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Abstract 

Objective: Renal outcomes after critical illness are seldom assessed, despite strong 

correlation between chronic kidney disease (CKD) and survival. Outside hospital, 

renal dysfunction is more strongly associated with mortality when assessed by serum 

cystatin-c than by creatinine. The relationship between creatinine and longer-term 

mortality might be particularly weak in survivors of critical illness.  

  

Design: Retrospective observational cohort study 

  

Patients: In 3077 adult intensive care unit (ICU) survivors we compared ICU-

discharge cystatin-c and creatinine and their association with one year mortality. 

Exclusions: death within 72h of ICU-discharge, ICU stay <24h, end-stage renal 

disease. 

  

Interventions: None 

  

Measurements and main results: During ICU admission serum cystatin-c and 

creatinine diverged so that by ICU discharge, almost twice as many patients had 
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glomerular filtration rate (GFR) <60ml/min/1.73m2 when estimated from cystatin-c 

(eGFR-Cys-c) compared to creatinine (eGFR-Cr), 44% vs. 26%. In 743 patients 

without AKI, where ICU-discharge renal function should reflect ongoing baseline, 

discharge eGFR-Cr consistently over-estimated follow-up eGFR-Cr, while ICU-

discharge eGFR-Cys-c well-matched follow-up CKD status.  By one year 535 

(17.4%) had died. In survival analysis adjusted for age, sex and comorbidity, cystatin-

c was near-linearly associated with increased mortality, hazard ratio (HR)=1.78 (95% 

CI: 1.46-2.18), 75th versus 25th centile. Conversely, creatinine demonstrated a J-

shaped relationship with mortality, so that in the majority of patients there was no 

significant association with survival, HR=1.03 (0.87-1.2), 75th vs. 25th centile. After 

adjustment for both creatinine and cystatin-c levels, higher discharge creatinine was 

then associated with lower long-term mortality. 

  

Conclusions: In contrast to creatinine, cystatin-c consistently associated with long-

term mortality, identifying patients at both high and low risk, and better correlated with 

follow-up renal function. Conversely, lower creatinine relative to cystatin-c appeared 

to confer adverse prognosis, confounding creatinine interpretation in isolation. 

Cystatin-c warrants further investigation as a more meaningful measure of renal 

function after critical illness. 
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Introduction 

Acute kidney injury (AKI) increases risk of development or progression of chronic 

kidney disease (CKD) after critical illness(1, 2). CKD is associated with long-term risk 

of cardiovascular morbidity, end-stage renal disease (ESRD) and short- and long-

term risk of death(3-6). Despite these important associations, survivors of critical 

illness with AKI rarely receive nephrology follow-up(7). 

Assessment of renal function in survivors of critical illness requires tests of renal 

function that accurately reflect risk of long-term adverse outcomes. The endogenous 

biomarkers of renal function, creatinine and cystatin-c, both indirectly assess 

glomerular filtration rate (GFR)(8). While creatinine is standard, cystatin-c has limited 

uptake worldwide, despite potential superiority in prognostication of patients with 

CKD(9). Furthermore, interpretation of serum creatinine in intensive care survivors 

may be confounded by decreased creatinine generation(10, 11), thought to be a 

consequence sustained muscle wasting observed in critical illness.  This effect is 

doubly confounding as muscle wasting is itself associated with adverse patient 

outcomes(12).  

Cystatin-c is produced in nucleated cells and less confounded by acute and chronic 

illness, changes in diet and decreased muscle mass(13). In patients with CKD, 

estimated GFR (eGFR) based on cystatin-c better predicts mortality than eGFR 

based on creatinine which demonstrates a J-shaped relationship with risk of death(9). 

However, the relationship between cystatin-c and longer-term survival has not been 

compared to that of creatinine in the critically ill. 
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Accordingly, we examined seven years of patient data from a major teaching hospital 

intensive care unit (ICU) where both serum creatinine and cystatin-c are routinely 

measured. We hypothesized that, as a more accurate reflection of underlying renal 

function, cystatin-c would be strongly associated with long-term risk of death after 

ICU-discharge while serum creatinine might perform comparatively poorly.  

