

captured.

Motion re-targeting is not only useful for movies, but also fobotics applications. Figure7
shows an example application of motion re-targeting. Jangles describing a body posture
are captured from gyroscopes attached to the body, thereagtgles can be replicated by the
motors of a humanoid robot. This is particularly useful incmae learning scenarios, where an
operation could be performed by a human multiple timesyétig a model for the operation to

be built, and given to the robot motors for execution.

Figurel.5shows possible medical applications of this research. Atrebrgeon could provide
detailed 3D models of moving tissues or organs using videwecas attached to the robotic
arms. The analysis of brain with magnetic resonance imaiigl) can be automated by
building a model of the variations that exist among inditd which can be thought as a non-
rigid estimation problem. A medical scenario where only caenera is available to analyse
deformable tissues is laparoscopy, NRSfM can provide thesB&pe and size of the organs

where the surgeon is operating. Figlr8 shows an example of augmented reality without any
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Figure 1.7: Left: Example of motion capture sensors, Rigthimanoid robot replicating cap-
tured motion

—_~
olo

-»@é-»

Acquisition Feature tracking Non-rigid pose and camera Augment
estimation

Figure 1.8: Pipeline of an augmented reality applicatioolldwing image acquisition, feature
point tracking detects correspondences between imagéspdion-rigid structure from motion
can estimate the 3D shape and camera position for every friheefinal step is the insertion of
a virtual object, which will follow the movement that has hesaptured.

markers, using a non-rigid structure from motion approathe video is analysed to detect
feature correspondences between frames, those featerdsdato a non-rigid structure from
motion method to estimate 3D shape and camera position gt fraene. Capturing the camera
movement allows the insertion of virtual objects in the scerCapturing deformations also

allows computer generated 3D graphics to follow a realisiition.

1.6 Contributions

In our work we explore a new unified approach to deformable atidulated structure from
motion. None of the methods proposed so far has focused @othputation of motion matrices

that satisfy the metric constraints exactly, but only in astesquares sense. Therefore, the



1.6. Contributions 25

recovered matrices are not guaranteed to satisfy the edmstwhen data is affected by noise

or missing tracks. Most non-linear methods enforce metitstraints through parametrisation.

Although this ensures the metric constraints are satisfiéditional priors are usually required

in order to avoid local minima, and to improve robustnessdisen We show that dealing with

metric constraints through projection can provide stditte art results without using additional

priors.

e We contribute an algorithm that provides the global optimianprojecting a candidate
motion matrix into the manifold of metric solutions. Withigkapproach, we enforce the
non-linear constraints on the motion matrices. Similariyhe case of articulated shapes,
we efficiently compute the joints, given the non-linear domists on the motion of the
two bodies. The result is an algorithm where the recoveredomanatrices have the
exact orthogonality constraints imposed. One of the mauauatdges of this approach is

the ability to handle a large amount of missing data, as weodstrate experimentally.

We proposed a novel optimisation method based on augmerdgchihge multipliers
where the manifold constraints are decoupled from thedalirestimation problem, which
is common in articulated, rigid, and non-rigid structurenfrmotion. In addition, the pro-
posed optimisation scheme obtains better speed and cemeergompared to other state
of the art methods, and is not limited to those problems. ¢h failinear estimation with
manifold constraints is a problem that appears frequentbpomputer vision and in other

fields.

We propose a novel implicit model and an algorithm desigonagse video images as they
become available, in a sequential estimation framework.DAn®del of the non-rigid
object in the scene is obtained for each image frame, whitellsineously building and
updating a model for the deformations. This new techniqueasithe non-rigid structure
from motion problem in the direction of real-time estimatiof 3D shape, camera param-

eters, and modelling of non-rigid objects, from a monoculdeo sequence. To the best
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of our knowledge, we present the first method that can modeail§écts frame by frame,
without having to analyse the entire sequence, and witheying on any a-priori model

of the scene.

The contributions of this thesis are presented as follovimp&er 2 will discuss the literature on
3D shape recovery from monocular video, discussing the vadety of methods that have been
proposed for deformable and articulated reconstructioeliging on factorisation approaches to
structure from motion methods. We provide a taxonomy of wedfor non-rigid shape recon-
struction where we divide approaches according to the stmapkel used and to the optimisation
technique employed to estimate the parameters. ChaptaaiBsdaur Metric Projections algo-
rithm, an alternating approach to solve for non-rigid 3Dg&and motion, associated with a
globally optimal projection step of the motion matricesatite manifold of metric constraints.
Chapter 4 describes a generalised framework for solvingge lelass of bilinear problems in
computer vision with manifold constraints. Chapter 5 diégs our new sequential approach to
non-rigid structure from motion in which the 3D model is bskquentially in a frame-to-frame
fashion. Finally, Chapter 6 presents the closing discussfahis dissertation, introducing pos-

sibilities for further work to advance the field of non-rigittucture from motion.
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Chapter 2

Literature Review

The recovery of 3D structure information from image segesns a fundamental problem in
computer vision. The goal is to estimate the 3D coordinates@ne points captured on video.
This problem has been largely studied and many viable solsithave been found in the case
where the scene is rigid. Our research focuses on the mdiittiproblem of 3D recovery when
the object in the video is non-rigid, that is, its shape caange through time by deforming or

articulating. We seek 3D models to express the time-vargirape of the objects in the image.

The video is acquired by a camera, which can be seen as atprejdevice: each point in space
is projected onto a point on the image plane. Often the poséthd orientation of the camera and
its internal parameters are also unknown, and thus needdstineated. The goal of uncalibrated
3D structure recovery is formulated as the joint estimatbthe 3D position of the points in
space and the pose and internal parameters of the camesgprohlem is known as "Structure-
from-Motion”. This chapter discusses the literature infib&l of 3D reconstruction from image
sequences focusing on the case of non-rigid shape recovywill pay special attention to
the class of methods central to our research, namely faatan approaches, starting with the

well established results on rigid shapes and progressimgrtent research in deformable and
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articulated structure.

2.1 Approaches to 3D shape reconstruction

A vast amount of different techniques have been proposedrimpater vision to deal with the
problem of reconstructing 3D shapes from video under diffeiconditions such as different
number of cameras or types of scenes, known or unknown atitbr etc. Different visual
cues have been used in the literature to infer the shapematan present in images. Such
inference can be based on shading, silhouettes, textunags,fonotion, or other visual cues. In
this dissertation we are interestedStructure from Motiorapproaches which use the motion
present in the image as the only cue to estimate the 3D scemeef)y and the motion of the
camera.

This chapter is organised as follows. First we give an oesnf techniques and methods that
use cues other than motion to recover shape information &aimgle image or a monocular
video sequence. We then discuss researchtincture from Motiorfocusing on the factorisa-
tion algorithm for rigid scenes, given its significance tovari@id structure from motion as the
approach that allowed its first formulation. We will thenigv the literature in non-rigid struc-
ture from motion providing a taxonomy of the approaches gsep so far, classifying them
according to the deformation models and to the optimisatBmmniques they use. We focus
on methods that have followed the prevalent factorisat@mm@lation using the low rank de-
formable shape model and emergent techniques that taeklerdbblem using alternative shape

models, optimisation techniques or different priors.

2.1.1 Shape-from-X

Many cues in the image are directly related to the 3D shapbeobbjects in the scene. The
wide array of methods for performing shape recovery is geally known as “Shape-from-X”,
where “X” can in turn be “Shading”, “Texture”, “SilhouettesFocus” or others. These methods

are fundamentally different from th@&tructure from Motiorapproaches we will study in detail
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because they use cues other than motion to infer the 3D wteuot the scene.

Shape from Shadingses the light source location, and surface reflectancal{ysassumed
to be Lambertian) to recover surface normals. This methdaolegically inspired: shading
conveys depth information to the observer of a painting. heartian surfaces reflect light in all
directions, therefore the brightness of a surface pointbeaaxpressed as the scalar product of
the light direction vector and the surface normal vectohat point, multiplied by the surface
albedo, and a constant representing the intensity of thedigurce. Initially formulated by Horn

[57]in 1970, it is now a mature field with a rich literature).

In Photometric Stere@l26] the surface normals and reflectance properties of an obgrbe
recovered using multiple images taken from the same viewdmit acquired under variable
lighting conditions. When a Lambertian surface model anglsi point-like light sources are
assumed in each image, three or more images taken withalfifféighting direction provide
enough constraints to recover the surface normals andgiedirection vector. Basgt al. [10]
recently proposed a solution to the case of general, unkiamagmnconstrained lighting, relaxing
the assumption that a single point-like light source shbelgresent in each image. This work is
based on the result that general lighting conditions carepesented using low order spherical
harmonics and allows to frame photometric-stereo as arfaatmn problem with constraints on

one of the factors.

Photometric Stereo techniques normally assume a rigictbioj¢he scene. Hernandetal. [53]
proposed a method for non-rigid reconstruction based avuced! lights. The acquisition setup
consists of three coloured light sources (red, green ang) lith different lighting directions.
The three colour channels of each image provide enoughregmistto reconstruct the time-
varying 3D shape. Surface normals are recovered for eaatefeand combined with 2D optical
flow to register them over time to generate a single deforBidgurface.

Shape from Silhouettestroduced by Laurentini€]?], estimates the shape of an object from
multiple images of its silhouette taken from different vj@ints. Assuming each view is taken

with a calibrated camera, each 2D silhouette can be bagkqbea to give a generalised cone
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or a volume in which the 3D object must lie. The intersectibthe back-projected silhouettes
taken from different viewpoints provides a 3D reconstuttof the object known as the visual
hull, which is in fact a bound for the true geometry of the 3eah Usually formulated for rigid
objects, Cheungt al. [22] were the first to extend this idea to articulated shapesaitiqular to
human body pose.

Considered a generalisation of shape from silhouettesigogs, theSpace Carvinglgorithm,
introduced by Kutulakos and Seitz1], can perform the reconstruction of an arbitrarily shaped
3D scene viewed by a set of calibrated cameras placed ataytjiositions when no information
is available about any specific features or their correspooel The volume is represented as
a set of voxels in 3D space and the algorithm iterativedywesout the shape of the scene by
removing voxels that are not photo-consistent with the iesaj each iteration. A voxel is photo-
consistent when the colour predicted by the radiance fonds the same in all the images in
which it is visible. TheSpace Carvinglgorithm reconstructs thghoto-hullof a set of images,
also defined as tHeast commitment reconstructiaiat is, a 3D reconstruction photo-consistent

with the images that does not make any assumptions abouetmaedry of the scene.

2.2 Rigid Structure from Motion

Structure from motion (SfM) or multi-view reconstructiomarc be defined as the problem of
combined inference of the motion of a camera and the 3D gegmithe scene from a sequence
of uncalibrated images using as input only the 2D image doatels of a number of features
which can be matched through the sequence. The fundamestahation which has allowed
robust solutions to be achieved is that of scene rigidityobijfects are known not to change or
deform, their shapes are invariant entities of which edtmaan be gradually refined. Large
numbers of well-localised features of high image salienceistally “corner” points or lines

— are detected in each image of a video sequence. The fedlhateare associated with the
same 3D point in space are then matched between each paingéadive (or close) video

frames. The assumption of rigidity in the scene is then usextssert that the change in image
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position of features from one frame to the next is due purelthe movement of the camera
relative to the unknown but static 3D geometry or “structwethe features. This translates
into mathematical constraints on the parameters desgritéimera motion, and many feature
matches provide enough constraint equations for solufmmisoth the motion and the locations
of the 3D features to be obtained.

The estimation of these 2D correspondences in an image rsegjuemains an open problem in
computer vision, with a wide range of approach&s/ 101, 67]. In this thesis we will not focus
on solving the matching problem and instead we will make #seiaption that matching data is

available to perform 3D reconstruction.

[ L

L. i "'"'“L
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Figure 2.1: Structure from motion (SfM) pipeline: from 2D trizing to 3D modelling. Results
of 3D reconstruction of a large building and camera posenagiton from a sequence of images
with varying camera intrinsics. From Pollefeys and Van Jéal.

2.2.1 Uncalibrated case

The recovery of 3D information from 2D feature correspormdsnin an image sequence can be
performed via triangulation when two (or more) calibratésiws of the same scene are available
[50. A more interesting and practical scenario is when the cameed is uncalibrated: its
internal parameters such as the focal length, etc. are moirkin advance. These techniques
which work even when the camera used is uncalibrated arerkaswself-calibration algorithms
in the literature and have provided the flexibility of beirgplcable even in cases where little

is known about the details of image capture. In early workmiah [118 first proved that
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simultaneous camera calibration and 3D reconstructiorossiple in the case of rigid scenes.
This was then followed by the seminal work of Faugeggal. [73] which established the theory
of self-calibration and provided practical algorithms. eT$imple assumption that the camera
used has fixed focal length over time provided enough inftiondor self-calibration, provided
that the camera motion is “general” — it exercises all of gegmkes of freedonb[l, 115].
Research in structure from motion in thé ®@as then dominated by providing solutions to this
problem of joint calibration and 3D reconstruction adjogtit to specific scenarios that needed
special solutions such as when the camera is known onlyaterabout its optical centre, 3];
only to translate without rotation/f]; or allowing it to deal with the most flexible case of a
camera equipped with a zoom lens so its focal length coulg [#ar, 56].

In [97], Pollefeys and Van Gool provided one of the first completecstire from motion (SfM)
pipelines: from 2D matching to 3D reconstruction of a meshdel@f the scene from long
sequences acquired with an hand-held uncalibrated zoooangera with varying intrinsics.
The reconstruction was built incrementally: a pair of images first chosen and a projective
3D reconstruction obtained. For each new image, the canose@yas estimated relative to this
reconstruction and the reconstruction updated with the adeg@. The final reconstruction was
upgraded to metric using their self-calibration algoritthat can deal with varying intrinsicS{]
followed by a final non-linear refinement of all the param&térhis pipeline was successfully
applied to recovering 3D models of ruins in archaeologigakssor to large buildings as shown

in Figure2.1.

2.2.2 Bundle adjustment

Most 3D reconstruction methods ultimately rely on a finagjéanon-linear optimisation to pro-

vide a joint refinement of the 3D coordinates of all the obsérpoints, as well as the camera
parameters (pose and calibration) for all the frames. Be&hieved by minimising the squared
image reprojection error between the image locations oémesl and predicted image points

in all the views in which they are visible. Optimising imagsprojection error gives a maxi-



2.2. Rigid Structure from Motion 33

mum likelihood estimate of the parameters, provided thea@i the image measurements is
Gaussian. This joint optimisation of 3D structure and canparrameters is known asindle ad-
justmentin the literature [ 16] and was initially conceived in the field of photogrammetuyidg
the 50s. Naturally, bundle adjustment requires a goodilréstimate of the 3D structure, camera
pose and calibration parameters for it to converge to thieaglminimum and not be trapped in
a local one. Much of the research has therefore focused aidprg closed form solutions both
in the calibrated §1] and the uncalibrated cas@l] that provide good initial estimates to the

non-linear optimisation.

Typical structure from motion problems might involve thands of 3D points in hundreds of
frames which amounts to a very large number of parameters ¢stimated. The Gauss-Newton
optimisation generally used for this non-linear leastasga problem requires the inversion of
a Hessian matrix that has the same dimensions as the numbekmdwns. Since this number
can be huge, bundle adjustment algorithms make use of tingespature of this matrix to make
the problem tractable. Each error term associated with alereation only depends on a very
small number of variables: the 3D coordinates of the poit #i@ camera parameters of the
frames in which it is visible. Fortunately, the inversiontloé Hessian can be hugely speeded up
by taking advantage of its block diagonal nature. A publiplementation of bundle adjustment

has been developed by Lourakis and Argyrod [

Much of the recent progress in structure from motion has cfsore improving bundle adjust-
ment’s efficiency, to improve its performance and make it rade to the real-time domain,
and its scalability, to deal with very large Internet-badath sets with hundreds of thousands of
images.

Reconstruction of large-scale data sets acquired from agritynphoto-collections was demon-
strated by Snavelgt al. [107] for the purpose of image-based rendering, to provide tkee us
with a virtual tour of a scene. Figur22 shows more recent results by Agarvedtlal [4] of

3D reconstruction of famous buildings, such as the Coloas@uRome, or even whole cities,

such as Dubrovnik, from large sets of uncalibrated phofggalownloaded from Flickr. The
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system, which uses distributed matching and reconstruetigorithms and is designed to max-
imise parallelism in every stage of the pipeline, is ablertcpss 150000 images in 24 hours on
a cluster with 500 cores. On the other hand, real-time methage now allowed to map a small

workspace with one handheld came&d][ to quickly construct 3D models of small objects us-
ing a web-cam{7] or even to obtain live dense 3D models using current dedkémgware with

GPUs [79, 80].

Figure 2.2: Large-scale reconstruction. The famous Celossbuilding in Rome is recon-
structed from Fickr community photo-collections, togethdth other famous buildings of
Rome. Reconstruction results from the “Building Rome in '@oject by Agarwalet al. [4]

2.2.3 Factorisation

In the common scenario when the affine camera model is a gquamation of the image
capture process — when the relief of scene objects is mucliesntizan their distance from
the camera — a linear algorithm that provides the Maximuneliffood Estimate (MLE) of
both 3D structure and camera motion over long sequenceseaisdd. Due to its elegance
and simplicity, Tomasi and Kanadefactorisation algorithm[109 has been one of the most
influential works in structure from motion.

The factorisation algorithm is a batch method: it stacks2becoordinates of all the matched
features in all the frames into a largeeasurement matriyrocessing all the frames simultane-
ously instead of incrementally as other SfM pipeling8][ The key insight is that this matrix

is rank deficient (in in the case of rigid scenes the rank is@dtr) and so singular value de-
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composition can be performed to recover the shape and modimponents. The factorisation
algorithm is simple but powerful: it is optimal, linear (tieore fast) and processes all the frames
simultaneously. Due to all these advantages it is often aseHe initialisation to a final bundle

adjustment optimisation.

Amongst its disadvantages, the original algorithm assuaiffese cameras and requires that all
the points are viewed in all the frames. However, numerousnsions have been proposed
for the cases of para-perspective and then perspectiveraapmultiple independently moving

objects; the use of various image features other than comeah as lines and line segments
and to the case of incomplete observations. Crucially toatbek presented in this thesis, the
factorisation framework has also been extended to deal matirigid scenes in the case of
articulated and deformable motions. Therefore, in the sektions we describe Tomasi and
Kanade’sigid factorisation algorithn{ 109 in detail before we go on to describe its formulation

for non-rigid structure recovery.

Tomasi and Kanade’s factorisation algorithm

Consider the set of 2D image trajectories obtained whendi@plying on the surface of a 3D
object are viewed by a moving camera. Defining the non-homeges coordinates of a point
in framei as the vectow;; = (uij vij)"T we may write the measurement matiixhat gathers the

coordinates of all the points in all the views as:

W= Pt = : (2.1)
WE1 ... Wgp Wi
whereF is the number of frames arld the number of points. This matrix of sizé=2% P

contains all the projections of feature points. It is pagstb decompos& into the product of

two matrices:
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Figure 2.3: The measurement matrix containing the prajactf all points in all frames is
decomposed into a series of motion and shape components.

W= MS 2.2)

WhereM ands correspond to the motion and shape components of the measutrenatrix.

MatricesM andsS can be expressed as:

M

Mo
M= S:[s1 sp] (2.3)

Mr

wherel; (i = 1...F) is the motion matrix relative to framewhose size depends on the camera
model, and5; (j = 1...P) encodes the 3D structure of poiptand its size depends on the kind
of shape (for instance, rigid or non-rigid).

This decomposition was first observed and exploited by Torrad Kanade [1(] to recover
shape of a rigid scene in the case of orthographic projecfldre factorisation algorithm pro-
posed by Tomasi and Kanadgl[] has been one of the most influential works in structure from
motion. Introduced in the early 90’s, it aims at recoveringree geometry and camera motion
from an image sequence of a rigid object. Assuming a set tdifegoints are tracked through

all the frames, aneasurement matrigontaining the image coordinatés;, v )¢ of every pointi



2.2. Rigid Structure from Motion 37

Figure 2.4: Projection of the rigid set of 3D points onto om&age: vectors, j andt encode
camera rotation and translation with respect to objectdinate system with origit© in the
object centroid.

for every framef can be built. If there ar® points tracked oveF frames the E x P matrix w
can be expressed as equatibf
Lets, = (Xp,Yp,Zp)" be the coordinates of a 3D point expressed in the world nefersystem.

Assuming the orthographic projection model, image coaidis can be written as:

Utp =11 (Sp—tr) Vip=]{(Sp—tr) (2.4)

whereis andj+ are unit vectors pointing along the scan lines and the cafuofithe image in
world coordinates, antk is the vector from the origin of the world coordinate systanthe
origin of the image plane at framk as illustrated in Figur@.4. Vectorsis andj; are the first
two rows of a 3x 3 rotation matrix expressing camera rotation in the worldrdmate system.

Consider the matri¥ obtained by subtracting the centroid of the image coordmat

Gfp=Usp—as Vip=Vip— Dby

Whereas = ,%z';zlufp andbs = %zgzlvfp. The resulting matrix is called thegistered mea-
surement matrix One important property of this matrix shown inlf] is the rank theorem
stating that under orthographic projection the rank of #gistered measurement matrix of a
set of tracked feature points is at most three. The proof@faimk theorem is straightforward,

we report it here for its importance. The insight of Tomagi &anade’s method is to centre
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the world coordinate systems on the centroid of the 3D poRé&salling that 3D world coordi-
nates are aligned with the centroid of the objézgzlsq = 0. The projection equation for the

registered measurement matrix can be written as:

P

1 .
(Sp—ﬁ §) =
q

. . 1. .
Ufp:ufp—af:'?(sp—tf)—g if(sq—tf) =i
=1

and similarly forvip, obtainingui, = ifs, andvip = jIs,. These two sets of equations can be

stacked in matrix form as:

whereR ands:

represent respectively the camera rotation and the shaipeats Each matrig; is a 2x 3
truncatedrotation matrix, containing only the first two rows of the cana rotation matrix. The
size of matrice® ands is 2F x 3 and 3x P respectively. Because the rank of these two matrices

is at most three, the rank of their product must be at moséthre

The result of the rank theorem is easily expressed in matrixf Under an orthographic pro-

jection model, the location of feature points will be given b
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R1

Ro T
w = ) Sl SZ e SD +T1 (2.5)

RF

Whereg,; is the camera matrix for framies, = (Xp,Yp,Zp)" is the vector of coordinates for a
point p andT is the centroid of the 2D coordinates vertically stackedaibframes. The trans-
lation column-vectorT is multiplied by a row-vector of ones to replicate the sanamdtation

vector on all columns.

Tomasi and Kanade show that it is possible to recover botbrisk ands from the measurement
matrix. The factorisation algorithm is based on sliregular value decompositiofsVD) of the

registered measurement matrix. SVD decomposes the niadisx

W=UDv"

whereD is the diagonal matrix of singular values, ancand V' are the unitary matrices of
singular vectors. Considering only the first three singukdues, let’,D’, V' be respectively
the first three columns af, the first 3x 3 minor ofD and the first three rows af' . The product

U'D’V'T minimises the Frobenius norm:

minimise ||W —W'||¢ (2.6)

subjectto rank’) =3

The SVD thus gives an optimal rank-3 decomposition Rlet U/v/D’ and S = +/D'V'7, this is
called an affine decomposition. As we can see in Fig@usethe shape matrix does not represent
an Euclidean reconstruction. This is because the Eucli@&ashape (up to overall scale and
rotation) will provide the observed feature tracks only whhbe direction vectors the image

plane inR are orthogonal. Computing the correct camera matrices &ffime ones is commonly
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called a metric upgrade of the reconstruction. To obtain @icepgrade, the key observation is

that the decomposition is not unique, in fact, for any irtégtmatrix Q:

RS =R(00)S = (RQ)(Q *8) =Rs

It is possible to compute a matrix such that the rows aiQ satisfy the orthonormality con-

straints:

itaQ"ir=1 jlaQ"jf=1 ifQQ"j;=0

This set of & equations encode thmetric constraintdhat the matrix® must satisfy for the 3D
structure and the camera matrices to live in Euclidean space

The set of orthonormality constraints is a linear systemafa¢éions on the elements of the
matrix A = QQ". Tomasi and Kanade’s algorithm solves the metric upgradel@m by linearly
computingA and then using Cholesky decomposition to obtaiffhe Cholesky decomposition
of a symmetric matrixa gives an upper triangular matrixsuch thats = B'B. The produckq
andQ 1S are respectively the updated motion and shape matrices ptividing both camera

pose and 3D structure in metric coordinates.

Example

Figure2.7 shows the 3D reconstruction of the well known hotel sequeReature points were
tracked using th&LT 2 tracker B8, 109. Figure2.5shows some of the frames in this sequence.
Figure 2.6 shows the 3D affine shape, before the metric upgrade. Fiydrghows that the 3D
reconstruction has been successfully upgraded to mesritieawalls of the house appear to be

at right angles.

http://vasc.ri.cmu.edu//idb/html/motion/hotel/index .html
2code available atttp://www.ces.clemson.edu/ ~ sth/klt/


http://vasc.ri.cmu.edu//idb/html/motion/hotel/index.html
http://www.ces.clemson.edu/~stb/klt/
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Figure 2.6: Example of Affine 3D reconstruction. The Shapgimeaisualised before the metric
upgrade step does not show a correct 3D structure.
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Figure 2.7: Left: 3D reconstruction of the hotel sequendgh® Top view of the reconstructed
3D shape. Walls of the house are about at right angles, astexbe
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The seminal work of Tomasi and Kanadel[] introduced a solution for uncalibrated images,
assuming an orthographic camera projection model. Theitigowas later extended to the
case of multiple independently moving objects by Costeird Hanade 18]. Kanatani and
Sugaya in 9] analyse the computational complexity of rigid 3D reconstion and provide
algorithms for the weak-perspective and para-perspeptiogction models. Sturm and Triggs
[104] proposed an extension of the factorisation algorithm ®dhse of a perspective camera.

The next section will describe their method.

Perspective Factorisation

The orthographic projection model is an approximate camerdel that works well if the relief
of the object is small compared to its distance from the camdihe perspective projection
model is a more accurate description of the image formatioegss. The projection of a 3D

point X on the image plane under perspective projection is given by:

X=P ,where P = K[RT] (2.7)

The matrixK is the camera calibration matrix which encodes its intdnsarameters: focal

length fy, fy, principal point(u,v)T and skewor expressed in matrix form as:

fx a u
0 0 1

The rotation matriX® and the translation vectaralign theworld andcamerareference frames
andx is a 3x 1 homogeneous vector such that the coordinates of the poititeoimage plane
wij = (ujj vij)T are given by its first and second elements divided by the:third

X X

V= (2.9)

u=
X3 X3



2.2. Rigid Structure from Motion 43

1

(a) Orthographic projection (b) Perspective projection

Figure 2.8: a) Orthographic projection assumes rays framothject to the image plarieare
parallel. b) Perspective projection takes into accourtdhaays intersect at the camera centre

C.

The method proposed by Sturm and Trigd§4] for perspective reconstruction is based on
the idea of defining and computing an additional unknown &mhepoint, called th@rojective
depth Equations2.7and2.9imply:
_ X
)\ijWij =P (2.10)
1
WhereP; = K;[R; T, and the image projection is expressed in homogeneousinated asvjj =
(uij,vij,1)T. Ajj is an unknown projective depth for each point in each frangpiaion2.10can

be expressed in matrix form for all points in all views as:

_ _ P
A1iW11 ... ApWip
—_ Py
W= = S=MS (2.11)
AFIWFL ... AFpWEp
P

with S the 4x P matrix of 3D points in homogeneous coordinatasz(l]T). W is called the
rescaled measurement matrix. Becausads have at most rank 4, such matrix is constrained
to haverank < 4. If all the projective depths were known, it would be poksstb factorisev into

MS using SVD. Such factorisation would give the 3D reconstanctip to a projective transfor-

mation. Since the projective depths are unknown, the maibl@m of perspective factorisation
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Figure 2.9: An illustration of the basis shape model for defable objects: The shape in each
frame in the sequence can be expressed as a linear combin&acset of fixed (but unknown)
3D basis shape®{,...,Bk) with time-varying coefficientsl{,...,Ik).

is computing the depthk;. Sturm and Triggs]04] proposed the first method to extend the fac-
torisation framework to the case of perspective projectibimey solve for the projective depths
by calculating the fundamental matrices and epipoles atvwairs of views. The quality of
the estimation depends strongly on the estimation of thddmental matrices, which can suf-
fer from image noise and poor initialisation. Iterativewgmins have been proposed to improve
convergencel[17, 114, 55]. More recently, Daiet al. [29] proposed to globally compute the
perspective weights by convex optimisation. To relax the-oonvex constraint on the rank of
the scaled measurement matrix, they minimise the nuclean mustead, leading to a convex

problem which approximates the low-rank constraints, thtaining a global solution.

2.3 Non-Rigid Structure from Motion

When the camera is viewing a non-rigid object, such as a ngdwiman face talking or perform-
ing facial expressions, moving cloth, a flag waving in thedvim internal organs observed with
an endoscope, its shape can change over time. The goal oRiih-Structure from Motion
(NRSfM) is to recover both the varying 3D shape of the objeaach different frame, and the
pose of camera given only a set of 2D image points, matchedighout the sequence. Since
the shape of the object varies in time, the recovered 3D nsidrlild capture its deformations.

