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Abstract

Replicating the human visual system and cognitive abilities that the brain uses toprocess the

information it receives is an area of substantial scienti�c interest. With the prevalence of video

surveillance cameras a portion of this scienti�c drive has been into providing useful automated

counterparts to human operators. A prominent task in visual surveillance isthat of matching

people between disjoint camera views, orre-identi�cation. This allows operators to locate people

of interest, to track people across cameras and can be used as a precursory step to multi-camera

activity analysis. However, due to the contrasting conditions between camera views and their

effects on the appearance of people re-identi�cation is a non-trivial task. This thesis proposes

solutions for reducing the visual ambiguity in observations of people between camera views

This thesis �rst looks at a method for mitigating the effects on the appearanceof people un-

der differing lighting conditions between camera views. This thesis builds on work modelling

inter-camera illumination based on known pairs of images. A Cumulative Brightness Transfer

Function (CBTF) is proposed to estimate the mapping of colour brightness values based on lim-

ited training samples. Unlike previous methods that use a mean-based representation for a set of

training samples, the cumulative nature of the CBTF retains colour information from underrep-

resented samples in the training set. Additionally, the bi-directionality of the mapping function

is explored to try and maximise re-identi�cation accuracy by ensuring samplesare accurately

mapped between cameras.

Secondly, an extension is proposed to the CBTF framework that addresses the issue of chang-

ing lighting conditions within a single camera. As the CBTF requires manually labelled training

samples it is limited to static lighting conditions and is less effective if the lighting changes. This

Adaptive CBTF (A-CBTF) differs from previous approaches that either do not consider lighting

change over time, or rely on camera transition time information to update. By utilisingcontex-

tual information drawn from the background in each camera view, an estimation of the lighting

change within a single camera can be made. This background lighting model allows the map-

ping of colour information back to the original training conditions and thus remove the need for
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retraining.

Thirdly, a novel reformulation of re-identi�cation as a ranking problem is proposed. Previous

methods use a score based on a direct distance measure of set featuresto form a correct/incorrect

match result. Rather than offering an operator a single outcome, the rankingparadigm is to give

the operator a ranked list of possible matches and allow them to make the �nal decision. By util-

ising a Support Vector Machine (SVM) ranking method, a weighting on the appearance features

can be learned that capitalises on the fact that not all image features are equally important to

re-identi�cation. Additionally, an Ensemble-RankSVM is proposed to address scalability issues

by separating the training samples into smaller subsets and boosting the trained models.

Finally, the thesis looks at a practical application of the ranking paradigm in areal world ap-

plication. The system encompasses both the re-identi�cation stage and the precursory extraction

and tracking stages to form an aid for CCTV operators. Segmentation and detection are com-

bined to extract relevant information from the video, while several combinations of matching

techniques are combined with temporal priors to form a more comprehensiveoverall matching

criteria.

The effectiveness of the proposed approaches is tested on datasets obtained from a variety

of challenging environments including of�ces, apartment buildings, airports and outdoor public

spaces.
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Chapter 1

Introduction

The human visual system is very effective at sorting through the vast quantities of information

that passes through the eyes and extracting useful information from the things that we see. We

draw on many years of implicit training and experience at processing the world around us and

are able to identify objects or people quickly and accurately. A huge amountof effort has been

invested in replicating some of the visual tasks we as humans take for grantedusing visual sensors

and computing power fueled by the signi�cant rise in the amount of digital video information.

One of the prominent drivers for video-based analytics is that of surveillance, stemmed from the

rise in popularity of Closed Circuit TeleVision (CCTV) cameras. As early as2002 there were

over 4 million CCTV cameras deployed throughout the UK, with a high concentration (over

400,000) of those active in London [113].

The goals of CCTV installations are often to monitor crowd activity and detect unusual or

unlawful acts. They are commonly located in public spaces, such as town centres or shopping

areas, and transport infrastructure, such as rail stations and airports. The various UK councils and

private companies that operate these cameras employ dedicated staff members in control rooms,

as seen in Figure 1.1, to survey the camera network. However, there is often a huge disparity

between the number of CCTV operators and the number of cameras. Gillet al. [59] noted that

each operator could be responsible for over 90 cameras at a time, with manyof the cameras that

cover quieter regions not being monitored at all [58]. Further to this, Green [62] suggested that

operators attention often drops below desirable levels after only 20 minutes.

Due to the sheer scale of the task, only a small portion of the cameras are viewed in real-
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time and much of the CCTV footage is often simply kept as a record or used in post-event

investigation. Because of this, signi�cant work has gone into computer vision research to try

and reduce the scale of the problem. Ideally, vision algorithms could be usedto provide a fully

automated aid that advises operators of unlawful acts or points them towards people of interest,

but in reality this is a signi�cant challenge. One of the key tasks in achieving this goal, and the

focus of this thesis, is that of matching people between camera views, orperson re-identi�cation.

Figure 1.1: A typical CCTV control room with a few operators monitoring a large number of
cameras. Image from Chelmsford Borough Council [24].

1.1 Person Re-Identi�cation

Person re-identi�cation is the task of forming a correspondence betweenobservations of the same

person in different cameras. Typically this is performed by taking an image (or set of images)

of a person as seen in one camera view and forming a descriptive model that is used to compare

against images of people observed in another camera view or point in time. The aim of which is

to �nd the correct matching image(s) (Figure 1.2) thus determine the past/present whereabouts

of the person within a set of cameras. An important point to note is that the placement of the

cameras leads to varying distances between the views, some of which can beoverlapped. While

methods exist to exploit such overlap [53, 93, 175], the assumption of overlapping views is not

valid for all cases. Instead, this thesis focuses on the more general case of arbitrarily disjoint

camera views, where no overlap is assumed, as this is a applicable to all camera layouts.

The ability to monitor the movement of people between disjoint camera views using re-
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identi�cation is an important precursor to higher level multi-camera vision tasks. By linking

observations through cameras over time operators can determine the path ofa given individual

through the network of cameras, allowing them to see where they have beenand who they have

interacted with, both important aspects of post-event investigation for example. Not only does it

allow an operator to re-trace the path of a desired individual, it can be used to monitor trends in

crowd movement between cameras that leads to various pro�ling and anomalydetection tasks,

or even to estimate the relative position of cameras themselves.

Figure 1.2: A conceptual example of re-identi�cation. An observation of aperson in one camera
(left) is compared with observations in another camera (right) to try and �nd asuccessful match.

One may note that there is some conceptual overlap between the task of person re-identi�cation

and that of person tracking: both require identifying a target individualfrom a set of potential

observations. However, there are vast differences in the constraintsthat these two �elds operate

on. Tracking is performed on a single camera view and as such it can incorporate many addi-

tional cues that re-identi�cation cannot. Tracking can make use of the fact that the location of

the object within the scene is at some point known, in the previous frame or detection upon en-

tering the view for example, and from this it can reduce the search space toa subset of locations.

The appearance of an object is more stable in a single view than it is between arbitrary camera

views. The angle of the camera relative to the person remains the same, reducing the differences

in object appearance between observations. Changes in the size of an object, due to varying

distance from the camera for example, are more tractable that the difference in size between ob-

servations in several cameras. Lighting within a single camera view can be changeable over time
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and between areas of shadowing or uneven lighting, but the changes to appearance can be less

severe given a suf�cient frame rate. Additionally, tracking has the bene�t of being able to use a

combination of these factors to mitigate the effects of the others. For example, ifa person enters

an area of substantial shadowing altering its appearance we still have someinformation about the

previous location, trajectory and size of the object from which we can narrow down the search

space.

Person re-identi�cation can be seen as a form of tracking in which the inter-observation

changes are less constrained by the environment. Any two camera views mayencompass several

factors that change the appearance of an object: camera settings, differing lighting, distance to

target, resolution and camera angle relative to the object. In addition to this, thespatial and tem-

poral information that tracking bene�ts from is severely reduced, cameras can be signi�cantly

disjoint with multiple paths between them, making estimation of a persons position a substantial

challenge. When looking for an object over multiple camera views scalability also plays a part,

many more observations are considered increasing the number of similar, yet incorrect observa-

tions one must distinguish between. This highlights another major difference between tracking

and re-identi�cation, that of appearance comparison. In tracking the goal is to �nd regions of

similar appearance within a view, but in re-identi�cation the goal is to highlight uniqueness of an

observation in order to distinguish it from a set of very similar observations.

1.2 Challenges and Motivation

In order to form a correspondence between persons in different camera views one may look

to popular biometric methods such as face or gait recognition. However, these methods often

require relatively constrained viewing conditions to operate successfully. In a CCTV scenario

one cannot rely on being able to see a person's face, or accurately measure gait as the cameras

are often poor resolution and placed at arbitrary angles and distances relative to the persons

within the scene. Instead, we are forced to use basic appearance information, like colour and

texture, that are inherently more generic due to their simplicity. While these simple appearance

cues are more applicable, there are many additional factors that effect an person's appearance,

similarities between people and the fact that scenes are often not closed worlds to consider.
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1.2.1 Appearance Variations

As outlined above, a key problem in re-identi�cation is that the observation conditions between

camera views are often very different, either through changes in angle of observation, the number

of people in the view, objects between a person and the camera, the lighting conditions within the

scene or simply the distance from camera. Each of these factors changesthe way that a person

looks in some way or another, and each of these factors can change independently, meaning

that all of the them can change between views. This makes the task of re-identi�cation very

challenging as it involves trying to form correspondences between people that may appear to

look quite different between camera views. The following are the main causes of appearance

change between camera views:

Viewpoint:

The path of people moving through a scene can mean that they walk at different angles relative to

each of the cameras. This has a direct effect on the appearance information that can be obtained

in each camera as their observed pose is often quite different. The ability to see the face is lost

when a person is viewed from the side or rear, measuring walking styles (gait) is challenging

from non-pro�le views, and the shape of a person is different between front/rear and side views.

Additionally, the clothing that people wear can vary in pattern or colour fromfront to back, or

have items that are only visible from certain angles, such as ties or backpacks. Figure 1.3 gives

an example of a case where an individual is wearing a jumper with a distinctivepattern on it,

but this pattern is only printed on the front of the jumper and so this texture information is not

available when seen from the side. Because of this loss of information and visual difference

between cameras it is likely that this person could be mistaken for someone who's clothing is

more homogeneous but similar to the colour/texture of the observation in one ofthe cameras.

Size:

The distance from the camera also has a drastic effect on the appearance of a person. Objects

which are closer to the camera are captured in much greater detail than thosethat are further away.

While the rough colour information is retained and people wearing bright clothing may still be

recognisable, those who are wearing less distinctive clothing lose other distinguishing detail. An

example of this can be seen in Figure 1.4, where the difference in resolutionbetween the two

images is caused by a vast contrast in the distance from the camera. This causes the texture of

the man's top to be degraded to such an extent that he is barely recognisable between the two
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(a) (b)

Figure 1.3: The same person captured in different poses relative to the camera. Note that the
highly textured pattern on the jumper can only be observed from the frontalview (a).

(a) (b)

Figure 1.4: Two images of the same person in the i-LIDS dataset [119] takenfrom different
camera views, due to the varying distance from the cameras the size (and thus resolution) of the
people is substantially different. The original size of the image on the left (a)is 120x264, while
the right (b) is only 28x47. This is only 4% of the number of pixels of (a) resulting in a huge loss
of detail.

images. To a certain extent this indicates a poor choice of camera placement for a computer

assisted system, but many such CCTV cameras are already in place. Instead one must look to

representations that have some invariance to scale to try and mitigate this difference in resolution.

Occlusion:

Occlusion is where part of an person/object is not visible because thereis another person/object

between it and the camera. While this is not much of an issue in uncrowded scenes or datasets

of static images [60] occlusions are frequent in busier scenes like transport stations or public



1.2. Challenges and Motivation21

(a) (b)

Figure 1.5: Even people who's appearance is visually distinctive can be dif�cult to match. While
the person seen in (a) can be easily extracted from the scene, when he reappears in (b) he is
heavily occluded by a group of people, making extraction and thus matching very challenging.
Images extracted from the i-LIDS dataset [119]

spaces. Occlusion presents several problems to re-identi�cation in terms of acquisition, tracking

and appearance modelling for the re-identi�cation step itself. For acquisition, occlusion effects

many algorithm's ability to actually extract the person from the image, be it grouping in fore-

ground/background segmentation or missed detections in pedestrian detection. Occlusions are

dif�cult to deal with when tracking a person through a single camera as onemust successfully

handle disappearances and merges of people. Misdetection at either the extraction or track-

ing stages means that the person may not even appear in the pool of potential matches at the

re-identi�cation stage. Finally, occlusion hides visual information that couldbe vital when it

comes to forming a representation of the appearance of a person or performing a comparison.

Figure 1.5(a) shows an un-occluded fairly distinctive individual, while Figure 1.5(b) shows the

same individual under heavy occlusion from two other people. In this case the man may not be

detected/extracted from the second camera view at all or simply grouped in with the other two

people, resulting in either no comparison to make or a comparison based on polluted appearance

data.

Illumination:

The lighting conditions within a camera view are one of the most important contributions to

a person's appearance, but sadly one of the aspects that are highly likely to change between

views. Indoor and outdoor locations have different types of lighting variation that not only cause

appearance changes between them, also have major effects on the appearance between camera
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(a) (b)

Figure 1.6: The difference in lighting conditions between views has a substantial effect on the
appearance of a person. The low lighting conditions seen in (a) gives theimpression that this
person is wearing a black and grey top. However, when the same personis observed in a camera
with brighter lighting (b) it is clear that the top is in fact black and bright red.

views of the same type. Outdoor lighting is directly lit by the Sun and is thereforeheavily

effected by the day-night cycle and the weather. On a cloudy day there isless light and so the

colours of objects becomes duller, sunny days give richer colours butoften leave some areas

of shadowing which can make an object appear much darker. Additionally,the weather is very

unpredictable and can change dramatically throughout the course of day, meaning that an object's

appearance within a single camera can change over time. Indoor lighting is generally more stable,

as the actual illumination sources are less likely to change on a short term basis. On the other

hand, indoor lighting is less uniform than outdoor lighting as the light sourcesare smaller and

localised. Within a given room there may be a selection of overhead lights as well as light

coming in from windows. This variation in light sources causes different areas of the room to

be covered by varying levels of light, an example of this variation could be seen in any room

with spotlighting. The cameras themselves can also have an effect on the perceived illumination

within a scene. Modern cameras often come with a variety of settings which can be changed to

suit the environment that can change over time either due to their dynamic nature,e.g. auto white

balance, or due to situational events like maintenance or hardware resets.

As lighting conditions can vary drastically even within a single view, this effectis com-

pounded over multiple camera views. A person may move from a well lit room, to adimly lit

room or to an outdoor area, each of which can be completely different and thus the person would

appear to look at least slightly different in each of the views. Figure 1.6 gives an example of this
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in an indoor environment where the colour of a bright red top is affected by the illumination in

one camera such that it appears almost grey. As the appearance of a person is so heavily affected

by light it is important to try and mitigate its effect between camera views in order toperform

successful re-identi�cation.

1.2.2 Inter-Person Similarity

A substantial issue in re-identi�cation is that of distinguishing between similarly dressed people.

This problem becomes more prevalent in busier public spaces where the number of people can

be very large, and as such the likelihood of people with similar appearancesis dramatically

increased. Unfortunately for the computer vision community, few people observed in such spaces

wear distinctive clothing such as those seen in Figure 1.5(b). Instead people tend to wear clothing

that is less visually distinctive, as Figure 1.7 demonstrates, such that it can be very challenging

to pick the correct match. This means that in addition to handling variable conditions outlined

in Section 1.2.1, re-identi�cation algorithms need to be able to distinguish betweenvery similar

objects under such conditions.