 

Materials and methods 

Study design 

This cohort study was conducted in the multidisciplinary ICU at the Karolinska 

University Hospital Solna, Sweden: a 13-bed unit with approximately 1000 

admissions yearly. The Stockholm Regional Ethics Committee approved the study, 

waiving informed consent due to retrospective observational nature of the study. 

 

Inclusion and exclusion criteria 

We screened all ICU patients admitted between October 2006 and December 2013. 

During this period, we only considered a patient’s first ICU-admissions of >24h. We 

excluded deaths in-ICU or within three days of ICU-discharge, patients lacking 

linkage to mortality data, any patients with ESRD prior to ICU-admission or new 

ESRD with a chronic dialysis commencement date within 14 days of ICU-discharge. 

Lastly, we excluded patients lacking cystatin-c measurement near ICU-discharge (up 

to one-day prior or two days after ICU-discharge date).  

 

Laboratory testing 
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Cystatin-c was determined with a turbidimetric method (Gentian Cystatin-c UDR-Kit 

for Beckman-Coulter Synchron and UniCel Systems, Ref A52761). Creatinine was 

determined with a modified Jaffe method (CREm, Creatinin, Ref 472525). We 

calculated eGFR for both markers using CKD-EPI(14).   

 

Data collection 

Patients were monitored using the patient database management system Clinisoft® 

GE, USA. From hospital electronic health records (EHR), (Take Care®, CompuGroup 

Medical, Germany) we linked diagnosis data from the index admission and prior 

clinical encounters with ICD-10 coding for assessment of comorbidities and 

calculation of Charlson Comorbidity Index, Quan modification (CCI)(15, 16). Linkage 

to EHR laboratory information before and after ICU-admission allowed assessment of 

pre-morbid, hospital discharge and follow-up creatinine. AKI was defined by the 

KDIGO criteria(17) as a 1.5 fold increase in serum creatinine from baseline during 

ICU-admission or an absolute 0.3mg/dl increase over a ≤48h period. Baseline 

creatinine was defined as the last value from 365 days to 7 days prior to hospital 

admission, or if unavailable the value closest to the admission value. Follow-up 

creatinine was the most recent value available from 30 days to one year after hospital 

discharge. Swedish resident registration number (18) allowed identification of date of 

all deaths. Linkage with the Swedish Renal Registry (SRR) allowed identification of 

patients with ESRD/time of first chronic dialysis.  
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Statistical analyses 

Statistical analysis was performed using R Development Core Team R Foundation 

for Statistical Computing, Vienna, Austria, http://www.R-project.org using the 

packages Survival, SmoothHR, icd and rms. Continuous variables are presented as 

median with interquartile range. Univariable comparisons were performed using the 

Wilcoxon Rank Sum Test, the Wilcoxon Signed-Rank Test and Fisher’s Exact Test 

for continuous, paired continuous and binary data.  Unadjusted survival data was 

stratified by quartiles of creatinine or cystatin-c and plotted as a Kaplan-Meier 

estimator and compared using the log-rank test. A two-tailed p-value of <0.05 was 

considered statistically significant.   

 

Multivariable modelling 

To assess the independent effect of renal filtration markers on survival in the year 

after hospital discharge multi-variable Cox proportional-hazard survival models were 

developed. To avoid concern regarding accuracy of eGFR equations in the ICU 

population we modeled the relationship between absolute creatinine or cystatin-c and 

mortality. We included age, sex, and comorbidity as covariates in our multivariable 

survival model as baseline factors likely to be associated with post ICU-survival 

and/or with renal function. In previous analyses of ICU survivors, comorbidity index 

was a stronger predictor of long term mortality than ICU-admission severity scoring 

(calibrated to short term risk of death)(19). To best illustrate the influence of AKI on 

the association of the filtration markers on survival we repeated analyses considering 

only AKI or non-AKI patients.  In all models, we tested the proportional-hazards 

assumption by correlating the corresponding set of scaled Schoenfeld residuals with 

a Kaplan-Meier estimate of the survival function and non-proportional covariates 
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were handled by stratification for that variable.  Based on general population data we 

hypothesized that creatinine or cystatin-c would be non-linearly related to risk of 

death; accordingly, these variables were fitted to a penalized spline. The degree of 

curve smoothing in the final model was determined by an algorithm based on 

minimization of Akaike’s Information Criterion (AIC). Finally, we included creatinine 

and cystatin-c in a single age, sex and comorbidity adjusted multivariable model to 

explore the additive effects of these markers in combination.  
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Results 