In landmark work, Bregleet al. [15] were the first to demonstrate that it is possible under affine
viewing conditions to infer the principal modes of deforinatof a non-rigid object alongside

its 3D shape within a structure from motion estimation frarokk. The key assumption is
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that the 3D deformable shape can be represented as a linedinadion of 3D basis shapes
which encode the main modes of deformation — a so cd&l@dnorphable modelFigure2.9
illustrates the basis shapes model. Their insight was theé s$his representation is linear it fits
naturally into the factorisation framework. Once more,ihéderlying geometric constraints are
expressed as a rank constraint which is used to factorism¢lasurement matrix to estimate the
3D pose, configuration coefficients and a pre-specified numib@nknown) 3D basis shapes.
The problem of NRSfM can also be interpreted as an unsugehlé&arning problem in which
the goal is to learn a low-rank 3D morphable model given omyy2D observations of the shape

deforming over time.

2.3.1 Formulation

Given a video sequence of a deformable object, points onBhsuBface of the object are pro-
jected onto a set of 2D image trajectories by a moving camditze object’s deformability
implies that the coordinates of the 3D points can change frame to frame. As in the rigid
case, the non-homogeneous coordinates, & (Usp vfp)T) of P 2D image points observed in

F frames can be collected in a measurement matrix:

w=| i =] (2.12)

WE1 ... Wgp Wg

Assuming orthographic projection, and denotiyghe 2x 3 camera matrix for framé, the 2D

coordinates for all frames in all views are related to the/ivey 3D structure by:

Ry St
W= S ES (2.13)

RE SE

WhereSs is a 3x P matrix with the 3D coordinates of ait points in framef, andT stacks the
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Figure 2.10: Formulation of the non-rigid factorisatiorlplem. The measurement matrix can
be decomposed into the product of a motion matrix that eretite time-varying coefficients
and the camera matrices, and a shape matrix containing thm8i® vectors for all the points.
The camera matrix is a:2 3 matrix with orthogonal rows. This formulation was intregad by
Bregleret al. [15], whose method is detailed in Secti@rB.2

camera translation vectors for all the frames. The goal oEMRis the joint estimation of the
camera matrices and the deformable 3D structure. Howéneendn-rigid structure from motion
problem is inherently under-constrained. It is clear tifatye 3D points move randomly, the
problem is ill-posed, as theé=3< P unknown 3D positions should be recovered from orify>x2P
data points. To resolve these inherent ambiguities, prionkedge about either the shape of the

object or the nature of the deformations must be used in flating the problem.

The Low-Rank Basis Shape model

In 2000 Bregleret al. [15] were the first to observe that introducing statistical ggion the
non-rigid 3D shape was enough to allow the non-rigid stmecfiom motion problem to be
solved within the popular factorisation framework. The 3iayse of a deformable object does
not vary randomly over time, instead, the shape at each fcam®ften be expressed as a linear
combination of a set of fixed (but unknown) basis shapgs: - , Bk, weighed by time-varying
coefficientdt = [l 1,112, -+ , Itk ] (One set of coefficients for each framig Figure2.9illustrates

the low-rank basis shape model.
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The set of 3D point coordinates that encodes the shape atigseframef is given by:

K
St = dz l+4Bqg (2.14)
=1

wheress is the 3x P matrix that encodes the 3D coordinates of Ehpoints on the surface of
the object in framef; By are the 3x P matrices encoding the shape basis ggdare scalars
representing the deformation weights. Note that while tf®@mination coefficients vary from
frame to frame to encode the non-rigid shape, the shape isdbied. It is precisely this low-
rank representation of the shape that allows the joint esitim of non-rigid shape and camera
motion within a factorisation framework.

With this shape model and assuming affine viewing condittbesprojection equation for each

frame becomes:

K
Wi = Rf(dz ltqBg) + T+ (2.15)
=

Similarly to the rigid case, the measurement matrix can pistered to the centroid of the 2D

coordinates, such that the translation vedtebecomes zero:

K
Wi = Rf(dz ltaBd)
=]

We can now see that the NRSfM problem becomes the joint etsimaf the camera matrices,
deformation coefficients, and the shape basis. This islaé&&r estimation problem where no
prior information is assumed about the basis shapes; oalgimber of elements in the basis is

known in advance.

2.3.2 Bregleret al.’s Original Non-Rigid Factorisation Algorithm

The work by Bregler, Herzmann and Biermanri][ was the first to extend the factorisation
method to deformable objects. It was their insight of assgntiie low-rank basis shape model,

described in equatioi.14 in the previous section, that allowed to formulate nonerighape
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estimation within the factorisation framework. Their warloneered and established the new
research area of Non-Rigid Structure from Motion in whicis thesis is framed.

Similarly to the rigid case described 2.3 the only input to the algorithm is the set of 2D
coordinates of the image points tracked throughout theesezpu The original formulation as-
sumes full data: all the points are visible in all the fram&ke registered measurement matrix
is rank deficient and can be factorised into the product oflomerank matrices — the motion

matrix M and the shape matri

[11R1 ... |Rq B1 My B1

=
I

I

I
=
%

(2.16)

I[FiRE ... IekRe Bk Mg Bk

Where the matriceBy, - - - Bk are the set oK 3D basis shapes;q is the deformation coefficient
(or configuration weight) that multiplies badg in frame f andR,,--- ,Rg are the 2« 3 camera
matrices for each frame. Equati@nl6expresses in matrix form the orthographic projection of
all the points on the non-rigid object in all the frames anovghthat the registered measurement
matrix W has at most rankk, with K the number of deformation modes. Therefore, it can be
factorised into the produdt= MS where the E x 3K motion matrixM encapsulates all the time-
varying parameters (deformation coefficients and cametdaes) and the B x P shape matrix

S encodes the 3D coordinates®points on all the basis shapes.

However, this factorisation is not unique since any indetBK x 3K matrix Q can be inserted in
the decomposition leading to the alternative factorigatio= (%Q)(Q—18) = MS. The problem is

to find the transformation matrixthat imposes the appropriate replicated block structurtden
motion matrix shown in equatiof.16 and that imposes the orthonormality constraints on the
camera matriceR; removing the affine ambiguity and upgrading the reconstindb a metric
one.

Bregleret al’s non-rigid factorisation method follows exactly thisdwtage approach: first ob-

tain an initial affine decomposition of the measurement matto two low-rank matrices via
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singular value decomposition, followed by an upgrade stepre/the unknown linear transfor-

mationQ is estimated to impose metric constraints.

In[15] a linear approach to the computation of the metric upgreatestormation was proposed.
The solution, namedub-block factorisationis based on rearranging the elements of each sub-
block of the motion matrix as

Mg :[|f1Rf...|fKRf] (2.17)

HereM; is the 2x 3K sub-block of the motion matrix related to franfie Letr;, i =1,...,6 be

the 6 elements of the camera matRx, the block can be re-written as:

lf1rs lear2 lears ... lgxrs likrz likrs
My = (2.18)

lfara lfars lears ... lixra lekrs likre

Rearranging the elements1of, it is possible to decompose:

ltar1  leara  lgars lgara lears  lfars lt1
. ltors  lgara lgarz lgara lors lfors It |-
Mf = = [rararararsre) (2.19)
| likre likr2 likrs likra ks likre | | ik

thus proving that the values for the basis shape coefficierits frame f could be recovered by
a rank-1 factorisation of the rearranged motion matrix ingslar value decomposition. Finally,
since the rank-1 decomposition does not result in cameraa@sk; with orthonormal rows,
orthonormality constraints must be enforced on the camextsices as in 110 by solving a

least-squares problem.

Bregleret al’s original solution constitutes landmark work since itsnhe first to show that the
factorisation approach can be applied to non-rigid objedisreover, the algorithm is attractive
due to its simplicity and linearity. However, it suffers finovarious drawbacks. First the nested

SVD approach is not robust to noise. When the sub-blogksf the measurement matrix are
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affected by noise, the rearranged maltjpwill not be rank-1 and the further singular values will
retain some of the contribution to the solution leading t@es. Second, the estimation of the
upgrade transformatioq is only approximate. The estimated matrix is block diagondilile
the true metric upgrade matrix is dense in the off-diagoaales. As a consequence this method
can only be used in the case of small deformations. Findleyntethod assumes full complete
point tracks: all the points must be seen in all the views Wwisieriously hinders its application
to real world scenarios.

Despite its drawbacks, Breglet al’s original non-rigid factorisation algorithm sparkedoen
mous interest in the structure from motion community anchsoew research followed which

has progressively addressed many of the shortcomings iofiygroach.

2.3.3 Anill-posed problem

The recovery of the 3D structure of a deformable object fraeaguence of images acquired with
a single camera is an inherently ill-posed problem sindermint shapes can give rise to the same
image measurements. In essence, the problem of recomsfyaaton-rigid shape from animage
sequence acquired with a single camera is equivalent tdesimgage reconstruction. Without
the use of additional priors or constraints the problem iggtable given that the number of
unknowns is higher than the amount of available data.

In the previous section we have described how adopting thplsibut powerful prior that the
deformable shape can be expressed with a linear subspaet allod's to overcome some of the
inherent ambiguities. However, ambiguities still remairthie non-rigid factorisation problem.
The solution can only be computed up to an invertible tramsédion (the metric upgrade matrix)
with additional scale ambiguities between the basis shapéd<oefficients. Noise in the image
measurements also causes the problem to be ill-conditiagede saw was the case in Bregler
et al’s [15] original factorisation formulation. To overcome the indiet ambiguities, additional
priors must be incorporated into the non-rigid structuacgrfrmotion problem.

The rigidity of an object or scene has proved to be a suffidenstraint to enable to perform
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Priors used in NRSfM

Statistical priors

Known template
Elasticity

Inextensibility
Partly rigid
Quadratic deformations
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Low-rank Shape Model Physical priors
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Figure 2.11: Use of priors in non-rigid shape estimation.e NRSfM problem is ill-posed.
To overcome its inherent ambiguities, additional priorsstrhe incorporated into the non-rigid
structure from motion problem. We classify these priors jpltysical and statistical which are
described in Sectiod.3.3

3D reconstruction from image sequences even in the case mdether prior information is

available about the shape, the camera or its motion. Althdandhe case of non-rigid objects
the priors are much weaker, they still exist and must be pam@ted into the estimation to allow
for unambiguous solutions to be obtained. In this sectiopregide examples of different types
of additional priors that have been proposed in the liteeata solve the problem of non-rigid
shape reconstruction from monocular sequences. Addiljptroughout the rest of the chapter
we will also refer to the specific priors or constraints use@ach of the NRSfM methods we

review. We classify them intphysicalpriors andstatisticalpriors.

Physical priors

Objects do not deform in an arbitrary, random way. There &sssipal forces that act on the
object to constrain the way in which it moves. Different doaisits on the nature of the defor-
mations have been proposed in the literature.

Examples ofphysical priorsthat have been successfully applied to NRSfM range from weak
ones such as the assumption that the camera is viewing & soghce (o continuity) used
implicitly by most methods, that the surface in itself is iy smooth (; continuity) [L6] or
that it deforms smoothly in timel]; to stronger priors such as the surface is inextensibigld],
developable{?], partially rigid [35], piecewise planarl[2(] (or rigid [107] or quadratic {1, 95])

or even template-based methods that rely on a referencesimaghich the 3D shape of the
object is known 7, 90, 16].

One of the priors most extensively used throughout NRSf\Miésuse of temporal smoothness
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information. Introduced by Aaneges and Khi] in the context of Maximum A Posteriori (MAP)
estimation with bundle-adjustment, this prior assumestti@3D shape does not deform much
from one frame to the next, and is usually referred to as teat@onoothness. This notion of
temporal smoothness has since been adopted by many othewdadtOs, 36, 8, 111, 94, 84,

41, 95).

When more specific knowledge is available about the natutkeobbject being reconstructed,
stronger priors can be used to disambiguate the solutioninBtance, when recovering the 3D
geometry of human facial expressions Del Btial. [35] imposed the constraint that some points
on the face (e.g. points on the nose or the temples) movdyrigiklile others deform. The use
of this partial rigidity constraint improves the accuradyle metric upgrade step, consequently
improving the estimation of camera pose and the 3D recartgiruof the shape. In32] more
complex priors on the shape of the object can be incorparatéiden reconstructing the non-
rigid face of a human, a prior rigid 3D model of a differentgmn can be used as a soft constraint
for the non-rigid reconstruction of the original subject.

The local spatial smoothness of non-rigid surfaces hastssa used as a powerful constraint
in NRSfM. It takes the form of a regularisation term imposthgt neighbouring points on the
surface must have similar coordinates in 3D space. Thisasmamhoothness prior, originally
introduced by Torresamt al. [117], was then incorporated by many othei€,[35, 8] into their

formulations.

Statistical priors

Statistical priors take advantage of the fact that defaonatare not random and instead exploit
the high correlation between the 3D trajectories of difféoints on the same non-rigid surface.
The most successful statistical prior used in the NRSfMdiigre is of course Breglet al’s [15]
assumption that the shape of a non-rigid object can be esguida a compact way as a linear
combination of an unknown low-rank shape basis. This simggalarisation on the shape allows
to reduce the ambiguities to the metric upgrade transfoomat

A common assumption in many factorisation methods basetielotv-rank shape model is to
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assume that the first basis is the dominant componentl] 112, 35]. This is often achieved
by constraining the shape in each frame to be close to the owaponent of the shape basis,
initialised using a rigid factorisation algorithm. Thissamption implicitly assumes that the
deformations are small deviations with respect to a strggid component.

Bartoli et al. [8] take the low-rank basis shape model a step further and peopaoarse-to-fine
shape prior where new deformation modes are added itdsativeapture as much of the vari-
ance left unexplained by previous modes as possible. Thisiprposes the natural assumption
that the first basis encodes most of the motion and the re$tedbdses express less and less
important modes of variation. This is a much stronger gtagikprior than the original low-rank
shape model that does not make any assumptions on the indivitbdes of deformation. It is
shown to avoid ambiguities since each basis is estimatezperdtiently in an incremental way
so its estimation does not affect the previously computexson

Other examples of statistical priors include Torressgtral’s [111] Gaussian distribution priors
on the deformation weights. This prior effectively acts aemporal smoothness constraint,
since it models the fact that deformation parameters shbaldimilar between consecutive
frames. Torresani’s formulation also allows to incorpertgmporal linear dynamical models

in object shape.

2.4 A Taxonomy of Non-Rigid Shape Estimation from MonocularSequences

In this section we provide a taxonomy of solutions to the f@wbof non-rigid shape estimation
from monocular sequences. We have classified approachig iissed on the model adopted
to represent the non-rigid shape. For a number of years #walent model in the literature has
been the (untrainedpw-rank linear basis shape modeproposed by Breglegt al. [15] which
allowed to extend factorisation approaches to the nowtrifiape domain. However, solving
for the ambiguities — in particular, solving for the metripgrade — inherent to NRSfM has
proved a more challenging problem than initially anticgzht It has called for different opti-

misation techniques to compute solutions where the camataces satisfy the orthonormality
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constraints and the 3D reconstructions are not affine butienéle classify methods that use
the linear low-rank shape model further according to théngipation method used in the esti-
mation. These range froomlosed-form solutionsthat impose the metric constrairgsgplicitly by
estimating directly the entries of the metric upgrade matd non-linear optimisation meth-
ods such asalternation or bundle-adjustment that describe the problem directly in terms of
the variables involved (camera matrices, basis shapesefachthtion coefficients) and impose
the metric constraintanplicitly via parametrisation or projecting the solutions onto theemi

manifold.

On the other hand, nealternative shape modelshave recently emerged in the literature that
are beginning to address the limitations of the linear lawkrshape model by allowing to ex-
plain more complex deformations. These include piecewiaeap, rigid or quadratic models;
locally linear shape manifolds; sparse shape basis or Déjdctory basis which allow for more

complex deformations than those explained by the linearanod

We also describe non-rigid shape estimation methods faresegs acquired by a single camera
that fall outside of the scope of NRSfM but are closely ralat8hape estimation methods that
usetraining data to learn the linear shape basis via principal componentlysingdPCA) have

been popular in the literature, particularly in the caseac&fmodelling (active appearance mod-
els or morphable models). Here, the shape basis is knownvamad and the shape estimation

is limited to the tracking of the deformation coefficientglahe camera matrix for each frame.

Template-based method®n the other hand, rely on a reference image in which the 3Ppesha
of the observed object is known in advance. In principlesétraethods work for pairs of images
instead of a long image sequence: given an image and 2D-3Bspandences with a known
3D template, the problem involves estimating the deformBdsBape in a new image. These
template-based methods also require additional contriirbe imposed to avoid inherent am-
biguities. We describe the practical solutions that havenh@oposed in the literature which

include imposing physical priors on the shape such as iigensibility.

Figure 2.12 illustrates this taxonomy: NRSfM methods are divided irftose based on the
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Figure 2.12: A taxonomy of proposed solutions to the NonidR&fructure from Motion prob-
lem. We divide NRSfM methods into those that use the low-faais shape model (untrained
methods do not assume a known shape basis vs. trained ohe®)tzand those that use other
shape models such as piecewise local models, locally Istegre manifolds, sparse shape basis
or trajectory basis. Untrained methods based on the lokragsis shape model are then classi-
fied according to the estimation method. The ambiguitiesriait to the NRSfM problem have
called for many different optimisation schemes to be predo®Ve group these into closed-form
solutions, alternation methods and non-linear leastyeguaptimisation or bundle-adjustment.
Template-based methods for non-rigid shape reconstruéaib outside of the NRSfM frame-
work since the input to the system is a 3D template and 2D-3espondences with a single
image, instead of 2D correspondences throughout a longesegu Strictly speaking, methods
that use trained low-rank shape models also fall outsideeNRSfM since the shape model is
known in advance.

low-rank linear basis shape model and those that use ditexrgnape models that allow more
complex deformations. The first group are further dividecbading to the optimisation strategy
into closed-form solutions and non-linear optimisationtimoels which include alternation and
bundle-adjustment. Template-based methods and methatisigh training data to learn the
linear shape basis fall outside the NRSfM formulation butstibute popular alternatives in the

literature to non-rigid shape estimation from monoculajusmces.
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2.5 NRSfM with the linear low-rank basis shape model

The assumption adopted by the original NRSfM formulatioBadgleret al. [15] that non-rigid
shapes live in a low-dimensional linear subspace led to tim&son problem that fits perfectly
within the powerful factorisation framework. Since thenamy different methods have been
proposed to solve the problem of factorising the measuremeaitrix into the product of two
matrices that encode the non-rigid shape and the camerammétowever, as mentioned in sec-
tion 2.3.3 the factorisation problem is subject to ambiguities. Irtipalar, the decomposition
can only be obtained up to an invertible transformatjorirhe estimation of this matrig that
upgrades the reconstruction from affine to metric space ées the focus of NRSfM. In gen-
eral, adding additional constraints leads to an optimasagiroblem that can be tackled in two

different ways.

The first family of approaches involve estimating the elermari the metric upgrade matrix
explicitly. Encouraged by the success of the factorisagigorithm in the case of rigid structure,
researchers in NRSfM tackled the problem using an equitalenstep approach: first an affine
reconstruction is obtained factorising the measurementixnaa singular value decomposition
imposing the rank constraint, followed by the direct estioraof the elements of the metric
upgrade transformation matrix Bregleret al’s method followed this exact approachf] and
many other so called closed form solutions have followedHercases of both affiné 28 and
perspective 130, 49 viewing conditions. However, as noted by other authorsijemiey give
an exact solution in the noise-free case, closed form soisitare known to break down in the

presence of image noiséd, 111].

The second alternative is to write the non-linear optinnsaproblem in terms of the original
variables that must be estimated: the camera maticdbe deformation coefficientgs and the
basis shapeBy and the translationt if also optimised and minimise the squared reprojection

error between the image locations of observed and predistage points in all the views in
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which they are visible which leads to the optimisation:

K
minimiseZHWfp—(Rf; l$4Bg +tf)H2 (2.20)
P =]

Rt ltd Batr £

This optimisation problem, does not involve the estimatibthe upgrade matrix explicitly but
instead solves for camera matrices that implicitly satibfymetric constraint. This is normally
achieved either via parametrisation or imposing condan the optimisation. Additional prior

knowledge can be added to the cost function as regulanistgions or hard constraints.

2.6 Closed-form Solutions to NRSfM

Encouraged by the success of rigid factorisation algomstheiosed-form solutions to the NRSfM
problem attempt to solve the problem following the same ttep process: factorisation of
the measurement matrix into the product of motion and shagkicas followed by explicit

estimation of the metric upgrade mat€ixWe will now describe the most influential approaches.

2.6.1 Basis constraints: Xiao-Chai-Kanade

The work of Xiaoet al. [128 constituted a milestone in deformable structure recosarge they
proposed an algorithm to recover the corrective transfoamand solve the NRSfM problem
in closed form both in the cases of orthographic and persggecameras. Their work is of the-
oretical importance since they characterised the amigguitresent in NRSfM. Unfortunately,
they concluded incorrectly that the orthonormality coaisiis alone were not enough to obtain
an unambiguous solution to the NRSfM problem. However,rthveirk greatly influenced and

shaped the field.
The goal of closed form solutions is to estimate the invlatdorrective transformatioq that

yields the exact metric structurt§ = MQQ1S). LetG = QQ" be the corrective transformation

multiplied by its transpose, each column tripiitof Q is the transformation concerning each
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single basik.

MK = 1\7IQ|(

WhereMK, k = 1,...,K is a column triplet of the motion matrix. Recalling the structure of the

motion matrix given in equatiof.16

l1kR1
[okR
wk— | * (2.21)

IFkRE

The column blockvk contains the camera matrices for all frames, scaled by thresonding
coefficient of thek" basis shapk for that frame (withk = 1, ...K). Therefore the affine motion

matrix M must have the forri = MQ such that:
. aT
MiGidle = lilekR RS (2.22)

WheregGyg = QkQI is the 3 x 3K transformation relative to thg column triplet, andi; are the
two rows of the motion matrix relative to ti€ frame. Due to the orthonormality of the rows of

the projection matrix for each framfethe metric constraintcan be expressed as:
fiGidy = |fToc (2.23)

wherelyy, is a 2x 2 identity matrix. The diagonal elements yield a single diguasincel ¢y is
unknown while the off-diagonal constraints are identidats Gk is symmetric. Therefore, for

F frames, E constraints are obtained:

fos_1Gufl3s g —Plor i = 0 (2.24)
fios_1Gidig; = 0 (2.25)
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Given a sufficient number of frames, the metric constraihtsukl be enough to determine the
entries ofGx. However, Xiaoet al. 's contribution was to provide a proof that the solution of
equations2.24and 2.25is ambiguous. They concluded (incorrectly) that orthoredityy con-
straints are not sufficient on their own to solve for the uggranatrix unambiguously. Omitting
the details of the proof, they show that any solution to équnat2.24and?2.24 (the metric con-
straints) has the formQHQ", whereQ is the desired transformation matrix, algis a matrix
given by the sum of an arbitrary block-skew-symmetric anchdoitrary block-scaled-identity
matrix. This result means that for deformable shapes, théiso given by imposing the or-
thonormality constraints is ambiguous. In other words, shace defined by orthonormality
constraints alone contains both correct and invalid smhsti

Since orthonormality constraints were considered not tsuféicient, to eliminate the ambi-
guity Xiao et al. proposed to introduce a set of novel constraints knowhaass constraints
which uniquely determine the shape basis resolving the guitigi They then proved that the
orthonormality and basis constraints together led to aedderm solution of the NRSfM prob-
lem. While their method recovers the ground truth solutiogyinthetic experiments, it has been
shown to deteriorate quickly even for low levels of measwetmoise and to be very sensitive to
the choice of basis constraints. Moreover, it cannot benedeie to deal with outliers or missing

data in the tracking.

In defence of orthonormality constraints

As was suggested by Brand3] and later proved by Akhtegt al. [5], in the case of noise-free
observations, orthonormality constraints are in fact sigffit to solve for the corrective trans-
formation of NRSfM. Xiaoet al’s proof that orthonormality constraints were not suffitieo
solve for the upgrade matrix was incomplete. Akhe¢ral. [5] showed that the reason for
the unsolved ambiguities in.Pg was that the rank of matrigx was not constrained to be 3.
Imposing this additional constraint is sufficient to elimta the ambiguities in the 3D recon-
structed shape. However, the constraints are non-lineavery hard to optimise. Therefore,

while orthonormality constraints were shown to be suffitierresolve ambiguities, solving the
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exact constraints involves a non-linear optimisation f@abwhich can lead to undesirable local
minima. In practice, Akhteet al. 's work did not provide a new algorithm. As we will see in
Section2.7 many different non-linear optimisation algorithms havereroposed to tackle this

problem, either via parametrisation or imposing hard cairss.

2.6.2 Closed form solution for perspective cameras: HartheVidal

Recently Hartley and Vidal49] proposed a linear, closed form solution to the problem eof re
covering deformable structure when the perspective affiecthe images cannot be ignored.
This algorithm requires the initial estimation of a mulbetl tensor, based on their previous
work in [48]. The tensor is then factorised into the projection masriaed then linear algebra
techniques are used to enforce constraints on the prajeatatrices to estimate explicitly the
corrective transformation from which the camera matribasis shapes and shape coefficients
are computed. Although the entire approach is linear, thiecasi report that the initial tensor

estimation and factorisation is very sensitive to noise.

2.6.3 Brand’s direct method

In influential work by Brand 17] the metric upgrade estimation is guided by the assumption
that the average mean shape should explain most of the imagenmleaving deformation
components to model only the residual non-rigid motionated work [L3] Brand estimates the
invertible corrective transformatiomdirectly in terms of its gram matrigQ". As we described

in section2.6.1this method avoids the ambiguities highlighted by Xe&taal [128] and is the
first to hint that orthonormality constraints are sufficiemperform metric upgrade.

Brand takes advantage of Kronecker product properties liing/the factorisation equation as:

|'l|' ®R1 S1
W=mMs=| : (2.26)

|-,I:— QR RE Sk
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With |+ a vector of coefficients for each framiey, the camera matrix, angh, - - - , Sk the set of
basis shapes. Brand'’s key contribution is to show that ficad to determine a single column-
triad Q1.3 of the corrective transformation to uniquely recover thérersolution. In addition
to this property, this work also presents a new method toitewlte metric constraints as the
minimisation of a cost function with the geometric meanirigninimising the deviation from
orthogonality in the resulting motion matrix. The minintisa is carried out using a quasi-
Newton method with a closed-form optimum jump. As the papénts out, this global optimum

is not guaranteed in the presence of noise in the measurenagrix.

It is important to note that although the algorithm recowkesground truth solution on synthetic
experiments its main weakness is its inability to handlsydata. Nevertheless, Brand's method

performs better than the closed form solution by Xéa@l. on real video sequences.

2.7 NRSfM via non-linear optimisation

We now review methods that solve the NRSfM problem miningsamon-linear geometric cost
(image reprojection error) expressed in terms of the agiginariables: the camera matrices,

the deformation coefficienig; and the basis shap&g. This amounts to a tri-linear estimation
problem where the orthonormality constraints are usuallgdsed via parametrisation or im-
posing hard constraints. We describe optimisation metbhaded on alternate least-squares and

bundle adjustment.

2.7.1 Alternation methods

Alternation is an iterative scheme that involves altekredyi optimising each of the variables:
rotations, shape basis, and shape coefficients, while kgdpe others fixed. Since our Metric
Projections algorithm (see Chapter 3) belongs to this cayein this section we describe other

alternation based approaches and discuss the main diftsydretween them.
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Torresaniet al's Alternating Least Squares

The first solution to the non-rigid structure from motion lpleim optimising image reprojection
error via an alternating least-squares approach was pedpog Torresanet al. in [117. In
this work, the authors argue that an initial estimate of tamera matrices can be obtained
accurately by using Tomasi and Kanade'’s rigid factorisaétyorithm. Under this assumption,
the recovery of the deformation coefficients, shape basiscamera matrices is recast as an
alternating least-squares estimation: each of the thrkeawns is iteratively estimated in turn
while keeping the others constant. At each step of the iterathe estimation of the shape basis
and deformation weights was solved in closed-form, but #r@era matrices are subject to a
non-linear orthonormality constraint which cannot be updan closed-form. Instead, a single
Gauss-Newton step is performed which results in an appiatiam of the updated value of the
camera matrices. The orthonormality of the rotation mafris guaranteed by parameterising
the incremental update in exponential map coordinates Mthod relies on an accurate initial
estimate, and requires an initialisation for the deforomatveights, which were initialised with

small random values in.[.7].

While they do indeed enforce the exact metric constraimtaith the exponential map parametri-
sation of the rotation matrices, unfortunately, the upddtéhe camera matrix is only an ap-
proximation. Since their approximate camera update stbprevorthonormality constraints are
imposed, is closely related to our Metric Projections atpar, we discuss it in detail in the next

section.
Camera Matrix Update
In the alternation scheme, thex3 camera matrice®; cannot be updated in closed form because

of the nonlinear orthonormality constraint. Torresehil propose to parametrise the current

estimate oR with a 3x 3 rotation matrixQs asR¢s = IIQf, where

100
M= (2.27)

010
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wherell selects the first two rows of a>33 rotation matrixQs to give the 2x 3 orthographic
camera matri®:. The updated rotatioq®", relative to the previous estimate, is expressed in
terms of an incremental rotatiak, asqQ*" = &y, Qs.

The incremental rotatioty, is parametrised in exponential map coordinates by a 3-végte-

[w, wy, wi]

&y =€ =1+ Ef & 2 (2.28)

WhereEAf is the skew-symmetric matrix built from the vectdy.

0w w
Ei= w0 —w
W w0

Their strategy is then to estimate the parametetsy approximatingd®"' = (I + Et)Qt in the

geometric cost function, then upda@g®" as eétQt. This approximate update of the rotation
matrix is based on the idea that from one iteration to the tiextotation must only have small
changes. Thus the initial values for the camera parametessime close to the final solution for

this assumption to be valid.

