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Abstract

This thesis addresses the problem of deformable and articulatedstructure from motionfrom
monocular uncalibrated video sequences. Structure from motion is defined as the problem of
recovering information about the 3D structure of scenes imaged by a camera in a video sequence.
Our study aims at the challenging problem of non-rigid shapes (e.g. a beating heart or a smiling
face). Non-rigid structures appear constantly in our everyday life, think of a bicep curling, a
torso twisting or a smiling face. Our research seeks a general method to perform 3D shape
recovery purely from data, without having to rely on a pre-computed model or training data.
Open problems in the field are the difficulty of the non-linearestimation, the lack of a real-time
system, large amounts of missing data in real-world video sequences, measurement noise and
strong deformations. Solving these problems would take us far beyond the current state of the
art in non-rigid structure from motion. This dissertation presents our contributions in the field
of non-rigid structure from motion, detailing a novel algorithm that enforces the exact metric
structure of the problem at each step of the minimisation by projecting the motion matrices
onto the correct deformable or articulated metricmotion manifoldsrespectively. An important
advantage of this new algorithm is its ability to handle missing data which becomes crucial
when dealing with real video sequences. We present a genericbilinear estimation framework,
which improves convergence and makes use of the manifold constraints. Finally, we demonstrate
a sequential, frame-by-frame estimation algorithm, whichprovides a 3D model and camera
parameters for each video frame, while simultaneously building a model of object deformations.
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Chapter 1

Introduction

1.1 Introduction

The recovery of 3D scene information from video sequences has long been at the core of com-

puter vision. In recent years a great variety of algorithms and techniques have been proposed

for the reconstruction of 3D shape from uncalibrated video sequences. It is possible in prin-

ciple to perform such reconstructions from an image pair taken by two cameras from different

viewpoints, or by a single moving camera. In the case of a single camera (monocularvideo

sequences), if the motion of the camera were known (i.e. if itis attached to a precisely-driven

robot arm) then calculating depth would be a simple matter oftriangulation. In the more general

uncalibrated case, the camera motion itself is also uncertain. The problem of combined infer-

ence of the 3D motion of a camera and the geometry of the scene it views is generally known as

Structure from Motion(SFM).

The fundamental assumption which has allowed solutions to the structure from motion problem

to be achieved is that of scene rigidity. Our research is aimed at the more challenging problem

of non-rigid reconstruction from a video sequence taken by asingle camera. This problem is

known asNon-Rigid Structure from Motion(NRSfM). The goal of NRSfM is to infer the 3D
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shape of a deformable or articulated object when the camera position and its internal parameters

are all unknown.

Progress in this field has been primarily motivated by its wide-ranging applications in areas such

as human-robot and human-computer interaction, surveillance, athletic performance analysis,

medical imaging, computer animation for the games and film industries and augmented reality.

In the case of human motion, motion capture systems exist which can recover body movements

using multiple synchronised cameras. However these systems often rely on markers, for example

reflective surfaces that have to be attached to the body. Other alternatives include the use of

motion sensors, which are costly and technically complex, furthermore the person must wear

them, which results in unnatural movements.

Articulated motion recovery has also been formulated as a structure from motion problem. The

goal is to perform 3D reconstruction of the segments of an articulated body, together with the

position of rotation axis and joint angles. The capture of articulated motion using markers is

not viable for commercial applications such as video-games, or human robot interaction. The

animation industry is moving away from markers based solutions and embracing marker-less

approaches.

Our research focuses specifically on recovering 3D shape of deformable and articulated objects

from video sequences acquired with a single camera. Moreover, we seek methods able to recover

the shape of a generic object, when no pre-defined 3D model is available. We adopt a data-driven

approach, in which both 3D shape and deformation models are obtained purely from data.

1.2 The rigid case

Structure from motion (SFM) can be defined as the problem of estimating both the motion of a

camera and the 3D geometry of the scene it views solely from a sequence of images. Commonly,

SFM methods aim at inferring 3D structure purely from 2D correspondences of feature points

established throughout a sequence. When two (or more) calibrated views of the same object are

available, 3D information can be recovered via triangulation [50]. In most interesting scenarios,
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however, calibration is not available: the camera motion and its internal parameters have to

be estimated from feature correspondences. It was shown by Longuet-Higgins [65] that such

reconstruction is possible for a single camera taking images of a rigid object from different

locations. Self-calibration methods have been devised which allow camera parameters to change

during the video sequence following on from the seminal workof Faugeraset al. [40].

The factorisation method proposed by Tomasi and Kanade [110] has been one of the most influ-

ential works in structure from motion. It recovers 3D shape form a monocular video sequence

assuming an orthographic camera projection model. The orthographic camera model is an ap-

proximation of the more general perspective camera model, suitable when the relief of the object

is small compared to its distance from the camera. The use of an affine camera model allows

the factorisation algorithm to reconstruct the 3D structure and camera motion consistent with

feature tracking data in all the frames with a linear method.

The factorisation method was extended to the case of multiple independent moving objects by

Costeira and Kanade [28]. A factorisation approach is possible also in the case of the projective

camera model as shown by Sturm and Triggs [104]. Perspective reconstruction was achieved by

defining and computing an additional unknown for each point,called theperspective depth.

The reconstruction of rigid scenes is now a well understood problem, with a wide variety of real-

world applications in many different areas from robot navigation to cinema post-production. The

success of the factorisation algorithm for rigid SFM due to its simplicity sparked interest in the

community to extend it to the case of non-rigid motion.

Non-rigid structure from motion seeks to relax the rigidityassumption and reconstruct the time-

varying 3D shape of an object. In this thesis we focus on the challenging problem of recovering

deformable and articulated objects from video sequences taken by a single camera. Both the

scene structure and camera movements are not known beforehand. We seek to model generic

objects, with a goal of recovering both a model for the deformations and the non-rigid 3D shape

purely from 2D correspondences.
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T1

T0

(a) Rigid case

T1

S1

T0

S0

(b) Deformable case

Figure 1.1: Triangulation from two frames of a video sequence: The camera moves around the
object. If the object is rigid the triangulation problem is well posed, but it is under constrained
if the object is deforming.

1.3 Non Rigid Structure from Motion

In the case where the shape of the object in the scene changes over time, reconstructing the

3D position of a feature point from two different images is anill-posed problem, as shown in

Figure1.1. An object is deformable if relative point positions are notconstant during the video

sequence. Take for example a smiling face or a beating heart,feature points tracked on the

surface of such objects do not move rigidly in space. This simple consideration makes it clear

that the problem is equivalent to reconstructing from a single image. The non-rigid structure

from motion problem, is thus an ill-posed problem by its verynature.

The key insight that has allowed the reconstruction of deformable scenes is the assumption that

deformations are not arbitrary: points in 3D move together under the effect of physical forces.

For most real world objects, the deformations can be modelled as small displacements from a

mean shape. Figure1.2 shows the popular low-rank basis shapes model introduced byBregler

et al. [15], where the shape configuration is explained as a linear combination of a set of modes

of deformation, or bases, each weighted by time-varying coefficients. This model has proven

successful in reconstructing many real-world objects, in afactorisation framework, where both

the model and the coefficients are unknown. This linear modelallows a factorisation approach
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Figure 1.2: Example of low-rank basis shapes model: the average rigid shape can deform
according to the linear combination of a fixed set of deformation modes. The figure shows
directions where the deformable points can move, with a positive or negative coefficient applied
to the basis.

for the non-rigid structure from motion problem.

Non-rigid factorisation uses the assumption of a low-rank basis shapes model to express the

feature point tracks as the product of a motion matrix, expressing time-varying camera pose and

model coefficients, with a shape matrix, encoding the possible modes of deformation. Unfortu-

nately, this approach results in a non-linear estimation problem. The non-linear constraints on

camera pose, together with the non-linearities induced by the mixing of shape coefficients and

camera parameters make the estimation problem difficult. Most of the research in this field is

aimed at solving the estimation problem. Bregleret al. [15] formulate the reconstruction in a

linear way, by computing an affine decomposition using singular value decomposition (SVD)

and then computing an invertible upgrade matrix to enforce the constraints on the camera matri-

ces (calledmetric constraints). It was shown by Brand [12] that such linear methods are prone

to fail in the presence of noise. Xiaoet al. [128] show theoretically that linear methods would

fail to cope with noise, due to the process of computing an upgrade matrix. They show that

more constraints are needed to be able to solve the problem inclosed-form, and propose a linear

method to exploit such constraints. Also, a closed-form solution based on SVD does not provide

a result for the case of missing data: when 2D feature points go out of view in the image, or

when features are occluded or not tracked successfully. Various approaches that do not compute

an upgrade matrix try to solve the non-linear estimation problem directly [112, 1, 35, 36, 8, 111].

However, they also make use of additional constraints in order obtain robust solutions. Imposing



20 Chapter 1. Introduction

Figure 1.3: Motion capture with reflective markers require expensive infrared cameras and com-
plicated setup

for example smoothness priors [112, 1, 36], or statistical priors [111, 8], or priors on the rigid

component [35]. Imposing such additional constraints allows solutions to be robust to noise and

missing data.

Our first contribution deals with the difficulty of imposing the metric constraints. We propose

an algorithm to enforce the metric constraints without computing an invertible upgrade matrix.

We demonstrate its robustness to noise and missing data in the measurements, even without the

imposition of additional smoothness or statistical priors. We contribute a speed-up computation

method that makes use of smoothness priors, when such prior is applicable. We extended this

idea into a general framework for bilinear estimation with manifold constraints. In addition, we

contribute a novel formulation suitable for sequential frame-by-frame non-rigid structure from

motion, which breaks free from the common requirement of allcurrent methods of processing

the data in batch.
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1.4 Motivation

The pursue of this research is motivated by recent progress in the areas of deformable and artic-

ulated motion recovery and by the need for model free and marker free approaches. The human

body shows great variety of deformations and articulated motion, research on human motion

recovery is of great interest and with a very active researchcommunity.

With no doubt success in solving open problems in this field would lead to many useful appli-

cations, marker-less motion tracking for computer graphics, video analysis for various applica-

tions: from medical to surveillance. We also see a possible application of this project in the

field of humanoid robotics, where the recovery of the 3D humanmotion can be used to train a

humanoid robot, controlled by the movements of a human operator. Finally, we see applications

in the field of human-robot and robot-robot interaction, where the motion data can be used to

coordinate the work of the interacting agents.

We propose novel algorithms to advance the field of non-rigidstructure from motion to overcome

the current challenges such as the ambiguities in the non-linear estimation, the lack of a real-

time system, and the ability to deal with large amounts of missing data in real-world video

sequences. Those efforts are also directed at eliminating the infrared markers currently used in

motion capture systems available today. Those systems are not only very expensive and difficult

to use, they also require a complicated setup, as can be seen in Figure1.3. The person has to

wear special clothes and put reflective markers on it that will be tracked using infrared cameras.

In the example in the Figure, the system is composed of 12 cameras. Our research aims at

finding a solution to the more challenging problem of monocular reconstruction. In many cases

only one camera is available, for example, in post-processing movies and television recordings,

in laptops and digital phones, consumer cameras, and in medical imaging such as laparoscopy,

where only one camera is available to capture images.
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Figure 1.4: Motion capture systems applied in the movie industry: infrared markers are used
together with a multi-camera system of infrared cameras to track the position of the body, while
a camera focused on the face captures facial expressions, tobe re-targeted on the 3D animation
character. Images copyright Twentieth Century Fox.

Figure 1.5: Medical imaging applications of non-rigid structure from motion vary from robotic
surgery (Left), brain MRI scan (Middle), to laparoscopy (Right). Images copyright (left to
right) Intuitive Surgical, Massachusetts General Hospital Center for Morphometric Analysis and
Paodavy Medical Services.

1.5 Applications

In recent years, the movie industry has shown great interestin the techniques and methods that

computer vision provides for reconstructing the shape and motion of deformable and articulated

objects. One of the motivations for motion capture in the movie industry lies in the application

called augmented reality. The technique consists in capturing camera motion in order to insert

a virtual object in the scene, such as rendering a computer graphics model onto the image, as

shown in Figure1.6. The knowledge of the camera position is crucial for the virtual object to

perform a realistic trajectory in the final movie. Another rationale for capturing motion per-
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Figure 1.6: Another example of motion capture system applied to movies. This augmented
reality application consist in capturing the body movementof the actors with the help of infrared
markers. Such movements are augmented with a series of 3D animation models. All occlusions
must be handled manually by the graphic artists. Images copyright Walt Disney Pictures.

formed by actors is motion re-targeting, as shown in Figure1.4. The work by graphic artists

to animate the virtual character is greatly reduced, if the facial expressions of the actors are

captured.

Motion re-targeting is not only useful for movies, but also for robotics applications. Figure1.7

shows an example application of motion re-targeting. Jointangles describing a body posture

are captured from gyroscopes attached to the body, the capture angles can be replicated by the

motors of a humanoid robot. This is particularly useful in machine learning scenarios, where an

operation could be performed by a human multiple times, allowing a model for the operation to

be built, and given to the robot motors for execution.

Figure1.5shows possible medical applications of this research. A robot surgeon could provide

detailed 3D models of moving tissues or organs using video cameras attached to the robotic

arms. The analysis of brain with magnetic resonance imaging(MRI) can be automated by

building a model of the variations that exist among individuals, which can be thought as a non-

rigid estimation problem. A medical scenario where only onecamera is available to analyse

deformable tissues is laparoscopy, NRSfM can provide the 3Dshape and size of the organs

where the surgeon is operating. Figure1.8shows an example of augmented reality without any
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Figure 1.7: Left: Example of motion capture sensors, Right:Humanoid robot replicating cap-
tured motion

Acquisition                           Feature tracking                        Non-rigid pose and camera                  Augment 

                                                                                                            estimation

Figure 1.8: Pipeline of an augmented reality application. Following image acquisition, feature
point tracking detects correspondences between image points. Non-rigid structure from motion
can estimate the 3D shape and camera position for every frame. The final step is the insertion of
a virtual object, which will follow the movement that has been captured.

markers, using a non-rigid structure from motion approach.The video is analysed to detect

feature correspondences between frames, those features are fed to a non-rigid structure from

motion method to estimate 3D shape and camera position at every frame. Capturing the camera

movement allows the insertion of virtual objects in the scene. Capturing deformations also

allows computer generated 3D graphics to follow a realisticmotion.

1.6 Contributions

In our work we explore a new unified approach to deformable andarticulated structure from

motion. None of the methods proposed so far has focused on thecomputation of motion matrices

that satisfy the metric constraints exactly, but only in a least squares sense. Therefore, the



1.6. Contributions 25

recovered matrices are not guaranteed to satisfy the constraints when data is affected by noise

or missing tracks. Most non-linear methods enforce metric constraints through parametrisation.

Although this ensures the metric constraints are satisfied,additional priors are usually required

in order to avoid local minima, and to improve robustness to noise. We show that dealing with

metric constraints through projection can provide state-of-the art results without using additional

priors.

• We contribute an algorithm that provides the global optimumin projecting a candidate

motion matrix into the manifold of metric solutions. With this approach, we enforce the

non-linear constraints on the motion matrices. Similarly,in the case of articulated shapes,

we efficiently compute the joints, given the non-linear constraints on the motion of the

two bodies. The result is an algorithm where the recovered motion matrices have the

exact orthogonality constraints imposed. One of the main advantages of this approach is

the ability to handle a large amount of missing data, as we demonstrate experimentally.

• We proposed a novel optimisation method based on augmented Lagrange multipliers

where the manifold constraints are decoupled from the bilinear estimation problem, which

is common in articulated, rigid, and non-rigid structure from motion. In addition, the pro-

posed optimisation scheme obtains better speed and convergence compared to other state

of the art methods, and is not limited to those problems. In fact, bilinear estimation with

manifold constraints is a problem that appears frequently in computer vision and in other

fields.

• We propose a novel implicit model and an algorithm designed to use video images as they

become available, in a sequential estimation framework. A 3D model of the non-rigid

object in the scene is obtained for each image frame, while simultaneously building and

updating a model for the deformations. This new technique moves the non-rigid structure

from motion problem in the direction of real-time estimation of 3D shape, camera param-

eters, and modelling of non-rigid objects, from a monocularvideo sequence. To the best
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of our knowledge, we present the first method that can model 3Dobjects frame by frame,

without having to analyse the entire sequence, and without relying on any a-priori model

of the scene.

The contributions of this thesis are presented as follows. Chapter 2 will discuss the literature on

3D shape recovery from monocular video, discussing the widevariety of methods that have been

proposed for deformable and articulated reconstruction, focusing on factorisation approaches to

structure from motion methods. We provide a taxonomy of methods for non-rigid shape recon-

struction where we divide approaches according to the shapemodel used and to the optimisation

technique employed to estimate the parameters. Chapter 3 details our Metric Projections algo-

rithm, an alternating approach to solve for non-rigid 3D shape and motion, associated with a

globally optimal projection step of the motion matrices onto the manifold of metric constraints.

Chapter 4 describes a generalised framework for solving a large class of bilinear problems in

computer vision with manifold constraints. Chapter 5 describes our new sequential approach to

non-rigid structure from motion in which the 3D model is built sequentially in a frame-to-frame

fashion. Finally, Chapter 6 presents the closing discussion of this dissertation, introducing pos-

sibilities for further work to advance the field of non-rigidstructure from motion.
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Chapter 2

Literature Review

The recovery of 3D structure information from image sequences is a fundamental problem in

computer vision. The goal is to estimate the 3D coordinates of scene points captured on video.

This problem has been largely studied and many viable solutions have been found in the case

where the scene is rigid. Our research focuses on the more difficult problem of 3D recovery when

the object in the video is non-rigid, that is, its shape can change through time by deforming or

articulating. We seek 3D models to express the time-varyingshape of the objects in the image.

The video is acquired by a camera, which can be seen as a projective device: each point in space

is projected onto a point on the image plane. Often the position and orientation of the camera and

its internal parameters are also unknown, and thus need to beestimated. The goal of uncalibrated

3D structure recovery is formulated as the joint estimationof the 3D position of the points in

space and the pose and internal parameters of the camera. This problem is known as ”Structure-

from-Motion”. This chapter discusses the literature in thefield of 3D reconstruction from image

sequences focusing on the case of non-rigid shape recovery.We will pay special attention to

the class of methods central to our research, namely factorisation approaches, starting with the

well established results on rigid shapes and progressing tocurrent research in deformable and
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articulated structure.

2.1 Approaches to 3D shape reconstruction

A vast amount of different techniques have been proposed in computer vision to deal with the

problem of reconstructing 3D shapes from video under different conditions such as different

number of cameras or types of scenes, known or unknown calibration, etc. Different visual

cues have been used in the literature to infer the shape information present in images. Such

inference can be based on shading, silhouettes, texture, focus, motion, or other visual cues. In

this dissertation we are interested inStructure from Motionapproaches which use the motion

present in the image as the only cue to estimate the 3D scene geometry and the motion of the

camera.

This chapter is organised as follows. First we give an overview of techniques and methods that

use cues other than motion to recover shape information froma single image or a monocular

video sequence. We then discuss research inStructure from Motionfocusing on the factorisa-

tion algorithm for rigid scenes, given its significance to non-rigid structure from motion as the

approach that allowed its first formulation. We will then review the literature in non-rigid struc-

ture from motion providing a taxonomy of the approaches proposed so far, classifying them

according to the deformation models and to the optimisationtechniques they use. We focus

on methods that have followed the prevalent factorisation formulation using the low rank de-

formable shape model and emergent techniques that tackle the problem using alternative shape

models, optimisation techniques or different priors.

2.1.1 Shape-from-X

Many cues in the image are directly related to the 3D shape of the objects in the scene. The

wide array of methods for performing shape recovery is generically known as “Shape-from-X”,

where “X” can in turn be “Shading”, “Texture”, “Silhouettes”, “Focus” or others. These methods

are fundamentally different from theStructure from Motionapproaches we will study in detail
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because they use cues other than motion to infer the 3D structure of the scene.

Shape from Shadinguses the light source location, and surface reflectance (usually assumed

to be Lambertian) to recover surface normals. This method isbiologically inspired: shading

conveys depth information to the observer of a painting. Lambertian surfaces reflect light in all

directions, therefore the brightness of a surface point canbe expressed as the scalar product of

the light direction vector and the surface normal vector at that point, multiplied by the surface

albedo, and a constant representing the intensity of the light source. Initially formulated by Horn

[57] in 1970, it is now a mature field with a rich literature [135].

In Photometric Stereo[126] the surface normals and reflectance properties of an objectcan be

recovered using multiple images taken from the same viewpoint but acquired under variable

lighting conditions. When a Lambertian surface model and single point-like light sources are

assumed in each image, three or more images taken with different lighting direction provide

enough constraints to recover the surface normals and the light direction vector. Basriet al. [10]

recently proposed a solution to the case of general, unknownand unconstrained lighting, relaxing

the assumption that a single point-like light source shouldbe present in each image. This work is

based on the result that general lighting conditions can be represented using low order spherical

harmonics and allows to frame photometric-stereo as a factorisation problem with constraints on

one of the factors.

Photometric Stereo techniques normally assume a rigid object in the scene. Hernándezet al. [53]

proposed a method for non-rigid reconstruction based on coloured lights. The acquisition setup

consists of three coloured light sources (red, green and blue) with different lighting directions.

The three colour channels of each image provide enough constraints to reconstruct the time-

varying 3D shape. Surface normals are recovered for each frame and combined with 2D optical

flow to register them over time to generate a single deforming3D surface.

Shape from Silhouettes, introduced by Laurentini [62], estimates the shape of an object from

multiple images of its silhouette taken from different viewpoints. Assuming each view is taken

with a calibrated camera, each 2D silhouette can be back-projected to give a generalised cone
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or a volume in which the 3D object must lie. The intersection of the back-projected silhouettes

taken from different viewpoints provides a 3D reconstruction of the object known as the visual

hull, which is in fact a bound for the true geometry of the 3D object. Usually formulated for rigid

objects, Cheunget al. [22] were the first to extend this idea to articulated shapes, in particular to

human body pose.

Considered a generalisation of shape from silhouettes techniques, theSpace Carvingalgorithm,

introduced by Kutulakos and Seitz [61], can perform the reconstruction of an arbitrarily shaped

3D scene viewed by a set of calibrated cameras placed at arbitrary positions when no information

is available about any specific features or their correspondence. The volume is represented as

a set of voxels in 3D space and the algorithm iterativelycarvesout the shape of the scene by

removing voxels that are not photo-consistent with the images at each iteration. A voxel is photo-

consistent when the colour predicted by the radiance function is the same in all the images in

which it is visible. TheSpace Carvingalgorithm reconstructs thephoto-hullof a set of images,

also defined as theleast commitment reconstruction, that is, a 3D reconstruction photo-consistent

with the images that does not make any assumptions about the geometry of the scene.

2.2 Rigid Structure from Motion

Structure from motion (SfM) or multi-view reconstruction can be defined as the problem of

combined inference of the motion of a camera and the 3D geometry of the scene from a sequence

of uncalibrated images using as input only the 2D image coordinates of a number of features

which can be matched through the sequence. The fundamental assumption which has allowed

robust solutions to be achieved is that of scene rigidity: ifobjects are known not to change or

deform, their shapes are invariant entities of which estimates can be gradually refined. Large

numbers of well-localised features of high image salience —usually “corner” points or lines

— are detected in each image of a video sequence. The featuresthat are associated with the

same 3D point in space are then matched between each pair of consecutive (or close) video

frames. The assumption of rigidity in the scene is then used to assert that the change in image
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position of features from one frame to the next is due purely to the movement of the camera

relative to the unknown but static 3D geometry or “structure” of the features. This translates

into mathematical constraints on the parameters describing camera motion, and many feature

matches provide enough constraint equations for solutionsfor both the motion and the locations

of the 3D features to be obtained.

The estimation of these 2D correspondences in an image sequence remains an open problem in

computer vision, with a wide range of approaches [134, 101, 67]. In this thesis we will not focus

on solving the matching problem and instead we will make the assumption that matching data is

available to perform 3D reconstruction.

Figure 2.1: Structure from motion (SfM) pipeline: from 2D matching to 3D modelling. Results
of 3D reconstruction of a large building and camera pose estimation from a sequence of images
with varying camera intrinsics. From Pollefeys and Van Gool[92].

2.2.1 Uncalibrated case

The recovery of 3D information from 2D feature correspondences in an image sequence can be

performed via triangulation when two (or more) calibrated views of the same scene are available

[50]. A more interesting and practical scenario is when the camera used is uncalibrated: its

internal parameters such as the focal length, etc. are not known in advance. These techniques

which work even when the camera used is uncalibrated are known as self-calibration algorithms

in the literature and have provided the flexibility of being applicable even in cases where little

is known about the details of image capture. In early work, Ullman [118] first proved that
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simultaneous camera calibration and 3D reconstruction is possible in the case of rigid scenes.

This was then followed by the seminal work of Faugeraset al. [73] which established the theory

of self-calibration and provided practical algorithms. The simple assumption that the camera

used has fixed focal length over time provided enough information for self-calibration, provided

that the camera motion is “general” — it exercises all of its degrees of freedom [51, 115].

Research in structure from motion in the 90′swas then dominated by providing solutions to this

problem of joint calibration and 3D reconstruction adjusting it to specific scenarios that needed

special solutions such as when the camera is known only to rotate about its optical centre [52, 3];

only to translate without rotation [75]; or allowing it to deal with the most flexible case of a

camera equipped with a zoom lens so its focal length could vary [91, 56].

In [92], Pollefeys and Van Gool provided one of the first complete structure from motion (SfM)

pipelines: from 2D matching to 3D reconstruction of a mesh model of the scene from long

sequences acquired with an hand-held uncalibrated zoomingcamera with varying intrinsics.

The reconstruction was built incrementally: a pair of images was first chosen and a projective

3D reconstruction obtained. For each new image, the camera pose was estimated relative to this

reconstruction and the reconstruction updated with the newdata. The final reconstruction was

upgraded to metric using their self-calibration algorithmthat can deal with varying intrinsics [91]

followed by a final non-linear refinement of all the parameters. This pipeline was successfully

applied to recovering 3D models of ruins in archaeological sites or to large buildings as shown

in Figure2.1.

2.2.2 Bundle adjustment

Most 3D reconstruction methods ultimately rely on a final large non-linear optimisation to pro-

vide a joint refinement of the 3D coordinates of all the observed points, as well as the camera

parameters (pose and calibration) for all the frames. This is achieved by minimising the squared

image reprojection error between the image locations of observed and predicted image points

in all the views in which they are visible. Optimising image reprojection error gives a maxi-
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mum likelihood estimate of the parameters, provided the noise in the image measurements is

Gaussian. This joint optimisation of 3D structure and camera parameters is known asbundle ad-

justmentin the literature [116] and was initially conceived in the field of photogrammetry during

the 50s. Naturally, bundle adjustment requires a good initial estimate of the 3D structure, camera

pose and calibration parameters for it to converge to the global minimum and not be trapped in

a local one. Much of the research has therefore focused on providing closed form solutions both

in the calibrated [81] and the uncalibrated case [91] that provide good initial estimates to the

non-linear optimisation.

Typical structure from motion problems might involve thousands of 3D points in hundreds of

frames which amounts to a very large number of parameters to be estimated. The Gauss-Newton

optimisation generally used for this non-linear least-squares problem requires the inversion of

a Hessian matrix that has the same dimensions as the number ofunknowns. Since this number

can be huge, bundle adjustment algorithms make use of the sparse nature of this matrix to make

the problem tractable. Each error term associated with a 2D observation only depends on a very

small number of variables: the 3D coordinates of the point and the camera parameters of the

frames in which it is visible. Fortunately, the inversion ofthe Hessian can be hugely speeded up

by taking advantage of its block diagonal nature. A public implementation of bundle adjustment

has been developed by Lourakis and Argyros [66].

Much of the recent progress in structure from motion has comefrom improving bundle adjust-

ment’s efficiency, to improve its performance and make it amenable to the real-time domain,

and its scalability, to deal with very large Internet-baseddata sets with hundreds of thousands of

images.

Reconstruction of large-scale data sets acquired from community photo-collections was demon-

strated by Snavelyet al. [102] for the purpose of image-based rendering, to provide the user

with a virtual tour of a scene. Figure2.2 shows more recent results by Agarwalet al. [4] of

3D reconstruction of famous buildings, such as the Colosseum in Rome, or even whole cities,

such as Dubrovnik, from large sets of uncalibrated photographs downloaded from Flickr. The
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system, which uses distributed matching and reconstruction algorithms and is designed to max-

imise parallelism in every stage of the pipeline, is able to process 150000 images in 24 hours on

a cluster with 500 cores. On the other hand, real-time methods have now allowed to map a small

workspace with one handheld camera [60], to quickly construct 3D models of small objects us-

ing a web-cam [87] or even to obtain live dense 3D models using current desktophardware with

GPUs [79, 80].

Figure 2.2: Large-scale reconstruction. The famous Colosseum building in Rome is recon-
structed from Fickr community photo-collections, together with other famous buildings of
Rome. Reconstruction results from the “Building Rome in a Day” project by Agarwalet al. [4]

2.2.3 Factorisation

In the common scenario when the affine camera model is a good approximation of the image

capture process — when the relief of scene objects is much smaller than their distance from

the camera — a linear algorithm that provides the Maximum Likelihood Estimate (MLE) of

both 3D structure and camera motion over long sequences can be used. Due to its elegance

and simplicity, Tomasi and Kanade’sfactorisation algorithm[109] has been one of the most

influential works in structure from motion.

The factorisation algorithm is a batch method: it stacks the2D coordinates of all the matched

features in all the frames into a largemeasurement matrix, processing all the frames simultane-

ously instead of incrementally as other SfM pipelines [92]. The key insight is that this matrix

is rank deficient (in in the case of rigid scenes the rank is at most 3) and so singular value de-
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composition can be performed to recover the shape and motioncomponents. The factorisation

algorithm is simple but powerful: it is optimal, linear (therefore fast) and processes all the frames

simultaneously. Due to all these advantages it is often usedas the initialisation to a final bundle

adjustment optimisation.

Amongst its disadvantages, the original algorithm assumesaffine cameras and requires that all

the points are viewed in all the frames. However, numerous extensions have been proposed

for the cases of para-perspective and then perspective cameras, multiple independently moving

objects; the use of various image features other than corners such as lines and line segments

and to the case of incomplete observations. Crucially to thework presented in this thesis, the

factorisation framework has also been extended to deal withnon-rigid scenes in the case of

articulated and deformable motions. Therefore, in the nextsections we describe Tomasi and

Kanade’srigid factorisation algorithm[109] in detail before we go on to describe its formulation

for non-rigid structure recovery.

Tomasi and Kanade’s factorisation algorithm

Consider the set of 2D image trajectories obtained when the points lying on the surface of a 3D

object are viewed by a moving camera. Defining the non-homogeneous coordinates of a pointj

in framei as the vectorwi j = (ui j vi j )
T we may write the measurement matrixW that gathers the

coordinates of all the points in all the views as:

W=




w11 . . . w1P

...
. . .

...

wF1 . . . wFP



=




W1

...

WF




(2.1)

whereF is the number of frames andP the number of points. This matrix of size 2F ×P

contains all the projections of feature points. It is possible to decomposeW into the product of

two matrices:
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Figure 2.3: The measurement matrix containing the projection of all points in all frames is
decomposed into a series of motion and shape components.

W= MS (2.2)

WhereM andS correspond to the motion and shape components of the measurement matrix.

MatricesM andS can be expressed as:

M=




M1

M2

...

MF




S=

[
S1 · · · SP

]
(2.3)

whereMi (i = 1. . .F) is the motion matrix relative to framei, whose size depends on the camera

model, andSj ( j = 1. . .P) encodes the 3D structure of pointj, and its size depends on the kind

of shape (for instance, rigid or non-rigid).

This decomposition was first observed and exploited by Tomasi and Kanade [110] to recover

shape of a rigid scene in the case of orthographic projection. The factorisation algorithm pro-

posed by Tomasi and Kanade [110] has been one of the most influential works in structure from

motion. Introduced in the early 90’s, it aims at recovering scene geometry and camera motion

from an image sequence of a rigid object. Assuming a set of feature points are tracked through

all the frames, ameasurement matrixcontaining the image coordinates(ui ,vi) f of every pointi
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I

Figure 2.4: Projection of the rigid set of 3D points onto one image: vectorsi, j and t encode
camera rotation and translation with respect to object coordinate system with originO in the
object centroid.

for every framef can be built. If there areP points tracked overF frames the 2F ×P matrix W

can be expressed as equation2.1.

Let sp = (Xp,Yp,Zp)
T be the coordinates of a 3D point expressed in the world reference system.

