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ON THE ORDER OF VANISHING OF NEWFORMS AT CUSPS

ANDREW CORBETT AND ABHISHEK SAHA

Abstract. Let E be an elliptic curve over Q of conductor N . We obtain an explicit formula, as a
product of local terms, for the ramification index at each cusp of a modular parametrization of E
by X0(N). Our formula shows that the ramification index always divides 24, a fact that had been
previously conjectured by Brunault as a result of numerical computations. In fact, we prove a more
general result which gives the order of vanishing at each cusp of a holomorphic newform of arbitary
level, weight and character, provided that its field of rationality satisfies a certain condition.

The above result relies on a purely p-adic computation of possibly independent interest. Let
F be a non-archimedean local field of characteristic 0 and π an irreducible, admissible, generic
representation of GL2(F ). We introduce a new integral invariant, which we call the vanishing

index and denote eπ(l), that measures the degree of “extra vanishing” at matrices of level l of the
Whittaker function associated to the new-vector of π. Our main local result writes down the value
of eπ(l) in every case.

1. Introduction

Let E be an elliptic curve over Q of conductor N and let ϕ : X0(N) → E denote a modular
parametrization defined over Q (the existence of ϕ follows from the famous modularity theorem
[BCDT01]). The points of X0(N) where the map ϕ is ramified are of great interest; for instance
they are relevant for the Birch and Swinnerton-Dyer conjecture [MSD74]. We refer the reader to
the papers [Bru16, Del05] for further discussion, as well as for some numerical methods one can
use to find these points.

In particular, it is natural to ask if ϕ can ramify at a cusp ofX0(N). This problem was considered
by Brunault [Bru16] who proved that if E is semistable (N is squarefree), or more generally if the
modular form f attached to E has minimal conductor among its twists, then all critical points lie
in the bulk, i.e., ϕ is unramified at all cusps of X0(N).

However, if E does not have the above properties, then ϕ can ramify at certain cusps. Indeed,
Brunault numerically computed the ramification index eϕ(a) of ϕ at each cusp a for all elliptic
curves with N ≤ 2000 and found many examples where the experiments suggested that eϕ(a)
is greater than 1. Any cusp of X0(N) can be represented by a rational number a

L with L|N and

(a,N) = 1; we refer to the integer L as the denominator of this cusp.1 As an immediate consequence
of the fact that the Galois action on X0(N) is transitive on the set of cusps of a given denominator,
it follows that eϕ(a) depends only on the denominator of a.

As a result of his computations, Brunault made the following experimental observations for the
ramification index eϕ(a) at a cusp a = a

L of denominator L.

(1) The integer eϕ(a) is always a divisor of 24.
(2) If eϕ(a) is even, then v2(L) ∈ {2, 3, 4} and v2(N) = 2v2(L). (Throughout this paper, vp(a)

denotes the highest power of p dividing a.)

1There are exactly φ(L,N/L) cusps of denominator L. The cusp at infinity is the unique one of denominator N .
1
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(3) If eϕ(a) is divisible by 8, then v2(L) = 4 and v2(N) = 8.
(4) If eϕ(a) is divisible by 3, then v3(L) = 2 and v3(N) = 4.

In this paper we prove the following explicit formula for eϕ(a), which explains all the above obser-
vations.

Theorem 1.1. Let E, N , φ be as above. Let a be a cusp of X0(N) and let L denote the denominator
of a. Then eϕ(a) =

∏

p p
ep where the non-negative integers ep are given for each prime p as follows.

(1) If p ≥ 5, then we have ep = 0.
(2) If p = 3, then we have e3 = 0 except in the following special case:

(i) If v3(N) = 2v3(L) = 4 and the local component of E at 3 is a principal series repre-
sentation, then we have e3 = 1.

(3) The case p = 2.
(ii) If either v2(N) ≤ 2 or v2(N) 6= 2v2(L), then we have e2 = 0.
(iii) If n2 := v2(N) = 2v2(L) ≥ 4 and the local component2 of E at the prime 2 is a

supercuspidal representation (of conductor 2n2) whose minimal twist has conductor
equal to 2n2−1, then e2 = 1.

(iv) If v2(N) = 2v2(L) = 8, and the local component of E at the prime 2 is a principal
series representation, then we have e2 = 3.

(v) If we are not in any of the above three cases, then e2 = 2.

Incidentally, Theorem 1.1 also implies the result of Brunault described earlier. To see this, let the
setup be as in the theorem and suppose that the modular form associated to E has minimal con-
ductor among its twists. If p divides N , then the associated local representation of GL2(Qp) cannot
be a principal series representation (since a ramified principal series representation of GL2(Qp) of
trivial central character is not twist-minimal). So our Theorem implies that e3 = 0. Furthermore,
a result of Atkin-Li (see Theorem 4.4 of [AL78]) implies that either v2(N) ≤ 2 or v2(N) is odd. In
either case, e2 = 0 by our theorem. Hence ep = 0 for all primes p and therefore eϕ(a) = 1 in this
case.

Theorem 1.1 is a special case of a more general result about modular forms that we describe now.
Recall that the modularity theorem associates a cuspidal holomorphic newform f (of weight 2, level
N , trivial character, and rational Fourier coefficients) to our elliptic curve E. The pullback by ϕ
of a Néron differential on E is equal to a non-zero multiple of ωf := 2πif(z)dz, and for any cusp a

of X0(N), the ramification index eϕ(a) equals 1 + orda(ωf ). This latter quantity can be rewritten
using the Fourier expansion of f at a. Let L be the denominator of a and let w(a) = N/(L2, N).
The integer w(a) is known as the width of the cusp a. Let σ ∈ SL2(Z) be such that σa = ∞. The
Fourier expansion of f at a looks as follows:

(1) (f |2σ
−1)(z) =

∑

n>0

af (n; a)e
2πinz
w(a) ,

where the complex numbers af (n; a) are the Fourier coefficients of f at the cusp a. Strictly speaking,
the Fourier coefficients af (n; a) depend not just on a but also on the choice of σ. However, if a′f (n; a)

denotes the coefficient obtained by a different choice σ′, then one has af (n; a) = e
2πibn
w(a) a′f (n; a) for

some integer b.

2By the local component of E at some prime p, we mean the local representation of GL2(Qp) coming from the
irreducible automorphic representation associated to E.
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As eϕ(a) equals 1 + orda(ωf ), it follows that

(2) eϕ(a) = min{n > 0 : af (n; a) 6= 0}.

In other words, computing the ramification index at a cusp reduces to finding the order of vanishing
of the corresponding newform f at that cusp. It is natural to try to solve this problem for all
newforms f (or arbitrary weight and character) and not just those coming from elliptic curves.

So, let f be a holomorphic cuspidal newform of weight k, level N , and character χ, that is,

f |k

[

a b
c d

]

= χ(d)f

for all

[

a b
c d

]

∈ Γ0(N). LetM denote the conductor of χ (soM divides N). As before, let a = a
L be

a cusp of X0(N), let σ ∈ SL2(Z) be such that σa = ∞, and let w(a) = N/(L2, N). The presence of
the character χ complicates the Fourier expansion slightly. Indeed, an easy calculation shows that
for any integer t, we have, (f |kσ

−1)(z + tw(a)) = χ(1 + atw(a)L)(f |kσ
−1)(z). Therefore, to ensure

that the value of the character is 1, we need M |Lw(a)t, or equivalently, M
(Lw(a),M) |t. So define3

δ(a) := w(a) M
(Lw(a),M) = [L2,N,LM ]

L2 . We have (f |kσ
−1)(z + δ(a)) = (f |kσ

−1)(z), and so the Fourier

expansion of f at a is as follows:

(3) (f |kσ
−1)(z) =

∑

n>0

af (n; a)e
2πinz
δ(a) .

If a is the cusp at infinity (i.e., L = N), then we simply use af (n) to denote af (n; a); these are the
usual Fourier coefficients of f . Define the quantities

(4) ef (a) := min{n > 0 : af (n; a) 6= 0}, ef (L) = min
denominator(a)=L

ef (a).

Our main global result gives an explicit formula for ef (L) as a product of local terms which depend
on the representations πp.

Theorem 1.2. Let f be a cuspidal holomorphic newform of weight k, level N =
∏

p p
np and

character χ, and let π ≃ ⊗pπp be the automorphic representation associated to f . Then for any

integer L =
∏

p p
lp dividing N , we have ef (L) =

∏

p p
eπp(lp) where for all irreducible admissible

generic representations πp of GL2(Qp), and all 0 ≤ lp ≤ np, the “vanishing index” eπp(lp) is given
as follows:

(1) If p ≥ 5, then we have eπp(lp) = 0.
(2) If p = 3, then eπp(lp) = 0, except in one case:

• eπp(lp) = 1 if

(i) πp = χ1 ⊞ χ2 with a(χ1) = a(χ2) = lp, np = 2lp ≥ 4, and a(χ1χ
−1
2 ) = lp.

(3) If p = 2, then eπp(lp) = 0, aside from the following exceptions:
• eπp(lp) = 1 when

(ii) πp = χ1 ⊞ χ2 with a(χ1) and a(χ2) both at least 2, a(χ1) 6= a(χ2), and either
lp = a(χ1) or lp = a(χ2);

3Note that δ(a) equals w(a) for all cusps a if and only if the conductor M of χ divides N1 where N1 is the smallest
integer such that N |N2

1 .
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(iii) πp = χπ0 and np = 2lp ≥ 4 where π0 is a supercuspidal representation with
a(π0) = np − 1 and χ is a character such that a(χ) = np/2.