(a) Cam 1 (b) Cam 2

Figure 1.7: Sample images from the VIPeR dataset [60]. Each of the peoplecaptured in Camera 1
(a) re-appear in Camera 2, but the similarity in appearance combined with environmental effects
makes it very challenging to �nd the correct matches even for a human.

1.2.3 Open World Environments

Ideally, the cameras within a scene would cover all entry and exit points, meaning that once

a person has entered the scene they can be accounted for and must pass through another view

before leaving the scene. Unfortunately, this closed-world scenario is uncommon and in most

cases there are several entry and exit points to a scene, many of which can be outside of camera

view. This introduces an additional level of ambiguity in re-identi�cation in thatif a person

leaves a camera view they may never enter one of the other views in the scene.
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1.2.4 Utilising Context

With the combination of appearance variations and inter-person similarity, re-identi�cation algo-

rithms need to draw from more than just the immediate visual information to produceaccurate

comparisons. The incorporation of suchcontextualinformation can provide the edge. Contextual

information can be drawn from aspects of the scene that have either visual impact on the scene,

or aspects that provide additional information about the relationship between the individual and

the scene.

A common non-visual contextual cue is that of inter-camera transition time. Thisis the time

it takes for a person to move from one camera view to another, often modelledas a distribution

rather than a single value as people traverse the scene at different speeds. By knowing the distri-

bution of transitions times a prediction can be made about where and when a person is likely to

re-appear, thus reducing the potential search space of visual targetsto compare. However, deter-

mining this temporal distribution automatically is not straight forward. In order to�nd how long

it takes for a person to move from one camera to another you must either be able to re-identify

that person, a chicken and egg scenario, or merely look at the statistical trends in entrances and

exits from each camera [109]. The later of which is limited to low density closed systems, where

there are few areas that people can enter/exit the camera network from. While incorporating such

temporal information undoubtedly can improve results [78], obtaining it for arbitrarily disjoint

camera views, as is a principal of Chapters 3,4 and 5, is not easily obtainable.

Knowledge of scene lighting is contextual information that has a direct visual effect on the

people within the scene. While the complexity of lighting is such that we cannot form an accurate

model of the scene illumination without extensive calibration, approximations ofthe differences

in lighting levels between views can be utilised to lessen their effect. Using contextual infor-

mation, like the effect on the background, is a vital step to modelling illumination changes over

time, a problem that effects both indoor and outdoor scenes.

An indirect visual cue is that of re-identi�cation by association, using the people in surround-

ing groups to aid re-identi�cation of the person of interest [178]. Incorporating visual information

from people in the immediate vicinity of an individual can be a useful aid to mitigatingthe ambi-

guity found in matching people of similar appearance. A key challenge with this approach is that

it is hard to differentiate between people who are walking past/next to each other at a given time

and those that are genuinely grouped together and thus more likely to reappear together. Because



1.3. Approach 25

of this, the ability to accurately identify groups of people is key to its success.

1.2.5 Selecting Features

Modelling the appearance of an individual can be done using many different approaches based

on colour, texture, face, motion, size, shape or a combination of descriptors. While a compre-

hensive description will certainly contain more useful information about a persons appearance,

certain elements of the appearance are more distinguishable than others. For example, in an of-

�ce environment the tie colour will be more of a distinctive feature than the trousers or shoes.

To this end it can be said that not all features are equally relevant to re-identi�cation. Therefore

it becomes critical to the re-identi�cation process to select a subset of distinctive features that

provide more separation of visually similar individuals. Finding such a subset also allows for

an implicit compensation of inter/intra-camera appearance changes throughthe invariance of the

features chosen.

1.3 Approach

1.3.1 Mitigating Inter-Camera Illumination

As discussed in Section 1.2.1, the same object observed under separate illumination conditions

can look signi�cantly dissimilar, therefore a core task is mitigating the effect ofdiffering scene

lighting in order to preserve some visual similarity. Ideally, one would like to form a detailed

model of lighting within a scene using knowledge of the lighting types, locations and directions.

However, in the general case such a model would be very challenging to compute as many areas

have multiple light sources and complex time-sensitive shadowing. Instead, an approximation

of lighting change can be obtained from a selection of training pairs can be used to form a

Brightness Transfer Function (BTF) that maps colour values between disjoint cameras based on

the proportions of colour within each sample pair. Of course these training pairs need to be

manually labelled, so to minimise the manual intervention required a Cumulative BTF (CBTF)

[132] is utilised that attempts to retain colour information that is under-represented in the training

samples that can be lost using mean-based representations.

1.3.2 Adapting to Lighting Change Over Time

The ability to update inter-camera illumination models is vital to their practical application as it

is very nä�ve to assume that the lighting conditions within a camera view will remain constant.
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Cameras based outdoors are effected by the day/night cycle and weather, while indoor cameras

are effected by windows and camera parameters, all of which can change over time. Previous

approaches have either treated the illumination conditions as static [78], usedincremental learn-

ing to continuously learn the inter-camera relationship [57], or to simply throw away learned

models when the conditions change and rely on spatial methods to bootstrap theprocess [26].

However, none of these approaches really handles the problem effectively. Even in the case of

the incremental learning approach, the number of iterations required makesit unsuitable for use

in changing environments.

Instead, this thesis looks to additional contextual information to both monitor the illumination

conditions within a scene and to use this to update the illumination models when it doeschange.

By looking to the effect that changes in illumination makes on the background objects within a

scene, an estimation of their effect on the foreground is made. To this extent an adaptive version

of the CBTF model (A-CBTF) is formed by using the information gained from the background

to update the learned inter-camera CBTF without the need for retraining, and thus additional

manual labelling [131].

1.3.3 Re-identi�cation by Ranking

Many current re-identi�cation approaches compare observations, obtain a score for this com-

parison, and use this score to determine if the observations are the same person. However, re-

identi�cation is a dif�cult vision problem and the accuracies of such approaches on complex

datasets from public spaces are low [133]. Because of this the use of methods that give categoric

correct/incorrect answers is questionable. Instead, consider the case where a re-identi�cation

algorithm is used to aid a human, not replace them. In this case, a different approach can be

undertaken that gives the operator the �nal decision on which observation is the correct match.

Similar to a Google search, and indeed drawing from the text retrieval community [23], this thesis

presents the idea of providing the operator with a ranked list of possible matches. This approach

reduces the amount of time that an operator may take �nding an individual, while utilising their

skills to distinguish between the people that the algorithms struggle to separate [133].

Additionally, previous work focuses on de�ning a feature space that accurately describes

an individuals' appearance, while providing some invariance to the challenges outlined in Sec-

tion 1.2.1. Few consider that not all of the features contribute equally, somefeatures in a given

representation will have more distinguishing ability than others. To this extent this thesis details
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a method of comparison based on a weighting of the individual features withinthe feature space

based on training samples. Following the ranking paradigm above, a RankSVM is utilised to

form a observation ranker in a higher dimensional space that allows for greater separation of the

data [133].

1.4 Contribution

The contributions of this thesis to person re-identi�cation over distributed spaces and time are:

1. A cumulative approach to the representation of multiple inter-camera BTFs that attempts

to preserve sparse colour information that is under-represented in the training set, instead

of a mean-based approach that favours the more prevalent colours. Additionally, a bi-

directional approach to person comparison that gives preference to observations whose

colour has been successfully updated using the two CBTF mappings between a camera

pair [132].

2. The CBTF requires a training stage of labelled data and because of this would require

manual intervention when the model needs to be retrained for different lighting conditions.

To this end, an Adaptive-CBTF is proposed that uses the background information to es-

timate changes in the illumination conditions of the foreground [131]. Consequently, the

CBTF can be updated without the need for manual re-training. This differs from previous

approaches that either rely on knowledge of the relative camera placement [26], or try to

interactively build upon potentially incorrect models [57].

3. A novel reformulation of the re-identi�cation problem as a relative ranking problem [133].

Previous approaches perform comparisons based on an absolute distance measure that is

used to decide if a given probe/gallery image pair are in fact the same person, but this relies

on the algorithms in question to be very accurate to actually be of use in a CCTV control

centre. Instead, the proposed ranking method presents an operator witha ranked list of

possible matches allowing them to use their training and intuition to select the correct

correspondence, while reducing the time needed to �nd the desired individual. The move

to a relative distance measure is key as it adds some tolerance to large intra/inter-class

variation over the direct distance alternatives.

4. A new comparison approach through feature selection using an Ensemble RankSVM [133],
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a novel combination of boosting and SVM within the ranking framework. Previous work

that has looked at feature selection for re-identi�cation has been basedon a boosting frame-

work in which each feature is selected independently, despite having overlap between cor-

rect and incorrect matches in the feature space. Instead, an RankSVMapproach is utilised

to analyse all feature channels simultaneously to �nd a ranking function. Tofurther this,

several RankSVM built from subsets of the training data are combined into an Ensemble

RankSVM to reduce the memory overheads and thus scalability.

1.5 Thesis Outline

This thesis is organised into seven chapters as follows:

• Chapter 2 provides an overview of past and current work on the components of person

re-identi�cation, including extraction of relevant information from images, representation

of people for re-identi�cation and matching techniques.

• Chapter 3 provides a detailed explanation of the process for modelling the CBTF. It out-

lines the potential bene�t of a cumulative representation of BTFs that makesuse of small

training sets with sparse colour information.

• Chapter 4 details a method for adapting the CBTFs from Chapter 3 to new illumination

conditions caused by a change in the lighting or camera settings. In particular,the chap-

ter proposes using some background information to estimate the change in illumination

conditions thus removing the reliance on manual sampling for updating the model.

• Chapter 5 presents a novel relative ranking-based approach to the matching process used

in re-identi�cation, as opposed to the absolute scoring approaches usedpreviously. A

RankSVM approach is selected and justi�ed, with extensions made to this approach to

allow for better memory scaling through the use of an Ensemble RankSVM.

• Chapter 6 outlines a practical implementation of a re-identi�cation system, indicating

some of the major technical challenges associated with real-world data. Usingthe i-LIDS

[119] dataset as an example of a real environment, this chapter looks at issues like person

extraction, dealing with multiple observations and matching technique, and incorporating

temporal information to reduce the search space. While the illumination change mitigation
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techniques Chapters 3 and 4 are not used in this chapter due to manual overheads, the

RankSVM-based techniques from Chapter 5 incorporated into the framework implicitly

handle some of the lighting changes.

• Chapter 7 concludes the work conducted in this thesis and outlines possible extensionsto

some of the ideas and techniques presented.
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Chapter 2

Literature Review

An important precursor to re-identi�cation is to obtain the relevant data fromthe original images

or video streams. The process of extracting an object from a set of images can be undertaken

through the removal of unwanted image data using segmentation, or directly obtained using

detection. Obtaining features over time, to enrich appearance models or gainspatial information,

also requires tracking of an object as it passes through the scene.

The task of re-identi�cation itself can be broken down into two main tasks: selection of

features and feature comparison. Appearance features are generally selected because they best

represent the visual make up of a person in a way which increases the separability of similar

objects. The process of matching people over camera views is thus reliant on mitigating the

effect of inter-camera appearance changes while maintaining this separability.

2.1 Person Extraction

The initial stage of person re-identi�cation is to actually extract the pedestrians from CCTV

images. This process cannot be treated independently as it has serious rami�cations on the infor-

mation that can be obtained to represent an individual. There are two predominant approaches to

this; foreground/background subtraction and pedestrian detection, chosen depending on whether

the re-identi�cation algorithm in question requires pixel-wise extraction or simply a bounding

box. As a single image is often not suf�cient to capture the appearance ofa person, these meth-

ods can be extended to incorporate additional information over time. Implementation of tracking

enables the use of multiple instances of the persons appearance but is a non-trivial task in itself as
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the appearance of an object may change within a single camera view due to occlusions, lighting

and appearance variation.

2.1.1 Foreground/Background Segmentation

Foreground/Background segmentation is a key initial step for many vision algorithms, as large

portions of the image are often not relevant to the task at hand [19,56,92]. It attempts to classify

each pixel in an image as either belonging to the background or foreground (Figure 2.1). In the

case of re-identi�cation it enables extraction of appearance features from objects within the scene

with reduced noise from the unwanted background pixels. In order to ascertain the regions of the

image that are to be considered foreground, one could start with an image that accurately captures

the background of the scene. In a known scene in which the foreground clutter is minimal one

could simply select an empty frame and use this to represent the background, and subsequently

use a frame differencing method [75].

Figure 2.1: An example of background subtraction, in this case using Rotationally Speci�c Lo-
cal Binary Patterns (RSLBP) [142] to mitigate the effect of moving background on subtraction.
Images taken from [142].

In many applications this crude approximation may not be suf�cient due to persistent fore-

ground clutter or busy scenes. One such approach for backgroundestimation is to take a pixel-

wise median of a set of images [103]. However, Cohen [31] notes that for a given pixel the

background must be visible for at least half the frames, which limits its use in busier scenes.
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Instead he presented a labelling approach, whereby at each pixel location a label indicates which

frame the pixel is to be taken from. Each label combination is given a cost based on pixel la-

bels having spatial and temporal correspondences, with a �nal optimal labelling obtained using

graph-cuts [15].

Another approach is to perform per-pixel modelling, a commonly used methodis based on

the adaptive Gaussian Mixture proposed by Stauffer and Grimson [149]. Their method models

the value of each pixel as a mixture of adaptive Gaussians whose means and variances together

represent multiple alternative background distributions. As the pixel information is updated over

time, consistent pixels can then be incorporated into the background allowinglighting changes

and moving objects to be accounted for. However, this approach can often lead to stationary

foreground objects eventually being treated as background thus contaminating the background

distributions, this requires careful selection of the decay time constant.

Instead of modelling the background on a pixel level Oliveret al. [120] suggest that an

eigenspace method could be used instead. They construct a set ofeigenbackgroundsbased on

the mean background and its covariance, using Principal Component Analysis (PCA) to reduce

the dimensionality by retaining only the topM eigenvectors. This implicitly removes moving

objects since for a given pixel they are statistically insigni�cant over time. Oliver et al. suggests

this method is more computationally effective than its GMM counterparts, and thatthe model

can easily be adapted over time. However, updating PCA is in itself computationally expensive

as discussed by Liet al. [101], who suggest an incremental PCA approach to deal with the update

issue.

Russellet al. [142] noted that previous methods assume that while the background objects

in the scene may move, or foreground objects become background, the background of a scene

settles and is not constantly in motion. Their counter example to this was moving leaves and

branches in the wind, which both obscure people and are non-stationary. Russellet al. [142]

noted that the per-pixel methods like Stauffer and Grimson's [149] lack thepixel connectivity

to model such movement, while subspace methods like [120] could not cope withlocal areas

of independent stochastic motion as they consider the variance over the whole scene. Instead,

they de�ne an intermediate representation of connectivity, a Rotationally Speci�c Local Binary

Pattern (RSLBP), to model localised regions of textured motion. While their results show impres-

sive detections of pedestrians occluded by moving leaves (Figure 2.1), the segmentation masks
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actually include the pixels corresponding to the leaves themselves, meaning that an appearance

model drawn from this segmentation would in fact be polluted by them.

Other common alternatives are methods based on motion features like Lucas and Kanade's

work on optical �ow [106], an example of which can be seen in Mittal and Paragios' work [114].

Here the authors use a hybrid kernel density approach, utilising a combination of optical �ow es-

timation and normalised colour channels. Their method handled changes in lighting and weather

as well as recurring movements like ocean waves by modelling the motion features.