Assuming the orthographic projection model, image coordinates can be written as:

uf p = iTf (sp− t f ) vf p = jT
f (sp− t f ) (2.4)

wherei f and j f are unit vectors pointing along the scan lines and the columns of the image in

world coordinates, andt f is the vector from the origin of the world coordinate system to the

origin of the image plane at framef , as illustrated in Figure2.4. Vectorsi f and j f are the first

two rows of a 3×3 rotation matrix expressing camera rotation in the world coordinate system.

Consider the matrix̃W obtained by subtracting the centroid of the image coordinates:

ũf p = uf p−af ṽf p = vf p−bf

Whereaf =
1
P ∑P

p=1uf p andbf =
1
P ∑P

p=1 vf p. The resulting matrix is called theregistered mea-

surement matrix. One important property of this matrix shown in [110] is the rank theorem,

stating that under orthographic projection the rank of the registered measurement matrix of a

set of tracked feature points is at most three. The proof of the rank theorem is straightforward,

we report it here for its importance. The insight of Tomasi and Kanade’s method is to centre
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the world coordinate systems on the centroid of the 3D points. Recalling that 3D world coordi-

nates are aligned with the centroid of the object,1
P ∑P

q=1sq = 0. The projection equation for the

registered measurement matrix can be written as:

ũf p = uf p−af = iTf (sp− t f )−
1
P

P

∑
q=1

iTf (sq− t f ) = iTf (sp−
1
P

P

∑
q=1

sq) = iTf sp

and similarly forṽf p, obtainingũf p = iTf sp andṽf p = jT
f sp. These two sets of equations can be

stacked in matrix form as:

W̃= RS

whereR andS:

R=




iT1

jT
1

iT2

jT
2
...

iTF

jT
F




S=

[
s1 · · · sP

]

represent respectively the camera rotation and the shape estimate. Each matrixRi is a 2× 3

truncatedrotation matrix, containing only the first two rows of the camera rotation matrix. The

size of matricesR andS is 2F×3 and 3×P respectively. Because the rank of these two matrices

is at most three, the rank of their product must be at most three.

The result of the rank theorem is easily expressed in matrix form. Under an orthographic pro-

jection model, the location of feature points will be given by:
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W=




R1

R2

...

RF




[
s1 s2 · · · sP

]
+T1T (2.5)

WhereRi is the camera matrix for framei, sp = (Xp,Yp,Zp)
T is the vector of coordinates for a

point p andT is the centroid of the 2D coordinates vertically stacked forall frames. The trans-

lation column-vectorT is multiplied by a row-vector of ones to replicate the same translation

vector on all columns.

Tomasi and Kanade show that it is possible to recover both factorsR andS from the measurement

matrix. The factorisation algorithm is based on thesingular value decomposition(SVD) of the

registered measurement matrix. SVD decomposes the matrixW̃ as:

W̃= UDV
T

whereD is the diagonal matrix of singular values, andU and VT are the unitary matrices of

singular vectors. Considering only the first three singularvalues, letU′,D′,V′T be respectively

the first three columns ofU, the first 3×3 minor ofD and the first three rows ofVT . The product

U′D′V′T minimises the Frobenius norm:

minimise ||W̃−W′||F
subject to rank(W′) = 3

(2.6)

The SVD thus gives an optimal rank-3 decomposition, letR̃ = U′
√
D′ and S̃ =

√
D′V′T , this is

called an affine decomposition. As we can see in Figure2.6, the shape matrix does not represent

an Euclidean reconstruction. This is because the Euclidean3D shape (up to overall scale and

rotation) will provide the observed feature tracks only when the direction vectors the image

plane inR are orthogonal. Computing the correct camera matrices fromaffine ones is commonly
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called a metric upgrade of the reconstruction. To obtain a metric upgrade, the key observation is

that the decomposition is not unique, in fact, for any invertible matrixQ:

R̃S̃= R̃(QQ−1)S̃ = (R̃Q)(Q−1
S̃) = RS

It is possible to compute a matrixQ such that the rows of̃RQ satisfy the orthonormality con-

straints:

iTf QQ
T i f = 1 jT

f QQ
T j f = 1 iTf QQ

T j f = 0

This set of 3F equations encode themetric constraintsthat the matrixR must satisfy for the 3D

structure and the camera matrices to live in Euclidean space.

The set of orthonormality constraints is a linear system of equations on the elements of the

matrix A= QQT . Tomasi and Kanade’s algorithm solves the metric upgrade problem by linearly

computingA and then using Cholesky decomposition to obtainQ. The Cholesky decomposition

of a symmetric matrixA gives an upper triangular matrixB such thatA = BTB. The product̃RQ

andQ−1S̃ are respectively the updated motion and shape matrices, thus providing both camera

pose and 3D structure in metric coordinates.

Example

Figure2.7shows the 3D reconstruction of the well known hotel sequence1 Feature points were

tracked using theKLT 2 tracker [68, 109]. Figure2.5shows some of the frames in this sequence.

Figure2.6 shows the 3D affine shape, before the metric upgrade. Figure2.7 shows that the 3D

reconstruction has been successfully upgraded to metric, as the walls of the house appear to be

at right angles.

1http://vasc.ri.cmu.edu//idb/html/motion/hotel/index .html
2code available athttp://www.ces.clemson.edu/ ˜ stb/klt/

http://vasc.ri.cmu.edu//idb/html/motion/hotel/index.html
http://www.ces.clemson.edu/~stb/klt/
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Figure 2.5: Frames from the hotel sequence video
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Figure 2.6: Example of Affine 3D reconstruction. The Shape matrix visualised before the metric
upgrade step does not show a correct 3D structure.

Figure 2.7: Left: 3D reconstruction of the hotel sequence, Right: Top view of the reconstructed
3D shape. Walls of the house are about at right angles, as expected
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The seminal work of Tomasi and Kanade [110] introduced a solution for uncalibrated images,

assuming an orthographic camera projection model. The algorithm was later extended to the

case of multiple independently moving objects by Costeira and Kanade [28]. Kanatani and

Sugaya in [59] analyse the computational complexity of rigid 3D reconstruction and provide

algorithms for the weak-perspective and para-perspectiveprojection models. Sturm and Triggs

[104] proposed an extension of the factorisation algorithm to the case of a perspective camera.

The next section will describe their method.

Perspective Factorisation

The orthographic projection model is an approximate cameramodel that works well if the relief

of the object is small compared to its distance from the camera. The perspective projection

model is a more accurate description of the image formation process. The projection of a 3D

point X on the image plane under perspective projection is given by:

x = P




X

1


 ,where P= K[RT] (2.7)

The matrixK is the camera calibration matrix which encodes its intrinsic parameters: focal

length fx, fy, principal point(u,v)T and skewα expressed in matrix form as:

K=




fx α u

0 fy v

0 0 1




(2.8)

The rotation matrixR and the translation vectorT align theworld andcamerareference frames

andx is a 3×1 homogeneous vector such that the coordinates of the point on the image plane

wi j = (ui j vi j )
T are given by its first and second elements divided by the third:

u=
x1

x3
v=

x2

x3
(2.9)
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(a) Orthographic projection

I

z

y
C

(b) Perspective projection

Figure 2.8: a) Orthographic projection assumes rays from the object to the image planeI are
parallel. b) Perspective projection takes into account that all rays intersect at the camera centre
C.

The method proposed by Sturm and Triggs [104] for perspective reconstruction is based on

the idea of defining and computing an additional unknown for each point, called theprojective

depth. Equations2.7and2.9 imply:

λi j w̄i j = Pi




X j

1


 (2.10)

WherePi = Ki[RiTi], and the image projection is expressed in homogeneous coordinates asw̄i j =

(ui j ,vi j ,1)T . λi j is an unknown projective depth for each point in each frame. Equation2.10can

be expressed in matrix form for all points in all views as:

W̄=




λ11w̄11 . . . λ1P ¯w1P

...
.. .

...

λF1 ¯wF1 . . . λFP ¯wFP



=




P1

P2

...

PF




S= MS (2.11)

with S the 4×P matrix of 3D points in homogeneous coordinates ([XT
j 1]T ). W̄ is called the

rescaled measurement matrix. BecauseM andS have at most rank 4, such matrix is constrained

to haverank≤ 4. If all the projective depths were known, it would be possible to factorisēW into

M̃S̃ using SVD. Such factorisation would give the 3D reconstruction up to a projective transfor-

mation. Since the projective depths are unknown, the main problem of perspective factorisation
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Figure 2.9: An illustration of the basis shape model for deformable objects: The shape in each
frame in the sequence can be expressed as a linear combination of a set of fixed (but unknown)
3D basis shapes (B1, . . . ,BK) with time-varying coefficients (l1, . . . , lK).

is computing the depthsλi j . Sturm and Triggs [104] proposed the first method to extend the fac-

torisation framework to the case of perspective projection. They solve for the projective depths

by calculating the fundamental matrices and epipoles between pairs of views. The quality of

the estimation depends strongly on the estimation of the fundamental matrices, which can suf-

fer from image noise and poor initialisation. Iterative solutions have been proposed to improve

convergence [117, 114, 55]. More recently, Daiet al. [29] proposed to globally compute the

perspective weights by convex optimisation. To relax the non-convex constraint on the rank of

the scaled measurement matrix, they minimise the nuclear norm instead, leading to a convex

problem which approximates the low-rank constraints, thusobtaining a global solution.

2.3 Non-Rigid Structure from Motion

When the camera is viewing a non-rigid object, such as a moving human face talking or perform-

ing facial expressions, moving cloth, a flag waving in the wind or internal organs observed with

an endoscope, its shape can change over time. The goal of Non-Rigid Structure from Motion

(NRSfM) is to recover both the varying 3D shape of the object in each different frame, and the

pose of camera given only a set of 2D image points, matched throughout the sequence. Since

the shape of the object varies in time, the recovered 3D modelshould capture its deformations.

In landmark work, Bregleret al. [15] were the first to demonstrate that it is possible under affine

viewing conditions to infer the principal modes of deformation of a non-rigid object alongside

its 3D shape within a structure from motion estimation framework. The key assumption is
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that the 3D deformable shape can be represented as a linear combination of 3D basis shapes

which encode the main modes of deformation — a so called3D morphable model. Figure2.9

illustrates the basis shapes model. Their insight was that since this representation is linear it fits

naturally into the factorisation framework. Once more, theunderlying geometric constraints are

expressed as a rank constraint which is used to factorise themeasurement matrix to estimate the

3D pose, configuration coefficients and a pre-specified number of (unknown) 3D basis shapes.

The problem of NRSfM can also be interpreted as an unsupervised learning problem in which

the goal is to learn a low-rank 3D morphable model given only the 2D observations of the shape

deforming over time.

2.3.1 Formulation

Given a video sequence of a deformable object, points on the 3D surface of the object are pro-

jected onto a set of 2D image trajectories by a moving camera.The object’s deformability

implies that the coordinates of the 3D points can change fromframe to frame. As in the rigid

case, the non-homogeneous coordinates (w f p = (uf p vf p)
T ) of P 2D image points observed in

F frames can be collected in a measurement matrix:

W=




w11 . . . w1P

...
. . .

...

wF1 . . . wFP



=




W1

...

WF




(2.12)

Assuming orthographic projection, and denotingR f the 2×3 camera matrix for framef , the 2D

coordinates for all frames in all views are related to the varying 3D structure by:

W=




R1

. . .

RF







S1

...

SF



+T1T (2.13)

WhereS f is a 3×P matrix with the 3D coordinates of allP points in framef , andT stacks the
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Figure 2.10: Formulation of the non-rigid factorisation problem. The measurement matrix can
be decomposed into the product of a motion matrix that encodes the time-varying coefficients
and the camera matrices, and a shape matrix containing the 3Dbasis vectors for all the points.
The camera matrix is a 2×3 matrix with orthogonal rows. This formulation was introduced by
Bregleret al. [15], whose method is detailed in Section2.3.2.

camera translation vectors for all the frames. The goal of NRSfM is the joint estimation of the

camera matrices and the deformable 3D structure. However, the non-rigid structure from motion

problem is inherently under-constrained. It is clear that,if the 3D points move randomly, the

problem is ill-posed, as the 3F×P unknown 3D positions should be recovered from only 2F×P

data points. To resolve these inherent ambiguities, prior knowledge about either the shape of the

object or the nature of the deformations must be used in formulating the problem.

The Low-Rank Basis Shape model

In 2000 Bregleret al. [15] were the first to observe that introducing statistical priors on the

non-rigid 3D shape was enough to allow the non-rigid structure from motion problem to be

solved within the popular factorisation framework. The 3D shape of a deformable object does

not vary randomly over time, instead, the shape at each framecan often be expressed as a linear

combination of a set of fixed (but unknown) basis shapesB1, · · · ,BK , weighed by time-varying

coefficientsl f = [l f 1, l f 2, · · · , l f K ] (one set of coefficients for each framef ). Figure2.9illustrates

the low-rank basis shape model.



2.3. Non-Rigid Structure from Motion47

The set of 3D point coordinates that encodes the shape at eachtime framef is given by:

S f =
K

∑
d=1

l f dBd (2.14)

whereS f is the 3×P matrix that encodes the 3D coordinates of theP points on the surface of

the object in framef ; Bd are the 3×P matrices encoding the shape basis andl f d are scalars

representing the deformation weights. Note that while the deformation coefficients vary from

frame to frame to encode the non-rigid shape, the shape basisis fixed. It is precisely this low-

rank representation of the shape that allows the joint estimation of non-rigid shape and camera

motion within a factorisation framework.

With this shape model and assuming affine viewing conditionsthe projection equation for each

frame becomes:

W f = R f (
K

∑
d=1

l f dBd)+T f (2.15)

Similarly to the rigid case, the measurement matrix can be registered to the centroid of the 2D

coordinates, such that the translation vectorT f becomes zero:

W̃ f = R f (
K

∑
d=1

l f dBd)

We can now see that the NRSfM problem becomes the joint estimation of the camera matrices,

deformation coefficients, and the shape basis. This is a tri-linear estimation problem where no

prior information is assumed about the basis shapes; only the number of elements in the basis is

known in advance.

2.3.2 Bregleret al.’s Original Non-Rigid Factorisation Algorithm

The work by Bregler, Herzmann and Biermann [15] was the first to extend the factorisation

method to deformable objects. It was their insight of assuming the low-rank basis shape model,

described in equation2.14 in the previous section, that allowed to formulate non-rigid shape
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estimation within the factorisation framework. Their workpioneered and established the new

research area of Non-Rigid Structure from Motion in which this thesis is framed.

Similarly to the rigid case described in2.2.3, the only input to the algorithm is the set of 2D

coordinates of the image points tracked throughout the sequence. The original formulation as-

sumes full data: all the points are visible in all the frames.The registered measurement matrix

is rank deficient and can be factorised into the product of twolow-rank matrices — the motion

matrixM and the shape matrixS:

W̃=




l11R1 . . . l1kR1

...
. . .

...

lF1RF . . . lFKRF







B1

...

BK



=




M1

...

MF







B1

...

BK



=MS (2.16)

Where the matricesB1, · · ·BK are the set ofK 3D basis shapes,l f d is the deformation coefficient

(or configuration weight) that multiplies basisBd in frame f andR1, · · · ,RF are the 2×3 camera

matrices for each frame. Equation2.16expresses in matrix form the orthographic projection of

all the points on the non-rigid object in all the frames and shows that the registered measurement

matrix W̃ has at most rank 3K, with K the number of deformation modes. Therefore, it can be

factorised into the product̃W= MS where the 2F×3K motion matrixM encapsulates all the time-

varying parameters (deformation coefficients and camera matrices) and the 3K×P shape matrix

S encodes the 3D coordinates ofP points on all the basis shapes.

However, this factorisation is not unique since any invertible 3K×3K matrixQ can be inserted in

the decomposition leading to the alternative factorisation: W= (~MQ)(Q−1~S) = MS. The problem is

to find the transformation matrixQ that imposes the appropriate replicated block structure onthe

motion matrix shown in equation2.16and that imposes the orthonormality constraints on the

camera matricesRi removing the affine ambiguity and upgrading the reconstruction to a metric

one.

Bregleret al.’s non-rigid factorisation method follows exactly this two stage approach: first ob-

tain an initial affine decomposition of the measurement matrix into two low-rank matrices via
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singular value decomposition, followed by an upgrade step where the unknown linear transfor-

mationQ is estimated to impose metric constraints.

In [15] a linear approach to the computation of the metric upgrade transformation was proposed.

The solution, namedsub-block factorisation, is based on rearranging the elements of each sub-

block of the motion matrix as

M f = [l f 1R f . . . l f KR f ] (2.17)

HereM f is the 2×3K sub-block of the motion matrix related to framef . Let r i , i = 1, . . . ,6 be

the 6 elements of the camera matrixRf , the block can be re-written as:

M f =




l f 1r1 l f 1r2 l f 1r3 . . . l f Kr1 l f Kr2 l f Kr3

l f 1r4 l f 1r5 l f 1r6 . . . l f Kr4 l f Kr5 l f Kr6


 (2.18)

Rearranging the elements ofM f , it is possible to decompose:

M̌ f =




l f 1r1 l f 1r2 l f 1r3 l f 1r4 l f 1r5 l f 1r6

l f 2r1 l f 2r2 l f 2r3 l f 2r4 l f 2r5 l f 2r6

· · ·

l f Kr1 l f Kr2 l f Kr3 l f Kr4 l f Kr5 l f Kr6




=




l f 1

l f 2

· · ·

l f K




[̇r1r2r3r4r5r6] (2.19)

thus proving that the values for the basis shape coefficientsl f for frame f could be recovered by

a rank-1 factorisation of the rearranged motion matrix via singular value decomposition. Finally,

since the rank-1 decomposition does not result in camera matricesR f with orthonormal rows,

orthonormality constraints must be enforced on the camera matrices as in [110] by solving a

least-squares problem.

Bregleret al.’s original solution constitutes landmark work since it was the first to show that the

factorisation approach can be applied to non-rigid objects. Moreover, the algorithm is attractive

due to its simplicity and linearity. However, it suffers from various drawbacks. First the nested

SVD approach is not robust to noise. When the sub-blocksM f of the measurement matrix are
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affected by noise, the rearranged matrixM̌ f will not be rank-1 and the further singular values will

retain some of the contribution to the solution leading to errors. Second, the estimation of the

upgrade transformationQ is only approximate. The estimated matrix is block diagonal, while

the true metric upgrade matrix is dense in the off-diagonal values. As a consequence this method

can only be used in the case of small deformations. Finally, the method assumes full complete

point tracks: all the points must be seen in all the views which seriously hinders its application

to real world scenarios.

Despite its drawbacks, Bregleret al.’s original non-rigid factorisation algorithm sparked enor-

mous interest in the structure from motion community and soon new research followed which

has progressively addressed many of the shortcomings of their approach.

2.3.3 An ill-posed problem

The recovery of the 3D structure of a deformable object from asequence of images acquired with

a single camera is an inherently ill-posed problem since different shapes can give rise to the same

image measurements. In essence, the problem of reconstructing a non-rigid shape from an image

sequence acquired with a single camera is equivalent to single-image reconstruction. Without

the use of additional priors or constraints the problem is intractable given that the number of

unknowns is higher than the amount of available data.

In the previous section we have described how adopting the simple but powerful prior that the

deformable shape can be expressed with a linear subspace model allows to overcome some of the

inherent ambiguities. However, ambiguities still remain in the non-rigid factorisation problem.

The solution can only be computed up to an invertible transformation (the metric upgrade matrix)

with additional scale ambiguities between the basis shapesand coefficients. Noise in the image

measurements also causes the problem to be ill-conditionedas we saw was the case in Bregler

et al.’s [15] original factorisation formulation. To overcome the inherent ambiguities, additional

priors must be incorporated into the non-rigid structure from motion problem.

The rigidity of an object or scene has proved to be a sufficientconstraint to enable to perform
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Priors used in NRSfMCoarse to fine

Dynamics

Low-rank Shape Model
Statistical priors Physical priors
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Figure 2.11: Use of priors in non-rigid shape estimation. The NRSfM problem is ill-posed.
To overcome its inherent ambiguities, additional priors must be incorporated into the non-rigid
structure from motion problem. We classify these priors into physical and statistical which are
described in Section2.3.3.

3D reconstruction from image sequences even in the case whenno other prior information is

available about the shape, the camera or its motion. Although in the case of non-rigid objects

the priors are much weaker, they still exist and must be incorporated into the estimation to allow

for unambiguous solutions to be obtained. In this section weprovide examples of different types

of additional priors that have been proposed in the literature to solve the problem of non-rigid

shape reconstruction from monocular sequences. Additionally, throughout the rest of the chapter

we will also refer to the specific priors or constraints used in each of the NRSfM methods we

review. We classify them intophysicalpriors andstatisticalpriors.

Physical priors

Objects do not deform in an arbitrary, random way. There are physical forces that act on the

object to constrain the way in which it moves. Different constraints on the nature of the defor-

mations have been proposed in the literature.

Examples ofphysical priorsthat have been successfully applied to NRSfM range from weak

ones such as the assumption that the camera is viewing a single surface (C0 continuity) used

implicitly by most methods, that the surface in itself is spatially smooth (C1 continuity) [16] or

that it deforms smoothly in time [1]; to stronger priors such as the surface is inextensible [97, 16],

developable [89], partially rigid [35], piecewise planar [120] (or rigid [107] or quadratic [41, 95])

or even template-based methods that rely on a reference image in which the 3D shape of the

object is known [97, 90, 16].

One of the priors most extensively used throughout NRSfM is the use of temporal smoothness
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information. Introduced by Aanæs and Khal [1] in the context of Maximum A Posteriori (MAP)

estimation with bundle-adjustment, this prior assumes that the 3D shape does not deform much

from one frame to the next, and is usually referred to as temporal smoothness. This notion of

temporal smoothness has since been adopted by many other methods [105, 36, 8, 111, 94, 84,

41, 95].

When more specific knowledge is available about the nature ofthe object being reconstructed,

stronger priors can be used to disambiguate the solution. For instance, when recovering the 3D

geometry of human facial expressions Del Bueet al. [35] imposed the constraint that some points

on the face (e.g. points on the nose or the temples) move rigidly while others deform. The use

of this partial rigidity constraint improves the accuracy of the metric upgrade step, consequently

improving the estimation of camera pose and the 3D reconstruction of the shape. In [32] more

complex priors on the shape of the object can be incorporated. When reconstructing the non-

rigid face of a human, a prior rigid 3D model of a different person can be used as a soft constraint

for the non-rigid reconstruction of the original subject.

The local spatial smoothness of non-rigid surfaces has alsobeen used as a powerful constraint

in NRSfM. It takes the form of a regularisation term imposingthat neighbouring points on the

surface must have similar coordinates in 3D space. This spatial smoothness prior, originally

introduced by Torresaniet al. [112], was then incorporated by many others [12, 35, 8] into their

formulations.

Statistical priors

Statistical priors take advantage of the fact that deformations are not random and instead exploit

the high correlation between the 3D trajectories of different points on the same non-rigid surface.

The most successful statistical prior used in the NRSfM literature is of course Bregleret al.’s [15]

assumption that the shape of a non-rigid object can be expressed in a compact way as a linear

combination of an unknown low-rank shape basis. This simpleregularisation on the shape allows

to reduce the ambiguities to the metric upgrade transformation.

A common assumption in many factorisation methods based on the low-rank shape model is to



2.4. A Taxonomy of Non-Rigid Shape Estimation from Monocular Sequences 53

assume that the first basis is the dominant component [12, 1, 112, 35]. This is often achieved

by constraining the shape in each frame to be close to the meancomponent of the shape basis,

initialised using a rigid factorisation algorithm. This assumption implicitly assumes that the

deformations are small deviations with respect to a strong rigid component.

Bartoli et al. [8] take the low-rank basis shape model a step further and propose a coarse-to-fine

shape prior where new deformation modes are added iteratively to capture as much of the vari-

ance left unexplained by previous modes as possible. This prior imposes the natural assumption

that the first basis encodes most of the motion and the rest of the bases express less and less

important modes of variation. This is a much stronger statistical prior than the original low-rank

shape model that does not make any assumptions on the individual modes of deformation. It is

shown to avoid ambiguities since each basis is estimated independently in an incremental way

so its estimation does not affect the previously computed ones.

Other examples of statistical priors include Torresaniet al.’s [111] Gaussian distribution priors

on the deformation weights. This prior effectively acts as atemporal smoothness constraint,

since it models the fact that deformation parameters shouldbe similar between consecutive

frames. Torresani’s formulation also allows to incorporate temporal linear dynamical models

in object shape.

2.4 A Taxonomy of Non-Rigid Shape Estimation from MonocularSequences

In this section we provide a taxonomy of solutions to the problem of non-rigid shape estimation

from monocular sequences. We have classified approaches firstly based on the model adopted

to represent the non-rigid shape. For a number of years the prevalent model in the literature has

been the (untrained)low-rank linear basis shape modelproposed by Bregleret al. [15] which

allowed to extend factorisation approaches to the non-rigid shape domain. However, solving

for the ambiguities — in particular, solving for the metric upgrade — inherent to NRSfM has

proved a more challenging problem than initially anticipated. It has called for different opti-

misation techniques to compute solutions where the camera matrices satisfy the orthonormality
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constraints and the 3D reconstructions are not affine but metric. We classify methods that use

the linear low-rank shape model further according to the optimisation method used in the esti-

mation. These range fromclosed-form solutionsthat impose the metric constraintsexplicitlyby

estimating directly the entries of the metric upgrade matrix, to non-linear optimisation meth-

ods such asalternation or bundle-adjustment that describe the problem directly in terms of

the variables involved (camera matrices, basis shapes and deformation coefficients) and impose

the metric constraintsimplicitly via parametrisation or projecting the solutions onto the correct

manifold.

On the other hand, newalternative shape modelshave recently emerged in the literature that

are beginning to address the limitations of the linear low-rank shape model by allowing to ex-

plain more complex deformations. These include piecewise planar, rigid or quadratic models;

locally linear shape manifolds; sparse shape basis or DCT trajectory basis which allow for more

complex deformations than those explained by the linear model.

We also describe non-rigid shape estimation methods for sequences acquired by a single camera

that fall outside of the scope of NRSfM but are closely related. Shape estimation methods that

usetraining data to learn the linear shape basis via principal components analysis (PCA) have

been popular in the literature, particularly in the case of face modelling (active appearance mod-

els or morphable models). Here, the shape basis is known in advance and the shape estimation

is limited to the tracking of the deformation coefficients and the camera matrix for each frame.

Template-based methodson the other hand, rely on a reference image in which the 3D shape

of the observed object is known in advance. In principle, these methods work for pairs of images

instead of a long image sequence: given an image and 2D-3D correspondences with a known

3D template, the problem involves estimating the deformed 3D shape in a new image. These

template-based methods also require additional constraints to be imposed to avoid inherent am-

biguities. We describe the practical solutions that have been proposed in the literature which

include imposing physical priors on the shape such as its inextensibility.

Figure 2.12 illustrates this taxonomy: NRSfM methods are divided into those based on the
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Figure 2.12: A taxonomy of proposed solutions to the Non-Rigid Structure from Motion prob-
lem. We divide NRSfM methods into those that use the low-rankbasis shape model (untrained
methods do not assume a known shape basis vs. trained ones that do) and those that use other
shape models such as piecewise local models, locally linearshape manifolds, sparse shape basis
or trajectory basis. Untrained methods based on the low-rank basis shape model are then classi-
fied according to the estimation method. The ambiguities inherent to the NRSfM problem have
called for many different optimisation schemes to be proposed. We group these into closed-form
solutions, alternation methods and non-linear least-squares optimisation or bundle-adjustment.
Template-based methods for non-rigid shape reconstruction fall outside of the NRSfM frame-
work since the input to the system is a 3D template and 2D-3D correspondences with a single
image, instead of 2D correspondences throughout a long sequence. Strictly speaking, methods
that use trained low-rank shape models also fall outside of the NRSfM since the shape model is
known in advance.

low-rank linear basis shape model and those that use alternative shape models that allow more

complex deformations. The first group are further divided according to the optimisation strategy

into closed-form solutions and non-linear optimisation methods which include alternation and

bundle-adjustment. Template-based methods and methods that use training data to learn the

linear shape basis fall outside the NRSfM formulation but constitute popular alternatives in the

literature to non-rigid shape estimation from monocular sequences.
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2.5 NRSfM with the linear low-rank basis shape model

The assumption adopted by the original NRSfM formulation ofBregleret al. [15] that non-rigid

shapes live in a low-dimensional linear subspace led to an estimation problem that fits perfectly

within the powerful factorisation framework. Since then, many different methods have been

proposed to solve the problem of factorising the measurement matrix into the product of two

matrices that encode the non-rigid shape and the camera motion. However, as mentioned in sec-

tion 2.3.3, the factorisation problem is subject to ambiguities. In particular, the decomposition

can only be obtained up to an invertible transformationQ. The estimation of this matrixQ that

upgrades the reconstruction from affine to metric space has been the focus of NRSfM. In gen-

eral, adding additional constraints leads to an optimisation problem that can be tackled in two

different ways.

The first family of approaches involve estimating the elements of the metric upgrade matrixQ

explicitly. Encouraged by the success of the factorisationalgorithm in the case of rigid structure,

researchers in NRSfM tackled the problem using an equivalent two-step approach: first an affine

reconstruction is obtained factorising the measurement matrix via singular value decomposition

imposing the rank constraint, followed by the direct estimation of the elements of the metric

upgrade transformation matrixQ. Bregleret al.’s method followed this exact approach [15] and

many other so called closed form solutions have followed forthe cases of both affine [128] and

perspective [130, 49] viewing conditions. However, as noted by other authors, while they give

an exact solution in the noise-free case, closed form solutions are known to break down in the

presence of image noise [13, 111].

The second alternative is to write the non-linear optimisation problem in terms of the original

variables that must be estimated: the camera matricesR f , the deformation coefficientsld f and the

basis shapesBd and the translationst f if also optimised and minimise the squared reprojection

error between the image locations of observed and predictedimage points in all the views in
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which they are visible which leads to the optimisation:

minimise
R f ,l f d,Bd,t f

∑
f ,p

||w f p− (R f

K

∑
d=1

l f dBd + t f )||2 (2.20)

This optimisation problem, does not involve the estimationof the upgrade matrix explicitly but

instead solves for camera matrices that implicitly satisfythe metric constraint. This is normally

achieved either via parametrisation or imposing constraints on the optimisation. Additional prior

knowledge can be added to the cost function as regularisation terms or hard constraints.

2.6 Closed-form Solutions to NRSfM

Encouraged by the success of rigid factorisation algorithms, closed-form solutions to the NRSfM

problem attempt to solve the problem following the same two step process: factorisation of

the measurement matrix into the product of motion and shape matrices followed by explicit

estimation of the metric upgrade matrixQ. We will now describe the most influential approaches.

2.6.1 Basis constraints: Xiao-Chai-Kanade

The work of Xiaoet al. [128] constituted a milestone in deformable structure recoverysince they

proposed an algorithm to recover the corrective transformation and solve the NRSfM problem

in closed form both in the cases of orthographic and perspective cameras. Their work is of the-

oretical importance since they characterised the ambiguities present in NRSfM. Unfortunately,

they concluded incorrectly that the orthonormality constraints alone were not enough to obtain

an unambiguous solution to the NRSfM problem. However, their work greatly influenced and

shaped the field.

The goal of closed form solutions is to estimate the invertible corrective transformationQ that

yields the exact metric structure (MS = M̃QQ−1S̃). Let G = QQT be the corrective transformation

multiplied by its transpose, each column tripletQk of Q is the transformation concerning each
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single basisk.

M
k = M̃Qk

WhereMk, k = 1, ...,K is a column triplet of the motion matrixM. Recalling the structure of the

motion matrix given in equation2.16:

M
k =




l1kR1

l2kR2

...

lFkRF




(2.21)

The column blockMk contains the camera matrices for all frames, scaled by the corresponding

coefficient of thekth basis shapel f k for that frame (withk= 1, ...K). Therefore the affine motion

matrix M̃ must have the formM= M̃Q such that:

M̃ fGkM̃
T
e = l f klekR f R

T
e (2.22)

WhereGk = QkQ
T
k is the 3K×3K transformation relative to theQk column triplet, and̃Mi are the

two rows of the motion matrix relative to theith frame. Due to the orthonormality of the rows of

the projection matrix for each framef themetric constraintcan be expressed as:

M̃ f GkM̃
T
f = l2

f kI2x2 (2.23)

whereI2x2 is a 2×2 identity matrix. The diagonal elements yield a single equation sincel f k is

unknown while the off-diagonal constraints are identical sinceGk is symmetric. Therefore, for

F frames, 2F constraints are obtained:

M̃2 f−1GkM̃
T
2 f−1− M̃2 fGkM̃

T
2 f = 0 (2.24)

M̃2 f−1GkM̃
T
2 f = 0 (2.25)
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Given a sufficient number of frames, the metric constraints should be enough to determine the

entries ofGk. However, Xiaoet al. ’s contribution was to provide a proof that the solution of

equations2.24and2.25 is ambiguous. They concluded (incorrectly) that orthonormality con-

straints are not sufficient on their own to solve for the upgrade matrix unambiguously. Omitting

the details of the proof, they show that any solution to equations2.24and2.24(the metric con-

straints) has the form:QHkQ
T , whereQ is the desired transformation matrix, andHk is a matrix

given by the sum of an arbitrary block-skew-symmetric and anarbitrary block-scaled-identity

matrix. This result means that for deformable shapes, the solution given by imposing the or-

thonormality constraints is ambiguous. In other words, thespace defined by orthonormality

constraints alone contains both correct and invalid solutions.