• eπp(lp) = 2 when
(iv) πp = χSt with a(χ) ≥ 2 and np = 2lp = 2a(χ) ≥ 4;

(v) πp = χ1 ⊞ χ2 with np = 2lp ≥ 4, a(χ1) = a(χ2) = lp, χ1χ
−1
2 /∈ {| · |, | · |−1}, and

a(χ1χ
−1
2 ) < lp − 1;

(vi) πp = χπ0 and np = 2lp ≥ 4 where a(χ) = np/2 and π0 is a minimal supercuspidal
representation (see Definition 2.5) with a(π0) ≤ np − 2.

• eπp(lp) = 3 when

(vii) πp = χ1 ⊞ χ2 with np = 2lp ≥ 6, a(χ1) = a(χ2) = lp and a(χ1χ
−1
2 ) = lp − 1.

For unfamiliar notation and a general definition of the vanishing index for representations of GL2

over arbitrary non-archimedean local fields, as well as a formula in every case, we refer the reader
to §2 and in particular Theorem 2.14. Note that Theorem 1.2 implies that ef (L) equals 1 unless at
least one of the integers 16 or 81 divides N . In order to read off ef (L) in these cases using Theorem
1.2, it is necessary to know only the local representations of GL2(Q2) and GL2(Q3) associated to
f ; this can be achieved using the algorithm presented in [LW12].

The proof of Theorem 1.2 follows from a local computation, which is the heart of this paper. From
the adelic viewpoint, the Fourier coefficient af (n; a) is equal to the value of the global Whittaker
newform associated to f at a certain adelic matrix. By the uniqueness of the Whittaker model, the
global Whittaker newform factors as a product of local newforms. So we are reduced to solving
the problem of “extra vanishing” at matrices of level l of the local Whittaker newform associated
to an arbitary irreducible, admissible, generic representation of GL2(Qp). We do this in the more
general context of an arbitrary non-archimedean local field of characteristic zero (this also means
that Theorem 1.2 can be generalized in a straightforward manner to automorphic forms of GL2

over number fields, if one so chooses). Our key tool is a certain “basic identity” that was proved by
the second author in [Sah16] (this identity is obtained from the Jacquet–Langlands local functional
equation via some elementary Fourier analysis over a finite abelian group). Ultimately, we are
reduced to the problem of counting characters whose twists have certain prescribed conductors;
this is done in §2.3.

Theorem 1.2 gives an exact formula for the minimum value of ef (a) taken over cusps a of a fixed
denominator. Ideally we would like a formula for ef (a) for each cusp a. In general, such a refined
result cannot be deduced from Theorem 1.2; however, we now give a key case where this is possible.

Proposition 1.3. Let f be as in Theorem 1.2, and let Q(f) be the (number) field4 generated by all

the Fourier coefficients af (n). Suppose for some divisor L of N we have Q(f) ∩ Q(e
2πi

(L,N/L) ) = Q
(where we think of all our number fields as subsets of the complex numbers). Then all cusps a of
denominator L have the same value of ef (a); in other words, ef (a) = ef (L).

If the modular form f comes from an elliptic curve, then we have Q(f) = Q; therefore the

condition Q(f) ∩ Q(e
2πi

(L,N/L) ) = Q is trivially satisfied. In this case, Theorem 1.2 gives an exact
formula for ef (a) = eϕ(a) which is precisely what is stated in Theorem 1.1. Several of the cases of

4In fact, it is known that Q(f) is always a subfield of a CM field. Moreover, by strong multiplicity, it follows that
for every positive integer t, Q(f) is generated by the quantities af (n) where n ranges over only the positive integers
that are coprime to t.
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eπp(lp) > 0 that are described in Theorem 1.2 do not appear in Theorem 1.1. This is a reflection
of the fact that the modular forms f associated to elliptic curves are in some sense special.

Proposition 1.3 is a reflection of the fact that there exists an action of Aut(C) on the set of
cohomological automorphic representations of GL2, which factors into a product of local actions
and is compatible with the classical action of Aut(C) on Fourier coefficients. The local action
can be studied via local Whittaker newforms, and the condition in Proposition 1.3 ensures that
this action is transitive on the cusps of a given denominator L. For the details, see §2.2.2 and
§3.3. In fact, Proposition 1.3 remains true when Q(f) is replaced by the the compositum of the
fields of rationality of the local representations πp over the (finitely many) primes p with p2|N
(see Proposition 3.6). When k = 2, Proposition 1.3 also follows from Lemma 1.3 of [Bru16]; this
alternate method, however, does not give the stronger result described in the previous sentence.

We end this introduction with a few further remarks about the condition in Proposition 1.3. Let
N0 denote the largest integer whose square divides N . If it is true that

(5) Q(f) ∩Q(e
2πi
N0 ) = Q,

then the condition in Proposition 1.3 is satisfied for all L|N . So in this case, ef (a) = ef (L) for
all cusps a of denominator L, and therefore Theorem 1.2 gives an exact formula for ef (a). While
we are unaware of any results describing how often a form f satisfies the rationality condition (5),
a perusal of the LMFDB database makes it clear that this condition is indeed satisfied the vast
majority of the time5 for 1 ≤ N ≤ 100, 2 ≤ k ≤ 12. An interesting low weight case where this
condition is not satisfied occurs when k = 2,M = 1, and N = 567 = 34 × 7. For this data, there
exists a form f such that Q(f) is the maximal totally real subfield of Q(e2πi/9), and for which
numerical experiments performed by Brunault strongly indicate that ef (1/9) = ef (2/9) = 3 but

ef (4/9) = 6.6 The above example shows that the condition in Proposition 1.3 is indeed necessary.
Another example, with N = 625, is given in Remark 5.1 of [Bru16]. More generally, it was shown
by François Brunault and Paul Nelson (personal communication, July 2012) that if p ≥ 5 is a prime
and f is a newform with M = 1, N = p4, such that the local component πp is a principal series
representation, then we have that ef (

a
p2
) = 1 for only about half the values of a, and ef (

a
p2
) > 1 for

the remaining half! This follows from the automatic vanishing of certain exponential sums modulo
p2. For any f as above, the corresponding local field of rationality Q(πp) (which is contained in

Q(f)) intersects non-trivially the cyclotomic field Q(e2πi/p).
The above examples make it clear that when the rationality condition (5) is not satisfied, the

problem of computing ef (a) for individual cusps a is a subtle one. In fact, one can show that this
problem is equivalent to understanding the vanishing of certain p-adic analogues of hypergeometric
functions. Further investigation of these functions from an analytic point of view will be done in
forthcoming work of the second author with Yueke Hu.

Notations. We collect here some general notations that will be used throughout this paper. Ad-
ditional notations will be defined where they first appear in the paper.

Given two integers a and b, we use a|b to denote that a divides b, and we use a|b∞ to denote
that a|bn for some positive integer n. We let va(b) denote the largest non-negative integer such

that ava(b)|b. We will occasionally use the shorthand notation e(x) = e2πix.

5However, we believe that this condition is never satisfied when a high power of an odd prime divides N .
6This example and a few others were discovered by François Brunault [personal communication, July 2012].
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The group Γ0(N) consists of those matrices
(

a b
c d

)

∈ SL2(Z) such that N | c. The subgroup Γ1(N)
consists of those matrices in Γ0(N) with the added property that a ≡ d ≡ 1 mod N . Let H denote
the upper half plane and GL2(R)

+ the group of real two-by-two matrices with positive determinant.
For z ∈ H,

(

a b
c d

)

∈ GL2(R)
+, we let

(

a b
c d

)

z = az+b
cz+d ∈ H be the point obtained by Möbius

transformation. Let X0(N) denote the usual modular curve obtained by the compactification of
Γ0(N)\H. Given a function f on H, an integer k, and some γ =

(

a b
c d

)

∈ GL2(R)
+, we define a

function f |kγ on H via (f |kγ)(z) = det(γ)k/2(cz + d)−kf(γz).
We shall always assume every character is continuous (but not necessarily unitary). For a complex

representation π of some group H and an automorphism σ of C, there is a complex representation
σπ of H defined as follows. Let V be the space of π and let V ′ be any vector space such that
t : V → V ′ is a σ-linear isomorphism (that is, t(v1 + v2) = t(v1) + t(v2) and t(λv) = σ(λ)t(v)).
We define the representation (σπ, V ′) via σπ(g) = t ◦ π(g) ◦ t−1. It can be shown easily that the
representation σπ does not depend on the choice of V ′ or t. We define Q(π) to be the fixed field of
the set of all automorphisms σ such that σπ ≃ π.

2. Local computations

2.1. Notations and background.

2.1.1. Notations for local fields. Let F be a non-archimedean local field of characteristic zero and
let G = GL2(F ). We denote by o the ring of integers of F and denote by p the maximal ideal
of o. We fix a uniformiser, that is a generator of p, and denote it by ̟; we let q = #(o/p). Let
| · | be the absolute value on F , normalised so that |̟| = q−1, and v the valuation on F defined
via |x| = q−v(x). The subgroups Uk of o× are defined as follows: Uk = 1 + ̟ko for k > 0, and
U0 = o×. Let dy be the Haar measure on F , normalised so that Vol(o, dy) = 1, and d×y the Haar
measure on F×, normalised so that Vol(o×, d×y) = 1. Finally, ζ(s) = (1 − q−s)−1 denotes the
(local) zeta-function of F .