Another consideration to segmentation is that of the affect of shadows on segmentation re-

sults, often erroneously being incorporated into foreground regions. Shadows can be caused

by a variety of illumination conditions, such as the number of lighting sources andthe inten-

sity of light. The angle of camera relative to the light source can also affectthe shadowing

severity. Shadowing is particularly occurrent in outdoor scenes wherebright sunlight can can

cause strong, time varying shadowing. In order to perform an accuratesegmentation of a scene

shadow removal techniques can be incorporated. Invariant colour models are often used to iden-

tify shadow regions [25,143,156], some methods also use edges and edge strength [12,143,168].

Salvadoret al. [143] use a combination of colour models and edges, �nding darker regions using

a luminance sensitive colour space and removing them from object edges found in a photomet-

ric invariant colour space. Chen and Aggarwal [25] also make use of some spatial logic, using

log-polar coordinates to looks speci�cally for pedestrian shadows based at the feet and combine

this with colour and texture information to identify and remove the shadows. Shadow removal

techniques have not been used in the technical chapters of this thesis, mainly due to predomi-

nantly indoor scenes where segmentation was relatively accurate without, but could still be used

to increase the segmentation accuracy.

While separating the foreground and background allows potentially less relevant information

to be ignored it does not take into consideration the task-speci�c usefulness of each of the re-

gions that are deemed to be foreground. Using a segmentation algorithm gives no indication of

the types of objects described by the moving region, it might be assumed that they are people. In

fact scenes will often contain other less relevant moving objects such as cars, trains and luggage,

and categorising these observations is a non-trivial task in itself. By its nature segmentation

is less useful in busier scenes as people can often be grouped into singlemoving regions that

are dif�cult to separate using the segmentation results alone. Instead, onemay wish to focus on
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searching speci�cally for people within a scene by employing object detection, thus further re�n-

ing the classi�cation of relevant and irrelevant information. Additionally, foreground/background

segmentation alone is limited in that it provides no temporal continuity between the foreground

regions, and it is here that further methods must be incorporated to provide a richer representation

for tasks like tracking.

2.1.2 Person Detection Techniques

In contrast to the foreground/background segmentation approaches above, object detection does

not try to separate objects by retaining and updating knowledge about the background appear-

ance. Instead it is based on modelling the appearance of the type of objectone is looking for,

in this case humans, and searching through an image for a region that has some similarity with

the appearance model as can be seen in Figure 2.2. An early example of thisstyle of approach

can be seen in [135], where a HSV colour model was used to describe skin tone for detection

within a tracking framework. Alternatively, a rigid template approach was adopted by Papageor-

giou et al. [123], in which they use an over-complete selection of coef�cients based on Haar

wavelets [110] to capture the intensity gradients throughout the image. Theynote that by nor-

malising and averaging the coef�cients over a large training sample, the random patterns will

average out at roughly 1, while those that have a value much higher than 1correspond to sig-

ni�cant patterns in the dataset. These signi�cant patterns are kept and form a set of spatially

constrained templates for which a Support Vector Machine (SVM) classi�er is trained. Samples

are then collected using a sliding window approach, and assigned a classi�cation score using the

SVM.

Viola and Jones' [162] work is a similar approach that uses a set of rectangular �lters with

Adaboost [50] to select a subset of features. The choice of rectangular �lters over the more

detailed steerable �lters [63] enables them to speed up the feature extraction process using their

Integral Imagerepresentation. At each (x;y) location in the integral image one stores the sum of

all the values above and to the left of (x;y), inclusive, allowing very rapid extraction of rectangular

regions. By using this approach they collect a set of 180,000 features over a training sample

and use AdaBoost to create a �nal classi�er from a feature subset based on weak classi�cation

performance. They later extended this approach [163] to include motion information, as a form

of short term tracking, to enforce some temporal consistency on detections, thus reducing the

false positive rate.
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Instead of using a set of �lters, Dalal and Triggs [33] break the image down into grids of

gradients, which they show to greatly improve on the results of �lter-based methods. The image

is subdivided into smaller regions calledcells, and for each cell they compute a gradient based

representation called Histogram of Oriented Gradients (HOG), formed by modelling the distri-

bution of intensity gradients within each local region. In order to reduce theeffect of shadowing

in an image they perform some local contrast normalisation within larger subregions orblocks.

These blocks then form the basis of the HOG descriptor, which is then usedto search the image

at varying scales using a sliding window and SVM classi�er [81].

Felzenszwalbet al. [42] extended this approach by coupling a coarse root �lter with a decom-

position of the object into several higher resolution part-based �lters, each with a relative spatial

constraint. as illustrated in Figure 2.2. In addition noting that the 36-dimension HOG descriptor

in [33] contains redundant information, they apply PCA to reduce the dimensionality and hence

computation time. In order to address the issue of selecting training samples forthe SVM (it is

easy to extract thousands of negative samples from a single image, but many will be redundant)

they formulate a margin-sensitive method for data-mining hard examples to more effectively train

their latent-SVM classi�er. Coupled with a post processing stage to form a bounding box from

the root and part detections, this approach can be considered state of the art in terms of results on

published datasets like PASCAL [38,40].

An issue that the above methods do not take into consideration is that of extracting the fore-

ground pixels from the detection window. A bounding box is useful for searching for objects

within a scene, but one often wishes to perform further processing on the object pixels with-

out the in�uence of the background. One could consider a crude segmentation of data within a

bounding box by simply removing the outermost pixels, leaving a rectangle or circular region,

and relying on the assumption that the pixels nearer the centre of the detectionwindow are more

likely to belong to the foreground region. However, it is dif�cult to strike a balance between

including too much background and losing too much of the foreground information. Lin and

Davis [102] attempt to tackle this segmentation issue without knowledge of the background ap-

pearance, as is required in many of the methods outlined in Section 2.1.1. They collect a tree

of partial poses for each of the body parts (head, torso, upper legs and lower legs) from a set

of synthesised silhouettes, allowing for several degrees of freedom of movement. They form a

hierarchical pose tree using a set of real human silhouettes to tune the branching parameters on
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Figure 2.2: Top: example pedestrian detections using Felzenszwalbet al.'s [42] part based de-
tector. Bottom: root �lter (based on Dalal and Triggs' HOG [33]), part �lters and location
distributions, respectively. Image from Felzenszwalbet al. [42].

a greedy basis. Detections are based on a sliding window using texture features (similar to those

in [33]) and an SVM classi�er. For each detection they �nd the optimal path through the pose

tree resulting in a best �t pose estimation. The synthesised pose silhouette builtfrom the tree can

then be directly used as a template for foreground extraction.

Recently, Farenzenaet al. [41] used a customised version of the part basedstructure elements

(STEL) component analysis (SCA) [84] to perform segmentation. The STEL model captures un-

derlying structural information common in a class of images using weighted probabilistic index

map (PIM) [83] components, and is used to divide the pixels into two groups,corresponding

to the foreground and background. Farenzenaet al. [41] train this model using a database of

pedestrian images and applies it to datasets possessing pre-extracted bounding boxes. While this

is similar in concept to the results of a pedestrian detection algorithm, it is unclearhow sensitive

the STEL method would be to imperfect localisation or the occlusions that tend to occur during

actual pedestrian detection, as it is based on hand selected training samples. Either way, the re-
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sults reported in both papers indicate its effectiveness at removing background, which while not

perfect, are impressive and as such could be incorporated into re-identi�cation methods to reduce

the background information incorporated into the appearance models.

Ferrariet al. [45] also attempt to address the segmentation from detection problem in a pose

estimation framework without the need of a trained model. Initial location uses anupper body

detector based on [33], and this region of interest is then expanded to compensate for placement

of the arms, and to a certain extent the legs. They use prior knowledge of the likely placement

of body-parts to initialise colour models for foreground and backgroundsegmentation using the

Grabcut technique of [139]. The qualitative results presented in their work are not as impressive

as those in [102], however the authors state the method to be deliberately conservative, since

losing body-parts would reduce the effectiveness of their subsequent post estimator.

While the detection based approaches extract regions from the scene directed by an appear-

ance model, the disadvantage they have over foreground/backgroundsubtraction methods is that

they require regions to have a certain level of similarity to the original appearance model. In

order to train such a model, a single image would not cover any object variation, such as pose

and scale changes. Instead, methods require much larger training sets such as those used in the

PASCAL detection challenge [40], where hundreds of hand labeled examples are used to build

the models. This requirement for a number of hand-labelled training samples means that training

a detector for new objects or objects in different poses requires substantial human effort. An ad-

ditional issue with detection is that localisation of objects becomes very dif�cultin busier scenes

where problems like inter-object occlusions become more prevalent or in scenes where the reso-

lution of the people is too low for the detector to function correctly. In these cases one can revert

back to segmentation-based methods, using them as a crude detector by treating each region of

foreground as a person/people. Segmentation can also be used as a precursor to detection in that

the detector can be applied only to the foreground regions resulting in lowercomputational cost

in the detection step and implicit removal of background information from the detection results.

As with the foreground/background segmentation methods outlined in Section 2.1.1 detection

methods alone do not impose temporal consistency on observations to enhance the information

gained from video frames. Linking observations temporally within a single camera is a key step

towards minimising the search space for multi-camera tasks. Without grouping detections over

time, each must be treated as a separate object, thus complicating the task of re-identi�cation.
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2.1.3 Person Tracking Techniques

Tracking enables the temporal correlation of observations within a single camera environment

through the use of motion [16] and/or appearance modelling [6, 87, 92, 148, 174]. Grouping

observations through tracking in this manner is a necessary precursor tore-identi�cation, as it

reduces the space of inter-camera hypotheses, while enabling more complete appearance models

to be created using multiple images. It differs from re-identi�cation in that the assumptions of

tracking within a single camera: small changes in appearance, shape, location between frames,

do not scale to that of multiple disjoint cameras. However, tracking itself is a non-trivial task,

especially in crowded scenes where each object must be tracked through appearance changes and

occlusions. A survey of common tracking techniques can be found in Yilmazet al. [169].

One potential tracking approach is to represent the object simply as a blob of connected

pixels, then incorporate a Kalman �lter [16] to estimate the motion over time using state-based

estimation in which the state of a linear system is estimated using a prediction and correction step

at each frame. Later works [6, 21, 169] have suggested that the Kalman�lter is too restrictive

in that it always assumes a Gaussian distribution of the state, and they suggest that particle

�ltering is a more effective way to track objects based on sets of points [6].While both of these

approaches work reasonably well in single camera tracking, they are not suitable for expansion

into in re-identi�cation. They rely on frame-wise temporal continuity,i.e. measurable changes in

appearance or position over small time gaps, whereas re-identi�cation takes place over arbitrarily

disjoint camera views.

Instead of attempting to track a point or set of points as in the methods above, Comaniciu

et al. [32] represent the object as a normalised histogram of colour taken from the initial re-

gion (a ellipsoid) in the image. The colour information extracted from the regionof interest is

weighted towards the centre using a spatial kernel. In order to track the object in subsequent

frames the mean-shift [28] algorithm is employed as shown in Figure 2.3. It takes the initial

position from the previous frame and iteratively maximises the similarity of colour density of the

regions around the initial hypotheses until convergence is achieved. Colour appearance models

like this are better suited for extension to re-identi�cation, as described in Section 2.2, but the

localised search using mean shift is not. It relies on the prior location knowledge gained from

the previous frame for inter-frame correspondence, and while inter-camera transition time can in

certain cases be estimated, it is not accurate enough to perform such tracking.
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Figure 2.3: Non-consecutive sample frames from a person tracker using centre-weighted colour
information and the Mean-Shift algorithm. An appearance model allows the person to be tracked
based on small intra-camera movements between frames, this requirement limits its application
to the more general re-identi�cation case. Image from [32].

The approaches above concentrate on tracking a single object as it moves through a scene.

In order to extend this to more general usage one must track multiple objects simultaneously.

While multiple instantiation or extensions of the above methods, like [73] for particle �ltering,

can perform this to a certain degree one must consider that multiple objects in acamera view are

likely to overlap. For a system to function effectively a method for handling such occlusion must

be incorporated, and this has been the focus of many recent works. Marcenaroet al. [111] use a

Kalman �lter and a shape matching algorithm to distinguish people. Khanet al. [92] use colour

to try and separate passing people by their differing visual appearance.Bazzaniet al. [9] extend

this method by employing an online feature selection method to pick out the most distinguishing

features between two overlapping tracks. Changet al. [22] actually make use of overlapping

cameras to recover occlusions but as stated previously, camera overlapis an unreasonable as-

sumption in the general mutli-camera scenario.

The effect of illumination, as variation within a scene, or the effects of shadowing can cause

tracking methods to drift away from the correct correspondences. The effects of shadows have

been discussed in [130] along with a comparison of shadow removal techniques. In terms of

mitigating the lighting variation within a scene several recent approaches include; modelling il-
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lumination changes within a camera [87, 148], and adaptively updating appearance models on

the �y [138, 174]. This is a common problem across many computer vision tasks and is partic-

ularly important in re-identi�cation where lighting conditions between camera sites are hugely

variable. The difference among these methods and the re-identi�cation based methods described

in Section 2.3.1 is the severity of illumination change between observations, with intra-camera

being more gradual and inter-camera very abrupt.

In general, tracking objects within a camera view relies on there being only small differences

between consecutive observations, and using this knowledge to �nd andidentify the same person

in the next frame. As the scenarios in which tracking takes place become morecomplex; such

as dynamic backgrounds, multiple targets, varying lighting and object occlusions, the problem

becomes very challenging. In these cases the localisation of the objects by motion and/or appear-

ance must deal with multiple hypotheses and larger changes in object appearance, but these are

still con�ned to local changes as opposed to potentially uncorrelated changes that occur in multi-

camera environments. For this reason, a different set of descriptors and matching methods must

be employed for re-identi�cation tasks that are able to mitigate the effect of severe appearance

changes, like those found in different lighting conditions.

2.2 Features Descriptors for Person Re-Identi�cation

In order to describe the appearance of a person such that it may be re-identi�ed in another camera

view careful consideration must be taken as to the selection of suitable features. They must

be able to distinguish between similar people, but also mitigate the effect of the inter-camera

appearance changes outlined in Section 1.2.1. Such visual feature descriptors can generally be

grouped into two main categories: static and dynamic. Static features are thosethat can be

obtained from a single observation, capturing the immediate visual information such as colour [1,

13,26,56,68,71,77,78,80,91,164] or texture [61,65,74,90]and are often combined with spatial

cues [7, 55, 122, 165] to localise this information. Dynamic features require several observation

frames and generally capture the way a person moved through a camera view, and this is the

foundation of the biometric Gait [94,127,171,175].
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2.2.1 Colour

Colour is an obvious choice for appearance representation in any visionsystem as it directly

contributes to the way we as humans interpret the world around us. For person re-identi�cation

algorithms it is an important cue as it covers considerable variation since people wear a wide

variety of clothing. It does not require a speci�c view angle, as the dominant colours of cloth-

ing tend to be similar from front and back views, and remains useful even at lower resolutions

or at range. Because of this many different colour spaces have beenused in pedestrian rep-

resentations. The standard RGB colour space has been employed in various re-identi�cation

works [1, 26, 56, 77, 78, 131, 132]. Several variations on the RGB colour space have also been

tried. Hahnelet al. [65] combined the RGB channels with a luminance channel calculated from

the R, G and B components and related this to a chrominance histogram comprised of normalised

R, G and B components, thus removing the intensity information. Note that only twoof the

normalised channels (red and green) were kept as the third is redundant due to the combined

normalisation. Their matching results suggested that the normalisation of the channels reduced

the recognition performance marginally on a single camera experiment. Wanget al. [164] im-

plemented a variation of this by combining the normalised RG values with intensity information,

RGI, and hint that this combination of colour information is more robust to singlecamera light-

ing changes than RGB alone. However, their conclusions are based on qualitative evaluation of

tracking results and as the intensity changes may be more distinctive between cameras it may not

yield any bene�t in the case of re-identi�cation.