Demographics 

After exclusions, 3077 survivors were included for primary analysis (Supplement 

Figure S1). By 90 days after ICU-discharge 318 died (10.3%) rising to 536 (17.4%) at 

one year.  Nine patients developed new ESRD in the year after ICU-discharge. Non-

survivors were older, had greater comorbidity, higher SAPS3 score, more often 

developed AKI and required RRT.  Patients dying in the year after ICU-discharge had 

higher admission, peak and ICU-discharge creatinine than long-term survivors but 

these differences were more marked for cystatin-c at all time-points (Table 1). 

Importantly, while creatinine fell, from ICU-admission to discharge, cystatin-c rose 

over the same period (Table 1).  

 

Renal function markers and mortality after ICU-discharge 

Cystatin-c and creatinine at ICU-discharge differed distinctly in their association with 

mortality over the next 90 and 365 days (Table 2). The lowest cystatin-c quartile 

defined a low-risk population with a 5.6% one year mortality, compared to 13.6% in 

the lowest creatinine quartile. Overall, rates of death were well separated with 

increasing rates of death between quartiles of discharge cystatin-c whilst for 

creatinine only the upper quartile was separated (Figure 1).  

 

Multi-variable survival analysis 

To detect non-linear relationship between filtration markers and mortality risk, 

creatinine and cystatin-c were fitted to penalized splines in a multivariable survival 

model including sex, stratified for age and comorbidity index. Increasing cystatin-c 
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was near-linearly related to increasing HR for death; conversely creatinine 

demonstrated a J-shaped relationship (Figure 2). These relationships persisted when 

patients with or without AKI were considered separately (Figure S2). Considering 

both creatinine and cystatin-c together in a new multivariable model including age 

sex and comorbidity, increasing cystatin-c remained strongly associated with 

increasing HR for death, however, higher creatinine was then associated with lower 

hazard of death at all creatinine levels (Figure 3). 

 

Relationship between cystatin-c and creatinine based estimates of GFR 

Median eGFR at ICU-discharge based on creatinine was greater than using cystatin-

c (92 vs. 68ml/min/1.73m2, p<0.001). Using cystatin-c for eGFR identified 1362 

(44%) patients <60ml/min/1.73m2 at ICU-discharge compared to only 794 (26%) 

using creatinine based eGFR. Despite a substantially larger population with low 

eGFR, there was similar mortality in the cystatin-c group with eGFR<60 compared to 

that defined by creatinine eGFR (cystatin-c: 386/1362, 28% vs. creatinine: 233/794, 

29%, (Table S1).  

 

We examined cystatin-c/creatinine divergence during ICU-stay by comparing ratio of 

creatinine to cystatin-c eGFR for different durations of ICU-admission (Figure S3).  In 

admissions lasting 1-2 days, the median ratio was 1.01 (IQR: 0.87-1.24). However, 

with longer admissions eGFR by creatinine was consistently greater than eGFR 

cystatin-c. For ICU-admissions of >20 days values of eGFR (creatinine) were a 

median of 2.1 (IQR 1.7-2.8) fold greater than corresponding eGFR (cystatin-c). 

Finally, to illustrate the timing of changes in creatinine and cystatin-c after ICU 
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admission we examined changes in creatinine, cystatin-c and C-reactive protein 

(CRP) over the first seven days of ICU admission and at ICU discharge in a subset of 

516 patients with ICU admissions of ≥7 days. In this analysis creatinine progressively 

fell while at the same time cystatin-c rose (Fig S4). During this period, CRP had a 

biphasic profile and did not correlate with the two endogenous renal filtration 

markers. 