2.1.2. Characters of o×. For a character χ : F× → C× we denote by a(χ) (the exponent of) its
conductor ; this is the smallest integer k ≥ 0 such that χ(Uk) = {1}. We say χ is unramified if
a(χ) = 0. Let

X =
{

µ : F× → C× : µ(̟) = 1
}

so that X is isomorphic to the group of continuous characters on o×. Any character of X is unitary
and of finite order. We also consider characters in X of particular conductors, duly introducing the
notation:

Xk = {µ ∈ X : a(µ) ≤ k } and X′
k = {µ ∈ X : a(µ) = k } .

Note that {1} = X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ · · · ⊂ X as subgroups. We have for each k ≥ 1,
#Xk = qk−1(q − 1), #X′

1 = q − 2, and for k ≥ 2, #X′
k = qk−2(q − 1)2. Furthermore, for all

l ≥ k ≥ l/2 ≥ 1, we have Xl/Xk
∼= Uk/Ul

∼= o/pl−k.
We now answer a question which will frequently sprout up in our computations.

Lemma 2.1. Let k ≥ 2 and let χ be a character of F× with conductor a(χ) = k.

(1) Then there exists a character µ ∈ X such that a(µ) = a(µχ) = k if and only if q > 2.
(2) Let q = 2. If k > 2, then there exists a character µ ∈ X such that a(µ) = k and a(µχ) =

k − 1. If k = 2, then for any µ ∈ X satisfying a(µ) = 2, we have a(µχ) = 0.
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Proof. For the first assertion, asking for such a µ is equivalent to demanding µ 6≡ 1 and µχ 6≡ 1
in the group Xk/Xk−1 (where we abuse notation by writing χ for the restriction χ|o×). Since the
group Xk/Xk−1 has order q, and we need to avoid µ ≡ 1 and µ ≡ χ−1, there always exists such a
µ whenever q − 2 > 0.

Now let q = 2. If k > 2, then, as #(Xk/Xk−1) = 2 but #(Xk/Xk−2) = 4, we can always find a µ
with a(µ) = k and a(µχ) = k − 1. On the other hand, if k = 2, then #X2 = 2, the class of these
characters being those of 1 and χ, and the class of χ2 is therefore trivial. �

We shall also require an extension of Lemma 2.1 for two characters χ1, χ2 of the same conductor.

Lemma 2.2. Let k ≥ 2 and let χ1, χ2 be characters of F× such that a(χ1) = a(χ2) = k.

(1) Suppose that either a) q > 3 or b) q = 3 and a(χ1χ
−1
2 ) < k. Then there exists a character

µ ∈ X such that a(µ) = a(µχ1) = a(µχ2) = k.
(2) Suppose that q = 3 and a(χ1χ

−1
2 ) = k. Then max{a(µχ1) + a(µχ2) : µ ∈ X′

k} = 2k − 1.

(3) Suppose that q = 2 and a(χ1χ
−1
2 ) < k − 1. If k > 2, then there exists a character µ ∈ X

such that a(µ) = k and a(µχ1) = a(µχ2) = k − 1. If k = 2, then for any µ ∈ X satisfying
a(µ) = 2, we have a(µχ1) = a(µχ2) = 0.

(4) Suppose that q = 2 and a(χ1χ
−1
2 ) = k − 1. Then automatically k ≥ 3. If k ≥ 4, then

max{a(µχ1)+ a(µχ2) : µ ∈ X′
k} = 2k− 3. If k = 3, then for any µ ∈ X satisfying a(µ) = 3,

we have {a(µχ1), a(µχ2)} = {2, 0}.

Proof. This follows the same routine as the proof of Lemma 2.1. In case (1) we use a) #(Xk/Xk−1) =
q > 3, so that there is at least a fourth class inequivalent to 1, χ−1

1 , or χ−1
2 ; in b) we allow q = 3

but force χ1 ≡ χ2 mod Xk−1 so µ should be chosen outside just two classes and #(Xk/Xk−1) > 2.
In case (2) we have q = 3 and χ1 6≡ χ2 mod Xk−1. Necessarily, µ is equivalent to precisely one

of χ−1
1 or χ−1

2 in #(Xk/Xk−1). But there are always at least five non-trivial classes (in the worst
case q = 3 and k = 2) in #(Xk/Xk−2) so we can find µ such that {a(µχ1), a(µχ2)} = {k, k− 1}. In
cases (3) and (4) we apply this reasoning, mutatis mutandis, for q = 2. �

2.1.3. The Gauss sum. We fix once and for all an additive character ψ : F/o → C× on F such that
ψ is trivial on o but non-trivial on p−1. For each a ∈ F× and µ ∈ X define the Gauss sum:

G(a, µ) =

∫

o×
ψ(ay)µ(y) d×y.

Lemma 2.3. Let v ∈ o×, r ∈ Z and µ ∈ X. Then

(6) G(v̟−r, 1) =











1 if r ≤ 0,

−ζ(1)q−1 if r = 1,

0 otherwise.

If a(µ) > 0, then

(7) G(v̟−r, µ) =

{

ζ(1)q−r/2ε(1/2, µ−1, ψ)µ−1(v) if r = a(µ),

0 otherwise.

Above, ε(1/2, µ−1, ψ) is the usual GL(1)-epsilon factor (or root number) associated to the character
µ−1 and the additive character ψ; in particular |ε(1/2, µ−1, ψ)| = 1.
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Proof. We first prove (6). By our normalisation of measures we have

G(v̟−r, 1) = ζ(1)

(∫

o

ψ(v̟−ry)dy − q−1

∫

o

ψ(v̟−r+1y)dy

)

.

The result (6) now follows immediately from the orthogonality of additive characters and the fact
that ψ is trivial on o but not on p−1. Next we prove (7). The vanishing of the Gauss sum when
a(µ) 6= r follows from [RV99, Lemma 7-4]. On the other hand, when a(µ) = r we get using
Ur-invariance

G(v̟−r, µ) = µ−1(v) vol(Ur)
∑

Ur\o×

ψ(̟−ry)µ(y).

The result now follows from [RV99, (7.6)] (where ε(1/2, µ−1, ψ) is denoted W (µ−1)). �

2.1.4. Definitions of matrix groups. Let K = GL2(o) and for an integer n ≥ 0 let

(8)

K1(n) =

{(

a b
c d

)

∈ K : c ∈ ̟no, a ∈ Un

}

, K ′
1(n) =

{(

a b
c d

)

∈ K : c ∈ ̟no, d ∈ Un

}

.

Define the matrices a(y) =

(

y
1

)

, w =

(

1
−1

)

, n(x) =

(

1 x
1

)

for each y ∈ F× and x ∈ F .

Define subgroups

N = {n(x) : x ∈ F}, A = {a(y) : y ∈ F×}, Z = {z(t) : t ∈ F×}

of G. For any t, l ∈ Z and v ∈ o× define

gt,l,v = a(̟t)wn(v̟−l) =

(

̟t

−1 −v̟−l

)

.

Remark 2.4. Suppose that n is fixed. Then, for each g ∈ G there is a unique integer l satisfying
0 ≤ l ≤ n such that g ∈ ZNgt,l,vK1(n) for some t ∈ Z, v ∈ o× (see Lemma 2.13 of [Sah16]).

2.1.5. Notation for representations of G. For an irreducible, admissible, generic representation π
of G we define (the exponent of) its conductor a(π) to be the smallest integer n ≥ 0 such that the
space of K1(n)-fixed vectors in π contains a non-zero vector. It is well known that the space of
K1(a(π))-fixed vectors is one-dimensional. If a(π) = 0, then π is said to be unramified.

For a character χ of F× we write the character twist of π as χπ which is defined to be the
representation of G given by g 7→ χ(det(g))π(g). The central character of π shall be denoted ωπ

and the representation contragredient to π is denoted π̃; as G = GL2(F ) we can realise π̃ = ω−1
π π.

For two characters χ1, χ2 of F
×, let χ1⊞χ2 denote the (normalised) principal series representation

of G parabolically induced from the character χ1⊗χ2 on the standard Levi subgroup B = ZNA of
G. The parabolic induction is normalised by multiplying χ1⊗χ2 by |y|1/2 (which is the square-root
of the modulus character on B) before inducing; see equation (4.9) of [Gel75]. This ensures that
χ1⊞χ2 is unitary whenever χ1 and χ2 are unitary. The representation χ1⊞χ2 is irreducible if and
only if χ1χ

−1
2 /∈ {| · |, | · |−1}. This condition is automatically satisfied if a(χ1) 6= a(χ2), or more

generally, if a(χ1χ
−1
2 ) 6= 0. Whenever χ1 ⊞ χ2 is irreducible, it is true that χ1 ⊞ χ2

∼= χ2 ⊞ χ1 and
ωπ = χ1χ2.

For an irreducible, admissible, generic representation π of G, we let L(s, π) denote the local L-
factor and ε(s, π) = ε(s, π, ψ) denote the local ε-factor with respect to our fixed additive character
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ψ; these factors are defined by their existence in [JL70, Theorem 2.18]. It is known that ε(s, π, ψ)

is a non-zero complex number and ε(s, π, ψ) = ε(1/2, π| · |1/2−s, ψ) = q(1/2−s)a(π)ε(1/2, π, ψ).