Since orthonormality constraints were considered not to besufficient, to eliminate the ambi-

guity Xiao et al. proposed to introduce a set of novel constraints known asbasis constraints

which uniquely determine the shape basis resolving the ambiguity. They then proved that the

orthonormality and basis constraints together led to a closed-form solution of the NRSfM prob-

lem. While their method recovers the ground truth solution in synthetic experiments, it has been

shown to deteriorate quickly even for low levels of measurement noise and to be very sensitive to

the choice of basis constraints. Moreover, it cannot be extended to deal with outliers or missing

data in the tracking.

In defence of orthonormality constraints

As was suggested by Brand [13] and later proved by Akhteret al. [5], in the case of noise-free

observations, orthonormality constraints are in fact sufficient to solve for the corrective trans-

formation of NRSfM. Xiaoet al.’s proof that orthonormality constraints were not sufficient to

solve for the upgrade matrix was incomplete. Akhteret al. [5] showed that the reason for

the unsolved ambiguities in [128] was that the rank of matrixGk was not constrained to be 3.

Imposing this additional constraint is sufficient to eliminate the ambiguities in the 3D recon-

structed shape. However, the constraints are non-linear and very hard to optimise. Therefore,

while orthonormality constraints were shown to be sufficient to resolve ambiguities, solving the
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exact constraints involves a non-linear optimisation problem which can lead to undesirable local

minima. In practice, Akhteret al. ’s work did not provide a new algorithm. As we will see in

Section2.7many different non-linear optimisation algorithms have been proposed to tackle this

problem, either via parametrisation or imposing hard constraints.

2.6.2 Closed form solution for perspective cameras: Hartley-Vidal

Recently Hartley and Vidal [49] proposed a linear, closed form solution to the problem of re-

covering deformable structure when the perspective effects in the images cannot be ignored.

This algorithm requires the initial estimation of a multi-focal tensor, based on their previous

work in [48]. The tensor is then factorised into the projection matrices and then linear algebra

techniques are used to enforce constraints on the projection matrices to estimate explicitly the

corrective transformation from which the camera matrices,basis shapes and shape coefficients

are computed. Although the entire approach is linear, the authors report that the initial tensor

estimation and factorisation is very sensitive to noise.

2.6.3 Brand’s direct method

In influential work by Brand [12] the metric upgrade estimation is guided by the assumption

that the average mean shape should explain most of the image motion, leaving deformation

components to model only the residual non-rigid motion. In later work [13] Brand estimates the

invertible corrective transformationQ directly in terms of its gram matrixQQT . As we described

in section2.6.1this method avoids the ambiguities highlighted by Xiaoet al. [128] and is the

first to hint that orthonormality constraints are sufficientto perform metric upgrade.

Brand takes advantage of Kronecker product properties by writing the factorisation equation as:

W= MS=




lT1 ⊗R1

...

lTF ⊗RF







S1

...

SK




(2.26)
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With l f a vector of coefficients for each frame,R f the camera matrix, andS1, · · · ,SK the set of

basis shapes. Brand’s key contribution is to show that it suffices to determine a single column-

triad Q1:3 of the corrective transformation to uniquely recover the entire solution. In addition

to this property, this work also presents a new method to rewrite the metric constraints as the

minimisation of a cost function with the geometric meaning of minimising the deviation from

orthogonality in the resulting motion matrix. The minimisation is carried out using a quasi-

Newton method with a closed-form optimum jump. As the paper points out, this global optimum

is not guaranteed in the presence of noise in the measurementmatrix.

It is important to note that although the algorithm recoversthe ground truth solution on synthetic

experiments its main weakness is its inability to handle noisy data. Nevertheless, Brand’s method

performs better than the closed form solution by Xiaoet al. on real video sequences.

2.7 NRSfM via non-linear optimisation

We now review methods that solve the NRSfM problem minimising a non-linear geometric cost

(image reprojection error) expressed in terms of the original variables: the camera matricesR f ,

the deformation coefficientsld f and the basis shapesBd. This amounts to a tri-linear estimation

problem where the orthonormality constraints are usually imposed via parametrisation or im-

posing hard constraints. We describe optimisation methodsbased on alternate least-squares and

bundle adjustment.

2.7.1 Alternation methods

Alternation is an iterative scheme that involves alternatively optimising each of the variables:

rotations, shape basis, and shape coefficients, while keeping the others fixed. Since our Metric

Projections algorithm (see Chapter 3) belongs to this category, in this section we describe other

alternation based approaches and discuss the main differences between them.
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Torresaniet al.’s Alternating Least Squares

The first solution to the non-rigid structure from motion problem optimising image reprojection

error via an alternating least-squares approach was proposed by Torresaniet al. in [112]. In

this work, the authors argue that an initial estimate of the camera matrices can be obtained

accurately by using Tomasi and Kanade’s rigid factorisation algorithm. Under this assumption,

the recovery of the deformation coefficients, shape basis and camera matrices is recast as an

alternating least-squares estimation: each of the three unknowns is iteratively estimated in turn

while keeping the others constant. At each step of the iteration, the estimation of the shape basis

and deformation weights was solved in closed-form, but the camera matrices are subject to a

non-linear orthonormality constraint which cannot be updated in closed-form. Instead, a single

Gauss-Newton step is performed which results in an approximation of the updated value of the

camera matrices. The orthonormality of the rotation matrices is guaranteed by parameterising

the incremental update in exponential map coordinates. This method relies on an accurate initial

estimate, and requires an initialisation for the deformation weights, which were initialised with

small random values in [112].

While they do indeed enforce the exact metric constraints through the exponential map parametri-

sation of the rotation matrices, unfortunately, the updateof the camera matrix is only an ap-

proximation. Since their approximate camera update step, where orthonormality constraints are

imposed, is closely related to our Metric Projections algorithm, we discuss it in detail in the next

section.

Camera Matrix Update

In the alternation scheme, the 2×3 camera matricesR f cannot be updated in closed form because

of the nonlinear orthonormality constraint. Torresaniet al. propose to parametrise the current

estimate ofR f with a 3×3 rotation matrixQ f asR f = ΠQ f , where

Π=




1 0 0

0 1 0


 (2.27)
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whereΠ selects the first two rows of a 3× 3 rotation matrixQ f to give the 2× 3 orthographic

camera matrixR f . The updated rotationQnew
t , relative to the previous estimate, is expressed in

terms of an incremental rotationδQ f asQnew
t = δQ f Q f .

The incremental rotationδQ f is parametrised in exponential map coordinates by a 3-vector ξ f =

[wx
f ,w

y
f ,w

z
f ]

δQ f = eξ̂ f = I + ξ̂ f + ξ̂ f
2
/2!+ · · · (2.28)

Whereξ̂ f is the skew-symmetric matrix built from the vectorξ f .

ξ̂ f =




0 −wz
f wy

f

wz
f 0 −wx

f

−wx
y wx

f 0




Their strategy is then to estimate the parametersξ by approximatingQnew
t = (I + ξ̂ t)Qt in the

geometric cost function, then updateQnew
t as eξ̂ tQt . This approximate update of the rotation

matrix is based on the idea that from one iteration to the nextthe rotation must only have small

changes. Thus the initial values for the camera parameters must be close to the final solution for

this assumption to be valid.

Torresaniet al.’s Probabilistic PCA model

An influential approach to NRSfM was later proposed by the same authors [111]. The key idea

was to replace the linear subspace shape model with a probabilistic PCA model introducing

Gaussian priors on the deformation coefficients (i.e. assuming that they can be drawn from

a Gaussian distribution), with the rest of the model defined as before. This prior represents

an explicit assumption that the deformation coefficients for each pose will be similar to each

other, that is, they are not unconstrained and the mean rigidcomponent will explain most of the

motion. The additional advantage of using this model is thatthe deformation weights become

latent variableswhich are therefore not explicitly solved for but can be marginalised out. This

results in a simpler optimisation problem with fewer variables.
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With this model, NRSfM can be formulated as maximising the joint likelihood of the image

measurements. This optimisation problem was then solved via Expectation Maximisation where

all the model parameters are updated in closed form except for the camera rotation matrices.

While they do enforce the exact metric constraints through an exponential map parametrisation

of the rotation matrices, the update of the camera matrix is only an approximation — the camera

matrix cannot be updated in closed form and instead they perform a single Gauss-Newton step.

In practice, the same approximate rotation matrix update process is used as the one we described

in section2.7.1.

The model is then extended to include a linear dynamical model of the shape (LDS) in the proba-

bilistic framework. The shape coefficients in a frame are modelled as a linear function of those in

the previous one. Due to their ability to handle missing dataand their resilience to measurement

noise, the EM-PPCA and EM-LDS algorithms proposed by Torresaniet al. [111] have become a

standard benchmark in NRSfM. However, in practice, they canonly deal with relatively simple

deformations (small deviations from a mean rigid component) and for more complex deforma-

tions they have been outperformed by more recent approachesbased on piecewise or local shape

models [41, 95, 107] Moreover, other approaches such as our Metric Projectionsalgorithm [86]

(see Chapter 3) have been shown to cope with larger amounts ofmissing data.

Rotation-Constrained Power Factorisation: RCPF

A variation of Torresaniet al.’s trilinear ALS alternation method [112] for the recovery of non-

rigid structure was later proposed by Wanget al. in [123]. The idea is to use an ALS scheme

equivalent to Torresaniet al.’s [112], alternating between the estimation of each of the three

factors (rotations, coefficients, and basis shapes) of the non-rigid estimation problem, assuming

the other two known. The novelty is to include a projection step of every rotation matrix onto

the Stiefel manifold (the set of matrices with orthonormal columns). In this respect, RCPF is

related to our Metric Projections algorithm [86] described in Chapter 3, since it also includes a

projection step of the rotation matrices onto the Stiefel manifold to impose the orthonormality

constraints. However, the projection steps differ: while our Metric Projections approach projects
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the entire motion matrixM onto the non-rigid motion manifold, RCPF only projects the rotation

matrices onto the manifold of matrices with orthonormal columns. Our comparative results in

Chapter 3 show that our Metric Projections algorithm [86] outperforms RCPF [123], particularly

for high percentages of missing data.

2.7.2 Non-rigid bundle adjustment

Solving the non-rigid structure from motion problem requires the simultaneous estimation of

the camera pose and deformation coefficients for every frameand the 3D coordinates of the

basis shapes. Even in the case of a simple NRSfM problem with acouple of hundred points

on a surface deforming over a short hundred frame sequence with ten basis shapes this results

in a very large number of parameters to estimate ( 104). Direct non-linear minimisation of the

image reprojection error over all the parameters is computationally expensive. This is a case

where the bundle adjustment algorithm (described in section 2.2.2) is particularly useful: the

computational cost is reduced greatly taking into account that each parameter interacts only

with a few data points. The Levenberg-Marquardt algorithm [93] can be used to minimise the

non-linear cost function, taking advantage of the sparse nature of the Jacobian.

For the non-rigid case, the cost function to be minimised is the reprojection error:

∑
f ,p

||w f p− (R f

K

∑
d=1

l f dBd + t f )||2 (2.29)

That is, the sum over all pointsp and all framesf , of the residual between the measured 2D

feature locationw f p, and the 2D position predicted by the model for that feature.R f , l f d, Bd,

andt f are the model parameters, respectively, the camera matrices, deformation weights, basis

shapes, and 2D translations. Because of the difficulty in imposing orthonormality between the

two rows ofR, the camera matrix is usually parametrised as a truncated rotation matrix, and the

rotations parametrised with quaternions (or other parametrisation which ensure orthonormality).

Additional regularisation priors are normally added to thecost function to give a Maximum A

Posteriori estimate (MAP). These include spatial and temporal smoothness priors as we dis-
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cussed in section2.3.3. In general, the camera matrices and the mean shape are initialised with

a rigid factorisation algorithm and the basis shapes and deformation coefficients are initialised

to small random values.

We will now review the most successful methods that apply this optimisation technique to the

non-rigid structure from motion problem.

Aanæs and Kahl non-rigid bundle adjustment

Aanæs and Khal [1] were the first to propose the joint non-linear optimisationof the shape and

motion parameters minimising image reprojection error. They describe the ambiguities that arise

from the increased number of degrees of freedom in non-rigidSfM as opposed to the rigid case

and argue the need of priors to constrain the solution. In addition to showing that the non-rigid

structure from motion problem can be solved via non-linear optimisation method, they introduce

a temporal smoothness prior: the 3D shape should change little from frame to frame. This prior

is implemented by adding an extra term to the cost function topenalise large changes in the

deformation parameters from one frame to the next. The cost function included an additional

prior that the shape should be close to an initial estimate computed using rigid factorisation

techniques. They also were first to use the Bayesian Information Criterion (BIC) [74] model

selection technique for the choice of the number of deformation modes.

Non-rigid bundle adjustment for a perspective camera usingrigidity shape priors

The work by Del Bueet al. [31, 34] solves the problem of non-rigid shape reconstruction using

a perspective camera using a bundle adjustment approach andadding priors on the degree of

deformation of some of the points in the scene. Their work exploits the fact that it is often a rea-

sonable assumption that some of the points are deforming throughout the sequence while others

remain rigid. The set of rigid points is used to estimate the internal camera calibration parame-

ters and the overall rigid motion. Finally the problem of non-rigid shape estimation is formalised

as a constrained non-linear minimisation adding priors on the degree of deformability of each

point. This method was extended to the case of perspective projection with varying intrinsic
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parameters [64], and to the case of a stereo camera setup [33]. A further contribution proposed

in [32] by Del Bue is the use of shape priors: it is shown that incorporating the knowledge of a

previously computed 3D shape can improve the estimation of motion and deformations.

Coarse-to-fine estimation

Bartoli et al. [8] propose a way to avoid ambiguities in the estimation of the basis shapes by

recovering them in an incremental way, one at a time, adding new deformation modes iteratively

to capture as much of the variance left unexplained by previous modes as possible. An important

characteristic of this method is the automated selection ofthe number of basis shapes, which

usually has to be specifieda priori, using cross-validation. In addition to the implicit priorof

having each deformation mode express smaller and smaller deformations, two additional priors

are imposed: temporal smoothness and spatial smoothness, which are shown to greatly improve

the results [8]. The method relies on Bundle Adjustment to minimise the image reprojection

error incorporating the priors.

2.8 Trained models for non-rigid shape analysis

When training data is available, learning deformable models using statistical learning meth-

ods has become an attractive way to represent non-rigid shape. In particular, learning lower-

dimensional linear models from training data using PCA analysis has prevailed as a popular

alternative in the literature, and has been applied with huge success to modelling of faces. The

original 2D Active Shape Models (ASM) by Cootes and Taylor [24], were extended to include

texture in the Active Appearance Models (AAM) [25]. AAM have been extensively applied in

the literature to track 2D face deformations [71]. This class of methods relies on the availability

of labelled information for a subset of images ortraining data. The model is separated into

shape and texture components, both modelled as linear combinations of basis vectors learnt via

Principal Components Analysis. The basis acquired in the training phase can be used to gener-

ate new instances of the model (for instance, a new pose for the face in the example of figure
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Figure 2.13: Example of a linear Active Appearance Model from [72]. Top Row: The average
shapes0 is added to a linear combination of basis vectorss1, · · · ,s3 learnt from training data.
Bottom row: Texture is generated by adding the average appearanceA0 for each point to the
learnt modes of appearanceA1, · · · ,A3. Images courtesy of Iain Matthews and Simon Baker

2.13). The recovery of model parameters given a target image is then recast as the estimation

of the best parameters that would generate the image given the known model. 2D Active Ap-

pearance Models were then extended to3D morphable models[121] to obtain full 3D models

of faces, which produced impressive results given a single high-resolution image as input. The

morphable model is computed from depth estimates from 3D scanning devices. It was later

extended to model different facial expressions of the same face.

Learnt non-linear models have also been used to model non-rigid or articulated data. For in-

stance GPLVM (Gaussian Process Latent Variable Models) have been successfully used for 3D

people tracking to learn a prior on human pose [119] from small training data sets. In NRSfM,

Salzmannet al. [99] proposed to learn a prior over the local deformation of surface patches

from motion capture data. These local models were learnt with GPLVM from a small number

of samples. The local to global transition was then made using a Product of Experts paradigm

that combines probabilistic models.

While learnt models have proved very effective at representing non-rigid deformations they suf-
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fer from two main drawbacks. First, gathering a sufficient amount of training data can be a

difficult process. Secondly, alignment and labelling of thetraining data can be extremely time

consuming and error prone since it is usually done manually.Recently some techniques have

been proposed to automate as much as possible the process of obtaining the training data needed

to build the model. For example Davieset al. [30] propose to automatically select model points

along a contour of the objects to be modelled by minimising description length. Cooteset al. [27]

construct a model from an initial position of feature pointsin the images, that can be obtained au-

tomatically starting with a regular grid, removing points on low texture areas and moving points

to strong edges in the image. Deformations are modelled using an affine piece-wise deformation

field, and training is performed using a Minimum DescriptionLength approach.

Current state of the art methods include the work by Cooteset al. [26] and Adeshina and Cootes

[2]. The former is suitable for automatic or semi-automatic operation, where the user has to label

only one reference frame while the latter takes advantage ofspecific subject knowledge by ask-

ing the user to label aparts and geometrymodel in a reference frame, providing both appearance

and spatial relationships of features, then learning the correspondences across images.

2.9 Reconstruction with Missing Data

The original formulation of the factorisation problem described in section2.2.3requires all the

points to be visible in all the views. However this is often not a realistic assumption for tracking

algorithms. The main sources of missing data are occlusions, self-occlusions and tracking fail-

ures (broken tracks). A common occurrence in real world scenes are occlusions: when the object

that is being reconstructed is not entirely visible in the whole image sequence. For example, the

hands of a person talking often move behind or in front of the body, sometimes occluding one

another in the image. A cloth could fold, so that part of its surface is not visible, this is called a

”self-occlusion”. Also, the object and/or the camera will rotate, hence features in the front of the

surface will disappear from view, and features at the back will appear. Finally, the tracking al-

gorithm might fail to detect a feature in a particular frame,or lose track of a feature. All of these
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kinds of occlusions result in the problem of missing information in the measurement matrix.

This problem can be tackled at the feature detection and tracking stage, but most importantly

we have to develop structure-from-motion techniques that will be able to produce accurate 3D

reconstructions without full data.

The problem of missing data can thus be defined as the problem of computing an accurate model

from incomplete observations. Although the problem of factorising a matrix into the product of

two low rank factors in the presence of missing data has received great attention from researchers

in computer vision, it continues to be an open problem that affects also other areas. Stemming

from Wiberg’s original algorithm [125], many different solutions have been since put forward

for the structure from motion problem, when missing data arises due to occlusions or broken

tracks. Being able to deal with high percentages of missing data is crucial for algorithms to be

practical in real, not just controlled, scenarios. We will review the main approaches to solve the

missing data problem.

One group of approaches propose strategies that combine partial low-rank factorisations ob-

tained for sub-blocks of the measurement matrix that contain full data. Pioneered by Jacobs [58],

thesebatch approaches, reconstruct the measurement matrix by first building its row or column

null-space or one of its range spaces and have been applied both to the rigid [58, 106] and non-

rigid [82] SfM problems. However, one concern about these approachesis their sub-optimality

and that their performance degrades in the presence of noise.

A second group of missing data approaches that dominates theliterature includes iterative meth-

ods that perform alternation of closed form solutions to solve for the two factors of the ma-

trix [21, 46, 47, 112]. For instance, Powerfactorization [47] uses an alternated least-squares

(ALS) scheme to solve for the motion and shape matrices. Alternation constitutes an attractive

scheme since it guarantees convergence to a local minimum asthe objective function is reduced

after each iteration. Further advantages are quick iteration steps combined with a fast conver-

gence rate in the initial iterations. However, after a few iterations, the convergence rate drops

and these algorithms are susceptible to flat lining.
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Finally, non-linear optimisation algorithms have also been proposed to optimise directly the

reprojection error. Buchanan and Fitzgibbon [17] proposed a Damped Newton algorithm that

provides a more robust solution than standard alternation approaches. Later, Chen revitalised

the use of the Levenberg-Marquardt algorithm to solve the missing data problem by formulating

the low-rank matrix approximation problem as a minimisation on subspaces [20]. The idea is

to consider the shape as an implicit function of the motion and measurement matrices and solve

only for the motion. This results in a smaller system to be solved in every iteration, which

makes this method well suited to large matrices where it outperforms Wiberg’s [125] method or

Damped Newton [17]. Recently Candès and Recht have proposed a convex optimisation method

[18].

Although these non-linear methods do exhibit a superior performance, proper initialisation re-

mains an open problem and, more importantly, integrating additional constraints in the optimi-

sation process is not an easy task.

2.10 Alternative shape models

Despite the success of the linear low-rank basis shape modelin the NRSfM literature, in recent

years new research has began to address its main limitation of only being able to model small

deviations with respect to a strong rigid component. In order to allow more complex deforma-

tions, authors have departed from the linear basis shape model and proposed new shape models

that can cope with a wider range of non-rigid motion. In particular, we will review approaches

based onpiecewisemodels,locally-linear shape manifolds, andtrajectory spacebasis.

2.10.1 Piecewise reconstruction methods

Following Bregleret al.’s [15] original non-rigid factorisation algorithm, most NRSfM algo-

rithms represent the time varying 3D shape as a linear combination of a low rank shape basis.

Although this model effectively captures global deformations, and many approaches have been

proposed [8, 12, 35, 111, 128], so far, they have only been demonstrated on simple sequences
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where the deformations are small linear deviations from a mean rigid component and none of

them are able to reconstruct strongly deforming surfaces such as a piece of cloth deforming vig-

orously. This failure can be attributed to their reliance ona global model — to capture intricate

local deformations, global models require a substantial increase in the number of basis shapes

used which leads to over-fitting.

Recently,piecewisereconstruction methods have been proposed in the NRSfM literature as

an alternative to global ones. Their insight is that models that attempt to capture the scene’s

global spatio-temporal behaviour — such as the low-dimensional linear shape subspace favoured

by most non-rigid SfM methods — are unable to handle complex deformations often leading

to over-fitting. Instead, they decompose the global reconstruction problem into many better-

behaved local ones relying on the features shared between overlapping patches to enforce global

consistency. Local solutions arestitchedinto a global surface imposing the constraint that the

points shared between patches are the same points in 3D space.

The first of such approaches was proposed by Varolet al. [120] assuming that the 3D surface

can be approximated as piecewise planar. The method works onimage pairs and assumes a

calibrated camera. The image is first divided manually into overlapping regions which are re-

constructed independently as local 3D planes from the homographies estimated from pairwise

correspondences. The patches are then merged by enforcing 3D consistency between the over-

lapping points on neighbouring patches. In a final step, a triangular mesh is fit to the 3D point

cloud assuming temporal smoothness constraints. The strength of this approach is that only pair-

wise matching is required between feature points instead oflong consistent tracks. However, the

piecewise planarity constraint can be restrictive and temporal smoothness is only imposed via

post-processing which can lead to flickering.

Later, Tayloret al. [107] proposed a piecewise approach that uses locally rigid motion, reducing

the number of points per patch to the minimum possible of three. Delaunay triangulation is

applied to the image features to divide them into a set of triangles, which are reconstructed

independently, using a linear algorithm, to form atriangle soup. Triangles that do not behave
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Figure 2.14: Some deformations encoded by the quadratic model. A cube is used as rest shape,
the effects of linear, quadratic, and cross-terms are shownindependently. This model generates
deformations such as stretching, bending, sheering and twisting. Image courtesy of João Fayad.

rigidly are rejected using a predefined threshold on the reprojection errors, which allows the

method to deal with outliers. In order to align the reconstructed triangles to provide a smooth

3D surface, a disambiguation step is then needed to solve forthe relative depths and reflection

ambiguities that results in anNP-hard problem to which an approximate solution is proposed.

This grouping step makes the method applicable to non-rigidbodies that lose connectivity (for

instance a paper tearing in two pieces).

In recent work Fayadet al. [41] proposed to use a more descriptive 3D model for the local

patches also within a piecewise framework. The quadratic deformation model [42] was shown

to be a better local model to reconstruct the individual patches than Varolet al.’s local planar

model. It encapsulates three modes of deformation:linear which accounts for sheer and stretch;

quadratic for bending andmixedterms for twist. In Figure2.14we show a visualisation of the

effect of applying each deformation mode separately to a cube-shaped object. The quadratic

model for each patch is optimised individually over the entire sequence using temporal smooth-

ness priors. The patches are then aligned to give a global smooth surface using the overlapping

points to impose global 3D consistency. In essence, this method is similar to Varolet al.’s [120]

with the difference that the increased complexity of the quadratic model and its inherent tempo-

ral smoothness allows the smooth modelling of stronger deformations.

Fayadet al.’s method has recently been improved to drop the requirement of manual division of
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Figure 2.15: Rethinking non-rigid structure from motion [94]: the linear subspace shape model
(left) cannot describe all deformations. Modelling non-rigid deformations as a piecewise linear
manifold allows for more complex deformations to be explained. Image courtesy of Vincent
Rabaud and Serge Belongie

the surface into patches. In [95] Russellet al. reformulate the NRSfM problem as a labelling one

which allows to optimise jointly both the assignment of points to local models and the fitting of

models to points to minimise a geometric cost (image reprojection error) using a variant of the

graph-cut based algorithmα-expansion. This method is shown to obtain state of the art results

outperforming all previous piecewise reconstruction methods. The same inference engine has

also been extended to deal with the joint segmentation and 3Dreconstruction of articulated

objects in [43].

2.10.2 Manifold Learning

The work by Rabaud and Belongie [94] also departs from the classical low-rank factorisation

with basis shapes. The main question posed concerning the low-rank basis shape model, was

whether or not a linear manifold can represent accurately non-rigid shape. The authors argue

that this is not the case for objects that undergo strong deformations, and propose to model the

non-rigid deformations manifold as piecewise linear assuming that only small neighbourhoods

of shapes are well modelled by a linear subspace. Figure2.15depicts the difference between
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the linear subspace shape model and the proposed piecewise linear non-rigid shape manifold,

showing that the latter can represent more complex non-rigid motions. Their approach relies

on the concept of repetition: given a long sequence of a non-rigid shape, similar rigid shapes

will appear in various instances along the sequence but seenfrom different viewpoints. Images

are grouped into clusters that represent the same rigid shape and a manifold learning technique

is then applied to learn the non-rigid shape manifold constraining the degrees of freedom of

the object. Although they claim that they can deal with complex non-linear deformations, their

test sequences are not as challenging as those attempted by the piecewise reconstruction meth-

ods [107, 41, 95].

Zhu et al. [136] propose a related approach in which the set of images is alsogrouped into

clusters that represent the same rigid shape up to a rigid transformation. In practice, the epipolar

constraint, or the trifocal tensor, can be used to estimate if images were generated by the same

rigid object and belong to the same cluster. Zhuet al. introduce the concept of amodel graph

which greatly reduces the computational cost of discovering groups of images that represent

the same rigid shape. The 3D shape for each image is then builtby traversing this graph using

their model-evolution algorithm based on incremental rigid SFM. Finally, a compressive sensing

representation is used to model large deformations. Using asparse basis, estimated by reducing

the number of models in the shape clusters, allows to encode large non-linear deformations.

One of the interesting contributions of this work is its application not just to sequences of non-

rigid motion but also to large collections of photographs ofsimilar but not identical objects in a

category such as different types of cars.

2.10.3 Reconstruction in Trajectory Space

The low-rank shape basis model of Bregleret al. [15] explores the spatial properties of non-

rigid motion, introducing rank constraints on the 3D location of the set of points (shape) at any

given frame. The dual formulation of this model, proposed byAkhteret al. [6, 7], states that the

rank constraint can be instead applied to the 3D trajectories of each individual point, modelling
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Figure 2.16: Dual representations for non-rigid objects. Left: a point configuration in space is a
point in the low-dimensional space defined by basis shapes. Right: the same shape represented
in trajectory space, each point trajectory in time is a pointin a low-dimensional space defined
by trajectory basis. Figure courtesy of Sohaib Khan and Yaser Sheikh

them as a linear combination ofbasis trajectories. Under the low-rank shape basis model, the

basis shapes must be estimated for every new sequence. The advantage of the trajectory basis

formulation is the ability to use a pre-defined trajectory basis for any sequence. This simplifies

the problem greatly, leaving only the camera matrices and trajectory coefficients to be estimated.

In their work, Akhteret al. chose to model the trajectories using Discrete Cosine Transform

(DCT). While this choice might seem to restrict the types of trajectories it can represent, in [7]

they showed that the DCT basis approximates well the expressive power of the PCA basis. Since

the DCT is a basis for continuous functions, this model makesthe implicit assumption that the

3D trajectories on the surface of the object are smooth in time. The estimation of the camera

matrices and trajectory coefficients fits well within the factorisation framework and the resulting

upgrade matrix is estimated by ensuring that the camera matrices are orthonormal. The method

has been tested primarily on human motion capture data (for instance the CMU mocap data-

set). In these cases (which in fact represent mostly articulated data), this method outperforms

algorithms based on the dual shape-basis model such as Torresani et al.’s [111], but instead
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Figure 2.17: Reconstructibility result: a point trajectory of a non-rigid point (b) can only lie in
the linear subspace defined by the DCT basis used (c). Parket al. [88] show that the recovered
trajectory lies on the line connecting camera and point trajectory. This implies that the best result
for the reconstructionΘβX is obtained when the camera trajectory is not correctly modelled by
the DCT subspace. (Figure courtesy of Hun-Soo Park)

produces less accurate results on pure non-rigid data, suchas deformations on human faces.

Parket al. [88], also reconstruct non-rigid motion using the DCT trajectory basis, but recon-

structing each point trajectory independently, assuming acalibrated camera. The most inter-

esting contribution of their work is the theoretical resultthat reconstructing a single trajectory

works best when the camera motion does not lie on the subspacedefined by the trajectory basis

used to represent the 3D point trajectory. Thisreconstructibility theoremprovides insight into

reconstruction in trajectory space. Figure2.17 depicts the reconstructibility theorem. Parket

al. [88] show that the recovered trajectory lies on the line connecting the camera and point tra-

jectories. This implies that the best result for the reconstruction of a 3D point trajectory (which

must lie on the subspace by construction) is obtained when the camera trajectory does not lie

on the same subspace, i.e. it is not correctly modelled by theDCT basis. Hence low-rank,

low-frequency (smooth) 3D point trajectories that are wellrepresented by the DCT basis will

be only recovered accurately if captured by a camera moving randomly (high frequency cam-
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Figure 2.18: Results from the template-based method in [97] for 3D recovery of deformable
surfaces. The vertices of a 3D triangle mesh are known in a reference frame, the 3D vertices
are estimated from image 2D-3D correspondences. Each frameis treated separately. Images
courtesy of Mathieu Salzmann

era trajectory). An experimental setup in which such assumption is true, is that of a crowd of

photographers imaging an event from many different viewpoints.

Gotardo and Martinez [45] also make use of the DCT basis to model a smooth trajectory, but

rather than modelling the trajectory of the 3D point in space, the basis is used to represent the

smooth time-varying coefficients of a low-rank basis shape model. The matrices of coefficients

and camera motion are expressed in a compact representationin the DCT domain. This al-

lows the decoupling of the rank of the 3D shape basis and the rank of the DCT basis for the

coefficients, making it possible to use high-frequencies for the coefficients, while keeping the

number of basis shapes low. Their results show that, compared to Akhteret al.’s formulation

[7], this approach can better model complex articulated deformation with higher frequency de-

formation components without the need to use a higher dimension subspace which could lead to

over-fitting.

2.11 Template-based methods

A very successful alternative approach to monocular 3D reconstruction of deformable surfaces

has developed in parallel to NRSfM.Template-basedreconstruction of non-rigid surfaces as-

sumes a givenreferenceimage in which the shape of the 3D surface is known in advance

[97, 98, 90, 16]. The problem is then to infer the 3D shape in aninput image in which the shape
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has deformed. The method assumes that 2D correspondences exist between features in the refer-

ence and input images. Template-based reconstruction is therefore formulated for image-pairs.

