
Uniform Sampling through the Lovász Local Lemma
Heng Guo

Queen Mary, University of London
School of Mathematical Sciences

London E1 4NS, UK
h.guo@qmul.ac.uk

Mark Jerrum
Queen Mary, University of London
School of Mathematical Sciences

London E1 4NS, UK
mj@qmul.ac.uk

Jingcheng Liu
University of California, Berkeley

Department of EECS
Berkeley, CA, USA
liuexp@berkeley.edu

ABSTRACT
We propose a new algorithmic framework, called “partial rejection
sampling”, to draw samples exactly from a product distribution,
conditioned on none of a number of bad events occurring. Our
framework builds (perhaps surprising) new connections between
the variable framework of the Lovász Local Lemma and some clas-
sical sampling algorithms such as the “cycle-popping” algorithm
for rooted spanning trees by Wilson. Among other applications,
we discover new algorithms to sample satisfying assignments of
k-CNF formulas with bounded variable occurrences.

CCS CONCEPTS
• Theory of computation→ Generating random combinato-
rial structures; Random walks and Markov chains;

KEYWORDS
Exact sampling, Lovász Local Lemma, #SAT
ACM Reference format:
HengGuo,Mark Jerrum, and Jingcheng Liu. 2017. Uniform Sampling through
the Lovász Local Lemma. In Proceedings of 49th Annual ACM SIGACT Sym-
posium on the Theory of Computing, Montreal, Canada, June 2017 (STOC’17),
14 pages.
DOI: 10.1145/3055399.3055410

1 INTRODUCTION
The Lovász Local Lemma [9] is a classical gem in combinatorics that
guarantees the existence of a perfect object that avoids all events
deemed to be “bad”. The original proof is non-constructive but
there has been great progress in the algorithmic aspects of the local
lemma. After a long line of research [2, 3, 8, 23, 29], the celebrated
result by Moser and Tardos [24] gives e�cient algorithms to �nd
such a perfect object under conditions that match the Lovász Local
Lemma in the so-called variable framework. However, it is natural
to ask whether, under the same condition, we can also sample a
perfect object uniformly at random instead of merely �nding one.

Roughly speaking, the resampling algorithm by Moser and Tar-
dos [24] works as follows. We initialize all variables randomly. If
bad events occur, then we arbitrarily choose a bad event and re-
sample all the involved variables. Unfortunately, it is not hard to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
STOC’17, Montreal, Canada
© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00
DOI: 10.1145/3055399.3055410

see that this algorithm can produce biased samples. This seems
inevitable. As Bezáková et al. showed [4], sampling can beNP-hard
even under conditions that are stronger than those of the local
lemma. On the one hand, the symmetric Lovász Local Lemma only
requires ep�  1, where p is the probability of bad events and � is
the maximum degree of the dependency graph. On the other hand,
translating the result of [4] to this setting, one sees that as soon as
p�2 � C for some constant C , then even approximately sampling
perfect objects in the variable framework becomes NP-hard.

The starting point of our work is a new condition (see Condi-
tion 2.5) under which we show that the output of the Moser-Tardos
algorithm is in fact uniform (see Theorem 2.7). Intuitively, the con-
dition requires any two dependent bad events to be disjoint. Indeed,
instances satisfying this condition are called “extremal” in the study
of Lovász Local Lemma. For these extremal instances, we can in fact
resample in a parallel fashion, since the occurring bad events form
an independent set in the dependency graph. We call this algorithm
“partial rejection sampling”,1 in the sense that it is like rejection
sampling, but only resamples an appropriate subset of variables.

Our result puts some classical sampling algorithms under a uni-
�ed framework, including the “cycle-popping” algorithm by Wil-
son [31] for sampling rooted spanning trees, and the “sink-popping”
algorithm by Cohn, Pemantle, and Propp [7] for sampling sink-free
orientations of an undirected graph. Indeed, Cohn et al. [7] coined
the term “partial rejection sampling” and asked for a general theory,
and we believe that extremal instances under the variable frame-
work is a satisfactory answer. With our techniques, we are able to
give a new algorithm to sample solutions for a special class of k-
CNF formulas, under conditions matching the Lovász Local Lemma,
which is anNP-hard task for general k-CNF formulas. Furthermore,
we provide explicit formulas for the expected running time of these
algorithms (see Theorem 2.8), which matches the running time
upper bound given by Kolipaka and Szegedy [20] under Shearer’s
condition [27].

The next natural question is thus whether we can go beyond
extremal instances. Indeed, our main technical contribution is a
general uniform sampler (Algorithm 6) that applies to any problem
under the variable framework. The main idea is that, instead of only
resampling occurring bad events, we resample a larger set of events
so that the choices made do not block any perfect assignments in
the end, in order to make sure of uniformity in the �nal output.

As a simple example, we describe how our algorithm samples
independent sets. The algorithm starts by choosing each vertex with
probability 1/2 independently. At each subsequent round, in the
induced subgraph on the currently chosen vertices, the algorithm

1Despite the apparent similarity in names, our algorithm is di�erent from “partial
resampling” in [15, 16]. We resample all variables in certain sets of events whereas
“partial resampling” only resamples a subset of variables from some bad event.

342

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

�nds all the connected components of size � 2. It marks these
vertices and their boundaries (which are unoccupied) as “to be
resampled”. Then it resamples all marked vertices, and repeats
this process until there is no edge with both endpoints occupied.
What seems surprising is that this simple process does yield a
uniformly random independent set when it stops. Indeed, as we
will show in Theorem 6.5, this simple process is an exact sampler
for weighted independent sets (also known as the hard-core model in
statistical physics). In addition, it runs in expected linear time under
a condition that matches, up to a constant factor, the uniqueness
threshold of the model (beyond which the problem of approximate
sampling becomes NP-hard).

In the more general setting, we will mark the set of events to
be resampled, denoted by Res, iteratively. We start from the set
of occurring bad events. Then we mark neighbouring events of
the current set Res, until there is no event A on the boundary of
Res such that the current assignment, projected on the common
variables of A and Res, can be extended so that Amay happen. In
the worst case, we will resample all events (there is no event in the
boundary at all). In that scenario the algorithm is the same as a naive
rejection sampling, but typically we resample fewer variables in
every step. We show that this is a uniform sampler on assignments
that avoid all bad events once it stops (see Theorem 4.5).

One interesting feature of our algorithm is that, unlike Markov
chain based algorithms, ours does not require the solution space
(or any augmented space) to be connected. Moreover, our sampler
is exact; that is, when the algorithm halts, the �nal distribution
is precisely from the desired distribution. Prior to our work, most
exact sampling algorithms were obtained by coupling from the
past [25]. We also note that previous work on the Moser-Tardos
output distribution, such as [14], is not strong enough to guarantee
a uniform sample (or �-close to uniform in terms of total variation
distances).

We give su�cient conditions that guarantee a linear expected
running time of our algorithm in the general setting (see Theo-
rem 5.1). The �rst condition is that p�2 is bounded above by a
constant. This is optimal up to constants in observance of the NP-
hardness result in [4]. Unfortunately, the condition on p�2 alone
does not make the algorithm e�cient. In addition, we also need to
bound the expansion from bad events to resampling events, which
leads to an extra condition on intersections of bad events. Removing
this extra condition seems to require substantial changes to our
current algorithm.

To illustrate the result, we apply our algorithm to sample satis-
fying assignments of k-CNF formulas in which the degree of each
variable (the number of clauses containing it) is at most d . We say
that ak-CNF formula has intersection s if any two dependent clauses
share at least s variables. The extra condition from our analysis
naturally leads to a lower bound on s . Let n be the number of vari-
ables. We (informally) summarize our results on k-CNF formulas
as follows (see Corollary 6.2 and Theorem 6.3):

• If d  1
6e · 2k/2, dk � 23e and s � min{log2 dk,k/2}, then

the general partial rejection resampling algorithm outputs
a uniformly random solution to a k-CNF formula with
degree d and intersection s in expected running time O(n).

• If d � 4 · 2k/2 (for an even k), then even if s = k/2, it
is NP-hard even to approximately sample a solution to a
k-CNF formula with degree d and intersection s .

As shown in the hardness result, the intersection bound does not
render the problem trivial.

Previously, sampling/counting satisfying assignments of k-CNF
formulas required the formula to be monotone andd  k to be large
enough [4] (see also [5, 21]). Although our result requires an addi-
tional lower bound on intersections, not only does it improve the
dependency of k and d exponentially, but also achieves a matching
constant 1/2 in the exponent. Furthermore the samples produced
are exactly uniform. Thus, if the extra condition on intersections
can be removed, we will have a sharp phase transition at around
d = O(2k/2) in the computational complexity of sampling solutions
to k-CNF formulas with bounded variable occurrences. A similar
sharp transition has been recently established for, e.g., sampling
con�gurations in the hard-core model [11, 28, 30].

Simultaneous to our work, Hermon, Sly, and Zhang [19] showed
that Markov chains for monotone k-CNF formulas are rapidly
mixing, if d  c2k/2 for a constant c . In another parallel work,
Moitra [22] gave a novel algorithm to sample solutions for general
k-CNF when d . 2k/60. We note that neither results are directly
comparable to ours and the techniques are very di�erent. Both of
these two samplers are approximate while ours is exact. Moreover,
ours does not require monotonicity (unlike [19]), and allows larger
d than [22] but at the cost of an extra intersection lower bound.
Unfortunately, our algorithm can be exponentially slow when the
intersection s is not large enough. In sharp contrast, as shown by
Hermon et al. [19], Markov chains mix rapidly ford  c2k/k2 when
s = 1.

While the study of algorithmic Lovász Local Lemma has pro-
gressed beyond the variable framework [1, 17, 18], we restrict our
focus to the variable framework in this work. It is also an inter-
esting future direction to investigate and extend our techniques
of uniform sampling beyond the variable framework. For example,
one may want to sample a permutation that avoids certain patterns.
The classical sampling problem of perfect matchings in a bipartite
graph can be formulated in this way.

2 PARTIAL REJECTION SAMPLING
We �rst describe the “variable” framework. Let {X1, . . . ,Xn } be a
set of random variables. Each Xi can have its own distribution and
range Di . Let {A1, . . . ,Am } be a set of “bad” events that depend on
Xi ’s. For example, for a constraint satisfaction problem (CSP) with
variables Xi (1  i  n) and constraints Cj (1  j  m), each Aj is
the set of unsatisfying assignments ofCj for 1  j  m. Let var(Ai)
be the (index) set of variables that Ai depends on.