2.1.6. A classification of representations of G. For our analysis, we give a classification of the
irreducible, admissible, generic representations π of G satisfying a(π) ≥ 1. This classification is
well known in the literature (for example, see [Gel75, Theorem 4.18, Theorem 4.21, and Remark
4.25]).

(1) π ≃ χSt, a twist of the Steinberg representation St by an unramified character χ; these

have a(π) = 1, ωπ = χ2 and L(s, π) = L(s, χ| · |1/2).

(2) π ≃ χ1 ⊞ χ2, where χ1, χ2 are characters of F× with a(χ1) > 0 = a(χ2). These have
a(π) = a(χ1) ≥ 1, ωπ = χ1χ2 and L(s, π) = L(s, χ2).

(3) π satisfies L(s, π) = 1. In this case we enumerate the following subcases:

(a) π ≃ χSt, where a(χ) > 0; these have a(π) = 2a(χ) ≥ 2.

(b) π ≃ χ1 ⊞ χ2, where χ1, χ2 are characters with a(χ1) ≥ a(χ2) > 0 and χ1χ
−1
2 /∈

{| · |, | · |−1}; these have a(π) = a(χ1) + a(χ2) ≥ 2.

(c) π is supercuspidal; these also have a(π) ≥ 2.

By a well-known result of Tunnell [Tun78, Prop. 3.4] it follows that a supercuspidal representa-
tion π always satisfies a(ωπ) ≤ a(π)/2.

2.1.7. Conductors of character-twists of representations.

Definition 2.5. We call π minimal if a(π) = min{a(χπ) : χ ∈ X}.

Example 2.6. Representations of type (1) and type (2) are always minimal. Representations of
types (3.a) and (3.b) are never minimal.

Lemma 2.7. Let π be an irreducible, admissible, generic representation of G and let χ be a char-
acter of F×. We have that the conductor

(9) a(χπ) ≤ max { a(π), a(ωπ) + a(χ), 2a(χ) } .

Moreover, we have equality in (9) in each of the following cases: (i) a(ωπ) ≤ a(π)/2, π minimal, (ii)
a(ωπ) ≤ a(π)/2, a(π) 6= 2a(χ), (iii) a(ωπ) > a(π)/2, π minimal, a(π) 6= a(χ), (iv) a(ωπ) > a(π)/2,
a(χ) /∈ {a(ωπ), a(π) − a(ωπ)}.

Proof. In the supercuspidal case, this follows from [Tun78, Proposition 3.4]; in fact the proof there
holds verbatim for all square-integrable representations π. The Lemma also holds trivially when
a(π) = 0, as in this case a(χπ) = 2a(χ). So we are left to only prove the lemma for the ramified
principal series representations χ1 ⊞ χ2, types (2) and (3.b) in our notation. Of these, the former
is always minimal and the latter is never minimal. Moreover in those cases, we have the formulas:
a(π) = a(χ1) + a(χ2), a(ωπ) = a(χ1χ2), a(χπ) = a(χχ1) + a(χχ2). The problem is thus reduced
to computing conductors of one-dimensional representations; each case may thus be determined
via the observation a(µ1µ2) ≤ max{a(µ1), a(µ2)} for arbitrary characters µ1, µ2, with equality
guaranteed whenever a(µ1) 6= a(µ2). �

Example 2.8. As a special case of Lemma 2.7, if a supercuspidal representation π has the property
that a(π) is odd or a(π) = 2, then it is automatically minimal. A well-known theorem of Atkin–Li
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[AL78, Theorem 4.4] gives a partial converse when q = 2: a representation π of GL2(Q2) with
a(ωπ) < a(π)/2 is minimal if and only if a(π) is odd or a(π) = 2.

2.1.8. Newforms and the Whittaker model. We shall work in the Whittaker model W(π, ψ) ∼=
π which carries the right-regular action of G in the space of functions W : G → C satisfying
W (zn(x)g) = ωπ(z)ψ(x)W (g) for each z ∈ Z, x ∈ F , g ∈ G.

Definition 2.9. We call the unique K1(a(π))-invariant vector Wπ ∈ W(π, ψ) satisfying Wπ(1) = 1
the normalised Whittaker newform.

The following lemma records the value of Wπ, for each π, on the toral elements a(̟r) ∈ A.

Lemma 2.10. Suppose a(π) ≥ 1.

• If π ≃ χ1 ⊞ χ2 with a(χ1) > 0 = a(χ2), then

(10) Wπ(a(̟
r)) =

{

(χ1(̟)q−1/2)r if r ≥ 0
0 if r < 0.

• If π ≃ χSt with a(χ) = 0, then

(11) Wπ(a(̟
r)) =

{

(χ(̟)q−1)r if r ≥ 0
0 if r < 0.

• Else if π satisfies L(s, π) = 1, then

(12) Wπ(a(̟
r)) =

{

1 if r = 0
0 if r 6= 0.

Proof. The above formulae are well-known in the literature; for example, they appear verbatim in
[PSS14, (121)]. For completeness, we give a detailed proof here relying on the results in [Sch02].

Let W ∗
π̃ be the unique K ′

1(a(π))-invariant vector in W(π̃, ψ) satisfying W ∗
π̃ (1) = 1 (recall that

a(π) = a(π̃)). As π̃ ∼= ω−1
π π, we may define a linear isomorphism from W(π, ψ) to W(π̃, ψ)

by W 7→ W ′ where W ′(g) = ω−1
π (det(g))W (g). The function W ′

π is K ′
1(a(π))-invariant, so by

uniqueness, we have W ∗
π̃ (g) =W ′

π(g) = ω−1
π (det(g))Wπ(g). This implies that

(13) Wπ(a(̟
r)) = ωπ(̟

r)W ∗
π̃ (a(̟

r)).

The values W ∗
π̃ (a(y)) in all cases were computed explicitly and written down in the table just

before Section 3 of [Sch02]. We note here that the function y 7→ W ∗
π̃ (a(y)) is the local newform in

the Kirillov model of π̃ by the conventions of [Sch02].
In particular, when π ≃ χ1 ⊞χ2 with a(χ1) > 0 = a(χ2) then π̃ ≃ χ−1

1 ⊞χ−1
2 and the table from

[Sch02] gives us that W ∗
π̃ (a(̟

r)) = χ−1
2 (̟r). Combined with (13) this gives us (10). If π ≃ χSt

with a(χ) = 0, then π̃ ≃ χ−1St and the table of [Sch02] gives us that W ∗
π̃ (a(̟

r)) = q−rχ−1(̟r) if
r ≥ 0 and equal to 0 if r < 0. Combined with (13) this gives us (11). Finally if L(s, π) = 1, then
the table of [Sch02] gives us that W ∗

π̃ (a(̟
r)) = 1 if r = 0 and equal to 0 if r 6= 0. Combined with

(13) this gives us (12). �

2.2. The vanishing index. Throughout the rest of §2, π will be an irreducible, admissible, generic
representation of G. We will denote n = a(π) and m = a(ωπ). The triple (t, l, v) will always be
so that t ∈ Z, 0 ≤ l ≤ n, v ∈ o×. By Lemma 2.13 of [Sah16] and by right-K1(n)-invariance, the
newform Wπ is completely determined by its values on the representatives gt,l,v of G; moreover,
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for each t, l, the map v 7→ Wπ(gt,l,v) depends only on v modulo Ul and the map v 7→ |Wπ(gt,l,v)|
depends only on v modulo Umin(l,n−l).

The following proposition was proved in [Sah17, Prop. 2.10].

Proposition 2.11. Define dπ(l) = max{n, l +m, 2l}. Suppose Wπ(gt,l,v) 6= 0. Then t ≥ −dπ(l).

Remark 2.12. The quantity dπ(l)− l is invariant under the substitution l 7→ n− l.

Definition 2.13. For each 0 ≤ l ≤ n, the level l vanishing index eπ(l) of π is defined via

eπ(l) = min
{

r ≥ 0 : ∃v ∈ o× satisfying Wπ(gr−dπ(l),l,v) 6= 0
}

= min

{

r ≥ 0 :

∫

v∈o×
|Wπ(gr−dπ(l),l,v)|

2 d×v 6= 0

}

.

We now state our main local result.

Theorem 2.14. Let π be an irreducible, admissible, generic representation of G with conductor
a(π) = n. Let l be an integer such that 0 ≤ l ≤ n. Then if q > 3 we have eπ(l) = 0.

If q = 3, then eπ(l) = 0, except in one case:

• eπ(l) = 1 if
(i) π ≃ χ1 ⊞ χ2 with a(χ1) = a(χ2) = l, n = 2l ≥ 4, and a(χ1χ

−1
2 ) = l.