 

To explore the discrepancy of cystatin-c and creatinine at ICU-discharge we 

considered 743 patients without AKI in the ICU (where ICU-discharge renal function 

would be expected to be similar to follow-up) who had a creatinine measurement in 

the 30-365 days after discharge and survived to 1 year.  In this group, we compared 

cystatin-c and creatinine eGFR at ICU-discharge against follow-up creatinine eGFR 

(at a median of 267 days (IQR 145-334) after hospital discharge). GFR based on 

cystatin-c better agreed with CKD categorization at follow-up, particularly in the GFR 

range 30-60. In contrast, discharge creatinine eGFR over-estimated follow-up GFR in 

all CKD categories (Figure S5, Table S2). 

 

Discussion 

Interpretation of findings 

In a large critically ill adult patient population we found cystatin-c was near linearly 

associated with age and comorbidity-adjusted 90- and 365-day mortality. In contrast, 

creatinine was unable to discriminate low-risk patients, showing a flattened J-shaped 

relationship with risk of death. While in the majority of patients discharge creatinine 
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that was not significantly predictive of risk of death, across the full range of measured 

values, cystatin-c provided prognostic information. 

 

In line with these findings, during ICU-admission on average creatinine fell, while in 

the same patient group cystatin-c rose, resulting in a striking 24ml/min/1.73m2 

median difference in eGFR based on cystatin-c vs. creatinine at ICU-discharge. Both 

markers supposedly reflect true underlying GFR, but clearly one, or both, fail to do so 

in this setting. If excretion of markers is similarly affected by renal function, the 

generation rate of one or both must be substantially altered during critical illness. 

Given that cystatin-c is robustly related to risk of death while creatinine is not, we 

believe our findings are most compatible with cystatin-c better reflecting underlying 

renal function. This conclusion is supported by the observation that, in non-AKI-

patients, where underlying GFR would not be expected to change markedly during 

convalescence, ICU-discharge cystatin-c eGFR better correlated with follow-up CKD-

status than creatinine eGFR (Figure S4, Table S2). 

 

Acute and chronic reduction in creatinine generation with muscle wasting may 

explain an inability to associate lower discharge creatinine with better prognosis, an 

interpretation strengthened by the finding that, for short ICU-admissions, cystatin-c 

and creatinine eGFR at discharge are similar. With longer ICU stays eGFR 

(creatinine) tends to be increasingly higher than eGFR (cystatin-c), a finding 

compatible with progressive muscle wasting during prolonged critical illness (Figure 

S3). Finally, when both markers were considered together in a survival model, 

increasing cystatin-c remained strongly associated with mortality, however, 
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increasing creatinine then became consistently associated with lower mortality, 

potentially reflecting lower mortality in patients with less muscle wasting (Figure 3). 

 

Relation to previous studies 

Assessment of renal function using creatinine has been shown to be confounded by 

progressive creatinine reduction associated with critical illness(10, 11) and 

accounting for these reductions results in more than doubling of patients with 

potential CKD at ICU-discharge. Decreased creatinine excretion, paralleling 

decreased production has been demonstrated with prolonged critical illness(11). In 

contrast, several studies suggest that cystatin-c outperforms creatinine in ICU 

populations. In cardiovascular surgery, creatinine eGFR over-estimated iohexol 

measured-GFR whereas cystatin-c eGFR well-matched(20). Similarly, in a general 

ICU patients, cystatin-c-estimated GFR was significantly lower than creatinine 

eGFR(21). Reductions in creatinine generation have been demonstrated in an animal 

model of sepsis(22); notably, in this model cystatin-c production was not 

increased(23), suggesting any cystatin-c elevation during critical illness is likely to 

reflect reduced renal clearance. The hypothesis that cystatin c production rises as an 

inflammatory response has also not been supported by previous comparisons to 

inflammatory markers in humans(24), while, in our study, elevation in cystatin-c was 

progressive and persistent, despite resolution of systemic inflammation as indicated 

by fall in CRP (Fig S4). 

 

We have previously demonstrated an association between cystatin-c but not 

creatinine short term ICU mortality in a small sample of patients(25). This study 
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extends those findings, demonstrating a consistent association between cystatin-c at 

ICU-discharge and longer-term mortality in a much larger population critically ill 

patients with and without AKI. Cystatin-c has also been shown to better-correlate with 

mortality in settings where creatinine values may be confounded by premorbid 

condition, including vascular surgery patients(26), HIV patients(27), liver transplant 

recipients(28) and in acute heart failure(29); as well as in the general population and 

patients with CKD(9).  