Other common derivatives of RGB have also been used in many re-identi�cation and track-

ing approaches. Chrominance information in the form of the U and V channels from YUV space

were selected to remove the luminance information in order to reduce the effect of varying illu-

mination [80]. This work suggested that the removal of the Y component increases the accuracy

and that it marginally outperforms RGB-based matching when using simplistic histogram com-

parison techniques. However, previous uses of the YUV space contradict the removal of the

luminance channel by showing that matching based on YUV space actually outperforms that of

UV space over multiple cameras [85], indicating that the luminance information stillcontributes

to discriminability.

Conversion of the RGB space to Hue, Saturation and Value (HSV) or Lightness (HSL) are

other common place colour representations [1, 13, 68, 71, 91]. Blacket al. [13] use a fairly
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coarse quantisation of the HSL space in order to balance colour informationwith a reduction

in illumination variance, but no comparison is given between this and other colour spaces. Alahi

et al. [1] compared RGB and HSV represented using several sets of histogram bin sizes, some

with equal weighting on the three HSV channels (64 bins each) and some thathave a coarser

quantisation on the S and V channels (16 bins for H, 4 for S and 4 for V). Their results suggest

that placing a coarser quantisation on the S and V bins actually lowers the overall performance

and that RGB actually slightly outperforms the HSV based method. Hahnelet al. [65] made

use of the Colour Structure Descriptor (CSD) de�ned in the MPEG-7 standard [29]. This uses a

colour space in which lower saturations are coarsely quantised in the hue channel placing more

value on their luminance information [65], but this favours brighter shadesthat are less common

in CCTV images.

Other re-identi�cation methods have made use of colour spaces based on subjective hu-

man visual responses to colour, such as the Munsell colour system [116]. Bowden and Kaew-

TraKulPong [14] gave a comparison of RGB, HSL and consensus-conversion of Munsell Colour

Space (CCCM) [151] which is a sparse quantisation of RGB space into 11 colours. They reported

that the CCCM outperformed RGB and HSL within a single camera view and was on a par with

HSL over multiple camera views. They considered that RGB was unlikely to perform well with-

out some form of colour calibration in the cameras. This point was later echoed by Gilbert and

Bowden [56] who used CCCM to bootstrap an RGB calibration method as they found it to be

more accurate from the outset, but they noted that the calibrated RGB was much more accurate

than the initial CCCM approach.

Piccardi and Cheng [128] proposed a more complex colour quantisation scheme aimed at

reducing the size of the colour space in order to combat illumination changes between cameras.

To do this an object's appearance is converted from RGB colour space into what the authors call

major coloursby raster scanning the foreground object and applying a threshold to each nor-

malised colour channel in increments of 0.01. A Major Colour Spectrum Histogram (MCSH) of

the colour occurrence frequencies is then created from the foreground image pixels. The propor-

tion of a certain colour appearing in an object can be calculated by normalising the frequency of

occurrence of the colour by the total frequency of occurrence. Thesimilarity between objects A

and B can be calculated by comparing each colour in A against all other colours in B. A good

colour match consists of a similar colour with a similar normalised frequency. A good overall
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match between two objects is one in which the difference between the lowest and highest colour

match scores is small and the lowest colour match is above a pre-de�ned threshold. However, the

appearance of people changes between views and without any process to adapt to this the major

colour approach may tend towards similar incorrect matches whose MCSH is closer to that of

the original image. Farenzenaet al. [41] adopt a similarly principled quantisation based on Max-

imally Stable Colour Regions (MSCR) [47], whose stability is based on regionsthat are retained

under several threshold values. This method achieves some invariance totransformations of the

colour regions, but not the inter-camera lighting changes.

Colour is the most prominent of the features extracted in re-identi�cation works [1, 13, 26,

56, 68, 71, 77, 78, 80, 91, 131, 132, 164]. Apart from being more distinctive than any other fea-

tures [61, 65] it gains some invariance to scale and orientation when storedin a histograms

form [152]. It can even be extracted in low resolution images, where morecomplex representa-

tions like face, gait and even textural information become severely degraded. However, colour

is effected heavily by differing illumination conditions, common between camera views [78],

and to combat this some form of normalisation or illumination modelling must be considered to

improve performance. Additionally, colour based methods fail to utilise any textural or spatial

information contained within an object, such as the texture of the clothing or the layout of the

colours themselves. Incorporating this information should provide a measure to further distin-

guish between observations whose colour histograms are otherwise similar.

2.2.2 Texture

While colour represents the overall chromatic appearance of an individual the gradient of inten-

sities can provide further detail about them. The gradient information can be used in order to

distinguish people by the patterns present in their clothing that make them standout from others

wearing similar coloured clothing. Hahnelet al. [65] compare several different frequency-based

texture features. The �rst is the 2D Quadrature Mirror Filter (QMF), a signal �lter based ap-

proach using an image split into low vertical, horizontal and diagonal spatial frequencies. The

second is Oriented Gaussian Derivatives (OGD), as used in [166], that uses a steerable Gaus-

sian �lter. Then the Homogeneous Texture Descriptor (HTD) de�ned in MPEG-7 standard [29]

that uses Gabor �lters [46] in the frequency domain. Finally the Edge Histogram Descriptor

(EHD), which consists of a histogram to describe �ve different classesof edge: 45� diagonal,

135� diagonal, vertical, horizontal and undirected edges. Of these methods they found that the
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QMF and OGD performed poorly over multiple cameras, with the HTD providing the greatest

matching rate, possibly due to its invariance to intensity changes [137] that are commonly present

between views.

Haritaogluet al. [74] opt for a combination of grey-scale texture and a gait-like represen-

tation in what they call the textural temporal template. The texture component ofthis template

is calculated by recording grey-scale medians of all the foreground pixels, relative to the cen-

tre pf the object detection, over time. Likewise, the shape information image is computed by

incrementing each pixel bin relative to the object centre if it is deemed foreground. The shape

information image can then be used as a normalised probability map for comparisons of texture

information. This method has the potential to reduce the effect of illumination andcolour value

differences between cameras and although it relies on single pose, and aset of poses could be

learned for use over different cameras, it would still be dif�cult to achieve this exhaustively.

Edges have been incorporated into several other multi-camera works. Shanet al. [146, 147]

use edges to model the appearance of vehicles in a multi-camera tracking scenario. Upon ob-

taining the edge detection results for two segmented vehicle observations, they use an Iterative

Closest Point (ICP)-based edge alignment method [54] to map both observations onto a common

coordinate system. From here the edge maps are compared using a set of six metrics based on

distances, angular differences and magnitudes. This approach is well suited to rigid objects like

vehicles, but �nding pixel-wise edge matches in deformable objects like humans would be sub-

stantially more challenging. To solve this Kanget al. [90] use a polar based representation to

describe the edges for human re-identi�cation. After edge detection eachof the radial bins in

the polar representation is populated with the number of edge pixels in that region of the edge

image. The resulting bin values are then normalised to ensure scale and translation invariance,

but the effect of deformation and rotation between observations may present issues for the polar

representation.

Grayet al. [61] draw from some of the object detection work to incorporate texture features

into their representation. They use convolution based methods comprising �lters designed to

identify gradient change across manually extracted bounding boxes. They apply two types of

�lter to the luminance channel: Gabor �lters [46], to detect horizontal and vertical lines, and

Schmid �lters [144], to detect circular gradient change. This gives a rich selection of edge, line

and circular gradient features that they prune using Adaboost.
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Using texture alone may not necessarily capture enough variance between individuals, which

is crucial to the task of re-identi�cation. Instead it is often complemented with thebroader chro-

maticity information contained in many colour representations. For example, in Gray's work

mentioned previously they combine their texture information with several different colour spaces

in an attempt to create a richer descriptor. Although no results are presented using texture alone,

as they amalgamate several colour and texture channels, they suggest that texture is better suited

as an accompaniment to colour not a substitute for it. This sentiment is echoed inHahnelet

al.'s [65] work where they found that the combination of colour and texture-based descriptors

led only to a minor improvement in matching results. These works highlight the fact that while

conceptually including gradient information to capture the textures in clothing,by itself it lacks

the ability to distinguish between persons in the same way that colour does and should be con-

sidered as an additional not stand-alone feature representation.

2.2.3 Incorporating Spatial Information

Colour and texture capture the overall appearance of a person but often have to be constrained

to regions otherwise they become too generalised. Including spatial information through size,

models of the shape of the body, or simpler localised regions has the advantage of being able

to distinguish between people wearing similar clothing, as can often happen in asurveillance

setting like an airport, shop or railway station.

Some issues with shape and size descriptors are that they are affected bythe fact that humans

are deformable objects, that the size of observed objects can be very different between camera

views and that lighting effects like shadowing can cause erroneous shape information. Despite

these drawbacks Huet al. [69] use a person's principal axis as a height measure, based on some

knowledge of the camera's spatial arrangement. By obtaining a vertical projection histogram

from each foreground blob the authors are able to discriminate between vehicles (more uniform

histograms), people (single peak histograms) and groups of people (multiplepeak histograms).

To distinguish individuals in a group, each person can be obtained by identifying the highest

peak above a height threshold between two troughs, below another set height threshold. Least

median of squares is used to calculate the principal axis by minimising the median ofsquared

horizontal distances of foreground pixels from a vertical axis. Using the ground point of the

object, obtained by taking the lower intersection of the bounding box and the principal axis, a

homography can then be learned and hence the world coordinates of overlapping areas of the
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camera views. However, they are still assuming the existence of camera overlap, that the ground

is planar and the use of a single line is suf�cient to distinguish between individuals for object

comparison, considering the variation in human height is likely to be less than that of clothing

colour for example.

Gheissariet al. [55] couple a dynamic shape model with dynamic colour regions similar

to [7, 165] but extend the method over multiple cameras. The objective of theirwork is to pro-

duce an object descriptor for use in surveillance tagging that is invariantto pose, illumination and

encompasses the effects of non-rigid items of clothing. The �rst step in obtaining their colour re-

gions is to over-segment the colour image into similar colour zones over 10 frames to reduce the

in�uence of wrinkles in clothing during movement. Sobel edge detection and Gaussian smooth-

ing are applied to the grey scale version of the image, then the Watershed transformation [161] is

used to segment the image. Once a set of over-segmented images have beencaptured over time,

spatial and temporal edges are de�ned within an image and over the set of images respectively.

A frequency image is then produced to �nd the strength of edges. Lower strength edges can

then be used to merge colour areas while high strength edges remain to form the �nal colour

segmentation. The major spatial regions of the body can then be calculated byusing a top-down

decomposable triangular graph [3] containing a set number of ordered triangles (Figure 2.4). The

major edges of this graph are adjusted so they minimise the distance from the imagesegments.

Comparison of objects can easily be performed by comparing the histograms of each of the or-

dered triangles. However, the structure of this graph is limited by view angle as the triangular

graph would be dif�cult to accurately recreate from a non-frontal pose.

Active Shape Models (ASM) are combined with colour in [122] to tag targets across cameras.

The authors use varying weights for both the shape and colour featuresto �nd the best descriptor.

Vehicle matching has also been performed using shape as a main descriptor [170], but this work

uses a static shape model based on edge maps and ignores colour. Shanet al. [170] show low

error rates in object matching but the view variations they choose are verysimilar in angle and

the effectiveness of this method over wider angles of change is questionable.

Many of the colour and texture-based methods use a histogram representation as this main-

tains some invariance to scale and pose [152]. However, by using a single-histogram representa-

tion of an individual the the spatial relationship between areas of colour/texture is lost. Thus it

is feasible that a person wearing a blue shirt and black trousers could bemistaken for someone
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Figure 2.4: Ordered triangular graph spatial representation used in [55]. Provides a detailed
spatial description of a person (minus the arms), but is potentially limited to front/back views.
Image from [55].

wearing a black shirt and blue trousers or vice versa. The simplest way todescribe the spatial lay-

out of appearance features is to use a set of rectangles [36]. A more pedestrian-speci�c approach

is to separate the body into regions relating to the head, torso and legs [41].Gray et al. [61]

note that pedestrians can be viewed from any azimuth and they forego segmentation along the

horizontal axis by representing objects using horizontal strips.

Alahi et al. [2] expand on this by using a coarse to �ne rectangular representation. Their

method encapsulates appearance as a set of progressively decomposed rectangular regions. The

top level is a single region covering the entire bounding box, the next has four equal size regions

then nine and sixteen (2� 2, 3� 3 and 4� 4 respectively) [1]. During the matching process

they only compare the regions which have a similarity above a certain threshold. This enables

them to remove some of the background pixels that are often found within the bounding box and

potentially reduce the effect of object occlusions.

Kang et al. [88] forego rectangular representation for a set of concentric circles that they

later update to a multi-polar representation [90], in which has been shown to be invariant to both

scale changes and 2D rigid transform [30]. Upon obtaining a foreground region of interest they

encompass it in the smallest circle that can contain the whole region. Several control points are

de�ned on the circumference of the circle and from each of these they propagate out a set of
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concentric circles. Each of these circles becomes one spatial bin in which the colour of the object

is used to model its appearance as seen in Figure 2.5. While the invariance to scale changes has

its obvious advantages, this polar representation may be more susceptible to view angle changes

as its binning structure does not allow for moderate rotations in the same way that the rectangular

structures do.

Figure 2.5: Polar alternative to rectangular spatial representation [88].It reduces scale and 2D
rigid transform variance, but rotations around the principal axis can cause parts of the body to
move between bins. Image from [88].

In order to alleviate the effect of view angle on these spatial models Gandhiet al. [53] pro-

posed a Panoramic Appearance Map (PAM) to model colour distribution. Byobserving an object

simultaneously in four cameras they are able to map the coordinates of the pixelsin each camera

view into a global coordinate system. From this they approximate the shape of aperson using

a cylinder made up of discretised bins for elevation and azimuth. Each of these bins contains

the mean colour appearance and the number of pixels counted, which is additionally used as

a con�dence measure. Although the method produces promising results, theauthors note that

the observed colour from each camera maybe different, due to varying illumination, which are

not considered in their model. Additionally, this approach requires multiple overlapping views

capturing the person from all angles, which limits its practical application.

A graph-based approach is described in [7] that models objects as nodes of colour or Region

Adjacency Graphs (RAG). The objective is to maintain the objects appearance in terms of the
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layout of the colours to provide a more descriptive representation than a colour histogram. They

suggest this can lead to the reduced need for background subtraction when tracking an object with

a PTZ camera. The Hough transform followed by local maxima calculations are used to extract

the colour regions of the object. Each region can be described by its mean colour, region area, and

percentage-�ll within its bounding box, which can then be used to calculate similarity between

regions. Vectors connect the centres of each region within an object to form the RAG. This

method allows objects to be tracked in a single moving/zooming PTZ camera since theregions

can be compared without background subtraction after an initial descriptor has been built.

2.2.4 Face

As camera resolution and computation speed increase many researchers turn to more sophisti-

cated biometrics to describe humans in an effort to discriminate between similar appearances.

As such, face recognition is a well established approach for person re-identi�cation, and general

surveys of common face recognition techniques can be found in [51,155,176,180]. A simple yet

intuitive approach to face recognition is that of template matching with comparisons made using

cross correlation [17]. Another popular approach is that ofEigenfaces[158, 159] in which PCA

is used to form a representation of the face based on the variance of the data, which has later

been extended by decomposing the main regions of the face into major components like eyes,

nose, face and mouth [125]. Machine learning techniques such as Neural Networks (NN) [97]

and Support Vector Machines (SVM) [64,126] have been used to trainclassi�ers on sets of facial

observations.