Naturally, it can be extended to process a long video by establishing correspondences indepen-

dently between the reference and each input frame in the sequence. The implication is that it

does not require long frame to frame correspondences in an image sequence as NRSfM methods

do which allows for increased robustness. However, its disadvantages with respect to NRSfM

are the increased difficulty in imposing temporal smoothness priors and the strong requirement

of a known 3D shape template.

The surface is commonly represented as a triangulated mesh,as shown in Figure2.18. The

template is the 3D position of all vertices of the mesh in the reference image. Normally, mesh

vertices are not found directly in the target image. Letq be a generic 3D point in the reference

mesh, its coordinates can be expressed in terms of the nearest vertices as :q = [av1,bv2,cv3]
T ,

where[a,b,c]T are thebarycentric coordinatesof that point,vi, 1≤ i ≤ 3 are the (known) 3D

vertices of the mesh triangle where pointq lies. Feature point matching between the target image

and the reference image allows to compute the barycentric coordinates of such points. The re-

construction problem becomes the recovery of all vertices,given knowledge of 2D reprojection

of the set of feature points (each feature point lying in one of the mesh triangles, with known

barycentric coordinates). If the only constraint imposed on the surface are the point correspon-

dences, it is possible to obtain a reconstruction with accurate 2D point reprojection, but incorrect

3D shape. Additional constraints are required to constrainthe 3D coordinates of the surface.

It was first shown by Salzmannet al. [97] that in the context of template-based non-rigid 3D

shape reconstruction it is possible to formulate the minimisation of image reprojection error

as a convex SOCP optimisation problem. The additional constraint used to prevent an under-

constrained solution is to enforce temporal consistency, disallowing large changes of edge ori-

entation between consecutive frames which can be expressedas additional SOCP constraints,

yielding a convex formulation. This convex approach still relied on a full video sequence and

the availability of frame to frame correspondences.
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Figure 2.19: The Euclidean distance between point pairs will be smaller than the geodesic
distance along the surface. Equality constraints can be relaxed with inequality constraints, this
allows a convex formulation. Figure courtesy of Adrien Bartoli.

In later work the temporal consistency constraints were replaced by geometric ones that per-

mitted to perform 3D reconstruction using a single input image. In practice, the constraints

used describe assumptions on the allowable surface deformations. It was shown in [98] that

recovering the 3D shape of a flexibleinextensiblesurface from 3D-to-2D correspondences can

be achieved in closed form by solving a set of quadratic equations by simply constraining the

distances between selected surface points to remain constant. This method was restricted to

smooth surfaces. Later, a new convex formulation was proposed to deal with sharply folding

surfaces [96] by replacing the distance equality constraints between surface points with inequal-

ity ones that are convex and allow points to come closer to each other but prevent them from

moving further apart than their geodesic distance. This constraint can be visualised in Figure

2.19. Inextensibility constraints have been further exploitedby other authors who have rep-

resented the smooth surface using thin-plate splines [90], or free-form deformations [16] and

exploited the orthonormality condition that the 2D-3D isometry map induces on the Jacobian

matrix [16].

While the field of template-based reconstruction is now quite mature and well understood and ro-

bust methods exist for monocular 3D reconstruction of deformable surfaces, the strong assump-

tion of a known 3D shape makes NRSfM an attractive alternative when no prior information is

available about the surface or the way it deforms.
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Figure 2.20: Articulated motion: 3D points belonging to different objects are forced to move
around a common joint centre (left), or rotate around a common hinge (right). Each object is
described in its own reference frame, the distancesd andd′ between each centre of mass and the
joint centre must remain constant. In addition, each centreof mass will show a global translation
t,t′ on the image plane.

2.12 Articulated Structure from Motion: A-SfM

Articulated motion has also been recently formulated usinga structure from motion approach [113,

131]. The key idea is to model the articulated motion space as a set of intersecting motion sub-

spaces — the intersection of two motion subspaces implies the existence of a link between the

parts. Articulation constraints can then be imposed duringfactorisation to recover the location

of joints and axes on the image plane. Tresadern and Reid [113] propose a metric upgrade pro-

viding joint information in 3D, approximating the upgrade as a linear problem, thus obtaining a

closed-form solution. One of the most important assumptions of these methods is that segmen-

tation of the tracking data into the different articulated parts must be known in advance. This

problem, known as motion segmentation, has received substantial interest (see for example Vi-

dal and Hartley [122]). The first solution to this problem was proposed by Costeira and Kanade

[28], for multiple independent rigid motions. Recently, Yan and Pollefeys [132] have proposed

a more general solution able to provide segmentation for objects undergoing articulated motion.

2.12.1 Articulated Shape Model

In the case of articulated structure, the relative motions of the segments that form an articulated

body are dependent and this results in a drop in the dimensionality of the measurement matrix
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W=

[
W1 W2

]
that contains the 2D image points of the two segments. In the case of auniversal

joint the two shapes share a common translation (i.e. the distancebetween shapes and joint is

constant) while in the case of ahinge joint the shapes also share a common rotation axis. Both

the work of Yan and Pollefeys [131] and that of Tresadern and Reid [113] provide a solution

to the recovery of articulated motion, and have been developed independently. We will briefly

describe both methods.

2.12.2 Subspace analysis

Yan and Pollefeys [131, 133] proposed a method to analyse articulated motion and recover joint

and axis positions. Consider two independently moving rigid objects imaged by a single camera.

Let W1 andW2 be the measurement matrices containing 2D feature tracks for the two objects

respectively. Under an affine camera model, the combined measurement matrixW = [W1|W2] can

be written as:

W= [W1|W2] = [M1|t1|M2|t2]




S1 0

0 S2


 (2.30)

Where each object is associated with a motion matrix[M|t], containing the 2F×3 affine camera

matrices for all frames (F being the number of frames), and the 2F ×1 translation vectort. In

order to incorporate the translation, the shape matrices are augmented with a row vector of ones,

each shape matrix will thus have 4 rows. Equation2.30implies thatW is at most of rank 8.

Let us consider the case where the two objectsS1 andS2 are coupled by auniversal joint. The

distance between each object centroid and the joint rotation centre is a constant (cfr Figure2.20).

Hence, without loss of generality, the world coordinate system can be chosen such that all points

of the first objectS1 are fixed in 3D, and with its origin on the location of the jointcentre. In this

coordinate system, the second object at a generic framef can be expressed as:

S2 f =




R̄ f 0

0 1


S2
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That is, the second object can only rotate around the joint centre, with R̄ f being the relative

rotation between the two objects at framef . In this coordinate system, the two objects also

share the same translation vector, since the distance between each object and the joint centre is

a constant. For each frame the measurements can be written as:

[W1|W2] f = [M1 f |t1 f |M2 f |t1 f ]




S1 0

0 S2 f


= [M1 f |t1 f |M1 f R̄ f |t1 f ]




S1 0

0 S2


 (2.31)

Stacking equation2.31for all frames results in the motion matrix containing two copies of the

2F × 1 translationt. This common column implies that the motion matrix is rank deficient,

having at most rank 7 for the case of a universal joint.

In the case of ahinge joint, the z axis of the world coordinate system can be aligned withthe

hinge, resulting in a relative rotation̄R f of the form:

R̄ f =




cosθ f sinθ f 0

−sinθ f cosθ f 0

0 0 1




(2.32)

whereθ f is the angle between the two objects at framef . This implies a further drop in dimen-

sionality: Equation2.31 implies a motion matrix with two duplicated columns, the translation

vectort and the last column of the matricesM1 andM2. This implies a motion matrix of at most

rank 6.

The drop in rank of the motion matrix when two objects are joined by an articulation means that

the subspaces spanned by the columns of the measurement matrices intersect. The intersection

of the subspaces can be one or two-dimensional, respectively for the case of a universal or hinge

joint. Yan and Pollefeys [131] have shown that the intersection of the subspaces is the motion

subspace of the joint. They show that this property can be used to recover the 2D trajectory of

the joint centre for the case of universal joint, and the 2D trajectories of two points on the axis,

in the case of a hinge joint. In work done in parallel, the sameresult on the dimensionality of
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the motion subspace was obtained by Tresadern and Reid [113], who also proposed a metric

upgrade step, to recover joint trajectories in 3D.

2.12.3 Joint estimation in 3D

Tresadern and Reid’s factorisation approach [113] can recover articulated structures in 3D, to-

gether with 3D position of joints and axes. The spatial relationship between the barycentre of

each (rigid) object and the joint centre can be written as:

t(1)+R
(1)d(1) = t(2)+R

(2)d(2) (2.33)

wheret(1) andt(2) are the 2D image centroids of the two objects,R(1) andR(2) the 2×3 ortho-

graphic camera matrices andd(1) andd(2) the 3D displacement vectors of each articulation link

from the joint centre. The constraint expressed in equation(2.33) results in a reduced dimension-

ality of the motion and shape subspaces. The geometric relationship expressed by this equation

can be visualised in Figure2.20. The 3D recovery is formulated as a factorisation problem. In

the case of a universal joint, the distances between object centroid and joint centred(1),d(2) are

constant. The existence of a link implies that objects translate in space together — if the vectors

d(1) andd(2) were known, the measurement matrix[W1|W2] could be written as:

[W1|W2] = MS=

[
M(1) M(2) t(1)

]



S(1) d(1)

0 S(2)−d(2)

1T 1T




(2.34)

whereS is a rank-7 matrix, containing three rows for the coordinates of each object, and a row of

ones for the common translation vector. Equation2.34expresses in matrix form the relationship

of equation2.33in all frames. In the case of a universal joint, Tresadern andReid [113] propose

a factorisation method to solve for the shape matrices and the unknown length of vectorsd(1)

andd(2).
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In the case of a hinge joint, without loss of generality, the rotation axis can be made to coincide

with the x axis of the world coordinate system, and any point along the rotation axis can be

picked as the joint centre (cfr Figure2.20). The measurement matrix can again be factorised

into the product of a motion and a shape matrix, where the shape matrixS encapsulates the 3D

coordinates for both objects, arranged in such a way as to enforce a common axis:

S=




x(1)1 · · · x(1)P1
x(2)1 · · · x(2)P2

y(1)1 · · · y(1)P1
0 · · · 0

z(1)1 · · · z(1)P1
0 · · · 0

0 · · · 0 y(2)1 · · · y(2)P2

0 · · · 0 z(2)1 · · · z(2)P2




(2.35)

where the first articulated link hasP1 3D points and the second one hasP2. It is clear that the

rank of the measurement matrix must be constrained to be at most 6:

[W1|W2] = [M1|M̄2|t1]




S1x S2x+d(1)
x +d(2)

x

S1y d(1)
y

S1z d(1)
z

0 S2y+d(2)
y

0 S2z+d(2)
z

1T 1T




(2.36)

The zero blocks in the shape matrix are substituted with the block-replicated coordinates of the

vectorsd(1) andd(2), which express distances between the joint centre and the object centroid

in 3D. This matrix formulation express the joint constraintof equation2.33, with the added

constraint that the two motion matrices have a common column: in this case, the common

column is relative to thex axis, meaning that̄M2 is a 2F ×2 block containing only two columns

of the motion matrix for the second object, the ones relativeto they andzaxis.

To solve for 3D structure and motion with a factorisation approach the method of Tresadern and
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Reid [113] performs a rank 5 SVD decomposition on the registered measurement matrix, then

enforces the structure of the shape matrix by premultiplying the SVD factors by an invertible

matrix composed of the null space of the shape SVD factor. Therecovered affine reconstruction

needs to be upgraded to metric by enforcing the metric constraints. Although the constraints are

non-linear Tresadern and Reid propose a linear approximation for recovering the hinge joint in

3D.

In chapter 3 we propose a new framework to impose the exact non-linear metric constraints.

Taking the linear estimate as initialisation, we propose a factorisation algorithm that projects the

solution onto the correct manifold of constraints.

2.13 Closure

This chapter discussed the literature in the field of 3D shapeestimation from monocular se-

quences focusing on factorisation approaches to non-rigidand articulated structure from motion.

In NRSfM, we have shown that the problem is inherently under-constrained and intractable

without the use of additional priors or constraints. We haveshown how most of the efforts in the

NRSfM community have gone into solving the inherent metric ambiguity. Imposing the metric

constraints results in a non-linear estimation problem which requires a good initialisation and the

use of priors to avoid local minima. The problem becomes evenharder in the presence of noise

or missing data due to occlusions. We have provided a taxonomy of methods for NRSfM where

we divide approaches according to the shape model used and tothe optimisation technique

employed to estimate the parameters. Additionally we have described the different types of

statisticalandphysicalpriors used to avoid ambiguous solutions. We have also described current

approaches to articulated SfM and noted that only a linear approximation of the metric upgrade

is estimated.

Although different methods have been proposed in the literature to tackle the metric upgrade,

it still remains an open problem. While closed-form approaches find the correct solution in

the noise free case, they are extremely sensitive to noise, perform poorly in real sequences
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and cannot deal with missing data. On the other hand, alternation and non-linear optimisation

techniques impose the metric constraints via parametrisation and require strong priors. Also,

often imposing the constraints requires approximations.

The first part of this thesis focuses on new strategies to impose the metric constraints. First

we show a unified approach to non-rigid and articulated factorisation. We propose a common

alternating bilinear approach to solve for 3D shape and motion, associated with a projection step

onto the manifolds of (respectively) non-rigid and articulated metric constraints to ensure that

the solutions satisfy the metric constraints. Then we present a bilinear factorisation approach

that completely decouples the bilinear estimation step from the projection onto the manifold

of acceptable solutions. We show extensive experimental evaluations on ground truth and real

sequences which show that we are able to deal with high percentages of missing data.

The final part of our work aims at pushing non-rigid structurefrom motion solutions towards the

sequential domain, a scenario in which reconstruction can be obtained during image acquisition.

Currently, all NRSfM methods are batch: all the frames are processed at once after the acqui-

sition takes place. In the final chapter we describe our incremental approach to the estimation

of deformable models. Image frames are processed on-line ina sequential fashion. The shape-

model is also built on-line with new modes added incrementally when the current model cannot

model a new image well enough.
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Chapter 3

Metric Projections for Deformable and Articulated

Structure-From-Motion

Most approaches to deformable and articulated structure from motion require to upgrade an

initial affine solution to Euclidean space by imposing metric constraints on the motion matrix.

While in the case of rigid structure the metric upgrade step is simple since the constraints can

be formulated as linear, deformability in the shape introduces non-linearities. We propose an

alternating bilinear approach to solve for non-rigid 3D shape and motion, associated with a

globally optimal projection step of the motion matrices onto the manifold of metric constraints.

We will present an algorithm for recovering the 3D shape and motion of deformable and articu-

lated objects purely from uncalibrated 2D image measurements using a factorisation approach.

Our novel optimal projection step combines into a single optimisation the computation of the

orthographic projection matrix and the configuration weights. We avoid the difficult problem of

metric upgrade by projecting the solution to themotion manifold. We define themotion manifold

as the set of matrices that satisfy the metric constraints. The projection gives the closest motion

matrix that satisfies the correct block structure with the additional constraint that the projection
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matrix have orthonormal rows (i.e. its transpose lies on the Stiefel manifold). This constraint

turns out to be non-convex. The key contribution of this workis the solution to the non-convex

projection step. We present a tight convex relaxation that obtains the global optimum, and then

introduce an efficient convex relaxation which speeds up thecomputation while preserving ac-

curacy. Efficient in the sense that, for both the cases of deformable and articulated motion, the

proposed relaxations turned out to be exact (i.e. tight) in all our numerical experiments. The

convex relaxations are semi-definite (SDP) or second-ordercone (SOCP) programs which can

be readily tackled by popular solvers. An important advantage of these new algorithms is their

ability to handle missing data which becomes crucial when dealing with real video sequences

with self-occlusions. We show successful results of our algorithms on synthetic and real se-

quences of both deformable and articulated data. We also show comparative results with state

of the art algorithms which reveal that our new methods outperform existing ones.

3.1 Introduction

The combined inference of the motion of a camera and the 3D geometry of an unconstrained

scene viewed solely from a sequence of images is a long-standing challenge for the Computer

Vision community. The fundamental assumption which has allowed robust solutions to the

problem is that of scene rigidity. However, when dealing with image objects that vary their 3D

shape, the Structure From Motion (SfM) problem becomes inherently ambiguous and non-linear.

The seminal work of Bregleret al. [15] was the first to deal with the case of deformable objects

viewed by a single camera. Their key insight was to use a low-rank shape model to represent

the deforming shape as a linear combination ofk basis shapes which encode its main modes

of deformation. This model not only provided an elegant extension of the rigid factorisation

framework devised by Tomasi and Kanade [110] but has also opened up new computational and

theoretical challenges in the field.

Although this low-rank shape model has proved a successful representation, the Non-Rigid

Structure from Motion (NRSfM) problem is inherently under-constrained. Most approaches
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formulate it as an optimisation problem where the objectivefunction to minimise is the image

reprojection error. Recent methods focus on overcoming theproblems caused by ambiguities

and degeneracies by proposing different optimisation schemes and the use of generic priors.

In the previous chapter we discussed how most of the efforts in the NRSfM community have

gone to solve the inherent metric ambiguity. Imposing the orthonormality constraint results in a

non-linear estimation problem which requires a good initialisation and the use of priors to avoid

local minima. The problem becomes even harder in the presence of noise or missing data due to

occlusions.

Articulated motion has also been recently formulated usinga structure from motion approach [113,

133] modelling the articulated motion space as a set of intersecting motion subspaces — the in-

tersection of two motion subspaces implies the existence ofa link between the parts. Articulation

constraints can then be imposed during factorisation to recover the location of joints and axes.

While Yan and Pollefeys only compute the location of joints and axes on the image plane and do

not perform a 3D reconstruction, Tresadern and Reid go further and compute the metric upgrade,

but only recover a linear approximation of the correcting transformation [113]. Both approaches

require full data and therefore cannot deal with missing tracks, a situation that commonly occurs

for instance when tracking humans.

3.1.1 Contributions

In this chapter we present a new unified approach to perform the metric upgrade in the cases

of articulated and deformable structure viewed by an orthographic camera in the presence of

missing data.

In the non-rigid case our approach is most closely related tothe trilinear schemes of Torresaniet

al. [112] and Wanget al. [123] we described in Chapter 2. Both approaches use an identi-

cal alternating least squares framework to estimate the configuration weights, basis shapes and

orthographic camera matrices, solving iteratively for each of the unknowns leaving the others

fixed. The only difference between these two approaches is inthe way that the orthographic
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camera matrices are updated and the metric constraints imposed – the other two steps in the

alternation minimise the same cost.

While Torresaniet al. enforce the exact metric constraints through an exponential map parametri-

sation of the rotation matrices, the update of the camera matrix is only an approximation —

the camera matrix cannot be updated in closed form and instead they perform a single Gauss-

Newton step. Alternatively, in their Rotation ConstrainedPowerfactorization algorithm (RCPF)

Wanget al.first update the orthographic camera matrix via least squares and an additional step

is incorporated to project it onto the Stiefel manifold via its SVD decomposition. This simple

projector is in fact identical to the one proposed by [70] for the case of rigid structure. Finally,

in order to deal with missing data the above trilinear approaches [112, 123] resort to using only

the available image tracks in their alternating scheme.

Similarly to Torresaniet al. and Wanget al. we also propose an iterative alternating scheme to

solve the non-rigid structure from motion problem. However, our optimisation scheme is bilin-

ear, alternating between the estimation of the motion and the shape matrices, with an additional

projection step of the motion matrices onto the manifold of metric constraints. At the expense

of solving a more complex optimisation problem, our efficient convex relaxation provides an

optimal minimiser to solve simultaneously for the orthographic camera matrix and configura-

tion weights that give a motion matrix that satisfies the appropriate block structure while also

ensuring that the orthographic camera matrix satisfies the constraint of having orthonormal rows

(its transpose lies on the Stiefel manifold1). Here and throughout the chapter, the optimal pro-

jection of a matrix onto a given set of matrices, denotes the closest point on that set from the

given matrix with respect to the Frobenius norm. Extensive tests carried out on motion capture

sequences with ground truth 3D data, reported in Section3.5, show that adding a projection

step (Wanget al.’s or ours) improves greatly the results obtained in the case of missing data

with respect to other methods. However, even better improvements are achieved when using our

1The Stiefel manifoldVk,m may be viewed as the collection of allm×k matrices whose columns form
an orthonormal set. More precisely, the (real) Stiefel manifold Vk,m is the collection of all ordered sets of
k orthonormal vectors in Euclidean spaceR

m.
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bilinear algorithm associated with the proposed metric projection instead of Wanget al.’s [123]

trilinear scheme and simpler projector.

In order to deal with missing data, our algorithm performs anouter iterative loop in which, at

each step of the iteration, we run our non-rigid factorisation algorithm and we use the new esti-

mates of the rotations, translations, basis shapes and coefficients to provide a new estimate of the

missing data. Our experimental tests shown in Section3.5 reveal that dealing with incomplete

tracks using this outer loop allows to cope with much higher percentages of missing data than

the trilinear approaches [112, 123] that only use the available data.

In summary, we see three substantial contributions in our approach. First, in contrast to their

trilinear schemes, our optimisation scheme is bilinear, alternating between the estimation of the

motion and the shape matrices. Secondly, our novel optimal projection step combines into a

single optimisation the computation of the camera matrix and the configuration weights that

give the closest motion matrix that lies on the non-rigidmotion manifoldwith the additional

constraint that the camera matrix is guaranteed to have orthonormal rows (i.e. its transpose lies

on the Stiefel manifold). Finally, our experiments reveal that dealing with missing data using an

iterative outer loop to re-estimate the missing entries greatly improves the results with missing

data.

The notion ofmotion manifoldshas been recently introduced in the case of rigid shapes by

Marques and Costeira [70]. Our work extends and generalises it to the case of deformable

and articulated shapes. In particular, we impose that the camera matrix has orthonormal rows,

therefore its transpose lies on theV2,3 Stiefel manifold.2. This constraint results in a non-convex

problem which we were able to solve by a convex relaxation in the case of deformable shape.

In the articulated case, we efficiently compute the joints given the non-linear constraints on the

motion of the two bodies. The result is an algorithm where therecovered motion matrices have

the exact orthogonality constraints imposed. One of the main advantages of our approach is that

2The Stiefel manifoldVk,m may be viewed as the collection of allm×k matrices whose columns form
an orthonormal set. More precisely, the (real) Stiefel manifold Vk,m is the collection of all ordered sets of
k orthonormal vectors in Euclidean spaceR

m.
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it can be extended naturally to deal with missing data in a similar way to [70].

As a final observation we should stress that, while most NRSfMalgorithms proposed to date

need to rely on the use of priors to solve for the 3D shape and the camera motion [8, 111]

avoiding ambiguities, our new algorithms can obtain reliable solutions without having to impose

priors such as smoothness on the camera motion or the deformations.

The contributions of this work have been published in [85, 86].

3.2 Factorisation for Structure from Motion

Consider the set of 2D image trajectories obtained when the points lying on the surface of a 3D

object are viewed by a moving camera. Defining the non-homogeneous coordinates of a pointj

in framei as the vectorwi j = (ui j vi j )
⊤ we may write the measurement matrixW that gathers the

coordinates of all the points in all the views as:

W=




w11 . . . w1p

...
. . .

...

w f 1 . . . w f p



=




W1

...

W f




(3.1)

where f is the number of frames andp the number of points.

The measurement matrix can be factorised into the product oftwo low-rank matrices asW =

M2 f×r Sr×p, whereM andS correspond to the motion and shape subspaces respectively.As a

result, the rank ofW is constrained to be rank{W} ≤ r wherer ≪min{2 f , p}. The rank of these

subspaces is dictated by the properties of the camera projection and the nature of the shape of

the object being observed (rigid, deformable, articulated, etc.). This rank constraint forms the

basis of the factorisation method for the estimation of 3D structure and motion.

MatricesM andS can be expressed asM =
[
M⊤1 · · ·M⊤f

]⊤
andS = [S1 · · ·Sp] whereMi is the 2×

r camera matrix that projects the 3D shape onto the image framei and Sj encodes the 3D

coordinates of pointj.
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3.2.1 Rigid Shape

In the case of a rigid object viewed by an orthographic camera, if we assume the measurements

in W are registered to the image centroid, the camera motion matricesMi and the 3D pointsSj

can be expressed as:Mi =




r i1 r i2 r i3

r i4 r i5 r i6


 = Ri andSj =

[
Xj Yj Z j

]⊤
whereRi is a 2×3

matrix whose transpose lies on the Stiefel manifold (i.e. a 3×2 Stiefel matrix), sinceRi contains

the first two rows of a rotation matrix (i.e.RiR
⊤
i = I2×2) andSj is a 3-vector containing the

metric coordinates of the 3D point. Therefore the rank of themeasurement matrix isr ≤ 3. The

rigid motion manifoldcorresponds to the manifold of matrices with pairwise orthogonal rows.

3.2.2 Deformable Shape Model

In the case of deformable objects the observed 3D points change as a function of time. In this

work we use the low-rank shape model defined in Bregleret al. [15] in which the 3D points

deform as a linear combination of a fixed set ofk rigid shape bases according to time varying

coefficients. In this way,Si = ∑k
d=1 l idBd where the matrixSi = [Si1, · · ·Sip] is the 3D shape of the

object at framei, the 3× pmatricesBd are the shape bases andl id are the coefficients (sometimes

called deformation weights). If we assume an orthographic projection model the coordinates of

the 2D image points observed at each framei are then given by:

Wi = Ri

(
k

∑
d=1

l idBd

)
+Ti (3.2)

where the matrixRi is 2×3 with orthonormal rows, such thatR⊤i is aStiefel matrixand the 2× p

matrixTi aligns the image coordinates to the image centroid. The aligning matrixTi is such that

Ti = t i1⊤p where the 2-vectort i is the 2D image centroid and1p a vector of ones. When the

image coordinates are registered to the centroid of the object and we consider all the frames in
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the sequence, we may write the measurement matrix as:

W=




l11R1 . . . l1kR1

...
.. .

...

l f 1R f . . . l f kR f







B1

...

Bk



=




M1

...

M f







B1

...

Bk



=MS (3.3)

SinceM is a 2f ×3k matrix andS is a 3k× p matrix in the case of deformable structure the rank

of W is constrained to be at most 3k. The motion matrices now have the formMi = [Mi1 . . .Mik] =

[l i1Ri . . . l ikRi]. Therefore, in the deformablemotion manifoldthe motion matrices have a distinct

repetitive structure and every 2×3 Mik sub-block is composed of the transpose of aStiefel matrix

multiplied by a scalar.

3.2.3 Articulated Shape Model

In the case of articulated structure, the relative motions of the segments that form an articulated

body are dependent and this results in a drop in the dimensionality of the measurement matrix

W =

[
W(1) W(2)

]
that contains the 2D image points of the two segments. In the case of a

universal jointthe two shapes share a common translation (i.e. the distancebetween the centres

of mass of the shapes is constant) while in the case of ahinge joint the shapes also share a

common rotation axis [113, 133]. Naturally, this approach requires that an initial segmentation

stage has taken place to assign the trajectories inW to the respective shapes for which a solution

was recently provided in [133].

In auniversal joint[113] the distance between the centres of the two shapes is constrained to be

constant (for instance, the head and the torso of a human body) but with independent rotation

components. At each frame the shapes connected by a joint satisfy:

t(1)+R
(1)d(1) = t(2)+R

(2)d(2) (3.4)

wheret(1) and t(2) are the 2D image centroid of the two objects,R(1) andR(2) the 2×3 ortho-
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graphic camera matrices andd(1) andd(2) the 3D displacement vectors of each shape from the

joint. The relation in equation (3.4) gives the reduced dimensionality in the motion and shape

subspaces. Thus, the shape matrixS can be written as:

S=




S(1) d(1)

0 S(2)−d(2)

1 1




(3.5)

whereS is a full rank-7 matrix. The motion for a framei has to be accordingly arranged to

satisfy equation (3.4) as:

Mi =

[
R
(1)
i R

(2)
i t(1)i

]
. (3.6)

In the case of ahinge joint, if we assume the image coordinates to be registered to the centroid

of each segment, then the motion matricesMi that lie on the articulatedmotion manifoldcan be

written as:

Mi =

[
ui Ai Bi

]
(3.7)

whereu is the common rotation axis for both objects,Ai andBi are 2× 2 matrices such that[
ui |Ai

]
and

[
ui|Bi

]
are the 2×3 camera matrices (with orthonormal rows) associated with

the first and second shape respectively. The metric constraints in the case of a hinge can therefore

be expressed as:

[ui |Ai]




u⊤
i

A⊤i


= I2×2

[ui |Bi]




u⊤
i

B⊤i


= I2×2

(3.8)

where, without loss of generality, we have implicitly assumed that the axis of rotation is aligned
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with the x-axis of the first object. Thus we can writeS as:

S=




x(1)1 · · · x(1)p1 x(2)1 · · · x(2)p2

y(1)1 · · · y(1)p1 0 · · · 0

z(1)1 · · · z(1)p1 0 · · · 0

0 · · · 0 y(2)1 · · · y(2)p2

0 · · · 0 z(2)1 · · · z(2)p2




(3.9)

where nowS is a 5× p matrix andp= p1+ p2 (we assume the shapes have been registered to the

respective object centroids). Therefore, in the case of a hinge joint the rank of the measurement

matrix is at most 5.

3.3 Metric Upgrade

The classic approach in factorisation is to exploit the rankconstraint to factorise the measure-

ment matrix into an initial affine solution with a motion matrix ~M and a shape matrix~S by

truncating the SVD ofW to the rankr specific to the problem. However, this factorisation is not

unique since any invertibler× r matrixQ can be inserted, leading to the alternative factorisation:

W = (~MQ)(Q−1~S). The problem is to find the transformation matrixQ that removes the affine

ambiguity, upgrading the reconstruction to metric and constraining the motion matrices to lie on

the appropriatemotion manifold.

While in the rigid case the matrixQ can be explicitly computed linearly by imposing orthonor-

mality constraints on the rows of the motion matrix as shown by Tomasi and Kanade [110], in the

non-rigid and articulated cases the metric constraints on the motion matrices are non-linear. Al-

though some closed-form solutions have been recently proposed (see Xiao and Kanade, Hartley

and Vidal [130, 128, 49]) these algorithms perform poorly in the presence of noise and cannot

cope with missing data. Iterative solutions provide a viable alternative in the presence of noise

and missing data and this procedure will be adopted in our proposed algorithm. The factorisation

of W is solved by alternating least-squares where at each step (t) the motionM(t) and shapeS(t)
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matrices are optimised separately keeping the other one fixed, as shown in Algorithm 1. This

strategy is not uncommon in optimisation problems for SfM (See Buchananet al. [17] for a re-

view). However it is important to note that, differently from previous optimisation schemes, we

use a projection step which provides a solution that satisfies the metric constraints exactly. The

metric constraints consist of two parts: imposing the correct block structure to the motion matrix

and constraining the transpose of the orthographic camera matrices to lie on the Stiefel mani-

fold. In our approach, we impose both constraints simultaneously projecting the motion matrix

optimally onto the appropriate motion manifold. As alreadynoticed by Marques and Costeira

[70] for the rigid case, these projections not only provide camera matrices which exactly comply

with the projection model but also are generally robust to missing and degenerate data.

Algorithm 1 Iterative metric upgrade via alternation for deformable and articulated shape. At
each step of the iteration, the motion matrix estimated via least squares is projected onto the
motion manifold.
Require: An initial estimateM(0).
Ensure: A factorisation ofW that satisfies the given metric constraints.

1: Project each frame ofM(t) onto themotion manifoldof the motion matrices (See Section
3.3.1for the deformable case and Section3.3.4for the articulated case).

2: EstimateS(t) from the projectedM(t) as: S(t) = M(t)
†
W (where the symbol† indicates the

Moore–Penrose pseudo-inverse.

3: EstimateM(t+1) such that:M(t+1) = WS(t)
†
.

4: Repeat until convergence.

Crucially, Step 1 represents the real and novel contribution of this algorithm: an optimisation

method which computes the projection of the affine motion components onto themotion mani-

fold in which the exact metric constraints are satisfied. Although this problem is non-convex we

propose tight convex relaxations (in the sense that the relaxations turned out to be exact in our

numerical simulations) that transform the problems into semi-definite (SDP) or second-order

cone (SOCP) programs. Steps 2 and 3 alternate the estimationof M(t)andS(t) assuming the other

one known.

Previous approaches have also used iterative methods to perform the metric upgrade in the case
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of non-rigid structure including the trilinear alternating least-squares by Torresaniet al. [112]

and by Wanget al. [123]. However, even though Torresaniet al.’s method imposes exact metric

constraints on the camera matrices by parametrisation, theupdate of the camera matrix relies

on the assumption that the current estimate differs from thenext one only by small rotations.