Torresaniet al's Probabilistic PCA model

An influential approach to NRSfM was later proposed by theesamthors [11]. The key idea
was to replace the linear subspace shape model with a ptstiadPCA model introducing
Gaussian priors on the deformation coefficients (i.e. assmirihat they can be drawn from
a Gaussian distribution), with the rest of the model definedefore. This prior represents
an explicit assumption that the deformation coefficientsefach pose will be similar to each
other, that is, they are not unconstrained and the meanaigitpbonent will explain most of the
motion. The additional advantage of using this model is thatdeformation weights become
latent variableswhich are therefore not explicitly solved for but can be nraatised out. This

results in a simpler optimisation problem with fewer vakésh
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With this model, NRSfM can be formulated as maximising thiatjtikelihood of the image
measurements. This optimisation problem was then sohs&eBxpectation Maximisation where
all the model parameters are updated in closed form excephécamera rotation matrices.
While they do enforce the exact metric constraints througbxgonential map parametrisation
of the rotation matrices, the update of the camera matrirlig @n approximation — the camera
matrix cannot be updated in closed form and instead theyppera single Gauss-Newton step.
In practice, the same approximate rotation matrix updategss is used as the one we described
in section2.7.1

The model is then extended to include a linear dynamical frafdke shape (LDS) in the proba-
bilistic framework. The shape coefficients in a frame are efled as a linear function of those in
the previous one. Due to their ability to handle missing daiz their resilience to measurement
noise, the EM-PPCA and EM-LDS algorithms proposed by Tamest al. [111] have become a
standard benchmark in NRSfM. However, in practice, theyaray deal with relatively simple
deformations (small deviations from a mean rigid componant! for more complex deforma-
tions they have been outperformed by more recent approaesesl on piecewise or local shape
models 11, 95, 107] Moreover, other approaches such as our Metric Projectidgithm [B6]

(see Chapter 3) have been shown to cope with larger amountssing data.

Rotation-Constrained Power Factorisation: RCPF

A variation of Torresaneét al’s trilinear ALS alternation method.[LZ] for the recovery of non-
rigid structure was later proposed by Weetgal. in [123. The idea is to use an ALS scheme
equivalent to Torresargt al’s [117], alternating between the estimation of each of the three
factors (rotations, coefficients, and basis shapes) ofaherigid estimation problem, assuming
the other two known. The novelty is to include a projectiogpsbf every rotation matrix onto
the Stiefel manifold (the set of matrices with orthonormaluenns). In this respect, RCPF is
related to our Metric Projections algorithrad] described in Chapter 3, since it also includes a
projection step of the rotation matrices onto the Stiefehifiaéd to impose the orthonormality

constraints. However, the projection steps differ: while Metric Projections approach projects
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the entire motion matri¥ onto the non-rigid motion manifold, RCPF only projects thtation
matrices onto the manifold of matrices with orthonormalucohs. Our comparative results in
Chapter 3 show that our Metric Projections algorittifi] [outperforms RCPFI23, particularly

for high percentages of missing data.

2.7.2 Non-rigid bundle adjustment

Solving the non-rigid structure from motion problem regsithe simultaneous estimation of
the camera pose and deformation coefficients for every franmtethe 3D coordinates of the
basis shapes. Even in the case of a simple NRSfM problem withuple of hundred points
on a surface deforming over a short hundred frame sequeribaeni basis shapes this results
in a very large number of parameters to estimate).1Direct non-linear minimisation of the
image reprojection error over all the parameters is contipmialy expensive. This is a case
where the bundle adjustment algorithm (described in se@id.? is particularly useful: the
computational cost is reduced greatly taking into accobat each parameter interacts only
with a few data points. The Levenberg-Marquardt algoritiF fan be used to minimise the
non-linear cost function, taking advantage of the spartgr@af the Jacobian.

For the non-rigid case, the cost function to be minimisetiésreprojection error:

K
ZHWfp—(Rf;thd—l—tf)Hz (2.29)
P =1

That is, the sum over all points and all framesf, of the residual between the measured 2D
feature locatiorwsp, and the 2D position predicted by the model for that feat®rg.l 4, Bd,
andts are the model parameters, respectively, the camera ngtdeformation weights, basis
shapes, and 2D translations. Because of the difficulty irosimg orthonormality between the
two rows ofR, the camera matrix is usually parametrised as a truncatatiaio matrix, and the
rotations parametrised with quaternions (or other pamasaéibn which ensure orthonormality).
Additional regularisation priors are normally added to ¢ost function to give a Maximum A

Posteriori estimate (MAP). These include spatial and tealpgmoothness priors as we dis-
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cussed in sectiof.3.3 In general, the camera matrices and the mean shape aatisadi with
a rigid factorisation algorithm and the basis shapes anorofeftion coefficients are initialised
to small random values.

We will now review the most successful methods that apply dptimisation technique to the

non-rigid structure from motion problem.

Aanees and Kahl non-rigid bundle adjustment

Aanees and Khall] were the first to propose the joint non-linear optimisatafrihe shape and
motion parameters minimising image reprojection erroeyidlescribe the ambiguities that arise
from the increased number of degrees of freedom in non-8@\d as opposed to the rigid case
and argue the need of priors to constrain the solution. litiaddo showing that the non-rigid
structure from motion problem can be solved via non-lingdinaisation method, they introduce
a temporal smoothness prior: the 3D shape should changdidim frame to frame. This prior
is implemented by adding an extra term to the cost functiopeioalise large changes in the
deformation parameters from one frame to the next. The costibn included an additional
prior that the shape should be close to an initial estimatepcted using rigid factorisation
techniques. They also were first to use the Bayesian Infoom&triterion (BIC) [/4] model

selection technique for the choice of the number of defaonanodes.

Non-rigid bundle adjustment for a perspective camera usigidity shape priors

The work by Del Bueet al. [31, 34] solves the problem of non-rigid shape reconstructiongisin
a perspective camera using a bundle adjustment approachdaimly priors on the degree of
deformation of some of the points in the scene. Their worktatgothe fact that it is often a rea-
sonable assumption that some of the points are deformingghiout the sequence while others
remain rigid. The set of rigid points is used to estimate ttiernal camera calibration parame-
ters and the overall rigid motion. Finally the problem of ragid shape estimation is formalised
as a constrained non-linear minimisation adding priorshendegree of deformability of each

point. This method was extended to the case of perspectajeqbion with varying intrinsic
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parametersd4], and to the case of a stereo camera sefiip [A further contribution proposed
in [32] by Del Bue is the use of shape priors: it is shown that incaafiog the knowledge of a

previously computed 3D shape can improve the estimationatiom and deformations.

Coarse-to-fine estimation

Bartoli et al [8] propose a way to avoid ambiguities in the estimation of thsiv shapes by
recovering them in an incremental way, one at a time, addingdeformation modes iteratively
to capture as much of the variance left unexplained by pusvinodes as possible. An important
characteristic of this method is the automated selectiotn@iumber of basis shapes, which
usually has to be specifiealpriori, using cross-validation. In addition to the implicit priof
having each deformation mode express smaller and smaflemaations, two additional priors
are imposed: temporal smoothness and spatial smoothnleish, are shown to greatly improve
the results §]. The method relies on Bundle Adjustment to minimise thegmaeprojection

error incorporating the priors.

2.8 Trained models for non-rigid shape analysis

When training data is available, learning deformable m®dmiing statistical learning meth-
ods has become an attractive way to represent non-rigideshiapparticular, learning lower-
dimensional linear models from training data using PCA ysialhas prevailed as a popular
alternative in the literature, and has been applied wittehsugcess to modelling of faces. The
original 2D Active Shape Models (ASM) by Cootes and Taylof][ were extended to include
texture in the Active Appearance Models (AAM)]. AAM have been extensively applied in
the literature to track 2D face deformationsl]. This class of methods relies on the availability
of labelled information for a subset of imagestmining data The model is separated into
shape and texture components, both modelled as linear patidsis of basis vectors learnt via
Principal Components Analysis. The basis acquired in thieitrg phase can be used to gener-

ate new instances of the model (for instance, a new pose ddiatte in the example of figure
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Figure 2.13: Example of a linear Active Appearance Modehf{g2]. Top Row: The average
shapes, is added to a linear combination of basis vect®rs- - ,s3 learnt from training data.
Bottom row: Texture is generated by adding the average appeai, for each point to the
learnt modes of appearange, - - - ,Az. Images courtesy of lain Matthews and Simon Baker

2.13. The recovery of model parameters given a target imageeis thcast as the estimation
of the best parameters that would generate the image gieeknibwn model. 2D Active Ap-
pearance Models were then extende@Bbmorphable modelfL2]] to obtain full 3D models
of faces, which produced impressive results given a sinigle-tesolution image as input. The
morphable model is computed from depth estimates from 3Dréeg devices. It was later

extended to model different facial expressions of the saoe. f

Learnt non-linear models have also been used to model gahoi articulated data. For in-
stance GPLVM (Gaussian Process Latent Variable Models) haen successfully used for 3D
people tracking to learn a prior on human posed from small training data sets. In NRSfM,
Salzmannret al. [99] proposed to learn a prior over the local deformation of acefpatches
from motion capture data. These local models were leartit @RLVM from a small number
of samples. The local to global transition was then madegusiRroduct of Experts paradigm

that combines probabilistic models.

While learnt models have proved very effective at représgmton-rigid deformations they suf-
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fer from two main drawbacks. First, gathering a sufficientoant of training data can be a
difficult process. Secondly, alignment and labelling of tteéning data can be extremely time
consuming and error prone since it is usually done manu&Bcently some techniques have
been proposed to automate as much as possible the procdzaiofra the training data needed
to build the model. For example Daviesal [30] propose to automatically select model points
along a contour of the objects to be modelled by minimisirgcdption length. Cootest al. [27]
construct a model from an initial position of feature pointthe images, that can be obtained au-
tomatically starting with a regular grid, removing pointslow texture areas and moving points
to strong edges in the image. Deformations are modelled) asiraffine piece-wise deformation
field, and training is performed using a Minimum Descriptiangth approach.

Current state of the art methods include the work by Coetes [26] and Adeshina and Cootes
[2]. The former is suitable for automatic or semi-automatieragion, where the user has to label
only one reference frame while the latter takes advantageexific subject knowledge by ask-
ing the user to label parts and geometrgnodel in a reference frame, providing both appearance

and spatial relationships of features, then learning theespondences across images.

2.9 Reconstruction with Missing Data

The original formulation of the factorisation problem ddised in sectior2.2.3requires all the
points to be visible in all the views. However this is oftert agealistic assumption for tracking
algorithms. The main sources of missing data are occlusgeisocclusions and tracking fail-
ures (broken tracks). A common occurrence in real worldesane occlusions: when the object
that is being reconstructed is not entirely visible in theolgimage sequence. For example, the
hands of a person talking often move behind or in front of tbdyb sometimes occluding one
another in the image. A cloth could fold, so that part of it§ate is not visible, this is called a
"self-occlusion”. Also, the object and/or the camera wollate, hence features in the front of the
surface will disappear from view, and features at the badkappear. Finally, the tracking al-

gorithm might fail to detect a feature in a particular framelose track of a feature. All of these
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kinds of occlusions result in the problem of missing infotima in the measurement matrix.
This problem can be tackled at the feature detection an#tibgstage, but most importantly
we have to develop structure-from-motion techniques ththtoe able to produce accurate 3D

reconstructions without full data.

The problem of missing data can thus be defined as the prolfleamputing an accurate model
from incomplete observations. Although the problem ofdéasing a matrix into the product of
two low rank factors in the presence of missing data hasvedgjreat attention from researchers
in computer vision, it continues to be an open problem thaices also other areas. Stemming
from Wiberg’s original algorithm 125, many different solutions have been since put forward
for the structure from motion problem, when missing dataesridue to occlusions or broken
tracks. Being able to deal with high percentages of missatg & crucial for algorithms to be
practical in real, not just controlled, scenarios. We vwélliew the main approaches to solve the

missing data problem.

One group of approaches propose strategies that combitial paw-rank factorisations ob-
tained for sub-blocks of the measurement matrix that coritdiidata. Pioneered by Jacoli]],
thesebatch approacheseconstruct the measurement matrix by first building it oo column
null-space or one of its range spaces and have been apptiedoatbe rigid £8, 106 and non-
rigid [87] SfM problems. However, one concern about these approastiksir sub-optimality

and that their performance degrades in the presence of noise

A second group of missing data approaches that dominatditettature includes iterative meth-
ods that perform alternation of closed form solutions to/edbr the two factors of the ma-
trix [21, 46, 47, 117. For instance, Powerfactorizatiod ]| uses an alternated least-squares
(ALS) scheme to solve for the motion and shape matrices.rdteon constitutes an attractive
scheme since it guarantees convergence to a local minimtine abjective function is reduced
after each iteration. Further advantages are quick itaratieps combined with a fast conver-
gence rate in the initial iterations. However, after a fegvations, the convergence rate drops

and these algorithms are susceptible to flat lining.
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Finally, non-linear optimisation algorithms have also bggoposed to optimise directly the
reprojection error. Buchanan and Fitzgibbdn][proposed a Damped Newton algorithm that
provides a more robust solution than standard alternafipmoaches. Later, Chen revitalised
the use of the Levenberg-Marquardt algorithm to solve thesimg data problem by formulating
the low-rank matrix approximation problem as a minimisatom subspace<(]. The idea is
to consider the shape as an implicit function of the motioth measurement matrices and solve
only for the motion. This results in a smaller system to beveshlin every iteration, which
makes this method well suited to large matrices where itarfpms Wiberg's 25 method or
Damped Newtonl7]. Recently Candés and Recht have proposed a convex ogtiamsnethod
[19].

Although these non-linear methods do exhibit a superiofop@ance, proper initialisation re-
mains an open problem and, more importantly, integratirdjit@tal constraints in the optimi-

sation process is not an easy task.

2.10 Alternative shape models

Despite the success of the linear low-rank basis shape nrotted NRSfM literature, in recent
years new research has began to address its main limitétionlyobeing able to model small
deviations with respect to a strong rigid component. In ptdellow more complex deforma-
tions, authors have departed from the linear basis shapelrand proposed new shape models
that can cope with a wider range of non-rigid motion. In mantr, we will review approaches

based orpiecewisenodels locally-linear shape manifoldsndtrajectory spacéasis.

2.10.1 Piecewise reconstruction methods

Following Bregleret al’s [15] original non-rigid factorisation algorithm, most NRSfMga-
rithms represent the time varying 3D shape as a linear catibmof a low rank shape basis.
Although this model effectively captures global deforroasi, and many approaches have been

proposed §, 12, 35, 111, 124, so far, they have only been demonstrated on simple segaenc
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where the deformations are small linear deviations from amrégid component and none of
them are able to reconstruct strongly deforming surfacels as a piece of cloth deforming vig-
orously. This failure can be attributed to their relianceaagiobal model — to capture intricate
local deformations, global models require a substantiaiei@se in the number of basis shapes

used which leads to over-fitting.

Recently, piecewisereconstruction methods have been proposed in the NRSfkatitee as
an alternative to global ones. Their insight is that modeé attempt to capture the scene’s
global spatio-temporal behaviour — such as the low-dinmradilinear shape subspace favoured
by most non-rigid SfM methods — are unable to handle compkferdhations often leading
to over-fitting. Instead, they decompose the global recoasbn problem into many better-
behaved local ones relying on the features shared betweslapping patches to enforce global
consistency. Local solutions aséitchedinto a global surface imposing the constraint that the

points shared between patches are the same points in 3D space

The first of such approaches was proposed by Verall. [120] assuming that the 3D surface
can be approximated as piecewise planar. The method worksiage pairs and assumes a
calibrated camera. The image is first divided manually interlapping regions which are re-
constructed independently as local 3D planes from the hoapbies estimated from pairwise
correspondences. The patches are then merged by enfoi@ingridistency between the over-
lapping points on neighbouring patches. In a final step,aagular mesh is fit to the 3D point
cloud assuming temporal smoothness constraints. Theg#itrefithis approach is that only pair-
wise matching is required between feature points insteémhgfconsistent tracks. However, the
piecewise planarity constraint can be restrictive and taadpsmoothness is only imposed via

post-processing which can lead to flickering.

Later, Tayloret al. [107] proposed a piecewise approach that uses locally rigidanpteducing
the number of points per patch to the minimum possible ofethrBelaunay triangulation is
applied to the image features to divide them into a set ohdgiies, which are reconstructed

independently, using a linear algorithm, to forntriangle soup Triangles that do not behave
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Figure 2.14: Some deformations encoded by the quadratiemAdube is used as rest shape,
the effects of linear, quadratic, and cross-terms are sliog@pendently. This model generates
deformations such as stretching, bending, sheering amstinigsi Image courtesy of Joao Fayad.

rigidly are rejected using a predefined threshold on theojeption errors, which allows the
method to deal with outliers. In order to align the recorsid triangles to provide a smooth
3D surface, a disambiguation step is then needed to solvbdarlative depths and reflection
ambiguities that results in anP-hard problem to which an approximate solution is proposed.
This grouping step makes the method applicable to non-hgitles that lose connectivity (for

instance a paper tearing in two pieces).

In recent work Fayacbt al. [41] proposed to use a more descriptive 3D model for the local
patches also within a piecewise framework. The quadrafioraetion model 2] was shown

to be a better local model to reconstruct the individual ipagcthan Varokt al’s local planar
model. It encapsulates three modes of deformatioear which accounts for sheer and stretch;
quadraticfor bending andnixedterms for twist. In Figure.14we show a visualisation of the
effect of applying each deformation mode separately to &-@haped object. The quadratic
model for each patch is optimised individually over the ensequence using temporal smooth-
ness priors. The patches are then aligned to give a globadtbnsarface using the overlapping
points to impose global 3D consistency. In essence, thibadeas similar to Varokt al’s [12(]

with the difference that the increased complexity of thedyadc model and its inherent tempo-

ral smoothness allows the smooth modelling of strongerrdedtions.

Fayadet al's method has recently been improved to drop the requireofenanual division of
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Figure 2.15: Rethinking non-rigid structure from moti¢i]: the linear subspace shape model
(left) cannot describe all deformations. Modelling nogidgideformations as a piecewise linear
manifold allows for more complex deformations to be exmdin Image courtesy of Vincent
Rabaud and Serge Belongie

the surface into patches. 18] Russellet al. reformulate the NRSfM problem as a labelling one
which allows to optimise jointly both the assignment of gsito local models and the fitting of
models to points to minimise a geometric cost (image reptioje error) using a variant of the
graph-cut based algorithim-expansion. This method is shown to obtain state of the arite
outperforming all previous piecewise reconstruction radth The same inference engine has
also been extended to deal with the joint segmentation ande8bnstruction of articulated

objects in {3].

2.10.2 Manifold Learning

The work by Rabaud and Belongié4] also departs from the classical low-rank factorisation
with basis shapes. The main question posed concerning whealik basis shape model, was
whether or not a linear manifold can represent accuratetyrigpd shape. The authors argue
that this is not the case for objects that undergo strongraeftions, and propose to model the
non-rigid deformations manifold as piecewise linear asagrthat only small neighbourhoods

of shapes are well modelled by a linear subspace. Figuredepicts the difference between
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the linear subspace shape model and the proposed piecévdae mon-rigid shape manifold,
showing that the latter can represent more complex nod-rigdtions. Their approach relies
on the concept of repetition: given a long sequence of a d-shape, similar rigid shapes
will appear in various instances along the sequence butfsemndifferent viewpoints. Images
are grouped into clusters that represent the same rigicesdragha manifold learning technique
is then applied to learn the non-rigid shape manifold ceising the degrees of freedom of
the object. Although they claim that they can deal with cawpion-linear deformations, their
test sequences are not as challenging as those attemptbd pietewise reconstruction meth-
ods [L07, 41, 95].

Zhu et al. [136] propose a related approach in which the set of images isgatsgped into
clusters that represent the same rigid shape up to a rigidftnanation. In practice, the epipolar
constraint, or the trifocal tensor, can be used to estinfateages were generated by the same
rigid object and belong to the same cluster. &tal. introduce the concept of model graph
which greatly reduces the computational cost of discogegroups of images that represent
the same rigid shape. The 3D shape for each image is therbguilaversing this graph using
their model-evolution algorithm based on incrementalrigi-M. Finally, a compressive sensing
representation is used to model large deformations. Ussmgese basis, estimated by reducing
the number of models in the shape clusters, allows to en@rde hon-linear deformations.
One of the interesting contributions of this work is its apgiion not just to sequences of non-
rigid motion but also to large collections of photographsiatilar but not identical objects in a

category such as different types of cars.

2.10.3 Reconstruction in Trajectory Space

The low-rank shape basis model of Bregétral. [15] explores the spatial properties of non-
rigid motion, introducing rank constraints on the 3D looatdf the set of points (shape) at any
given frame. The dual formulation of this model, proposed\&iater et al. [6, 7], states that the

rank constraint can be instead applied to the 3D trajed@ieach individual point, modelling
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Figure 2.16: Dual representations for non-rigid objectsft:La point configuration in space is a
point in the low-dimensional space defined by basis shapight:Rhe same shape represented
in trajectory space, each point trajectory in time is a poird low-dimensional space defined
by trajectory basis. Figure courtesy of Sohaib Khan and iY@keikh

them as a linear combination basis trajectories Under the low-rank shape basis model, the
basis shapes must be estimated for every new sequence. Vdrdage of the trajectory basis
formulation is the ability to use a pre-defined trajectorgibdor any sequence. This simplifies
the problem greatly, leaving only the camera matrices ajddtory coefficients to be estimated.
In their work, Akhteret al. chose to model the trajectories using Discrete Cosinesioam
(DCT). While this choice might seem to restrict the typesrajectories it can represent, if][
they showed that the DCT basis approximates well the expeegewer of the PCA basis. Since
the DCT is a basis for continuous functions, this model makesmplicit assumption that the
3D trajectories on the surface of the object are smooth ie.tifhe estimation of the camera
matrices and trajectory coefficients fits well within thetfacsation framework and the resulting
upgrade matrix is estimated by ensuring that the camerdaestare orthonormal. The method
has been tested primarily on human motion capture datar{itance the CMU mocap data-
set). In these cases (which in fact represent mostly aatiedldata), this method outperforms

algorithms based on the dual shape-basis model such asdoret al’s [111], but instead
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I=AX+(I-A)C

col(®%)

X : Point trajectory col(-) : Column space
C : Camera trajectory @ : Trajectory basis
B : Coefficients f} : Estimated coefficient

=2

(b) Point trajectory estimation (c) Geometry of 3D trajectory reconstruction

Figure 2.17: Reconstructibility result: a point trajegtaf a non-rigid point (b) can only lie in
the linear subspace defined by the DCT basis used (c).eRaik [88] show that the recovered
trajectory lies on the line connecting camera and poingttayy. This implies that the best result
for the reconstructio®fy is obtained when the camera trajectory is not correctly riveddy
the DCT subspace. (Figure courtesy of Hun-Soo Park)

produces less accurate results on pure non-rigid data,asudbformations on human faces.

Parket al [8€], also reconstruct non-rigid motion using the DCT trajegtbasis, but recon-
structing each point trajectory independently, assumimgléorated camera. The most inter-
esting contribution of their work is the theoretical reghit reconstructing a single trajectory
works best when the camera motion does not lie on the subsigdioed by the trajectory basis
used to represent the 3D point trajectory. Titdsonstructibility theorenprovides insight into
reconstruction in trajectory space. FigWd 7 depicts the reconstructibility theorem. Park
al. [88] show that the recovered trajectory lies on the line coringdhe camera and point tra-
jectories. This implies that the best result for the reammasion of a 3D point trajectory (which
must lie on the subspace by construction) is obtained wherdmera trajectory does not lie
on the same subspace, i.e. it is not correctly modelled byDi& basis. Hence low-rank,
low-frequency (smooth) 3D point trajectories that are wefiresented by the DCT basis will

be only recovered accurately if captured by a camera modndamly (high frequency cam-



78 Chapter 2. Literature Review

SeD

SNNELON

mﬁ“\\\\‘gﬁ'@'
mn“\\gﬂ

v/~
g N>

Figure 2.18: Results from the template-based metho® ihfpr 3D recovery of deformable
surfaces. The vertices of a 3D triangle mesh are known ineaxaete frame, the 3D vertices
are estimated from image 2D-3D correspondences. Each fimineated separately. Images
courtesy of Mathieu Salzmann

era trajectory). An experimental setup in which such assiomps true, is that of a crowd of
photographers imaging an event from many different viewsoi

Gotardo and Martinez4[] also make use of the DCT basis to model a smooth trajectoity, b
rather than modelling the trajectory of the 3D point in spdhe basis is used to represent the
smooth time-varying coefficients of a low-rank basis shapel@h The matrices of coefficients
and camera motion are expressed in a compact represenitatiba DCT domain. This al-
lows the decoupling of the rank of the 3D shape basis and thie ahthe DCT basis for the
coefficients, making it possible to use high-frequenciesttie coefficients, while keeping the
number of basis shapes low. Their results show that, cordgarédkhteret al’s formulation
[7], this approach can better model complex articulated dedtion with higher frequency de-
formation components without the need to use a higher diloessibspace which could lead to

over-fitting.

2.11 Template-based methods

A very successful alternative approach to monocular 3Dngttoction of deformable surfaces
has developed in parallel to NRSfMemplate-basedeconstruction of non-rigid surfaces as-
sumes a giveneferenceimage in which the shape of the 3D surface is known in advance

[97, 98, 90, 16]. The problem is then to infer the 3D shape iniaputimage in which the shape
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has deformed. The method assumes that 2D correspondensiesetween features in the refer-
ence and input images. Template-based reconstructiorrisftiie formulated for image-pairs.
Naturally, it can be extended to process a long video by bksitélig correspondences indepen-
dently between the reference and each input frame in theesegqu The implication is that it
does not require long frame to frame correspondences in agarsequence as NRSfM methods
do which allows for increased robustness. However, itsddsatages with respect to NRSfM
are the increased difficulty in imposing temporal smoothr@#ors and the strong requirement

of a known 3D shape template.

The surface is commonly represented as a triangulated rassthown in Figur€.18 The
template is the 3D position of all vertices of the mesh in #fenence image. Normally, mesh

vertices are not found directly in the target image. didte a generic 3D point in the reference

mesh, its coordinates can be expressed in terms of the hgarses as g = [avl,bvz,cv3]T
where(a,b,c]" are thebarycentric coordinatesf that point,v;, 1 < i < 3 are the (known) 3D
vertices of the mesh triangle where pajrites. Feature point matching between the target image
and the reference image allows to compute the barycentarowates of such points. The re-
construction problem becomes the recovery of all vertigeen knowledge of 2D reprojection

of the set of feature points (each feature point lying in ohthe mesh triangles, with known
barycentric coordinates). If the only constraint imposadtee surface are the point correspon-

dences, itis possible to obtain a reconstruction with ateu2D point reprojection, but incorrect

3D shape. Additional constraints are required to constia@rBD coordinates of the surface.

It was first shown by Salzmaret al. [97] that in the context of template-based non-rigid 3D
shape reconstruction it is possible to formulate the misatidon of image reprojection error
as a convex SOCP optimisation problem. The additional cainstused to prevent an under-
constrained solution is to enforce temporal consistenieglidwing large changes of edge ori-
entation between consecutive frames which can be expressadditional SOCP constraints,
yielding a convex formulation. This convex approach sslied on a full video sequence and

the availability of frame to frame correspondences.
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Figure 2.19: The Euclidean distance between point pairsbeilsmaller than the geodesic
distance along the surface. Equality constraints can lbeedlwith inequality constraints, this
allows a convex formulation. Figure courtesy of Adrien Bért

In later work the temporal consistency constraints werdaog by geometric ones that per-
mitted to perform 3D reconstruction using a single inputdea In practice, the constraints
used describe assumptions on the allowable surface deformsa It was shown ingg] that
recovering the 3D shape of a flexiklextensiblesurface from 3D-to-2D correspondences can
be achieved in closed form by solving a set of quadratic eégusty simply constraining the
distances between selected surface points to remain consthis method was restricted to
smooth surfaces. Later, a new convex formulation was pexpas deal with sharply folding
surfaces 96] by replacing the distance equality constraints betweeiase points with inequal-
ity ones that are convex and allow points to come closer tb e#twer but prevent them from
moving further apart than their geodesic distance. Thisitaimt can be visualised in Figure
2.19 Inextensibility constraints have been further exploitgdother authors who have rep-
resented the smooth surface using thin-plate spligg pr free-form deformationslf] and
exploited the orthonormality condition that the 2D-3D is&iny map induces on the Jacobian

matrix [16].

While the field of template-based reconstruction is noweguiature and well understood and ro-
bust methods exist for monocular 3D reconstruction of deédile surfaces, the strong assump-
tion of a known 3D shape makes NRSfM an attractive alteraatifien no prior information is

available about the surface or the way it deforms.
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Figure 2.20: Articulated motion: 3D points belonging tofelieént objects are forced to move
around a common joint centre (left), or rotate around a comhinge (right). Each object is
described in its own reference frame, the distarntasdd’ between each centre of mass and the
joint centre must remain constant. In addition, each ceaitneass will show a global translation
t,t’ on the image plane.

2.12 Articulated Structure from Motion: A-SfM

Articulated motion has also been recently formulated uaiagjucture from motion approach[3,
131]. The key idea is to model the articulated motion space as af $etersecting motion sub-
spaces — the intersection of two motion subspaces implestistence of a link between the
parts. Articulation constraints can then be imposed dufi@oetprisation to recover the location
of joints and axes on the image plane. Tresadern and Re&idl propose a metric upgrade pro-
viding joint information in 3D, approximating the upgradealinear problem, thus obtaining a
closed-form solution. One of the most important assumptimfithese methods is that segmen-
tation of the tracking data into the different articulatettp must be known in advance. This
problem, known as motion segmentation, has received sulatmterest (see for example Vi-
dal and Hartley 127]). The first solution to this problem was proposed by Coataimd Kanade
[2€], for multiple independent rigid motions. Recently, YarddPollefeys [ 37] have proposed

a more general solution able to provide segmentation farabjundergoing articulated motion.