 

Study Implications 

Consequences of AKI include increased long-term risk of death, cardiovascular 

events, development of CKD, and ESRD(5, 6). Incomplete recovery from severe AKI 

is a well-recognized pathway to persistent and progressive CKD (30), but recent 

studies suggest that apparently completely recovered AKI remains associated with a 

subsequent risk of CKD and death(5, 31). Importantly, the majority of such patients 

do not receive kidney-directed follow-up. Our findings suggest that a substantial 

number of these patients could have significant renal dysfunction undetected by 

creatinine. Notably, in this study, the where ICU-discharge renal function would be 

expected to be similar to follow-up 628 “extra” patients identified with an ICU-

discharge eGFR of <60 by cystatin-c, but not creatinine, had similar risk of death to 

patients with eGFR <60 by creatinine based calculation, suggesting cystatin is 

correctly classifying patients at increased risk. Cystatin-c has the potential to target a 

larger group of high-risk patients for specialist follow-up that might improve 

outcomes(32) and also to accurately identify a group of low risk patients.   
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Strengths and weaknesses 

This study is the largest comparison between creatinine and cystatin-c as markers of 

renal function in ICU patients. High-resolution data-linkage allowed us to precisely 

identify the presence and severity of AKI in the ICU, to collect detailed comorbidity 

data, to remove chronic dialysis patients and to obtain accurate all-cause mortality 

(33).  

 

A weakness of this study is lack of gold standard GFR. Despite circumstantial 

evidence that our results reflect limitations of serum creatinine as a GFR biomarker 

after critical illness, without reliable measurement of GFR we cannot exclude the 

presence of increased cystatin-c production that is independently associated with 

increased mortality(9, 34). However, evidence suggests that such increases are not 

observed in clinical or experimental sepsis(23, 35).  Cystatin-c measurements were 

confined to the ICU, i.e. the time-point of comparison, at ICU-discharge, was one of 

only relative clinical stability and renal recovery after AKI may still be occurring at this 

point. Our primary analysis concentrated on absolute values of creatinine and 

cystatin-c. To compare predicted renal function from these markers we used eGFR in 

secondary analyses, eGFR equations are unlikely to be accurate in the critically ill, 

however the purpose of such comparison is only to better-demonstrate the 

discrepancy between the markers and their agreement with baseline and follow-up.  

Finally, being a single center study, our findings would need confirmation in groups of 

differing socio-economic background and diverse ethnicity.  
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Conclusions 

In a large population of critically ill patients, cystatin-c progressively rose during ICU 

treatment while creatinine fell, despite both being markers of glomerular filtration. 

Levels of cystatin-c after critical illness were strongly associated with 90-day and 

one-year mortality both in AKI- and non-AKI-patients.  Cystatin-c identified almost 

twice as many patients as having clinically significant renal dysfunction at ICU-

discharge and was superior in CKD categorization in the year following the critical 

illness. Conversely, creatinine was poorly related to risk of death and, in isolation, 

had little value as a prognostic marker in the majority of patients. Cystatin-c is likely 

to be the superior renal functional marker in survivors of major illness and should be 

investigated as a prognostic marker for patients at risk of CKD for follow-up and 

targeted intervention. 

 

Figure 1. Crude mortality in the year after ICU-discharge stratified by quartiles of Creatinine 

or Cystatin-c at ICU-discharge. 
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Figure 2. Age and Sex adjusted Hazard Ratios for survival in the year after ICU-discharge 

fitted with penalized spline regression for ICU-discharge Creatinine and Cystatin-c. Stratified 

Cox-Model (Strata: Co-morbidity Index category (0, 1-2, 3-4, 5-6, >6) and octiles of age). 