If q = 2, then eπ(l) = 0, aside from the following exceptions:

• eπ(l) = 1 when
(ii) π ≃ χ1 ⊞ χ2 with a(χ1) and a(χ2) both at least 2, a(χ1) 6= a(χ2), and l = a(χ1) or

l = a(χ2);
(iii) π ≃ χπ0 and n = 2l ≥ 4 where π0 is a supercuspidal representation with7 a(π0) = n−1

and χ is a character of conductor a(χ) = n/2.
• eπ(l) = 2 when
(iv) π ≃ χSt with a(χ) ≥ 2 and n = 2l = 2a(χ) ≥ 4;
(v) π ≃ χ1 ⊞ χ2 with n = 2l ≥ 4, a(χ1) = a(χ2) = l, χ1χ

−1
2 /∈ {| · |, | · |−1}, and

a(χ1χ
−1
2 ) < l − 1;

(vi) π ≃ χπ0 and n = 2l ≥ 4 where π0 is a minimal supercuspidal representation with
a(π0) ≤ n− 2 and χ is a character of conductor a(χ) = n/2.

• eπ(l) = 3 when
(vii) π ≃ χ1 ⊞ χ2 with n = 2l ≥ 6, a(χ1) = a(χ2) = l and a(χ1χ

−1
2 ) = l − 1.

We give a proof of Theorem 2.14 in §2.3.

2.2.1. Basic properties.

Proposition 2.15. The vanishing index eπ(l) has the following properties:

(1) For all unramified characters χ we have eπ(l) = eχπ(l).
(2) We have eπ(l) = eπ̃(n− l).

Proof. The first assertion follows from the fact that Wπχ(g) = χ(det(g))Wπ(g) for all unramified
characters χ. For the second identity, we may first twist π by an unramified character to ensure
that ωπ(̟) = 1 (by part (1), this does not change the vanishing index). Moreover, dπ(l) =

7As n− 1 is odd, note that π0 is automatically minimal.
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dπ̃(l) = dπ̃(n− l) + 2l− n. Now use the “generalised Atkin-Lehner relation” of [Sah16, Prop. 2.28]
that implies that Wπ(gt,l,v) is non-zero if and only if Wπ̃(gt+2l−n,n−l,−v) is non-zero. The result
follows. �

Proposition 2.16. Suppose that n ≤ 1. Then eπ(l) = 0.

Proof. The case n = 0 is trivial, since Wπ(1) 6= 0. Now suppose n = 1. Using part (2) of the
previous Proposition, we may assume (by replacing π by π̃ if necessary) that l = 1. In this case,
dπ(1) = 2 and the matrix g−2,1,1 lies in the double coset class ZNK1(1); this follows from the more
general formula

(14) a(y) =

(

y
1

)

= z(−̟n)n(̟v(y)−n)gv(y)−2n,n,1

(

1
−̟n 1

)

a(̟−v(y)y)

for any y ∈ F× and n ≥ 0. It follows that |Wπ(g−2,1,1)| = 1 and therefore eπ(1) = 0. �

2.2.2. Uniform vanishing and rationality. As it stands, the quantity eπ(l) is characterized by the
following properties:

(1) Wπ(gt,l,v) = 0 for all t < eπ(l)− dπ(l), and all v ∈ o×.
(2) Wπ(geπ(l)−dπ(l),l,v) 6= 0 for some v ∈ o×.

It would be nice if in the second condition above, we could replace “some” by “all”. While
this cannot be done in general, there are indeed some situations where this is possible. One such
situation is when n ≤ 1, as then eπ(l) = 0 and |Wπ(g−dπ(l),l,v)| (which depends only on v modulo
Umin(l,n−l)) is non-zero for all v since 0 ≤ l ≤ 1. We now describe another such situation in the
special case F = Qp.

Proposition 2.17. Suppose that F = Qp and that there exists a complex number s such that
πs := π| · |s has the property that Q(πs) is a number field. Suppose that for some 0 ≤ l ≤ n,
Q(πs) ∩Q(µpmin{l,n−l}) = Q. Then for any integer t, the following are equivalent:

(1) Wπ(gt,l,v) 6= 0 for some v ∈ Z×
p .

(2) Wπ(gt,l,v) 6= 0 for all v ∈ Z×
p .

In particular, Wπ(geπ(l)−dπ(l),l,v) 6= 0 for all v ∈ Z×
p .

Proof. Using the fact that Wπs(g) = |det(g)|sWπ(g), it follows that (by replacing π by πs) we may
assume that s = 0.

For each σ ∈ Aut(C) let tσ ∈ Z×
p be the unique element such that σ(ψ(x)) = ψ(tσx) for

all x ∈ Qp. The map σ 7→ tσ factors through Gal(Q(µp∞)/Q) and, as is well-known, gives an
isomorphism Gal(Q(µp∞)/Q) ≃ Z×

p (in fact, this is a special case of class field theory). The
image of Gal(Q(µp∞)/Q(µpr)) under this isomorphism is precisely Ur. In particular, as σ traverses
Gal(Q(π)Q(µpmin{l,n−l})/Q(π)) ≃ Gal(Q(µpmin{l,n−l})/Q), tσ traverses every coset in Z×

p /Umin{l,n−l}.

Next, let mσ =

[

1
tσ

]

. It is easy to check that the map W 7→ W ′ defined by W ′(g) :=

σ(W (mσg)) is σ-linear and takes W(π, ψ) to W(σπ, ψ). Therefore, we get Wσπ(g) = σ(Wπ(mσg)).
In particular, for each σ ∈ Aut(C/Q(π)), we have Wπ(gt,l,v) 6= 0 ⇔Wπ(gt,l,vtσ ) 6= 0. Letting σ vary
in Gal(Q(π)Q(µpmin{l,n−l})/Q(π)), we see that if Wπ(gt,l,v) 6= 0 for some v in Z×

p /Umin{l,n−l}, then

Wπ(gt,l,v) 6= 0 for all v in Z×
p /Umin{l,n−l}. �
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2.3. The proof of Theorem 2.14. In this subsection, we prove Theorem 2.14. Thanks to Propo-
sitions 2.15 and 2.16, we can and will make the following assumptions throughout this subsection:
n ≥ 2, ωπ ∈ X, l ≤ n

2 .

2.3.1. The basic identity. We now review a powerful tool for computing the values Wπ(gt,l,v). For
each t, l, the function on v ∈ o× given by v 7→Wπ(gt,l,v) is well defined on the quotient o×/Ul. By
Fourier inversion, for each µ ∈ Xl there exists a Fourier coefficient ct,l(µ) ∈ C such that

(15) Wπ(gt,l,v) =
∑

µ∈Xl

ct,l(µ)µ(v).

In [Sah16, §2] it was shown that one can mill down the zeta-integrals occurring in the local functional
equation for GL2 to reveal a polynomial equation in the ct,l(µ): we call this the basic identity.

Proposition 2.18. Assume that ωπ(̟) = 1. We have the following identity between polynomials
in the variables qs and q−s:

ε(1/2, µπ)
∑

t∈Z

q(t+a(µπ))(1/2−s) ct,l(µ)L(s, µπ)
−1

= ωπ(−1)
∑

r≥0

q−r(1/2−s)Wπ(a(̟
r))G(̟r−l, µ−1)L(1 − s, µ−1ω−1

π π)−1.

Proof. This is proved explicitly in [Sah16, Prop. 2.23]. We briefly recall the proof. Let W ′ =
π(w.n(̟−k))Wπ and let the Jacquet–Langlands local zeta integrals Z(W ′, s, µ), Z(w · W ′, 1 −
s, µ−1ω−1

π ) be defined as in §2.5 of [Sah16]. By the Jacquet-Langlands functional equation (see

Theorem 2.21 of [Sah16]) Z(W ′,s,µ)
L(s,µπ) ε(s, µπ) is equal to

Z(w·W ′,1−s,µ−1ω−1
π )

L(1−s,πµ−1ω−1
π )

. On the other hand, using

ε(s, µπ) = ε(1/2, µπ)qa(µπ)(
1
2
−s), a calculation (performed in detail in [Sah16, Sec. 2.6]) gives

that the left side of the Proposition is equal to Z(W ′,s,µ)
L(s,µπ) ε(s, µπ) and the right side is equal to

Z(w·W ′,1−s,µ−1ω−1
π )

L(1−s,πµ−1ω−1
π )

. �

Remark 2.19. The fact that each side the basic identity is an element of C[qs, q−s] follows from
the proof of Jacquet–Langlands’ local functional equation [JL70, Theorem 2.18].

Let us introduce the notation

(16) tπ(µ, l) = min{t ∈ Z : ct,l(µ) 6= 0} ∈ Z ∪ {∞}

where we say tπ(µ, l) = ∞ if and only if ct,l(µ) = 0 for all t ∈ Z. We have already noted that
ct,l(µ) = 0 for t < −dπ(l). In terms of the expansion (15), for any t ∈ Z and 0 ≤ l ≤ n we have
∫

v∈o× |Wπ(gt,l,v)|
2 d×v =

∑

µ∈Xl
|ct,l(µ)|

2 by orthogonality of characters. So we have

(17) eπ(l) = min{tπ(µ, l) + dπ(l) : µ ∈ Xl}.

2.3.2. A case by case analysis. We now compute tπ(µ, l) as π varies over the types listed in §2.1.6,
using the formula (17) to evaluate eπ(l) in each instance. As n ≥ 2, we only need to consider
representations of types (2) and (3).
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Type (2). Let π ≃ χ1 ⊞ χ2 with a(χ1) > 0 and a(χ2) = 0. Since m = n we have dπ(l) = n + l. It
shall be sufficient to check the case of the trivial character µ = 1, which belongs to Xl for each l.
We compare both sides of the basic identity given by Proposition 2.18: on the left-hand side, the
least non-zero exponent of q−s that appears is tπ(1, l) + n while on the right-hand side we claim it
is −l. Indeed, putting X = q−s and using the formula (10), the right side of the basic identity is
as follows:

ωπ(−1) (1 − χ1(̟)q−1X−1)
∑

r≥0

q−rX−rχ1(̟)rG(̟r−l, 1).