As with many of the appearance representations outlined in previous sections, face recogni-

tion techniques are susceptible to illumination changes caused by differing lighting conditions

upon image acquisition. A general survey of lighting change mitigation techniques can be found

in [140, 180], but the approaches can be broken down into three main topics: invariant fea-

tures [136], normalisation [167,177], and modelling the inter-observationvariation [37,167]. In

addition to these general weaknesses the unfortunate disadvantage with respect to CCTV-based

imaging is that the face is often either not visible, due to occlusions or the poseof the observed

individual, or are observed at insuf�cient quality due to low resolution sensors or the distance

from the camera. This means that facial recognition-based re-identi�cation methods are better

suited to scenarios in which the camera placement was speci�cally designed tocounter these

effects and not the general CCTV scenario considered in this thesis.
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2.2.5 Motion and Gait

Aside from the obvious visual attributes like colour and texture mentioned above, a person can

also be characterised by their movements. The biometricGait is the pattern of motion of the

limbs of an animal, or in this context a human, as they walk or run across �at ground. It is

an appearance cue that has been shown in cognitive science to be useful in the recognition of

others [104, 150]. One approach to modelling an individual's gait is proposed by Phillipset

al. [127]. They extract the silhouette over several video frames and analyse the periodicity to

extract roughly one stride. The gallery and probe sequences are thencompared on a frame-

wise basis. Kimet al. [94] expand on this approach by incorporating an ASM to capture the

locomotion of the selected individual. The ASM allows them to model the shape parameters

over time and reduces the effect of shadows in the silhouette extraction process while increasing

overall recognition rates.

Instead of a sequence of gait templates, Han and Bhanu [66] take a different approach by

modelling the motion over time in a single image template. This Gait Energy Image (GEI) is

formed by normalising and aligning a sequence of silhouettes and assigning each pixel value

in the GEI the number of images in the sequence for which that pixel is a foreground pixel

(Figure 2.6). Dimensionality reduction is then performed using a combination ofPrincipal Com-

ponent Analysis (PCA) and Multiple Discriminant Analysis (MDA) [70] and classi�cation per-

formed based on a combination of real and synthetic GEI extracted from theoriginal sequences.

Yu et al. [171] and Bashiret al. [8] have also demonstrated that the GEI technique can be used

to recognise people even when their appearance, both visual and locomotive, are changed by

wearing a coat or carrying a bag, a feat which would certainly prove challenging if using other

visual cues like colour or texture.

Figure 2.6: Aligned silhouette frames from walking sequences. Far right isthe combined Gait
Energy Image (GEI) [66]. Human locomotion (Gait) can be a good identi�er,but is limited by
narrow viewing angle and accurate segmentations. Image from [66].
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As both gait and face have been found to be successful methods by which to identify peo-

ple, Shakhnarovichet al. [145] attempt to combine the two. In their approach they use four

cameras to obtain both the side view for gait and the frontal view for facial capture. They use

visual hulls [112] to represent gait and Eigenfaces [158] for the face. They note that a feature

level fusion of these two spaces is non-trivial and instead opt for a score fusion at the decision

level. However, the reliance on multiple cameras is once again a practical limitation. Recently,

Zhou and Bhanu [179] addressed this issue by changing the face representation from a method

restricted to frontal views to a pro�le face that models the curvature of the features of the face as

viewed from the side.

As with facial recognition, one problem that many works on gait exhibit is their reliance on

certain viewing angles. The approaches outlined above all work on objects observed from a side

view, which is unrealistic in the more general camera set up. Zhaoet al. [175] attempt to get

around this by using a 3D skeletal representation, but require multiple overlapping camera views

to construct and track it. Alternatively, Jeanet al. [79] attempt to normalise the trajectory of

the observed individual. To do this they calculate homography transformations for each of the

tracked body parts to a common space, but the observation angle cannot be too frontal otherwise

body part tracking is lost and the normalisation to the side view becomes unobtainable.

Through methods like the GEI [171], gait has an advantage over other appearance methods in

that it can be used to distinguish people even when their clothing changes between observations.

Furthermore, it is not directly affected by illumination changes as it is often based on silhouettes

[66,145,171]. Vast changes in appearance like this would have a negative impact on descriptors

based on colour and even texture. However, it does rely on accurate segmentation, which is very

challenging in busy scenes, and a near side on view angle. These two factors currently limit its

use to more constrained environments.

2.3 Utilising Contextual Information

In addition to the visual representations of people outlined in Section 2.2, techniques have been

developed to utilise information that provides indirect aid to visual re-identi�cation. Suchcon-

textual information can be drawn from several key areas. Firstly, scene illumination, in which

the difference in lighting conditions between camera views can be modelled to mitigate its affect

on visual matching [26, 56, 78, 129]. Secondly, the statistics of the time it takes for a person
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to move from one camera to the next can modelled [57, 76, 105, 109, 154].This inter-camera

transition time can then be used as an additional re-identi�cation cue. Finally, group context

can be used [20, 178],i.e. incorporating information about the other people that an individual is

travelling with to help distinguish between observations of similar appearance.

2.3.1 Brightness Transfer Learning

A major issue for appearance based features is the differing lighting conditions between camera

views. These lighting changes have dramatic effects on the appearance of individuals between

cameras, reducing the likelihood of matching using the metrics described in Section 2.4.1. Di-

rect comparison of distributions will be unable to deal with large changes to the distributions

themselves. Outdoor scenes have the obvious problems of changing illumination conditions due

to weather and shadowing either from surrounding objects or self shadowing if the sun is not

behind the camera. The lighting conditions in indoor scenes are also not consistent, lights are

placed in different positions relative to the cameras' �elds of view and spot lighting can create

patches of light and dark areas as little as a few feet apart. Thus, in order to accurately compare

two objects using appearance features like colour or texture some form ofillumination change

mitigation must take place between camera views.

The simplest method for dealing with illumination change is that of colour constancy through

normalisation [152]. Here the RGB channels are normalised and tested on images of the same

object taken from two different cameras. Other approaches simply select a colour space which

is less reliant on illumination [1, 13, 80]. A hardware calibration phase is presented by Ilieet

al. [72] in which they iteratively tune camera hardware parameters in order toachieve similar

colour responses. However, this method relies on the cameras being able tosee the same object

and also having access to hardware parameters both of which limit its usefulness in the context

of re-identi�cation.

Maddenet al. [107] extends the work on MCHR [27, 128] to include a cumulative intensity

transformation to compensate for colour changes between camera views before the MCSH is

created. This intensity transform is based on a cumulative histogram equalisation of the data

from each view. While this data-wise mapping is likely to improve the score of correct matches,

it is likely to increase the score of incorrect ones as well, as it does not take into consideration

any information about illumination in the scene itself.

Porikli [129] proposes an illumination mitigation approach he calls a BrightnessTransfer
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Function (BTF). He suggests that the modelling of illumination change between views can be

achieved by calculating a correlation matrix between two colour histograms. Allcombinations

of bins are collated and the minimum cost path is used to create a colour mapping model. Once

this mapping has been found, matching individuals can be performed by comparison of the trans-

formed colour histograms.

Gilbert et al. [56] extends this concept by incorporating an online learning method to calcu-

late the inter-camera illumination changes. An RGB transformation matrix is initially described

as an identity matrix assuming that the lighting is constant throughout all. Objects are then

tracked across camera views using a CCCM colour model and single value decomposition can

be used to calculate the RGB transformation between the two colour descriptors. Once enough

training samples have been collected the transformation matrix and RGB representation replace

the CCCM model, leading to better results. However, they initially rely on good inter-camera

correspondence to train the model and in order to effectively train the transformation matrix

5000-10000 tracks are required.

Another prominent extension of Porikli's work [129] is that of Javedet al. [77, 78]. Rather

than a matrix-based transfer function they assume that a certain percentage of a person in one

camera will have brightness less than or equal toBi is equal to the percentage of brightness

less than or equal toB j in another camera view. They use this to form a direct mapping of

brightness values from one view to another, per colour channel. From aset of these BTFs they

formulate a probability distribution of the set of possible BTFs. Principal Component Analysis

(PCA) is performed to extract the subspace describing the set of learned BTFs. The appearance

of two individuals can then be compared by measuring the distance between their projected BTF

and the mean BTF from the training set using the Mahalanobis distance. The use of the mean

representation of the set is questionable here as given a sparse set ofdata the mean can easily be

perturbed by outliers. Additionally, the model is trained for a single illumination condition and

should the illumination conditions change the models would need to be manually re-trained.

Recently, Chenet al. [26] try to compensate for this �xed calibration by incorporating a

machine learning aspect to the estimation of the BTF functions. They suggestthat initialisation

of the BTF subspace between camera pairs need not be based on a manually de�ned training set.

Instead they use the time gap between camera views as the main matching feature and calculate

BTFs of probable matches. Once a certain number of these BTFs have been collected the BTF
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subspace can be calculated and then used to aid the matching of further individuals. These two

matching features can then be used to update the BTF subspace over time by merging sets of

new BTFs into the learned BTF subspace. Although they claim that they are able to deal with

lighting changes they actually discard all learned appearance data and restart the learning process

upon different illumination conditions. In addition, their update method assumesthat suf�cient

samples are available when lighting conditions have changed. This assumptionis invalid given

rapid lighting change, typical in an outdoor environment, or less crowded scenarios where less

retraining data is available.

As colour is a prominent feature in re-identi�cation reducing the effects ofillumination

change between camera views is an important one. Approaches that try to create an illumination-

invariant colour space [1,13] or representation [128] fail to make useof camera-speci�c lighting

conditions. Those that are based on training samples to learn speci�c inter-camera illumination

functions often require many training samples [56, 77, 78] thus requiring substantial user input.

The work in Chapter 3 attempts to address this issue by looking at a way of representing the

average BTF from a small training set, and by reducing the size of training sets and amount of

human effort required in labelling.

In addition to modelling of the illumination changes themselves, lighting can also change

over time as the weather varies or the sun goes down, even affecting indoor environments via

windows or skylights. This change in lighting means that models need expensive retraining [56,

77,78], or those that update automatically often throw away trained models and start again from

scratch [26] relying solely on knowledge of the transition time between cameras. In Chapter 4

a method is proposed that makes use of the previous training data. It attempts toupdate the

transfer functions to re�ect new illumination conditions by modelling the changes in lighting

within each camera over time, thus removing the need to re-train or rely on camera transition

time to bootstrap re-training as in [26].

2.3.2 Inter-Camera Transition Time

While the focus here is on non-overlapping camera views, scene information can still be incorpo-

rated into the matching process. Knowing the layout of the camera network, or at least the time

it takes to get from one camera view to another, can be crucial in increasing the performance

of matching methods. While it does not actually affect the appearance similarityof any two

observations, it can be used to dramatically reduce the search space or topenalize hypotheses
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considerably disjoint in time. For example, given that it takes on average 30seconds to traverse

the gap between two cameras it would be over zealous to consider all observations 30 minutes

before and after the original. Instead one may seek to �nd a probabilistic measure of the time

taken to travel the distance between cameras. The key is to choose an appropriate method for

estimating transition time and incorporate it into a matching criterion.

A Bayesian approach to tracking people across disjoint camera views waspresented by Ket-

tnaker and Zabih [91]. They apply global constraints on the motion of individuals and specify

that an individual cannot be seen by two cameras at once (forcing non-overlap). However, their

approach requires calibration of the system with the user supplying information such as expected

transition duration and camera transition probabilities a priori. Effectively thismeans one must

know the environment in advance, which is not a desirable property and implausible in many

situations.

Javedet al. [76] use a training set of known correspondences between views to aid the cal-

culation of transition times. They assume that single camera tracking results of these individuals

are available and that entry and exit zones have been established. Usingthe exit velocities and

the transition time of the known correspondences they model the inter-cameratransition as a

probability distribution using the Parzen window technique. The probability density functions

for the transition times and appearance are then combined to form the �nal matching criteria,

which they claim increases the matching rate over the colour based model alone.

Dick and Brooks [35] use a stochastic transition matrix to model the patterns ofmotion, both

within and between camera views, that captures the probabilities of transitionsbased on the cur-

rent state of the camera regions. They choose a Markov model to deal withdiscontinuities within

the tracking process that occur between views. However, the training phase of this approach

requires traversing the camera network carrying an easily identi�able calibration object, in this

case a bright red ball. This training requirement gives rise to various limitations, in that the whole

camera system must be traversed by someone holding the ball.

All of the above methods require either prior knowledge or a labelled trainingphase, and

learning the parameters online would be preferable. One such approach[134] attempts to calcu-

late both a target trajectory between non-overlapping camera views and theposition and direction

of the cameras themselves. As a single target passes through any of the sensors its ground plane

position and velocity are recorded. The authors represent these trajectories over time as Markov
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chains, and for each time step use the velocity to update the current position,adding Gaussian

noise. As the target passes through different camera views the system can use points in local

camera space to estimate the position and rotation of the camera in global space.Maximum

a Posteriori (MAP) estimation is then used to determine the best trajectories andcamera pa-

rameters, as seen in Figure 2.7. With four cameras installed approximately 4 meters apart the

estimations for sensor position is off, on average, by 28cm and the errorin the angle is less

than 10� . The authors do however assume that the image plane is parallel with the ground plane

which, again, is uncommon in real surveillance systems.

Figure 2.7: Camera topology recovery using overhead cameras to obtain trajectory information
from people passing through the views. Image from [134].

Anjum et al. [5] further developed this approach by using linear regression estimation for the

observed zones and a Kalman �lter to estimate the tracks between cameras, suggesting as little

as 1% positional error. These approaches provide accurate placement of cameras within an open

small-scale environment. However, they are unable to accurately predict position and orientation

of cameras with walls or other objects in between because they rely on the assumption of simple

linear movement. This constraint on linear motion is later relaxed in [4] allowing for more

complex motion prediction, but the model is still unable to compensate for obstacles between

views.

In an alternative approach Makris and Ellis [109] forego accurate spatial relationships be-

tween cameras and rely instead on temporal transitions alone. Their approach aims to create
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a topological map of the network based on these transitions and use this to estimate transition

probabilities. They begin by tracking people across each camera individually and clustering their

entry/exit points using Expectation Maximisation from previous work [108].The resulting clus-

ters form the entry/exit nodes for the system. The �ow of people through each node is then

considered as a signal in terms of rates of people appearing/disappearing instead of concentrat-

ing purely on characterising visual appearance. The system logs the time difference between

disappearances at exit nodes and the appearing events at entry nodes within a given time frame.

Peaks in the time difference indicate a link between the two nodes. They further develop this by

removing implied links where a person travels from one camera to another through an interme-

diate camera. The resulting graph of nodes is the topology of the system with average transition

time probability distributions as its links.

(a) (b)

Figure 2.8: Camera topology estimation using statistical measures of entry and exits in each
camera [108]. a) transition time probabilities, b) camera topology reconstruction. Image from
[108].

Gilbert and Bowden [57] also expand on Makris and Ellis' work by incorporating an online

recursive topology decomposition and using appearance as the correspondence measure, similar

to [76] but without the need of a training phase. Initially each camera is treated as a single node

in the camera network, and as people are matched between views, using an appearance model the

distribution of transitional times is populated (Figure 2.8(a)). If a link is foundbetween two cam-

era views each view is subdivided into four equal regions and the previous data is fed back into

the system to populate their time-frequency histograms. This process is repeated over time with

regions containing little or no entry/exit data being removed. Once the regionsbecome smaller

and the data is spread out, neighbouring regions with similar amounts of data and distributions
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are then combined and a camera topology can be estimated (Figure 2.8(b)). The bene�t of this

approach is that association can begin without a lengthy training phase to obtain the transition

probabilities, but does require good initial tracking or quiet scenes to accurately train the model.