2.12.1 Articulated Shape Model

In the case of articulated structure, the relative motidritb® segments that form an articulated

body are dependent and this results in a drop in the dimealgtipiof the measurement matrix
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W= [ Wy ‘ W ] that contains the 2D image points of the two segments. Indke of auniversal
joint the two shapes share a common translation (i.e. the distzategeen shapes and joint is
constant) while in the case offénge jointthe shapes also share a common rotation axis. Both
the work of Yan and Pollefeys1p1] and that of Tresadern and Reid 1[J provide a solution

to the recovery of articulated motion, and have been deeelapdependently. We will briefly

describe both methods.

2.12.2 Subspace analysis

Yan and Pollefeys1[31, 133 proposed a method to analyse articulated motion and rejowe
and axis positions. Consider two independently movinglraijects imaged by a single camera.
Let W, andW, be the measurement matrices containing 2D feature trackihdotwo objects
respectively. Under an affine camera model, the combineduneaent matrixy = [W1|Wy| can

be written as:

S1 O
W= [Wy[Wp| = [My[t1|M2]t2] (2.30)
0 S

Where each object is associated with a motion matif, containing the B x 3 affine camera
matrices for all framesH being the number of frames), and thé 2 1 translation vectot. In
order to incorporate the translation, the shape matri@awgmented with a row vector of ones,
each shape matrix will thus have 4 rows. EquafioB0implies thatw is at most of rank 8.
Let us consider the case where the two obj&gtandS, are coupled by aniversal joint The
distance between each object centroid and the joint rotagatre is a constant (cfr Figuze20).
Hence, without loss of generality, the world coordinateéesyscan be chosen such that all points
of the first objecs; are fixed in 3D, and with its origin on the location of the jobantre. In this
coordinate system, the second object at a generic friao@ be expressed as:

Rf O

Sof = S2
0 1
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That is, the second object can only rotate around the jointregwithR; being the relative
rotation between the two objects at frarfie In this coordinate system, the two objects also
share the same translation vector, since the distance detaagch object and the joint centre is

a constant. For each frame the measurements can be written as

S1 O _ S1 O
[W1lWo]f = [Maf|tas [Mof|ta] = [Maf|tof[MafR[tag] (2.31)
0 Syt 0 S
Stacking equatio2.31for all frames results in the motion matrix containing tw@ias of the
2F x 1 translationt. This common column implies that the motion matrix is rankiaient,
having at most rank 7 for the case of a universal joint.
In the case of dinge joint the z axis of the world coordinate system can be aligned thih

hinge, resulting in a relative rotatiayy of the form:

cosfs sinBs O

Rf = | —sinB; cosBs O (2.32)
0 0 1

where®8; is the angle between the two objects at frafnd his implies a further drop in dimen-
sionality: Equatior2.31implies a motion matrix with two duplicated columns, thenskation
vectort and the last column of the matricg andM,. This implies a motion matrix of at most
rank 6.

The drop in rank of the motion matrix when two objects aregdiby an articulation means that
the subspaces spanned by the columns of the measuremeitesattersect. The intersection
of the subspaces can be one or two-dimensional, respegchbreghe case of a universal or hinge
joint. Yan and Pollefeysl[31] have shown that the intersection of the subspaces is thimmot
subspace of the joint. They show that this property can bé tsseecover the 2D trajectory of
the joint centre for the case of universal joint, and the 2dpetitories of two points on the axis,

in the case of a hinge joint. In work done in parallel, the saeselt on the dimensionality of
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the motion subspace was obtained by Tresadern and R&ill \who also proposed a metric

upgrade step, to recover joint trajectories in 3D.

2.12.3 Joint estimation in 3D

Tresadern and Reid’s factorisation approath? can recover articulated structures in 3D, to-
gether with 3D position of joints and axes. The spatial retethip between the barycentre of

each (rigid) object and the joint centre can be written as:

t@ 4 rRDJW =t L g2 (2.33)

wheret™® andt(® are the 2D image centroids of the two obje®<) andR® the 2x 3 ortho-
graphic camera matrices adé) andd(® the 3D displacement vectors of each articulation link
from the joint centre. The constraint expressed in equdf@8) results in a reduced dimension-
ality of the motion and shape subspaces. The geometricarsaip expressed by this equation
can be visualised in Figur220 The 3D recovery is formulated as a factorisation problem. |
the case of a universal joint, the distances between obgattaid and joint centrd®,d® are
constant. The existence of a link implies that objects tedasn space together — if the vectors

d® andd® were known, the measurement matjiix|w] could be written as:

g() d@
[W1|Wo] = MS = [ M M@ t(l)} o s®@_g® (2.34)
17 17

wheres is a rank-7 matrix, containing three rows for the coordisatkeach object, and a row of
ones for the common translation vector. Equatiod¥ expresses in matrix form the relationship
of equation2.33in all frames. In the case of a universal joint, TresadernRwid [113] propose

a factorisation method to solve for the shape matrices amditfiknown length of vectorg™®

andd®@,
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In the case of a hinge joint, without loss of generality, thiation axis can be made to coincide
with the x axis of the world coordinate system, and any point along tiiation axis can be
picked as the joint centre (cfr Figu&20. The measurement matrix can again be factorised
into the product of a motion and a shape matrix, where theeshagirixs encapsulates the 3D

coordinates for both objects, arranged in such a way as twanh common axis:

i} . XI(D:Il-) N2 x(é) -
y(ll) y|(:>? 0 ... 0

s=1| 4" .. zg) 0 ... 0 (2.35)
0 0
0 o 2% .. Z|(322)

where the first articulated link hd 3D points and the second one H3s It is clear that the

rank of the measurement matrix must be constrained to be stténo

S Soct o+
— S17 dgl)
[Wa[Wo] = [My[Ma[ts] X (2.36)
0 Sy+d?
0 S22+ d£2)
1T lT

The zero blocks in the shape matrix are substituted with kbekkreplicated coordinates of the
vectorsd™ andd(®, which express distances between the joint centre and fleetatentroid
in 3D. This matrix formulation express the joint constraifitequation2.33 with the added
constraint that the two motion matrices have a common columrthis case, the common
column is relative to the axis, meaning thal; is a & x 2 block containing only two columns

of the motion matrix for the second object, the ones reldtivihey andz axis.

To solve for 3D structure and motion with a factorisationraggh the method of Tresadern and
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Reid [L13 performs a rank 5 SVD decomposition on the registered mieasent matrix, then
enforces the structure of the shape matrix by premultightine SVD factors by an invertible
matrix composed of the null space of the shape SVD factor.rébavered affine reconstruction
needs to be upgraded to metric by enforcing the metric caingsr Although the constraints are
non-linear Tresadern and Reid propose a linear approxdmétir recovering the hinge joint in
3D.

In chapter 3 we propose a new framework to impose the exactimeer metric constraints.
Taking the linear estimate as initialisation, we proposacédrisation algorithm that projects the

solution onto the correct manifold of constraints.

2.13 Closure

This chapter discussed the literature in the field of 3D stegtgnation from monocular se-
quences focusing on factorisation approaches to non-igidarticulated structure from motion.
In NRSfM, we have shown that the problem is inherently urmerstrained and intractable
without the use of additional priors or constraints. We retvewvn how most of the efforts in the
NRSfM community have gone into solving the inherent metritbaguity. Imposing the metric
constraints results in a non-linear estimation problentiviequires a good initialisation and the
use of priors to avoid local minima. The problem becomes éader in the presence of noise
or missing data due to occlusions. We have provided a taxgradmmethods for NRSfM where
we divide approaches according to the shape model used ati@ toptimisation technique
employed to estimate the parameters. Additionally we haszribed the different types of
statisticalandphysicalpriors used to avoid ambiguous solutions. We have also ibesiccurrent
approaches to articulated SfM and noted that only a linegircagimation of the metric upgrade
is estimated.

Although different methods have been proposed in the titegato tackle the metric upgrade,
it still remains an open problem. While closed-form apprescfind the correct solution in

the noise free case, they are extremely sensitive to noed#orp poorly in real sequences
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and cannot deal with missing data. On the other hand, attemand non-linear optimisation
techniques impose the metric constraints via parametisaind require strong priors. Also,
often imposing the constraints requires approximations.

The first part of this thesis focuses on new strategies to smpbe metric constraints. First
we show a unified approach to non-rigid and articulated fesztion. We propose a common
alternating bilinear approach to solve for 3D shape andanptissociated with a projection step
onto the manifolds of (respectively) non-rigid and artatedd metric constraints to ensure that
the solutions satisfy the metric constraints. Then we piteaebilinear factorisation approach
that completely decouples the bilinear estimation stemftbe projection onto the manifold
of acceptable solutions. We show extensive experimentdlations on ground truth and real
sequences which show that we are able to deal with high peges of missing data.

The final part of our work aims at pushing non-rigid structincen motion solutions towards the
sequential domain, a scenario in which reconstruction essbitained during image acquisition.
Currently, all NRSfM methods are batch: all the frames ame@ssed at once after the acqui-
sition takes place. In the final chapter we describe our imergal approach to the estimation
of deformable models. Image frames are processed on-lines@guential fashion. The shape-
model is also built on-line with new modes added increméntahen the current model cannot

model a new image well enough.
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Chapter 3

Metric Projections for Deformable and Articulated

Structure-From-Motion

Most approaches to deformable and articulated structum® fmotion require to upgrade an
initial affine solution to Euclidean space by imposing ntetonstraints on the motion matrix.
While in the case of rigid structure the metric upgrade ssegimple since the constraints can
be formulated as linear, deformability in the shape intaedunon-linearities. We propose an
alternating bilinear approach to solve for non-rigid 3D mhand motion, associated with a
globally optimal projection step of the motion matricesmtite manifold of metric constraints.
We will present an algorithm for recovering the 3D shape antion of deformable and articu-
lated objects purely from uncalibrated 2D image measur&mesing a factorisation approach.
Our novel optimal projection step combines into a singlernoisation the computation of the
orthographic projection matrix and the configuration wesghVe avoid the difficult problem of
metric upgrade by projecting the solution to thetion manifold We define thenotion manifold
as the set of matrices that satisfy the metric constrairtie. projection gives the closest motion

matrix that satisfies the correct block structure with thditmhal constraint that the projection
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matrix have orthonormal rows.é§. its transpose lies on the Stiefel manifold). This constrain
turns out to be non-convex. The key contribution of this wisrthe solution to the non-convex
projection step. We present a tight convex relaxation th&ios the global optimum, and then
introduce an efficient convex relaxation which speeds ugtimeputation while preserving ac-
curacy. Efficientin the sense that, for both the cases ofrdefble and articulated motion, the
proposed relaxations turned out to be exaet {ight) in all our numerical experiments. The
convex relaxations are semi-definite (SDP) or second-azdee (SOCP) programs which can
be readily tackled by popular solvers. An important advgataf these new algorithms is their
ability to handle missing data which becomes crucial wheadidg with real video sequences
with self-occlusions. We show successful results of ouorigms on synthetic and real se-
quences of both deformable and articulated data. We alss sbmparative results with state

of the art algorithms which reveal that our new methods atdp® existing ones.

3.1 Introduction

The combined inference of the motion of a camera and the 3ngag of an unconstrained
scene viewed solely from a sequence of images is a longistaetiallenge for the Computer
Vision community. The fundamental assumption which haswad robust solutions to the
problem is that of scene rigidity. However, when dealingwithage objects that vary their 3D
shape, the Structure From Motion (SfM) problem becomesariiy ambiguous and non-linear.
The seminal work of Breglest al. [15] was the first to deal with the case of deformable objects
viewed by a single camera. Their key insight was to use a Emwk-shape model to represent
the deforming shape as a linear combinatiork dfasis shapes which encode its main modes
of deformation. This model not only provided an elegant esien of the rigid factorisation
framework devised by Tomasi and Kanade. (] but has also opened up new computational and
theoretical challenges in the field.

Although this low-rank shape model has proved a successfukesentation, the Non-Rigid

Structure from Motion (NRSfM) problem is inherently undmmstrained. Most approaches
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formulate it as an optimisation problem where the objedtivetion to minimise is the image
reprojection error. Recent methods focus on overcomingothblems caused by ambiguities
and degeneracies by proposing different optimisation reelseand the use of generic priors.
In the previous chapter we discussed how most of the efforthkeé NRSfM community have
gone to solve the inherent metric ambiguity. Imposing thkarormality constraint results in a
non-linear estimation problem which requires a good ilié@ion and the use of priors to avoid
local minima. The problem becomes even harder in the presafinmwise or missing data due to
occlusions.

Articulated motion has also been recently formulated uaiagjucture from motion approach[3,
133 modelling the articulated motion space as a set of intéirggenotion subspaces — the in-
tersection of two motion subspaces implies the existenadiok between the parts. Articulation
constraints can then be imposed during factorisation tovecthe location of joints and axes.
While Yan and Pollefeys only compute the location of jointsl axes on the image plane and do
not perform a 3D reconstruction, Tresadern and Reid godughd compute the metric upgrade,
but only recover a linear approximation of the correctiramgformation [13). Both approaches
require full data and therefore cannot deal with missingkisaa situation that commonly occurs

for instance when tracking humans.

3.1.1 Contributions

In this chapter we present a new unified approach to perfoamnmdtric upgrade in the cases
of articulated and deformable structure viewed by an omdyoigic camera in the presence of
missing data.

In the non-rigid case our approach is most closely relateldgdrilinear schemes of Torresaati

al. [117] and Wanget al. [123 we described in Chapter 2. Both approaches use an identi-
cal alternating least squares framework to estimate thégeoation weights, basis shapes and
orthographic camera matrices, solving iteratively forhreatthe unknowns leaving the others

fixed. The only difference between these two approaches tiseirway that the orthographic
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camera matrices are updated and the metric constraintssedpe the other two steps in the
alternation minimise the same cost.

While Torresankt al. enforce the exact metric constraints through an expaglentip parametri-
sation of the rotation matrices, the update of the cameraixriatonly an approximation —
the camera matrix cannot be updated in closed form and ohskexy perform a single Gauss-
Newton step. Alternatively, in their Rotation Constrairolverfactorization algorithm (RCPF)
Wanget alfirst update the orthographic camera matrix via least sguand an additional step
is incorporated to project it onto the Stiefel manifold vigs $VD decomposition. This simple
projector is in fact identical to the one proposed ] [for the case of rigid structure. Finally,
in order to deal with missing data the above trilinear apghea .12, 123 resort to using only
the available image tracks in their alternating scheme.

Similarly to Torresangt al. and Wangget al. we also propose an iterative alternating scheme to
solve the non-rigid structure from motion problem. Howewer optimisation scheme is bilin-
ear, alternating between the estimation of the motion aedliape matrices, with an additional
projection step of the motion matrices onto the manifold efnia constraints. At the expense
of solving a more complex optimisation problem, our effitieanvex relaxation provides an
optimal minimiser to solve simultaneously for the orthgari@ camera matrix and configura-
tion weights that give a motion matrix that satisfies the appate block structure while also
ensuring that the orthographic camera matrix satisfiesdahstraint of having orthonormal rows
(its transpose lies on the Stiefel manifoldHere and throughout the chapter, the optimal pro-
jection of a matrix onto a given set of matrices, denotes thgest point on that set from the
given matrix with respect to the Frobenius norm. Extensbatst carried out on motion capture
sequences with ground truth 3D data, reported in Se&idnshow that adding a projection
step (Wanget al’s or ours) improves greatly the results obtained in thes a#fsmissing data

with respect to other methods. However, even better impnevis are achieved when using our

1The Stiefel manifold/, ,, may be viewed as the collection of ailx k matrices whose columns form
an orthonormal set. More precisely, the (real) Stiefel rfwdahiv, i, is the collection of all ordered sets of
k orthonormal vectors in Euclidean spak®.
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bilinear algorithm associated with the proposed metriggation instead of Wangt al’s [123
trilinear scheme and simpler projector.

In order to deal with missing data, our algorithm performsoater iterative loop in which, at
each step of the iteration, we run our non-rigid factorsatilgorithm and we use the new esti-
mates of the rotations, translations, basis shapes anficie to provide a new estimate of the
missing data. Our experimental tests shown in Se@iéreveal that dealing with incomplete
tracks using this outer loop allows to cope with much highencpntages of missing data than
the trilinear approached [ 2, 123 that only use the available data.

In summary, we see three substantial contributions in oprageh. First, in contrast to their
trilinear schemes, our optimisation scheme is bilineaeraating between the estimation of the
motion and the shape matrices. Secondly, our novel optimmgégtion step combines into a
single optimisation the computation of the camera matrigt Hre configuration weights that
give the closest motion matrix that lies on the non-rigidtion manifoldwith the additional
constraint that the camera matrix is guaranteed to havermotmal rowsie. its transpose lies
on the Stiefel manifold). Finally, our experiments revéwittdealing with missing data using an
iterative outer loop to re-estimate the missing entriegtlyémproves the results with missing
data.

The notion ofmotion manifoldshas been recently introduced in the case of rigid shapes by
Marques and Costeira/(]. Our work extends and generalises it to the case of defdemab
and articulated shapes. In particular, we impose that theeca matrix has orthonormal rows,
therefore its transpose lies on thg; Stiefel manifold?. This constraint results in a non-convex
problem which we were able to solve by a convex relaxatiomindase of deformable shape.
In the articulated case, we efficiently compute the jointeigithe non-linear constraints on the
motion of the two bodies. The result is an algorithm whererdo®vered motion matrices have

the exact orthogonality constraints imposed. One of thenmdvantages of our approach is that

2The Stiefel manifold/, ,, may be viewed as the collection of ailx k matrices whose columns form
an orthonormal set. More precisely, the (real) Stiefel riwdaiivy , is the collection of all ordered sets of
k orthonormal vectors in Euclidean spak®.
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it can be extended naturally to deal with missing data in adlaimnvay to [70].

As a final observation we should stress that, while most NR&Idrithms proposed to date
need to rely on the use of priors to solve for the 3D shape aaccéimera motiond, 111]
avoiding ambiguities, our new algorithms can obtain rééiawlutions without having to impose
priors such as smoothness on the camera motion or the ddfonsa

The contributions of this work have been publisheddi B6).

3.2 Factorisation for Structure from Motion

Consider the set of 2D image trajectories obtained whendh@glying on the surface of a 3D
object are viewed by a moving camera. Defining the non-homemes coordinates of a point
in framei as the vectow;; = (ujj vij) " we may write the measurement matithat gathers the

coordinates of all the points in all the views as:
W= L =1 (3.1)

wheref is the number of frames arfthe number of points.

The measurement matrix can be factorised into the produtwofiow-rank matrices a¥ =
Mot xr Srxp, WhereM ands correspond to the motion and shape subspaces respectivels.
result, the rank oW is constrained to be rafk} < r wherer < min{2f, p}. The rank of these
subspaces is dictated by the properties of the camera pasjeand the nature of the shape of
the object being observed (rigid, deformable, articulatgd.). This rank constraint forms the
basis of the factorisation method for the estimation of 3Dcttire and motion.

MatricesM ands can be expressed #s= [MI MfT} ! ands = [S; --- Sp] wherel is the 2x

r camera matrix that projects the 3D shape onto the image fiaamel S; encodes the 3D

coordinates of poinj.
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3.2.1 Rigid Shape

In the case of a rigid object viewed by an orthographic carifvee assume the measurements
in W are registered to the image centroid, the camera motionaest; and the 3D pointsS;
fia ri2 Tri3 T .
can be expressed as:= =R andS; = Xi Y z whereg, is a 2x 3
lia Tis Tie
matrix whose transpose lies on the Stiefel manifold (i.e x&23tiefel matrix), sinc&; contains

the first two rows of a rotation matrix (i.eBLiRiT = Iox2) @andS; is a 3-vector containing the
metric coordinates of the 3D point. Therefore the rank ofrtteasurement matrix is< 3. The

rigid motion manifoldcorresponds to the manifold of matrices with pairwise agthral rows.

3.2.2 Deformable Shape Model

In the case of deformable objects the observed 3D pointsgehas a function of time. In this
work we use the low-rank shape model defined in Bregteal [15] in which the 3D points
deform as a linear combination of a fixed setkaigid shape bases according to time varying
coefficients. In this wayg; = zgzllidBd where the matri; = [Si1, - - - Spp| is the 3D shape of the
object at frame, the 3x p matricesBq are the shape bases dpdare the coefficients (sometimes
called deformation weights). If we assume an orthograptogeption model the coordinates of

the 2D image points observed at each fraraee then given by:

W; =R (i IidBd> +Ti (3.2)
=1

where the matri®; is 2 x 3 with orthonormal rows, such tha{ is aStiefel matrixand the 2< p
matrix T; aligns the image coordinates to the image centroid. ThaialigmatrixT; is such that
Ti = tilg where the 2-vectot; is the 2D image centroid antl, a vector of ones. When the

image coordinates are registered to the centroid of thecbhjed we consider all the frames in



96 Chapter 3. Metric Projections for Deformable and ArticdtStructure-From-Motion
the sequence, we may write the measurement matrix as:

[11R1 ... [l1R1 By My B1
W= SV =1 . | =M8 (3.3)

[{1Rf ... Ry Bk Ms Bk

SinceM is a 2f x 3k matrix ands is a X x p matrix in the case of deformable structure the rank
of W is constrained to be at mosk.3The motion matrices now have the foMn= M1 ... M| =
[li1Ri ...likRi]. Therefore, in the deformabtaotion manifoldthe motion matrices have a distinct
repetitive structure and every<23 My, sub-block is composed of the transpose Stiafel matrix

multiplied by a scalar.

3.2.3 Articulated Shape Model

In the case of articulated structure, the relative motidribh® segments that form an articulated
body are dependent and this results in a drop in the dimealipiof the measurement matrix
W= [ WD ‘ W@ ] that contains the 2D image points of the two segments. In #ise of a
universal jointthe two shapes share a common translation (i.e. the distetegen the centres
of mass of the shapes is constant) while in the case lifige jointthe shapes also share a
common rotation axis![13, 133. Naturally, this approach requires that an initial segtaton
stage has taken place to assign the trajectori@gdrthe respective shapes for which a solution
was recently provided ini[33].

In auniversal joint[ 113 the distance between the centres of the two shapes is aomestrto be
constant (for instance, the head and the torso of a human) bodyvith independent rotation

components. At each frame the shapes connected by a jdsfi/sat
t L rWgl =2 L r@g@ (3.4)

wheret® andt(® are the 2D image centroid of the two objedts}) andR@ the 2x 3 ortho-
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graphic camera matrices adé) andd® the 3D displacement vectors of each shape from the
joint. The relation in equation3(4) gives the reduced dimensionality in the motion and shape

subspaces. Thus, the shape matroan be written as:

g(@ d®
S=1o0 g2 _g®@ (3.5)
1 1

wheres is a full rank-7 matrix. The motion for a framiehas to be accordingly arranged to
satisfy equation3.4) as:

D @) t_(l)} (3.6)

In the case of &inge joint if we assume the image coordinates to be registered to tiisoa
of each segment, then the motion matridethat lie on the articulatechotion manifoldcan be

written as:

M = |: Ui A; Bj :| (3.7)

whereu is the common rotation axis for both objects,andB; are 2x 2 matrices such that
{ Ui A; } and [ ui|B; } are the 2x 3 camera matrices (with orthonormal rows) associated with
the first and second shape respectively. The metric constiiaithe case of a hinge can therefore

be expressed as:

u’
[uj |A] =Iox2
A"
- - (3.8)
u’
[uj |Bj] =Iox2
B

where, without loss of generality, we have implicitly assdhthat the axis of rotation is aligned
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with the x-axis of the first object. Thus we can writ@s:

U RN
il v 0 0
S = 2(11) ZE;ll) 0o ... 0 (3.9
0 ... 0 y(lz) oy
R

where nows is a 5x p matrix andp = p1 + p2 (we assume the shapes have been registered to the
respective object centroids). Therefore, in the case ofigehjoint the rank of the measurement

matrix is at most 5.

3.3 Metric Upgrade

The classic approach in factorisation is to exploit the reokstraint to factorise the measure-
ment matrix into an initial affine solution with a motion mati and a shape matri& by
truncating the SVD ofi to the rankr specific to the problem. However, this factorisation is not
unique since any invertiblex r matrix Q can be inserted, leading to the alternative factorisation:
W= (MQ)(Q~1§). The problem is to find the transformation mat@ixhat removes the affine
ambiguity, upgrading the reconstruction to metric and tairsing the motion matrices to lie on
the appropriatenotion manifold

While in the rigid case the matrig can be explicitly computed linearly by imposing orthonor-
mality constraints on the rows of the motion matrix as showiidmasi and Kanadée. [L(], in the
non-rigid and articulated cases the metric constrainthiemtotion matrices are non-linear. Al-
though some closed-form solutions have been recently paap(see Xiao and Kanade, Hartley
and Vidal [L30, 128, 49)) these algorithms perform poorly in the presence of norsg@annot
cope with missing data. Iterative solutions provide a \@addternative in the presence of noise
and missing data and this procedure will be adopted in oypge®d algorithm. The factorisation

of W is solved by alternating least-squares where at each Stée(motionM®) and shaps®)
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matrices are optimised separately keeping the other oné, faseshown in Algorithm 1. This
strategy is not uncommon in optimisation problems for SfidgBuchanaet al. [17] for a re-
view). However it is important to note that, differently fnoprevious optimisation schemes, we
use a projection step which provides a solution that sagigfie metric constraints exactly. The
metric constraints consist of two parts: imposing the adiipéock structure to the motion matrix
and constraining the transpose of the orthographic camatdo®s to lie on the Stiefel mani-
fold. In our approach, we impose both constraints simutiasky projecting the motion matrix
optimally onto the appropriate motion manifold. As alreasticed by Marques and Costeira
[70] for the rigid case, these projections not only provide canmeatrices which exactly comply

with the projection model but also are generally robust tesing and degenerate data.

Algorithm 1 Iterative metric upgrade via alternation for deformabld articulated shape. At
each step of the iteration, the motion matrix estimated &&st squares is projected onto the
motion manifold.
Require: An initial estimatem(©).
Ensure: A factorisation ofiW that satisfies the given metric constraints.
1: Project each frame afV) onto themotion manifoldof the motion matrices (See Section
3.3.1for the deformable case and Sectidi.4for the articulated case).
2. Estimates® from the projectedt® as: s = u® 'y (where the symbol indicates the
Moore—Penrose pseudo-inverse.
3: EstimatemttD such thatmt+D) — ws®',
4. Repeat until convergence.

Crucially, Step 1 represents the real and novel contributibthis algorithm: an optimisation
method which computes the projection of the affine motion ponents onto thenotion mani-
fold in which the exact metric constraints are satisfied. Althotings problem is non-convex we
propose tight convex relaxations (in the sense that theatitas turned out to be exact in our
numerical simulations) that transform the problems intmisgefinite (SDP) or second-order
cone (SOCP) programs. Steps 2 and 3 alternate the estinsétidhands® assuming the other
one known.

Previous approaches have also used iterative methodsftompehe metric upgrade in the case
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of non-rigid structure including the trilinear alternajiteast-squares by Torresagtial. [117]
and by Wanget al. [123. However, even though Torresagtial's method imposes exact metric
constraints on the camera matrices by parametrisationjgbate of the camera matrix relies
on the assumption that the current estimate differs frormthe one only by small rotations.
Moreover, the recovery of camera matrices is not optimal.oun case we have an optimal
solution to the projection step, which re-estimates theezarmatrices and the coefficients to
obtain the closest matrix that satisfies the metric comggaiThe metric projection algorithm
can be visualised in Figuré.l. After each projection, the shape is recovered via lineastle
squares. Then we fix the shape to recover a new estimate of aienmmatrix. This new
estimate will not satisfy the metric constraints, hence & pgojection is needed. We iterate
until convergence as shown in Figusel. Also Wanget al. [123 adopt a trilinear approach
where the constraints on the orthographic camera matriceach frame are imposed using a
projection. Their projector is in fact equivalent to the afeveloped in parallel by Marques

and Costeira{(] for rigid shape in the scaled orthographic case. The ptiojeés computed

Affine Solution

Figure 3.1: Iterative scheme: at each step of the iteratinmotion matrix computed via least
squares is projected onto the motion manifold of metric trairgs. The process is iterated until
convergence

L. . o1 (M) + oo (M
as:M; — R = aUV' wherea is given by the mean of the two singular val ( ')er 2(4)
obtained from the SVD off; (i.e. M; = UDV'). In order to extend such procedure to non-rigid

shapes, we first need to define thetion manifoldfor the deformable and articulated cases and
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to provide the computational tools to project the motionnnas exactly from affine to metric

space.

While other works have chosen to use priors on the shape &iraimthe solution to the opti-
misation problem and obtain the metric upgraglel[l1, 36], in this work we provide a metric
upgrade step that solves an unconstrained least-squarglemrand optimally projects the so-
lution onto themotion manifold(i.e, computes the closest matrix in the motion manifolchwit
respect to the Frobenius norm). In such regard, we postiateeliable solutions to the NRSfM
problem can be obtained without the use of prior informatibout the motion of the object or
the smoothness of its deformations. In the case of artedlatructure, we solve globally for
both the motion components related to the bodies and thegaia with a similar procedure.
We now give details on how these projections are computedhantheoretical insights for the

motion manifoldof deformable and articulated shapes.