Moreover, the recovery of camera matrices is not optimal. Inour case we have an optimal

solution to the projection step, which re-estimates the camera matrices and the coefficients to

obtain the closest matrix that satisfies the metric constraints. The metric projection algorithm

can be visualised in Figure3.1. After each projection, the shape is recovered via linear least

squares. Then we fix the shape to recover a new estimate of the motion matrix. This new

estimate will not satisfy the metric constraints, hence a new projection is needed. We iterate

until convergence as shown in Figure3.1. Also Wanget al. [123] adopt a trilinear approach

where the constraints on the orthographic camera matrices at each frame are imposed using a

projection. Their projector is in fact equivalent to the onedeveloped in parallel by Marques

and Costeira [70] for rigid shape in the scaled orthographic case. The projection is computed

Figure 3.1: Iterative scheme: at each step of the iteration,the motion matrix computed via least
squares is projected onto the motion manifold of metric constraints. The process is iterated until
convergence

as: Mi 7→ Ri = αUV⊤ whereα is given by the mean of the two singular values
σ1(Mi)+σ2(Mi)

2
obtained from the SVD ofMi (i.e. Mi = UDV⊤). In order to extend such procedure to non-rigid

shapes, we first need to define themotion manifoldfor the deformable and articulated cases and
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to provide the computational tools to project the motion matrices exactly from affine to metric

space.

While other works have chosen to use priors on the shape to constrain the solution to the opti-

misation problem and obtain the metric upgrade [8, 111, 36], in this work we provide a metric

upgrade step that solves an unconstrained least-squares problem and optimally projects the so-

lution onto themotion manifold(i.e, computes the closest matrix in the motion manifold with

respect to the Frobenius norm). In such regard, we postulatethat reliable solutions to the NRSfM

problem can be obtained without the use of prior informationabout the motion of the object or

the smoothness of its deformations. In the case of articulated structure, we solve globally for

both the motion components related to the bodies and the joint axis with a similar procedure.

We now give details on how these projections are computed andthe theoretical insights for the

motion manifoldof deformable and articulated shapes.

3.3.1 Metric Projection: Deformable Case

The projection is carried out on each 2×3k sub-matrixMi as defined in Section3.2and it corre-

sponds to solving the following minimisation problem at each frame:

min
Ri ,li1...lik

‖Mi− [l i1Ri |...|l ikRi ]‖2F (3.10)

with the added constraint thatRi be a 2× 3 matrix with orthonormal rows (i.e.RiR
⊤
i = I2×2).

This is equivalent to minimising separately all the 2×3 blocks ofMi giving:

min
Ri

k

∑
d=1

min
li1...lik

‖Mid− l idRi‖2F (3.11)

which is equivalent to:

min
Ri ,li1...lik

k

∑
d=1

‖Mid‖2F + l2
id ‖Ri‖2F −2l id Tr[M⊤idRi ]. (3.12)
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We can then reformulate the problem by computing the minimumfirst for ld (i.e. solving for the

zeros of the derivative of eq. (3.12)) givenR. This resolves in computing the minimum of the

quadratic function inld given by f (ld) = a l2d−2b ld + c. Such minimum is found inld = b/a

giving in our case that:

l id =
Tr[M⊤idRi ]

‖Ri‖2F
=

1
2

Tr[M⊤idRi ]. (3.13)

Putting this value back in eq. (3.12) and following with the simplification, the minimisation can

be written as:

minRi r⊤i
[
−∑k

d=1 midm⊤
id

]
r i

such that RiR
⊤
i = I2×2

(3.14)

wherer i = vec(R⊤i ) andmid = vec(M⊤id). Therefore, this quadratic minimisation problem presents

a non-convex constraint given byRi . In Appendix A we show that it is possible to derive an ef-

ficient convex relaxation of the of the constraint set. This set is defined only by linear matrix

inequalities (LMI). Therefore the optimisation problem isa Semi-Definite Program (SDP) which

can be solved using SeDuMi [103]. Further details, including a proof of the relaxation can be

found in [38].

The computedStiefel matrixR⊤i is then used to recover the weightsl id , obtaining a full non-

rigid motion matrix that satisfies the metric constraints. This allows us to solve iteratively for

the motion and shape as described in Algorithm1. This optimal metric projection step is the

key to our reconstruction algorithm. In section3.3.2 we show a tight convex relaxation of

this problem that allows us to obtain the global optimum for rotation and deformation weights.

The disadvantage of this approach is that the computationalcomplexity of solving a quadratic

minimisation problem for each frame in the sequence is too onerous. Each minimisation takes

about 2 seconds using SeDuMi toolbox (on a Athlon X2 processor running at 2.6GHz), therefore

a sequence of 120 frames would take around 4 minutes to process. While this computation time

is not unreasonable for a batch process, in Section3.3.3we present a new algorithm based on a

Newton optimisation method on the Stiefel manifold to speedup the computation by a factor of
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around 130. First we describe the initialisation to the minimisation.

Initialisation for the deformable case

Algorithm 1 requires an initial estimate of the motion matrixMi at each frame. This in turn

requires initial estimates for the camera matricesR̄i and the configuration weights̄l id . The rigid

motion R̄i and the first basis shapēS1 are initialised from a rank 3 rigid factorisation of the

measurement matrix. The second component of the shape basesis estimated from the residual

Wr = W− M̄S̄1 (3.15)

A new rank 3 factorisation is performed onWr and the new configuration weightsl i2 can be

estimated solving forl i2R̄i = Mi2 keeping the rotations fixed. This can be solved in a simple way

by taking advantage of the orthonormality ofR:

vec(Ri)l i j = vec(Mi j )

vec(Ri)
⊤vec(Ri)l i j = vec(Ri)

⊤vec(Mi j )

||R||2F l i j = vec(Ri)
⊤vec(Mi j )

2l i j = vec(Ri)
⊤vec(Mi j )

This process is repeated to obtain allk deformation modes. The first rigid factorisation needs

full data to give a solution, so we use Marques and Costeira’srigid factorisation algorithm [70]

if missing data are present.

3.3.2 Convex relaxation

We have shown in the previous section that finding the optimalprojection from the affine solution

to the manifold of metric solutions can be re-conduced to solving the following minimisation

problem;

min
Ri

rT
i

[
−

k

∑
d=1

midmT
id

]
r i (3.16)
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wherer i = vec(RT
i ) with RiR

T
i = I2×2 andmid = vec(MT

id). This quadratic minimisation problem

presents non-convex constraints given byRi . Appendix A shows that it is possible to obtain a

tight convex relaxation which can be efficiently solved using SeDuMi [103]. Further details can

also be found in the technical report by Dodiget al. [38]. The computed Stiefel matrixRi is

then used to recover the weightsl id , obtaining a full non-rigid motion matrix that satisfies the

metric constraints. This allows us to solve iteratively forthe motion and shape as described in

Algorithm 1.

3.3.3 Newton method on the Stiefel manifold

The approach described in the previous section will providean optimal projection onto themo-

tion manifoldof deformable structure. The first observation we made is that the motion matrix

for one frame is not unrelated to the next one. For most commonimage sequences the motion

of the camera is smooth, thus each motion matrixMi will not vary much from frame to frame.

Therefore, it is not unrealistic to assume that the camera pose at framei is a good initialisation

for an iterative algorithm which tries to compute the pose inthe next framei+1. Thiswarm-start

strategy is not explicitly designed for standard solvers for convex optimisation problems ([103]).

Instead, we have adopted a Newton-like iterative optimisation algorithm based on the work of

Edelman, Arias and Smith [39]. We can perform optimisation directly on the Stiefel manifold

which, for the case of smoothly varying camera poses, will converge locally to the minimum.

Of course we lose the optimality of the convex relaxation algorithm. However, empirically we

found that in all our experiments with ground truth data, in absence of noise, both algorithms

converged to the same minimum.

We now provide additional details on how to compute the Newton step update for themotion

manifoldof deforming shapes. To adhere to the notation in [39] we define the problem as that

of minimising a functionF(Y), whereY is constrained to the set of matrices such thatY⊤Y =

I[2×2] i.e. it is aStiefel matrix. In our metric projection method,Y is the[3×2] transpose of the

camera matrix. The current estimate of the Stiefel matrix isupdated using the geodesic formula
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for a unit stept = 1

Y(t) = YM(t)+QN(t) (3.17)

In order for the update to move along the geodesic, the[2×2] matricesM(t) andN(t) in 3.17are

given by the matrix exponential




M(t)

N(t)


= expt




Y⊤∆ −R⊤

R 0







I[2×2]

0


 (3.18)

Given the Newton direction∆, matricesQ[3×2] andR[2×2] in 3.17, 3.18are given by the compact

QR-decomposition of(I[3×3]−YY⊤)∆.

∆ is the[3×2] matrix defined by the equation

∆ =−Hessian−1(FY−YF
⊤
Y Y) (3.19)

WhereFY is a [3×2] matrix of first derivatives of the functionF with respect to the elements of

Y, and the Hessian is the[3×3] matrix of second derivatives of the cost functionF with respect

to the three degrees of freedom in the manifold.

We apply the iterative Newton method (more theoretical insights can be found in [39]) to the

cost function given by equation (3.14), using the solution to the previous frame as an initialisa-

tion. Evidently, the first frame has to be solved with the previously proposed convex relaxation.

In our experiments this new solution provided a remarkable speed-up, solving the whole fac-

torisation problem about 130 times faster than the originalmethod, without losing optimality as

observed in the experimental trials. Notice that in this case the assumption that the camera pose

varies smoothly is just an initialisation strategy and not aprior term in our minimisation. Our

smoothness assumption does not add an explicit penalty termto the cost function to penalise

strong deformations or camera motions as other authors do [8, 111].
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3.3.4 Metric Projection: Articulated Case

Projection onto themotion manifoldof the universal joint can be simply solved by performing

two separate rigid factorisations for each of the parts of the articulated object followed by an

estimation of the joint location as presented by Tresadern and Reid [113]. The hinge joint is

far more interesting given the non-linear relations between the motion subspaces. The two ob-

jects cannot be reconstructed independently, for each reconstruction is subject to reconstruction

ambiguities arising from orthographic projection (chirality and average depth). The two objects

must be reconstructed jointly, in order to recover the hingejoint. Is is shown in Yan and Polle-

feys results [131] that two rigid bodies coupled by a hinge joint will result intracking data of

lower dimensionality than two independent rigid bodies. Inthis work we are going to adopt the

same formulation defined by Tresadern and Reid [113], who propose a factorisation approach.

We can apply our algorithm to solve the difficult problem of metric upgrade. Instead of looking

for a linear solution, we can apply the metric projections algorithm to recover motion and shape

matrices. In the articulated case the projection problem isto find a matrix that satisfies the con-

straints given by a rotation axis. Following eq. (3.6) the projection problem for the hingemotion

manifoldcan be written at each frame as the following minimisation:

min
u,A,B

J(u,A,B) = ‖u−x‖2+‖A−Y‖2
F +‖B−Z‖2F , (3.20)

subject to the constraints defined in eq. (3.8). Herex, Y andZ are obtained directly from the

affine motion matrix̃Mi = [x|Y|Z], recovered through SVD. Equation (3.20) can be reformulated

as the minimisation ofJ(u,A,B) only as a function of the common axisu such that:

min
u,A,B

J(u,A,B) = min
u

J(u). (3.21)
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This is possible as we will show that, once the optimalu is estimated, it is straightforward to

obtainA andB in closed form. The equivalent cost functionJ(u) can be written as:

min
u

J(u) = min
u

{
‖u−x‖2+φY(u)+φZ(u)

}
. (3.22)

Thus now we will show how to transform the minimisation of‖A−Y‖2
F into the minimisation of

φY(u) (the same reasoning can be replicated forφZ(u)). First, we use the polar decomposition

to change variables asA = PQ whereP � 0 (i.e. P is a semi-definite matrix) andQ is orthogonal

(both P andQ are 2× 2). Moreover, given the metric constraints in eq. (3.8), it follows that

P2 = I−uu⊤. Thus, the matrixI−uu⊤ must be positive definite, restricting the vectoru to be

inside the unitary circle. Then, for a chosenu we can writeφY(u) as:

φY(u) = min
QQ⊤=I

∥∥∥(I−uu⊤)1/2
Q−Y

∥∥∥
2

F

= min
QQ⊤=I

{∥∥∥(I−uu⊤)1/2
∥∥∥

2

F
+‖Y‖2

F

−2Tr

(
Y
⊤
(
I−uu⊤

)1/2
Q

)}
.

Minimising this cost function over the orthogonal matrixQ equals to maximising the trace in the

previous expression.

Using the property:

max
QQ⊤=I

{Tr(XQ)}= σ1(X)+σ2(X)+ · · ·+σn(X) = ‖X‖N (3.23)

where‖X‖N denotes thenuclear normof X (i.e. the sum of its singular values), we can write

that:

φY(u) = 2−‖u‖2+‖Y‖2F −2

∥∥∥∥
(
I−uu⊤

)1/2
Y

∥∥∥∥
N

(3.24)

The same reasoning can be replicated forφZ(u) giving the final optimisation problem to be
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solved as:

min −‖u‖2−2u⊤x−2
∥∥∥
(
I−uu⊤

)1/2
Y

∥∥∥
N

‖u‖ ≤ 1 −2
∥∥∥
(
I−uu⊤

)1/2
Z

∥∥∥
N

(3.25)

Once the optimalu∗ is found we substitute back in order to recover the solution for A (and

similarly for B). First we obtainQ from the SVD ofY⊤(I− u∗u∗⊤)1/2 7→ UDV⊤ leading to

Q = VU⊤. The matrixP is simply given knowing thatP2 = I− u∗u∗⊤. This will result in

the matrix that exactly satisfies the metric structure of a hinge joint. The optimisation of the

cost function in eq. (3.25) is not trivial since the cost function is non-convex and non-smooth.

However the domain in which the function resides is constrained (i.e. the unitary circle) and the

value of eq. (3.25) for an arbitraryu can be computed efficiently without the need of calculating

the nuclear norm at each sample. The optimisation can be thensolved with a simple exhaustive

search algorithm in which the function sampling can be computed in a small amount of time

(this was in fact the strategy used in [85]). The resulting brute-force algorithm is visualised in

figure3.2, we can scatter a uniformly distributed grid of points in theunitary circle, and evaluate

the cost function at each point. If a finer grid is required, that can be cast from the minimum

found in the coarse grid, as shown. We obtain good results with this simple exhaustive search

minimisation, but in the following section we will propose aconvex relaxation that will find the

optimum in a much shorter time and with greater accuracy.

Convex relaxation for the articulated case

Although the cost function in equation (3.25) is non-convex, in Appendix B we propose an

efficient convex relaxation. Differently from the deformable case, the reformulation leads to

two cases. As shown in Appendix B, in one case the problem becomes a semi-definite program

(SDP) and in the other a second order cone program (SOCP) bothof which can be efficiently

solved with standard convex optimisation tools [103]. In all of our numerical experiments we

found that the proposed convex relaxations were exact, thereby solving indeed (3.25). Compared

to the full search method we described in the previous section, this convex optimisation speeds
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Figure 3.2: Exhaustive search for minimising the cost function 3.25. A coarse grid of candidate
points is scattered on the unitary circle, and the process isrepeated on a smaller area around the
evaluated minimum.

up the computation by a factor of around ten. A second advantage is that we avoid the problem

of the accuracy of the solution depending on the density of the interval grid in the parameter

space as in the full-search algorithm. The full details of the proposed convex relaxation can be

found in Appendix B.

Initialisation for the articulated case

We first consider the two bodies separately and then perform arigid factorisation for each shape.

Given this factorisation, we can then obtain an initial closed form solution for the metric upgrade

in the case of a hinge using the linear method by Tresadern andReid [113].

3.4 Reconstruction with Missing Data

Incomplete image tracks are a common occurrence in SfM tasksand several algorithms have

been proposed in order to cope with the missing data problem within the factorisation framework

(see Buchanan and Fitzgibbon for a review [17]). Our new factorisation approach presented in

the previous section can be modified to account for missing entries in W. The strength of our

approach lies in the fact that themotion manifoldconstrains the estimated motion of the missing
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2D image points since we only allow trajectories that satisfy the metric constraints exactly.

Instead of using only the known image tracks to solve for the camera matrices, basis shapes

and deformation coefficients as the trilinear least-squares approaches do [112, 123], we opt for

an iterative scheme. At each step of the iteration we re-compute the missing entries in the

measurement matrixW using the current estimates of the motion and shape matricesthat have

been projected onto the correctmotion manifold. In our experimental validation, reported in

Section3.5, we have found that dealing with missing data using the iterative scheme described

here allows to deal with higher percentages of missing data than using only the available data

as Wanget al. do in their RCPF approach [123]. The steps of this method are summarised in

Algorithm 2.

Algorithm 2 Metric Projections algorithm in the presence of missing data.

Require: An initial estimateW(0) of the missing data inW.
Ensure: A factorisation ofW that satisfies the given metric constraints.

1: Remove the 2D centroidT(t) from W(t), i.e. Ŵ(t) = W(t)−T(t).
2: FactoriseŴ(t) = M(t)S(t) using Algorithm1.
3: Estimate the missing data entries ofW asW(t+1) = M(t)S(t)+T(t)

4: Repeat until convergence.

The algorithm requires an initial estimate of the missing entries in the measurement matrixW.

For this purpose, we have used the rigid factorisation algorithm of [70] to obtain an initial rigid fit

of the missing entries. In the case of articulated structurewe apply the algorithm independently

to each of the bodies. The iterations are stopped when the distance||W(t+1)−W(t)||F falls below

a user-defined threshold, that is, when the new estimate doesnot modify the previous values

much.

3.5 Experiments

First we show results for the recovery of deformable structure, followed by results for articu-

lated structure. We evaluate the performance of our algorithms quantitatively on various motion

capture sequences, for which ground truth was available, and we compare our results with some



3.5. Experiments 111

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Percentage of Missing Data

3D
 e

rr
or

 

 

Metric Projections − 0% noise

Wang et.al. − 0% noise

Bundle Adjustment − 0% noise

MP−SP − 0% noise

EMPPCA − 0% noise

0 10 20 30 40 50 60 70 80
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Percentage of Missing Data

3D
 e

rr
or

 

 

Metric Projections − 0% noise

Wang et.al. − 0% noise

MP−SP − 0% noise

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Percentage of Missing Data

3D
 e

rr
or

 

 

Metric Projections − 1% noise

Wang et.al. − 1% noise

Bundle Adjustment − 1% noise

MP−SP − 1% noise

EMPPCA − 1% noise

0 10 20 30 40 50 60 70 80

0.05

0.06

0.07

0.08

0.09

0.1

0.045

Percentage of Missing Data

3D
 e

rr
or

 

 

Metric Projections − 1% noise

Wang et.al. − 1% noise

MP−SP − 1% noise

Figure 3.3: Missing data tests on theFace1Motion Capture sequence. Plots show the average 3D
error over 100 tests for increasing levels of randomly generated missing data. We compare the
results obtained with: Metric Projections (MP), EMPPCA, Bundle Adjustment (BA), Rotation
Constrained Powerfactorization (RCPF) and MP with a SimpleProjector (MP-SP). The plots on
the left column show the average 3D errors in the noise-less case (top) and with added Gaussian
noise (bottom) ofσ = 1%. The plots on the right show a zoomed-in version of the three best
performing algorithms (MP, RCPF and MP-SP). The performance of MP and MP-SP is similar
although MP outperforms MP-SP.

current state of the art NRSfM algorithms [111, 36, 123]. In the case of the articulated Metric

Projections (MP) algorithm we evaluated against Tresadernand Reid linear method [113]. No-

tice that we do not compare with Yan and Pollefeys’ approach [133] since their proposed method

does not perform a 3D metric reconstruction of the shape and joint axes – only the 2D projection

of the axes in the image is computed. Finally we demonstrate our algorithms on real image

sequences. We have made our code and sequences available fordownload on our website3.

3http://www.dcs.qmul.ac.uk/ ˜ lourdes/code.html

http://www.dcs.qmul.ac.uk/~lourdes/code.html
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Figure 3.4: Noise test for theFace1Motion Capture sequence in the cases of full data case (left)
and 30% missing data (right). We show 3D errors versus percentage of added Gaussian noise.
In the full data case (left), EMPPCA performs marginally better while in the missing data case
(right) MP is the best performing algorithm.

3.5.1 Deformable Structure

Synthetic Experiments – Motion capture data

In our synthetic experiments we used two different 3D motioncapture sequences, both showing

faces. The first sequence,Face1, was captured in our own laboratory using a VICON system

tracking a subject wearing 37 markers on the face. The 3D points were then projected syntheti-

cally onto an image sequence 74 frames long using an orthographic camera model. The second

sequence,CMU face sequence4, is motion capture data made available by Torresaniet al. [111].

The subject wore 40 markers tracked by a motion capture system and the orthographic projec-

tion is performed by simply discarding the third coordinateof each 3D point. Note that although

the projection of the ground truth 3D data on the images is synthetic the deformations are real-

istic since they come from real motion capture sequences. The 2D image data is therefore not

synthetic and it contains some noise due to the motion capture estimation errors.

Our proposed Metric Projection algorithm (MP) is tested against various state of the art algo-

rithms: EMPPCA [111], which is currently perceived to be the state of the art/baseline algorithm

and for which code has been made available on-line; RotationConstrained Power Factorisation

(RCPF) [123], which is the most closely related approach to our new MP algorithm since it also

performs a (rigid) projection of the camera matrices as we described in Section3.1.1, and a Bun-

4http://www.cs.dartmouth.edu/ ˜ lorenzo/nrsfm.html

http://www.cs.dartmouth.edu/~lorenzo/nrsfm.html
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dle Adjustment algorithm (BA) designed for NRSfM [36] where the orthonormality constraint

on the rotation matrices is imposed through parametrisation.

In the case of missing data we also report results with a modified version of our Algorithm 2.

We are interested in assessing (in the case of missing data) the gain in performance achieved

by using our bilinear scheme followed by our new optimal metric projector instead of Wanget

al.’s trilinear scheme followed by their simpler projector ofthe camera matrices onto the motion

manifold [123]. In order to do this we have designed a new algorithm that we call MP-SP:

Metric Projection with Simple Projection. The idea is to use our outer loop to deal with the

missing data and substitute Step 2 in Algorithm2 with Wanget al.’s RCPF algorithm. In this

way we can test an algorithm with the same initialisation, the same iterative outer loop to deal

with missing data but using Wanget al.’s trilinear approach with the simpler projection step to

perform factorisation. Note that this new scheme (MP-SP) isnot Wanget al.’s RCPF algorithm:

the missing data is dealt with in a different way. Effectively, our Algorithm 2 (MP in the case

of missing data) and the new MP-SP have exactly the same structure. They only differ in the

factorisation algorithm used in Step 2: in the case of Algorithm 2 it is our MP algorithm for full

data (Algorithm 1) while in the case of MP-SP it is Wanget al.’s RCPF algorithm.

To test the performance of the algorithms we computed the 3D error, which we defined as the

Frobenius norm of the difference between the recovered 3D shapeS and the ground truth 3D

shapeSGT. The error is normalised against the Frobenius norm of the ground truth shape||S−

SGT||F/||SGT||F . We subtract the centroid of each shape and align them with Procrustes analysis.

In the noise tests zero mean additive Gaussian noise was applied with standard deviationσ =

n×s/100 where n is the noise percentage and s is defined as max(W) in pixels.

Initialisation: EMPPCA was initialised with its own method supplied by the authors in their

software [111] (camera matrices and mean shape are computed using Tomasi and Kanade rigid

factorisation [110] while deformation basis and coefficients are estimated through iterative PCA

of the shape residuals). The mean shape and camera matrices were initialised in an identical

way for BA, RCPF, MP and MP-SP using Marques and Costeira’s rigid factorisation algorithm
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[70] to compute rigid shape and camera matrices. The deformation basis and coefficients in the

BA algorithm were initialised in the same way as EMPPCA. Wanget al. [123] RCPF algorithm

only needs an initialisation for the non-rigid deformationbasis which were set to small random

values (as indicated by the authors in [123]). Our MP algorithm initialisation only needs the

coefficients which were initialised through iterative PCA of the residuals of the measurement

matrix W as explained in Section3.3.1. The outer iterative loop of MP and MP-SP algorithms

also require an initialisation of the missing data for whichthe rigid factorisation by Marques and

Costeira [70] was used.
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Figure 3.5: Box-plots showing statistics on the distributions of the 3D reconstruction errors for
the ”Face1” sequence in the case of no added noise.
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Missing data and noise tests

In Figure3.3we compare the performance of our new algorithm MP with EMPPCA, RCPF, BA

and MP-SP for theFace1sequence in the case of increasing levels of missing data ranging from

10% to 80%, generated by deleting entries from the measurement matrix randomly. For each

level of missing data we averaged the results of 100 runs varying the missing data mask. Tests

in which the 3D error was higher than 100% were considered as outliers and were not used to

compute the average. In all experiments the number of basis shapes was fixed tok= 5.

The top row of Figure3.3 shows the results in the noiseless case, while the bottom rowshows

the results in the more realistic case of 1% image noise. The plots in the left column show

the 3D error of all the algorithms (MP, EMPPCA, RCPF, BA and MP-SP) while the plots on

the right column show a zoomed-in version for the algorithmsshowing the best performance

(MP, MP-SP and RCPF), which interestingly, enforce orthonormality constraints on the camera

matrices through projection. The left plots in the noiseless (top) and 1% noise case (bottom)

show that EMPPCA and BA are the worse performing algorithms in the presence of missing

data. EMPPCA can cope with up to 20% missing data before the error starts to grow steadily.

BA gives the highest 3D errors for low ratios of missing data but appears to show more resilience

to higher ratios of missing data than EMPPCA. However, it also breaks down after 50% missing

data.

The plots in the right column of Figure3.3 show a zoomed-in view of the best performing

algorithms. Our new MP algorithm achieves the smallest overall 3D errors both in the noiseless

case (right-top) and more clearly in the 1% noise test (right-bottom). RCPF [123] shows good

performance until levels of around 50% missing data but the errors grow quickly after that. The

second best performing algorithm is MP-SP which uses our outer loop to deal with missing data

and RCPF internally to perform factorisation. Although itsperformance is comparable to MP,

the 3D error curve for MP lies below – for instance in the 1% noise case (bottom-right)the 3D

reconstructions obtained with MP are on average around 1% better than with MP-SP.

It is worth discussing three interesting facts revealed by the results of these tests for increasing
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Figure 3.6: Box-plots for the 1% noise test showing statistics on the distributions of the 3D
reconstruction errors for the ”Face1” sequence.

levels of missing data. First, all top three performing algorithms (MP, MP-SP and RCPF) include

a projection step of the camera matrices to deal with metric constraints. BA and EMPPCA, on

the other hand, impose the orthonormality constraints through parametrisation (quaternions in

the case of BA and exponential map in the case of EMPPCA). Secondly, while RCPF, MP-SP

and MP show very similar performance for missing data ratiosof up to 50%, for higher ratios

MP-SP and MP greatly outperform RCPF. The only difference between MP-SP and RCPF is

the way in which they deal with missing data: RCPF uses only the known 2D image tracks

while MP-SP uses an outer loop to re-estimate the missing data at each step of the iteration.

Note that they were both initialised in the same way as MP. Finally, the performance of MP

is about 1% better than MP-SP. However, MP-SP runs around 25%faster (see Figure3.8 for

algorithm run-times). Therefore if run-time is an issue MP-SP could be used instead of MP
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Figure 3.7: Structured missing data mask used for the experiment described in Section3.5.1.
Each column is a point track, points in black are marked as visible, points in white are marked
as occluded.
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Figure 3.8: Comparison of run-times (in seconds) averaged over 100 tests, versus percentage
of missing data. Tests were performed using a 4-core Xeon processor running at 2.8GHz, with
24GB of RAM.

without compromising performance too much but of course improved results would be achieved

with MP.

In Figure3.4 we show comparative noise tests for EMPPCA, BA, RCPF and MP inthe case

of full data (left) and 30% missing data (right). We show results for noise levels of up to 4%

meaning that the value of the varianceσ is up to 4% of the size of the object in the image. It

is clear that BA, is the most vulnerable algorithm to noise inthe image coordinates. Note also

that EMPPCA, RCPF and MP perform very similarly with EMPPCA performing slightly better

in the full data case and MP in the 30% missing data case. The results were averaged over 100

runs.
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To show more details on the distribution of 3D errors in the results, Figure3.5reports box-plots

of the errors for all the trials performed in the case of 0% noise. In the noiseless case, the only

difference between trials is the missing data visibility matrix (randomly generated). In Figure

3.6we show box-plots of the errors in the 1% noise case. Overall,our MP method was the one

that obtained the most robust statistics.

Figure3.9shows front and side views of the 3D reconstruction results for one of the runs of the

Face1sequence with no noise and 40% missing data. The top row showssome frames of the

motion capture session (which do not correspond to the reconstructed ones below), the second,

third and fourth rows show ground truth values and 3D reconstruction results obtained with our

method MP, EM-PPCA and RCPF respectively. Our reconstruction is closer to the ground truth

shape. The average 3D reconstruction error over all the frames of this sequence was 4.7% with

MP, 13.1% with EMPPCA and 9.0% with RCPF.

Figure3.10compares ground truth with the results obtained with MP, EMPPCA and RCPF for

the CMU face sequence with full data and with 30% missing data. In thefull data case all

algorithms perform similarly. However, in the missing datacase, our algorithm recovers the 3D

shape correctly and outperforms Torresaniet al.’s. The 3D errors against ground truth motion

capture data were the same for RCPF and MP (2%), both for full data and 30% missing data,

while for EMPPCA the 3D error is low (1.8%) in the full data case, but very high (35%) in the

missing data case.

Figure3.8 shows the mean run-times expressed in seconds, for the experiment in Figure3.3,

for EMPPCA, BA, RCPF and MP for different ratios of missing data. Tests were performed

using a 4-core Xeon processor running at 2.8GHz, with 24GB ofRAM. All implementations

are in MATLAB. The fastest algorithms are BA and EMPPCA. However the code for BA and

EMPPCA provided by the authors contains some parts of optimised MEX code. At the expense

of losing some accuracy, as we saw in Figure3.3, MP-SP runs around 30% faster than MP since

the projection step is much more simple. Note that RCPF requires a large number of iterations in

order to achieve convergence after 30% missing data. Therefore, adding the outer loop to RCPF
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to deal with missing data as we did in MP-SP improves the convergence in this case.

Each of the tested approaches uses its own custom initialisation for the optimisation routines.

This difference is dictated by the fact that each method starts the iterations from a different

parameter set. While all algorithms require an initial estimate for the camera matrices and the

mean rigid shape, for instance, our MP requires an initial estimate of the motion matrixM,

BA and EMPPCA need a first guess of the basis shapes and deformation weights while RCPF

requires an initial estimate of basis shapes. Since each initialisation is inherited from the specific

structure of the method, evaluating each approach with exactly the same initialisation is not

feasible. However, we have attempted to make the initialisations as uniform as possible by using

Marques and Costeira [70], which fills in the missing entries in the data matrix, to initialise the

mean shape and camera projection matrices in the case of MP, BA and RCPF. Note that only

our algorithm, MP, uses the missing entries explicitly in the outer loop proposed in Algorithm2,

while BA and RCPF only use the known data in the estimation.

Synthetic Experiments – Structured occlusions

While it is important to conduct experiments with randomly generated missing data to control

its percentage in the simulation, we also performed a test with a missing data mask where points

are occluded in a structured way, as it would happen for instance due to self-occlusions.