The dependency graphG = (V ,E) hasm vertices, identi�ed with
the integers {1, 2, . . . ,m}, corresponding to the events Ai , and (i, j)
is an edge if Ai and Aj depend on one or more common variables.
In other words, (i, j) 2 E if var(Ai)\var(Aj) , ;. We writeAi ⇠ Aj
if the vertices i and j are adjacent in G. The asymmetric Lovász
Local Lemma [9] states the following.

343

Uniform Sampling through the Lovász Local Lemma STOC’17, June 2017, Montreal, Canada

T������ 2.1. If there exist non-negative real numbers xi < 1
(1  i  m) such that 8i ,

Pr(Ai)  xi
÷

(i, j)2E
(1 � x j), (1)

then Pr

 m€
i=1

Ai

!
�

m÷
i=1

(1 � xi) > 0.

Theorem 2.1 has a condition that is easy to verify, but not neces-
sarily optimal. Shearer [27] gave the optimal condition for the local
lemma to hold for a �xed dependency graphG. To state Shearer’s
condition, we will need the following de�nitions. Let pi := Pr(Ai)
for all 1  i  m. Let I be the collection of independent sets of G.
De�ne the following quantity:

qI (p) :=
’

� 2I, I ✓ �
(�1) | � |� |I |

÷
i 2�

pi ,

where p = (p1, . . . ,pm). When there is no confusion we also simply
write qI instead of the more cumbersome qI (p). Note that if I < I,
qI = 0.

T������ 2.2 (S������ [27]). If qI � 0 for all I ✓ V , then
Pr

⇣”m
i=1Ai

⌘
� q; .

In particular, if the condition holds with q; > 0, then

Pr

 m€
i=1

Ai

!
> 0.

Neither Theorem 2.1 nor Theorem 2.2 yields an e�cient algo-
rithm to �nd the assignment avoiding all bad events, since they
only guarantee an exponentially small probability. There has been
a long line of research devoting to an algorithmic version of LLL,
culminating in Moser and Tardos [24] with essentially the same
condition as in Theorem 2.1. The R������� algorithm of Moser
and Tardos is very simple, described in Algorithm 1.

Algorithm 1 The R������� algorithm

(1) Draw independent samples of all variablesX1, . . . ,Xn from
their respective distributions.

(2) While at least one Ai holds, uniformly at random pick one
of such Ai and resample all variables in var(Ai).

(3) Output the current assignment.

In [24], Moser and Tardos showed that Algorithm 1 �nds a good
assignment very e�ciently.

T������ 2.3 (M���� ��� T����� [24]). Under the condition of
Theorem 2.1, the expected number of resampling steps in Algorithm 1
is at most

Õm
i=1

xi
1�xi .

Unfortunately, the �nal output of Algorithm 1 is not distributed
as we would like, namely as a product distribution conditioned on
avoiding all bad events.

In addition, Kolipaka and Szegedy [20] showed that up to the con-
dition of Shearer, Algorithm 1 is e�cient. To simplify the notation,
let qi := q {i } for 1  i  m.

T������ 2.4 (K������� ��� S������ [20]). If qI � 0 for all
I 2 I and q; > 0, then the expected number of resampling steps
in Algorithm 1 is at most

Õm
i=1

qi
q; .

On the other hand, Wilson’s cycle-popping algorithm [31] is
very similar to the R������� algorithm but it outputs a uniformly
random rooted spanning tree. Another similar algorithm is the sink-
popping algorithm by Cohn, Pemantle, and Propp [7] to generate
a sink-free orientation uniformly at random. Upon close examina-
tion of these two algorithms, we found a common feature of both
problems.

C�������� 2.5. If (i, j) 2 E (or equivalently Ai ⇠ Aj), then
Pr(Ai ^Aj) = 0; namely the two events Ai and Aj are disjoint if they
are dependent.

In other words, any two eventsAi andAj are either independent
or disjoint. These instances have been noticed in the study of Lovász
Local Lemma. They are the ones that minimize Pr

⇣”m
i=1Ai

⌘
given

Shearer’s condition (namely Pr
⇣”m

i=1Ai
⌘
= q;). Instances satisfy-

ing Condition 2.5 have been named extremal [20].
We will show that, given Condition 2.5, the �nal output of the

R������� algorithm is a sample from a conditional product distri-
bution (Theorem 2.7). Moreover, we will show that under Condition
2.5, the running time upper bound

Õm
i=1

qi
q; given by Kolipaka and

Szegedy (Theorem 2.4) is indeed the exact expected running time.
See Theorem 2.8.

In fact, when Condition 2.5 holds, at each step of Algorithm 1,
the occurring events form an independent set of the dependency
graph G . Think of the execution of Algorithm 1 as going in rounds.
In each round we �nd the set I of bad events that occur. Due to
Condition 2.5, var(Ai) \ var(Aj) = ; for any i, j 2 I , i.e., I is an
independent set in the dependency graph. Therefore, we can re-
sample all variables involved in the occurring bad events without
interfering with each other. This motivates Algorithm 2.

We call Algorithm 2 the P������ R�������� S������� algorithm.
This name was coined by Cohn, Pemantle, and Propp [7]. Indeed,
they ask as an open problem how to generalize their sink-popping
algorithm and Wilson’s cycle popping algorithm. We answer this
question under the variable framework. P������ R�������� S���
����� di�ers from the normal rejection sampling algorithm by only
resampling “bad” events. Moreover, Algorithm 2 is uniform only
on extremal instances, and is a special case of Algorithm 6 given in
Section 4, which is a uniform sampler for all instances.

Algorithm 2 P������ R�������� S������� for extremal instances

(1) Draw independent samples of all variablesX1, . . . ,Xn from
their respective distributions.

(2) While at least one bad event holds, �nd the independent set
I of occurring Ai ’s. Independently resample all variables
in

–
i 2I var(Ai).

(3) Output the current assignment.

In fact, Algorithm 2 is the same as the parallel version of Algo-
rithm 1 byMoser and Tardos [24]. Suppose each event is assigned to

344

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

a processor, which determines whether the event holds by looking
at the variables associated with the event. If the event holds then
all associated variables are resampled. No con�ict will be created
due to Condition 2.5.

In the following analysis, we will use the resampling table idea,
which has appeared in both the analysis of Moser and Tardos [24]
and Wilson [31]. Note that we only use this idea to analyze the
algorithm rather than to really create the table in the execution.
Associate each variable Xi with an in�nite stack of random values
{Xi,1,Xi,2, . . . }. This forms the resampling table where each row
represents a variable and there are in�nitely many columns. In the
execution of the algorithm, when a variable needs to be resampled,
the algorithm draws the top value from the stack, or equivalently
moves from the current entry in the resampling table to its right.

Let t be a positive integer to denote the round of Algorithm 2.
Let ji,t be the index of the variable Xi in the resampling table at
round t . In other words, at the t-th round, Xi takes value Xi, ji,t .
Thus, the set �t = {Xi, ji,t | 1  i  n} is the current assignment of
variables at round t . This �t determines which events happen. Call
the set of occurring events, viewed as a subset of the vertex set of
the dependency graph, It . (For convenience, we shall sometimes
identify the event Ai with its index i; thus, we shall refer to the
“events in S” rather than the “events indexed by S”.) As explained
above, It is an independent set of G due to Condition 2.5. Then
variables that are involved in any of the events in It are resampled.
In other words, if 9` 2 It such that Xi 2 var(A`), then ji,t+1 =
ji,t + 1; otherwise ji,t+1 = ji,t .

LetM be a resampling table. Suppose running Algorithm 2 on
M does not terminate up to some integer ` � 1 rounds. De�ne the
log of running Algorithm 2 onM up to round ` as the sequence of
independent sets I1, I2, . . . , I` created by this run. Thus, for anyM
and 1  t  `, It+1 ✓ �+(It).

L���� 2.6. Suppose Condition 2.5 holds. Given any log S =
S1, S2, . . . , S` of length ` � 1, �`+1 is a random sample from the
product distribution conditioned on none of the events Ai occurring,
where i < �+(S`).

P����. The set of occurring events at round ` is S` . Hence �`+1
does not make any of the Ai ’s happen where i < �+(S`). Call an
assignment � valid if none of Ai ’s happen where i < �+(S`). To
show that �`+1 has the desired conditional product distribution, we
will show that the probabilities of getting any two valid assignments
� and � 0 are proportional to their probabilities of occurrence in the
product distribution.

Let M be the resampling table so that the log of the algorithm
is S up to round ` � 1, and �`+1 = � . Indeed, since we only care
about events up to round ` + 1, we may truncate the table so that
M = {Xi, j | 1  i  n, 1  j  ji,`+1}. Let M 0 = {X 0

i, j | 1  i 
n, 1  j  ji,`+1} be another table where X 0

i, j = Xi, j if j < ji,`+1
for any i 2 [n], but �`+1 = � 0. In other words, we only change
the values in the �nal round (Xi, ji,`+1), and only to another valid
assignment.

The lemma follows if the algorithm running on M 0 generates
the same log S. Since if this is the case, then conditioned on the log
S, every possible tableM is one-to-one corresponding to another

table M 0 where �`+1 = � 0. Hence the probability of getting � is
proportional to its weight in the product distribution.

Suppose otherwise and the logs obtained by running the algo-
rithm on M and M 0 di�er. Let t0  ` be the �rst round where
resampling changes. Since X 0

i, j = Xi, j if j < ji,`+1 for any i 2 [n],
any eventA that occurs inS should still occur when running onM 0.
(If this is not the case, then A must depend on values at the �nal
round of the resampling table. When the variables of A are resam-
pled, the algorithm will attempt to access values beyond the table,
a contradiction.) There must be an occurring event, say A, that
happens at t0 onM 0 but not onM . Moreover, there must be a set of
variables in var(A) that have values (Xi, ji,`+1), as otherwise the two
runs should be identical. Let us call this set of variables Y . Since
resampling does not change before t0, in theM 0 run, the assignment
of variables in Y must be (X 0

i, ji,`+1) at time t0.
We claim that Y = var(A). If the claim does not hold, then Z :=

var(A) \ Y , ;. Any variable in Z has not reached �nal round,
and must be resampled in theM run. Let X j 2 Z be the �rst such
variable being resampled at or after round t0 in the M run. (The
choice of X j may not be unique, and we just choose an arbitrary
one.) Recall that Y , ;,A can no longer happen, thus there must be
A0 , A causing such a resampling of X j . Then var(A)\ var(A0) , ;.
Consider any variable Xk 2 var(A) \ var(A0). It is resampled at
or after time t0 in the M run due to A0. Hence Xk 2 Z for any
such k . Moreover, in theM run, until A0 happens, Xk has not been
resampled since time t0, because A0 is the �rst resampling event at
or after time t0 that involves variables in Z . On the other hand, in
theM 0 run, Xk ’s value causes A to happen at time t0. Hence, there
exists an assignment on variables in var(A)\var(A0) such that both
A and A0 happen. Clearly this assignment can be extended to a
full assignment so that both A and A0 happen. However, A ⇠ A0

as they share the variable X j . Due to Condition 2.5, A \ A0 = ;.
Contradiction! Therefore the claim holds.