Using (6), this simplifies to

ωπ(−1)ζ(1)q−lX−lχ1(̟
l)(1− χ1(̟

−1)X),

which makes it clear that the least non-zero exponent of X on the right side is −l.
We thus conclude tπ(1, l) = −n− l = −dπ(l). This implies that

(18) eπ(l) = min{tπ(µ, l) + dπ(l) : µ ∈ Xl} ≤ 0.

Since eπ(l) is a non-negative integer, it follows that eπ(l) = 0.

Generalities on type (3). Let π be any representation of type (3). Then L(s, π) = 1 andWπ(a(̟
r))

is non-zero if and only if r = 0. The basic identity reads

(19) ωπ(−1)G(̟−l, µ−1)L(1 − s, µ−1ω−1
π π)−1 = ε(1/2, µπ)

∑

t∈Z

q(t+a(µπ))(1/2−s) ct,l(µ)L(s, µπ)
−1

The least t = tπ(µ, l) for which such a ct,l(µ) is non-zero depends on the support for the Gauss sum
(Lemma 2.3) and the specific form of the (at most degree-two) L-factors, but we can make a few
general remarks. In the sequel, put X = q−s for simplicity.

Lemma 2.20. Let π be of type (3).

(1) If l ≤ 1 (which is always the case when n ≤ 3), then tπ(1, l) = −n. In particular, as
dπ(l) = n, it follows that eπ(l) = 0 whenever l ≤ 1.

(2) If l ≥ 2, then tπ(µ, l) = ∞ unless a(µ) = l, in which case tπ(µ, l) = −δ − a(µπ), where
δ ∈ {0, 1, 2} is the degree of the polynomial L(s, µπ)−1 in q−s.

Proof. In part (1) we need to consider µ = 1. Then L(s, µπ) = L(1 − s, µ−1ω−1
π π) = 1 and

combining (19) with Lemma 2.3 we have

ωπ(−1) (ζ(1)q−1)δl,1 = ε(1/2, π)
∑

t

q(t+n)(1/2−s)ct,l(1)

implying c−n,l(µ) is the only non-zero value of ct,l(µ) in this case.

For part (2), we begin by noting that G(̟−l, µ−1) = 0 whenever a(µ) 6= l ≥ 2. So tπ(µ, l) = ∞
unless a(µ) = l, in which case the least exponent of X occurring in the right side of (19) is
tπ(µ, l) + a(µπ) and in the left side is −δ. We deduce tπ(µ, l) = −δ − a(µπ). �

Thus, after Lemma 2.20, we proceed by assuming that l ≥ 2 (and hence n ≥ 4) and furthermore
that a(µ) = l.
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Type (3.a). Let π ≃ χSt with a(χ) > 0. By twisting by an unramified character, we may assume
that χ ∈ X. Here we note m ≤ n/2 = a(χ) so that dπ(l) = n. As explained above, we assume l ≥ 2
and a(µ) = l. First consider the case µ 6= χ−1; hence L(s, µπ) = 1. We get tπ(µ, l) = −a(µπ) and
hence

dπ(l) + tπ(µ, l) = n− a(µπ) = n− 2a(µχ).

So we need to look for those µ ∈ X′
l, µ 6= χ−1 that maximise a(µχ). Indeed if l 6= n/2, then

a(µχ) = n/2, implying eπ(l) = 0.
So, we assume from now on that l = n/2, implying a(µχ) ≤ n/2. By Lemma 2.1 we can always

find µ ∈ X′
l satisfying a(µχ) = l if and only if q > 2; in this case again eπ(l) = 0. If q = 2, then by

the same lemma we can choose µ ∈ X′
l such that a(µχ) = l − 1 if and only if l > 2, in which case

dπ(l) + tπ(µ, l) = 2 and so eπ(l) ≤ 2. If q = 2 and l = n/2 = 2, then we have a(µχ) = 0 and hence
dπ(l) + tπ(µ, l) = n = 4.

Finally, we consider the case µ = χ−1. Then δ = 1 and the basic identity gives us

dπ(l) + tπ(µ, l) = n− 1− a(µπ) = n− 2

as a(µπ) = 1. This estimate falls short of eπ(l) ≤ 2 whenever n > 4 so we must in fact have
eπ(l) = 2 in those cases. If n = 2k = 4, then we have found eπ(l) = 2.

So, to summarize, eπ(l) = 2 if l = n/2 ≥ 2 and equals 0 otherwise.

Type (3.b). Let π ≃ χ1 ⊞ χ2 with a(χ1) ≥ a(χ2) > 0. Here, m = a(χ1χ2) < n and dπ(l) =
max{n,m+ l}. We shall need to divide our analysis into several cases.

Case 1: Suppose a(χi) 6= l for both i = 1, 2. In this case δ = 0. Hence by Lemma 2.7,
tπ(µ, l) = −a(µπ) = −dπ(l) for all µ ∈ X′

l; consequently eπ(l) = 0.
Case 2: Suppose a(χ1) > a(χ2) = l. Then if q > 2 there exists a µ ∈ X′

l such that a(µχ2) = l;
in particular a(µχi) > 0 so that L(s, µπ) = 1. Therefore we again get eπ(l) = 0. If q = 2 but
l > 2, then we can find a µ ∈ X′

l such that a(µχ2) = l − 1 and this gives the maximum value for
a(µπ) = l− 1; hence eπ(l) = dπ(l)− a(χ1)− l+1 = 1. If q = l = 2, then we instead get a(µχ2) = 0;
this implies that δ = 1 and we once again get eπ(l) = 1.

We have shown that if a(χ1) > a(χ2) = l then

eπ(l) =

{

0 if q > 2 or l ≤ 1

1 if q = 2 and l ≥ 2.

Case 3: Suppose a(χ1) = a(χ2) = l and either q > 3 or q = 3 and a(χ1χ
−1
2 ) < l. We have dπ(l) =

2l = n. Lemma 2.2, part (1) implies that there exists a µ ∈ X′
l such that a(µχ1) = a(µχ2) = l. We

conclude that eπ(l) = 0.
Case 4: Suppose a(χ1) = a(χ2) = l, q = 3 and a(χ1χ

−1
2 ) = l. We have dπ(l) = 2l = n. Using

Lemma 2.2, part (2), we see that the minimum value of tπ(µ, l) is n− 1 and hence eπ(l) = 1.
Case 5: Suppose a(χ1) = a(χ2) = l, q = 2 and a(χ1χ

−1
2 ) < l − 1. In this case Lemma 2.2, part

(3) tells us that eπ(l) = 2 (note that if l = 2 then δ = 2)
Case 6: Suppose a(χ1) = a(χ2) = l, q = 2 and a(χ1χ

−1
2 ) = l− 1. In this case we have l ≥ 3, and

Lemma 2.2, part (4) tells us that eπ(l) = 3.

Type (3.c). Let π be a supercuspidal representation of G. As before we can assume a(µ) = l ≥ 2.
We have m ≤ n/2 so dπ(l) = n. For supercuspidal representations we always have δ = 0 so that

eπ(l) = n+min{tπ(µ, l) : µ ∈ Xl} = n−max{a(µπ) : µ ∈ Xl}
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By Lemma 2.7, if π is minimal or n 6= 2l, then a(µπ) = n; hence eπ(l) = 0 in these cases. Otherwise
suppose n = 2l is even and that π0 is the minimal supercuspidal representation such that π ∼= χπ0
with χ ∈ X. We must have n > a(π0), by assumption on π, and a(χ) = l = n/2, by the minimality
of π0. Moreover, by Lemma 2.7 we have a(µπ) = max{a(π0), 2a(µχ)}. If q > 2, then there exists
a µ ∈ X′

l such that a(µχ) = l. Therefore eπ(l) = 0 if q > 2. If q = 2 but l > 2, then there exist a
µ ∈ X′

l such that a(µχ) = l − 1 implying

eπ(l) = 2−max{a(π0)− n+ 2, 0}.

Finally, if n = 2l = 4, then a(µχ) = 0. Thus eπ(2) = 4− a(π0).

3. Global results

In this section, we work over the field Q for simplicity; the modifications required for a number
field are straightforward. Also, while we stick to holomorphic newforms, one could easily write
down corresponding results for Maass newforms.

3.1. Adelisation of modular forms. Let A denote the ring of adeles over Q, let Sf denote
the set of rational primes, that is the finite places of Q, and let ∞ denote the real place. We
put Ẑ =

∏

p∈Sf
Zp. For any place v of Q, and any g ∈ GL2(Q), let ιv(g) be the element of

GL2(A) whose vth place equals g and all other places equal 1; thus ιv is given by the embedding
GL2(Q) →֒ GL2(Qv) →֒ GL2(A). We let ιf = ⊗p<∞ιp, so that ιf(g) is the element of GL2(A) which
equals g at all finite places and equals the identity at the infinite place. More generally, for any
g ∈ GL2(A), we use ιf(g) to denote the element of GL2(A) whose p’th component equals gp if p ∈ Sf
and whose infinite component equals the identity.