Values plotted from the 5th to 95th centiles the predictor variable and distribution of values 

within this range is marked above the x-axis. Reference is 25th centile value set to HR=1, 

25th, 50th & 75% centiles are marked with vertical lines.   
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Figure 3. Including Cystatin-c and Creatinine together in a single Cox-Proportional Hazard 

survival model, Age and Sex adjusted Hazard Ratios for survival in the year after ICU-

discharge fitted with penalized spline regression for ICU-discharge Creatinine adjusted for 

Cystatin-c and Cystatin-c adjusted for Creatinine. Stratified Cox-Model (Strata: Co-morbidity 

Index category (0, 1-2, 3-4, 5-6, >6) and octiles of age). Values plotted from the 5th to 95th 

centiles the predictor variable and distribution of values within this range is marked above the 

x-axis. Reference is 25th centile value set to HR=1, 25th, 50th & 75% centiles are marked with 

vertical lines.   
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Table 1. Demographics and renal filtration markers in concentrations in survivors and non-

survivors 

* Values available in 3013 patients for SAPS3, 3070 for closest to admission cystatin-c.	

 

!!
All!Patients! Survived!1!year! Died!by!1!year!

(No.!or!
median)!

IQR!or!%!
(No.!or!
median)!

IQR!or!%!
(No.!or!
median)!

IQR!or!%!

Number! 3077! 100%! 2542! 82.6%! 535! 17.4%!

Age! 59! 41.70! 56! 38.68! 69! 60.76!

Male!Sex! 1899! 61.7%! 1559! 61.3%! 340! 63.4%!

ICU!LOS!(h)! 58! 34.120! 58! 33.119! 62! 37.125!

SAPSF3*! 37! 26.50! 35! 24.48! 47! 36.57!

Medical 1348 43.8% 1039 40.9% 309 57.8% 

Surgical 959 31.2% 776 30.5% 183 34.2% 

Trauma 770 25.0% 727 28.6% 43 8.0% 

Infection!
(Primary!
diagnosis) 

704 22.8% 520 20.5% 184 34.4% 

Closest!to!ICU!
Admission!
Creatinine!

0.98! 0.74.1.41! 0.96! 0.74.1.38! 1.14! 0.80.1.73!

Closest!to!ICU!
Admission!
CystatinFc*!

1.01! 0.75.1.53! 0.94! 0.72.1.38! 1.36! 1.02.1.93!

Peak!

Creatinine!
1.06! 0.79.1.66! 1.03! 0.77.1.56! 1.30! 0.87.2.15!

Peak!

CystatinFc!
1.20! 0.83.1.93! 1.11! 0.80.1.76! 1.69! 1.19.2.52!

Discharge!
Creatinine! 0.83! 0.63.1.20! 0.80! 0.62.1.13! 1.02! 0.69.1.57!

Discharge!

CystatinFc!
1.10! 0.80.1.63! 1.01! 0.77.1.48! 1.57! 1.12.2.16!

Discharge!

eGFR!(Cre)!
92! 58.112! 95! 65.115! 70! 41.96!

Discharge!

eGFR!(CysFc)!
68! 37.105! 76! 44.109! 40! 26.64!

RRT!in!ICU! 238! 7.7%! 177! 7.0%! 61! 11.4%!
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Table 2. Crude mortality and adjusted hazard ratios for death over 90day and one year 

follow up after critical illness associated with plasma cystatin-c and creatinine measurements 

near ICU-discharge 

 

  

  

!

Unadjusted*Post-ICU*Survival!

by*Quartile*of*Cystatin-c*or*Creatinine!
Adjusted*HR!

75th*relative*to*
25thcentile!

Q1! Q2! Q3! Q4!

Cystatin-c!

Values*(mg/L)! 0.20%0.80! 0.80%1.10! 1.10%1.63! 1.63%8.48! 1.63!vs.!0.80!

90-day!

mortality!
2.6%! 6.2%! 11.8%! 21.0%!

2.23!

(1.63%3.02)!

365-day!

mortality!
5.6%! 11.0%! 21.2%! 32.0%!

1.78!

(1.46%2.18)!

Creatinine!

Values!

(µmol/L)!
0.1%0.63! 0.63%0.83! 0.83%1.20! 1.20%11.55! 1.20!vs.!0.63!

90-day!

mortality!
8.4%! 6.3%! 9.9%! 17.0%!

1.09!

(0.89%1.33)!

365-day!

mortality!
13.6%! 12.4%! 17.3%! 26.7%!

1.03!

(0.87%1.21)!
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