We argue that the remaining case,Y = var(A), is also not possible.
Since A occurs in theM 0 run, we know, by the de�nition of � 0, that
A 2 �+(S`). Thus, some event whose variables intersect with those
in A must occur in the M run. But when the algorithm attempts
to update variables shared by these two events in the M run, it
will access values beyond the �nal round of the resampling table, a
contradiction. ⇤

We remark that Lemma 2.6 is not true for non-extremal instances
(that is, if Condition 2.5 fails). In particular, Lemma 2.6 says that
given any log, every valid assignment is not only reachable, but
also with the correct probability. This is no longer the case for
non-extremal instances — some valid assignments from the desired
conditional product distribution could be “blocked” under the log
S. In Section 4 we show how to instead achieve uniformity by
resampling an “unblocking” set of bad events.

Using Lemma 2.6 it is not hard to see the �nal output of Algo-
rithm 2 is uniform.

T������ 2.7. When Condition 2.5 holds and Algorithm 2 halts,
its output is a product distribution conditioned on avoiding all bad
events.

The running time of Algorithm 2 actually matches exactly the
upper bound given by Kolipaka and Szegedy [20] (see Theorem 2.4).

345

Uniform Sampling through the Lovász Local Lemma STOC’17, June 2017, Montreal, Canada

We omit the proof here and it can be found in Section 3 of the full
version [13].

T������ 2.8. If q; > 0, then the expected number of resampling
steps in Algorithm 2 is given by

Õm
i=1

qi
q; .

The quantity
Õm
i=1

qi
q; has a simple combinatorial explanation

under Condition 2.5. Call an assignment is perfect if it avoids all
bad events, and near-perfect if it avoids all but one bad events.
Then

Õm
i=1

qi
q; is the ratio between the number of near-perfect

assignments and the number of perfect assignments. However it is
not always easy to bound. Kolipaka and Szegedy [20] showed that
when the probability vector p satis�es Shearer’s condition with a
constant “slack”, the running time is in fact linear in the number of
events. Let p = maxi 2[m]{pi }.

C�������� 2.9 ([20, T������ 5]). Let d � 2 be a positive integer
and pc =

(d�1)(d�1)
dd . If G has maximum degree d and p < pc , then

Algorithm 2 resamples at most p
pc�p ·m events in expectation.

3 APPLICATIONS OF ALGORITHM 2
3.1 Sink-free Orientations
The goal of this application is to sample a sink-free orientation.
Given a graph G = (V ,E), an orientation of edges is a mapping �
so that � (e) = (u,�) or (�,u) where e = (u,�) 2 E. A sink under
orientation � is a vertex � so that for any adjacent edge e = (u,�),
� (e) = (u,�). A sink-free orientation is an orientation so that no
vertex is a sink.

Name Sampling Sink-free Orientations
Instance A Graph G.
Output A uniform sink-free orientation.

The �rst algorithm for this problem is given by Bubley and Dyer
[6], using Markov chains and path coupling techniques.

In this application, we associate with each edge a random vari-
able, whose possible values are (u,�) or (�,u). For each vertex �i ,
we associate it with a bad event Ai , which happens when �i is a
sink. Thus the graph G itself is also the dependency graph. Condi-
tion 2.5 is satis�ed. This follows because if a vertex is a sink, then
none of its neighbours can be a sink. Thus we may apply Algorithm
2, which yields Algorithm 3. This is the “sink-popping” algorithm
given by Cohn, Pemantle, and Propp [7].

Algorithm 3 Sample Sink-free Orientations

(1) Orient each edge independently and uniformly at random.

(2) While there is at least one sink, re-orient all edges that are
adjacent to a sink.

(3) Output the current assignment.

LetZsink,0 be the number of sink-free orientations, and letZsink,1
be the number of orientations having exactly one sink. Then Theo-
rem 2.8 specializes into the following.

T������ 3.1. The expected number of resampled sinks in Algo-
rithm 3 is Zsink,1

Zsink,0
.

The next theorem gives an explicit bound on Zsink,1
Zsink,0

.

T������ 3.2. LetG be a connected graph on n vertices. IfG is not
a tree, then Zsink,1

Zsink,0
 n(n � 1), where n = |V (G)|.

P����. Consider an orientation of the edges ofG with a unique
sink at vertex � . We give a systematic procedure for transforming
this orientation to a sink-free orientation. Since G is connected
and not a tree, there exists an (undirected) path � in G of the form
� = �0,�1, . . . ,�`�1,�` = �k , where the vertices �0,�1, . . . ,�`�1
are all distinct and 0  k  `�2. In other words,� is a simple path of
length `�1 followed by a single edge back to some previously visited
vertex. We will choose a canonical path of this form (depending
only onG and not on the current orientation) for each start vertex� .

We now proceed as follows. Since � is a sink, the �rst edge on �
is directed (�1,�0). Reverse the orientation of this edge so that it is
now oriented (�0,�1). This operation destroys the sink at� = �0 but
may create a new sink at �1. If �1 is not a sink then halt. Otherwise,
reverse the orientation of the second edge of � from (�2,�1) to
(�1,�2). Continue in this fashion: if we reach �i and it is not a sink
then halt; otherwise reverse the orientation of the (i + 1)th edge
from (�i+1,�i) to (�i ,�i+1). This procedure must terminate with
a sink-free graph before we reach �` . To see this, note that if we
reach the vertex �`�1 then the �nal edge of � must be oriented
(�`�1,�`), otherwise the procedure would have terminated already
at vertex �k (= �`).

The e�ect of the above procedure is to reverse the orientation of
edges on some initial segment�0, . . . ,�i of �. To put the procedure
into reverse, we just need to know the identity of the vertex �i . So
our procedure associates at most n orientations having a single sink
at vertex� with each sink-free orientation. There aren(n�1) choices
for the pair (�,�i), and hence n(n � 1) single-sink orientations
associated with each sink-free orientation. This establishes the
result. ⇤

R�����. The bound in Theorem 3.2 is optimal up to a factor of 2.
Consider a cycle of length n. Then there are 2 sink-free orientations,
and n(n � 1) single-sink orientations.

Theorem 3.2 and Theorem 3.1 together yield an n2 bound on the ex-
pected number of resamplings that occur during a run of Algorithm 3.
A cycle of length n is an interesting special case. Consider the number
of clockwise oriented edges during a run of the algorithm. It is easy to
check that this number evolves as an unbiased lazy simple random
walk on [0,n]. Since the walk starts close to n/2 with high probability,
we know that it will take �(n2) steps to reach one of the sink-free
states, i.e., 0 or n.

On the other hand, if G is a regular graph of degree � � 3, then
we get a much better linear bound from Corollary 2.9. In the case
� = 3, we have pc = 4/27, p = 1/8 and p/(pc � p) = 27/5. So the
expected number of resamplings is bounded by 27n/5. The constant
in the bound improves as � increases. Conversely, since the expected
running time is exact, we can also apply Corollary 2.9 to give an upper
bound of Zsink,1

Zsink,0
when G is a regular graph.

3.2 Rooted Spanning Trees
Given a graphG = (V ,E)with a special vertex r , we want to sample
a uniform spanning tree with r as the root.

346

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

Name Sampling Rooted Spanning Trees
Instance A Graph G with a vertex r .
Output A uniform spanning tree rooted at r .

Of course, any given spanning tree may be rooted at any ver-
tex r , so there is no real di�erence between rooted and unrooted
spanning trees. However, since this approach to sampling generates
an oriented tree, it is easier to think of the trees as being rooted at
a particular vertex r .

For all vertices other than r , we randomly assign it to point to one
of its neighbours. This is the random variable associated with� . We
will think of this random variable as an arrow � ! s(�) pointing
from � to its successor s(�). The arrows point out an oriented
subgraph of G with n � 1 edges {{�, s(�)} : � 2 V \ {r }} directed
as speci�ed by the arrows. The constraint for this subgraph to be
a tree rooted at r is that it contains no directed cycles. Note that
there are 2 |E |� |V |+�(G) (undirected) cycles in G, where �(G) is the
number of connected components of G. Hence, we have possibly
exponentially many constraints.

Two cycles are dependent if they share at least one vertex. We
claim that Condition 2.5 is satis�ed. Suppose a cycle C is present,
and C 0 , C is another cycle that shares at least one vertex with C .
If C 0 is also present, then we may start from any vertex � 2 C \C 0,
and then follow the arrows� ! � 0. Since bothC andC 0 are present,
it must be that � 0 2 C \C 0 as well. Continuing this argument we
see that C = C 0. Contradiction!

As Condition 2.5 is met, we may apply Algorithm 2, yielding Al-
gorithm 4. This is exactly the “cycle-popping” algorithm by Wilson
[31], as described in [26].

Algorithm 4 Sample Rooted Spanning Trees

(1) Let T be an empty set. For each vertex � , r , randomly
choose a neighbour u 2 �(�) and add an edge (�,u) to T .

(2) While there is at least one cycle in T , remove all edges in
all cycles, and for all vertices whose edges are removed,
redo step (1).

(3) Output the current set of edges.

Let Ztree,0 be the number of possible assignments of arrows to
the vertices ofG , that yield a (directed) tree with root r , and Ztree,1
be the number of assignments that yield a unicyclic subgraph. A
unicyclic subgraph has two components: a directed tree with root r ,
and a directed cycle with a number of directed subtrees rooted on
the cycle. The next theorem gives an explicit bound on Ztree,1

Ztree,0
.

T������ 3.3. Suppose G is a connected graph on n vertices, with
m edges. Then Ztree,1

Ztree,0
 mn.