One criticism of Markris and Ellis' [109] approach is that they assume the inter-camera tran-

sitions times to be a simple Gaussian distribution [154]. Tieuet al. [154] expand on this idea

suggesting that the transition time is better modelled as a multi-modal distribution. Theyseek to

calculate the statistical dependence between two camera views using Mutual Information (MI)

employing a a Markov Chain Monte Carlo (MCMC) process [34] to gain approximate inter-

camera inference without prior knowledge of correspondences. Thisallows for factors such as

differing routes between cameras, or obstacles such as traf�c lights to beaccounted for. Caiet

al. [18] also expand on the single Gaussian by grouping the transition times using K-means clus-

tering based on slow, medium and fast walking paces, and forming a mixture of Gaussians. While

this is a crude grouping of speeds, their mixture approach appears to be abetter approximation

than a single Gaussian.

Recently, Loyet al. [105] show that individual correspondences are not required to estimate

camera transition times and instead use activity correlation. They form regions in each camera

that correspond to different activities based on their spatio-temporal correlation. From these

activity regions they can search through other cameras for activity regions with a similar time-

series. This approach allows them to �nd temporal links between cameras in busy scenes without

any appearance matching, but does require varying levels of activity within the scene such as

trains arriving, making it best suited to tube/train stations.

Incorporating inter-camera transition time as a constraint or feature in a system could po-

tentially assist re-identi�cation in small or quiet scenes by reducing the size of the observation

search space. However, its effect will be dramatically lowered in crowded public spaces, or in

camera networks where there are a lot of unobserved entrance/exit points, which could cause

problems for methods based both on appearance [57,76] and on entry/exit rates [109,154] as the

persons that re-appear might be statistically less prevalent.

2.3.3 Group Matching

In order to further reduce the subset of suitable matches in re-identi�cation one could consider

incorporating contextual information from the association between individuals in a scene. Re-

cently, Zhenget al. [178] proposed the use of surrounding foreground information in there-
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identi�cation process. They work on the observation that many people movein groups, and

exploit this to add extra visual information from nearby people to the appearance model of an

individual. This addition of context means that persons of common appearance can also be dis-

ambiguated by the appearance of the people around them. In order to alleviate the additional

issues this creates, namely the non-rigidity of the shape of the group and placement of people

therein, Zhenget al. de�ne two spatial group representations. The �rst is a Centre Rectangular

Ring Ratio-Occurrence descriptor (CRRRO) and the second is the Block-based Ratio-Occurrence

Descriptor (BRO), that attempt to provide rotation invariance around the group centre and sup-

port for local structure, respectively. Examples of group representation as well as the CRRRO

regions are depicted in Figure 2.9.

Figure 2.9: Deriving contextual information from groups of people to aid with matching [178].
The green rectangles denote the regions of the CRRRO descriptor. Imagefrom [178].

This concept of matching by groups was also adopted by Caiet al. [20]. They opt for a more

rigid spatial representation of the group by extracting a position-labelled feature vector for each

pixel and use a covariance descriptor based on [160] to measure similarity. The results demon-

strate that incorporating group information yields a sizable performance gain, but the authors'

use of a rigid spatial structure is questionable, as the spatial composition of groups of people

often varies over time. The effectiveness of the rigid representation is probably a result of the

small difference in viewing angle in the CASIA dataset used.

While using the information gained from a group of people to identify speci�c individuals

is very intuitive, it is not without practical issues. In manually labelled datasets the process is

straightforward, but in a busy CCTV environment it is dif�cult to distinguishbetween people

walking near each other in a single camera view and those who are actually traversing the scene

as a group.

2.4 Matching Techniques for Re-Identi�cation

Once the objects have been extracted and the appearance representation chosen, the task of �nd-

ing a correspondence score between observations must be addressed. In traditional single camera
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tracking, this is a process of �nding regions that are similar in order to identify the next bound-

ing box in a sequence. In re-identi�cation however, the task is to distinguishbetween many

observations of similar appearance. Therefore, the goal is to emphasiseuniqueness within the

appearance of an individual and use this to �nd its corresponding observations. While complex

appearance representations may require speci�cally crafted metrics [7,52, 107] there are many

that use general metrics for re-identi�cation tasks [2,10,32,76,118,153,165,172]. Many of these

approaches are based on the principal of single observation matching. However, when dealing

with video sequences where a person may be extracted from many frames,methods for multi-

instance comparison [2,172] must be considered. In addition to the more generally used distance

metric approaches, a few recent studies consider that the chosen feature representation may con-

tain redundant data, and that some form of feature selection criterion could be learned [61].

2.4.1 Distribution Comparison and Template Matching

Matching metrics form the basis of the matching scores that are ultimately used to decide if

two observations are in fact the same person. For matching their shape andappearance features

Wanget al. [165] use thè 1-norm or City-Block distance measure. This measure is a sum of the

absolute difference between two points' coordinates in a given feature space, akin to the distance

taken to move between two points on a grid without any diagonal motion. Other methods [69,

124] simply use thè2-norm (Euclidean norm) that measures the distance between two points in

space. While these methods are standard distance measures they evidently make no consideration

of the distribution of the underlying data within the feature space.

Ghiessiariet al. [55] chose the Histogram Intersection (HI) technique presented by Swain

and Ballard [153], which is speci�cally designed to compare histograms of colour images for re-

identi�cation. Histograms are used to estimate the probability distribution of a feature channel,

in this case each of R, G and B, and due to their inherent invariance to the effects of scaling

and rotation through normalisation [153], are commonly used in re-identi�cation [10,32,55,56,

76, 118, 121]. HI then computes the number of pixels in two histograms whose colour is the

same, normalised by the total number of pixels. Swain and Ballard claim that this approach

alleviates the need for accurate segmentation and is robust to occlusions. However, their method

is sensitive to changes in lighting conditions between views and requires someform of lighting

change calibration (see Section 2.3.1) to achieve accurate results.

Yu et al. [172] use the Kullback-Leibler (KL) divergence to measure the similarity between
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samples of their PDF-based representation of appearance. KL divergence measures the informa-

tion gain over two distributions of continuous random variables through integration. In order to

reduce the computational complexity they sample a subset of the pixels in a silhouette based on

the distribution of distance from the top of the head, but this means that the divergence score

vary based on the subsets chosen. Additionally the KL divergence is non-symmetric resulting in

a score that may be different if the probe and gallery camera views are swapped. Orozcoet al.'s

work on head pose estimation [121] suggested that the logarithmic nature of the KL divergence

can cope with larger non-linear variation than methods like the Bhattacharyyadistance [11], al-

though Kanget al. [89] have shown that for identifying an object the KL and Bhattacharyya

distance measures have similar level of performance.

The Bhattacharyya coef�cient is a popular distance measure for histogram based approaches

[10, 32, 76, 118]. It forms an approximate measure of the overlap between two continuous prob-

ability distributions through integration of the square root of the distribution products. It can be

adapted to discrete distributions, like histograms, by performing the summation ofthe bin-wise

comparison.

Interestingly, a recent study by Alahiet al. [2] performs a comparison of`1-norm,`2-norm,

Bhattacharyya, histogram intersection and Chi-square(c 2) measures. They suggest that the

Bhattacharyya coef�cient has a better, or at least similar performance tothe other measures,

supporting its use in re-identi�cation problems.

Instead of a direct distance measure in a given feature space Tuzelet al. [160] opt for a

comparison of the inter-feature covariances. Given an arbitrary lengthfeature vector they form

a covariance matrix to describe feature variance and correlation. In order to make a comparison

between two such matrices they use the sum of the squared logarithms of the eigenvectors [48].

Unfortunately, the comparison time isO(d2) for a d-dimensional feature vector, making it an

expensive method for larger feature spaces.

Nakajimaet al. [117] look to subspace classi�cation techniques to match individuals. Their

work compares several types of SVM in order to classify both identity and pose. This approach

requires a training stage in which the target individuals must be manually identi�ed. While this

may be appropriate for searching for a speci�c person it cannot be applied to general multi-

camera matching tasks where training and testing sets contain different individuals.

Other methods using non-standard appearance representations often have their own matching
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metric, as the general approaches described above would not be suitable. For example in Madden

et al. [107] the researchers compare objects on the relative proportions ofcolours from their

MCHR colour clustering. A neural network is used to optimise the comparison of a set of graph

nodes in [7]. While in [52] they propose a distance measure to compare their2-D representation

of a 3-D appearance model (The reader is referred to the individual papers for details of their

implementation).

Specialised appearance representations clearly require custom non-standard matching met-

rics like those described above, as they are built around a uniqueness of feature representation.

Other methods that are based on PDF or histogram comparison show con�icting results given on

differing datasets. This indicates that the effectiveness of the distance measures are dependent on

the data itself so ideally one must know the underlying structure of the searchspace beforehand.

None of these methods actually look further into the data itself to identify areas of uniqueness

that may be focused upon to �nd a better matching criterion.

2.4.2 Multi-Frame Matching

Assuming the presence of single camera tracking results, as several re-identi�cation works do

[26, 57, 78], the task of calculating correspondences is not simply a distance measure between

two image representations. Instead one must decide how to use the informationgained from a

set of images of an observed person in each camera view.

Producing a single distribution of appearance for an observation per camera is a method

adopted by several approaches [57,78]. The idea here is that the appearance model can be updated

as the object is tracked across a camera view and the resulting distribution should encompass an

average of the visual information, thus lessening the effect of small posechanges.

A similar single model approach is taken in [19]. Here a size-normalised observation is

broken down into patches, each of which is described by its dominant colours. Over a set of

frames the dominant colours in each frame are compared (per patch) and those that have a high

reoccurrence rate are kept in a �nal model used to match between cameras.

The underlying assumption in the above methods is that the illumination is constant or varies

only slightly. Presented with a scenario in which the illumination changes throughout the scene,

such as emerging from a shadow, would corrupt the appearance model and decrease the chances

of matching between camera views.

In order to address these single camera appearance changes Alahiet al. [2] proposed the
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extraction of a subset of observations from a single view. They form every combinatorial set of

single camera observations with a pre-determined set size. Each set is characterised by the sum-

mation of the similarity measure between every pair of observations within the set.The set with

the lowest intra-set similarity score is kept as it contains the most variation of appearance. While

this method is likely to produce a good sample of key frames from each view, thecomputational

cost of forming the sets based on combinations is high, especially as it must beupdated for each

new observation within a camera.

This sentiment is shared by Yuet al. [172] who suggest that a key frame method can be used

to reduce computational overheads. Similar to the approach above the frames are selected using

self similarity. The �rst frame of the observation is taken as the key frame, and each successive

frame is then compared using the KL divergence. This process is repeated for every successive

frame until the KL divergence is above a set threshold after which the current frame becomes the

next key frame, and the process continues. For each key frame in camera i the key frame with

the lowest KL divergence is found in the key frames of cameraj. The overall score is then the

median of these minimum distances.

2.4.3 Learning for Feature Selection

The vast majority of re-identi�cation approaches base their comparisons on template matching

using direct distance measures as described in Section 2.4.1, but few have considered that the

feature space might contain redundancy. The methods used rely on handcrafted representations

and manually selected comparison functions. Instead, one may consider that not all features are

equal, and that there is a subset of features in these representations that are more discriminative

for the task of re-identi�cation. Finding such a set is non-trivial as one cannot easily extract

the information by eye. Instead a machine learning approach could be applied to this problem

to �nd a subset or weighting of the features through the use of training samples. From here

a distance measure could be narrowed down from some broader selections of feature spaces.

General approaches can be seen in image retrieval [67] and detection [36] where a distance

function is learned from a set of training data in order to provide a domain relevant distance

measure.

Recently, Gray and Tao [61] adopted this methodology for re-identi�cationto search for

more discriminative features enabling a more reliable matching. They choose aselection of

colour spaces and texture methods and group the pixels using thin horizontal strips, where each
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bin from each channel in each region is treated as a feature. They basetheir similarity function

on the features themselves using likelihood ratio tests. Each test is performedon the absolute dif-

ference of the features, where the distributions are modelled as each of exponential, gamma, and

Gaussian. The feature/model combinations are then treated as weak classi�ers and boosted to cre-

ate an overall similarity function the authors call the Ensemble of Localised Features (ELF). They

show that their ELF method signi�cantly outperforms histogram based methodsusing hand se-

lected feature spaces. However, the method is not without �aws. Their feature selection becomes

less effective if object feature distributions overlap signi�cantly in a multi-dimensional feature

space, as each of their weak learners only aims to seek the most relevant features in each feature

dimension independently, not across the entire multi-dimensional feature space collaboratively.

To this end Chapter 5 explores the use of an SVM-based classi�er in a ranking framework. This

allows all of the features to be assessed simultaneously, providing better separation of heavily

overlapping positive and negative samples.

2.5 Summary

An important precursor to multi-camera re-identi�cation is that of extracting information rele-

vant to re-identi�cation from an image or sequence of images. Many approaches to extract said

information fall into the categories of foreground/background segmentation and object detection,

whose respective approaches are those of extracting salient regions, or searching for areas of the

image that have visual similarity to a human. The �eld of tracking then allows one togroup

these observations over time within a single camera view, as long as changes inappearance and

location are not too drastic and that the scene is quiet enough to allow for several sequential ob-

servations. These constraints that are rarely upheld in re-identi�cation applications. Many works

on re-identi�cation assume that these problems are solved and that single camera tracking re-

sults are available. This assumption does not hold in real scenarios like trainstations or airports,

as the number of people, occlusions and appearance changes within cameras can drastically re-

duce tracking accuracy. However, taking this as an assumption can be justi�ed because solving

both tracking and re-identi�cation simultaneously is a substantial challenge, one which is more

manageable when broken down into its separate stages.

Extensive work has gone into biometrics such as face and gait enabling good performance

over a variety of datasets, even enabling the recognition of objects whoseclothing has changed
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between observations, a very challenging task for many appearance representations. Despite this

apparent success they both tend to rely on certain observation conditions. Face recognition by

de�nition requires an observation of the persons face, limiting it to situations where subjects

approach the camera head on. Gait on the other hand often relies on a sideview to capture

dominant motion information. While the use of face and gait for identi�cation cannot be ignored,

these techniques seems better suited to speci�c applications or camera set ups than a general

multi-camera environment.

Colour and texture, occasionally combined with spatial information, offer some invariance to

pose and as such are a common choice for feature representation. However, one of the predom-

inant issues in matching objects with these features is the effect of varying illumination on the

appearance of an object. To address this issue previous work has looked at either attempting to

select a feature set that is tolerant of such conditions, or to try and modeland thus compensate

for them. As the illumination effects can vary greatly, a simple selection of features or targeted

binning to overcome this problem is not suf�cient. Methods that model the changes in lighting

between camera views provide a much better vessel for mitigating this problem. Several of these

methods are based on the idea that a cruder method of re-identi�cation is already available and

that this can be used to bootstrap a learning process. In reality when faced with complex or busy

scenes, such as those found in train stations and airports, this assumption does not hold, as a

combination of the number of people involved and low levels of separability prove too challeng-

ing. Instead the techniques rely on simpler scenes using spatial information as a predominant

feature, or thousands of online training samples to achieve a reasonable model. Other methods

that use a manually labelled training set to form an illumination model are able to immediately

improve results without these factors, but do instead rely on a suitable amount of colour infor-

mation in the training samples themselves. To address this problem, in Chapter 3 theissue of

extracting illumination information from a limited training set containing sparse colour informa-

tion, as is common in CCTV footage, is addressed using a cumulative approach to represent the

inter-camera data.