3.3.1 Metric Projection: Deformable Case

The projection is carried out on eactk3k sub-matrix; as defined in Sectiof.2and it corre-

sponds to solving the following minimisation problem atlefr@ame:

min ||M — [ligRi|... licRi] |2 (3.10)
Ri,|i1m|ik

with the added constraint that be a 2x 3 matrix with orthonormal rows (i.eRiRiT = Iox2).
This is equivalent to minimising separately all the 3 blocks ofV; giving:

k
min min ||Mid — ligRi H,Z: (3.11)
Ri oy lin- i

which is equivalent to:

k
min ; M |12 +13 [[Ri]|2 — 2lig TrMRi]. (3.12)
=1

Rili1...lik
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We can then reformulate the problem by computing the minirfitsthfor I4 (i.e. solving for the
zeros of the derivative of eq3(L2) givenR. This resolves in computing the minimum of the
quadratic function iy given by f(l4) = aI§ —2blyg+c. Such minimum is found ity = b/a
giving in our case that:

TrMiR] 1

= ZTrMRi]. (3.13)
R2 2

lig =

Putting this value back in eq3(12 and following with the simplification, the minimisationrca
be written as:
: k
ming 1" [~ 3 Miamg] i (3.14)
such that RiR{| = Ioy2

wherer; =vedR;" ) andmiq = veqM/;). Therefore, this quadratic minimisation problem presents
a non-convex constraint given By. In Appendix A we show that it is possible to derive an ef-
ficient convex relaxation of the of the constraint set. Tlasis defined only by linear matrix
inequalities (LMI). Therefore the optimisation problenaiSemi-Definite Program (SDP) which
can be solved using SeDuML(3. Further details, including a proof of the relaxation can b

found in [39].

The computedStiefel matrixg;’ is then used to recover the weighis obtaining a full non-
rigid motion matrix that satisfies the metric constraint$isTallows us to solve iteratively for
the motion and shape as described in AlgorithmThis optimal metric projection step is the
key to our reconstruction algorithm. In secti@m3.2we show a tight convex relaxation of
this problem that allows us to obtain the global optimum fitation and deformation weights.
The disadvantage of this approach is that the computatimraplexity of solving a quadratic
minimisation problem for each frame in the sequence is tayars. Each minimisation takes
about 2 seconds using SeDuMi toolbox (on a Athlon X2 progagsming at 26GHz), therefore

a sequence of 120 frames would take around 4 minutes to prodésle this computation time
is not unreasonable for a batch process, in Se@i8rBwe present a new algorithm based on a

Newton optimisation method on the Stiefel manifold to spepdhe computation by a factor of
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around 130. First we describe the initialisation to the misation.

Initialisation for the deformable case

Algorithm 1 requires an initial estimate of the motion mattxat each frame. This in turn
requires initial estimates for the camera matrikeand the configuration weight_g. The rigid
motion R; and the first basis shagy are initialised from a rank 3 rigid factorisation of the

measurement matrix. The second component of the shapeiba&stisnated from the residual

Wy =W—MS; (3.15)

A new rank 3 factorisation is performed oh and the new configuration weighks can be
estimated solving fok,R; = Mj» keeping the rotations fixed. This can be solved in a simple way

by taking advantage of the orthonormalityRof

VeC(Ri)hj = vec(Mij)

veqRi) "vedRi)lij = vedRi)'veqM;)
IR[Elj = vedR:)ved)
2lij = vedr) ved;)

This process is repeated to obtain lalleformation modes. The first rigid factorisation needs
full data to give a solution, so we use Marques and Costqiigid factorisation algorithm{0]

if missing data are present.

3.3.2 Convex relaxation

We have shown in the previous section that finding the optprgéction from the affine solution
to the manifold of metric solutions can be re-conduced toisglthe following minimisation

problem;

K
nlliin r’ [—glmidmL] ri (3.16)
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wherer; = vedR{" ) with RiR| = I, andmig = veqMJ,). This quadratic minimisation problem
presents non-convex constraints givenRpy Appendix A shows that it is possible to obtain a
tight convex relaxation which can be efficiently solved gsBeDuMi [LOZ]. Further details can
also be found in the technical report by Dodigal. [38]. The computed Stiefel matrig; is
then used to recover the weighis, obtaining a full non-rigid motion matrix that satisfies the
metric constraints. This allows us to solve iteratively floe motion and shape as described in

Algorithm 1.

3.3.3 Newton method on the Stiefel manifold

The approach described in the previous section will progid@ptimal projection onto theo-
tion manifoldof deformable structure. The first observation we made isttteamotion matrix
for one frame is not unrelated to the next one. For most comimage sequences the motion
of the camera is smooth, thus each motion matriwill not vary much from frame to frame.
Therefore, it is not unrealistic to assume that the camesa pbframe is a good initialisation
for an iterative algorithm which tries to compute the posthanext frameé+ 1. Thiswarm-start
strategy is not explicitly designed for standard solvers@mvex optimisation problemsi(D3]).
Instead, we have adopted a Newton-like iterative optirgatlgorithm based on the work of
Edelman, Arias and Smitl8f]. We can perform optimisation directly on the Stiefel matuf
which, for the case of smoothly varying camera poses, willveoge locally to the minimum.
Of course we lose the optimality of the convex relaxatioroatgm. However, empirically we
found that in all our experiments with ground truth data, lisence of noise, both algorithms
converged to the same minimum.

We now provide additional details on how to compute the Nevdiep update for thenotion
manifold of deforming shapes. To adhere to the notation3i#] fve define the problem as that
of minimising a functionF(Y), whereY is constrained to the set of matrices such thay =
Ijoxg i-€. itis aStiefel matrix In our metric projection method,is the[3 x 2] transpose of the

camera matrix. The current estimate of the Stiefel matriypdated using the geodesic formula
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foraunitsteg =1

Y(t) = YM(t) +QN(t) (3.17)
In order for the update to move along the geodesic[2he2] matriceq(t) andN(t) in 3.17are
given by the matrix exponential

M(t y'A —RT I
® = expt [2x2] (3.18)

Given the Newton directiol, matricesQ(z,.z andRp, 2 in 3.17 3.18are given by the compact

QR-decomposition ofI (g3 — YY')A.
A'is the[3 x 2] matrix defined by the equation
A = —Hessian}(Fy — YFy Y) (3.19)

WhereFy is a[3 x 2] matrix of first derivatives of the functioR with respect to the elements of
Y, and the Hessian is tH8 x 3] matrix of second derivatives of the cost functibmith respect

to the three degrees of freedom in the manifold.

We apply the iterative Newton method (more theoreticalgihts can be found in3p]) to the
cost function given by equatior3.(L4), using the solution to the previous frame as an initialisa-
tion. Evidently, the first frame has to be solved with the rasly proposed convex relaxation.
In our experiments this new solution provided a remarkapked-up, solving the whole fac-
torisation problem about 130 times faster than the origimethod, without losing optimality as
observed in the experimental trials. Notice that in thisedhg assumption that the camera pose
varies smoothly is just an initialisation strategy and ngftiar term in our minimisation. Our
smoothness assumption does not add an explicit penaltyttethe cost function to penalise

strong deformations or camera motions as other authors3do1{].
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3.3.4 Metric Projection: Articulated Case

Projection onto thenotion manifoldof the universal joint can be simply solved by performing
two separate rigid factorisations for each of the parts efdticulated object followed by an
estimation of the joint location as presented by TresadathReid [L13. The hinge joint is
far more interesting given the non-linear relations betwis® motion subspaces. The two ob-
jects cannot be reconstructed independently, for eacmséttion is subject to reconstruction
ambiguities arising from orthographic projection (chisaind average depth). The two objects
must be reconstructed jointly, in order to recover the hijog#. Is is shown in Yan and Polle-
feys results 131] that two rigid bodies coupled by a hinge joint will resulttimcking data of
lower dimensionality than two independent rigid bodiesthiis work we are going to adopt the
same formulation defined by Tresadern and Reéidf], who propose a factorisation approach.
We can apply our algorithm to solve the difficult problem oftritceupgrade. Instead of looking
for a linear solution, we can apply the metric projectiorgoathm to recover motion and shape
matrices. In the articulated case the projection probletn fsnd a matrix that satisfies the con-
straints given by a rotation axis. Following e§.€) the projection problem for the hingeotion

manifoldcan be written at each frame as the following minimisation:
minJ(u,A,B) = [|u—x|*+ |- Y|Z + |- Z|Z, (3.20)

subject to the constraints defined in e§.8(. Herex, Y andZ are obtained directly from the
affine motion matrix4; = [x|Y|z], recovered through SVD. Equatiof.20 can be reformulated

as the minimisation ad(u, A,B) only as a function of the common axissuch that:

lrJTJJ’r];J(u,A,B) = anJ(u). (3.22)
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This is possible as we will show that, once the optima$ estimated, it is straightforward to

obtainA andB in closed form. The equivalent cost functid(u) can be written as:
minJ(u) = muin{uu x|+ @ (u) + (pz(u)}. (3.22)

Thus now we will show how to transform the minimisation||af— YH,Z: into the minimisation of
@/ (u) (the same reasoning can be replicateddgg(u)). First, we use the polar decomposition
to change variables ds= PQ whereP = 0O (i.e. P is a semi-definite matrix) an@is orthogonal
(bothP andQ are 2x 2). Moreover, given the metric constraints in e®.§g, it follows that
P2=1I—uu'. Thus, the matrix —uu' must be positive definite, restricting the vectoto be

inside the unitary circle. Then, for a chosemve can writeg, (u) as:

- QE'%‘PI{H“—UUT)”ZHE+HYHE

—27Tr (YT <I — uuT)l/2 Q> } :

Minimising this cost function over the orthogonal matiequals to maximising the trace in the

previous expression.
Using the property:

Mmax {Tr (XQ)} = 01(X) + Go(X) + -+ + 0n(X) = Xl (3.23)

where||X||,, denotes thewuclear normof X (i.e. the sum of its singular values), we can write
that:

1/2
o (u) :2—\|u||2+\|Y||,2:—2H<I—uuT) Y (3.24)

N

The same reasoning can be replicated ¢gofu) giving the final optimisation problem to be
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solved as:
min —HuHZ—2uTx—2H(I—uuT)l/2YHN (3.25)

Jul| <1 —ZH(I—uuT)l/ZZHN

Once the optimal* is found we substitute back in order to recover the solutmmaf (and
similarly for B). First we obtainQ from the SVD ofY' (I —u*u*")¥2 — UDV' leading to

Q = VU'. The matrixP is simply given knowing thaP? = I —u*u*". This will result in
the matrix that exactly satisfies the metric structure ofrgéijoint. The optimisation of the
cost function in eq. .25 is not trivial since the cost function is non-convex and 4samooth.
However the domain in which the function resides is consgmi(i.e. the unitary circle) and the
value of eq. 8.25 for an arbitraryu can be computed efficiently without the need of calculating
the nuclear norm at each sample. The optimisation can bestiiead with a simple exhaustive
search algorithm in which the function sampling can be cdexgbin a small amount of time
(this was in fact the strategy used i#5]). The resulting brute-force algorithm is visualised in
figure 3.2, we can scatter a uniformly distributed grid of points in timitary circle, and evaluate
the cost function at each point. If a finer grid is requiredtttan be cast from the minimum
found in the coarse grid, as shown. We obtain good results this simple exhaustive search
minimisation, but in the following section we will propose&anvex relaxation that will find the

optimum in a much shorter time and with greater accuracy.

Convex relaxation for the articulated case

Although the cost function in equatior3.5 is non-convex, in Appendix B we propose an
efficient convex relaxation. Differently from the defornhalrase, the reformulation leads to
two cases. As shown in Appendix B, in one case the problemrbes@ semi-definite program
(SDP) and in the other a second order cone program (SOCP)bethich can be efficiently
solved with standard convex optimisation tool§§. In all of our numerical experiments we
found that the proposed convex relaxations were exacglbiyesolving indeed3.25. Compared

to the full search method we described in the previous sectiiis convex optimisation speeds
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Figure 3.2: Exhaustive search for minimising the cost fiamc8.25 A coarse grid of candidate
points is scattered on the unitary circle, and the procespsated on a smaller area around the
evaluated minimum.

up the computation by a factor of around ten. A second adgaritathat we avoid the problem
of the accuracy of the solution depending on the density efitterval grid in the parameter
space as in the full-search algorithm. The full details ef pnoposed convex relaxation can be

found in Appendix B.

Initialisation for the articulated case
We first consider the two bodies separately and then perfaigicafactorisation for each shape.
Given this factorisation, we can then obtain an initial elbform solution for the metric upgrade

in the case of a hinge using the linear method by TresaderiRarmt[113].

3.4 Reconstruction with Missing Data

Incomplete image tracks are a common occurrence in SfM taséisseveral algorithms have
been proposed in order to cope with the missing data problighirvthe factorisation framework
(see Buchanan and Fitzgibbon for a review]). Our new factorisation approach presented in
the previous section can be modified to account for missirigesninw. The strength of our

approach lies in the fact that tiheotion manifoldconstrains the estimated motion of the missing
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2D image points since we only allow trajectories that sgtilsé metric constraints exactly.
Instead of using only the known image tracks to solve for theera matrices, basis shapes
and deformation coefficients as the trilinear least-sqgiapproaches dd [ 2, 123, we opt for

an iterative scheme. At each step of the iteration we re-cenfhe missing entries in the
measurement matriX using the current estimates of the motion and shape mathet$ave
been projected onto the corretiotion manifold In our experimental validation, reported in
Section3.5, we have found that dealing with missing data using thetiteracheme described
here allows to deal with higher percentages of missing deta tising only the available data
as Wanget al. do in their RCPF approachi?d. The steps of this method are summarised in

Algorithm 2.

Algorithm 2 Metric Projections algorithm in the presence of missingdat

Require: An initial estimatew(©) of the missing data if.
Ensure: A factorisation ofw that satisfies the given metric constraints.
1: Remove the 2D centroid® from w®), i.e. #¥) = w® — ()
2. Factoriseil") = M®s®) using Algorithm1.
3: Estimate the missing data entriesiofisw( 1 = M®s® 4 T®
4. Repeat until convergence.

The algorithm requires an initial estimate of the missingies in the measurement matfix
For this purpose, we have used the rigid factorisation @lgarof [70] to obtain an initial rigid fit
of the missing entries. In the case of articulated struottg@apply the algorithm independently
to each of the bodies. The iterations are stopped when ttendig w2 — W ||¢ falls below
a user-defined threshold, that is, when the new estimate mmesiodify the previous values

much.

3.5 Experiments

First we show results for the recovery of deformable stmastéollowed by results for articu-
lated structure. We evaluate the performance of our algustquantitatively on various motion

capture sequences, for which ground truth was availabtewancompare our results with some
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Figure 3.3: Missing data tests on thacelMotion Capture sequence. Plots show the average 3D
error over 100 tests for increasing levels of randomly gatieer missing data. We compare the
results obtained with: Metric Projections (MP), EMPPCA rdle Adjustment (BA), Rotation
Constrained Powerfactorization (RCPF) and MP with a SirRptgector (MP-SP). The plots on
the left column show the average 3D errors in the noise-lass (top) and with added Gaussian
noise (bottom) ofo = 1%. The plots on the right show a zoomed-in version of theethuest
performing algorithms (MP, RCPF and MP-SP). The performasfdViP and MP-SP is similar
although MP outperforms MP-SP.

current state of the art NRSfM algorithm&1[l, 36, 123. In the case of the articulated Metric
Projections (MP) algorithm we evaluated against TresadethReid linear method.[L.3. No-

tice that we do not compare with Yan and Pollefeys’ approaéh][since their proposed method
does not perform a 3D metric reconstruction of the shapea@ntigxes — only the 2D projection
of the axes in the image is computed. Finally we demonstratealgorithms on real image

sequences. We have made our code and sequences availatbevidoad on our website

Shttp://www.dcs.gmul.ac.uk/ ~lourdes/code.html
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Figure 3.4: Noise test for tHeacelMotion Capture sequence in the cases of full data case (left)
and 30% missing data (right). We show 3D errors versus ptagerof added Gaussian noise.
In the full data case (left), EMPPCA performs marginallytbetvhile in the missing data case
(right) MP is the best performing algorithm.

3.5.1 Deformable Structure
Synthetic Experiments — Motion capture data

In our synthetic experiments we used two different 3D motiapture sequences, both showing
faces. The first sequencEacel was captured in our own laboratory using a VICON system
tracking a subject wearing 37 markers on the face. The 3Dtpuiare then projected syntheti-
cally onto an image sequence 74 frames long using an orthloigraamera model. The second
sequenceCMU face sequendéeis motion capture data made available by Torresaal. [111].
The subject wore 40 markers tracked by a motion capturersyatel the orthographic projec-
tion is performed by simply discarding the third coordinat@ach 3D point. Note that although
the projection of the ground truth 3D data on the images ishgfit the deformations are real-
istic since they come from real motion capture sequences.ZChimage data is therefore not
synthetic and it contains some noise due to the motion cajgistimation errors.

Our proposed Metric Projection algorithm (MP) is testedimgtavarious state of the art algo-
rithms: EMPPCA ] 11], which is currently perceived to be the state of the arébas algorithm
and for which code has been made available on-line; Rot&mrstrained Power Factorisation
(RCPF) [L2], which is the most closely related approach to our new MBritlgm since it also

performs a (rigid) projection of the camera matrices as veeirileed in Sectiol.1.1, and a Bun-

4http://www.cs.dartmouth.edu/ ~lorenzo/nrsfm.html
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dle Adjustment algorithm (BA) designed for NRSfNiq] where the orthonormality constraint

on the rotation matrices is imposed through parametrisatio

In the case of missing data we also report results with a naaiifersion of our Algorithm 2.
We are interested in assessing (in the case of missing degta)ain in performance achieved
by using our bilinear scheme followed by our new optimal megirojector instead of Wanet
al.’s trilinear scheme followed by their simpler projectortioé camera matrices onto the motion
manifold [1L23. In order to do this we have designed a new algorithm that aleMP-SP:
Metric Projection with Simple ProjectionThe idea is to use our outer loop to deal with the
missing data and substitute Step 2 in Algorit@rwith Wanget al’s RCPF algorithm. In this
way we can test an algorithm with the same initialisatior, $hme iterative outer loop to deal
with missing data but using Wareg al’s trilinear approach with the simpler projection step to
perform factorisation. Note that this new scheme (MP-SRptdNanget al’'s RCPF algorithm:
the missing data is dealt with in a different way. Effectiyadur Algorithm 2 (MP in the case
of missing data) and the new MP-SP have exactly the sameusteucThey only differ in the
factorisation algorithm used in Step 2: in the case of Aldponi 2 it is our MP algorithm for full

data (Algorithm 1) while in the case of MP-SP it is Wasigal's RCPF algorithm.

To test the performance of the algorithms we computed ther8@, evhich we defined as the
Frobenius norm of the difference between the recovered 2peshand the ground truth 3D
shapeSgt. The error is normalised against the Frobenius norm of thargt truth shapés —
Sctl|r/|ISeT||F- We subtract the centroid of each shape and align them wittréstes analysis.
In the noise tests zero mean additive Gaussian noise wag@pyth standard deviatioo =

n x s/100 where n is the noise percentage and s is defined a&imaxyixels.

Initialisation: EMPPCA was initialised with its own method supplied by thé¢haus in their
software [L11] (camera matrices and mean shape are computed using Tomdalsaaade rigid
factorisation [ 1] while deformation basis and coefficients are estimatealiin iterative PCA
of the shape residuals). The mean shape and camera matecesnitialised in an identical

way for BA, RCPF, MP and MP-SP using Marques and Costeirgid factorisation algorithm
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[70] to compute rigid shape and camera matrices. The deformhssis and coefficients in the
BA algorithm were initialised in the same way as EMPPCA. Wangl. [123 RCPF algorithm
only needs an initialisation for the non-rigid deformatimessis which were set to small random
values (as indicated by the authors ir?§]). Our MP algorithm initialisation only needs the
coefficients which were initialised through iterative PC#tloe residuals of the measurement
matrix W as explained in Sectio®.3.1 The outer iterative loop of MP and MP-SP algorithms
also require an initialisation of the missing data for whicé rigid factorisation by Marques and

Costeira [ 0] was used.

MP MP-SP
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Figure 3.5: Box-plots showing statistics on the distribos of the 3D reconstruction errors for
the "Facel” sequence in the case of no added noise.
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Missing data and noise tests

In Figure3.3we compare the performance of our new algorithm MP with EMRFRCPF, BA
and MP-SP for thé&acelsequence in the case of increasing levels of missing daggnigifrom
10% to 80%, generated by deleting entries from the measurtematrix randomly. For each
level of missing data we averaged the results of 100 runsn@ihe missing data mask. Tests
in which the 3D error was higher than 100% were considereduies and were not used to
compute the average. In all experiments the number of blaajges was fixed th= 5.

The top row of Figure3.3 shows the results in the noiseless case, while the bottonshows
the results in the more realistic case of 1% image noise. Tdéts m the left column show
the 3D error of all the algorithms (MP, EMPPCA, RCPF, BA and-&8P) while the plots on
the right column show a zoomed-in version for the algorittshewing the best performance
(MP, MP-SP and RCPF), which interestingly, enforce ortlmoradity constraints on the camera
matrices through projection. The left plots in the noiselésp) and 1% noise case (bottom)
show that EMPPCA and BA are the worse performing algorithm#e presence of missing
data. EMPPCA can cope with up to 20% missing data before tloe starts to grow steadily.
BA gives the highest 3D errors for low ratios of missing datadppears to show more resilience
to higher ratios of missing data than EMPPCA. However, i dlileaks down after 50% missing
data.

The plots in the right column of Figur@.3 show a zoomed-in view of the best performing
algorithms. Our new MP algorithm achieves the smallestaiv8D errors both in the noiseless
case (right-top) and more clearly in the 1% noise test (figiitom). RCPF 123 shows good
performance until levels of around 50% missing data but the®grow quickly after that. The
second best performing algorithm is MP-SP which uses owrdobp to deal with missing data
and RCPF internally to perform factorisation. Althoughperformance is comparable to MP,
the 3D error curve for MP lies below — for instance in the 1%seaiase (bottom-right)the 3D

reconstructions obtained with MP are on average around 18érikan with MP-SP.

It is worth discussing three interesting facts revealedheyresults of these tests for increasing
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Figure 3.6: Box-plots for the 1% noise test showing stasstin the distributions of the 3D
reconstruction errors for the "Facel” sequence.

levels of missing data. First, all top three performing algpons (MP, MP-SP and RCPF) include
a projection step of the camera matrices to deal with metnistaints. BA and EMPPCA, on

the other hand, impose the orthonormality constraintsutiingparametrisation (quaternions in
the case of BA and exponential map in the case of EMPPCA).rgonhile RCPF, MP-SP

and MP show very similar performance for missing data ratiogp to 50%, for higher ratios

MP-SP and MP greatly outperform RCPF. The only differendsvéen MP-SP and RCPF is
the way in which they deal with missing data: RCPF uses orgykimown 2D image tracks

while MP-SP uses an outer loop to re-estimate the missing atatach step of the iteration.
Note that they were both initialised in the same way as MPaliinthe performance of MP

is about 1% better than MP-SP. However, MP-SP runs around faSéér (see Figur8.8 for

algorithm run-times). Therefore if run-time is an issue MP-could be used instead of MP
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AL

Figure 3.7: Structured missing data mask used for the exjeti described in SectioB5.1
Each column is a point track, points in black are marked ableispoints in white are marked
as occluded.
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Figure 3.8: Comparison of run-times (in seconds) averaged D00 tests, versus percentage
of missing data. Tests were performed using a 4-core Xearepsor running at 2.8GHz, with
24GB of RAM.

without compromising performance too much but of courserowgd results would be achieved
with MP.

In Figure 3.4 we show comparative noise tests for EMPPCA, BA, RCPF and MiRercase
of full data (left) and 30% missing data (right). We show tesior noise levels of up to 4%
meaning that the value of the varianges up to 4% of the size of the object in the image. It
is clear that BA, is the most vulnerable algorithm to nois¢hm image coordinates. Note also
that EMPPCA, RCPF and MP perform very similarly with EMPPG&fprming slightly better

in the full data case and MP in the 30% missing data case. Hu#severe averaged over 100

runs.
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To show more details on the distribution of 3D errors in threutes, Figure3.5reports box-plots
of the errors for all the trials performed in the case of 0%saoin the noiseless case, the only
difference between trials is the missing data visibilitytrixa(randomly generated). In Figure
3.6 we show box-plots of the errors in the 1% noise case. OverallMP method was the one

that obtained the most robust statistics.

Figure3.9shows front and side views of the 3D reconstruction resalt®fe of the runs of the
Facelsequence with no noise and 40% missing data. The top row sbome frames of the
motion capture session (which do not correspond to the etiaaried ones below), the second,
third and fourth rows show ground truth values and 3D recansbn results obtained with our
method MP, EM-PPCA and RCPF respectively. Our reconstmds closer to the ground truth
shape. The average 3D reconstruction error over all theefsasfithis sequence wasr%o with

MP, 131% with EMPPCA and 9% with RCPF.

Figure3.10compares ground truth with the results obtained with MP, PX@R and RCPF for
the CMU face sequence with full data and with 30% missing data. Infuliedata case all
algorithms perform similarly. However, in the missing desse, our algorithm recovers the 3D
shape correctly and outperforms Torresanal’s. The 3D errors against ground truth motion
capture data were the same for RCPF and MP (2%), both for &t#l eénd 30% missing data,
while for EMPPCA the 3D error is low (8%) in the full data case, but very high (35%) in the

missing data case.

Figure 3.8 shows the mean run-times expressed in seconds, for theimgnérin Figure3.3,

for EMPPCA, BA, RCPF and MP for different ratios of missingalaTests were performed
using a 4-core Xeon processor running at 2.8GHz, with 24GBRARM. All implementations
are in MATLAB. The fastest algorithms are BA and EMPPCA. Huesthe code for BA and
EMPPCA provided by the authors contains some parts of optichMEX code. At the expense
of losing some accuracy, as we saw in FigBré MP-SP runs around 30% faster than MP since
the projection step is much more simple. Note that RCPF regjai large number of iterations in

order to achieve convergence after 30% missing data. Tdrerefdding the outer loop to RCPF
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to deal with missing data as we did in MP-SP improves the agevee in this case.

Each of the tested approaches uses its own custom initiatiseor the optimisation routines.
This difference is dictated by the fact that each methodssthe iterations from a different
parameter set. While all algorithms require an initial restie for the camera matrices and the
mean rigid shape, for instance, our MP requires an initiinede of the motion matrix,
BA and EMPPCA need a first guess of the basis shapes and défammgights while RCPF
requires an initial estimate of basis shapes. Since ed@dligation is inherited from the specific
structure of the method, evaluating each approach withtlgxtiee same initialisation is not
feasible. However, we have attempted to make the initiéisa as uniform as possible by using
Marques and Costeira [], which fills in the missing entries in the data matrix, tatiglise the
mean shape and camera projection matrices in the case of MBn& RCPF. Note that only
our algorithm, MP, uses the missing entries explicitly ia tuter loop proposed in Algorithi)

while BA and RCPF only use the known data in the estimation.

Synthetic Experiments — Structured occlusions

While it is important to conduct experiments with randomgngrated missing data to control
its percentage in the simulation, we also performed a tdbtawnissing data mask where points
are occluded in a structured way, as it would happen foriestalue to self-occlusions.

In order to generate a more realistic missing data pattetmawe computed surface normals from
the sparse 3D motion capture data using tgiut algorithn?. The computed angles between
surface normal and camera viewing direction for all framesetbeen thresholded at 60 degrees,
marking large angles as occluded. Although the knowledgeid&ce normals allows to simulate
self-occlusions, the strong sparseness of the measunets ploies not permit to simulate realistic
self-occlusions. However, the resulting occlusion pattsrstructured and not random as in the
previous tests. The resulting occlusion mask is shown inr€i§.7 — the amount of missing
data resulting from this computation was 32%. The resulasdility matrix captures well the

structured disappearance of image features. We then ralBukigorithm 2 on the input 2D

Shttp://jmfavreau.info/?g=en/taglut
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Images from MOCAP session

—E— Ground Truth

—e— Reconstruction

® Missing Data

Frame 10 Frame 45 Frame 70

Figure 3.9: 3D reconstruction results for a single run ofttreFacelmotion capture sequence
with 40% missing data. Missing points are highlighted in.r@dp row: Some frames of the
original motion capture take (the images do not corresporttig reconstructed frames shown
below). Second, third and fourth rows: side and front vieassdome frames of the 3D re-
construction for our Metric Projection method, Torresanial’'s EM-PPCA and Rotation Con-
strained Power Factorisation. We show ground truth (gréetes) and reconstructed points
(blue dots if visible red if not). The wire-frame lines ardyshown for visualisation purposes.

data, obtaining a 3D reconstruction error of%. A visual comparison of the reconstructed
3D against ground truth motion capture data is given in FEguitland Figure3.12 We also
compare this result with other techniques, and show that Mipesforms other methods in
this case. In particular, EMPPCA.11] obtains 86% 3D reconstruction error, and Waieg
al’s RCPF [L2] achieves 8% error. This test shows that the advantage of metric piojec
remains even when the occluded points are not selectedmayduut in the more realistic case

of structured occlusions.
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Real Sequences
Cushion Sequence

In our first experiment we tested our algorithm on an imagaisece of a cushion bending
and stretching, in which 90 points were tracked manually.e Tésults are shown in Figure
3.13 Our algorithm reconstructs successfully the 3D pointdland its deformations. We used
this data to generate a texture-mapped view of the recansttwbject. We also performed
a guantitative evaluation by comparing the 3D reconstoactibtained with full data to those
obtained with different percentages of missing data — geadrby deleting randomly entries
on the measurement matrix. The difference (computed inaheesvay as we compute the 3D
error) between the 3D shape reconstructed with full datathedshapes obtained with 10%,
20% and 30% missing data are8%, 57% and 59% respectively . We also measured the
average image reprojection error which wak Pixels with full data, and 1, 12 and 14 pixels
for the 10%,20% and 30% missing data cases respectively.igurd=3.14 we show the 3D

reconstruction results on the cushion sequence with 10%imgislata generated randomly.