In order to generate a more realistic missing data pattern wehave computed surface normals from

the sparse 3D motion capture data using thetaglut algorithm5.The computed angles between

surface normal and camera viewing direction for all frames have been thresholded at 60 degrees,

marking large angles as occluded. Although the knowledge ofsurface normals allows to simulate

self-occlusions, the strong sparseness of the measured points does not permit to simulate realistic

self-occlusions. However, the resulting occlusion pattern is structured and not random as in the

previous tests. The resulting occlusion mask is shown in Figure 3.7 – the amount of missing

data resulting from this computation was 32%. The resultingvisibility matrix captures well the

structured disappearance of image features. We then ran ourMP Algorithm 2 on the input 2D

5http://jmfavreau.info/?q=en/taglut

http://jmfavreau.info/?q=en/taglut
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Images from MOCAP session

 

 
Ground Truth

Reconstruction

Missing Data

Metric Projection - Average 4.7% 3D error

EM-PPCA [111] - Average 13.1% 3D error

RCPF [123] - Average 9.0% 3D error

Frame 10 Frame 45 Frame 70

Figure 3.9: 3D reconstruction results for a single run of thetheFace1motion capture sequence
with 40% missing data. Missing points are highlighted in red. Top row: Some frames of the
original motion capture take (the images do not correspond to the reconstructed frames shown
below). Second, third and fourth rows: side and front views for some frames of the 3D re-
construction for our Metric Projection method, Torresaniet al.’s EM-PPCA and Rotation Con-
strained Power Factorisation. We show ground truth (green circles) and reconstructed points
(blue dots if visible red if not). The wire-frame lines are only shown for visualisation purposes.

data, obtaining a 3D reconstruction error of 5.4%. A visual comparison of the reconstructed

3D against ground truth motion capture data is given in Figure 3.11and Figure3.12. We also

compare this result with other techniques, and show that MP outperforms other methods in

this case. In particular, EMPPCA [111] obtains 8.6% 3D reconstruction error, and Wanget

al.’s RCPF [123] achieves 8.4% error. This test shows that the advantage of metric projection

remains even when the occluded points are not selected randomly, but in the more realistic case

of structured occlusions.
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Real Sequences

Cushion Sequence

In our first experiment we tested our algorithm on an image sequence of a cushion bending

and stretching, in which 90 points were tracked manually. The results are shown in Figure

3.13. Our algorithm reconstructs successfully the 3D point cloud and its deformations. We used

this data to generate a texture-mapped view of the reconstructed object. We also performed

a quantitative evaluation by comparing the 3D reconstruction obtained with full data to those

obtained with different percentages of missing data – generated by deleting randomly entries

on the measurement matrix. The difference (computed in the same way as we compute the 3D

error) between the 3D shape reconstructed with full data andthe shapes obtained with 10%,

20% and 30% missing data are 3.8%, 5.7% and 5.9% respectively . We also measured the

average image reprojection error which was 0.1 pixels with full data, and 1.1, 1.2 and 1.4 pixels

for the 10%,20% and 30% missing data cases respectively. In Figure 3.14 we show the 3D

reconstruction results on the cushion sequence with 10% missing data generated randomly.

Franck Sequence

We also used the Franck sequence6 taken from a video of a person engaged in conversation. We

selected 700 frames from the 5000 frame sequence. An Active Appearance Model (AAM) was

used to track 68 features on the face. Figure3.15 shows three frames of the original images

and a view of the resulting 3D reconstruction in the cases of complete 2D data (second row)

and 20% missing data (third row). We also show the 3D reconstruction achieved with EMPPCA

for the full data case as a baseline (fourth row). However, wecould not show the results for

EMPPCA for 20% missing data since already for that value, theerrors were too high and the

reconstruction was meaningless. The last two rows (fifth andsixth) show the results achieved

with the RCPF algorithm in the cases of full data and 20% missing data. The number of basis

shapes was chosen to be 6 in this experiment. Our algorithm appears to achieve the best 3D

reconstructions in this real sequence with and without missing data.

6www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.html
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Input 2D Data
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Metric Projection - 2% 3D error

EM-PPCA [111] - 1.83% 3D error

Metric Projection, 30% Missing Data - 2% 3D error

EM-PPCA [111] , 30% Missing Data - 35% 3D error

RCPF [123], 30% Missing Data - 2% 3D error

Frame 44 Frame 55 Frame 62 Frame 93 Frame 105

Figure 3.10: 3D reconstruction results for the “CMU” face motion capture sequence. First
row: input 2D data. Second and third rows: full data results,Metric Projection and EM-PPCA.
Reconstruction (blue dots) are compared with ground truth data (green circles). Fourth, fifth and
sixth rows: Results for 30% missing data (highlighted in red).
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Input 2D Data

3D reconstruction with our method, front view 5.4% 3D error

3D reconstruction with our method, side view

3D reconstruction using RCPF, front view 8.4% 3D error

3D reconstruction using RCPF, side view

Frame 1 Frame 20 Frame 38 Frame 56 frame 74

Figure 3.11: 3D reconstruction results obtained for theFace1motion capture sequence with the
structured missing data mask shown in Figure3.7. Top row: 2D input data. Comparison between
our MP algorithm (second and third rows) against RCPF (fourth and fifth rows). Ground truth
shown in green, missing data points highlighted with a red circle.
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Input 2D Data

3D reconstruction with our method, front view 5.4% 3D error

3D reconstruction with our method, side view

3D reconstruction using EMPPCA, front view 8.6% 3D error

3D reconstruction using EMPPCA, side view

Frame 1 Frame 20 Frame 38 Frame 56 frame 74

Figure 3.12: 3D reconstruction results obtained for theFace1motion capture sequence with
the structured missing data mask shown in Figure3.7. Comparison between Metric Projection
(second and third rows) and EMPPCA (fourth and fifth rows). Ground truth 3D data points
shown in green, red dots highlight missing data.
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Input 2D Data

3D reconstruction, Front View

3D reconstruction, Side View

2D data and reprojections

Textured mesh, Front View

Textured mesh, Side View

Frame 1 Frame 12 Frame 23 Frame 34 Frame 44

Figure 3.13: 3D reconstruction results for the “cushion” real sequence. We show texture-mapped
3D reconstructions and use them to generate a virtual view ofthe object in 3D. First row: Input
images and tracking data. Second and third rows: 3D reconstruction results with the proposed
method. Fourth row: reprojection of reconstructed points (crosses) together with 2D input data
(circles). Bottom rows: Texture-mapping rendered view of the 3D reconstruction.
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2D data and reprojections, 10% missing data

3D reconstruction using our method, front view

3D reconstruction using our method, side view

EMPPCA reconstruction, front view

EMPPCA reconstruction, side view

Figure 3.14: Reconstruction results on the “cushion” real sequence with 10% missing data.
Points were marked as not visible randomly. First row: Input2D tracks (green circles) and
reprojections calculated with our method (blue crosses). Missing 2D points (not used for recon-
struction) are shown as red circles. Second and Third rows: 3D reconstruction with our method.
Fourth and Fifth: 3D reconstruction using EMPPCA. note thatalthough the frontal view matches
the input data, the reconstruction suffers from bad depth estimation, visible in the side view.
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Input images and 2D tracking data

3D reconstruction using Metric Projection

3D reconstruction, 20% missing data, MP

3D reconstruction using EMPPCA

3D reconstruction using RCPF

3D reconstruction using RCPF, 20% missing data

Frame 200 Frame 400 Frame 500

Figure 3.15: First row shows frames 200, 400 and 500 of the Franck sequence. We show front
and side views of the 3D reconstructions in the case of full data and 20% missing data in the input
tracks (randomly generated) achieved with our MP algorithm(second and third rows) EMPPCA
(fourth row) and RCPF (fifth and sixth rows). Note that we do not show the reconstruction
obtained for EMPPCA with missing data as it was of very poor quality. Missing points not
visible in the corresponding frame are highlighted with a red circle.
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Figure 3.16: Quantitative results on the synthetic articulated sequence. Top: Error on relative
rotation angle between the two boxes in the synthetic experiment compared with Tresadern and
Reid’s linear approach. Bottom: 3D error of recovered structure. In both cases the Metric
Projection method results more robust to noise and can recover rotation angles reliably.

3.5.2 Articulated Structure

Synthetic sequence

In the articulated case our synthetic data simulated two 3D boxes coupled by a hinge joint. The

3D ground truth is projected on the input images via orthographic projection. The sequence

contained global rotation and translation as well opening and closing of the hinge. Each box

contains 231 points, and the sequence is 63 frames long. We tested the algorithm in the case

of full data for noise levels ranging from 0% to 4%. Figure3.16 shows the absolute error

in the recovered relative angle between the two boxes (averaged over all frames) and the 3D

error of recovered 3D structure. The plots in Figure3.16show comparative results between the

performance of [113] (TR) and our new approach (MP). Slightly superior results are achieved

with our algorithm.

Real Sequence

We tested our algorithm on a sequence of 815 frames of two boxes linked by a hinge joint.

The number of tracked points on the upper box was 21 and 47 on the lower box. Figure3.17

shows two frames of the image sequence showing the tracked points and the recovered joint axis

projected onto the images. The 3D reconstruction of the articulated structure together with the

common hinge axis is also shown in Figure3.17. In this case there was no missing data.

Finally we show results using a motion capture sequence of a person kicking a football. The
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Figure 3.17: Three images from the articulated sequence. The black line represents the hinge
location computed with the linear algorithm by Tresadern and Reid, while the red line is the
solution given by our method. The last figure shows the final 3Dreconstruction and axis obtained
using our approach. Images and tracking data kindly provided by Phil Tresadern.

motion capture system tracked 333 markers on the whole body.We selected the tracks on the

leg, and projected the 3D coordinates on 2D images via orthographic projection. The viewing

direction of the synthetic camera starts at the back of the leg and performs a random rotation

around the body, resulting in the image sequence used for reconstruction. Some frames can

be seen in Figure3.19, first row. From the 2D images we can recover the rotation axisof the

joint, and the 3D structure of the leg, as shown in Figure3.19. The reconstructed 3D points and

axis have been aligned to the MOCAP data to show the full body pose. Two close-up of the

reconstruction and axis are shown. In Figure3.18we also show a comparison of the recovered

rotation angle between our method and the linear method by Tresadern and Reid [113]. We

can see that although this sequence does not have ground truth information on the joint angle in

the knee, we recover a smooth movement (purely from the data,without imposing smoothness

constraints) while the linear solution obtains similar values with some discontinuities.
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Figure 3.18: Recovered rotation angle between two object: knee joint in the “football” sequence.
Although this sequence does not have ground truth information on the joint angle in the knee, we
recover a smooth movement (purely from the data, without imposing smoothness constraints)
while the linear solution obtains similar values with some discontinuities

3.6 Summary and discussion

We have described a new bilinear alternating approach associated with a globally optimal pro-

jection step onto the manifold of metric constraints. At each step of the minimisation we project

the motion matrices onto the correct deformable or articulated metricmotion manifoldsrespec-

tively. Although the constraints result in non-convex problems we introduced efficient convex

relaxations in the form of semi-definite (SDP) or second-order cone (SOCP) programs. These

relaxations revealed themselves to be exact in all our numerical experiments.

We have carried out experiments to compare the performance of our new Metric Projection

algorithm with competing NRSfM methods. These have revealed that there are two main factors

that make our Metric Projection (MP) algorithm more robust to missing data. The first strength

is in the projector. It was first observed by Marques and Costeira [70], in the case of rigid

SFM, that projecting the rotation matrices onto the Stiefelmanifold allowed to cope with high

percentages of missing data and degeneracies. Our experimental results show that, in the non-
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rigid case, the two algorithms that project the orthographic camera matrices onto the Stiefel

manifold: our own MP and the simpler rotation constrained powerfactorization (RCPF) [123]

can cope with higher levels of missing data tracks than the two other baseline methods that

do not (EMPPCA [112] and Bundle Adjustment [36]). However, MP consistently outperforms

RCPF [123] for percentages of missing data above 50%.

This is due to the second strength of our MP algorithm: it simultaneously estimates the unknown

entries of the measurement matrixW, given the current estimates of the model parameters, within

an iterative outer loop. Differently, RCPF, BA and EMPPCA estimate the model parameters

using only the known data. This can have a negative effect on the minimisation when few

data are known. We also observed that, when included within our outer iterative loop to deal

with missing data, the simple projector used by Wanget al. [123] improved its performance

significantly for percentages of missing data higher than 50%.

To conclude, imposing the metric constraints on the motion matrices provides reliable results

without the need to impose additional smoothness priors on the camera pose or the deformations

as most other NRSfM approaches to avoid ambiguous solutions. In the articulated case, we

efficiently compute the joints given the non-linear constraints on the motion of the two bodies.

In general, even though our methods were designed to solve SfM problems, themotion manifolds

and the related optimal projections could be used for different tasks such as registration (where

the shapeS is known), image point matching and motion segmentation.

The methods described in this chapter, and the experimentalresults obtained, demonstrated

that the manifold constraints are the heart of the non-rigidstructure from motion problem. We

proposed a unified formulation, to address rigid, deformable, and articulated structures, within

the same estimation framework. This idea can be extended, aswe are going to describe in the

next chapter, the manifold constraints are a powerful tool that can be exploited in a wide variety

of problems. The next chapter will deal with a general framework to solve bilinear problems

with manifold constraints in computer vision, and in other fields.
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2D input data

3D reconstruction and axis, together with MOCAP data

3D reconstruction and axis, close view

3D reconstruction and axis, close view from different viewpoint

Frame 1 Frame 10 Frame 25 Frame 35 Frame 50

Figure 3.19: Recovery of the knee joint in the “football” sequence. Top row: Input image points.
Second row: 3D Reconstruction of the leg (magenta and cyan dots) and axis of rotation shown
with the 3D ground truth motion capture sequence (green circles). Third row: Reconstructed
3D points (dots) with ground truth MOCAP data (green circles). Fourth row: 3D reconstruction
imaged from a different angle.
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Chapter 4

Bilinear modelling via Augmented Lagrange

Multipliers (BALM)

Our metric projection work has shown how a unified approach todeformable and articulated

object reconstruction via bilinear alternation is possible by considering the projection onto the

manifold of acceptable solutions defined by the problems. What follows is a more general

solution that deals robustly with missing data and definitely decouples the problem of bilinear

estimation from the projection, hence opening the road for aunified framework for the solution

of a wide range of computer vision problems.

This chapter presents a unified approach to solve bilinear factorisation problems in the presence

of missing data in the measurements. Bilinear problems are common in computer vision. Rigid,

articulated and deformable structure from motion all sharethis formulation. The difference is in

the constraints that must be satisfied by one of the factors — the manifold on which the solution

lies. Thus, intuitively, it should be possible to constructa unified optimisation framework in

which a change of the manifold constraint just implies replacing an inner module of the algo-

rithm (as opposed to an overall redesign of the optimisationmethod from scratch). The proposed
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solution is a constrained optimisation method where one of the factors is constrained to lie on

a specific manifold. To achieve this, we introduce an equivalent reformulation of the bilinear

factorisation problem. This reformulation decouples the core bilinear aspect from the manifold

specificity. We then tackle the resulting constrained optimisation problem with the method of

Augmented Lagrange Multipliers (ALM). One advantage of this algorithm is that only a projec-

tor onto the manifold constraint is needed. That is the strength and the novelty of this approach:

this framework can handle seamlessly different computer vision problems. What will differ in

each case is the projector of the solution onto the correct manifold. If the manifold projector

exists, the factorisation problem can be formulated using our unified approach. Since in the

previous chapter we have proposed projectors for both the deformable and articulated motion

manifolds we use them here to solve the non-rigid and articulated SfM problems within this

Augmented Lagrange Multipliers (ALM) framework.

4.1 Introduction

Several computer vision problems are naturally formulatedas bilinear problems since often ob-

servations are influenced by two independent factors where each can be described by a linear

model. For example in photometric stereo [10] the shape of the object and the light source di-

rection interact bi-linearly to influence the image intensity. In rigid structure from motion [110]

the 3D shape of the object is pre-multiplied by the camera matrix to determine its image coordi-

nates. In structure from sound the time arrival of a sound event depends both on the direction of

the sound propagation and the position of the microphones [108]. In facial tracking the problem

of separating head pose and facial expression can also be defined as a bilinear problem [9]. In

non-rigid structure from motion [15] the 2D coordinates of features arise from a bilinear relation

between the camera matrix and the time varying shape. All these are common bilinear problems,

where the goal is the simultaneous estimation of two factors.

In our experiments we show that we are able to deal with high percentages of missing data which

has the practical implication that our approach can be used on data coming from real, not just
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controlled, scenarios. We illustrate our unified approach by applying it to the computer vision

problems addressed in this thesis: rigid, articulated and non-rigid structure from motion.

4.2 Related Work

Bilinear models appear frequently in Computer Vision. However, it is in the area of Structure

from Motion (SfM) that most of the efforts dedicated to solvethis problem have come from. We

focus on describing what we believe are the two most important threads of research to solve the

problem of low-rank matrix factorisation in the case of missing data.

One line of research that dominates the literature includesapproaches that perform alternation

of closed-form solutions to solve for the two factors of the matrix. The first of these approaches

to solve the problem of missing data was proposed by Wiberg [125]. Since then many different

solutions have been put forward. Buchanan and Fitzgibbon [17] provide a comprehensive re-

view of these methods while proposing their own alternativeapproach. Their Damped Newton

algorithm provides faster and more accurate solutions thanstandard alternation approaches. The

common property of all these methods is that they only solve the low-rank matrix factorisation

problem without imposing manifold constraints. The constraints are applied afterwards, once

the low-rank matrix has been estimated. Crucially, the constraints are not imposed during the

minimisation.

On the other hand, a relatively recent set of algorithms haveattempted to solve the problem

by including explicitly the non-linear constraints given by the specific problem structure in the

low-rank minimisation. Marques and Costeira [70] introduced the concept ofmotion manifold

in rigid SfM to obtain motion matrices that exactly satisfy the camera constraints. Similarly,

Paladiniet al. [85] propose an alternation algorithm associated with an optimal projector onto

themotion manifoldof non-rigid shapes. The practical implication of their algorithm is that it

can deal with very high percentages of missing data. Shajiet al. [100] also propose to solve

a non-linear optimisation problem directly on the product manifold of the Special Euclidean

Group claiming better results than [17] in a rigid real sequence.
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However, all these approaches are tailored to specific problems. Therefore, for different mani-

fold constraints an overall redesign of the optimisation method would be needed. The purpose of

this work is to present a generic approach that is not problemdependent. In similar spirit, Chan-

draker and Kriegman [19] have proposed a globally optimal bilinear fitting approachfor general

Computer Vision problems. The key contribution of their approach is that they can prove conver-

gence to a global minimiser using a branch and bound approach. However, the main drawback is

that the scenarios to which their method can be applied are restricted to simple bilinear problems

where the number of variables in one of the sets must be very small (for instance just 9 variables

in one of their examples). Although their method is very interesting from a theoretical point of

view, it only provides practical solutions for problems with a very small number of variables.

This Bilinear factorisation via Augmented Lagrange Multipliers (BALM) is designed to deal

with large-scale optimisation problems with the inclusionof non-linear constraints. This is not

the first approach to adopt the Augmented Lagrangian Multipliers (ALM) framework in the

Computer Vision or related contexts. In perspective 3D reconstruction [69] ALM was used to

enforce constraints on the perspective depths. In [63] ALM is successfully employed as a single

matrix imputation algorithm which can deal with large scaleproblems.

4.3 Problem statement

We denote byY ∈ R
n×m the measurement matrix. In this work, we consider the general case of

missing data. We let the finite setO := {(i, j) : Yi j is observed} enumerate the indices of the

entries ofY which are available. The bilinear factorisation problem weaddress is the following

constrained optimisation problem:

minimise ∑(i, j)∈O

(
Yi j −s⊤i mj

)2

subject to Mi ∈M, i = 1, . . . , f ,

(4.1)

wheres⊤i denotes theith row of the matrixS∈Rn×r andmj denotes thejth column of the matrix
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M =

[
M1 · · · Mi · · · M f

]
∈ R

r×m, Mi ∈ R
r×p. Note that we are using a dummy variablei

twice in (4.1): in the cost function (i.e.,(i, j) ∈ O) and in the constraints (to enumerate the

sub-matricesMi of M).

The variables in (4.1) are (S,M). In the structure-from-motion problem,f is the number of

frames. We consider a generic bilinear problem in which eachsub-block of theM matrix has to

satisfy the manifold constraints. In the structure from motion problem,S will be the 3D structure

andM the camera matrices, in photometric stereoS would be the lighting parameters andM the

surface normals and albedo.

In words, problem (4.1) consists in finding the best rankr factorisation ofY, given the available

entries enumerated byO and subject to the manifold constraints onM. More precisely, each sub-

matrix Mi ∈ R
r×p must belong to the manifoldM⊂ R

r×p. Our aim in this work is to construct

an algorithm to solve problem (4.1) which takes advantage of the projection ontoM. That is,

we assume that, for a givenA ∈ R
r×p, it is known how to solve the projection problem ontoM

minimise ‖A−X‖2

subject to X ∈M

, (4.2)

where‖X‖ denotes the Frobenius norm ofX. In the rest of the chapter we will denotepM(A) a

solution of (4.2). The role of the projector can be visualised in Figure4.1.

Problem reformulation. Let us define a new set of variablesz := {Zi j : (i, j) 6∈ O}. Those can

be used to represent the non-observed entries ofY. We can introduce these variables in (4.1) and

obtain the following equivalent optimisation problem

minimise ‖Y(z)−SM‖2

subject to Mi ∈M, i = 1, . . . , f ,

(4.3)
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Figure 4.1: A visual representation of the manifold projector. The manifold constraints are
assigned to theNi variables, which can be computed as the manifold projectionof Mi onto the
manifold of the problem constraints.

where the(i, j) entry of the matrixY(z) is defined as

(Y(z))i j :=





Yi j , if (i, j) ∈ O

Zi j , if (i, j) 6∈ O
.

In words, Y(z) is the input dataY with a filling of the missing entries given byz. Note that

the variables to optimise in (4.3) are (z,S,M). Problem (4.3) is equivalent to (4.1) because

once we fix(S,M) in (4.3) and minimise overz we fall back into (4.1). Finally, we add a

new set of variable to deal with the manifold constraints. Weclone M into a new variable

N =

[
N1 · · · Ni · · · N f

]
∈ R

r×m, Ni ∈ R
r×p, and transfer the manifold constraint to the

latter. By doing so, we roughly separate the bilinear estimation from the manifold constraints.

Thus our reformulation becomes:

minimise ‖Y(z)−SM‖2

subject to Mi = Ni, i = 1, . . . , f

Ni ∈M, i = 1, . . . , f .

(4.4)

With this formulation the variables to estimate in (4.4) are(z,S,M,N).
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4.4 The BALM algorithm

The main difficulty in the constrained optimisation problem(4.4) are the equality constrainsMi =

Ni . We propose to handle them through an augmented Lagrangian approach, see [54, 11] for

details on this optimisation technique. In our context, theaugmented Lagrangian corresponding

to (4.4) is given by

Lσ (z,S,M,N;R) = ‖Y(z)−SM‖2−
f

∑
i=1

tr

(
R
⊤
i (Mi−Ni)

)
+

σ
2

f

∑
i=1

‖Mi−Ni‖2 .
(4.5)

whereσ > 0 is the weight of the penalty term and matrixR =

[
R1 · · · R f

]
contains the La-

grange multipliersRi, i = 1, . . . , f . The optimisation problem (4.4) can then be tackled by our

Bilinear factorisation via Augmented Lagrange Multipliers (BALM) algorithm detailed in Al-

gorithm3.

Clearly, solving the inner problem (4.6) at each iteration of the BALM method is the main

computational step. Note that in (4.6) the optimisation variable is(z,S,M,N) (σ (k) andR(k) are

constants). To tackle (4.6) we propose an iterative Gauss-Seidel scheme which is described

in Algorithm 4. We now show that each of the sub-problems (4.7), (4.8) and (4.9) inside the

Gauss-Seidel scheme are easily solvable.

4.4.1 Solving for the manifold constraints

Problem (4.7) requires a minimisation overNi ∈M, i = 1, . . . , f , the remaining variables be-

ing constant. Thus, by using (4.5) and dropping the constant terms, problem (4.7) becomes

equivalent to

N
[l+1] = argmin ∑ f

i=1

∥∥∥Ni−
(
M
[l ]
i − 1

σ (k) R
(k)
i

)∥∥∥
2

subject to Ni ∈M, i = 1, . . . , f

. (4.10)
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Algorithm 3 Bilinear factorisation via Augmented Lagrange Multipliers (BALM)
1: setk= 0 andεbest =+∞
2: initialise σ (0), R(0), γ > 1 and 0< η < 1
3: initialise z(0), S(0) andM(0)

4: repeat
5: solve

(
z(k+1),S(k+1),M(k+1),N(k+1)

)
=

= argmin Lσ (k)(z,S,M,N;R(k))
subject to Ni ∈M, i = 1, . . . , f ,

(4.6)

using the iterative Gauss-Seidel scheme described inAlgorithm 4
6: computeε =

∥∥M(k+1)−N(k+1)
∥∥2

7: if ε < η εbest
8: R(k+1) = R(k)−σ (k)

(
M(k+1)−N(k+1)

)

9: σ (k+1) = σ (k)

10: εbest = ε
10: else
10: R(k+1) = R(k)

11: σ (k+1) = γσ (k)

12: endif
13: updatek← k+1
14: until some stopping criterion

That is, problem (4.7) decouples intof projections onto the manifold of constraintsM. More

precisely, if we partition

N
[l+1] =

[
N
[l+1]
1 · · · N

[l+1]
i · · · N

[l+1]
f

]
∈ R

r×m,

with N
[l+1]
i ∈ R

r×p. The solution of (4.7) is given by

N
[l+1]
i = pM

(
M
[l ]
i −

1

σ (k)
R
(k)
i

)
, i = 1, . . . , f . (4.11)

We recall thatpM stands for the projector ontoM, see (4.2), which we assume is available.

This is the only part of the algorithm where the constraint manifold M plays a role. Thus,

replacingM amounts to replace the projectorpM. This is the modularity which is key to the
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Algorithm 4 Iterative Gauss Seidel scheme to solve for (4.6)
1: setl = 0 and chooseLmax

2: setz[0] = z(k), S[0] = S(k) andM[0] = M(k)

3: repeat
4: solve

N
[l+1] =

= argmin Lσ (k)

(
z[l ],S[l ],M[l ],N;R(k)

)

subject to Ni ∈M, i = 1, . . . , f ,

(4.7)

5: solve
(
S
[l+1],M[l+1]

)
=

= argmin Lσ (k)

(
z[l ],S,M,N[l+1];R(k)

) (4.8)

6: solve

z[l+1] =

= argmin Lσ (k)

(
z,S[l+1],M[l+1],N[l+1];R(k)

) (4.9)

7: updatel ← l +1
8: until l = Lmax

9: setS(k+1) = S[Lmax], M(k+1) = M[Lmax] andN(k+1) = N[Lmax ]

application of this method to many different bilinear problems.

4.4.2 Solving for the bilinear factorisation

Solving (4.8) corresponds to solving

minimise
∥∥Y
(
z[l ]
)
−SM

∥∥2
+ σ (k)

2 ∑ f
i=1

∥∥∥Mi−
(
N
[l+1]
i + 1

σ R
(k)
i

)∥∥∥
2
.

The solution to this factorisation problem can be found solving 2 least-squares problems, first

overM (fixedS) and then overS (fixedM). An alternative efficient solution to (4.8) was proposed

in [37] based on re-parametrisation theM matrix as the product of an invertible and a Stiefel

matrix. The solution is then obtained via eigenvalue decomposition.
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4.4.3 Solving for the missing data

After solving forN[l+1] and
(
S[l+1],M[l+1]

)
, problem (4.9) updates the missing data. The solution

of (4.9) is trivial: we just have to takeZ[l+1]
i j as the(i, j)th entry ofS[l+1]M[l+1] for all (i, j) 6∈ O.

4.4.4 Initialisation

Regarding the initialisation of the BALM algorithm, we usedσ (0) = 1, R(0) = 0, γ = 5 and

η = 1/2 in all our computer experiments. With respect toz(0), S(0) andM(0), we feel that there

is no universally good method, that is, the structure ofM must taken into account. We discuss

the initialisation
(
z(0),S(0),M(0)

)
for non-rigid and articulated SfM in the experimental section of

this chapter.

Algorithm convergence.At best, the BALM algorithm can produce a local minimiser for(4.1).

That is, we do not claim that BALM (algorithm3) converges to a global minimiser. In fact, even

the non-linear Gauss-Seidel technique (algorithm4) is not guaranteed to globally solve (4.6).

This is the common situation when dealing with non-convex problems. See [23] for some con-

vergence results on augmented Lagrangian methods.

We have developed the generic BALM algorithm to solve a variety of bilinear computer vi-

sion problems. What is required is the knowledge of the manifold constraints that a solution

must satisfy, and the availability of a projector onto the manifold. In the previous chapter we

derived projector onto the non-rigid and articulated motion manifolds. Therefore we will now

demonstrate the BALM algorithms on these specific bilinear problems.

4.5 Example 1: BALM for Rigid and Non-Rigid SfM

We have seen how the non-rigid structure from motion problemwas formulated as a matrix

factorisation problem by Bregleret al. [15] in the case of an orthographic camera. The main

assumption is that the 3D shape at any frame can be represented as a linear combination of a

set ofK fixed basis shapes. Thus the 3D shape at a generic framei will be given by the linear
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combinationSi = ∑K
d=1 l idBd. For the rest of this chapter we will use the same factorisation

formalism, but we will solve for the transpose problem (e.g.W = MS becomesW⊤ = S⊤M⊤),

such that the problem becomes immediately of the same form asproblem (4.1). By referring the

image coordinates to their centroid, the projection of the shape at framei can be expressed as

Yi =




ui1 vi1

...
...

uin vin



=

(
K

∑
d=1

l idBd

)
Qi =

=

[
B1 . . . BK

]
(l i ⊗Qi) = SMi

(4.12)

whereYi is then×2 measurement matrix that contains the 2D coordinates ofn image points in

framei, Bd are the basis shapes of sizen×3, l id are the time varying shape coefficients andQi is

the projection matrix for framei. In the case of orthographic projection,Qi is a 3×2 matrix that

encodes the first two columns of a rotation matrix (thereforeit is a Stiefel matrix). Note that we

are definingMi := l i⊗Qi , where⊗ denotes the Kronecker product. Rigid SfM can be instantiated

with this framework by imposingK = 1, a single basis shape.

By concatenating all the measurements for all the frames into a single matrix we have

Y=

[
B1 . . . BK

][
l1⊗Q1 . . . l f ⊗Q f

]
=

= S

[
M1 . . . M f

]
= SM.

(4.13)

Now, we have expressed the measurement matrix as a bilinear interaction between the shape

matrix S of sizen× 3K and the motion matrixM of size 3K × 2 f . This form fits exactly the

optimisation problem as presented in Eq. (4.1). Therefore, in the NRSFM case, the manifold

constraint corresponds to

M=
{

l⊗Q : l ∈ R
K , Q ∈ R

3×2,Q⊤Q= I2

}
, (4.14)
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or in other words, the two rows of the rotation matrixQ⊤ must be orthonormal (i.e. it is a Stiefel

matrix). To apply our BALM algorithm, a projector onto the non-rigid motion manifoldM is

required.

In section3.3.1in the previous chapter we derived an exact globally optimalprojector onto the

non-rigid motion manifold. Del Bueet al. [37] recently provided an alternativeapproximate

projector ontoM which still provides accurate estimates while being considerably faster.

4.6 Example 2: BALM for Articulated SfM

The problem formulation for a factorisation approach to articulated shape and motion recovery

was discussed in the previous chapter, Section3.2.3. We use the same formulation here for

convenience (refer to Section3.2.3 for details). The measurement matrix of the (segmented)

object tracks can be written as the product of a common motionmatrix and shape matrix:

W=

[
W
(1)
i W

(2)
i

]
= MiS (4.15)

The shape of two objects will be encoded inS and the motion matrix has the form:

Mi =

[
ui Ai Bi

]
(4.16)

for each framei.

The manifold of acceptable solutions in this problem is defined by the constraints:

[ui Ai]




u⊤
i

A⊤i


= I2×2

[ui Bi]




u⊤
i

B⊤i


= I2×2

(4.17)
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4.6.1 Articulated manifold projector

The BALM algorithm is suited to estimate articulated structure from motion of two objects

coupled by a hinge joint, as we have seen that it is a bilinear factorisation problem. The projector

we used has been already defined in the previous chapter in section 3.3.4. Appendix B shows a

convex relaxation to solve for equation4.18.

min
u,A,B

J(u,A,B) = ‖u−x‖2+‖A−Y‖2F +‖B−Z‖2
F , (4.18)

4.7 Experiments

To evaluate our unified algorithm we carry out experiments onthe example problems proposed

above with both synthetic and real data1. The aim of our tests is twofold: to show that the perfor-

mance of BALM is comparable to the best specialised algorithms and to assess its convergence.

In the NRSfM problem we will also assess the resilience of ourapproach to very high levels of

missing data.

4.7.1 Synthetic experiments: NRSfM

First we evaluate the performance of our bilinear algorithmwhen applied to the NRSfM problem.