P����. Consider an assignment of arrows to the vertices of G
that forms a unicyclic graph. As previously observed, this graph
has two components. AsG is connected, there must be an edge inG
joining the two components; let this edge be {�0,�1}, where�0 is in
the tree component and�1 in the unicyclic component. Now extend
this edge to a path�0,�1, . . . ,�` , by following arrows until we reach
the cycle. Thus, �1 ! �2, �2 ! �3, . . . , �`�1 ! �` are all arrows,

and �` is the �rst vertex that lies on the cycle. (It may happen
that ` = 1.) Let �` ! �`+1 be the arrow out of �` . Now reassign
the arrows from vertices �1, . . . ,�` thus: �` ! �`�1, . . . ,�2 !
�1, �1 ! �0. Notice that the result is a directed tree rooted at r .

As before, we would like to bound the number of unicyclic sub-
graphs associated with a given tree by this procedure. We claim
that the procedure can be reversed given just two pieces of infor-
mation, namely, the edge {�` ,�`+1} and the vertex �0. Note that,
even though the edge {�` ,�`+1} is undirected, we can disambiguate
the endpoints, as �` is the vertex closer to the root r . The vertices
�`�1, . . . ,�1 are easy to recover, as they are the vertices on the
unique path in the tree from �` to �0. To recover the unicyclic sub-
graph, we just need to reassign the arrows for vertices �1, . . . ,�`
as follows: �1 ! �2, . . . , �` ! �`+1.

As the procedure can be reversed knowing one edge and one
vertex, the number of unicyclic graphs associated with each tree
can be at mostmn. ⇤

Theorem 3.3 combined with Theorem 2.8 yields an mn upper
bound on the expected number of “popped cycles” during a run
of Algorithm 4.

On the other hand, the bound of Theorem 3.3 is tight up to
constant factors. For example, take a cycle of length n. Then there
are n spanning trees with a particular root � , and there are �(n3)
unicyclic graphs (here a cycle has to be of length 2). Thus the ratio
is �(n2) = �(mn) sincem = n.

3.3 Extremal CNF formulas
A classical setting in the study of algorithmic Lovász Local Lemma
is to �nd satisfying assignments in k-CNF formulas2, when the
number of appearances of every variable is bounded by d . Theorem
2.1 guarantees the existence of a satisfying assignment as long as
d  2k

ek + 1. On the other hand, sampling is apparently harder than
searching in this setting. As shown in [4, Corollary 30], it isNP-hard
to approximately sample satisfying assignments when d � 5 · 2k/2,
even restricted to the special case of monotone formulas.

Meanwhile, sink-free orientations can be recast in terms of CNF
formulas. Every vertex in the graph is mapped to a clause, and every
edge is a variable. Thus every variable appears exactly twice, and we
require that the two literals of the same variable are always opposite.
Interpreting an orientation from u to � as making the literal in the
clause corresponding to � false, the “sink-free” requirement is thus
“not all literals in a clause are false”. Hence a “sink-free” orientation
is just a satisfying assignment for the corresponding CNF formula.

To apply Algorithm 2, we need to require that the CNF formula
satis�es Condition 2.5. Such formulas are de�ned as follows.

De�nition 3.4. We call a CNF formula extremal if for every two
clauses Ci and Cj , if there is a common variable shared by Ci and
Cj , then there exists some variable x such that x appears in both
Ci and Cj and the two literals are one positive and one negative.

LetC1, . . . ,Cm be the clauses of a formula �. Then de�ne the bad
event Ai as the set of unsatisfying assignments of clauseCi . For an
extremal CNF formula, these bad events satisfy Condition 2.5. This
is because if Ai ⇠ Aj , then by De�nition 3.4, there exists a variable
2As usual in the study of Lovász Local Lemma, by “k -CNF” we mean that every clause
has exactly size k .

347

Uniform Sampling through the Lovász Local Lemma STOC’17, June 2017, Montreal, Canada

x 2 var(Ai) \ var(Aj) such that the unsatisfying assignment of Ci
and Cj di�er on x . Hence Ai \Aj = ;.

In this formulation, if the size of Ci is k , then the corresponding
eventAi happens with probabilitypi = Pr(Ai) = 2�k . Suppose each
variable appears at most d times. Then the maximum degree in the
dependency graph is at most � = (d�1)k . Note that in Corollary 2.9,
pc =

(��1)(��1)
�� � 1

e� . Thus if d  2k
ek + 1, then pi = 2�k < pc and

we may apply Corollary 2.9 to obtain a polynomial time sampling
algorithm.

C�������� 3.5. For extremal k-CNF formulas where each variable
appears in at most d clauses, if d  2k

ek + 1, then Algorithm 2 samples
satisfying assignments uniformly at random, with O(m) expected
resamplings wherem is the number of clauses.

The condition in Corollary 3.5 essentially matches the condition
of Theorem 2.1. On the other hand, if we only require Shearer’s con-
dition as in Theorem 2.2, the algorithm may no longer be e�cient.
More precisely, let ZCNF,0 be the number of satisfying assignments,
and ZCNF,1 be the number of assignments satisfying all but one
clause. then the expected number of resamplings ZCNF,1

ZCNF,0
can be

exponential, as shown in the next example.

Example 3.6. Construct an extremal CNF formula � = C1 ^C2 ^
· · · ^C4m as follows. Let C1 := x1. Then the variable x1 is pinned
to 1 to satisfy C1. Let C2 := x1 _ �1 _ �2, C3 := x1 _ �1 _ �2, and
C4 := x1 _ �1 _ �2. Then �1 and �2 are also pinned to 1 to satisfy
all C1 �C4.

We continue this construction by letting

C4k+1 := �2k�1 _ �2k _ xk+1,

C4k+2 := xk+1 _ �2k+1 _ �2k+2,

C4k+3 := xk+1 _ �2k+1 _ �2k+2,

C4k+4 := xk+1 _ �2k+1 _ �2k+2,

for all 1  k  m � 1. It is easy to see by induction that to satisfy
all of them, all xi ’s and �i ’s have to be 1. Moreover, one can verify
that this is indeed an extremal formula. Thus ZCNF,0 = 1.

On the other hand, if we are allowed to ignore C1, then x1 can
be 0. In that case, there are 3 choices of �1 and �2 so that x2 to be 0
as well. Thus, there are at least 3m assignments that only violate
C1, where x1 = x2 = · · · = xm = 0. It implies that ZCNF,1 � 3m .
Hence we see that ZCNF,1

ZCNF,0
� 3m . Due to Theorem 2.8, the expected

running time of Algorithm 2 on this formula � is exponential inm.

We will discuss more on sampling satisfying assignments of a
k-CNF formula in Section 6.1.

4 GENERAL PARTIAL REJECTION SAMPLING
In this section we give a general version of Algorithm 2 which can
be applied to arbitrary instances in the variable framework, even
without Condition 2.5.

Recall the notation introduced at the beginning of Section 2.
So, {X1, . . . ,Xn } is a set of random variables, each with its own
distribution and range Di , and {A1, . . . ,Am } is a set of bad events
that depend onXi ’s. The dependencies between events are encoded
in the dependency graphG = (V ,E). As before, we will use the idea
of a resampling table. Recall that � = �t = {Xi, ji,t | 1  i  n}

denotes the current assignment of variables at round t , i.e., the
elements of the resampling table that are active at time t . Given
� , let Bad(�) be the set of occurring bad events; that is, Bad(�) =
{i | � 2 Ai }. For a subset S ⇢ V , let @S be the boundary of S ;
that is, @S = {i | i < S and 9j 2 S, (i, j) 2 E}. Moreover, let
var(S) :=

–
i 2S var(Ai). Let � |S (or simply �S when there is no

confusion) be the partial assignment of � restricted to var(S). For
an eventAi and S ✓ V , we writeAi \�S = ; if var(Ai)\var(S) = ;,
or Ai is disjoint from the partial assignment of � , when both are
restricted to var(Ai) \ var(S). Informally, Ai cannot occur given
partial assignment �S . Otherwise we write Ai \ �S , ;.

De�nition 4.1. A set S ✓ V is unblocking under � if for every
i 2 @S , Ai \ �S = ;.

Given � , our goal is to resample a set of events that is unblocking
and contains Bad(�). Such a set must exist becauseV is unblocking
(@V is empty) and Bad(�) ✓ V . However, we want to resample as
few events as possible.

Algorithm 5 Select the resampling set Res(�)

(1) Let R = Bad(�), which is the set of events that will be
resampled. Let N = ;, which is the set of events that will
not be resampled.

(2) While @R \ N , ;, go through i 2 @R \ N ; if Ai \ �R , ;,
add i into R, otherwise add i into N .

(3) Output R.

Intuitively, we start by setting the resampling set R0 as the set of
bad events Bad(�). We mark resampling events in rounds, similar
to a breadth �rst search. Let Rt be the resampling set of round t � 0.
In round t + 1, let Ai be an event on the boundary of Rt that hasn’t
beenmarked yet. Wemark it “resampling” if the partial assignments
on the shared variables of Ai and Rt can be extended so that Ai
occurs. Otherwise we mark it “not resampling”. We continue this
process until there is no unmarked event left on the boundary of
the current R. An event outside of �+(R) may be left unmarked at
the end of Algorithm 5. Note that once we mark some event “not
resampling”, it will never be added into the resampling set.

It it easy to see that the output of Algorithm 5 is deterministic
under � . Call it Res(�).

L���� 4.2. Let � be an assignment. For any i 2 @Res(�), Ai \
�Res(�) = ;.

P����. Since i 2 @Res(�), it must have been marked. Moreover,
i < Res(�), so it must be marked as “not resampling”. Thus, there
exists an intermediate set R ✓ Res(�) during the execution of
Algorithm 5 such that Ai \ �R = ; and i 2 @R. It implies that Ai
is disjoint from the partial assignment of � restricted to var(Ai) \
var(R). However,

var(Ai) \ var(R) ✓ var(Ai) \ var(Res(�))
as R ✓ Res(�). We have that Ai \ �Res(�) = ;. ⇤

If Condition 2.5 is met, then Res(�) = Bad(�). This is because at
the �rst step, R = Bad(�). By Condition 2.5, for any i 2 @Bad(�),

348

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

Ai is disjoint from all Aj ’s where j 2 Bad(�) and Ai ⇠ Aj . Since
Aj occurs under � , Ai \ �R = ;. Algorithm 5 halts at the �rst
step. In this case, since the resampling set is just the (independent)
set of occurring bad events, the later Algorithm 6 coincides with
Algorithm 2.