Another key aspect in modelling lighting change is that many approaches allowonly for a

single set of illumination conditions. Should the lighting change due to any numberof external

factors, which are often unknown, these models are then no longer relevant and may even prove

a hindrance to the matching process. Methods that are based on incremental learning of the illu-
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mination conditions are less effected by change, but will either incorporatethe new illumination

information blindly, polluting any model they had previously been acquired, or throw away use-

ful previous information and start again. The issue of illumination change over time is addressed

in Chapter 4 using a simple but novel incorporation of background lighting conditions to update

a learned model.

Combinations of features have proven to be more effective than relying ona single method

of information extraction. Different combinations of colour, texture, spatial representations, face

and gait analyses have been reviewed in Section 2.2, but few have considered how fusing features

may create redundancy. The different matching metrics often just perform distance measures in

a given feature space irrespective of how useful each of the features actually are. One recent ap-

proach attempts to address this issue but fails to consider the overlap in feature space of incorrect

matches and correct matches whose appearance is very similar. Within this context the matching

process is also questionable. Currently the task of re-identi�cation is treated as a classi�cation

query,i.e. is this probe image the same person as our gallery image? However, given asigni�-

cantly large dataset the likelihood of the correct match being the best match diminishes. Instead

of a binary hypothesis one may wish to presents a user with a list of potential matches, ordered by

their similarity, from which they can form their own �nal hypothesis, perhaps even manually. To

this end Chapter 5 suggests that a more appropriate approach is reformulatethe re-identi�cation

problem as a ranking problem.

The bene�t of video over static images is that multiple observations of a single person can be

made. The advantage this brings is that over a period of time different visual cues may present

themselves that enable a better level of discrimination. This in turn also presents a problem in that

if the appearance changes over time in a single camera, how does on compare objects between

cameras? Some approaches simply create a single model of the appearancewithin a camera, but

this is tainted by the intra-camera appearance changes and is not necessarily the best approach.

Therefore Chapter 6 investigates this issue and considers some other practical constraints of a

real working re-identi�cation system.
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Chapter 3

Modelling Illumination Change Between Views

To re-establish a match of the same person over different camera views located at different phys-

ical sites one aims to match observations of the person's appearance obtained from each cam-

era. However, many appearance representations are based on colour and/or texture descriptors

that are sensitive to illumination changes caused by differing lighting conditions found between

camera views. Thus, mitigating the effect of lighting conditions is an important part of per-

son re-identi�cation. While methods exist to address the problem of illumination change be-

tween camera views, none of them is able to deal with the problems inherent in real world data

with low/varying image quality of very sparse colour information from limited training sam-

ples. Figure 3.1 shows some examples of corresponding observations collected from a public

residential area CCTV network and demonstrates the signi�cant challengeof varying illumina-

tion conditions between views. The aim of this chapter is to mitigate the effect on video data

arising from these real world conditions. Firstly, a cumulative approach tomodelling a set of

Brightness Transfer Functions (BTF) is proposed to make use of smaller training sets with sparse

colour information. Secondly, the effect of mapping colour information between camera views

bi-directionality is examined to determine its effect on matching results.

3.1 Modelling Illumination

This chapter focuses on the problem of modelling illumination differences between camera views

from small training samples, often containing sparse colour information. Someappearance based

methods currently exist to handle the lighting condition changes between cameras. For example,
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Figure 3.1: Corresponding images of a person appearing in four entry/exit regions across three
cameras. Poor image quality and large variation in both colour and illumination pose serious
problems for person re-identi�cation even by an experienced human operator.

Javedet al. [78] proposed a subspace based colour brightness transfer function (BTF), but their

method relies on training subjects with a good range of brightness values to give an accurate mean

BTF. This implicitly assumes both extensive colour variations on object clothingand very large

number of objects being sampled for the training set to accurately model the subspace of the data.

Both assumptions are unlikely to be met given in a real world scenario in whichlarge training sets

are costly and colour variation can be minimal. Chenget al. [27] cluster colours into a subset

of major coloursand to alleviate the effect of illumination changes, they apply a histogram

equalisation technique. However, (linear) equalisation is insuf�cient formodelling illumination

changes in real world data. Gilbert and Bowden [56] model inter-cameracolour transformations

using an incrementally updated transformation matrix. However, this method is computationally

expensive as it requires thousands of objects to construct an accurate transformation matrix.

A similar model was proposed in [72] but it requires a hardware calibrationphase which is

infeasible with camera installations of unknown camera parameters.

This chapter aims to show that even given a sparse set of colour information a colour mapping

function can be obtained and used to recognise individuals across camera views. Speci�cally, a

cumulative BTF (CBTF) is proposed as a more suitable representation of a set of BTFs compared

to the subspace based method in [78]. This approach involves an amalgamation of the training

set before computing any BTFs in contrast with computing individual BTFs and then �nding the

mean [78]. This method maintains more of the colour information from the training set than the

mean based approach on small training sets. In addition, a bi-directional matching criterion is

formulated that allows an assessment of the symmetry of a similarity measure usedfor compar-

ing individuals in order to reduce false positives. This criterion is more effective than both the
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uni-directional criterion used in most previous approaches and a conventional bi-directional one

proposed in [107]. The proposed methods are evaluated using challenging datasets obtained from

real world CCTV camera networks. The results demonstrate that the CBTF and bi-directional

CBTF methods outperforms signi�cantly existing approaches such as [78]and [107] using small

training sets of sparse colour information.

3.2 Brightness Transfer Function

Scene illumination varies between disjoint camera views, and in some cases withina single

camera view. Thus, a vital stage in inter or intra-camera appearance based person re-identi�cation

is to mitigate the effect of such changes. Approaches have been proposed to �nd colour-to-colour

correspondences between cameras and using these to create a colour mapping function known as

the Brightness Transfer Function (BTF). Javedet al. [78] de�ned a non-parametric form of BTF

that will be outlined in this section.

Their method suggested that a BTFfi j ( ) between camerasCi andCj can be constructed

by sampling values from a set of �xed increasing brightness levelsBi(1); :::;Bi(d), such that

(B j (1); :::;B j(d)) = ( fi j (Bi(1)) ; :::; ( fi j (Bi(d))) . In the case of a common 8-bit per channel im-

age,d is set to 256. To establish such a mapping function between views, a pair of known

correspondence must be available. Ideally this correspondence wouldbe on the pixel level to en-

sure precise colour matches, but this is not possible due to differing object pose between views.

Instead normalised histograms of RGB brightness values are used as theseare more tolerant of

changes in pose.

Computing a mapping function can be achieved as follows. It is assumed that the percentage

of pixels in an observationOi with the brightness value less thanBi is equal to the percentage

of image points seen inO j of brightness less than or equal toB j . Hi andH j are then de�ned as

cumulative histograms. More speci�cally, forHi each bin of brightness valueB1; :::;Bm; :::;B256

in one of the three colour channels is obtained from the colour imageIi as follows:

Hi(Bm) =
m

å
k= 1

Ii(Bk) (3.1)

whereIi(Bk) is the count of brightness valueBk in Oi . Each bin is then normalised using the

total number of pixels inOi . Hi(Bi) represents the proportion ofHi less than or equal toBi , then
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Hi(Bi) = H j (B j ) = H j ( fi j (Bi)) and the BTF mapping function can be de�ned:

fi j (Bi) = H � 1
j (Hi(Bi)) (3.2)

with H � 1 representing the inverted cumulative histogram. Figure 3.2 shows an exampleBTF

constructed from the cumulative histograms of two sample observation images.It should be

noted that as histograms are not truly invertible as they can contain multiple instances of the

same value, in this implementation the �rst instance is taken as the inverted value.

In order to produce a more accurate transfer function, multiple BTFs can be estimated. A

BTF is typically calculated for each of a set of training pairs of observations and thus a set of

BTFsf f 1
i j ; f 2

i j ; ::: f N
i j g can be computed for camerasCi andCj given a training set ofN observation

pairs. An example of this can be seen in Figure 3.3 which shows a sample of BTFs taken from

�ve individuals given 5 pairs of appearances in two different cameras. From this set a mean BTF

fi j can be produced to incorporate all of the training set information. This meanBTF can then

be used to match objects by transforming testing observations from one camera to another, or by

comparing testing BTFs against this mean BTF in a subspace as proposed in [78].

3.3 Cumulative Brightness Transfer Functions

Mean BTF based methods rely on having a consistent set of coloured individuals to accurately

model the BTF. Taking the mean of a set of BTFs actually removes vital colourinformation

that may only be contained in a small subset of the training data. For example, ifmost of the

training data consists of dark clothed individuals and one single person wearing a bright blue

shirt, the averaging process will remove most of the useful bright colourinformation from this

individual, which is under sampled in the training set. To combat this a cumulativeapproach to

averaging sets of training BTF is presented. Instead of computing a BTF for each training pair

one can address use an accumulation of the brightness values of the wholetraining set before the

BTF computation. The cumulative histogram̂Hi of N training samples in camera viewi can be

computed from the brightness valuesB1; :::;Bm; :::;B256 as:

Ĥi(Bm) =
m

å
k= 1

N

å
L= 1

IL(Bk): (3.3)

Note that this cumulative histogram must then be normalised by the total number ofpixels



3.3. Cumulative Brightness Transfer Functions71

(a) (b)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel Value

C
um

ul
at

iv
e 

F
re

qu
en

cy

 

 

Red
Green
Blue

(c)

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel Value

C
um

ul
at

iv
e 

F
re

qu
en

cy

 

 

Blue
Green
Red

(d)

50 100 150 200 250

50

100

150

200

250

Site 3

S
ite

 2

 

 

Blue
Green
Red

(e)

Figure 3.2: An example of the process of forming a BTF from a pair of corresponding extracted
images. Observations of the same individual taken in (a) Site 2 and (b) Site 3.(c) and (d) their
corresponding normalised cumulative histograms. (e) the resulting Brightness Transfer Function
for this sample pair.
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Figure 3.3: Five example BTFs (coloured grey) in the green channel taken between Site 1 and
Site 3 from Scenario 1 (see Figure 3.5) used in these experiments. The sharp increase in the
gradient of the lines is due to a lack of high end colour values in the data. Themean BTF is
displayed in red (dotted) and the proposed CBTF in blue (dashed).

in the training set to alleviate the effect of size difference between views. After obtaining this

single cumulative histogram using all image pairs in a training set, this histogram can be used to

compute a cumulative BTF (CBTF) as follows

c fi j (Bi) = Ĥ j
� 1

(Ĥi(Bi)) (3.4)

The key advantage of CBTF over a standard mean BTF is that brightness values that are

not common in the training set are still preserved. As a result uncommon brightness values in

the training data can be mapped between cameras given a small set of trainingsamples. This

advantage is demonstrated in Figure 3.3. It can be seen that the mean BTF is affected by the lack

of bright colour values in some of the BTFs which causes a premature rise inboth the original

BTFs and the mean BTF. In contrast, the CBTF retains the colour information of all the initial

training BTFs and produces a more accurate colour mapping function.

3.4 Re-Identi�cation using CBTF

Re-identi�cation involves comparing the similarity of objects observed in two disjoint camera

views, in this case based on their colour information. More formally, A cameranetwork hasm

camerasC1; :::;Cm all of which are assumed to have no-overlapping views. Unlike the approach

in [78] which considers whole camera views, each view is broken down intoentry/exit regions.
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The reasoning behind this is that illumination varies between both inter- and intra-camera regions

so one cannot consider the camera view as a whole because local lighting variations will pollute

the colour mapping. Speci�cally, for each of the camera views a set ofn entry/exit regions can

be de�ned asE1
C1

; :::;En
C1

. This can then be simpli�ed by describing the global set ofg entry/exit

regions asE1; :::;Eg. These entry/exit zones can be either manually de�ned or automatically

learned [109]. Next, the set ofk object observations in each entry/exit regionEi is de�ned as

f Oi;1; :::;Oi;kg. These observations are represented by the colour histogram of a target object as

its passes through an entry/exit region.

In order to solve the multi-camera re-identi�cation problem a brute force approach is taken

to the comparison of all observations. For an entry/exit pairEi andE j , the best match for a given

Oi;a from the set of observations inE j , f O j ;1; :::;O j ;b; :::;Oi;kg, is theO j ;b that yields the highest

similarity scoreSimilarity(Oi;a;O j ;b), assuming that an object inEi is seen no more than once in

E j .

In order to compare two observationsOi;a andO j ;b, the colours ofOi;a are �rst converted to

the corresponding illumination conditions inE j usingc fi j ( ) such that:

8Bi ; Ôi;a(Bi) = c fi j (Oi;a(Bi)) (3.5)

Note that so far it has been assumed that the CBTF contains only one-to-one colour relationships.

However, in reality the mapping function obtained from the training set often contains cases of

many-to-one colour correspondences due to incomplete ranges of colour values found in the

training data. To address this problem, a nearest neighbour smoothing function is employed to

smooth out the noisy peaks in the resulting histogram:

c fi j (Bi) =
c fi j (Bi � 2) + c fi j (Bi � 1) + c fi j (Bi) + c fi j (Bi + 1) + c fi j (Bi + 2)

5
(3.6)

Finally, the similarity betweenO j ;b andOi;a, denoted asSim(Ôi;a;O j ;b), is calculated as 1�

D(Ôi;a;O j ;b), whereD(Ôi;a;O j ;b) is the Bhattacharya distance [11] betweenÔi;a andO j ;b, as

this has been shown to give good results in re-identi�cation tasks [2, 78].This process can be

repeated for the transfer in the opposing direction by transferringO j ;b into the colours found in

Ei and thus comparingOi;a andÔ j ;b usingSim(Oi;a; Ô j ;b). Until now, only single colour channel

images have been considered. In order to compare two colour objects, a CBTF is calculated and
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applied to each of the three RGB channels separately. Thus, the overall similarity measure is the

mean of the similarity values obtained in all three channels.

3.5 Exploring Bi-Directionality

The transfer functions, and the resulting similarity scores, are subject to some differences de-

pending on direction. One may model the CBTF from entry/exit zonei to zone j and use this

to transform and match individuals, but conversely one may model fromj to i. This means that

one direction may result in better matching scores or a combination of the two may enhance the

matching performance. However, this cannot be determined before the results are obtained. In

order to utilise the additional information from this bi-directionality the following methods are

considered to try and stabilise performance:

• Mean: Assuming that the similarity values for each direction give close numerical results

an average of the two values are used to estimate the overall match:

Similarity(Oi;a;O j ;b) =

 
Sim(Ôi;a;O j ;b) + Sim(Oi;a; Ô j ;b)

2

!

(3.7)

• Maximum:Taking the highest value of the two as the matching result ensures that if one

direction produces a better matching score it will be selected, but may increase the chances

of false positives:

Similarity(Oi;a;O j ;b) =

8
><

>:

Sim(Ôi;a;O j ;b) if Sim(Ôi;a;O j ;b) > Sim(Oi;a; Ô j ;b)

Sim(Oi;a; Ô j ;b) otherwise
(3.8)

• Minimum: Taking the smaller of the two values assumes that both values will be high

enough to qualify as a match but selects the lower each time to try and reduce false positives

and thus the overall matching rate:

Similarity(Oi;a;O j ;b) =

8
><

>:

Sim(Ôi;a;O j ;b) if Sim(Ôi;a;O j ;b) < Sim(Oi;a; Ô j ;b)

Sim(Oi;a; Ô j ;b) otherwise
(3.9)

• Symmetry Ratio Weighting (SRW):Assuming that a correct match will produce a higher

and more symmetricSim() score for each direction, and an asymmetric score would indi-
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cate an incorrect match. An adaption of the similarity score presented in [107] is proposed

to weight the mean of theSim() values using the Symmetry Ratio as follows:

Similarity(Oi;a;O j ;b) =
�

1�
Simmax� Simmin

Simmax+ Simmin

�  
Sim(Ôi;a;O j ;b) + Sim(Oi;a; Ô j ;b)

2

!