We consider two different sets of synthetic experiments. The first set of tests is designed to

verify the resilience of the algorithm to increasing ratiosof missing data. We used a 3D motion

capture sequence of a face. The sequence was captured using aVICON system tracking a subject

wearing 37 markers on the face to provide 3D ground truth for the evaluation. The 3D points

were then projected synthetically onto an image sequence 74frames long using an orthographic

camera model. To test the performance of our algorithm we computed the 3D reconstruction

error, defined as the Frobenius norm of the difference between the recovered 3D shapeS and the

ground truth 3D shapeSGT. The relative 3D error is then computed as:||S−SGT||/||SGT||. We

1The code for the BALM method and the manifold projectors is available at:
http://www.isr.ist.utl.pt/ ˜ adb/the-balm/ .

http://www.isr.ist.utl.pt/~adb/the-balm/
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subtract the centroid of each shape and align them with Procrustes analysis. We evaluated the

performance of the algorithm with respect to noise in the image measurements of up to 6% and

up to 90% missing data in a combined test. Zero mean additive Gaussian noise was applied with

standard deviationσ = n×s/100 wheren is the noise percentage and s is defined as max(Y) in

pixels. In all experiments the number of basis shapes was fixed to k = 5. The results for each

level of noise were averaged over 100 trials.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

% Missing Data

%
3
D

E
rr

o
r

 

 

BALM

EM−PPCA

BA

MP

RCPF

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

% Missing Data

%
3
D

E
rr

o
r

 

 

BALM

EM−PPCA

BA

MP

RCPF

0% noise 1% noise

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

% Missing Data

%
3
D

E
rr

o
r

 

 

BALM

EM−PPCA

BA

MP

RCPF

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

% Missing Data

%
3
D

E
rr

o
r

 

 

BALM

EM−PPCA

BA

MP

RCPF

2% noise 3% noise

Figure 4.2: Synthetic experiment results showing comparison with several NRSfM methods with
different ratios of missing data and noise.

In Figure4.2we compare the results of the proposed BALM algorithm with Torresaniet al.’s al-

gorithm [111] (EM-PPCA), Bundle Adjustment [36], the method of metric projection described

in the previous chapter (MP) [85] and the trilinear approach of Wanget al. [123] (RCPF) for

different levels of noise. In practical terms, note that a reconstruction error above 20% is too

high to be of any use in most applications. Regarding the overall results, while in the case of
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full data the performance of all algorithms is comparable, BALM and MP outperform the rest

of the algorithms in the case of missing data. Notice that RCPF is closer to both BALM and

MP since it also includes a projection step of the rotation matrices onto the correct manifold.

However, since the projection step is only approximate, this algorithm breaks down for lower

levels of missing data. On the other hand, BA and EMPPCA deteriorate for levels of missing

data above 30%. Also notice that the algorithms that performmetric projections (BALM, MP

and RCPF) are less affected by increasing levels of noise than others. BALM closely follows the

performance of the best performing algorithm (MP) which is specific for NRSfM. A noticeable

decrease in performance for BALM occurs at 80% missing data (70% for the higher percentages

of noise). Regarding run-time, a single manifold projection takes approximately 1.8 msec for

each frame withd = 5 basis shapes.

Regarding the initialisation of the ALM algorithm in the case of NRSfM, the missing data tracks

are first filled in using [70] which enforces metric constraints on the motion matrices.The

camera matrices are initialised assuming rigid motion. Torresaniet al.’s initialisation [111] is

then used to estimate the configuration weights and the basisshapes given the residual of the

first rigid solution.

Figure 4.3: Cushion sequence with 40% missing data. First row shows four image samples with
missing points highlighted with a red circle. Second and third rows show frontal and side views
of the 3D reconstruction using BALM.
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4.7.2 Real data: NRSfM

We tested our NRSfM method on a real sequence of a cushion being bent. 90 points were tracked

manually for the whole 50-frame long sequence. We simulateda missing data ratio of 40% by

eliminating data points randomly. Figure4.3 shows 4 selected frames and their respective 3D

reconstructions (frontal and top view). The bending is clearly observable in the 3D shape plots

where BALM shows robustness given the high percentage of missing data.

We have also tested BALM for NRSfM in the face modelling domain on the Franck sequence2.

The face points were tracked with Active Appearance Models giving 56 points in 700 frames

and ratio of 30% missing data was simulated synthetically. The first row of Figure4.4 shows

a sample of the sequence and the bottom row shows the corresponding reconstructions. The

resulting 3D shape and deformations describe the shape well, even in occluded areas (e.g. lips).

4.7.3 Real data: Rigid SfM

We have tested our BALM algorithm also in the case of rigid scenes. Figure4.6 shows results

for the dinosaur sequence3. Some frames of the sequence are shown in Figure4.5. Because this

sequence contains self-occlusions, there is 76% missing data in the 2D feature tracks. We com-

pare the reconstruction with the methods proposed by Marques and Costeira [70] and Buchanan

and Fitzgibbon [17]. Qualitatively our 3D reconstruction recovered the correct shape. Reprojec-

tion error results confirm that BALM performs closely to the best performing methods for rigid

structure. The overall 2D rms error with BALM was 1.30394 which is a slight improvement over

the error reported by Marques and Costeira (1.3705) but higher than the error of the Damped-

Newton approach by Buchanan and Fitzgibbon (1.0847). Note however that the 2D rms error

alone does not provide enough information on the quality of the reconstruction, which can only

be compared qualitatively in this real sequence with no ground truth data.

2The image sequence is freely available at: www-prima.inrialpes.fr/FGnet/data/01-
TalkingFace/talkingface.html

3available fromhttp://www.robots.ox.ac.uk/ ˜ vgg/data/data-mview.html
4Notice that in this real sequence the missing data is not simulated, 2D error is calculated only from

the known entries.

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html 
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Frame 75 Frame 395 Frame 589

Figure 4.4: TheFrancksequence (first row) used for our real experiment. Tracked points are in
green while red circles show the missing entries. The secondrow shows the 3D reconstruction
of a frontal view with 30% missing data in the input tracks. The third row shows a side view of
the 3D shape in order to evaluate the estimated depth.

We have also attempted the reconstruction of thecasa da musicasequence [70] with 60% miss-

ing data where the images were obtained fromGoogle imagesand thus generally shot far apart

and with unknown cameras (no temporal consistency of cameraviews). The sequence also con-

tains degenerate configurations since only planar surfacesare seen from each camera view. The

3D reconstruction in Figure4.7shows that most of the planar surfaces are correctly reconstructed

and they provide a credible 3D reconstruction.

Figure 4.5: Some frames from the dinosaur sequence
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Figure 4.6: The BALM algorithm applied to theDinosaursequence. The figure on the left shows
the complete 2D image trajectories as resulted from our algorithm. The figure on the right shows
the 3D reconstruction of the trajectories.

Figure 4.7: The BALM algorithm applied to thecasa da musicaimages. The figure on the left
shows one sample of the image set used to reconstruct the building. Note that the images have a
large baseline. The figure on the right shows the 3D reconstruction of the trajectories in a pose
similar to the picture on the left. Images and tracking data kindly provided by Manuel Marques.

4.7.4 Real data: Articulated SfM

We present the reconstruction of thehinge2sequence5 [113]. This sequence shows two boxes

linked by a hinge joint and placed on a turntable. Some framestogether with the results are

shown in Figure4.8. There are 72 tracked features on the larger box and 25 features on the

smaller one on top, tracked over 815 frames. We generated a random visibility matrix to simulate

an amount of 60% missing data. After an initialisation obtained by filling the missing entries for

the two shapes independently with rigid SfM, we apply our BALM algorithm using the projector

described in the previous chapter in Section3.2.3. The results show that even in this case of high

levels of missing the data, the position of the axis is estimated correctly and it reflects the real

5Courtesy of Philip Tresadern.
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Figure 4.8: The BALM algorithm applied to thehinge2sequence. The figure on the top shows
two samples of the image sequence and the points tracked in the image sequence. The dark
green circle around some of the points represent the missingdata at that given frame (60% for
the whole sequence). The figures on the bottom present the 3D reconstruction together with the
hinge joint localisation in 3D (green axis). Images and tracking data kindly provided by Phil
Tresadern.

motion of the objects.

4.8 Summary

The BALM algorithm is a novel, general optimisation framework for a broad range of bilinear

problems in Computer Vision with manifold constraints on the space where the data lies. The

results demonstrated in this chapter match state of the art methods in the non-rigid and articulated

structure from motion problem. The BALM method shows robustness to missing data, and

the ability to solve large-scale problems. So far, we have demonstrated that optimising on the

manifold of metric constraints provides robust results in spite of noise and missing data in the

measurements.

All methods proposed so far in the literature, including ourMetric Projections and BALM algo-
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rithms, work in batch. In order for non-rigid structure frommotion to replicate the popularity

and success of rigid methods, a real-time method is missing.In the next chapter, we propose the

first method to address the issue of sequential estimation.
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Chapter 5

Sequential non-rigid structure from motion

So far the non-rigid structure from motion problem has been tackled using a batch approach.

All the frames are processed at once after the video acquisition takes place. In this chapter we

describe our incremental approach to the estimation of deformable models. Image frames are

processed on-line in a sequential fashion. The shape is initialised to a rigid model from the

first few frames. Subsequently, the problem is formulated asa model based camera tracking

problem, where the pose of the camera and the mixing coefficients are updated every frame.

New modes are added incrementally when the current model cannot model the current frame

well enough. We define a criterion based on image reprojection error to decide whether or

not the model must be updated after the arrival of a new frame.The new mode is estimated

performing bundle adjustment on a window of frames. To represent the shape, we depart from

the traditional explicit low-rank shape model and propose avariant that we call the 3D-implicit

low-rank shape model. This alternative model results in a simpler formulation of the motion

matrix and provides the ability to represent degenerate deformation modes. We illustrate our

approach with experiments on motion capture sequences withground truth 3D data and with

real video sequences.



154 Chapter 5. Sequential non-rigid structure from motion

5.1 Introduction

While real-time sequential rigid SfM is a mature field that isnow consolidating into commercial

applications, NRSfM is still at its infancy. Some batch algorithms exist [8, 111, 85] but there is

still a need to define deformable shape models and estimationalgorithms that will allow to push

NRSfM forward to a scenario where it might emulate the successes of its rigid counterpart, in

terms of robust performance and application to real world cases. In the work we describe in this

chapter we advance the state of the art in NRSfM in two main directions, both proposing a new

sequential estimation paradigm and an alternative low-rank shape model.

Our first contribution is the definition of a new estimation paradigm that extends NRSfM to the

sequential domain. We propose a rank-growing engine which will determine when the rank of

the model should be increased and if necessary will estimatethe new mode.

We divide the sequential non-rigid shape estimation into two processes: model-based tracking

of the camera pose and shape coefficients and model update. The first process assumes that a

current up-to-date model, of a certain rank, of the 3D shape observed so far exists and performs

model based camera tracking: when a new frame arrives this module estimates the current

camera pose and the shape parameters using as input the 2D coordinates of image features

matched in the lastW frames, whereW is the width of a sliding window. The second process

is a model updatemodule which decides, based on the image reprojection errorgiven by the

camera tracking module, whether or not the current model is able to explain the deformations

viewed in the new frame. If the current model does not have enough descriptive power to capture

the deformations observed in the new frame, the model updatemodule will add a new mode and

estimate its parameters using bundle adjustment on a sliding window. The entire system is

bootstrapped from a rigid reconstruction obtained from a small number of initial frames.

Our second contribution is an alternative low-rank shape model that provides the ability to repre-

sent modes of deformation of dimensionality lower than 3 (for instance deformations on a plane

or along a line).

We call it the3D implicit low-rank shape modelsince it does not use an explicitly defined 3D
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shape basis. This has two main advantages. First, the motionmatrix in our model has a simpler

structure than in the classical model, which allows for a linear estimation of camera pose and

shape coefficients from a single frame, and can be used to initialise the bundle adjustment in the

sequential framework. Second, our model handles deformations whose rank is not a multiple

of 3 and thus avoids one to explicitly compute the rank of a particular shape basis. When the

deformations are processed one frame at a time, having the flexibility to update the model with

1-dimensional modes fits the sequential estimation paradigm more naturally, since there is a

much higher chance of observing lower dimensional deformations.

5.2 Related Work

The ability to reconstruct a deformable 3D surface from a monocular sequence when the only

input information is a set of point correspondences betweenimages is an ill posed problem

unless more constraints than just the reprojection error are used. As we described in Chapter

2, current solutions to NRSfM focus on the definition of optimisation criteria to guarantee the

convergence to a well behaved solution. This is often only achieved through the addition of

temporal and spatial smoothness priors. Bundle adjustmenthas become a popular optimisation

tool to refine an initial rigid solution while incorporatingtemporal and spatial smoothness priors

on the motion and the deformations.

However, the common attribute to all NRSfM algorithms proposed so far is that they are batch

methods. Our new sequential approach is motivated by recentdevelopments in the area of se-

quential real-time SfM methods for rigid scenes [60, 76]. In particular, our approach is inspired

by the work of Klein and Murray [60] in which they develop a real time system based on two

parallel threads – the camera tracking thread which performs real time model based pose es-

timation and the mapping thread which runs in a constant loopperforming bundle adjustment

on a small set of key-frames. To the best of our knowledge our work is the first in NRSfM to

depart from the batch formulation and reformulate the shapeestimation sequentially. First we

introduce a new variant to the low-rank linear basis shape model that we believe is better suited
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to a sequential formulation.

5.3 New Deformation Model

5.3.1 Classical Explicit Low-Rank Shape Model

In the case of deformable objects the observed 3D points change as a function of time. In the

low-rank shape model defined by Bregleret al. [15] the 3D points deform as a linear combination

of a fixed set ofK rigid shape bases according to time varying coefficients. Inthis way,S f =

∑K
k=1 l f kBk where the matrixS f = [X f 1, · · ·X f P] contains the 3D coordinates of theP points at

frame f , the 3×P matricesBk are the shape bases andl f k are the coefficient weights. If the 3D

shape is known, this model can be obtained from the PCA decomposition of theS∗ that contains

the 3D shape in all the frames.

S
∗
F×3P =




S∗1

S∗2
...

S∗F




=




X11 Y11 Z11 · · · X1P Y1P Z1P

...
...

XF1 YF1 ZF1 · · · XFP YFP ZFP




(5.1)

A PCA decomposition of rankK of S∗ would giveLB∗, whereL is theF ×K matrix of defor-

mation weightsl ik, and theK×3P matrix B∗ can be rearranged to give the basis shapesBk. If

we assume an orthographic projection model the coordinatesof the 2D image points observed

at each framei are then given by:

Wi = Ri

(
K

∑
k=1

l ikBk

)
+Ti (5.2)

whereRi is a 2×3 Stiefel matrixandTi aligns the image coordinates to the image centroid. The

aligning matrixTi is such thatTi = t i1T
P where the 2-vectort i is the 2D image centroid and1P a

vector of ones.

When the image coordinates are registered to the centroid ofthe object and we consider all the
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Figure 5.1: The proposed 3D-Implicit Low-Rank Shape Model,the camera matrices for all
framesRf are collected in a block-diagonal projection matrix, the time-varying 3D shape is
represented by a 3F ×P structure, modelled by the sum of a rigid componentS̄ and a rank-r
decomposition of the non-rigid component.

frames in the sequence, we may write the measurement matrix as:

W=




l11R1 . . . l1KR1

...
. . .

...

lF1RF . . . lFKRF







B1

...

BK



= MS (5.3)

SinceM is a 2F×3K matrix andS is a 3K×P matrix in the case of deformable structure the rank

of W is constrained to be at most 3K. The motion matrices now have a complicated repetitive

structureMi = [Mi1 . . .MiK ] = [l i1Ri . . . l iKRi] that makes the model estimation difficult.

Olsen and Bartoli [83] proposed to consider an implicit model where the repetitive structure

of the motion matrix is not used. While this simplifies the estimation problem, the recovered

model does not directly provide usable motion and shape parameters, unless a mixing matrix is

computed [15, 128]. The mixing matrix computation problem has not received a simple solution

so far.
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5.3.2 Proposed 3D-Implicit Low-Rank Shape Model

We propose a way to depart from the traditional basis shapes model, and embrace a different

formulation that will fit the problem of sequential structure recovery more naturally since it

allows for the rank of the shape model to grow one by one with the arrival of a new frame,

instead of multiples of three.

The data in the shape matrix may be re-arranged in a differentform, stacking the shape matrices

vertically for all framesF. Each matrixS f ∈ R
3×P contains the 3D coordinates ofP points in

frame f .

S3F×P =




S1

S2

...

SF




=




X11 X12 X1P

Y11 Y12 · · · Y1P

Z11 Z12 Z1P

...
...

...

XF1 XF2 XFP

YF1 YF2 · · · YFP

ZF1 ZF2 ZFP




(5.4)

If we assume that the shape matrixS is low-rank we can perform Principal Components Analysis

to obtain a PCA basis asS = UdVd, whered is the rank of the decomposition,Ud ∈ R
3F×d and

Vd ∈Rd×P. We can also explicitly include an average rigid (mean) shape in the model, therefore

the shape at framef would be given by:

S f = S̄+

[
U f 1 · · · U f r

]




V1

V2

...

Vr




(5.5)

whereS̄ is the mean shape,d = 3+ r, U f r is the 3-vector[U(x) f rU(y) f rU(z) f r ]
T andVr are the

rows of matrixV.
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Therefore we can considerV to be a PCA basis of the shape (row) space ofS andU to contain the

time varying coefficients. Note that in this case the shape matrix V has dimensionsr×P where

r is the rank of the decomposition andP is the number of points in the shape. For each frame 3r

coefficients are needed to express the configuration of the shape.

We assume that the shape at instantf is then projected onto an image following an orthographic

camera model. The 2D coordinates of the points can then be expressed as:

W f =




uf 1 · · · uf P

vf 1 · · · vf P


= R fS f +T f = R f (S̄+U f V)+T f (5.6)

whereR f is a [2×3] orthographic camera projection matrix, it encodes the firsttwo rows of the

camera rotation matrix andT f the translation for framef . If we now register all the measure-

ments to their centroid in each frame the projection of the shape in all frames can be written

as:

W=




R1

R2

. ..

RF










S̄

S̄

...

S̄




+




U11 · · · U1r

U21 · · · U2r

...
...

UF1 · · · UFr







V1

V2

...

Vr







(5.7)

A visual representation of this new model can be seen in Figure 5.2. The results from the

experiment in section5.9.2 are used to display an average 3D deformation across all frames

in the sequence. Each image in Figure5.2 corresponds to the effect of one element of theU

matrix. Each row affects one of the coordinates, and each column is related to the rank-r basis

contained inV. Note that the basis are not independent, and some might be zero. Also, the

incremental nature of our method (as explained in the following sections), is such that a rank-1

base in the matrixV can encode stronger deformations than the previous basis. In our model,

the basis shapes are not explicitly used as in the classical model, while the camera projection is

explicitly modelled. We thus call our model the3D-implicit low-rank shape model. Our model

combines Bregleret al. [15]’s explicit model and Olsen and Bartoli [83]’s implicit model. It has
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the following two main advantages:

1. Simplicity. The motion matrix is block diagonal and only contains the rotation matrices

instead of a mixture of the coefficients and the rotations. The fact that the 3D basis is not

explicitly available in our model is not a problem since one is generally more interested

in recovering the 3D shape of the observed scene than the basis shapes – the basis shapes

can be estimated a posteriori by forming and factorising thematrix S∗ in equation (5.1).

As we explain below, it also is an advantage not to have explicit 3D basis shapes.

2. Any-rank deformations. Our formulation allows us to define shape models where the

rank is not a multiple of 3. In other words, in the explicit model, a basis shape always has

to be of rank 3, whereas in the real world not all deformationsare of rank 3. Xiao and

Kanade [129] propose to explicitly find the rank of a particular deformation mode (which

can be one of 1, 2 or 3). Our model circumvents this difficult problem.

5.4 A Sequential Approach to NRSfM

In this work we depart from the batch formulation of NRSfM andwe propose a sequential ap-

proach based on the alternative low-rank shape model outlined in the previous section. Our

approach can be seen as a two process formulation. The systemholds a current up-to-date

model, of a certain rank, encapsulated in matrixV. The first process is a model based camera

tracking module. Given the current estimate ofV, when a new frame arrives, the camera track-

ing module estimates the new poseR f and the new deformation coefficientsU f for the current

frame. If the current model explains well the measurements the image reprojection error will

be low. However, if the error goes above some defined threshold the rank of the model must

be increased and the model updated. In that case, a model update module will update the cur-

rent model adding a new row to matrixV. As the sequence is processed the model will become

more complicated, until all the possible object deformations have been observed. Our sequential
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Figure 5.2: A visual representation of the 3D implicit modelcoefficients: Each image shows
the contributions to points deformations given by each element of the 3× r matrix U f . Each
row of theU f matrix affects one coordinate, and each column is the weightto be given to the
corresponding row of theV matrix, each row representing an added rank-1 mode of deformation.

approach to NRSfM is summarised in Algorithm5. We now describe in detail the two main

modules of our sequential system: the camera tracking module and the model update module.

5.5 Camera Tracking Given a Known Model V

If the matrix V is known in advance, the NRSfM problem is reduced to the estimation of the

camera poseR f and the mixing coefficientsU f for each frame. In that case, the pose of the

camera and the coefficients can be updated sequentially for each frame using a model based

approach.

We adopt a sliding window approach where we perform bundle adjustment on the lastN frames

whereN is the width of a pre-defined window. The cost to be minimised is the image reprojection

error over all frames in the window:
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time current frame

Figure 5.3: Sliding window approach: A group of frames (shown in colour) is processed at each
step. This keeps the computational cost bounded. As a new frame becomes available, the group
of frame ”slides”, and the new frame is processed. At each step the 3D shape and camera motion
of the new frame is computed.

Algorithm 5 Sequential non-rigid structure from motion (NRSfM)
Require: 2D point correspondences
Ensure: 3D coordinates of the deforming surface for each frame.

1: Initialise model to mean rigid shapēS estimated via rigid factorisation on the first few
frames.

2: loop
3: new framef arrives
4: run camera tracking process: estimate camera poseRi and coefficientsUi

5: while (image reprojection error is above threshold)do
6: run model update process:
7: increase rankr ← r +1
8: estimate new row ofV and new column ofU f

9: end while
10: go to process next frame;f ← f +1
11: end loop

min
Ri ,Ui

f

∑
i= f−N

‖Wi−Ri(S̄+UiV)‖2F (5.8)

To this cost function we add a temporal smoothness prior to penalise strong variations in the

camera matrices of the form‖Ri −Ri−1‖2
F , and a shape smoothness prior (similar to the one used

in [8]) that ensures that points that lie close to each other in space should stay close. The shape

smoothness is defined as∑ f
i= f−N Di,i−1, whereDi,i−1 is the change in the euclidean distance

between 3D points over two frames:Di,i−1 =∑P
a,b=1 φa,b|d2(X i,a,X i,b)−d2(X i−1,a,X i−1,b)|. The

weight φa,b is a measure of the closeness of pointsa andb, defined as aP×P affinity matrix
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Figure 5.4: Camera tracking process: Assuming a known modelfor the deformations and
a known mean shape, the camera matrix and deformation coefficients for only one frame are
estimated.

φa,b = ρ(d2(Xa,Xb)) whereρ is a truncated Gaussian kernel. The final cost function can now

be written as:

min
Ri ,Ui

f

∑
i= f−N

‖Wi−Ri(S̄+UiV)‖2F +λ
f

∑
i= f−N

‖Ri −Ri−1‖2
F +ψ

f

∑
i= f−N

Di,i−1 (5.9)

The mean shapēS and the shape modelV are assumed to be known. This nonlinear minimisation

requires an initial estimate for the camera poseR f and the shape coefficientsU f in the current

frame f . Algorithms to obtain linear estimates forR f andU f are described in Section5.5.1.

The steps of the complete algorithm to track the current poseof the camera and the shape coeffi-

cients given the shape model can be summarised as follows. Each time a new framef of feature

tracks is available:

• Obtain initial estimates for the current poseR f and mixing coefficientsU f using the linear

estimation plus prior described in Section5.5.1.

• Minimise the cost function (5.9) with smoothness priors using bundle adjustment to obtain
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optimised values for the rotationsRi and shape coefficientsUi in all the frames in the

sliding window.

• If the reprojection error of the window becomes higher than athreshold, signal the mod-

elling process to increase the rank of theV matrix.

5.5.1 Initialisation: Linear Estimation of U f and R f

Consider new image measurements become available for a new frame. These can be arranged

in a 2×P matrix for that single frame calledW f . The projection model gives us the relation

W f = R f (S̄+U fV)+T f .

Linear estimation ofR f .

For every new frame the camera poseR f must be initialised before Bundle Adjustment. For this

purpose, we approximate the shape with the rigid mode to obtain an initial estimate of the camera

rotation. This means we need to find the camera poseR f that satisfiesW f = R fS, while respecting

the smoothness priorλIvec(R f ) = λ vec(R f−1). Using the relation vec(AXB) = [BT⊗A]vec(X),

where⊗ is the Kronecker product and vec(.) is the column-major vectorisation of a matrix, and

usingW f = I2R fS we can write:

vec(W f ) = [ST ⊗I2]vec(R f ) (5.10)




[ST ⊗I2]

λI


vec(R f ) =




vec(W f )

λ vec(R f−1)


 (5.11)

The resultingR f will not be orthonormal (i.e. not a truncated rotation matrix), so we find the

closest orthonormal rigid projection using SVD.

Linear estimation ofU f .

First we take away the contribution to the image measurements given by the known translation

and mean shape component to give~W f = W f − T f − R f S̄ = R fU fV, which can be rewritten as
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Figure 5.5: Model update process: a new deformation basis isadded to theV matrix, increas-
ing the rank of the deformation model. More deformations canbe expressed with a model of
increased complexity, hence the deformation coefficients can be re-estimated to match the input
data.

vec(~W f ) = [VT ⊗ R f ]vec(U f ). This provides a linear equation on the unknown vectorU f . How-

ever, this is not sufficient to produce an acceptable solution, becauseU f is a 3× r matrix where

each columnU f r is a 3-vector[U(x) f rU(y) f rU(z) f r ]
T that contains the PCA coefficients of all

3D coordinates, while~W f contains 2D projections. However, this problem can be overcome by

including a temporal smoothness prior term that penalises solutions that are far from the value

for the previous frameU f−1. Thus the prior term is of the formλIvec(U f ) = λ vec(U f−1). We

can join both linear equations and solve the linear system:




[VT ⊗R f ]

λI


vec(U f ) =




vec(~W f )

λ vec(U f−1)


 (5.12)

5.6 Sequential Update of the Shape Model

In NRSfM the shape of the 3D object the camera observes variesover time. The current model

will encode the modes of deformation that the object has exhibited so far in the sequence. How-

ever, if the object deforms in different ways that are not encoded in the model the camera tracking

will fail. Therefore, a mechanism is needed to update the model when new modes of deforma-
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tion appear. In that case, the rank of the model should grow and the parameters of the model

should be fit to the new data.

The difficulty of updating the model in an sequential way is double-fold. Firstly, when each new

frame arrives, we need a mechanism to decide whether or not the current model continues to fit

the data well enough. While the shape model can still describe the data, we can continue to do

model based camera tracking. We decide this based on the image reprojection error. Secondly,

if the model can no longer explain the data, the rank of the model needs to grow to incorporate

the new mode of deformation and the parameters of the new row of V and the new column ofU

must be estimated.

5.6.1 Rank Increase Criterion

The rank selection criterion will decide to increase the rank only if the current data does not fit the

model well enough, i.e. if the existing modes do not model thecurrent frame well. Therefore we

use the image reprojection error as the criterion – if the error increases above a certain threshold

we increase the rank of the shape model. This results in a new row being added to the PCA basis

V and a new column to the PCA componentsU. However, the new mode is recovered from the

current frame only, so it has no influence over past frames. Therefore for all past frames we can

set the 3( f −1) components of the new column ofU to 0.

5.6.2 Model Update: Estimating New Row ofV and New Column ofU

When the camera tracking module processes a new frame that itcannot model well enough (the

reprojection error is above the defined threshold), the model is updated by increasing the rank.

Ideally once all the different modes of deformation that an object can exercise are incorporated

in the PCA basis, the rank will remain stable and the camera tracking process will be able to

reconstruct the incoming frames.

Given new image correspondences for framef , the rank ofU,V must be increased. From the
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current estimate ofU f ,1:r−1 andV1:r−1 we can rewrite the model for the new frame as

W̃ f = R f (S̄+U f ,1:r−1V1:r−1+U f ,rVr). (5.13)

Both the residual of the current modelA = W̃ f − R f (S̄+U f ,1:r−1V1:r−1) and the current camera

rotationR f are known. We need to estimateZ= U f ,rVr , the contribution of the new rank, subject

to the following constraints:

A= R fZ rank(Z) = 1 (5.14)

This problem is difficult to solve in closed form, therefore we approximate it using a linear

solution as follows. We defineC as the closest rank-1 approximation ofA obtained using SVD,

then computeZ asZ= R
†
f C. Finally, we can decomposeZ using a rank-1 SVD decomposition to

obtain a new row forV.

Non-linear refinement

Once initial estimates are available for the new row ofV and the new column ofU, they can be

refined minimising image reprojection error over a sliding window ofN frames

min
Vr ,Uir

f

∑
i= f−N

‖Wi−Ri(S̄+UiV)‖2
F (5.15)

incorporating the smoothness priors described in section5.5. Once the model is updated, the

camera tracking module can resumemodel based trackingwith the new modelV with rankr+1.

5.6.3 Bootstrapping

One of the known challenges in sequential approaches to rigid SfM is the initialisation [60]. It

is common to run the system in batch mode for a few frames to obtain a first model of the scene

before starting the sequential operation. In the current experiments we run a rigid factorisation

algorithm on a few initial frames to obtain the rigid mean shape S̄. Once this is available the

camera tracking and model update loop can start. An alternative approach that does not require
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Figure 5.6: At the beginning, the camera tracking process requires an average rigid shape. This
can be acquired using a subset of the sequence where the object is rigid. For example, if the
beginning of the video shows rigid motion, the initial frames can be used.

manual intervention is the following. Start performing rigid factorisation in batch. When a

new frame arrives, if the reprojection error of rigid factorisation over the frames observed so

far is below the threshold then we keep performing rigid factorisation. However, if the error

becomes higher than our threshold, the mean shape of the non-rigid model is set to the rigid

model obtained so far and we start our sequential NRSfM algorithm.

5.7 Limiting the rank

Section5.6.2described the rank-growing engine that allows us to learn a 3D deformable model

in a frame-by-frame fashion. The current formulation does not impose an upper bound on the to-

tal rank of the model which could grow without limit. Sequential SfM methods, however, rely on

the computational complexity remaining bounded. The complexity of the camera tracking pro-

cess depends quadratically on the number of unknown parameters which grows linearly with the

rank of the decomposition. Therefore, we must incorporate amechanism to compact the model

in order to limit its overall rank. This is particularly useful when dealing with longer sequences.

For this purpose, we add a user-specified limit to the rank of the non-rigid decomposition, and

use PCA to compress the rank of the model when it grows above the threshold.
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5.7.1 Model compression

Subtracting the average rigid shapeS̄ from the shape modelS, we can express the remaining

non-rigid component as the product of two low-rank matricesU andV of rankr:

S− S̄= UV (5.16)

When the rank of the non-rigid component reaches the limitr, we apply PCA to truncate the

decomposition to rankr2. In this way, we keep the computational complexity bounded since the

rank of the model cannot grow beyond the user-specified limit.

5.8 Missing data

The need to adapt this technique to the case of missing data isclear — for each frame we must

be able to deal with occlusions and lost tracks. Bundle adjustment has the built-in capability

to deal with missing data since only the visible points in each frame are evaluated in the cost

function:

min
Ri ,Ui

f

∑
i= f−N

∑
j∈O

|W i j −Ri(S̄j+UiV j)|2 (5.17)

whereO is the set of observable data points. In this way, provided the amount of known data is

larger than the number of parameters to estimate, the cameratracking problem can be solved in

the presence of missing data.

Regarding the model-update module, the formulation described in Section5.6.2, assumed full

data. When the tracking data in the current frame contains occlusions, we restrict the calculation

only to the known points:

W̃i j = Ri(S̄ j +U f ,1:r−1V(1:r−1, j)+U f ,rVr j ). (5.18)

Stacking equation5.18horizontally for all the observable pointsj ∈O, we can obtain an update

for theV matrix. We fill the entries of the new row of the shape model matrix Vr associated with
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Figure 5.7: Results of sequential NRSfM on the CMU-face sequence. Left: Value of the rank of
the model for each frame, increasing as more frames are processed. Middle: 2D Reprojection
error given by the camera tracking process. Right: 3D error of the reconstruction for each frame.

the missing data points with zeroes, implicitly assuming that those points do not contribute to

the new mode of deformation.

This solution to camera tracking and model update with missing data is demonstrated experi-

mentally in section5.9.3.

5.9 Experiments

5.9.1 Motion capture sequenceCMU-face

First we tested our sequential method based on the 3D-implicit low-rank shape model on a

motion capture sequence with ground truth data1. This sequence from the CMU Motion Cap-

ture Database2 contains 316 frames of motion capture data of the face of a subject wearing 40

markers performing deformations while rotating. This sequence was also used by Torresaniet

al. [111] to perform quantitative tests with ground truth data. We projected the 3D data synthet-

ically using an orthographic camera model.