Let ψ : Q\A → C× be the additive character defined by ψ =
∏

v ψv where ψ∞(x) = e(x) if
x ∈ R and ψp(x) = 1 for x ∈ Zp. Let π ≃ ⊗vπv be an irreducible, unitary, cuspidal automorphic
representation of GL2(A) with central character ωπ =

∏

v ωπv , which we assume to be trivial on R>0.
We can (and shall) realise π as a subspace of the space of square-integrable, cuspidal automorphic
forms on GL2(A). Let χ be the Dirichlet character associated to ωπ. For each p ∈ Sf , let np = a(πp),
mp = a(ωπp); we put N =

∏

p p
np , M =

∏

p p
mp . Let k ≥ 2 be an integer, and assume that π∞ is

the holomorphic discrete series representation of lowest weight k. In other words, π∞ is the unique

irreducible subrepresentation of | · |
k−1
2 sgnk ⊞ | · |

1−k
2 ; note that ωπ∞ = sgnk.

LetK1(N) =
∏

p∈Sf
K1,p(np) =

∏

p∤N GL2(Zp)
∏

p|N K1,p(np) be a standard congruence subgroup

of GL2(Ẑ) =
∏

p∈Sf
GL2(Zp). Above, K1,p(np) is the group defined in (8); throughout this section,

we will use subscripts to denote previously defined local objects. We have the diagonal realisation

(20) Γ1(N) = K1(N)GL2(R)
+ ∩GL2(Q).

Let K∞ = SO2(R), which is a maximal compact subgroup of GL2(R)
+. We say that a non-zero

automorphic form φ ∈ π is an adelic newform if φ is K1(N)-invariant and satisfies

(21) φ

(

g

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

])

= eikθφ(g)

for all g ∈ GL2(A). It is well-known that an adelic newform φ exists and is unique up to multiples,
and corresponds to a factorizable vector φ = ⊗vφv.

If φ is an adelic newform, then the function f on H defined by

(22) f(gi) = det(g)−k/2j(g, i)kφ(g)
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for each g ∈ GL2(R)
+ is a classical newform (see [Li79]) of weight k, level N , and character χ. The

map (22) from adelic to classical newforms is a bijection. Indeed, given a classical newform f of
weight k, level N , and character χ, one has the procedure of adelisation (see §3.1 of [Sah15]) that
produces an automorphic form φf on GL2(A) that is K1(N)-invariant and such that (21) and (22)
hold (with φ replaced by φf ). This automorphic form φf is the adelic newform inside an irreducible
cuspidal automorphic representation π which has the properties described earlier.

Finally, for any elements x, y lying in some ring, we define the matrices n(x) =

[

1 x
1

]

, a(y) =
[

y
1

]

. For z = x+ iy ∈ H, put gz = n(x)a(y) =

[

y x
0 1

]

∈ GL2(R)
+. So gzi = z ∈ H and we have

for all σ ∈ SL2(Q) the equalities

(23) (f |kσ
−1)(z) = (f |kσ

−1gz)(i) = y−k/2φf (ι∞(σ−1)gz) = y−k/2φ(gzιf(σ)).

3.2. Whittaker and Fourier expansions.

3.2.1. Adelic Whittaker expansion. We call a function W : GL2(A) → C a ψ-Whittaker function
if W satisfies W (n(x)g) = ψ(x)W (g) for each x ∈ A and g ∈ GL2(A). By the existence and
uniqueness of Whittaker models for GL2, there exists a (unique) subspace of such functions which,
under the right-regular action of GL2(A), is isomorphic to π; this subspace is called the Whittaker
model and is denoted W(π, ψ). This GL2(A)-isomorphism may be explicated as the map

φ(g) 7−→Wφ(g) =

∫

Q\A
φ(n(x)g)ψ(x) dx

where we take the invariant probability measure dx on A. By Fourier inversion, we can derive a
Fourier expansion for φ in terms of Wφ,

(24) φ(g) =
∑

ξ∈Q×

Wφ(a(ξ)g).

3.2.2. Classical Fourier expansion. We will now explicate the relation between the adelic Whittaker
expansion and the classical Fourier expansion. We begin with the following lemma.

Lemma 3.1. Let φ be an automorphic form in the space of π that satisfies (21) and let δ ∈ Z be

such that φ is right invariant by ιf(n(δu)) for all u ∈ Ẑ. Let h be the holomorphic function on H
defined by the equation

h(z) = j(gz , i)
kφ(gz).

Then h has a Fourier expansion given by

h(z) =
∑

n>0

ah(n)e
2πinz

δ .

Moreover, for all ξ ∈ Q×, we have

Wφ(a(ξ)gz) =

{

yk/2 ah(n) e(nz/δ) if ξ = n/δ for some n ∈ Z,

0 otherwise.
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Proof. This proposition is given in [Gel75, Lemma 3.6] in a special case. Our statement is more

general, thus we give a detailed proof. We have h(z + δ) = y−k/2φ(gzιf(n(−δ))) = h(z) and as h
is a holomorphic cusp form (of weight k with respect to some principal congruence subgroup), it
follows that h has a Fourier expansion of the type specified. Next note that

Wφ(a(ξ)gz) =

∫

Q\A
φ(n(x′)a(ξ)gz)ψ(−x

′) dx′

=

∫

Q\A
φ(n(x′ + x)a(y))ψ(−ξx′) dx′

= e(ξx)Iφ(y, ξ),

where

Iφ(y, ξ) =

∫

Q\A
φ(n(x′)a(y))ψ(−ξx′) dx′.

Choose the following fundamental domain for the (compact) quotient Q\A using strong approxi-
mation: Q\A = [0, δ) ×

∏

p<∞ δZp.
This gives us

Iφ(y, ξ) =

∫ δ

0
yk/2h(x∞ + iy)e (−ξx∞) dx∞

(

1

δ

∏

p<∞

∫

Zp

ψp(−ξδxp)dxp

)

.

If δξ is not an integer, then let p be any prime dividing its denominator. We have
∫

Zp
ψp(−ξδxp)dxp

= 0 and so Iφ(y, ξ) = 0. On the other hand, if ξ = nδ, then
∏

p<∞

∫

Zp
ψp(−ξδxp)dxp = 1 and we

have

Iφ(y, n/δ) =
1

δ

∫ δ

0
yk/2h(x∞ + iy)e (−ξx∞) dx∞

= yk/2 ah(n) e (niy/δ) .

where we have used the Fourier expansion of h. Therefore in this case we have

Wφ(a(n/δ)gz) = e(nx/δ)Iφ(y, n/δ) = yk/2 ah(n) e(nz/δ)

as required. �

Henceforth, let φ be an adelic newform in the space of π and f the corresponding classical
newform. We have the usual Fourier expansion for f at infinity given by

(25) f(z) =
∑

n>0

af (n)e
2πinz ,

and henceforth we normalise f and φ so that af (1) = 1. More generally, for any cusp a = a
L with

(a,N) = 1, we put δ(a) = lcm[L2,N,LM ]
L2 , and as explained in the introduction, we have the Fourier

expansion of f at a:

(26) (f |kσ
−1)(z) =

∑

n>0

af (n; a)e
2πinz
δ(a) .
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Above, σ is any matrix in SL2(Z) such that σ(a/L) = ∞. In particular, we may choose σ =

[

a b
L d

]−1

where b, d are any integers such that ad − bL = 1. Note that af (n) = af (n,
1
N ), which follows by

taking σ =

[

1
−N 1

]

∈ Γ1(N) (note also that δ(∞) = δ(1/N) = 1). When δ(a) > 1, the Fourier

coefficient af (n, a) depends not just on a but also (weakly) on the choice of σ; precisely, for two
choices σ, σ′ both taking a to ∞, the corresponding Fourier coefficients af (n, a) and a′f (n, a) are

related via af (n, a) = e
2πint
δ(a) a′f (n, a) where t is some integer depending on σ′σ−1. However, the

absolute value |af (n, a)| is independent of the choice of σ.
From (23), we see that the modular form f |kσ

−1 corresponds to the automorphic form φ′ =

π(ιf(σ))φ. Let x be a finite adele such that x/δ(a) ∈ Ẑ. Using the explicit formula

(27)

[

a b
L d

][

1 x
1

][

a b
L d

]−1

=

[

1− xaL a2x
−L2x 1 + xaL

]

,

we see that our adelic newform φ is right invariant by σ−1n(x)σ and consequently the automorphic
form φ′ is right invariant by n(x).

Proposition 3.2. With notation as above, let ξ ∈ Q×. Then

Wφ(a(ξ)gzιf(σ)) =

{

yk/2 af (n; a) e (nz/δ(a)) if ξ = n/δ(a) for some n ∈ Z,

0 otherwise

Proof. This follows from applying Lemma 3.1 on the automorphic form φ′ = π(ιf(σ))φ, and using

the fact that φ′ is right invariant by ιf(n(δ(a)u)) for all u ∈ Ẑ. �

3.2.3. A product formula for classical Fourier coefficients. We can use Proposition 3.2 to pin-down
the coefficients af (n; a) precisely in terms of the factorisation ofWφ into local Whittaker functionals.
Indeed, by the uniqueness of local and global Whittaker models, we have for all g ∈ G(A),

(28) Wφ(g) =W∞(g∞)
∏

p<∞

Wπp(gp),

where, for each p ∈ Sf , the function Wπp on GL2(Qp) is defined as in Definition 2.9 while W∞

corresponds to φ∞ in the Whittaker model for π∞, and is normalised so that (28) holds. To
explicate the function W∞, we observe using Proposition 3.2 that for any y > 0,

W∞(a(y)) =Wφ(a(y)) = yk/2e−2πy.