The key to Res(�) is that if we change the assignment outside of
Res(�), then Res(�) does not change, unless the new assignment
introduces a new bad event outside of Res(�).

L���� 4.3. Let � be an assignment. Let � 0 be another assignment
such that Bad(� 0) ✓ Res(�) and such that � and � 0 agree on all vari-
ables in var(Res(�)) = –

i 2Res(�) var(Ai). Then, Res(� 0) = Res(�).

P����. Let Rt (�),Nt (�) be the intermediate sets R,N , respec-
tively, at time t of the execution of Algorithm 5 under � . Thus
R0(�) = Bad(�) and R0(�) ✓ R1(�) ✓ · · · ✓ Res(�). Moreover,
N0(�) ✓ N1(�) ✓ · · · . We will show by induction that Rt (�) =
Rt (� 0) and Nt (�) = Nt (� 0) for any t � 0.

For the base case of t = 0, by the condition of the lemma, for every
i 2 Bad(�) ✓ Res(�), the assignments � and � 0 agree on var(Ai);
or equivalently �Res(�) = � 0

Res(�). Together with Bad(�
0) ✓ Res(�),

it implies that Bad(�) = Bad(� 0) and R0(�) = R0(� 0). Moreover,
N0(�) = N0(� 0) = ;.

For the induction step t > 0, we have that Rt�1(�) = Rt�1(� 0) ✓
Res(�) and Nt�1(�) = Nt�1(� 0). Let R = Rt�1(�) = Rt�1(� 0) and
N = Nt�1(�) = Nt�1(� 0). Then we will go through @R \ N , which
is the same for both � and � 0. Moreover, while marking individual
events “resampling” or not, it is su�cient to look at only �R = � 0

R
since R ✓ Res(�). Thus the markings are exactly the same, implying
that Rt (�) = Rt (� 0) ✓ Res(�) and Nt (�) = Nt (� 0). ⇤

Algorithm 6 G������ P������ R�������� S�������

(1) Draw independent samples of all variablesX1, . . . ,Xn from
their respective distributions.

(2) While at least one bad event occurs under the current
assignment � , use Algorithm 5 to �nd Res(�). Resample
all variables in

–
i 2Res(�) var(Ai).

(3) When none of the bad events holds, output the current
assignment.

To prove the correctness of Algorithm 6, we will only use three
properties of Res(�), which are intuitively summarized as follows:

(1) Bad(�) ✓ Res(�);
(2) For any i 2 @Res(�), Ai is disjoint from the partial assign-

ment of � projected on var(Ai)\ var(Res(�)) (Lemma 4.2);
(3) If we �x the partial assignment of� projected on var(Res(�)),

then the output of Algorithm 5 is �xed, unless there are
new bad events occurring outside of Res(�) (Lemma 4.3).

Similarly to the analysis of Algorithm 2, we call S = S1, . . . , S`
the log, if Si is the set of resampling events in step i of Algorithm 6.
Note that for Algorithm 6, the log is not necessarily an independent
set sequence. Also, recall that �i is the assignment of variables in
step i .

L���� 4.4. Given any log S of length ` � 1, �`+1 has the product
distribution conditioned on none of Ai ’s occurring where i < �+(S`).

P����. Suppose i < �+(S`). By construction, S` contains all
occurring bad events of �` , and hence Ai does not occur under �` .
In step `, we only resample variables that are involved in S` , so �`+1
and �` agree on var(Ai). HenceAi cannot occur under �`+1. Call an
assignment � valid if none of Ai occurs where i < �+(S`). To show
that �`+1 has the desired conditional product distribution, we will
show that the probabilities of getting any two valid assignments �
and � 0 are proportional to their probabilities of occurrence in the
product distribution.

Let M be the resampling table so that the log of Algorithm 6
is S up to round `, and �`+1 = � . Indeed, since we only care
about events up to round ` + 1, we may truncate the table so that
M = {Xi, j | 1  i  n, 1  j  ji,`+1}. Let M 0 = {X 0

i, j | 1 
i  n, 1  j  ji,`+1} be another table where X 0

i, j = Xi, j if
j < ji,`+1 for any i 2 [n], and � 0 = (X 0

i, ji,`+1 : 1  i  n) is a valid
assignment. In other words, we only change the last assignment
(Xi, ji,`+1) to another valid assignment. We will use � 0

t = (X 0
i, ji,t) to

denote the active elements of the second resampling table at time t ;
thus � 0 = � 0

`+1.
The lemma follows if Algorithm 6 running onM 0 generates the

same log S up to round `, since, if this is the case, then conditioned
on the log S, every possible tableM where �`+1 = � is one-to-one
correspondence with another tableM 0 where � 0

`+1 = � 0. Hence the
probability of getting � is proportional to its weight in the product
distribution.

Suppose otherwise and the log of running Algorithm 6 onM and
M 0 di�er. Let t0  ` be the �rst roundwhere resampling changes, by
which we mean that Res(�t0) , Res(� 0

t0). By Lemma 4.3, there must
be a variableXi such that ji,t0 = ji,`+1 (otherwiseXi, ji,t0 = X 0

i, ji,t0
)

and Xi is involved in some event of Res(�t0) or Xi is involved in
Bad(� 0

t0) \ Res(�t0).
(1) If Xi is involved in some event in Res(�t0), then Xi is re-

sampled once more in the original run onM , and its index
goes up to at least ji,`+1 + 1 at round ` + 1. Contradiction!

This in particular implies that restricted to variables
of Res(�t0), � and � 0 should agree; that is, �t0 |Res(�t0) =
� 0
t0 |Res(�t0).

(2) Otherwise there exists j such thatXi 2 var(Aj), j 2 Bad(� 0
t0)

but j < Res(�t0).
Suppose �rst that 8k 2 var(Aj), jk,t0 = jk,`+1, which

means that all variables of Aj have reached their �nal val-
ues in theM run at time t0. This implies that j < �+(St) for
any t � t0 as otherwise some of the variables in var(Aj)
would be resampled at least once after round t0. In particu-
lar, j < �+(S`). This contradicts with � 0 being valid.

Otherwise there are some variables in var(Aj) that get
resampled after time t0 in theM run. Let t1 be the �rst such
time and Y ⇢ var(Aj) be the set of variables resampled at
round t1; namely, Y = var(Aj) \ var(Res(�t1)). We have
that �t1 |Y = �t0 |Y because t1 is the �rst time of resampling
variables inY . Moreover, as variables ofY have not reached
their �nal values yet in the M run, �t0 |Y = � 0

t0 |Y . Thus,
�t1 |Y = � 0

t0 |Y .

349

Uniform Sampling through the Lovász Local Lemma STOC’17, June 2017, Montreal, Canada

Assuming j 2 Res(�t1) would contradict the fact that
Xi has reached its �nal value in the M run. Hence j <
Res(�t1), but nevertheless variables in Y ⇢ var(Aj) are
resampled. This implies that j 2 @Res(�t1). By Lemma
4.2, Aj \ �t1 |Res(�t1) = ;. This means that Aj is disjoint
from the partial assignment of �t1 restricted to var(Aj) \
var(Res(�t1)) = Y . Equivalently, Aj \ �t1 |Y = ;. However
we know that �t1 |Y = � 0

t0 |Y , so Aj \ � 0
t0 |Y = ;, contradict-

ing j 2 Bad(� 0
t0). ⇤

T������ 4.5. If Algorithm 6 halts, then its output has the product
distribution conditioned on none of Ai ’s occurring.

P����. Clearly the output of Algorithm 6 avoids all bad events,
since otherwise it does not halt.

Let a sequence S of sets of events be the log of any successful
run. By Lemma 4.4, conditioned on S, the output assignment �
has the product distribution conditioned on

”
i<�+(S`)Ai . Since the

algorithm terminates we further condition on none of the other
bad events occurring either. The resulting output distribution still
has the property that valid assignments occur with probability
proportional to those in the product distribution. Since the above
argument is valid for any possible log, the theorem follows. ⇤

5 RUNNING TIME ANALYSIS OF
ALGORITHM 6

Obviously when there is no assignment avoiding all bad events,
then Algorithm 6 will never halt. Thus we want to assume some
conditions to guarantee a desired assignment. However, the optimal
condition of Theorem 2.2 is quite di�cult to work under. Instead, in
this section we will be working under the assumption that Theorem
2.1’s condition (1) holds. In fact, to make the presentation clean, we
will mostly work with the simpler symmetric case.

However, as mentioned in Section 3.3, [4, Corollary 30] showed
that even under the condition (1), sampling can still be NP-hard.
We thus in turn look for some further condition to make Algorithm
6 e�cient.

Let µ(·) be the product distribution of sampling all variables
independently. For two distinct events Ai ⇠ Aj , let Ri j be the event
that the partial assignments on var(Ai)\var(Aj) can be extended to
an assignment making Aj true. Thus, if Ai is added by Algorithm 5
at round t � 1, then for any event Aj added in round t � 1 such
that Ai ⇠ Aj , the event Rji has to be true. Conversely, suppose Ai
is unmarked and is under examination at round t . Then even if Rji
is true for all j 2 �(i) where Aj is added in round t � 1, Ai is not
necessarily marked “resampling” in round t by Algorithm 5. (It is
possible for Ai \ �R = ; even if all the Rji are true.) Note that Ri j
is not necessarily the same as Rji . Let ri j := µ(Ri j).

De�ne p := max
i 2[m]

pi and r := max
Ai⇠Aj , i,j

ri j . Let � be the maxi-

mum degree of the dependency graph G. The main result of the
section is the following theorem.

T������ 5.1. Letm be the number of events and n be the number
of variables. For any � � 2, if 6ep�2  1 and 3er�  1, then the
expected number of resampled events of Algorithm 6 is O(m).

Moreover, in this case, the expected number of rounds is O(logm)
and thus the expected number of variable resamples is O(n logm).

The �rst condition 6ep�2  1 is stronger than the condition of
the symmetric Lovász Local Lemma, but this seems necessary since
[4, Corollary 30] implies that if p�2 � C for some constant C then
the sampling problem is NP-hard. Intuitively, the second condition
3er�  1 bounds the expansion from bad events to resampling
events at every step of Algorithm 6. We will prove Theorem 5.1 in
the rest of the section.