Prior to the start of our sequential algorithm and with the purpose of bootstrapping the camera

tracking module, we ran a batch rigid SfM algorithm [110] on the first 60 frames of the sequence

1Videos of the experimental results can be found on the project website
http://www.eecs.qmul.ac.uk/ ˜ lourdes/SequentialNRSFM

2Available fromhttp://mocap.cs.cmu.edu

http://www.eecs.qmul.ac.uk/~lourdes/SequentialNRSFM
http://mocap.cs.cmu.edu
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to estimate the mean shapeS̄. The PCA basis matrixV was initialised to0. We then ran our new

sequential algorithm based on the camera tracking and the model update modules, together with

the rank detection engine. The average 3D error is 2.9%, with a 0.7 pixels 2D reprojection error

on the 600×600pixels images. The reprojection threshold was fixed to 1.2pixels.

Frame 61 Frame 188 Frame 252 Frame 316

Figure 5.8: 3D Reconstruction results obtained on theCMU-facesequence using camera track-
ing and model updating. First row: 2D image points (green circles) and reprojections (blue
crosses). Second row: Views of the 3D reconstruction (crosses) compared with ground truth
MOCAP data (squares)

In Figure5.7we show results of the rank estimation, the 2D image reprojection error and the 3D

error for each frame in the sequence using our sequential estimation formulation. The average

image reprojection error over the whole sequence is less than a pixel. In Figure5.9 (left) we

compare results of the 3D error obtained with our method (Sequential), with Torresaniet al.’s

state of the art batch NRSfM algorithm (EM-LDS) [111].We show the histogram of 3D error val-

ues taking into account all the frames in the sequence. The results show that our new sequential

algorithm provides results comparable to Torresaniet al.’s [111] batch state of the art algorithm.

We show smooth estimates of the rotation angles for all the frames in the sequence in Figure5.9

(right). In Figure5.8we show the 2D image reprojection error and the 3D reconstructions (blue

crosses) we obtained for some frames in the sequence comparing them with ground truth values

(green squares).
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Figure 5.9: (Left) Histogram of 3D error values built from all the frames, comparing results
of our method (Sequential) with Torresaniet al.’s state of the art batch (EM-LDS) [111]. The
3D errors obtained with our Sequential approach are comparable to the results from the batch
method EM-LDS. (Right) Rotation angles estimated with the camera tracking module.
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Figure 5.10: Results on theactresssequence. Left: Reprojection error of the frame-by-frame
reconstruction obtained with our method. Middle: The valueof the rank, increased as more
frames are processed. Right: Rotation angles estimated with the camera tracking module.

5.9.2 Real Data

We used theactresssequence, also used by Bartoliet al. [8], which consists of 102 frames of

a video showing an actress talking and moving her head. In Figure 5.11 we show results of

the 3D reconstructions obtained for some of the frames in thesequence. The camera tracking

was bootstrapped with a rigid model obtained using Tomasi and Kanade’s rigid factorisation

algorithm [110] on the first 30 frames. The threshold for increasing the rankwas a reprojection

error of 0.9 pixels. From figure5.10we can see that the rank is increased, and the estimation of

new frame parameters keeps the reprojection error low.
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Frame 31 Frame 48 Frame 84 Frame 102

Figure 5.11: Qualitative results on theactresssequence using camera tracking and model update.
First row: The input images with superimposed feature tracking data. Second and Third rows:
Front and side views of the 3D reconstruction of 4 frames of the sequence.

5.9.3 Missing data

We used a real sequence with occlusions (kindly provided by P. Gotardo and A. Martinez [45])

of a person performing American sign language gestures. Thesequence is 114 frames long, and

the 77 markers on the face were manually tracked in all frameswhere they were visible. The

features are often occluded in this sequence due to hand gestures and self occlusions. Figure

5.13shows the results we obtain in a sequential estimation, highlighting the recovery of missing

data. Deformations are correctly recovered, and the overall rms reprojection error is 1 pixel. For

this sequence we used the model compression method described in section5.7, imposing a limit

on the rank of the decomposition to rank 12. Figure5.12shows the reprojection error for each

frame, the rank of the recovered model, and the missing data visibility matrix.

5.10 Application to Model-based feature tracking

Once acquired, a 3D deformable shape model is a general representation of an object which

can subsequently be used for tracking. Our sequential modelling algorithm [84] can indeed
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Figure 5.12: Sequential estimation of the sign language sequence. Left: reprojection error,
Middle: Rank of the decomposition, showing model compression. Right: Missing data in the
sequence, black points are observable features, missing data in white.

produce from scratch such models. Model-based tracking canthen be defined as the task of

identifying the pose and deformation coefficients of the object for each frame of a stream of

further images. If correctly formulated, tracking with a known 3D model can be performed

sequentially, proceeding from step to step based only on a current state estimate and new image

data and without needing to refer back to older images. This is usually achieved by combining

the current image measurements with the reprojection of thepredicted model combined with

priors on the parameters of the model.

Tracking non-rigid objects using a 3D model is an active research area, particularly in the case of

human faces due to its applications to computer graphics animation, human computer interaction

or face recognition. Most approaches are based on a generative linear model of appearance

such as 3DMorphable Models[121] or 2D Active Appearance Models (AAMs)[25, 71] which

have also been extended to 3D [127]. Stemming from Lucas and Kanade’s seminal work [68]

on image registration, model-based tracking is posed as an optimisation problem minimising

a similarity measure between a reference template and the new target image. Successful 3D

model-based tracking algorithms based on the low-rank shape basis model include the work of

Brand and Bhotika [14] who propose a Bayesian formulation for model-based flexible flow and

the efficient approach of Muñozet al. [77, 78] to tracking with 3DMorphable Models. All these

approaches re-parametrise the image displacements in terms of the model parameters which

results in hard constraints.
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Frame 1 Frame 29 Frame 57 Frame 85 Frame 114

Figure 5.13: Real sign language sequence. Results from the sequential method. First row: input
data, 2D reprojection, and recovered missing data. Second and third row: 3D reconstruction
front and top views, missing data highlighted with a red circle.

In this section we describe an approach to model-based non-rigid tracking based on soft con-

straints. We solve simultaneously for the 2D feature tracking (the displacements throughout the

sequence of salient points detected in the first frame) and the 3D non-rigid tracking (pose and

deformations of the 3D object). We assume a low-rank shape basis has been previously learnt

and we formulate tracking as an optimisation problem where our cost function consists of a data

term that minimises brightness constancy and a prior term that penalises model parameters (3D

object pose and deformations) that deviate from the pre-computed deformable model. There-

fore, our model is imposed as a soft rather than a hard constraint. Moreover, we also incorporate

spatial and temporal smoothness priors to avoid ambiguities.

5.10.1 Formulation

Two significant difficulties arise in non-rigid tracking. First, the image displacements between

consecutive frames are large since we deal with deformable motion. Secondly, as a consequence
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of the non-rigidity of the motion, multiple transformations can explain the same pair of images

causing ambiguities to arise. In this work, we assume that the tracked feature points lie on a

non-rigid 3D surface that deforms according to a known non-rigid low-rank basis and are then

projected onto the image via an orthographic camera. While the 3D shape basis will be known

in advance, the parameters of the model (camera matrices anddeformation parameters) must be

estimated at the same time as the image feature displacements. We propose a method for model-

based tracking that incorporates the knowledge about the model as a soft constraint. Given a

pair of consecutive frames, we seek to estimate the image displacements for each feature point

as well as the model parameters that align the projection of the object with the current frame.

The general problem of tracking feature points using the image brightness constancy is to esti-

mate the image displacement vectorsδ p for each feature pointp solving the following minimi-

sation problem:

argmin
δ

P

∑
p=1

||I(xp)− I ′(xp+δ p)||2 (5.19)

where,xp is the location of featurep in the reference frameI , δ p is its displacement in the

target frameI ′ and I(xp) indicates the image intensity value at locationxp. The problem of

feature tracking is that of estimating the displacements for every feature point that minimise the

discrepancy in image intensity between the location of the feature in the reference frame and its

location in the target frame. However, the brightness constancy alone cannot provide enough

constraints to solve for the image displacements due to the aperture problem. Instead, usually

a linear approximation of the brightness constancy equation is performed, assuming a motion

model of a patch centred around each feature. We will denote an image patch centred around

point x as the matrixI(x) containing the interpolated brightness values.

Given a known model, one possible approach to formulate model-based tracking is to re-parametrise

the displacement of feature points from one frame to the nextin terms of the model parameters.

In that case, the cost function is optimised with respect to the model parameters instead of image
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displacements:

argmin
u

P

∑
p=1

||I(xp)−I
′(fp(u))||2F (5.20)

where the model takes the form of a functionfp(·) that takes as input a vectoru that encodes

the current parameters and returns the image feature location for point p. The notation|| · ||F
indicates the Frobenius norm.

Alternatively, the idea of using a soft constraint is to estimate both feature point displacements

δ p and model parametersu simultaneously, such that the cost function continues to optimise

brightness constancy while penalising displacements thatdo not satisfy the model. This leads to

the alternative cost function:

argmin
δ ,u

P

∑
p=1

(||I(xp)−I
′(xp+δ p)||2F +λ ||(xp+δ p)− fp(u)||2) (5.21)

We favour imposing the model-based prior as a soft constraint to re-parametrisation of the image

displacements for a number of reasons:

• The model is often inaccurate.

• We allow object deformations that are outside of (although close to) the parameter space.

• The cost function has increased robustness to noise.

• The data term for each feature point is independent of the others.

5.10.2 Forward model

While our newimplicit 3D modeldescribed in section5.3.2was advantageous for the sequential

model-building stage (given its ability to represent deformation modes of any rank), it is not

clear that this representation of the low-rank shape model offers an advantage for tracking. In

practice, Bregleret al.’s explicit 3D modelhas a lower number of time-varying parameters which

makes it preferable for model-based tracking.
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Fortunately, converting theimplicit 3D modelinto its equivalentexplicit 3D modelis simple,

re-arranging the elements of the shape matrix and performing a PCA decomposition.

S3F×P =




S1

S2

...

SF




=




X11 X12 X1P

Y11 Y12 · · · Y1P

Z11 Z12 Z1P

...
...

...

XF1 XF2 XFP

YF1 YF2 · · · YFP

ZF1 ZF2 ZFP




=




S̄

S̄

...

S̄




+




U1

U2

...

UF




V (5.22)

It is straightforward to re-shape the 3F ×P matrix of 3D shapes for all frames into a matrixS∗

of sizeF×3P, by transposing the coordinates of each 3D point:

S
∗ =




X11 Y11 Z11 · · · X1P Y1P Z1P

X21 Y21 Z21 · · · X2P Y2P Z2P

... · · · ...

XF1 YF1 ZF1 · · · XFP YFP ZFP




(5.23)

A PCA decomposition of rankK of S∗ givesLB∗, whereL is theF ×K matrix of deformation

weightsl ik, and theK×3P matrixB∗ can be rearranged to give the basis shapesBk. Theexplicit

3D model therefore only needsK deformation modes to express the shape at each frame, while

the implicit 3D model needed 3 times as many. This results in fewer parameters to estimate in

the tracking stage.

5.10.3 Tracking

Our model-based tracking algorithm is based on the assumption that the 2D points on the image

arise from the projection, via an orthographic camera matrix, of 3D points on a non-rigid surface

that deforms according to a givenexplicit low-rank basis shape modelBd to give a matrix of
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image measurements for each frameW f such that:

Wf = R f

K

∑
d=1

(l f dBd)+T f (5.24)

Gathering the unknown model parameters (R f , l f , T f ) into a parameter vectoru f , the 2D lo-

cation of a feature pointp becomes a real-valued function in this parameter space. Theoverall

parameter vector we wish to optimise in eq.5.21contains both the image displacements and the

model parameters:

µ f = [δ f ,u f ]
T

We adopt the sliding window approach we described in section5.5 optimising the parameters

for ω consecutive frames:

µ̄ = [µ1,µ2, · · · ,µω ]
T

This leads us to formulate the problem as a minimisation overthe space of 2D displacements

and model parameters for each pair of frames. The overall cost function can be written as:

χ(δ f ,u f ) =
P

∑
p=1

||I f (xf ,p)−I f+1(xf ,p+δ p)||2F+

+λ1||(xf ,p+δ p)− fp(u f )||2+

+λ2||uf −uf−1||2

(5.25)

The first term of the energy is the data fidelity term which encodes the brightness constancy

constraint. It is based on the assumption that the brightness of every feature pointp in the one

frame is preserved at its new location in the next frame. The second term penalises displacements

that do not agree with the model. It gives rise to a soft constraint which is used to enforce the

forward model (represented by thef (·) function):

f (R f ,L f , t f ) = W f = R f ∑
d

(l f dBd)+ t f (5.26)
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The third term encodes temporal smoothness priors on the parameters, penalising large changes

from one frame to the next. We optimise the energy with respect to the model parameters

R f , l f d, t f and the displacementsδ f , using Levenberg Marquardt. Our implementation takes

advantage of the sparse nature of the Jacobian matrix which has the form:

J=




D 0

I F

0 I




(5.27)

with a diagonal blockD , a full blockF and some zero0 and identityI blocks. In order to be able

to deal with large displacements, we embed our optimisationwithin a coarse-to-fine approach.

We minimise the cost5.25over multiple Gaussian pyramid levels, starting at the coarsest level

initialising the displacements to zeroδ = 0 and using the output of each level to initialise the

next.

5.10.4 Experiments

For the purpose of quantitative evaluation of non-rigid model-based tracking we have used a

benchmark sequence with ground truth [44]. The sequence uses sparse motion capture (MO-

CAP) data from [124] to capture the real deformations of a waving flag in 3D. Figure 5.15

shows the 3D motion capture data used to generate a set of rendered images. The 3D surface

was then projected synthetically onto the image plane usingan orthographic camera and texture

mapped to render 450 frames of size 500×500 pixels (see figure5.14). The advantage of this

new sequence is that, since it is based on MOCAP data, it captures the complex natural defor-

mations of a real non-rigid object while allowing us to have access to dense ground truth optical

flow.

Figure 5.16 shows the computation of Gaussian pyramids. We use 5 pyramidlevels with a

down-sampling factor of.5. Figure5.17shows results of the tracking obtained using the well-

known KLT tracking algorithm [109] to this image sequence. We used the public implementation
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Figure 5.14: Some frames of the synthetic flag sequence [44]. 3D and 2D ground truth is
available, as the images are generated by texture-mapping known motion capture data of a flag
waving in the wind.

provided by Stan Birchfield3. Is is clear from the results shown in Figure5.17that the simple

motion model assumed by the KLT approach is not sufficient to track the feature points due

to the large deformations present in the data. By taking advantage of a known 3D model, our

method can successfully track feature points, as shown in Figure5.19and recover the pose and

deformations of the 3D shape as shown in Figure5.18. In this synthetic experiment the low-rank

basis shapes model withK = 24 basis shapes is obtained by PCA decomposition of the ground

3available athttp://www.ces.clemson.edu/ ˜ stb/klt/

Figure 5.15: Some frames of the motion capture data used to generate the ground-truth se-
quence. This synthetic sequence is generated by motion capture data of a flag waving in the
wind, performing strong deformations. We use the ground truth 3D data to build our 3D model
to perform model-based feature tracking.

http://www.ces.clemson.edu/~stb/klt/


182 Chapter 5. Sequential non-rigid structure from motion

Figure 5.16: Set of Gaussian pyramids: finer to coarser from left to right. Computing Gaussian
pyramids allows tracking of a feature point over large displacements.

Frame 1                                               Frame 5                                                 Frame 12

Figure 5.17: Using KLT tracking on the synthetic flag sequence: the strong deformations of
the flag cause a great amount of lost tracks. Image brightnessis not sufficient to track such
deformations.

truth motion capture data (shown in Figure5.14). We selected 180 equally spaced model points

to track and used the ground truth deformation weights as initialisation. The size of the image

patch for the brightness constancy was set to 5×5 pixels. The resulting average rms 2D tracking

error was 1.5 pixels. The 3D shape is obtained using the computed deformation weights and the

known basis shapes. The 3D reconstruction error in this experiment was 4.3%. Some frames of

the reconstructed 3D shapes are shown in Figure5.18.

5.11 Summary and critique

We have undergone a re-thinking of the NRSfM problem for monocular sequences providing a

sequential solution. Our new sequential algorithm is able to automatically detect and increase the

complexity of the model. Current state of the art methods forNRSfM are batch and rely on prior
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Frame 2 Frame 5 Frame 8 Frame 10

Figure 5.18: 3D reconstruction results on the synthetic flagsequence. First row: frontal view.
Second row: side view. Reconstructed 3D points shown in black, the ground truth feature points
shown as green circles.

Figure 5.19: Tracking feature points in the synthetic flag sequence: the model keeps the posi-
tions constrained, in spite of strong deformations. Feature points computed by our method are
shown in red, while the green circles are the known GT locations. The blue circles show the
reprojection of features using the computed model parameters.

knowledge of the model complexity (usually the number of basis shapes,K). Our 3D-implicit

low-rank shape model simplifies the projection model and allows the rank to grow one-by-one

making it well suited to frame-by-frame operation. We have shown quantitative results on a

motion capture sequence and shown our system in operation onreal sequences. Concerning

real time capability, our current MATLAB implementation isnot real time (averaging at 1 frame

per second in current tests). However, the sliding window approach and the model compaction

ensure that the computation time per frame is bounded i.e. does not grow with the number of

frames. Therefore we foresee that with appropriate code optimisation we will be able to achieve

real-time performance. In addition, in section5.10.3we have shown an application to model-
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based feature tracking where a model can provide improvements to the feature tracking process

using soft constraints. Future work will be directed at combining the sequential frame-by-frame

model building with model-based tracking, making our formulation suitable for solving the non-

rigid structure from motion problem directly from image streams.
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Chapter 6

Conclusions

This thesis addressed the problem of non-rigid structure from motion. We focused on the recon-

struction of 3D shapes from a monocular sequence, where neither prior information on the scene

nor camera calibration is available. This sfm problem is themost challenging, and has attracted

considerable attention in the literature. The ability to solve the general, monocular, uncalibrated

case of non-rigid structure from motion is a fundamental task of computer vision, as well as

having a wealth of applications in practical domains. This chapter summarises our contributions

to the field, and future research directions that are currently open.

6.1 Non-rigid Structure from Motion using Metric Projectio ns

In our work on metric projections in Chapter 3, we show that state of the art results can be

obtained by using the manifold constraints of the problem alone. We have used an alternation

approach combined with a projection step. Our method obtains the global optimum on the

projection problem, that is, each projection is the best point on the manifold of metric constraints,

given the current structure estimate. We unified the problems of articulated and deformable

structure recovery within a single framework, in which the core of the problem relies solely upon
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the manifold projection. In the case of articulated manifold, we propose a convex relaxation to

the projection problem.

The problem of non-rigid structure from motion is both inherently ambiguous and non-linear, as

the works by Xiaoet al. and Aktheret al. have shown. Our proposed algorithm correctly applies

non-linear estimation methods for the projection step, obtaining a solution without the use of

any additional priors, the process is purely data-driven.

Almost all real-world sequences suffer from missing data and incomplete tracks, and here we

show state of the art results. Our experimental results showthat projection onto the correct

motion manifold makes the method robust to a high percentageof missing data, and encourages

viable reconstructions in scenarios where occlusions are not random, but structured, for example

due to self occlusions.

We have released the source code for our metric projection method, which quickly become used

by other researchers in the field. These researchers gave us valuable new insights, for example,

Fayadet al. [41] showed a test case in which very strong deformations are notreconstructed

by our method, and instead propose a piecewise approach; Taylor et al. [107] have tested our

method with a sequence containing little or no rotation and translation between the object and

the camera, and also suggested to solve this case with a localmodel. For these challenging cases,

local methods clearly are a valuable tool. However, for sequences that can be reconstructed using

a low-rank basis shapes model, our method consistently provided state of the art performance.

6.2 Bilinear problems in Computer Vision

The generic optimisation of the metric projection method can be applied to any bi-linear problem

with manifold constraints. The BALM algorithm detailed in Chapter 4 provides a general op-

timisation framework which decouples the problems of factorisation and manifold constraints,

and deals with missing data as an additional unknown variable to estimate. It has been applied

successfully on computer vision problems outside non-rigid structure from motion, such as pho-

tometric stereo, and non-rigid image registration. The BALM method shows fast convergence
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thanks to the use of Lagrange multipliers to enforce the metric constraints. This allows the

BALM algorithm to solve large-scale problems. One important advantage of the BALM algo-

rithm is its modularity, only a projection onto the manifolddefined by the problem constraints

is required to apply it to a new bi-linear problem. It is however a global method, and operates in

batch, after image acquisition has taken place. For this reason, in Chapter 5 we moved our focus

of research to sequential estimation.

6.3 The challenge of real-time estimation

At the time of writing, our sequential estimation method remains the only attempt to solve the

non-rigid structure from motion problem on-line, without processing the whole sequence. The

key insight in this algorithm which allows us to do this is to decouple the problem of estimating

time-varying parameters from that of model building. This two-process approach has already

been exploited successfully in rigid camera localisation and mapping.

Our novel 3D-implicit low-rank formulation makes it easy tosequentially increase the rank of

the model without recomputing earlier frames. This is particularly desirable in non-rigid struc-

ture form motion, when the size of the model (the number of basis shapesK) is unknown. The

modelling is guided by the reprojection error. This way of rank-growing allows the automatic

detection of new deformation modes. We estimate the new model in two steps, a linear initiali-

sation followed by a non-linear refinement. Our strategy is currently to re-estimate camera and

shape parameters when the model is changed. In this case, past frames could be estimated in

parallel to the new frames to improve speed.

We demonstrate our method on a MATLAB implementation that currently averages at 1 frame

per second, one of the future works will be to rewrite this method with an optimised C++ im-

plementation with the aim of achieving about 15 frames per second, which would make the

run-time of non-rigid structure from motion on par with current real-time methods for rigid

SfM and SLAM (simultaneous localisation and mapping). We have released code to promote

progress in this area.
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In order for us to use reprojection error as a measure of fitness for our model, we require reliable

tracks. In Chapter 5, we propose the joint estimation of feature points tracks and time-varying

model parameters. The applicability of this method was demonstrated in a synthetic sequence.

6.4 Future work

The field of non-rigid structure from motion is maturing, with a wealth of well-understood meth-

ods and algorithms. Despite all efforts, no method exists today that can provide a global opti-

mum for both shape and motion estimation, as we have shown, the non-linearities inherent in

non-rigid reconstruction make this difficult. We proposed aconvex relaxation for the projection

on the motion manifold. Further work towards the goal of optimality should take on the problem

of robust estimation in presence of high noise and outliers,as well as dealing with missing data.

On-line estimation of deformable 3D models raises a number of challenges for future research.

First, the sequential frame-by-frame model building needsreliable tracking data. It is possible

to improve on the tracking process by using feedback from themodel update in the tracking

stage. Further research is required to make the feature tracking process robust to outliers, such

as features that do not fit the model well. Further, while occlusions result in missing data in a

batch processing, in the case of sequential estimation, when some points disappear out of view,

other new points appear and can be tracked. Successfully incorporating the new points into an

existing model is another direction of research. The new points must be observed reliably for a

number of frames before being incorporated in the model. Detection could be guided both by

the current model and by a prediction of camera pose according to its current velocity.

Finally, human motion can be seen as a combination of different deformable, articulated, and

rigid parts. A hierarchical model building would be a promising approach to recover human mo-

tion from a video sequence, by reconstructing the underlying rigid motion as a coarse estimation,

the articulated links in a finer level, and a non-rigid motionto capture detailed 3D movements.
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[27] T.F. Cootes, C.J. Twining, V.S. Petrović, R. Schestowitz, and C.J. Taylor. Groupwise

construction of appearance models using piece-wise affine deformations. InProc. 16th

British Machine Vision Conference, Oxford, 2005.69

[28] J. Costeira and T. Kanade. A multibody factorization method for independent moving

objects.International Journal of Computer Vision, September 1998.17, 42, 81

[29] Y. Dai, H. Li, and M. He. Element-wise factorization forn-view projective reconstruction.

In Proc. 11th European Conference on Computer Vision, Crete, Greece, 2010.44

[30] R.H. Davies, C.J. Twining, T.F. Cootes, J.C. Waterton,and C.J. Taylor. A minimum

description length approach to statistical shape modeling. Medical Imaging, IEEE Trans-

actions on, May 2002.69

[31] A. Del Bue.Deformable 3-D Modelling from Uncalibrated Video Sequences. PhD thesis,

Queen Mary University of London, August 2006.66

[32] A. Del Bue. A factorization approach to structure from motion with shape priors. In

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, june

2008.52, 67

[33] A. Del Bue and L. Agapito. Non-rigid 3D shape recovery using stereo factorization.Asian

Conference of Computer Vision, January 2004.67

[34] A. Del Bue and L. Agapito. Stereo non-rigid factorization. International Journal of

Computer Vision, February 2006.66
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Appendix A

Optimization, deformable case

ForE ∈ R
6×6, our aim is to compute

min
q=vec(Q)

qT
Eq, (A.1)

whereQ∈ R
3×2 runs through Stiefel matrices, i.e.QTQ= I2×2. We rewrite (A.1) as

min
q=vec(Q)

Tr(EqqT) = min
X∈S

Tr(EX), (A.2)

whereSis the set of all real symmetric 6×6 matricesX=




A B

BT C


, with A∈R3×3, satisfying

X< 0, (A.3)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (A.4)

rankX= 1. (A.5)
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This problem, has a nonconvex constraint (rankX= 1). Since the cost function is linear we have

min
X∈S

Tr(EX) = min
X∈co(S)

Tr(EX), (A.6)

where co(S) is the convex hull of the setS. Here, we compute the convex hull (tight convex

relaxation) co(S) as all the real symmetric 6×6 matricesX that satisfy

X< 0, (A.7)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (A.8)[
I3×3−A−C w

wT 1

]
< 0, (A.9)

with w given by

w =




b23−b32

b31−b13

b12−b21




(A.10)

whereB= [bi j ]. Moreover, this set is defined only by linear matrix inequalities (LMI). Hence, we

have that our problem (A.1) is equivalent to finding the minimum of a linear function (Tr(EX)) on

a convex set (co(S)), which is given only by LMI (A.7)-(A.9). Thus, the optimization problem

in the right-hand side of (23) is a Semi-Definite Program (SDP). By using SeDuMi [103], we

quickly obtain the optimal matrixX for (A.6). In 100% of experiments that we ran, the optimal

matrix X was always of rank 1. By factorizingX= qqT , we obtain the optimalStiefel matrixas

Q= vec−1(q). For more details the reader can refer to [38]
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Appendix B

Convex relaxation, Articulated Case

Problem statement

We consider the optimization problem

maximize f (u)

subject to ‖u‖ ≤ 1

. (B.1)

where the variable to optimize isu∈R
2. The objective function is

f (u) = ‖u‖2+2u⊤x+2

∥∥∥∥
(

I −uu⊤
)1/2

Y

∥∥∥∥
N

+2

∥∥∥∥
(

I −uu⊤
)1/2

Z

∥∥∥∥
N

(B.2)

The problem data is the triple

(x,Y,Z) ∈ R
2×R

2×2×R
2×2.

For ann×n matrix X, the symbol‖X‖
N
= σ1(X)+ · · ·+σn(X) denotes its nuclear norm.
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Problem reformulation

We start by noting that (B.1) is equivalent to maximizing

g(u) = ‖u‖2+2|u⊤x|+2

∥∥∥∥
(

I −uu⊤
)1/2

Y

∥∥∥∥
N

+2

∥∥∥∥
(

I −uu⊤
)1/2

Z

∥∥∥∥
N

. (B.3)

Note that f (u) ≤ g(u) for all feasibleu. However, at a global maximizer of (B.1), sayu⋆, we

must have(u⋆)⊤x≥ 0. Thus,(u⋆)⊤x= |(u⋆)⊤x| and f (u⋆) = g(u⋆).

We rewriteg(u) as

g(u) = ‖u‖2+2
√

u⊤xx⊤u+2

∥∥∥∥
(

I −uu⊤
)1/2

Y

∥∥∥∥
N

+2

∥∥∥∥
(

I −uu⊤
)1/2

Z

∥∥∥∥
N

. (B.4)

Moreover, for a 2×2 matrixX, there holds

‖X‖
N
=

√
‖X‖2+2|det(X)| (B.5)

where‖X‖=
√

tr (XX⊤) denotes the Frobenius norm ofX. Using (B.5) in (B.4) gives

g(u) = ‖u‖2+2
√

u⊤xx⊤u+2
√
‖Y‖2−u⊤YY⊤u+2|det(Y)|

√
1−u⊤u+

+2
√
‖Z‖2−u⊤ZZ⊤u+2|det(Z)|

√
1−u⊤u. (B.6)

Now, we distinguish two cases:

1. The matrices{I2,YY⊤,ZZ⊤} are linearly independent

2. The matrices{I2,YY⊤,ZZ⊤} are linearly dependent

Case 1 is probably the one occurring the most in practice. It will lead do a semidefinite program

(SDP). Case 2 is easier. It will lead to a 2nd order cone program (SOCP).
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Case 1:{I2,YY⊤,ZZ⊤} are linearly independent

In this case, the matrices{I2,YY⊤,ZZ⊤} form a basis for the three-dimensional vector space of

2×2 matrices. This means that there existsα ,β ,γ ∈ R such that

xx⊤ = α I2+βYY⊤+ γZZ⊤. (B.7)

Using (B.7) in (B.6) yields

g(u) = ‖u‖2+2
√

αu⊤u+βu⊤YY⊤u+ γu⊤ZZ⊤u+

+2
√
‖Y‖2−u⊤YY⊤u+2|det(Y)|

√
1−u⊤u+

+2
√
‖Z‖2−u⊤ZZ⊤u+2|det(Z)|

√
1−u⊤u. (B.8)

Our optimization problem is

maximize g(u)

subject to ‖u‖ ≤ 1

(B.9)

with g(u) as in (B.8). In (B.9), the variable to optimize isu∈R2. Problem (B.9) can be rewritten

as

maximize φ(a,b,c)

subject to (a,b,c) ∈ S

a≤ 1

(B.10)

where

S := {(a,b,c) : ∃u : a= u⊤u, b= u⊤YY⊤u, c= u⊤ZZ⊤u},

and

φ(a,b,c) := a+2
√

αa+βb+ γc+2
√
‖Y‖2−b+2|det(Y)|

√
1−a+

+2
√
‖Z‖2−c+2|det(Z)|

√
1−a
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is a concave function.

We have the inclusionS ⊂ T where

T := {(a,b,c) : ∃U�0 : a= tr(U), b= tr

(
YY⊤U

)
, c= tr

(
ZZ⊤U

)
}.

UsingT instead ofS in (B.10) gives the convex problem

maximize φ(a,b,c)

subject to a= tr(U)

b= tr

(
YY⊤U

)

c= tr(ZZ⊤U)

U � 0

a≤ 1

. (B.11)

LetU⋆ be a solution of (B.11). Let

U⋆ =

[
u1 u2

]



λ1 0

0 λ2







u⊤1

u⊤2




be an eigenvalue decomposition, whereλ1 ≥ λ2. A suboptimal solution for (B.1) is u⋆ =

±
√

λ1u1, where the sign is chosen such thatx⊤u⋆ ≥ 0.

Case 2:{I2,YY⊤,ZZ⊤} are linearly dependent

We assume thatZZ⊤ can be written as a linear combination ofI2 andYY⊤, say,

ZZ⊤ = α I2+βYY⊤,
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for someα ,β ∈ R. Our problem becomes

maximize φ(a,b,c)

subject to (a,b,c) ∈ S

a≤ 1

(B.12)

where

S :=
{
(a,b,c) : ∃u : a= u⊤u,b= u⊤YY⊤,c= u⊤xx⊤u

}
,

and

φ(a,b,c) := a+2
√

c+2
√
‖Y‖2−b+2|det(Y)|

√
1−a+

+2
√
‖Z‖2−αa−βb+2|det(Z)|

√
1−a

is a concave function.

We have the inclusionS ⊂ T where

T := {(a,b,c) : ∃U�0 : a= tr(U), b= tr

(
YY⊤U

)
, c= tr

(
xx⊤U

)
}.

UsingT instead ofS in (B.12) gives the convex problem

maximize φ(a,b,c)

subject to a= tr(U)

b= tr

(
YY⊤U

)

c= tr(xx⊤U)

U � 0

a≤ 1

. (B.13)
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It can be shown that (B.13) can be rewritten as a SOCP. LetU⋆ be a solution of (B.13). Let

U⋆ =

[
u1 u2

]



λ1 0

0 λ2







u⊤1

u⊤2




be an eigenvalue decomposition, whereλ1 ≥ λ2. A suboptimal solution for (B.1) is u⋆ =

±
√

λ1u1, where the sign is chosen such thatx⊤u⋆ ≥ 0.
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