Franck Sequence

We also used the Franck sequéhtaken from a video of a person engaged in conversation. We
selected 700 frames from the 5000 frame sequence. An Acpypeé&rance Model (AAM) was
used to track 68 features on the face. FigBre5 shows three frames of the original images
and a view of the resulting 3D reconstruction in the casesoofpiete 2D data (second row)
and 20% missing data (third row). We also show the 3D recoatstn achieved with EMPPCA
for the full data case as a baseline (fourth row). Howeverceuld not show the results for
EMPPCA for 20% missing data since already for that value etiners were too high and the
reconstruction was meaningless. The last two rows (fifth sixith) show the results achieved
with the RCPF algorithm in the cases of full data and 20% mgssiata. The number of basis
shapes was chosen to be 6 in this experiment. Our algoritlpaaap to achieve the best 3D

reconstructions in this real sequence with and without imgsdata.

Swww-prima.inrialpes.fr/FGnet/data/01-TalkingFachiag _face.html



122 Chapter 3. Metric Projections for Deformable and ArticuddtStructure-From-Motion

Input 2D Data
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Figure 3.10: 3D reconstruction results for the “CMU” facetion capture sequence. First
row: input 2D data. Second and third rows: full data resitsiric Projection and EM-PPCA.
Reconstruction (blue dots) are compared with ground trath (hreen circles). Fourth, fifth and
sixth rows: Results for 30% missing data (highlighted inred
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Input 2D Data

@

3D reconstruction with our method, side view
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3D reconstruction using RCPF, front view486 3D error
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Figure 3.11: 3D reconstruction results obtained forfaeelmotion capture sequence with the
structured missing data mask shown in Figdiré Top row: 2D input data. Comparison between
our MP algorithm (second and third rows) against RCPF (foartd fifth rows). Ground truth
shown in green, missing data points highlighted with a redei
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Input 2D Data
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Figure 3.12: 3D reconstruction results obtained for aeel motion capture sequence with
the structured missing data mask shown in Fighie Comparison between Metric Projection
(second and third rows) and EMPPCA (fourth and fifth rows).o®d truth 3D data points
shown in green, red dots highlight missing data.
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Input 2D Data

3D reconstruction, Front View

3D reconstruction, Side View
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Figure 3.13: 3D reconstruction results for the “cushioradl sequence. We show texture-mapped
3D reconstructions and use them to generate a virtual vietveobbject in 3D. First row: Input
images and tracking data. Second and third rows: 3D reaattn results with the proposed
method. Fourth row: reprojection of reconstructed poiotegses) together with 2D input data
(circles). Bottom rows: Texture-mapping rendered viewhef 8D reconstruction.
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2D data and reprojections, 10% missing data
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Figure 3.14: Reconstruction results on the “cushion” regjugnce with 10% missing data.
Points were marked as not visible randomly. First row: InpDttracks (green circles) and
reprojections calculated with our method (blue crosses$sivig 2D points (not used for recon-
struction) are shown as red circles. Second and Third rol@se8onstruction with our method.
Fourth and Fifth: 3D reconstruction using EMPPCA. note #fi@iough the frontal view matches
the input data, the reconstruction suffers from bad depgtmaton, visible in the side view.
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Figure 3.15: First row shows frames 200, 400 and 500 of thedkraequence. We show front
and side views of the 3D reconstructions in the case of fud dad 20% missing data in the input
tracks (randomly generated) achieved with our MP algorifsecond and third rows) EMPPCA
(fourth row) and RCPF (fifth and sixth rows). Note that we da sleow the reconstruction
obtained for EMPPCA with missing data as it was of very poaaligyy Missing points not
visible in the corresponding frame are highlighted with écicle.
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Figure 3.16: Quantitative results on the synthetic aréied sequence. Top: Error on relative
rotation angle between the two boxes in the synthetic ewymri compared with Tresadern and
Reid’s linear approach. Bottom: 3D error of recovered stng In both cases the Metric

Projection method results more robust to noise and can eecotation angles reliably.

3.5.2 Articulated Structure

Synthetic sequence

In the articulated case our synthetic data simulated two @&$ coupled by a hinge joint. The
3D ground truth is projected on the input images via orthplgi@ projection. The sequence
contained global rotation and translation as well opening elosing of the hinge. Each box
contains 231 points, and the sequence is 63 frames long. M tehe algorithm in the case
of full data for noise levels ranging from 0% to 4%. FiguBel6 shows the absolute error
in the recovered relative angle between the two boxes (gedraver all frames) and the 3D
error of recovered 3D structure. The plots in Fig@r&6show comparative results between the
performance of 113 (TR) and our new approach (MP). Slightly superior resuits @achieved

with our algorithm.

Real Sequence

We tested our algorithm on a sequence of 815 frames of twosblixieed by a hinge joint.
The number of tracked points on the upper box was 21 and 47elower box. Figure3.17
shows two frames of the image sequence showing the trackets pmd the recovered joint axis
projected onto the images. The 3D reconstruction of thewdatied structure together with the
common hinge axis is also shown in Figurd 7. In this case there was no missing data.

Finally we show results using a motion capture sequence @frsop kicking a football. The
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Figure 3.17: Three images from the articulated sequence. bldck line represents the hinge
location computed with the linear algorithm by Tresaderd Beid, while the red line is the
solution given by our method. The last figure shows the final&@nstruction and axis obtained
using our approach. Images and tracking data kindly pravitiePhil Tresadern.

motion capture system tracked 333 markers on the whole bayselected the tracks on the
leg, and projected the 3D coordinates on 2D images via ordpbdc projection. The viewing
direction of the synthetic camera starts at the back of theated performs a random rotation
around the body, resulting in the image sequence used fonseciction. Some frames can
be seen in Figur&.19 first row. From the 2D images we can recover the rotation akibe
joint, and the 3D structure of the leg, as shown in Figaidd The reconstructed 3D points and
axis have been aligned to the MOCAP data to show the full babep Two close-up of the
reconstruction and axis are shown. In Fig@r&8we also show a comparison of the recovered
rotation angle between our method and the linear method bgatiern and Reid.13. We
can see that although this sequence does not have groundhfiarimation on the joint angle in
the knee, we recover a smooth movement (purely from the dattagut imposing smoothness

constraints) while the linear solution obtains similaruesd with some discontinuities.
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Figure 3.18: Recovered rotation angle between two objewe koint in the “football” sequence.
Although this sequence does not have ground truth infoomath the joint angle in the knee, we
recover a smooth movement (purely from the data, withoutosig smoothness constraints)
while the linear solution obtains similar values with sonsedntinuities

3.6 Summary and discussion

We have described a new bilinear alternating approach iassdavith a globally optimal pro-
jection step onto the manifold of metric constraints. Atrestep of the minimisation we project
the motion matrices onto the correct deformable or arttedlanetricmotion manifoldgespec-
tively. Although the constraints result in non-convex peols we introduced efficient convex
relaxations in the form of semi-definite (SDP) or seconceormbne (SOCP) programs. These

relaxations revealed themselves to be exact in all our nigalexperiments.

We have carried out experiments to compare the performahoeronew Metric Projection
algorithm with competing NRSfM methods. These have revktiat there are two main factors
that make our Metric Projection (MP) algorithm more robuwsirtissing data. The first strength
is in the projector. It was first observed by Marques and Qms{&(], in the case of rigid
SFM, that projecting the rotation matrices onto the Stiefahifold allowed to cope with high

percentages of missing data and degeneracies. Our expggimesults show that, in the non-
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rigid case, the two algorithms that project the orthogreptémera matrices onto the Stiefel
manifold: our own MP and the simpler rotation constrained/gdactorization (RCPF)123
can cope with higher levels of missing data tracks than the dther baseline methods that
do not (EMPPCA {17 and Bundle Adjustment36]). However, MP consistently outperforms
RCPF [L23 for percentages of missing data above 50%.

This is due to the second strength of our MP algorithm: it $iameously estimates the unknown
entries of the measurement matiixgiven the current estimates of the model parameters,withi
an iterative outer loop. Differently, RCPF, BA and EMPPCAireate the model parameters
using only the known data. This can have a negative effecthemtinimisation when few
data are known. We also observed that, when included withiroater iterative loop to deal
with missing data, the simple projector used by Wan@l [123 improved its performance
significantly for percentages of missing data higher the# 50

To conclude, imposing the metric constraints on the moti@trices provides reliable results
without the need to impose additional smoothness priore@camera pose or the deformations
as most other NRSfM approaches to avoid ambiguous solutitmshe articulated case, we
efficiently compute the joints given the non-linear conigstsaon the motion of the two bodies.
In general, even though our methods were designed to saW@®blems, thenotion manifolds
and the related optimal projections could be used for diffetasks such as registration (where
the shapes is known), image point matching and motion segmentation.

The methods described in this chapter, and the experimesgalts obtained, demonstrated
that the manifold constraints are the heart of the non-rsgidcture from motion problem. We
proposed a unified formulation, to address rigid, deformabhd articulated structures, within
the same estimation framework. This idea can be extendesle @ae going to describe in the
next chapter, the manifold constraints are a powerful toai tan be exploited in a wide variety
of problems. The next chapter will deal with a general framwto solve bilinear problems

with manifold constraints in computer vision, and in othetds.
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Figure 3.19: Recovery of the knee joint in the “football” seqce. Top row: Input image points.
Second row: 3D Reconstruction of the leg (magenta and cyts) dod axis of rotation shown

with the 3D ground truth motion capture sequence (greemesixc Third row: Reconstructed
3D points (dots) with ground truth MOCAP data (green circl€®urth row: 3D reconstruction

imaged from a different angle.
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Chapter 4

Bilinear modelling via Augmented Lagrange

Multipliers (BALM)

Our metric projection work has shown how a unified approactiefmrmable and articulated
object reconstruction via bilinear alternation is possiby considering the projection onto the
manifold of acceptable solutions defined by the problems. atMfbllows is a more general
solution that deals robustly with missing data and defipitidcouples the problem of bilinear
estimation from the projection, hence opening the road famiied framework for the solution

of a wide range of computer vision problems.

This chapter presents a unified approach to solve bilinetmrigation problems in the presence
of missing data in the measurements. Bilinear problemsa@ramon in computer vision. Rigid,
articulated and deformable structure from motion all shiiseformulation. The difference is in
the constraints that must be satisfied by one of the factorse-manifold on which the solution
lies. Thus, intuitively, it should be possible to constractinified optimisation framework in
which a change of the manifold constraint just implies reipla an inner module of the algo-

rithm (as opposed to an overall redesign of the optimisatiethod from scratch). The proposed
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solution is a constrained optimisation method where oné@ffactors is constrained to lie on
a specific manifold. To achieve this, we introduce an egeivateformulation of the bilinear
factorisation problem. This reformulation decouples tbheedilinear aspect from the manifold
specificity. We then tackle the resulting constrained ojst@tion problem with the method of
Augmented Lagrange Multipliers (ALM). One advantage o$ thigorithm is that only a projec-
tor onto the manifold constraint is needed. That is the gtreand the novelty of this approach:
this framework can handle seamlessly different computgpriproblems. What will differ in

each case is the projector of the solution onto the correcifold. If the manifold projector

exists, the factorisation problem can be formulated usimgumified approach. Since in the
previous chapter we have proposed projectors for both tferdable and articulated motion
manifolds we use them here to solve the non-rigid and adiedl SfM problems within this

Augmented Lagrange Multipliers (ALM) framework.

4.1 Introduction

Several computer vision problems are naturally formula®®ilinear problems since often ob-
servations are influenced by two independent factors wheeh ean be described by a linear
model. For example in photometric stered][the shape of the object and the light source di-
rection interact bi-linearly to influence the image intéysin rigid structure from motionI[10]
the 3D shape of the object is pre-multiplied by the camerairtat determine its image coordi-
nates. In structure from sound the time arrival of a sounditeslepends both on the direction of
the sound propagation and the position of the microphoh@d.[In facial tracking the problem
of separating head pose and facial expression can also Inedefs a bilinear problen?]. In
non-rigid structure from motionlf] the 2D coordinates of features arise from a bilinear retati
between the camera matrix and the time varying shape. Adkthee common bilinear problems,
where the goal is the simultaneous estimation of two factors

In our experiments we show that we are able to deal with higbgmages of missing data which

has the practical implication that our approach can be usedhata coming from real, not just
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controlled, scenarios. We illustrate our unified approaghapplying it to the computer vision

problems addressed in this thesis: rigid, articulated amdrigid structure from motion.

4.2 Related Work

Bilinear models appear frequently in Computer Vision. Heereit is in the area of Structure
from Motion (SfM) that most of the efforts dedicated to soilies problem have come from. We
focus on describing what we believe are the two most impbttaeads of research to solve the
problem of low-rank matrix factorisation in the case of rnmigsdata.

One line of research that dominates the literature inclaggsoaches that perform alternation
of closed-form solutions to solve for the two factors of thatrix. The first of these approaches
to solve the problem of missing data was proposed by WibEstg][ Since then many different
solutions have been put forward. Buchanan and FitzgibhGhgdrovide a comprehensive re-
view of these methods while proposing their own alternagipproach. Their Damped Newton
algorithm provides faster and more accurate solutions skemdard alternation approaches. The
common property of all these methods is that they only sdieddw-rank matrix factorisation
problem without imposing manifold constraints. The coaistis are applied afterwards, once
the low-rank matrix has been estimated. Crucially, the taimgs are not imposed during the
minimisation.

On the other hand, a relatively recent set of algorithms latempted to solve the problem
by including explicitly the non-linear constraints given the specific problem structure in the
low-rank minimisation. Marques and Costeird)] introduced the concept ahotion manifold
in rigid SfM to obtain motion matrices that exactly satishetcamera constraints. Similarly,
Paladiniet al. [85] propose an alternation algorithm associated with an agtpnojector onto
the motion manifoldof non-rigid shapes. The practical implication of theiraithm is that it
can deal with very high percentages of missing data. Shagl. [10(] also propose to solve
a non-linear optimisation problem directly on the producanifold of the Special Euclidean

Group claiming better results than/ in a rigid real sequence.
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However, all these approaches are tailored to specific @nudl Therefore, for different mani-
fold constraints an overall redesign of the optimisatiorttrod would be needed. The purpose of
this work is to present a generic approach that is not problependent. In similar spirit, Chan-
draker and Kriegmanl[P] have proposed a globally optimal bilinear fitting appro&mhgeneral
Computer Vision problems. The key contribution of theireggzh is that they can prove conver-
gence to a global minimiser using a branch and bound apprétmhiever, the main drawback is
that the scenarios to which their method can be applied ateated to simple bilinear problems
where the number of variables in one of the sets must be veall fior instance just 9 variables
in one of their examples). Although their method is veryiiegting from a theoretical point of
view, it only provides practical solutions for problems i very small number of variables.
This Bilinear factorisation via Augmented Lagrange Muigps (BALM) is designed to deal
with large-scale optimisation problems with the inclusadmon-linear constraints. This is not
the first approach to adopt the Augmented Lagrangian Migtpl(ALM) framework in the
Computer Vision or related contexts. In perspective 3D metroction p9 ALM was used to
enforce constraints on the perspective depthsc3hALM is successfully employed as a single

matrix imputation algorithm which can deal with large sgateblems.

4.3 Problem statement

We denote byr € R™™M the measurement matrix. In this work, we consider the géoasz of
missing data. We let the finite sé€t := {(i, ]) : Yjj is observed enumerate the indices of the
entries ofY which are available. The bilinear factorisation problemasderess is the following

constrained optimisation problem:

. . . 2
minimise i o (Yij —§' M) (1)

subjectto Mje M, i=1,...,f,

wheres' denotes théth row of the matrixSe R"™*" andm; denotes thgth column of the matrix
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M=|M; -~ M --- M| €R™™ M € R™*P. Note that we are using a dummy variable
twice in (4.1): in the cost function (i.e.(i, j) € O) and in the constraints (to enumerate the

sub-matrice$; of M).

The variables in4.1) are (S,M). In the structure-from-motion problenf, is the number of
frames. We consider a generic bilinear problem in which eathblock of thel matrix has to
satisfy the manifold constraints. In the structure fromimroproblem,s will be the 3D structure
andM the camera matrices, in photometric stege@ould be the lighting parameters ardhe

surface normals and albedo.

In words, problem4.1) consists in finding the best ramKkactorisation ofy, given the available
entries enumerated [ and subject to the manifold constraintsirMore precisely, each sub-
matrix M; € R"*P must belong to the manifold1 C R"*P. Our aim in this work is to construct
an algorithm to solve problen# (1) which takes advantage of the projection o6, That is,

we assume that, for a giveine R"*P, it is known how to solve the projection problem on'td

minimise |[A—X|? , (4.2)

subjectto X € M

where||X|| denotes the Frobenius normXf In the rest of the chapter we will denopa((4) a

solution of @.2). The role of the projector can be visualised in Figdre

Problem reformulation. Let us define a new set of variables= {Z;; : (i, j) ¢ O}. Those can
be used to represent the non-observed entri&s bfe can introduce these variables4nlj and

obtain the following equivalent optimisation problem

minimise ||Y(z) — sM|| (4.3)

subjectto Mje M, i=1,...,f,
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Figure 4.1: A visual representation of the manifold prajectThe manifold constraints are
assigned to th#; variables, which can be computed as the manifold projeaifan onto the
manifold of the problem constraints.

where the(i, j) entry of the matrixy(z) is defined as

Yij , if (i,j) cO

Y i = .
e zij L if(i,)) g0

In words, Y(2) is the input dat& with a filling of the missing entries given k% Note that
the variables to optimise iM(3 are (z,S,M). Problem §.3) is equivalent to 4.1) because
once we fix(S,M) in (4.3) and minimise over we fall back into ¢.1). Finally, we add a
new set of variable to deal with the manifold constraints. #\meM into a new variable
N=|N; -~ Nj --- N¢| €R™™ N € R™P and transfer the manifold constraint to the
latter. By doing so, we roughly separate the bilinear egtonarom the manifold constraints.

Thus our reformulation becomes:

minimise  ||Y(z) — sM||? (4.4)
subjectto M =N;, i=1,...,f
NeM, i=1..., 1

With this formulation the variables to estimate #h4) are(z S,M,N).
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4.4 The BALM algorithm

The main difficulty in the constrained optimisation probléi) are the equality constraimg =
Ni. We propose to handle them through an augmented Lagranp@oach, see“¢, 11] for
details on this optimisation technique. In our context,abgmented Lagrangian corresponding

to (4.4) is given by

Lo(2S,M,N;R) = |[¥(2) — sM]* -

f (4.5)

g f 2
> (R4 —10) +5 5 =
i= ==
whereo > 0 is the weight of the penalty term and matkix= |:R-1 Rf] contains the La-
grange multiplier;, i = 1,..., f. The optimisation problem4(4) can then be tackled by our
Bilinear factorisation via Augmented Lagrange MultipilBALM) algorithm detailed in Al-

gorithm 3.

Clearly, solving the inner problemt(©) at each iteration of the BALM method is the main
computational step. Note that id.6) the optimisation variable i&z, s,M,N) (¢ andr® are
constants). To tackle4(6) we propose an iterative Gauss-Seidel scheme which isidedcr
in Algorithm 4. We now show that each of the sub-problemis/), (4.8) and @.9) inside the

Gauss-Seidel scheme are easily solvable.

4.4.1 Solving for the manifold constraints

Problem §.7) requires a minimisation ove¥, € M, i =1,..., f, the remaining variables be-
ing constant. Thus, by usingt.f) and dropping the constant terms, problef7 becomes
equivalent to

N+ = argmin Zif:lHNi - <Mi“] - ﬁRfk)) HZ : (4.10)

subjectto Nje M, i=1..., f
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Algorithm 3 Bilinear factorisation via Augmented Lagrange Multipi§BALM)
1: setk =0 andé&pest = +00
2: initialise 0@, RO, y>1and0<n <1
3: initialise 29, (@ andm(©@

4: repeat

5

solve

(Z(k—&-l)’S(k-&-l) m(k+D) N(k+1)> _

) )

= argmin L,k (zS,M,N;RW) 9

subjectto Nje M, i=1,...,f,

using the iterative Gauss-Seidel scheme describédgorithm 4

6: computeg = ||MKk+L) — (kD H2
7: if €< N €Epest
8- rHD) — g _ 5K (M(k+l) _ N(k—s—l))
9 gkt1) — gk
10: Ebest = €
10: else
10: R =g
11: okt — ygk
12: endif
13: updatek < k+1

14: until some stopping criterion

That is, problem4.7) decouples intdf projections onto the manifold of constraintd. More

precisely, if we partition

Wi+ [Ngw B I N{;HJ] e RPM
with  n'™ € R™P, The solution of 4.7) is given by
e By SO R P (4.11)
i M i oK s R I .

We recall thatp,, stands for the projector ont®1, see 4.2), which we assume is available.
This is the only part of the algorithm where the constraininifedd M plays a role. Thus,

replacing. M amounts to replace the projectpf,. This is the modularity which is key to the
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Algorithm 4 Iterative Gauss Seidel scheme to solve b)Y
1: setl =0 and choose a1«
2: Setz[o] = z(k), s[o] — S(k) andM[o} = M(k)

3: repeat
4: solve
N[I+1] _
= argmin Ly (2",sl,ull,m;r0) (4.7)
subjectto Nje M, i=1,...,f,
5: solve
(s““],M““]) _
(4.8)
= argmin Ly (2',s,M,n0+1;R0)
6: solve
Z[I+1] _ 9
— argmin Ly (280,102 nl+1;R00) (4.9)
7 updatd + 1 +1
8: until | = Lax

9: sets(ktl) — gltmad k1) — Mlbmax] gndN(tD) = ylbma]

application of this method to many different bilinear preinlis.

4.4.2 Solving for the bilinear factorisation

Solving @.8) corresponds to solving

minimise ¢ (21) — s+ 5 51, | — (51 +

Ik

Ql~

The solution to this factorisation problem can be found isg\2 least-squares problems, first
overM (fixed 8) and then oveg (fixed M). An alternative efficient solution ta}(8) was proposed
in [37] based on re-parametrisation tMematrix as the product of an invertible and a Stiefel

matrix. The solution is then obtained via eigenvalue deausitjpn.
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4.4.3 Solving for the missing data

Atfter solving fornl+% and (s!'+1, 1), problem ¢.9) updates the missing data. The solution

of (4.9 is trivial: we just have to takzi[}”] as the(i, j)th entry ofs! !+ for all (i, j) ¢ O.

4.4.4 Initialisation

Regarding the initialisation of the BALM algorithm, we used® = 1, R® =0, y =5 and

n = 1/2 in all our computer experiments. With respectfd, (% andM(®, we feel that there
is no universally good method, that is, the structure\défmust taken into account. We discuss
the initialisation(z%, s, M) for non-rigid and articulated SfM in the experimental sectbf
this chapter.

Algorithm convergence. At best, the BALM algorithm can produce a local minimiser (érl).
That is, we do not claim that BALM (algorithi®) converges to a global minimiser. In fact, even
the non-linear Gauss-Seidel technique (algoridnis not guaranteed to globally solvé.().
This is the common situation when dealing with non-convebfams. See]3] for some con-
vergence results on augmented Lagrangian methods.

We have developed the generic BALM algorithm to solve a warad bilinear computer vi-
sion problems. What is required is the knowledge of the no#hi€onstraints that a solution
must satisfy, and the availability of a projector onto thenif@d. In the previous chapter we
derived projector onto the non-rigid and articulated motiwanifolds. Therefore we will now

demonstrate the BALM algorithms on these specific bilineablems.

4.5 Example 1. BALM for Rigid and Non-Rigid SfM

We have seen how the non-rigid structure from motion probless formulated as a matrix
factorisation problem by Bregleat al. [15] in the case of an orthographic camera. The main
assumption is that the 3D shape at any frame can be reprdsesnte linear combination of a

set ofK fixed basis shapes. Thus the 3D shape at a generic fraviliebe given by the linear
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combinationS; = zg(:llidBd. For the rest of this chapter we will use the same factodsati
formalism, but we will solve for the transpose problem (eWy= MS becomesi’ =s™M "),
such that the problem becomes immediately of the same foproagem @.1). By referring the

image coordinates to their centroid, the projection of tiape at framé can be expressed as

U1 Vi1 <
Yy=1| !  |= (dz IidBd> Q=
=1 (4.12)
Un Vin

= [ By ... Bk ](h@Qi):SMi

wherey; is then x 2 measurement matrix that contains the 2D coordinatesimofige points in
framei, Bq are the basis shapes of size 3, lig are the time varying shape coefficients @nds
the projection matrix for frame In the case of orthographic projectidh,is a 3x 2 matrix that
encodes the first two columns of a rotation matrix (therefoiea Stiefel matrix). Note that we
are defining¥ :=l; ® Qj, where® denotes the Kronecker product. Rigid SfM can be instarttiate

with this framework by imposingl = 1, a single basis shape.

By concatenating all the measurements for all the framesarsingle matrix we have

Y:|:B1 BK:||:|1®Q1 |f®Qf =
(4.13)

ZS[Ml M } = M,

Now, we have expressed the measurement matrix as a bilinesadtion between the shape
matrix S of sizen x 3K and the motion matrix! of size K x 2f. This form fits exactly the
optimisation problem as presented in E4.]J. Therefore, in the NRSFM case, the manifold

constraint corresponds to

M:{I®Q:IERK,Q€R3X2,QTQ:IZ}, (4.14)
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or in other words, the two rows of the rotation matgix must be orthonormal (i.e. itis a Stiefel
matrix). To apply our BALM algorithm, a projector onto themagid motion manifoldM is
required.

In section3.3.1in the previous chapter we derived an exact globally optionajector onto the
non-rigid motion manifold. Del Buet al [37] recently provided an alternativ@pproximate

projector ontaM which still provides accurate estimates while being cagrsillly faster.

4.6 Example 2: BALM for Articulated SfM

The problem formulation for a factorisation approach tecatated shape and motion recovery
was discussed in the previous chapter, SecBgh? We use the same formulation here for
convenience (refer to Sectidgh2.3for details). The measurement matrix of the (segmented)

object tracks can be written as the product of a common matiatnix and shape matrix:

W= [ ey

w? ] =M;S (4.15)

The shape of two objects will be encodedsiand the motion matrix has the form:

= [ WA B } (4.16)

for each framae.

The manifold of acceptable solutions in this problem is defiby the constraints:

_ . )
[U; Aj] 1= Iox2
A;
L (4.17)
u’
[u; Bj] = Iox2
B;
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4.6.1 Articulated manifold projector

The BALM algorithm is suited to estimate articulated stuwet from motion of two objects
coupled by a hinge joint, as we have seen that it is a bilireztofisation problem. The projector
we used has been already defined in the previous chaptertiars83.4 Appendix B shows a

convex relaxation to solve for equatidnl8
minJ(u,4,8) = u—x|*+||a—Y|Z +[B-2|Z. (4.18)

4.7 Experiments

To evaluate our unified algorithm we carry out experimentshenexample problems proposed
above with both synthetic and real dat@he aim of our tests is twofold: to show that the perfor-
mance of BALM is comparable to the best specialised algmistand to assess its convergence.
In the NRSfM problem we will also assess the resilience ofapproach to very high levels of

missing data.

4.7.1 Synthetic experiments: NRSfM

First we evaluate the performance of our bilinear algoritiinen applied to the NRSfM problem.
We consider two different sets of synthetic experimentse Titst set of tests is designed to
verify the resilience of the algorithm to increasing ratxdsnissing data. We used a 3D motion
capture sequence of a face. The sequence was captured MD@B system tracking a subject
wearing 37 markers on the face to provide 3D ground truthHerdvaluation. The 3D points
were then projected synthetically onto an image sequen@&ifs long using an orthographic
camera model. To test the performance of our algorithm wepted the 3D reconstruction
error, defined as the Frobenius norm of the difference bettreerecovered 3D shageand the

ground truth 3D shapggt. The relative 3D error is then computed d8:— Sgt||/||ScT]||- We

1The code for the BALM method and the manifold projectors isailable at:
http://www.isr.ist.utl.pt/ ~adb/the-balm/
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subtract the centroid of each shape and align them with Bstes analysis. We evaluated the
performance of the algorithm with respect to noise in thegenaeasurements of up to 6% and
up to 90% missing data in a combined test. Zero mean additives§lan noise was applied with
standard deviatioor = n x s/100 wheren is the noise percentage and s is defined as(¥jaix
pixels. In all experiments the number of basis shapes wad fixk = 5. The results for each

level of noise were averaged over 100 trials.
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Figure 4.2: Synthetic experiment results showing compangith several NRSfM methods with
different ratios of missing data and noise.

In Figure4.2we compare the results of the proposed BALM algorithm witlr@saniet al.’s al-
gorithm [L11] (EM-PPCA), Bundle Adjustment3[], the method of metric projection described
in the previous chapter (MP3B}] and the trilinear approach of Wareg al. [123 (RCPF) for
different levels of noise. In practical terms, note that @orestruction error above 20% is too

high to be of any use in most applications. Regarding theabversults, while in the case of
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full data the performance of all algorithms is comparabl8LB! and MP outperform the rest
of the algorithms in the case of missing data. Notice that R@&Rcloser to both BALM and
MP since it also includes a projection step of the rotatiorrices onto the correct manifold.
However, since the projection step is only approximates #hgorithm breaks down for lower
levels of missing data. On the other hand, BA and EMPPCA etge for levels of missing
data above 30%. Also notice that the algorithms that perforetric projections (BALM, MP
and RCPF) are less affected by increasing levels of noisedtineers. BALM closely follows the
performance of the best performing algorithm (MP) whichgsdfic for NRSfM. A noticeable
decrease in performance for BALM occurs at 80% missing ddigo(for the higher percentages
of noise). Regarding run-time, a single manifold projatctiakes approximately.& msec for
each frame witld = 5 basis shapes.