Let S ✓ [m] be a subset of vertices of the dependency graphG.
Recall thatA(S) is the event ”i 2S Ai and B(S) is the event

”
i 2S Ai .

Moreover, Sc is the complement of S , namely Sc = [m] \ S , and Se
is the “exterior” of S , namely Se = [m] \ �+(S).

Lemma 4.4 implies that if we resample S at some step t of Algo-
rithm 6, then at step t + 1 the distribution is the product measure µ
conditioned on none of the events in the exterior of S holds; namely
Prµ (· | B(Se)).

Let E be an event (not necessarily one of Ai) depending on
variables in var(E). Let �(E) := {i | i 2 [m], var(Ai) \ var(E) , ;}
if E is not one of Ai , and �(Ai) := {j | j 2 [m], j , i and var(Aj) \
var(Ai) , ;} is de�ned as usual. Let S ✓ [m] be a subset of vertices
ofG. The next lemma bounds the probability of E conditioned on
none of the events in S happening. It was �rst observed in [14].

L���� 5.2 ([14, T������ 2.1]). Suppose (1) holds. For an event E
and any set S ✓ [m],

Prµ (E | B(S))  Prµ (E)
÷

i 2�(E)\S
(1 � xi)�1,

where xi ’s are from (1).

Typically we set xi = 1
�+1 in the symmetric setting. Then (1)

holds if ep(� + 1)  1. In this setting, Lemma 5.2 is specialized into
the following.

C�������� 5.3. If ep(� + 1)  1, then

Prµ (E | B(S))  Prµ (E)
✓
1 +

1
�

◆ |�(E) |
.

In particular, if ep(� + 1)  1, for any event Ai where i < S , by
Corollary 5.3,

Prµ (Ai | B(S))  pi

✓
� + 1
�

◆�
 ep. (2)

Let Rest be the resampling set of Algorithm 6 at round t � 1, and
let Badt be the set of bad events present at round t . If Algorithm 6
has already stopped at round t , then Rest = Badt = ;. Furthermore,
let Bad0 = Res0 = [m] since in the �rst step all random variables
are fresh.

De�ne a random variable Zt := C�t |Rest | for C := 1 � p < 1
and t � 0. Note that Z0 = C0 |[m]| =m.

L���� 5.4. For any � � 2, if 6ep�2  1 and 3er�  1, then Zt
is a supermartingale.

P����. Clearly for any � � 2, the condition 6ep�2  1 implies
that ep(� + 1)  1. Therefore the prerequisite of Corollary 5.3 is
met. We will show that Zt is a supermartingale with respect to
the sequence (Rest) [12, §7.6(3)]. Since |Zt | < 1, and Zt is clearly
determined by Rest , we just need to show that

E (Zt+1 | Res0, . . . ,Rest)  Zt .

350

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

Notice that, by Lemma 4.4, we have that

E (Zt+1 | Res0, . . . ,Rest) = E (Zt+1 | Rest) .
We will show in the following that conditioned on the set of

resampling events at round t is (exactly) Rest , the expectation of
|Rest+1 | at round t + 1 is at most C |Rest |, where C = 1 � p. This
implies the lemma.

Let us consider how an event i 2 [m] is added into Rest+1. For
any i 2 Badt+1, it is always resampled. If i 2 Rest+1 \Badt+1, then
it is added due to Algorithm 5 at some round ` � 1. We handle the
more complicated latter case �rst.

Call a path i0, i1, . . . , i` in the dependency graph G bad if the
following holds:

(1) i0 2 Badt+1;
(2) the event Rik�1ik holds for every 1  k  `;
(3) any ik (k 2 [`]) is not adjacent to ik 0 unless k 0 = k � 1 or

k + 1.
Indeed, paths having the third property are induced paths in G.
We claim that for any i 2 Rest+1 \ Badt+1 added in round ` � 1
by Algorithm 5, there exists at least one bad path i0, i1, . . . , i` = i .
We show the claim by an induction on `.

• If ` = 1, then i = i1 2 @Badt+1 and there must be an
i0 2 Badt+1 such that (i0, i1) is an edge. Since i is marked
“resampling” by Algorithm 5,Ai\�Badt+1 , ;. This implies
that Ri0i1 occurs and the claim holds.

• For the induction step ` � 2, due to Algorithm 5, there
must exist i`�1 adjacent to i` = i such that it is marked
“resampling” at round ` � 1, and Ri`�1i` occurs. By the
induction hypothesis, there exists a bad path i0, . . . , i`�1.
Since i is not marked at the round ` � 1, i is not adjacent to
any vertices that has been marked up to round ` � 2. Thus
i` is not adjacent to any ik where k  ` � 2, and the path
i0, . . . , i`�1, i` is bad.

Let P = i0, . . . , i` be an induced path; that is, for any k 2 [`],
ik is not adjacent to ik 0 unless k 0 = k � 1 or k + 1. Only induced
paths are potentially bad. Let DP be the event that P is bad. In other
words, DP := Ai0 ^ Ri0i1 ^ · · · ^ Ri`�1i` . By Lemma 4.4, we have
that

Pr(P is bad at round t + 1 |
the set of resampling events at round t is Rest)

= Prµ (DP | B(Reset)), (3)

where we recall that we denote Reset = [m] \ �+(Rest). Applying
Corollary 5.3 with S = Reset , we have that

Prµ (DP | B(Reset))  Prµ (DP)
✓
1 +

1
�

◆ |�(DP) |
. (4)

Note that �(Ri0i1) ✓ �+(Ai0). By the de�nition of DP ,

�(DP) ✓ �(Ai0) [�(Ri0i1) [· · · [�(Ri`�1i`)
= �+(Ai0) [�(Ri1i2) [· · · [�(Ri`�1i`),

implying that

|�(DP)| 
���+(Ai0)�� + ��Ri1i2 �� + · · · + ��Ri`�1i` ��

 `(� + 1), (5)

as
���(Ri j)��  ���+(Ai)��  � + 1 for any (i, j) 2 E.

We claim that Ai0 is independent from Rik�1ik for any 2  k  `.
This is because ik is not adjacent to i0 for any k � 2, implying that

var(Rik�1ik) \ var(Ai0) = var(Aik�1) \ var(Aik) \ var(Ai0)
✓ var(Aik) \ var(Ai0) = ;.

Moreover, any two events Rik�1ik and Rik0�1ik0 are independent of
each other as long as k < k 0. This is also due to the third property
of bad paths. Since k < k 0, we see that |k 0 � (k � 1)| � 2 and ik 0 is
not adjacent to ik�1. It implies that

var(Rik�1ik) \ var(Rik0�1ik0)
= var(Aik�1) \ var(Aik) \ var(Aik0�1) \ var(Aik0)
✓ var(Aik�1) \ var(Aik0) = ;.

The consequence of these independences is

Prµ (DP)  Prµ (Ai0 ^ Ri1i2 ^ · · · ^ Ri`�1i`)

= Prµ (Ai0)
÷̀
k=2

Prµ (Rik�1ik)

 pr `�1. (6)

Note that in the calculation above we ignore Ri0i1 as it can be
positively correlated to Ai0 .

Combining (3), (4), (5), and (6), we have that

Pr(DP | the resampling set at round t is (exactly) Rest)

 pr `�1
✓
1 +

1
�

◆`(�+1)
 p

r

✓✓
1 +

1
�

◆
er

◆`
. (7)

In order to apply a union bound on all bad paths, we need to
bound their number. The �rst vertex i0 must be in Badt+1, implying
that i0 2 �+(Rest). Hence there are at most (� + 1) |Rest | choices.
Then there are at most � choices of i1 and (� � 1) choices of every
subsequent ik where k � 2. Hence, there are at most �(� � 1)`�1
induced paths of length ` � 1, originating from a particular i0 2
�+(Rest). Thus, by a union bound on all potentially bad paths and
(7),

E
�
|Rest+1 \ Badt+1 |

��
the set of resampling events at round t is (exactly) Rest

�


1’
`=1

(� + 1) |Rest | �(� � 1)`�1p/r
✓✓
1 +

1
�

◆
er

◆`

=
(� + 1)�p
(� � 1)r |Rest |

1’
`=1

✓✓
�2 � 1
�

◆
er

◆`

 (� + 1)�p
(� � 1)r |Rest |

1’
`=1

(er�)` = (� + 1)�p
(� � 1)r · er�

1 � er�
|Rest |

=
� + 1
� � 1

· 3
2
· ep�2 |Rest | , (8)

where we use the condition that er�  1/3.
On the other hand, it is straightforward to bound the size of

Badt+1 ✓ �+(Rest). If i 2 Badt+1, then there are two possibilities.
The �rst scenario is that i 2 Rest and then all of its random variables
are fresh. In this case it occurs with probability pi  p. Otherwise

351

Uniform Sampling through the Lovász Local Lemma STOC’17, June 2017, Montreal, Canada

i 2 @Rest . Recall that by Lemma 4.4, the distribution at round t + 1
is Prµ (· | B(Reset)). By Corollary 5.3, for any i 2 @Rest ,

Prµ
�
Ai | B(Reset)

�
 p

✓
1 +

1
�

◆�
 ep.

This implies that

E
⇣
|Badt+1 | |

the set of resampling events at round t is (exactly) Rest
⌘

 p |Rest | + ep |@Rest |  p(1 + e�) |Rest | . (9)

Combining (8) and (9), we have that

E
�
|Rest+1 | |

the set of resampling events at round t is (exactly) Rest
⌘

 � + 1
� � 1

· 3
2
· ep�2 |Rest | + p(1 + e�) |Rest |

= p

✓
� + 1
� � 1

· 3
2
· e�2 + (1 + e�)

◆
|Rest | .

All that is left is to verify that

p

✓
� + 1
� � 1

· 3
2
· e�2 + (1 + e�)

◆
 C .

This is straightforward by the condition 6ep�2  1 and � � 2, as

C � p

✓
� + 1
� � 1

· 3
2
· e�2 + (1 + e�)

◆

� 6ep�2 � p � p

✓
� + 1
� � 1

· 3
2
· e�2 + (1 + e�)

◆

� p

✓
6e�2 � 1 � � + 1

� � 1
· 3
2
· e�2 � (1 + e�)

◆
� 0. ⇤

Since Zt is a supermartingale by Lemma 5.4, we have, by the
tower property of expectations [12, §7.7(16)],

EZt  EZ0 =m.