For each prime p|N , and each 0 ≤ lp ≤ np, let the integer dπp(lp) be defined as in Proposition
2.11, and let the integer eπp(lp) be as defined in (2.13) (and written down explicitly in Theorem
2.14). The next Proposition rewrites the Fourier coefficients af (n; a) in terms of the local Whittaker
newforms Wπp .

Proposition 3.3. Let a = σ−1∞ be a cusp of Γ0(N)\H with σ−1 =
(

a b
L d

)

∈ SL2(Z), L|N , (a,N) =
1, so that a corresponds to the cusp a/L. Let r be a positive integer and write r = r0

∏

p|N p
rp with

(r0, N) = 1, and write L =
∏

p|N p
lp. For each p|N define

up = −a×
prp

r
×

[L,M,N/L]

pdπp (lp)−lp
∈ Z×

p .
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Then we have

(29)
af (r; a)

rk/2
=
af (r0)

r
k/2
0

e

(

rd

δ(a)L

)

∏

p|N Wπp(grp−dπp (lp),lp,up
)

δ(a)k/2

where Wπp are the local Whittaker newforms associated to f normalised so that Wπp(1) = 1.

Proof. Applying (28) to Proposition 3.2 (taking z = i) we determine

af (r; a) = e

(

ri

δ(a)

)

W∞(a(r/δ(a)))
∏

p<∞

Wπp(a(r/δ(a))σ)

= af (1)

(

r

δ(a)

)k/2
∏

p|r0

Wπp(a(r0))
∏

p|N

Wπp(a(r/δ(a))σ).

Considering the r0-th Fourier coefficient in the expansion at a = ∞, (so that δ(∞) = 1, and each
Wπp is right invariant by ιp(σ)); this formula simplifies to

af (r0) = af (1)r
k/2
0

∏

p|r0

Wπp(a(r0))

since Wπp(a(r0)) = 1 for p ∤ r0. Comparing the formulas for af (r; a) and af (r0), we see

(30) af (r; a) =
af (r0)

r
k/2
0

(

r

δ(a)

)k/2
∏

p|N

Wπp(a(r/δ(a))σ).

Let us decompose this expression on the right. First consider the Bruhat decomposition of σ:

σ =

(

d −b
−L a

)

= z(L)n(−d/L)a(1/L2)wn(−a/L).

This gives us, for each p|N ,

Wπp (a(r/δ(a))σ) = ωπp(L)ψp

(

−rd

δ(a)L

)

Wπp

(

a

(

r

L2δ(a)

)

w n

(

−a

L

))

= ωπp(L)ψp

(

−rd

δ(a)L

)

Wπp

(

a(prp−dπp (lp))w

[

1 −a/L
rp

dπp (lp)

L2δ(a)prp

])

= ωπp(L)ψp

(

−rd

δ(a)L

)

Wπp

(

a(prp−dπp(lp))w n
(

upp
−lp
))

.

(31)

where we have used the right-K1,p(N)-transformation property of Wπp. Substituting (31) into (30),
we obtain

(32)
af (r; a)

rk/2
=





∏

p|N

ψp

(

−rd

δ(a)L

)

ωπp(L)





af (r0)

r
k/2
0

∏

p|N Wπp(grp−dπp (lp),lp,up
)

δ(a)k/2
.

Our desired result (29) now follows from the equalities
∏

p|N

ψp(−rd/(δ(a)L)) =
∏

p<∞

ψp(−rd/(δ(a)L)) = e(rd/δ(a)L)
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and
∏

p|N

ωπp(L) =
∏

p<∞

ωπp(L) = 1.

�

3.2.4. Global to local reduction of the vanishing index.

Corollary 3.4. Let L =
∏

p p
lp, r = r0

∏

p|N p
rp be positive integers with L|N , (r0, N) = 1.

(1) If rp < eπp(lp) for some prime p|N , then af (r, a) = 0 for all cusps a = a
L , (a,N) = 1.

(2) Let r =
∏

p|N p
eπp(lp). Then there exists some cusp a = a

L , (a,N) = 1, such that af (r, a) 6= 0.

Proof. Both parts follow immediately from Proposition 3.3. Indeed, if rp < eπp(lp) for some prime
p|N , thenWπp(grp−dπp (lp),lp,v

) = 0 for all v ∈ Z×
p and so (29) implies that af (r; a) = 0. On the other

hand, if r =
∏

p|N p
eπp(lp), then by the definition of eπp(lp), there exists for each p|N some vp ∈ Z×

p

such that Wπp(grp−dπp (lp),lp,vp
) 6= 0. By the Chinese remainder theorem, we can now choose some

a coprime to N satisfying −a× prp+lp

Lr × [L2,N,LM ]

pdπp (lp)
≡ vp (mod N) for all p|N . Therefore, by (29),

we have af (r, a) 6= 0 (recall that af (1) 6= 0). �

Define the quantities

ef (a) := min{n > 0 : af (n; a) 6= 0}, ef (L) = min
a∈(Z/NZ)×

ef (a/L).

We can now prove our main result (stated as Theorem 1.2 in the introduction).

Theorem 3.5. For any integer L =
∏

p p
lp dividing N , we have

ef (L) =
∏

p

peπp(lp).

Proof. The proof follows immediately from Corollary 3.4. �

3.3. Proofs of Proposition 1.3 and Theorem 1.1. We begin by proving (a slightly stronger
version of) Proposition 1.3. Let π′ = π if k is even and π′ = π| · |1/2 if k is odd (here, | · | denotes
the adelic norm, which is just the product of all the local norms). Then, as noted in [RT11], π′ is a
regular algebraic cuspidal automorphic representation (note however, that π′ is no longer unitary

if k is odd). In particular, if we define π′p = πp if k is even and π′p = πp| · |
1/2 if k is odd, so

that π′ = ⊗vπ
′
v, then the compositum Q(π′) of all the fields Q(π′p) with p ∈ Sf is a number field

(see [RT11]). In fact Q(π′) = Q(f) where Q(f) is the number field generated by all the Fourier
coefficients af (n) (see part (5) of Theorem 1.4 of [RT11]).

Let us define KN to be the compositum of all the fields Q(π′p) over the primes p such that p2|N .
Clearly KN is a subfield of Q(f).

Proposition 3.6. Suppose for some divisor L =
∏

p p
lp of N we have KN ∩Q(e

2πi
(L,N/L) ) = Q. Then

ef (a) = ef (L).

Proof. Using Proposition 3.3, it suffices to show that Wπp(geπp (lp)−dπp (lp),lp,v
) 6= 0 for all v ∈ Z×

p . If

p2 ∤ N , this follows from Proposition 2.16. If p2|N , this follows from Proposition 2.17. �
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Note that the above Proposition implies Proposition 1.3 as KN ⊆ Q(f). Next, let f , π be such
that f is the newform associated to an elliptic curve E over Q. In particular, f has trivial character
(M = 1), k = 2, and the Fourier coefficients af (n) are all rational numbers.

Lemma 3.7. In the present case, the ep of Theorem 1.1 is equal to the eπp(lp) of Theorem 1.2.

Proof. Since the af (n) are all rational numbers, the representation π satisfies the hypothesis of
Proposition 3.6. We consequently have ef (a) = ef (L) for any cusp a of denominator L, in particular
for the f attached to E. �

We now give the proof of how Theorem 1.2 implies Theorem 1.1. The fact that f now has trivial
character implies that if πp is a principal series representation, then it must be of the form χ⊞χ−1.
Furthermore it is known (see, e.g., [Sil94, Theorem 10.4]) that the exponents np = vp(N) have the
following bounds: np ≤ 2 if p ≥ 5, n3 ≤ 5, and n2 ≤ 8. Now, one is left to rattle through the
short (finite) list of possible entrants into Theorem 1.1 (that is, which representations occur that
satisfy the aforementioned bounds), with index ep given in Theorem 1.2. Indeed, let p = 3. Then,
by Theorem 1.2, and the bound n3 ≤ 5, we see that e3 = 0 unless n3 = 4, l3 = 2 and π3 is a
principal series representation, which is exactly Case (i) of Theorem 1.1. Next, let p = 2. Case
(ii) of Theorem 1.2 cannot occur in our present situation because f has trivial character. Case
(iii) of Theorem 1.2 exactly corresponds to Case (iii) of Theorem 1.1. Case (vii) of Theorem 1.2
corresponds to Case (iv) of Theorem 1.1 (observe that there is no character χ of Q×

2 satisfying
a(χ) = 3, a(χ2) = 2, so we cannot have n3 = 6). If we are not in any of the Cases (ii–vii) of
Theorem 1.2, then we must have either n2 ≤ 2 or n2 6= 2v2(L), which corresponds to Case (ii) of
Theorem 1.1. Finally, Cases (iv–vi) of Theorem 1.2 correspond to Case (v) of Theorem 1.1. This
completes the proof that Theorem 1.2 implies Theorem 1.1.
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