Regarding the initialisation of the ALM algorithm in the easf NRSfM, the missing data tracks
are first filled in using 70] which enforces metric constraints on the motion matricéfe
camera matrices are initialised assuming rigid motion.ré&aniet al’s initialisation [L11] is
then used to estimate the configuration weights and the bhajges given the residual of the

first rigid solution.

Figure 4.3: Cushion sequence with 40% missing data. Fiwsstmws four image samples with
missing points highlighted with a red circle. Second andithows show frontal and side views
of the 3D reconstruction using BALM.
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4.7.2 Real data: NRSfM

We tested our NRSfM method on a real sequence of a cushiog beit. 90 points were tracked
manually for the whole 50-frame long sequence. We simulatedssing data ratio of 40% by
eliminating data points randomly. Figude3 shows 4 selected frames and their respective 3D
reconstructions (frontal and top view). The bending istyeabservable in the 3D shape plots
where BALM shows robustness given the high percentage cfingislata.

We have also tested BALM for NRSfM in the face modelling doman the Franck sequerice
The face points were tracked with Active Appearance Modalsg 56 points in 700 frames
and ratio of 30% missing data was simulated syntheticallye first row of Figure4.4 shows

a sample of the sequence and the bottom row shows the condisgareconstructions. The

resulting 3D shape and deformations describe the shapgeeweti in occluded areas (e.g. lips).

4.7.3 Real data: Rigid SfM

We have tested our BALM algorithm also in the case of rigichese Figuret.6 shows results
for the dinosaur sequenteSome frames of the sequence are shown in FigLikeBecause this
sequence contains self-occlusions, there is 76% missitagin¢éhe 2D feature tracks. We com-
pare the reconstruction with the methods proposed by Margué Costeira/[J] and Buchanan
and Fitzgibbon 17]. Qualitatively our 3D reconstruction recovered the corghape. Reprojec-
tion error results confirm that BALM performs closely to thesbperforming methods for rigid
structure. The overall 2D rms error with BALM was3D39" which is a slight improvement over
the error reported by Marques and Costeir@T705) but higher than the error of the Damped-
Newton approach by Buchanan and Fitzgibbor®&47). Note however that the 2D rms error
alone does not provide enough information on the qualithefreconstruction, which can only

be compared qualitatively in this real sequence with no igddwuth data.

°The image sequence is freely available at: www-prima.ipes.fr/FGnet/data/01-
TalkingFace/talkingace.html
Savailable fromhttp://www.robots.ox.ac.uk/ ~vgg/data/data-mview.html

4Notice that in this real sequence the missing data is notlabeu, 2D error is calculated only from
the known entries.


http://www.robots.ox.ac.uk/~vgg/data/data-mview.html 
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Frame 75 Frame 395 Frame 589

Figure 4.4: Thd=rancksequence (first row) used for our real experiment. Trackéutpare in
green while red circles show the missing entries. The seomndshows the 3D reconstruction
of a frontal view with 30% missing data in the input tracks.eThird row shows a side view of
the 3D shape in order to evaluate the estimated depth.

We have also attempted the reconstruction oftdsa da musicaequence’{0] with 60% miss-
ing data where the images were obtained fiGoogle imagesnd thus generally shot far apart
and with unknown cameras (no temporal consistency of camenss). The sequence also con-
tains degenerate configurations since only planar surtaeeseen from each camera view. The
3D reconstruction in Figuré.7 shows that most of the planar surfaces are correctly recatstl

and they provide a credible 3D reconstruction.

Figure 4.5: Some frames from the dinosaur sequence
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Figure 4.6: The BALM algorithm applied to ti&inosaursequence. The figure on the left shows
the complete 2D image trajectories as resulted from ourritigo. The figure on the right shows
the 3D reconstruction of the trajectories.

Figure 4.7: The BALM algorithm applied to tremasa da musicémages. The figure on the left
shows one sample of the image set used to reconstruct thiinguiNote that the images have a
large baseline. The figure on the right shows the 3D recartgtruof the trajectories in a pose
similar to the picture on the left. Images and tracking dataly provided by Manuel Marques.

4.7.4 Real data: Articulated SfM

We present the reconstruction of thimge2sequence[113. This sequence shows two boxes
linked by a hinge joint and placed on a turntable. Some fraiogsther with the results are
shown in Figure4.8. There are 72 tracked features on the larger box and 25 é&satur the
smaller one on top, tracked over 815 frames. We generatedlamavisibility matrix to simulate
an amount of 60% missing data. After an initialisation atéali by filling the missing entries for
the two shapes independently with rigid SfM, we apply our BA&lgorithm using the projector
described in the previous chapter in Sectioh.3 The results show that even in this case of high

levels of missing the data, the position of the axis is edtih&orrectly and it reflects the real

SCourtesy of Philip Tresadern.
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Figure 4.8: The BALM algorithm applied to thenge2sequence. The figure on the top shows
two samples of the image sequence and the points trackea iimiiige sequence. The dark
green circle around some of the points represent the miskitagat that given frame (60% for
the whole sequence). The figures on the bottom present the@&IDstruction together with the
hinge joint localisation in 3D (green axis). Images andkieg data kindly provided by Phil
Tresadern.

motion of the objects.

4.8 Summary

The BALM algorithm is a novel, general optimisation frametwéor a broad range of bilinear
problems in Computer Vision with manifold constraints or #pace where the data lies. The
results demonstrated in this chapter match state of theathods in the non-rigid and articulated
structure from motion problem. The BALM method shows robass to missing data, and
the ability to solve large-scale problems. So far, we havaatestrated that optimising on the
manifold of metric constraints provides robust resultsgitesof noise and missing data in the
measurements.

All methods proposed so far in the literature, including blatric Projections and BALM algo-
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rithms, work in batch. In order for non-rigid structure framotion to replicate the popularity
and success of rigid methods, a real-time method is misiirte next chapter, we propose the

first method to address the issue of sequential estimation.



153

Chapter 5

Sequential non-rigid structure from motion

So far the non-rigid structure from motion problem has bemkled using a batch approach.
All the frames are processed at once after the video aciguigiikes place. In this chapter we
describe our incremental approach to the estimation ofrdefble models. Image frames are
processed on-line in a sequential fashion. The shape ialiséd to a rigid model from the
first few frames. Subsequently, the problem is formulated asodel based camera tracking
problem, where the pose of the camera and the mixing coefficiere updated every frame.
New modes are added incrementally when the current modelotanodel the current frame
well enough. We define a criterion based on image reprojeatioor to decide whether or
not the model must be updated after the arrival of a new frafffee new mode is estimated
performing bundle adjustment on a window of frames. To regméthe shape, we depart from
the traditional explicit low-rank shape model and proposaréant that we call the 3D-implicit
low-rank shape model. This alternative model results imgpkér formulation of the motion
matrix and provides the ability to represent degeneratergeftion modes. We illustrate our
approach with experiments on motion capture sequencesgngtimd truth 3D data and with

real video sequences.
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5.1 Introduction

While real-time sequential rigid SfM is a mature field than@v consolidating into commercial
applications, NRSfM is still at its infancy. Some batch aitions exist B, 111, 85] but there is
still a need to define deformable shape models and estimatjonithms that will allow to push
NRSfM forward to a scenario where it might emulate the susEe®f its rigid counterpart, in
terms of robust performance and application to real wortgsaln the work we describe in this
chapter we advance the state of the art in NRSfM in two maiections, both proposing a new
sequential estimation paradigm and an alternative low-slape model.

Our first contribution is the definition of a new estimationgmigm that extends NRSfM to the
sequential domain. We propose a rank-growing engine whitifdatermine when the rank of
the model should be increased and if necessary will estithataew mode.

We divide the sequential non-rigid shape estimation into processes: model-based tracking
of the camera pose and shape coefficients and model updagefir§thprocess assumes that a
current up-to-date model, of a certain rank, of the 3D shdysemved so far exists and performs
model based camera trackingvhen a new frame arrives this module estimates the current
camera pose and the shape parameters using as input the Binates of image features
matched in the ladtv frames, wher&V is the width of a sliding window. The second process
is amodel updatenodule which decides, based on the image reprojection given by the
camera tracking module, whether or not the current modeblis  explain the deformations
viewed in the new frame. If the current model does not havegmadescriptive power to capture
the deformations observed in the new frame, the model updatizile will add a new mode and
estimate its parameters using bundle adjustment on aglidindow. The entire system is
bootstrapped from a rigid reconstruction obtained from alsnumber of initial frames.

Our second contribution is an alternative low-rank shapdehthat provides the ability to repre-
sent modes of deformation of dimensionality lower than Bifietance deformations on a plane
or along a line).

We call it the3D implicit low-rank shape modeiince it does not use an explicitly defined 3D
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shape basis. This has two main advantages. First, the nmotitnix in our model has a simpler
structure than in the classical model, which allows for adinestimation of camera pose and
shape coefficients from a single frame, and can be used i@isgtthe bundle adjustment in the
sequential framework. Second, our model handles defoomativhose rank is not a multiple
of 3 and thus avoids one to explicitly compute the rank of digpaar shape basis. When the
deformations are processed one frame at a time, having ttibility to update the model with
1-dimensional modes fits the sequential estimation pamadigpre naturally, since there is a

much higher chance of observing lower dimensional defdonat

5.2 Related Work

The ability to reconstruct a deformable 3D surface from a @cofar sequence when the only
input information is a set of point correspondences betwirgges is an ill posed problem
unless more constraints than just the reprojection ermiuaed. As we described in Chapter
2, current solutions to NRSfM focus on the definition of opfiation criteria to guarantee the
convergence to a well behaved solution. This is often onhjexed through the addition of
temporal and spatial smoothness priors. Bundle adjusthrenbecome a popular optimisation
tool to refine an initial rigid solution while incorporatirigmporal and spatial smoothness priors
on the motion and the deformations.

However, the common attribute to all NRSfM algorithms pregab so far is that they are batch
methods. Our new sequential approach is motivated by retmmtiopments in the area of se-
quential real-time SfM methods for rigid scené&§,[7€]. In particular, our approach is inspired
by the work of Klein and Murrayf0] in which they develop a real time system based on two
parallel threads — the camera tracking thread which pedaral time model based pose es-
timation and the mapping thread which runs in a constant fmforming bundle adjustment
on a small set of key-frames. To the best of our knowledge aurkws the first in NRSfM to
depart from the batch formulation and reformulate the slegpenation sequentially. First we

introduce a new variant to the low-rank linear basis shapderhat we believe is better suited
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to a sequential formulation.

5.3 New Deformation Model

5.3.1 Classical Explicit Low-Rank Shape Model

In the case of deformable objects the observed 3D pointsgehas a function of time. In the
low-rank shape model defined by Bregitial. [15] the 3D points deform as a linear combination
of a fixed set oK rigid shape bases according to time varying coefficientghiswway, S =
zﬁzllkak where the matrixs; = [X¢1,---X¢p] contains the 3D coordinates of tRepoints at
frame f, the 3x P matricesBy are the shape bases dpgdare the coefficient weights. If the 3D
shape is known, this model can be obtained from the PCA deasitigm of theS* that contains

the 3D shape in all the frames.

81
X1 Y1 Zax - Xep Yip Zop
. S5 . :
SExap=| | = ; : (5.1)
Xer Ye1r Zrr 0 Xep Yep Zrp
st

A PCA decomposition of ranK of S* would giveLB*, whereL is theF x K matrix of defor-
mation weightdix, and theK x 3P matrix B* can be rearranged to give the basis shapedf
we assume an orthographic projection model the coordirtdtdse 2D image points observed

at each frame are then given by:

Wi =R (% IikBk> +Ti (5.2)
=

whereg; is a 2x 3 Stiefel matrixandT; aligns the image coordinates to the image centroid. The
aligning matrixT; is such that; = till, where the 2-vectat; is the 2D image centroid arip a
vector of ones.

When the image coordinates are registered to the centrdlieaibject and we consider all the
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Figure 5.1: The proposed 3D-Implicit Low-Rank Shape Modle& camera matrices for all
framesRs are collected in a block-diagonal projection matrix, thedivarying 3D shape is
represented by aF3x P structure, modelled by the sum of a rigid compongrnd a rank-
decomposition of the non-rigid component.

frames in the sequence, we may write the measurement matrix a

I11R1 ... 11kR1 B1
e S (5.3)

l[FiRE ... IgkRE Bk

SinceMis a & x 3K matrix andsS is a X x P matrix in the case of deformable structure the rank
of W is constrained to be at mosk3 The motion matrices how have a complicated repetitive

structure; = [Mi1...Mik| = [li1Ri . . . lik Ri] that makes the model estimation difficult.

Olsen and Bartoli §3] proposed to consider an implicit model where the repetistructure
of the motion matrix is not used. While this simplifies theirasttion problem, the recovered
model does not directly provide usable motion and shapenteas, unless a mixing matrix is
computed 5, 128. The mixing matrix computation problem has not receivethgpte solution

so far.
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5.3.2 Proposed 3D-Implicit Low-Rank Shape Model

We propose a way to depart from the traditional basis shametelnand embrace a different
formulation that will fit the problem of sequential struaurecovery more naturally since it
allows for the rank of the shape model to grow one by one withdfrival of a new frame,
instead of multiples of three.

The data in the shape matrix may be re-arranged in a difféoemt, stacking the shape matrices
vertically for all framesF. Each matrixss € R3*P contains the 3D coordinates Bfpoints in

framef.

X1 X2 Xip
r . Yiu Yz - Yip
S1
Z11 Za2 Z1p
S2 : : :
Sspxp=| | =] : : (5.4)
Xr1 Xr2 Xep
SE
- Yer Ye2 o0 Yep
| Zr1 Zr2 Zrp |

If we assume that the shape matiis low-rank we can perform Principal Components Analysis
to obtain a PCA basis @&= UqVq, whered is the rank of the decompositiotly € R3F*9 and
Vg € R9P, We can also explicitly include an average rigid (mean) stinpphe model, therefore

the shape at framé& would be given by:

szg—l—[ufl Ufr} . (5.5)

Vi

wheres is the mean shapd,= 3+r, Uy, is the 3-vectofU (x) U (y) U (Z)fr]T andV, are the

rows of matrixv.
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Therefore we can considgrto be a PCA basis of the shape (row) spacg ahdU to contain the
time varying coefficients. Note that in this case the shapeixna has dimensions x P where

r is the rank of the decomposition aRds the number of points in the shape. For each frame 3
coefficients are needed to express the configuration of dygesh

We assume that the shape at instaig then projected onto an image following an orthographic

camera model. The 2D coordinates of the points can then ressqu as:

ufy -+ Ugp
Wy

=R¢St+ Tt =Rs(S+UtV)+ T (5.6)
Vir oo Vip
whereR; is a[2 x 3] orthographic camera projection matrix, it encodes thetivetrows of the
camera rotation matrix antk the translation for framéd. If we now register all the measure-

ments to their centroid in each frame the projection of thepshin all frames can be written

as: ) S o
R1 S Upr -+ Ug V1
Ro S Ui -+ Uy V,
W= e _ | (5.7)
I Re | \[ S| |[Urr -+ Upr || Vi |

A visual representation of this new model can be seen in Ei§u The results from the
experiment in sectio®.9.2 are used to display an average 3D deformation across alefam
in the sequence. Each image in Fig.€ corresponds to the effect of one element of the
matrix. Each row affects one of the coordinates, and eaamuois related to the rankbasis
contained inv. Note that the basis are not independent, and some mightrbe 2dso, the
incremental nature of our method (as explained in the faligvsections), is such that a rank-1
base in the matrix can encode stronger deformations than the previous basisurimodel,
the basis shapes are not explicitly used as in the classimé¢inwhile the camera projection is
explicitly modelled. We thus call our model tlB®-implicit low-rank shape modeDur model

combines Bregleet al. [15]'s explicit model and Olsen and Bartok§]'s implicit model. It has
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the following two main advantages:

1. Simplicity. The motion matrix is block diagonal and only contains thatioh matrices
instead of a mixture of the coefficients and the rotationse fHct that the 3D basis is not
explicitly available in our model is not a problem since os@énerally more interested
in recovering the 3D shape of the observed scene than the dizgies — the basis shapes
can be estimated a posteriori by forming and factorisingntiagrix S* in equation 5.1).

As we explain below, it also is an advantage not to have axgliz basis shapes.

2. Any-rank deformations. Our formulation allows us to define shape models where the
rank is not a multiple of 3. In other words, in the explicit nehda basis shape always has
to be of rank 3, whereas in the real world not all deformatiares of rank 3. Xiao and
Kanade [ 29 propose to explicitly find the rank of a particular deforinatmode (which

can be one of 1, 2 or 3). Our model circumvents this difficuttyem.

5.4 A Sequential Approach to NRSfM

In this work we depart from the batch formulation of NRSfM amd propose a sequential ap-
proach based on the alternative low-rank shape model edtlin the previous section. Our
approach can be seen as a two process formulation. The systlels a current up-to-date
model, of a certain rank, encapsulated in matrixThe first process is a model based camera
tracking module. Given the current estimatevofvhen a new frame arrives, the camera track-
ing module estimates the new paseand the new deformation coefficierilg for the current
frame. If the current model explains well the measuremdrgsirhage reprojection error will

be low. However, if the error goes above some defined thrdghel rank of the model must
be increased and the model updated. In that case, a modekupddule will update the cur-
rent model adding a new row to matiix As the sequence is processed the model will become

more complicated, until all the possible object deformaibave been observed. Our sequential
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Figure 5.2: A visual representation of the 3D implicit modekfficients: Each image shows
the contributions to points deformations given by each el@nof the 3x r matrix Us. Each
row of theU; matrix affects one coordinate, and each column is the wembt given to the
corresponding row of thé matrix, each row representing an added rank-1 mode of defiwm

approach to NRSfM is summarised in Algorithin We now describe in detail the two main

modules of our sequential system: the camera tracking reahd the model update module.

5.5 Camera Tracking Given a Known Model V

If the matrix V is known in advance, the NRSfM problem is reduced to the edtim of the
camera pos@&; and the mixing coefficient§; for each frame. In that case, the pose of the
camera and the coefficients can be updated sequentiallyafdr ftame using a model based

approach.
We adopt a sliding window approach where we perform bundiestent on the ladtl frames
whereN is the width of a pre-defined window. The cost to be minimisatié image reprojection

error over all frames in the window:
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time current frame
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Figure 5.3: Sliding window approach: A group of frames (shdamcolour) is processed at each
step. This keeps the computational cost bounded. As a nevefoeecomes available, the group
of frame "slides”, and the new frame is processed. At eaghtbte3D shape and camera motion
of the new frame is computed.

Algorithm 5 Sequential non-rigid structure from motion (NRSfM)
Require: 2D point correspondences
Ensure: 3D coordinates of the deforming surface for each frame.
1: Initialise model to mean rigid shaf estimated via rigid factorisation on the first few
frames.
loop
new framef arrives
run camera tracking proces®stimate camera po&gand coefficientd;
while (image reprojection error is above threshald)
run model update process
increase rank «<—r +1
estimate new row of and new column of's
end while
10:  go to process next framé;< f+1
11: end loop

f
min ZNHwi—Ri(eruiv)ug (5.8)

Ri,Ui -

To this cost function we add a temporal smoothness prior t@lge strong variations in the
camera matrices of the forfir; — Ri—lH;Z:, and a shape smoothness prior (similar to the one used
in [8]) that ensures that points that lie close to each other inesphould stay close. The shape
smoothness is defined g5_,_, D""~%, whereD"~1 is the change in the euclidean distance
between 3D points over two frame® 1 = 35,1 @ p[d?(Xi a, Xip) —d?(Xi—1.a,Xi—1b)|- The

weight ¢, is a measure of the closeness of pomtndb, defined as & x P affinity matrix
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Figure 5.4: Camera tracking process: Assuming a known miodethe deformations and
a known mean shape, the camera matrix and deformation deeticfor only one frame are
estimated.

@p = p(d?(Xa, Xp)) Wherep is a truncated Gaussian kernel. The final cost function can no

be written as:

f f f
min Z Wi —Ri (S 4+ U;V)[[2 + A Z IRi —Ri_1]|2 + @ Z D1 (5.9)
—N I: —N |: —N

Ri)Ui;_

The mean shap®and the shape modelare assumed to be known. This nonlinear minimisation
requires an initial estimate for the camera pageand the shape coefficientig in the current
frame f. Algorithms to obtain linear estimates faf andU; are described in Sectidn5.1

The steps of the complete algorithm to track the current pbtee camera and the shape coeffi-
cients given the shape model can be summarised as folloves. tlBae a new framéd of feature

tracks is available:

e Obtain initial estimates for the current pdseand mixing coefficient¥s using the linear

estimation plus prior described in Sectidrb. 1

e Minimise the cost function3.9) with smoothness priors using bundle adjustment to obtain
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optimised values for the rotatiorls and shape coefficient§ in all the frames in the

sliding window.

e If the reprojection error of the window becomes higher thahrashold, signal the mod-

elling process to increase the rank of theatrix.

5.5.1 Initialisation: Linear Estimation of Us and R¢

Consider new image measurements become available for arapwe.f These can be arranged
in a 2x P matrix for that single frame calleds. The projection model gives us the relation

Wi =R¢(S+UsV) +Ts.

Linear estimation oRs.

For every new frame the camera p®semust be initialised before Bundle Adjustment. For this
purpose, we approximate the shape with the rigid mode taroateinitial estimate of the camera
rotation. This means we need to find the camera peskat satisfied’; = R¢S, while respecting
the smoothness pridrIveqR¢) = A veqR¢_1). Using the relation veaxB) = [BT @ A]ve(X),
where® is the Kronecker product and vetis the column-major vectorisation of a matrix, and

usingWs = IoR¢S we can write:

veqWs) = [ST ® Io]vedRy) (5.10)
.
s oL vedRy) = vedils) (5.11)
A1 AvedRi_1)

The resultingk¢ will not be orthonormal (i.e. not a truncated rotation matrso we find the
closest orthonormal rigid projection using SVD.
Linear estimation off;.

First we take away the contribution to the image measuresrgunén by the known translation

and mean shape component to gise= W — T+ — R¢S = R{UsV, which can be rewritten as
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Figure 5.5: Model update process: a new deformation basidded to th& matrix, increas-
ing the rank of the deformation model. More deformations lsarexpressed with a model of
increased complexity, hence the deformation coefficieatsbe re-estimated to match the input
data.

vedis) = [V ®R¢]veqUs). This provides a linear equation on the unknown veutorHow-
ever, this is not sufficient to produce an acceptable salutbecaus®; is a 3x r matrix where
each columrlUs, is a 3-vectorfU (x) ;U (y) U (Z)fr]T that contains the PCA coefficients of all
3D coordinates, whil&; contains 2D projections. However, this problem can be @resby
including a temporal smoothness prior term that penaliskgisns that are far from the value
for the previous fram@;_;. Thus the prior term is of the forthIveqUs) = A veqU;_1). We
can join both linear equations and solve the linear system:

§ i
V" ®k] vequy) — ved(ir) (5.12)

A1 AveqUs_1)

5.6 Sequential Update of the Shape Model

In NRSfM the shape of the 3D object the camera observes vavistime. The current model
will encode the modes of deformation that the object hasbéteu so far in the sequence. How-
ever, if the object deforms in different ways that are nobeled in the model the camera tracking

will fail. Therefore, a mechanism is needed to update theahatien new modes of deforma-
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tion appear. In that case, the rank of the model should grahtiae parameters of the model

should be fit to the new data.

The difficulty of updating the model in an sequential way islole-fold. Firstly, when each new
frame arrives, we need a mechanism to decide whether or @auiinent model continues to fit
the data well enough. While the shape model can still desc¢hib data, we can continue to do
model based camera tracking. We decide this based on the irepgpjection error. Secondly,
if the model can no longer explain the data, the rank of theehoededs to grow to incorporate
the new mode of deformation and the parameters of the new fawand the new column df

must be estimated.

5.6.1 Rank Increase Criterion

The rank selection criterion will decide to increase th&rmamly if the current data does not fit the
model well enough, i.e. if the existing modes do not modettimeent frame well. Therefore we
use the image reprojection error as the criterion — if theréncreases above a certain threshold
we increase the rank of the shape model. This results in ameweing added to the PCA basis
Vv and a new column to the PCA componetitsHowever, the new mode is recovered from the
current frame only, so it has no influence over past framesrefre for all past frames we can

set the 3f — 1) components of the new column 6to 0.

5.6.2 Model Update: Estimating New Row ofV and New Column ofU

When the camera tracking module processes a new frame taatriot model well enough (the
reprojection error is above the defined threshold), the iisdedated by increasing the rank.
Ideally once all the different modes of deformation that bject can exercise are incorporated
in the PCA basis, the rank will remain stable and the cameeking process will be able to

reconstruct the incoming frames.

Given new image correspondences for framehe rank ofu,v must be increased. From the
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current estimate dfs 1,1 andVyy_1 we can rewrite the model for the new frame as
Wf = R-f(S_‘f‘Utl:r—lVl:r—l‘i‘UfJVr)- (5-13)

Both the residual of the current modek W; — R¢ (s_+ Ut 1r—1V1r—1) and the current camera
rotationRs are known. We need to estimate= Us , V;, the contribution of the new rank, subject
to the following constraints:

A=R¢Z rankz)=1 (5.14)

This problem is difficult to solve in closed form, therefore wpproximate it using a linear
solution as follows. We define as the closest rank-1 approximationsobbtained using SVD,
then comput& asz = Ric. Finally, we can decomposeusing a rank-1 SVD decomposition to

obtain a new row fof.

Non-linear refinement

Once initial estimates are available for the new row @nd the new column df, they can be
refined minimising image reprojection error over a slidingaow of N frames

f

i R (§ U2
m’?i:ZNHWI Ri(S+UiV)|g (5.15)

incorporating the smoothness priors described in se&ibn Once the model is updated, the

camera tracking module can resumedel based trackingith the new modeV with rankr + 1.

5.6.3 Bootstrapping

One of the known challenges in sequential approaches t $fi is the initialisation $0]. It

is common to run the system in batch mode for a few frames @ihbtfirst model of the scene
before starting the sequential operation. In the currepegments we run a rigid factorisation
algorithm on a few initial frames to obtain the rigid mean@h8. Once this is available the

camera tracking and model update loop can start. An aligenapproach that does not require
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Figure 5.6: At the beginning, the camera tracking procegsires an average rigid shape. This
can be acquired using a subset of the sequence where the ishjed. For example, if the
beginning of the video shows rigid motion, the initial frasr@an be used.

manual intervention is the following. Start performingididactorisation in batch. When a
new frame arrives, if the reprojection error of rigid faésation over the frames observed so
far is below the threshold then we keep performing rigid dasation. However, if the error
becomes higher than our threshold, the mean shape of theigidmmodel is set to the rigid

model obtained so far and we start our sequential NRSfM &lgor

5.7 Limiting the rank

Section5.6.2described the rank-growing engine that allows us to lear® de&formable model
in a frame-by-frame fashion. The current formulation do&simpose an upper bound on the to-
tal rank of the model which could grow without limit. SequahSfM methods, however, rely on
the computational complexity remaining bounded. The cexipt of the camera tracking pro-
cess depends quadratically on the number of unknown pagasnghich grows linearly with the
rank of the decomposition. Therefore, we must incorporateeahanism to compact the model
in order to limit its overall rank. This is particularly usgfvhen dealing with longer sequences.
For this purpose, we add a user-specified limit to the rankefibn-rigid decomposition, and

use PCA to compress the rank of the model when it grows abevinthshold.
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5.7.1 Model compression

Subtracting the average rigid shapdrom the shape mode, we can express the remaining

non-rigid component as the product of two low-rank matricesdVv of rankr:
S—S=UV (5.16)

When the rank of the non-rigid component reaches the limite apply PCA to truncate the
decomposition to rank. In this way, we keep the computational complexity boundedesthe

rank of the model cannot grow beyond the user-specified.limit

5.8 Missing data

The need to adapt this technique to the case of missing delais— for each frame we must
be able to deal with occlusions and lost tracks. Bundle adieist has the built-in capability
to deal with missing data since only the visible points inreiame are evaluated in the cost

function:
f

min Z 29|Wi,- —Ri(55+UiV))? (5.17)
Bl =N e

where( is the set of observable data points. In this way, providedatihount of known data is

larger than the number of parameters to estimate, the canaeking problem can be solved in

the presence of missing data.

Regarding the model-update module, the formulation desdrin SectioB.6.2 assumed full

data. When the tracking data in the current frame contaiolisions, we restrict the calculation

only to the known points:
Wij =Ri(Sj+Us1r—1Vi1r_1j) + Ut Vyj). (5.18)

Stacking equatioB.18horizontally for all the observable poiniss O, we can obtain an update

for the v matrix. We fill the entries of the new row of the shape modelrimat; associated with
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Figure 5.7: Results of sequential NRSfM on the CMU-face saga. Left: Value of the rank of
the model for each frame, increasing as more frames are ggede Middle: 2D Reprojection
error given by the camera tracking process. Right: 3D effrtiteoreconstruction for each frame.

the missing data points with zeroes, implicitly assuminat those points do not contribute to
the new mode of deformation.
This solution to camera tracking and model update with missiata is demonstrated experi-

mentally in sectiorb.9.3

5.9 Experiments

5.9.1 Motion capture sequenc&MU-face

First we tested our sequential method based on the 3D-iinfdiw-rank shape model on a
motion capture sequence with ground truth dafBhis sequence from the CMU Motion Cap-
ture Databasecontains 316 frames of motion capture data of the face of ppsulyearing 40
markers performing deformations while rotating. This setqpe was also used by Torresani
al. [111] to perform quantitative tests with ground truth data. Wejgeted the 3D data synthet-
ically using an orthographic camera model.