In other words, E |Rest |  Ctm. As C < 1, the expected number of
resampling events is

1’
t=0
E |Rest | 

1’
t=0

Ctm =
1

1 �C
·m.

This implies the �rst part of Theorem 5.1. For the second part, just
observe that within O(logm) rounds, the expected number of bad
events is less than 1.

The �rst condition of Theorem 5.1 requires p to be roughly
O(��2). This is necessary, due to the hardness result in [4] (see also
Theorem 6.3). Also, in the analysis, it is possible to always add all of
@Badt into Rest . Consider a monotone CNF formula. If a clause is
unsatis�ed, then all of its neighbours need to be added into the re-
sampling set. Such behaviours would eventually lead to theO(��2)
bound. This situation is in contrast to the resampling algorithm of
Moser and Tardos [24], which only requires p = O(��1) as in the
symmetric Lovász Local Lemma.

Also, we note that monotone CNF formulas, in which all correla-
tions are positive, seem to be the worst instances for our algorithms.

In particular, Algorithm 6 is exponentially slow when the under-
lying hypergraph of the monotone CNF is a (hyper-)tree. This
indicates that our condition on r in Theorem 5.1 is necessary for
Algorithm 6. In contrast, Hermon et al. [19] show that on a lin-
ear hypergraph (including the hypertree), the Markov chain mixes
rapidly for degrees higher than the general bound. It is unclear how
to combine the advantages from these two approaches.

6 APPLICATIONS OF ALGORITHM 6
6.1 k-CNF Formulas
Consider a k-CNF formula where every variable appears in at most
d clauses. Then Theorem 2.1 says that if d  2k/(ek)+ 1, then there
exists a satisfying assignment. However, [4, Corollary 30] showed
that when d � 5 · 2k/2, then sampling satisfying assignments is
NP-hard, even restricted to monotone formulas.

To apply Algorithm 6 in this setting, we need to bound the pa-
rameter r in Theorem 5.1. A natural way is to lower bound the
number of shared variables between any two dependent clauses. If
this lower bound is s , then r = 2�s since there is a unique assign-
ment on these s variables that can be extended in such a way as to
falsify the clauses.

De�nition 6.1. Let d � 2 and s � 1. A k-CNF formula is said
to have degree d if every variable appears in at most d clauses.
Moreover, it has intersection s if for any two clauses Ci and Cj that
share at least one variable,

��var(Ci) \ var(Cj)
�� � s .

Note that by the de�nition if k < s then the formula is simply
isolated clauses. Otherwise, k � s and we have that pi = p = 2�k
and r  2�s . A simple double counting argument indicates that
the maximum degree � in the dependency graph satis�es �  dk

s .
It is easy to check that for integers d and k such that d � 3 and
dk � 23e , conditions d  2k/2

6e and s � min{log2 dk,k/2} imply the
conditions of Theorem 5.1, namely, 6ep�2  1 and 3er�  1. Thus
by Theorem 5.1 we have the following result.

C�������� 6.2. For integers d and k such that d � 3 and dk �
23e , if d  1

6e · 2k/2 and s � min{log2 dk,k/2}, then Algorithm
6 samples satisfying assignments of k-CNF formulas with degree d
and intersection s in expected O(n) time where n is the number of
variables.

We remark that the lower bound on s in Corollary 6.2 is never
larger than k/2. This lower bound on intersections does not make
the problem trivial. Indeed, the bad instance in the proof of [4,
Corollary 30] has roughly k/2 shared variables for each pair of
dependent clauses. For completeness, we will show that if k is even,
and d � 4 ·2k/2 and s = k/2, then the sampling problem isNP-hard.
The proof is almost identical to that of [4, Corollary 30]. The case
of odd k can be similarly handled but with larger constants.

T������ 6.3. Let k be an even integer. If d � 4 · 2k/2 and s = k/2,
then it isNP-hard to sample satisfying assignments ofk-CNF formulas
with degree d and intersection s uniformly at random.

Theorem 6.3 is based on the inapproximability result of Sly and
Sun [28] (or equivalently, of Galanis et al. [11]) for the hard-core
model. The proof is omitted and can be found in the full version
[13].

352

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

Due to Theorem 6.3, we see that the dependence between k and
d in Corollary 6.2 is tight in the exponent, even with the further
assumption on intersection s .

6.2 Independent Sets
We may also apply Algorithm 6 to sample hard-core con�gurations
with parameter �. Every vertex is associated with a random variable
which is occupied with probability �

1+� . In this case, each edge
de�nes a bad event which holds if both endpoints are occupied.

Thus p =
⇣

�
1+�

⌘2
. Algorithm 6 is specialized to Algorithm 7.

Algorithm 7 Sample Hard-core Con�gurations

(1) Mark each vertex occupied with probability �
1+� indepen-

dently.

(2) While there is at least one edge with both end points occu-
pied, resample all occupied components of sizes at least 2
and their boundaries.

(3) Output the set of vertices.

Let the graph be G = (V ,E) with maximum degree d . Given a
con�guration � : V ! {0, 1}, we denote by BadVtx(�) the vertices
in any occupied component of size at least 2. Then the output
of Algorithm 5 is ResVtx(�) := BadVtx(�) [@BadVtx(�). This is
because �rst, all of @BadVtx(�) would be resampled, since any of
them has at least one occupied neighbour in BadVtx(�). Secondly,
� 2 @BadVtx(�) is unoccupied (otherwise � 2 BadVtx(�)), and
Algorithm 5 stops after adding all of @BadVtx(�). This explains
Algorithm 7.

Moreover, let Bad(�) be the set of edges whose both endpoints
are occupied under � . Let Res(�) be the set of edges whose both
endpoints are in ResVtx(�). Let �t be the random con�guration of
Algorithm 7 at round t if it has not halted, and Badt = Bad(�t),
Rest = Res(�t).

L���� 6.4. If ep(2d � 1) < 1, then E |Badt+1 |  (4epd2 � p) ·
E |Badt |.

Lemma 6.4 implies that, if 4epd2  1, then the number of bad
edges shrinks with a constant factor, and Algorithm 7 resamples

O(n) vertices in expectation. Since p =
⇣

�
1+�

⌘2
, the condition

4epd2  1 is equivalent to �  1
2
p
ed�1 . Thus we have the follow-

ing theorem, where the constants are slightly better than directly
applying Theorem 5.1.

T������ 6.5. If �  1
2
p
ed�1 , then Algorithm 7 draws a uni-

form hard-core con�guration with parameter � from a graph with
maximum degree d in expected O(n) time.

The optimal bound of sampling hard-core con�gurations is � <
�c ⇡ e

d where �c := (d � 1)d�1/(d � 2)d . The algorithm is due to
Weitz [30] and the hardness is shown in [11, 28]. The condition of
our Theorem 6.5 is more restricted than correlation decay based
algorithms [30] or traditional Markov chain based algorithms. Nev-
ertheless, our algorithm matches the correct order of magnitude
� = O(d�1). Moreover, our algorithm has the advantage of being
simple, exact, and running in linear time in expectation.

7 DISTRIBUTED ALGORITHMS FOR
SAMPLING

An interesting feature of Algorithm 6 is that it is distributed.3 For
concreteness, consider the algorithm applied to sampling hard-core
con�gurations on a graph G (i.e. Algorithm 7), assumed to be of
bounded maximum degree. Imagine that each vertex is assigned a
processor that has access to a source of random bits. Communica-
tion is possible between adjacent processors and is assumed to take
constant time. Then, in each parallel round of the algorithm, the
processor at vertex� can update the value � (�) in constant time, as
this requires access only to the values of � (u) for vertices u 2 V (G)
within a bounded distance r of� . In the case of the hard-core model,
we have r = 2, since the value � (�) at vertex � should be updated
precisely if there are vertices u and u 0 such that � ⇠ u and u ⇠ u 0

and � (u) = � (u 0) = 1. Note that we allow u 0 = � here.
In certain applications, including the hard-core model, Algo-

rithm 6 runs in a number of rounds that is bounded in expectation
by a logarithmic function of the size of the input. We show that
this is optimal. (Although the argument is presented in the con-
text of the hard-core model, it ought to generalise to many other
applications.)

Set L = dc logne for some constant c > 0 to be chosen later. The
instance that establishes the lower bound is a graph G consisting
of a collection of n/L disjoint paths �1, . . . ,�n/L with L vertices
each. (Assume that n is an exact multiple of L; this is not a sig-
ni�cant restriction.) The high-level idea behind the lower bound
is simple, and consists of two observations. We assume �rst that
the distributed algorithm we are considering always produces an
output, say �̂ : V (G) ! {0, 1}, within t rounds. It will be easy at
the end to extend the argument to the situation where the run-
ning time is a possibly unbounded random variable with bounded
expectation.

Focus attention on a particular path � with endpoints u and � .
The �rst observation is that if rt < L/2 then� (u) (respectively,� (�))
depends only on the computations performed by processors in the
half of � containingu (respectively�). Therefore, in the algorithm’s
output, �̂ (u) and �̂ (�) are probabilistically independent. The second
observation is that if the constant c is su�ciently small then, in the
hard-core distribution, � (u) and � (�) are signi�cantly correlated.
Since the algorithm operates independently on each of the n/L
paths, these small but signi�cant correlations combine to force to a
large variation distance between the hard-core distribution and the
output distribution of the algorithm.

We now quantify the second observation. Let � : V (G) ! {0, 1}
be a sample from the hard-core distribution on a path� onk vertices
with endpoints u and � , and let Ik denote the corresponding hard-
core partition function. De�ne the matrixWk =

�w00 w01
w10 w11

�
, where

wi j = Pr(� (u) = i ^ � (�) = j). Then

Wk =
1
Ik

✓
Ik�2 �Ik�3
�Ik�3 �2Ik�4

◆
,

since Ik is the total weight of independent sets in �, Ik�2 is the
total weight of independent sets with � (u) = � (�) = 0, Ik�3 is the
total weight of independent sets with � (u) = 0 and � (�) = 1, and

3See [10] for a very recent work by Feng, Sun, and Yin on distributed sampling
algorithms. In particular, they show a similar lower bound in [10, Section 5].