Prior to the start of our sequential algorithm and with theppse of bootstrapping the camera

tracking module, we ran a batch rigid SfM algorithiri [] on the first 60 frames of the sequence

lvideos of the experimental results can be found on the projesebsite
http://www.eecs.gmul.ac.uk/ ~lourdes/SequentiaINRSFM
2Available fromhttp://mocap.cs.cmu.edu


http://www.eecs.qmul.ac.uk/~lourdes/SequentialNRSFM
http://mocap.cs.cmu.edu
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to estimate the mean shapeThe PCA basis matri¥ was initialised ta. We then ran our new
sequential algorithm based on the camera tracking and tielmpdate modules, together with
the rank detection engine. The average 3D errord8@ with a 07 pixels 2D reprojection error

on the 600« 600pixels images. The reprojection threshold was fixed2pigels.

Frame 61 Frame 188 Frame 252 Frame 316

Figure 5.8: 3D Reconstruction results obtained onGMlJ-facesequence using camera track-
ing and model updating. First row: 2D image points (greeole®) and reprojections (blue
crosses). Second row: Views of the 3D reconstruction (es)ssompared with ground truth
MOCAP data (squares)

In Figure5.7we show results of the rank estimation, the 2D image reptiojeerror and the 3D
error for each frame in the sequence using our sequentiala&in formulation. The average
image reprojection error over the whole sequence is lessdhaixel. In Figure5.9 (left) we
compare results of the 3D error obtained with our method (8etigl), with Torresanét al’s
state of the art batch NRSfM algorithm (EM-LDS)1[1].We show the histogram of 3D error val-
ues taking into account all the frames in the sequence. Budtseshow that our new sequential
algorithm provides results comparable to Torresdral’s [111] batch state of the art algorithm.
We show smooth estimates of the rotation angles for all gnads in the sequence in Figlr®
(right). In Figure5.8we show the 2D image reprojection error and the 3D recortsing (blue
crosses) we obtained for some frames in the sequence caomplaeim with ground truth values

(green squares).
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Figure 5.9: (Left) Histogram of 3D error values built froml #ie frames, comparing results
of our method (Sequential) with Torresagtial’s state of the art batch (EM-LDS).11]. The
3D errors obtained with our Sequential approach are corbfgata the results from the batch
method EM-LDS. (Right) Rotation angles estimated with tamera tracking module.
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Figure 5.10: Results on thectresssequence. Left: Reprojection error of the frame-by-frame
reconstruction obtained with our method. Middle: The vadfighe rank, increased as more
frames are processed. Right: Rotation angles estimatédivdtcamera tracking module.

5.9.2 Real Data

We used theactresssequence, also used by Bartetial. [8], which consists of 102 frames of

a video showing an actress talking and moving her head. lar€ig11we show results of

the 3D reconstructions obtained for some of the frames irsélggience. The camera tracking
was bootstrapped with a rigid model obtained using Tomagdikanade’s rigid factorisation
algorithm [L10] on the first 30 frames. The threshold for increasing the naak a reprojection
error of Q9 pixels. From figuré.10we can see that the rank is increased, and the estimation of

new frame parameters keeps the reprojection error low.
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Frame 31 Frame 48 Frame 84 Frame 102

Figure 5.11: Qualitative results on thetresssequence using camera tracking and model update.
First row: The input images with superimposed feature fracklata. Second and Third rows:
Front and side views of the 3D reconstruction of 4 frames efséquence.

5.9.3 Missing data

We used a real sequence with occlusions (kindly provided. i§ofardo and A. Martinezf])

of a person performing American sign language gesturesséteence is 114 frames long, and
the 77 markers on the face were manually tracked in all frawmte=re they were visible. The
features are often occluded in this sequence due to handrgesind self occlusions. Figure
5.13shows the results we obtain in a sequential estimation)iglghng the recovery of missing
data. Deformations are correctly recovered, and the dvwenalreprojection error is 1 pixel. For
this sequence we used the model compression method dekeribections.7, imposing a limit
on the rank of the decomposition to rank 12. Figbré2shows the reprojection error for each

frame, the rank of the recovered model, and the missing dsitaility matrix.

5.10 Application to Model-based feature tracking

Once acquired, a 3D deformable shape model is a generakespation of an object which

can subsequently be used for tracking. Our sequential tmoglellgorithm [B4] can indeed
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Figure 5.12: Sequential estimation of the sign languageiesseme. Left: reprojection error,
Middle: Rank of the decomposition, showing model compmssiRight: Missing data in the
sequence, black points are observable features, missiagndahite.

produce from scratch such models. Model-based trackingtteam be defined as the task of
identifying the pose and deformation coefficients of theeobfor each frame of a stream of
further images. If correctly formulated, tracking with aokvn 3D model can be performed
sequentially, proceeding from step to step based only omrardstate estimate and new image
data and without needing to refer back to older images. Bhisually achieved by combining
the current image measurements with the reprojection opthdicted model combined with
priors on the parameters of the model.

Tracking non-rigid objects using a 3D model is an activeaesearea, particularly in the case of
human faces due to its applications to computer graphiesation, human computer interaction
or face recognition. Most approaches are based on a gemetlakar model of appearance
such as 3DMorphable Modelg121] or 2D Active Appearance Models (AAMs)5, 71] which
have also been extended to 3T’[]. Stemming from Lucas and Kanade's seminal wciK] [
on image registration, model-based tracking is posed agpamisation problem minimising
a similarity measure between a reference template and thetarget image. Successful 3D
model-based tracking algorithms based on the low-rankesbapis model include the work of
Brand and Bhotikal4] who propose a Bayesian formulation for model-based flexilolw and
the efficient approach of Mufia al. [77, 7€] to tracking with 3DMorphable ModelsAll these
approaches re-parametrise the image displacements iis wrte model parameters which

results in hard constraints.
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Figure 5.13: Real sign language sequence. Results fronetheestial method. First row: input
data, 2D reprojection, and recovered missing data. Secoddhird row: 3D reconstruction
front and top views, missing data highlighted with a redleirc

In this section we describe an approach to model-basedigwhtracking based on soft con-
straints. We solve simultaneously for the 2D feature tragKthe displacements throughout the
sequence of salient points detected in the first frame) am@Bhnon-rigid tracking (pose and
deformations of the 3D object). We assume a low-rank shapis bas been previously learnt
and we formulate tracking as an optimisation problem wherecost function consists of a data
term that minimises brightness constancy and a prior teaighnalises model parameters (3D
object pose and deformations) that deviate from the prepcted deformable model. There-
fore, our model is imposed as a soft rather than a hard camistkdoreover, we also incorporate

spatial and temporal smoothness priors to avoid ambiguitie

5.10.1 Formulation

Two significant difficulties arise in non-rigid tracking. r6i, the image displacements between

consecutive frames are large since we deal with deformabtemm Secondly, as a consequence
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of the non-rigidity of the motion, multiple transformat®ican explain the same pair of images
causing ambiguities to arise. In this work, we assume thatrdicked feature points lie on a
non-rigid 3D surface that deforms according to a known ngiagtdow-rank basis and are then
projected onto the image via an orthographic camera. Whde3D shape basis will be known
in advance, the parameters of the model (camera matricededonation parameters) must be
estimated at the same time as the image feature displacenvgatpropose a method for model-
based tracking that incorporates the knowledge about thedehas a soft constraint. Given a
pair of consecutive frames, we seek to estimate the imagéadeEments for each feature point

as well as the model parameters that align the projectioheobbject with the current frame.

The general problem of tracking feature points using thegenarightness constancy is to esti-
mate the image displacement vectdgsfor each feature poinp solving the following minimi-
sation problem:

P
argminy [[1(xp) = I'(xp+ 8p)[[? (5.19)
o p:]_

where, X, is the location of featurg in the reference frame, d;, is its displacement in the

target framel” and|(x,) indicates the image intensity value at locatign The problem of

feature tracking is that of estimating the displacementg¥ery feature point that minimise the
discrepancy in image intensity between the location of #adure in the reference frame and its
location in the target frame. However, the brightness @tst alone cannot provide enough
constraints to solve for the image displacements due topkedwe problem. Instead, usually
a linear approximation of the brightness constancy equasgerformed, assuming a motion
model of a patch centred around each feature. We will denoienage patch centred around

pointx as the matrixt (x) containing the interpolated brightness values.

Given a known model, one possible approach to formulate Hustieed tracking is to re-parametrise
the displacement of feature points from one frame to the imeberms of the model parameters.

In that case, the cost function is optimised with respedieéatodel parameters instead of image
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displacements:

=]
argminy’ [|1(xp) — I'(fp(u))| 2 (5.20)
u le

where the model takes the form of a functity{-) that takes as input a vectarthat encodes
the current parameters and returns the image featuredacttti pointp. The notation|| - ||¢
indicates the Frobenius norm.

Alternatively, the idea of using a soft constraint is tomstie both feature point displacements
0p and model parameters simultaneously, such that the cost function continues tomige
brightness constancy while penalising displacementgihvabt satisfy the model. This leads to

the alternative cost function:

P
argmin'y’ (||2(xp) —'(xp+ 8p)| [ + A (x5 + 8p) ~ i(u) ) (5.21)
U p=1

We favour imposing the model-based prior as a soft consti@ie-parametrisation of the image

displacements for a number of reasons:

The model is often inaccurate.

We allow object deformations that are outside of (althougketo) the parameter space.

The cost function has increased robustness to noise.

The data term for each feature point is independent of thereth

5.10.2 Forward model

While our newimplicit 3D modeldescribed in sectioh.3.2was advantageous for the sequential
model-building stage (given its ability to represent dafation modes of any rank), it is not
clear that this representation of the low-rank shape moffietsoan advantage for tracking. In
practice, Bregleet al’s explicit 3D modehas a lower number of time-varying parameters which

makes it preferable for model-based tracking.
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Fortunately, converting thanplicit 3D modelinto its equivalentexplicit 3D modelis simple,

re-arranging the elements of the shape matrix and perfgrani?RCA decomposition.

X1 X2 X1p
T Yii Y2 Yip T
S1 S Uz
Z11 Zi2 Z1p _
So ) ) ) S Uo
Sgpxp=| | = : : : = |+ |V (5.22)
Xr1 Xr2 Xep _
SE S Uk
ST Yer Ye2 oo+ Yep ST T
| Zr1 Zr2 Zrp |

It is straightforward to re-shape th& 3 P matrix of 3D shapes for all frames into a matfX

of sizeF x 3P, by transposing the coordinates of each 3D point:

Xu Y1 Zain - Xip Yip Zop
. X1 Yo Zon - Xop Yop Zop
s =| " . (5.23)
| XF1 Yr1 Zr1 - Xep Yep Zrp |

A PCA decomposition of ranK of S* givesLB*, whereL is theF x K matrix of deformation
weightsli, and theK x 3P matrix B* can be rearranged to give the basis shape¥heexplicit

3D model therefore only needs deformation modes to express the shape at each frame, while
theimplicit 3D model needed 3 times as many. This results in fewer paeast estimate in

the tracking stage.

5.10.3 Tracking

Our model-based tracking algorithm is based on the assamitat the 2D points on the image
arise from the projection, via an orthographic camera matfi3D points on a non-rigid surface

that deforms according to a givaxplicit low-rank basis shape mode} to give a matrix of



5.10. Application to Model-based feature trackind79

image measurements for each framesuch that:

K
Ws :Rfdz (|ded)—|—Tf (5.24)
=1

Gathering the unknown model parameteis, (¢, Tt) into a parameter vectars, the 2D lo-
cation of a feature poinp becomes a real-valued function in this parameter space oVérall
parameter vector we wish to optimise in &g21contains both the image displacements and the
model parameters:
pr=[8r,ug]"

We adopt the sliding window approach we described in se&ibroptimising the parameters
for w consecutive frames:

p = [H1, M2, aﬂw]T

This leads us to formulate the problem as a minimisation twerspace of 2D displacements

and model parameters for each pair of frames. The overalfgostion can be written as:

o

X(8s.uf) = [|Tr(X,p) — Irsa(Xr,p+ Op)||E+
p=1

5.25
Ml (X o+ Bp) — Folup) |2+ (5:29)

+Ao||us —us_q]|?

The first term of the energy is the data fidelity term which elesothe brightness constancy
constraint. It is based on the assumption that the brightoEevery feature poinp in the one
frame is preserved at its new location in the next frame. €oersd term penalises displacements
that do not agree with the model. It gives rise to a soft cairgtiwhich is used to enforce the

forward model (represented by tHié ) function):

f(R¢,Lt,ts) =Wy :ng(lded)—‘rtf (5.26)
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The third term encodes temporal smoothness priors on tlaeneders, penalising large changes
from one frame to the next. We optimise the energy with respet¢he model parameters
R¢,l¢g,tf and the displacementd;, using Levenberg Marquardt. Our implementation takes

advantage of the sparse nature of the Jacobian matrix whilhie form:

J= I F (5.27)

with a diagonal bloclb , a full blockF and some zero and identityI blocks. In order to be able
to deal with large displacements, we embed our optimisatiitinin a coarse-to-fine approach.
We minimise the cosh.25over multiple Gaussian pyramid levels, starting at the sEstrlevel
initialising the displacements to zefb= 0 and using the output of each level to initialise the

next.

5.10.4 Experiments

For the purpose of quantitative evaluation of non-rigid eldohsed tracking we have used a
benchmark sequence with ground truti][ The sequence uses sparse motion capture (MO-
CAP) data from [24] to capture the real deformations of a waving flag in 3D. Fégbirl5
shows the 3D motion capture data used to generate a set areehiinages. The 3D surface
was then projected synthetically onto the image plane wamingrthographic camera and texture
mapped to render 450 frames of size 5@00 pixels (see figur8.14). The advantage of this
new sequence is that, since it is based on MOCAP data, it pthe complex natural defor-
mations of a real non-rigid object while allowing us to hageess to dense ground truth optical
flow.

Figure 5.16 shows the computation of Gaussian pyramids. We use 5 pyrawals with a
down-sampling factor ofs. Figure5.17 shows results of the tracking obtained using the well-

known KLT tracking algorithm 109 to this image sequence. We used the public implementation
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Figure 5.14. Some frames of the synthetic flag seque#de [3D and 2D ground truth is
available, as the images are generated by texture-mappmgrkmotion capture data of a flag
waving in the wind.

provided by Stan Birchfield. Is is clear from the results shown in Figusel7that the simple

motion model assumed by the KLT approach is not sufficientdokt the feature points due
to the large deformations present in the data. By takingdge of a known 3D model, our
method can successfully track feature points, as shownguré€b.19and recover the pose and
deformations of the 3D shape as shown in Figufed In this synthetic experiment the low-rank

basis shapes model wik = 24 basis shapes is obtained by PCA decomposition of the droun

Savailable ahttp://www.ces.clemson.edu/ ~ sth/klt/

Figure 5.15: Some frames of the motion capture data usedrergie the ground-truth se-
quence. This synthetic sequence is generated by motionreagata of a flag waving in the
wind, performing strong deformations. We use the grountht8ID data to build our 3D model
to perform model-based feature tracking.


http://www.ces.clemson.edu/~stb/klt/
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Figure 5.16: Set of Gaussian pyramids: finer to coarser fedtid right. Computing Gaussian
pyramids allows tracking of a feature point over large dispments.

Frame 1 Frame 5 Frame 12

Figure 5.17: Using KLT tracking on the synthetic flag seqeente strong deformations of
the flag cause a great amount of lost tracks. Image brighisesst sufficient to track such
deformations.

truth motion capture data (shown in Figure4). We selected 180 equally spaced model points
to track and used the ground truth deformation weights dislisation. The size of the image
patch for the brightness constancy was settdixels. The resulting average rms 2D tracking
error was 15 pixels. The 3D shape is obtained using the computed defanmaeights and the
known basis shapes. The 3D reconstruction error in thisrarpat was 43%. Some frames of

the reconstructed 3D shapes are shown in Figut&

5.11 Summary and critique

We have undergone a re-thinking of the NRSfM problem for nooiter sequences providing a
sequential solution. Our new sequential algorithm is abutomatically detect and increase the

complexity of the model. Current state of the art method\RESfM are batch and rely on prior
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Frame 2 Frame 5 Frame 8 Frame 10

Figure 5.18: 3D reconstruction results on the synthetic Skeguence. First row: frontal view.
Second row: side view. Reconstructed 3D points shown irkbthe ground truth feature points
shown as green circles.

frame 2 frame 5 frame 8 frame 10

Figure 5.19: Tracking feature points in the synthetic flaguesce: the model keeps the posi-
tions constrained, in spite of strong deformations. Feapaints computed by our method are
shown in red, while the green circles are the known GT loaatioThe blue circles show the
reprojection of features using the computed model parasete

knowledge of the model complexity (usually the number ofidabapesK). Our 3D-implicit

low-rank shape model simplifies the projection model anowadlthe rank to grow one-by-one
making it well suited to frame-by-frame operation. We halieven quantitative results on a
motion capture sequence and shown our system in operatiorabrsequences. Concerning
real time capability, our current MATLAB implementationnist real time (averaging at 1 frame
per second in current tests). However, the sliding windopregch and the model compaction
ensure that the computation time per frame is bounded i.es dot grow with the number of
frames. Therefore we foresee that with appropriate codenggattion we will be able to achieve

real-time performance. In addition, in sectibri0.3we have shown an application to model-
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based feature tracking where a model can provide improventerthe feature tracking process
using soft constraints. Future work will be directed at conimly the sequential frame-by-frame
model building with model-based tracking, making our fotation suitable for solving the non-

rigid structure from motion problem directly from imageestms.
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Chapter 6

Conclusions

This thesis addressed the problem of non-rigid structana fmotion. We focused on the recon-
struction of 3D shapes from a monocular sequence, whetgengitior information on the scene
nor camera calibration is available. This sfm problem isrttuost challenging, and has attracted
considerable attention in the literature. The ability ttvedhe general, monocular, uncalibrated
case of non-rigid structure from motion is a fundamentak @fscomputer vision, as well as
having a wealth of applications in practical domains. Thiggter summarises our contributions

to the field, and future research directions that are cuyrepien.

6.1 Non-rigid Structure from Motion using Metric Projectio ns

In our work on metric projections in Chapter 3, we show thatesof the art results can be
obtained by using the manifold constraints of the probleomel We have used an alternation
approach combined with a projection step. Our method obttie global optimum on the

projection problem, thatis, each projection is the bestfpmi the manifold of metric constraints,
given the current structure estimate. We unified the problefmarticulated and deformable

structure recovery within a single framework, in which tleescof the problem relies solely upon
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the manifold projection. In the case of articulated maxifate propose a convex relaxation to
the projection problem.

The problem of non-rigid structure from motion is both irdgrgty ambiguous and non-linear, as
the works by Xiacet al. and Aktheret al. have shown. Our proposed algorithm correctly applies
non-linear estimation methods for the projection stepaiolrig a solution without the use of
any additional priors, the process is purely data-driven.

Almost all real-world sequences suffer from missing datd imcomplete tracks, and here we
show state of the art results. Our experimental results shaivprojection onto the correct
motion manifold makes the method robust to a high percerdagessing data, and encourages
viable reconstructions in scenarios where occlusions@reandom, but structured, for example
due to self occlusions.

We have released the source code for our metric projectidghadewhich quickly become used
by other researchers in the field. These researchers gaauable new insights, for example,
Fayadet al. [41] showed a test case in which very strong deformations areauoinstructed
by our method, and instead propose a piecewise approachgrEyal [107] have tested our
method with a sequence containing little or no rotation aaddiation between the object and
the camera, and also suggested to solve this case with ariockgl. For these challenging cases,
local methods clearly are a valuable tool. However, for segas that can be reconstructed using

a low-rank basis shapes model, our method consistentlyigad\state of the art performance.

6.2 Bilinear problems in Computer Vision

The generic optimisation of the metric projection methodloa applied to any bi-linear problem
with manifold constraints. The BALM algorithm detailed irh&pter 4 provides a general op-
timisation framework which decouples the problems of fastdion and manifold constraints,
and deals with missing data as an additional unknown varigbestimate. It has been applied
successfully on computer vision problems outside norgrigiucture from motion, such as pho-

tometric stereo, and non-rigid image registration. The BAethod shows fast convergence
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thanks to the use of Lagrange multipliers to enforce the imetnstraints. This allows the
BALM algorithm to solve large-scale problems. One importadvantage of the BALM algo-
rithm is its modularity, only a projection onto the manifaldfined by the problem constraints
is required to apply it to a new bi-linear problem. It is howesa global method, and operates in
batch, after image acquisition has taken place. For thsorean Chapter 5 we moved our focus

of research to sequential estimation.

6.3 The challenge of real-time estimation

At the time of writing, our sequential estimation method aéms the only attempt to solve the
non-rigid structure from motion problem on-line, withoubpessing the whole sequence. The
key insight in this algorithm which allows us to do this is cduple the problem of estimating
time-varying parameters from that of model building. Thi®{process approach has already
been exploited successfully in rigid camera localisatind mapping.

Our novel 3D-implicit low-rank formulation makes it easydequentially increase the rank of
the model without recomputing earlier frames. This is patérly desirable in non-rigid struc-
ture form motion, when the size of the model (the number ofsbstzapeK) is unknown. The
modelling is guided by the reprojection error. This way afkagrowing allows the automatic
detection of new deformation modes. We estimate the new hirodl®o steps, a linear initiali-
sation followed by a non-linear refinement. Our strategyisantly to re-estimate camera and
shape parameters when the model is changed. In this casdrgmass could be estimated in
parallel to the new frames to improve speed.

We demonstrate our method on a MATLAB implementation thatemily averages at 1 frame
per second, one of the future works will be to rewrite this modtwith an optimised C++ im-
plementation with the aim of achieving about 15 frames pepisé, which would make the
run-time of non-rigid structure from motion on par with cemt real-time methods for rigid
SfM and SLAM (simultaneous localisation and mapping). Weehaeleased code to promote

progress in this area.
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In order for us to use reprojection error as a measure of fitfeeOur model, we require reliable
tracks. In Chapter 5, we propose the joint estimation ofui@apoints tracks and time-varying

model parameters. The applicability of this method was detrated in a synthetic sequence.

6.4 Future work

The field of non-rigid structure from motion is maturing, lvé wealth of well-understood meth-
ods and algorithms. Despite all efforts, no method exigigyahat can provide a global opti-

mum for both shape and motion estimation, as we have showmadh-linearities inherent in

non-rigid reconstruction make this difficult. We proposetbavex relaxation for the projection

on the motion manifold. Further work towards the goal of mygtiity should take on the problem

of robust estimation in presence of high noise and outlessyell as dealing with missing data.
On-line estimation of deformable 3D models raises a numbehallenges for future research.
First, the sequential frame-by-frame model building neetiable tracking data. It is possible
to improve on the tracking process by using feedback fromnbeel update in the tracking

stage. Further research is required to make the featuddrtgaprocess robust to outliers, such
as features that do not fit the model well. Further, while esidns result in missing data in a
batch processing, in the case of sequential estimationy wbime points disappear out of view,
other new points appear and can be tracked. Successfutlypoiating the new points into an
existing model is another direction of research. The newtponust be observed reliably for a
number of frames before being incorporated in the modele®iein could be guided both by
the current model and by a prediction of camera pose acaptdiits current velocity.

Finally, human motion can be seen as a combination of difftedeformable, articulated, and
rigid parts. A hierarchical model building would be a proimisapproach to recover human mo-
tion from a video sequence, by reconstructing the undeglgigid motion as a coarse estimation,

the articulated links in a finer level, and a non-rigid motiorcapture detailed 3D movements.
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Appendix A

Optimization, deformable case

ForE e R%%6, our aim is to compute

min q'Eq, (A.1)
q=veqQ)

whereQ € R3*? runs through Stiefel matrices, i.@'Q = I,.,. We rewrite A.1) as

min Tr(Eqq') = minTr(EX A.2
o min  Tr(Bqq’) = minTr(EX), (A2)
: : . A B . o
whereSis the set of all real symmetricx66 matricesk = , with A € R3*3, satisfying
BT ¢
X=0, (A.3)
Tr(A) =Tr(C)=1, Tr(B)=0, (A.4)

rankx = 1. (A.5)
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This problem, has a nonconvex constraint (raek1). Since the cost function is linear we have

minTr(EX) = min Tr(EX A.6
min (EX) Lming (EX), (A.6)

where cqS) is the convex hull of the seb Here, we compute the convex hull (tight convex

relaxation) cqS) as all the real symmetric 66 matricexX that satisfy

X =0, (A.7)
Tr(A) =Tr(C)=1, Tr(B)=0, (A.8)
Isx3—A—C w
with w given by
b3 — b3
W= b3 —bi3 (A.10)
b12— by

whereB = [bj;|. Moreover, this set is defined only by linear matrix inegjigdi (LMI). Hence, we
have that our problem?(1) is equivalent to finding the minimum of a linear function (#X)) on

a convex set (d®)), which is given only by LMI A.7)-(A.9). Thus, the optimization problem
in the right-hand side of (23) is a Semi-Definite Program (3By using SeDuMi 103, we
quickly obtain the optimal matrix for (A.6). In 100% of experiments that we ran, the optimal
matrix X was always of rank 1. By factorizirgy= qq', we obtain the optimabtiefel matrixas

Q = vec 1(q). For more details the reader can referié][
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Appendix B

Convex relaxation, Articulated Case

Problem statement
We consider the optimization problem

maximize f(u) . (B.1)

subjectto |jul| <1

where the variable to optimize isc R?. The objective function is

1/2
f(u):Hu]]2+2uTx+2H(l—uuT> 2y (B.2)

+2H<| —uuT)l/Zz

N N

The problem data is the triple
(X,Y,Z) € R? x R?*2 x R?*2,

For ann x n matrix X, the symbol|X||y = 01(X) + - - - + gn(X) denotes its nuclear norm.
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Problem reformulation

We start by noting thatH.1) is equivalent to maximizing

g(u) = HuH2+2\uTx]+2H(I —uuT>l/2Y (B.3)

1/2
N+2H<I —uuT) Z

N

Note thatf(u) < g(u) for all feasibleu. However, at a global maximizer oB(1), sayu*, we
must have(u*) Tx > 0. Thus,(u*) Tx = |(u*) Tx| and f (u*) = g(u*).

We rewriteg(u) as

1/2 1/2
g(u) = HuH2+2\/uTxxTu+2H (| . uuT) Y +2H (| . uuT> z (B.4)
N N
Moreover, for a 2« 2 matrix X, there holds
2

Xy = /X2 +2|detx) ®5)

where||X|| = /tr (XXT) denotes the Frobenius normf Using B.5) in (B.4) gives

gu) = [uf+2vVuTxxTu+ 2\/HYH2— uTYYTu+2/detlY)|v/1—uTu+
+2\/||ZH2—uTZZTu+2|del(Z)|\/l—uTu. (B.6)

Now, we distinguish two cases:

1. The matricel,,YYT,ZZ"} are linearly independent

2. The matriceql,,YY',ZZ"} are linearly dependent

Case 1 is probably the one occurring the most in practiceillltemd do a semidefinite program

(SDP). Case 2 is easier. It will lead to a 2nd order cone prod&OCP).
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Case 1:{l,,YY",ZZ"} are linearly independent

In this case, the matricgd,,YY',ZZ"} form a basis for the three-dimensional vector space of

2 x 2 matrices. This means that there exist$, y € R such that

xx' = aly+BYY' +yzZ'. (B.7)

Using B.7) in (B.6) yields

gu = Jul®+ 2\/auTu+BuTYYTu+ ywlzzmu+

+2\/HY||2 —uTYYTu+2/detY)[v/1-uTu+

+2\/HZ\|2—UTZZTU+ 2|det(Z)[v/1—uTu. (B.8)

Our optimization problem is
maximize g(u) (B.9)

subjectto |jul| <1

with g(u) as in B.8). In (B.9), the variable to optimize is € R?. Problem B.9) can be rewritten

as
maximize ¢@(a,b,c) (B.10)
subjectto (a,b,c)eS
a<l
where
S:={(abyc): I ra=u"ub=u"YY u c=u"zZ"u},
and

p(abc) = at2y/aa+Bbryc+2y/[Y[?—b+2detY)vVi—a+
+2/|ZIP - c+2/detz)Vi-a
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is a concave function.

We have the inclusio® C 7 where

T:={(ab,c) : Juso: a=tr(U), b:tr<YYTU) C=tr (zzTu>}.

Using 7 instead ofS in (B.10) gives the convex problem

maximize @(a,b,c) . (B.11)

subjectto a=tr(U)

b=tr(YY'U)
c=tr(ZZ'U)
Uu-o
a<l
LetU* be a solution of 8.11). Let
. )\1 0 UI
o= o v
0 )\2 UZT

be an eigenvalue decomposition, whére> A,. A suboptimal solution forB.1) is u* =

++/A1u1, where the sign is chosen such tkau* > 0.

Case 2:{l,,YY'",ZZ"} are linearly dependent

We assume th&Z' can be written as a linear combinationlgfandY Y, say,

ZZ" =al,+BYY',



211

for somea, 8 € R. Our problem becomes

maximize ¢@(a,b,c) (B.12)
subjectto (a,b,c) €S

a<l

where

S:= {(a,b,c) :3y:a=u'ub=u'YY" c= uTxxTu},

and

p(ab,c) = a+2/c+ 2\/HYH2 —b+2|detY)|v1—a+
+2,/|1Z|P - aa— Bb+2|deiz)|vI-a

is a concave function.

We have the inclusio® C 7 where

T :={(ab,c) : Juso:a=tr(U),b=tr (YYTU>,C:tr (xxTU>}.

Using7 instead ofS in (B.12) gives the convex problem

maximize @(a,b,c) . (B.13)

subjectto a=tr(U)

b=tr(YY'U)
c=tr(xx"U)
U=0

a<l
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It can be shown thaB.13) can be rewritten as a SOCP. WLt be a solution of 8.13). Let

N )\1 0 U;Lr
oo o
0 )\2 UZT

be an eigenvalue decomposition, where> A,. A suboptimal solution forB.1) is u* =

++/A1u1, where the sign is chosen such tkau* > 0.
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