353

Uniform Sampling through the Lovász Local Lemma STOC’17, June 2017, Montreal, Canada

so on. Also note that Ik satis�es the recurrence

I0 = 1, I1 = � + 1, and Ik = Ik�1 + �Ik�2, for k � 2. (10)

We will use detWk to measure the deviation of the distribution
of (� (u),� (�)) from a product distribution. Write

W 0
k =

✓
Ik�2 Ik�3
Ik�3 Ik�4

◆
,

and note that detWk = �2I�2k detW 0
k . Applying recurrence (10)

once to each of the four entries ofW 0
k , we have

detW 0
k = Ik�2Ik�4 � I2k�3
= (Ik�3 + �Ik�4)(Ik�5 + �Ik�6) � (Ik�4 + �Ik�5)2

= Ik�3(Ik�5 + �Ik�6) � Ik�4(Ik�4 + �Ik�5) + �2(Ik�4Ik�6 � I2k�5)
= Ik�3Ik�4 � Ik�4Ik�3 + �

2 detW 0
k�2

= �2 detW 0
k�2,

for all k � 6. By direct calculation, detW 0
4 = ��2 and detW 0

5 = �3.
Hence, by induction, detW 0

k = (�1)k�1�k�2, and

detWk =
(�1)k�1�k

I2k
, (11)

for all k � 4.
Solving the recurrence (10) gives the following asymptotic for-

mula for Ik :

Ik '
✓
1
2
+

2� + 1
2
p
4� + 1

◆
1 +

p
4� + 1
2

!k
.

Combined with (11), this yields | detWk | = �(�k) where

� =
2�

2� +
p
4� + 1 + 1

.

Note that 0 < � < 1 and � depends only on �.
Now let the matrix bWk =

� bw00 bw01bw10 bw11

�
be de�ned as forWk , but

with respect to the output distribution of the distributed sampling
algorithm rather than the true hard-core distribution. Recall that
we choose L = dc logne > 2rt , which implies that �̂ (u) and �̂ (�)
are independent and det bWL = 0. It is easy to check that if k bWk �
Wk k1  � , where the matrix norm is entrywise, then | detWk |  � .
Thus, for c su�ciently small (and L = dc logne), we can ensure that
k bWL �WL k1 � n�1/3. Thus, |bwi j �wi j | � n�1/3, for some i, j; for
de�niteness, suppose that i = j = 0 and that bw00 > w00.

Let Z (respectively bZ) be the number of paths whose endpoints
are both assigned 0 in the hard-core distribution (respectively, the
algorithm’s output distribution). Then Z (respectively bZ) is a bino-
mial random variable with expectation µ = w00n/L (respectively
µ̂ = bw00n/L). Since | EZ � E bZ | > �(n2/3/logn), a Cherno� bound
gives that Pr(Z � (µ + µ̂)/2) and Pr(bZ  (µ + µ̂)/2) both tend to
zero exponentially fast with n. It follows that the variation distance
between the distributions of � and �̂ is 1 � o(1).

The above argument assumes an absolute bound on running
time, whereas the running time of an exact sampling algorithm

will in general be a random variable T . To bridge the gap, suppose
Pr(T  t) � 2

3 . Then

k�̂ � � kTV = max
A

��Pr(�̂ 2 A) � Pr(� 2 A)
��

= max
A

��� � Pr(�̂ 2 A | T  t) � Pr(� 2 A)
�
Pr(T  t)

+
�
Pr(�̂ 2 A | T > t) � Pr(� 2 A)

�
Pr(T > t)

���
� 2

3 (1 � o(1)) � 1
3 ⇥ 1,

Where k · kTV denotes variation distance, and A ranges over events
A ✓ {0, 1} |V (G) | . Thus k� � �̂ kTV � 1

3 � o(1), which is a contradic-
tion. It follows that Pr(T  t) < 2

3 and hence E(T) � 1
3 t . Note that

this argument places a lower bound on parallel time not just for
exact samplers, but even for (very) approximate ones.

With only a slight increase in work, one could take the instance
G to be a path of length n, which might be considered more natural.
IdentifyO(n/L) subpaths withinG , suitably spaced, and of length L.
The only complication is that the hard-core distribution does not
have independent marginals on distinct subpaths. However, by
ensuring that the subpaths are separated by distance n� , for some
small � > 0, the correlations can be controlled, and the argument
proceeds, with only slight modi�cation, as before.

ACKNOWLEDGMENTS
We would like to thank Yumeng Zhang for pointing out a factor
k saving in Theorem 6.2. We also thank Dimitris Achlioptas, Fotis
Iliopoulos, Pinyan Lu, Alistair Sinclair, and Yitong Yin for their
helpful comments.

HG and MJ are supported by the EPSRC grant EP/N004221/1. JL
is supported by NSF grant CCF-1420934. This work was done (in
part) while the authors were visiting the Simons Institute for the
Theory of Computing, and HG was supported by a Google research
fellowship during the visit.

REFERENCES
[1] Dimitris Achlioptas and Fotis Iliopoulos. 2016. Random Walks That Find Perfect

Objects and the Lovász Local Lemma. J. ACM 63, 3 (2016), 22.
[2] Noga Alon. 1991. A Parallel Algorithmic Version of the Local Lemma. Random

Struct. Algorithms 2, 4 (1991), 367–378.
[3] József Beck. 1991. An Algorithmic Approach to the Lovász Local Lemma. I.

Random Struct. Algorithms 2, 4 (1991), 343–366.
[4] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel

Štefankovič. 2016. Approximation via Correlation Decay When Strong Spatial
Mixing Fails. In ICALP, 45:1–13.

[5] Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. 2006. Stopping Times,
Metrics and Approximate Counting. In ICALP. 108–119.

[6] Russ Bubley and Martin E. Dyer. 1997. Graph Orientations with No Sink and an
Approximation for a Hard Case of #SAT. In SODA. 248–257.

[7] Henry Cohn, Robin Pemantle, and James G. Propp. 2002. Generating a Random
Sink-free Orientation in Quadratic Time. Electr. J. Comb. 9, 1 (2002).

[8] Artur Czumaj and Christian Scheideler. 2000. Coloring nonuniform hypergraphs:
A new algorithmic approach to the general Lovász Local Lemma. Random Struct.
Algorithms 17, 3-4 (2000), 213–237.

[9] Paul Erdős and László Lovász. 1975. Problems and results on 3-chromatic hyper-
graphs and some related questions. In�nite and �nite sets, volume 10 of Colloquia
Mathematica Societatis János Bolyai (1975), 609–628.

[10] Weiming Feng, Yuxin Sun, and Yitong Yin. 2017. What can be sampled locally?
CoRR abs/1702.00142 (2017).

[11] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. 2016. Inapproximability
of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models.
Comb. Probab. Comput. 25, 4 (2016), 500–559.

[12] Geo�rey R. Grimmett and David R. Stirzaker. 2001. Probability and random
processes (third ed.). Oxford University Press, New York. xii+596 pages.

354

http://arxiv.org/abs/1702.00142

STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng Liu

[13] Heng Guo, Mark Jerrum, and Jingcheng Liu. 2016. Uniform Sampling through
the Lovász Local Lemma. CoRR abs/1611.01647 (2016).

[14] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New Constructive
Aspects of the Lovász Local Lemma. J. ACM 58, 6 (2011), 28:1–28:28.

[15] David G. Harris and Aravind Srinivasan. 2013. Constraint Satisfaction, Packet
Routing, and the Lovász Local Lemma. In STOC. 685–694.

[16] David G. Harris and Aravind Srinivasan. 2013. The Moser-Tardos Framework
with Partial Resampling. In FOCS. 469–478.

[17] David G. Harris and Aravind Srinivasan. 2014. A constructive algorithm for the
Lovász Local Lemma on permutations. In SODA. 907–925.

[18] Nicholas J. A. Harvey and Jan Vondrák. 2015. An Algorithmic Proof of the Lovász
Local Lemma via Resampling Oracles. In FOCS. 1327–1346. Full version available
at abs/1504.02044.

[19] Jonathan Hermon, Allan Sly, and Yumeng Zhang. 2016. Rapid Mixing of Hyper-
graph Independent Set. CoRR abs/1610.07999 (2016).

[20] Kashyap Babu Rao Kolipaka and Mario Szegedy. 2011. Moser and Tardos meet
Lovász. In STOC. 235–244.

[21] Jingcheng Liu and Pinyan Lu. 2015. FPTAS for Counting Monotone CNF. In
SODA. 1531–1548.

[22] Ankur Moitra. 2016. Approximate Counting, the Lovász Local Lemma and
Inference in Graphical Models. CoRR abs/1610.04317 (2016). STOC 2017, to

appear.
[23] Michael Molloy and Bruce A. Reed. 1998. Further Algorithmic Aspects of the

Local Lemma. In STOC. 524–529.
[24] Robin A. Moser and Gábor Tardos. 2010. A constructive proof of the general

Lovász Local Lemma. J. ACM 57, 2 (2010).
[25] James G. Propp and David B. Wilson. 1996. Exact sampling with coupled Markov

chains and applications to statistical mechanics. Random Struct. Algorithms 9,
1-2 (1996), 223–252.

[26] James G. Propp and David B. Wilson. 1998. How to Get a Perfectly Random
Sample from a Generic Markov Chain and Generate a Random Spanning Tree of
a Directed Graph. J. Algorithms 27, 2 (1998), 170–217.

[27] James B. Shearer. 1985. On a problem of Spencer. Combinatorica 5, 3 (1985),
241–245.

[28] Allan Sly and Nike Sun. 2014. The computational hardness of counting in
two-spin models on d -regular graphs. Ann. Probab. 42, 6 (2014), 2383–2416.

[29] Aravind Srinivasan. 2008. Improved algorithmic versions of the Lovász Local
Lemma. In SODA. 611–620.

[30] Dror Weitz. 2006. Counting independent sets up to the tree threshold. In STOC.
140–149.

[31] David B. Wilson. 1996. Generating Random Spanning Trees More Quickly than
the Cover Time. In STOC. 296–303.

355

http://arxiv.org/abs/1611.01647
http://arxiv.org/abs/1504.02044
http://arxiv.org/abs/1610.07999
http://arxiv.org/abs/1610.04317

	Abstract
	1 Introduction
	2 Partial Rejection Sampling
	3 Applications of Algorithm 2
	3.1 Sink-free Orientations
	3.2 Rooted Spanning Trees
	3.3 Extremal CNF formulas

	4 General Partial Rejection Sampling
	5 Running Time Analysis of Algorithm 6
	6 Applications of Algorithm 6
	6.1 k-CNF Formulas
	6.2 Independent Sets

	7 Distributed algorithms for sampling
	Acknowledgments
	References