(3.10)

3.6 Experiments

Three sets of experiments were carried out using challenging datasets collected from two dis-

tributed camera networks of real world scenarios. First, a comparison is performed between the

proposed CBTF and the mean BTF using a uni-directional transformation in order to demonstrate

that the estimated mapping function using CBTF is more accurate. Second, the uni-directional

CBTF approach is compared against the proposed bi-directional CBTF approaches to evaluate

the effect of the proposed bi-directional similarity measures. Finally, the SRW bi-directional

CBTF method is compared against alternative approaches from [78,107]. In each of these exper-

iments, the BTFs and CBTFs for each colour channel were estimated from aset of training pairs

with known correspondences. In each set of results rank 1 through rank 5 are shown, indicating

the presence of the correct match as the highest scoring result throughto the correct match being

within the top 5 highest similarity scores respectively.

(a) (b)

Figure 3.4: (a) Scenario 1 camera con�guration. All cameras are mounted indoors. (b) Scenario
2 camera con�guration. Cameras 1 & 2 are indoors whilst camera 3 is outdoors.

3.6.1 Datasets

The �rst scenario (referred as Scenario 1) is inside an of�ce buildingobserved by three cameras.

The topology of this camera network is shown in Figure 3.4(a) with example views shown in

Figure 3.5(a)-(c). The illumination conditions and colour quality vary between these views.
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Camera 1 displays a corridor scene where objects are periodically lit by spotlights causing darker

regions in the bottom part of a person's body. Camera 2 shows a sharedspace connecting several

of�ces with fairly dim illumination. Camera 3 is placed in a foyer region where there is poor

lighting in the back right region making it a good spot to test potential algorithms.A single

entry/exit region was determined in each camera to capture targets. The training and testing data

were obtained from the entry/exit regions marked in yellow (Figure 3.5). This dataset consists

of synchronised videos recorded simultaneously from 3 different cameras. In this dataset, 15

individuals giving 45 entry/exit transitions were used in the training phase,and the remaining 20

individuals with 51 entry/exit transitions, were used in testing.

(a) Scenario 1: Site 1 (b) Scenario 1: Site 2 (c) Scenario 1: Site 3

(d) Scenario 2: Site 1 (e) Scenario 2: Site 2 (f) Scenario 2: Site 3

Figure 3.5: Sample frames from two scenarios: the same person reappeared in different camera
sites in each scenario. The yellow boxes show the entry/exit zones. The different camera views
in both scenarios show signi�cant changes in both illumination and pose.

The second experimental scenario (referred as Scenario 2) was obtained from both inside

and outside a residential building. The camera topology is depicted in Figure 3.4(b). Camera 1

shows a foyer scene with relatively rich colours and good illumination. Camera 2 shows a large

variation in illumination from right to left due to the presence of an outside dooron the right

hand side of the view. Thus data was captured from the entry/exit region on each side of this

camera view. Camera 3 captures objects entering the building. Due to the starkdifferences in

illumination and colour between the 4 entry/exit regions, this is an even more challenging dataset

than that from Scenario 1. From this dataset 63 and 78 entry/exit transitions were used in training
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and testing respectively.

3.6.2 Mean BTF vs. CBTF

In order to show that the CBTF provides a better estimation of the colour mapping between

entry/exit regions a uni-directional comparison is performed using the Bhattacharya distance

as similarity measure. For each individual their RGB histograms are converted to the target

entry/exit region illumination conditions using the appropriate transfer function. They were then

compared against all individuals observed in this region. Figure 3.6(a) shows an approximate

20% improvement in matching rate when compares CBTF with the mean BTF. In Figure 3.6(b),

it can be seen that although both methods are affected by the harsher illumination and colour

differences in Scenario 2, the CBTF is still a better approximation of the mapping function. An

example of the colour mapping using mean BTF and CBTF can be seen in Figure3.7.

(a) Scenario 1 (b) Scenario 2

Figure 3.6: A comparison of CBTF with mean BTF using uni-directional similarity matching.
The testing set size was 51 image pairs in Scenario 1 and 78 pairs in Scenario2

3.6.3 Bi-Directional vs. Uni-Directional

In this experiment, the differences in results are explored between the two possible directions of

colour transfer, and that by adding a comparison method to the two directionsthe effect of the

differences in their value can be minimised. Figure 3.8 shows that only using the single direction

matching can produce different results depending the on the direction chosen, of which the dom-

inant direction may differ between data sets as show or even between individual objects. Of the

bi-directional measures tested, the minimum value clearly indicates that by attempting to remove
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(a) (b) (c) (d)

Figure 3.7: (a) Original frame from Scenario 1 entry/exit point 3. (b) The same individual in
entry/exit point 2. (c) Original frame in (a) mapped using CBTF which results in a correct
matching. (d) Original frame mapped mean BTF which results in a wrong matching. Note the
mean BTF inaccurately maps the higher brightness values found in the white topas the higher
brightness values are under-represented in the training set.

false positive matches from each direction the information from the more accurate comparisons

is kept and thus the overall match rate is improved. The improvement made by theSWR ap-

proach was lower than expected. This appears to be due to the sparse colour distribution in the

datasets resulting in less variation in the symmetry values making the mean term of Equation 3.10

dominant over the symmetry weighting term.

(a) Scenario 1 (b) Scenario 2

Figure 3.8: Comparing bi-directional and uni-directional matching using CBTFs. The testing set
size was 51 image pairs in Scenario 1 and 78 pairs in Scenario 2

3.6.4 Comparison with alternative approaches

In this experiment, the bi-directional similarity ratio weighted CBTF method is compared against

other reported approaches. First is an implementation of the BTF subspaceapproach proposed
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by Javedet al. [78], however the spatio-temporal information is omitted from this experimentbe-

cause the focus is on the colour results alone as the incorporation of suchadditional information

is not always easily obtainable. The second approach used for comparison is based on the Ma-

jor Colour Spectrum Histogram (MCHR) approach [107], in which objectcolour histograms are

equalised before being decomposed into major colours. Note, as there is noassumed knowledge

of the relationship between cameras, the equalisation graph for the MCHR was based on a stan-

dard linear equalisation, whilst the graph in [107] was non-linear based on some rather arbitrary

a priori knowledge. In addition, as the number of frames in which an object is captured passing

through the entry/exit zones is low, the incremental MCHRs cannot be used. More critically

though, as the CBTF model is designed for online processing, their batch-based post matching

integration has been excluded as it cannot be performed online.

(a) Scenario 1

(b) Scenario 2

Figure 3.9: A comparison of the matching success rates of the BTF subspace method [78],
MCHR colour conversion [107] and the proposed Bi-Directional CBTF method. The testing
set size was 51 image pairs in Scenario 1 and 78 pairs in Scenario 2



3.7. Discussion 80

The results from Scenario 1 (Figure 3.9(a)) show that the MCHR is harshly affected by both

illumination changes and visual appearance changes of objects. The BTFsubspace approach

performs better than MCHR in both rank 1 and rank 5 scores. In comparison, the performance of

the CBTF method is signi�cantly better than both. In particular, the bi-directional CBTF method

obtains more than 80% match rate in the rank 5 comparison and an almost 15% increase in rank 1

matching rate over the BTF subspace method, demonstrating its clear superiority in overcoming

both illumination changes and changes in the visual appearance of objects.

Due to the challenging circumstances in the Scenario 2 dataset (Figure 3.9(b)), all 3 methods

produce low rank 1 results but the CBTF method shows some improvements in accuracy. While

the CBTF and MCHR methods show a steady increase in correct matches found, the BTF method

has a small increase over until the higher ranks indicating a dif�culty in distinguishing between

correct matches and similar matches with the harsh lighting changes.

Figure 3.10 shows an example of matched and unmatched objects using the three different

approaches. The transfer from the faded red in Figure 3.10(a) to the higher brightness values in

Figure 3.10(b) is better de�ned in the CBTF method thus giving a correct match. Figures 3.10

(f)-(j) show an extremely challenging case for appearance based re-identi�cation where all three

methods failed.

3.7 Discussion

The experiments detailed in Section 3.6 have shown that an accumulative representation prior

to calculating brightness transfer functions can improve model estimation whena full range of

brightness values is not observed or unavailable in the training data. Theyhave also demon-

strated the advantage of a bi-directional CBTF re-identi�cation approachin ensuring the colour

mapping information from both directions is considered therefore reducingfalse positives. The

datasets presented in this chapter pose challenging circumstances for object re-identi�cation as

the lighting conditions between views have a signi�cant effect on the perceived appearance of

people.

In this method, different BTFs are estimated for different colour channels independently.

Since the different colour channels in the RGB colour space may not be independent, it could

be more desirable to learn a BTF for the three colour channels jointly. However, it must be

noted that BTF is computed from cumulative proportions of colour; thus it cannot be directly
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.10: (a) and (b): the same individual appeared in Scenario 1 entry/exit points 3 and 2
respectively.; (c): BTF(subspace) match; (d): MCHR match: (e): CBTF match (correct one). (f)
and (g): A much more challenging case from Scenario 2 due to self occlusion of the bag and
poor segmentation. (h)-(j): all three methods found the wrong match.

extended to cover multiple channels simultaneously because the mapping relationship in a higher

colour feature space between two views is no longer one-to-one. Assuming the independence

between colour channels is therefore the approximation one must make. Theexperimental results

suggest that this is a good approximation. Note that other colour spaces can also be considered

for the CBTF method. For instance, the HSV space may provide a decouplingbetween the

chromatic and intensity information. However, there is no guarantee that the Hand S channels

are independent. Therefore, computing BTF in the HSV space does not necessarily give better

performance.

It is worth pointing out that this method was designed to tackle the more challenging problem

of matching across non-overlapping camera views but can easily deal withoverlapping views

without any modi�cation. In fact, the spatial information that is available in the overlapping case

could be used to enhance the CBTF method using algorithms like [93].
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Although the matching rates show improvement over alternative approaches, there are un-

solved problems. Currently this method uses a brute force approach to re-identi�cation by com-

paring a target unknown individual with all known individuals in all cameras. One method to

reduce the search space is to add temporal links to the individuals, such ascamera transition

time [109], which has been shown to improve tracking results [56, 78]. However, this is limited

to reasonably con�ned scenarios and the aim of this chapter was to generalise to an arbitrary set

of cameras.

A signi�cant issue with all illumination modelling techniques is that of lighting changeover

time, caused by weather conditions, camera settings or otherwise. The current implementation

requires a set of manually labelled data for training and assumed static lighting conditions. This

assumption is only applicable in very constrained environments and will be addressed in Chap-

ter 4.

3.8 Summary

This chapter described an approach to model the differing lighting conditions between disjoint

camera views in order to improve re-identi�cation performance by mitigating the effect of il-

lumination change on appearance models. Firstly, the construction of the Brightness Transfer

Function (BTF) from a pair of corresponding images was outlined. Next, the issue of repre-

senting a group of BTFs obtained from small training sets containing limited colour information

was addressed. Previous methods relied on richer colour information from larger training sets

through the use of subspace methods [78] or long iterative re�nement processes [56]. Instead, a

cumulative approach to modelling a set of BTFs was used (CBTF), which attempted to preserve

sparser colour information without using an averaging process. This allowed the CBTFs to main-

tain some of the brighter colour information in the transfer function that was not common in the

training set. This process involves taking each of the appearance distributions from the training

set and merging them into a single distribution per camera that is representative of the entire

training set. These distributions were then used to calculate a CBTF, with the resulting curve

being smoothed using a nearest neighbour function. Comparisons of objects were then made

by applying the CBTF to an probe image and using the Bhattacharya distance [11] to assess its

similarity with the gallery observations.

The CBTF was compared against the mean-based representation of the training BTFs and
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gave a signi�cant improvement in results. In order to explore the effect of camera ordering on the

creation of the CBTF several bi-directionality methods were implemented. The results indicated

that using a single mapping of illumination yielded varying results, but there wasa performance

gain obtained by utlising the bi-directionality. The CBTF matching process was �nally evaluated

against the subspace-based method of Javedet al. [78] and the MCHR representation [107],

showing improvements over both on two challenging datasets.

The question of the effect of lighting change over time highlights an obvious omission from

this method. In its current state, any lighting change within a camera, due to the weather for

example, will mean that the model has to be retrained using hand labelled data. In reality, this

level of continued manual interaction is too costly, and Chapter 4 attempts to address this issue.
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Chapter 4

Multi-camera Matching under Illumination

Change Over Time

The problem of differing illumination conditions between camera views on the appearance repre-

sentations for re-identi�cation is not a static problem. That is the illumination conditions within

each of the cameras should not be assumed constant. Chapter 3 looked atmethods for modelling

the illumination changes between such views, but lacked the ability to handle changes within a

camera over time. Clearly, as one cannot always control the lighting conditions within a scene,

some form of adaptation to new lighting conditions must be addressed. This chapter investigates

the use of background illumination conditions to model within-camera lighting changes in order

to update the CBTFs, forming an Adaptive Cumulative Brightness TransferFunction (A-CBTF).

Sets of background images from two different times are used to model a intra-camera camera

mapping. This intra-camera information is then combined with the inter-camera CBTFs to pro-

vide a mapping between cameras under different illumination conditions withoutretraining the

underlying CBTFs.

4.1 Inferring Illumination Relationships Over Time

While the focus of Chapter 3 was to model the illumination conditions between viewsand form

a CBTF to mitigate their affect, this chapter looks at how to deal with temporal changes in

scene conditions. Among those conditions that vary across cameras, dealing with illumination

condition change is particularly challenging. This is because lighting conditionsat different
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camera views can change over time in an unknown manner. This can be due toobvious issues

like changes in the weather or day night cycles; such changes heavily affect outdoor environments

where the lighting is completely unconstrained, and even to windowed indoor areas as seen in

Figure 4.1. The movement of objects within the scene can also affect the lighting of different

areas, for example if a door were to be opened in a corridor the light from the connecting room

would effect the corridor itself. Changes in camera parameter and functionality, which are not

often under the control of a system that monitors the cameras, can also have a profound effect.

Updates in brightness or changes in white balance can drastically change the pixel values and

thus the perceived appearance of an individual.

(a) Day 1 (b) Day 2

Figure 4.1: Illumination condition can change over time especially when outdoorlighting plays
a part. In this case Day 1 was a dull cloudy day and Day 2 was sunny.

Two main approaches exist to model the illumination conditions between views in order to

mitigate its effect. The �rst is that of incremental learning, in which a simpler system is used to

bootstrap an illumination modelling method that updates itself as more people are identi�ed as

passing through the scene, as is the basis of [56]. The second is that ofbatch processing, in which

a set of training samples is used to derive an illumination mapping function, as in [78] and the

CBTF from Chapter 3. However, both approaches rely on static lighting conditions; batch-based

methods fail if the lighting conditions are suf�ciently different to those foundin the training

set, and incremental approaches will degrade as new samples are added, requiring a signi�cant

number of samples to outweigh the contribution of samples from earlier conditions. Chenet

al. [26] proposed a method for adapting an incremental method to changes in lighting conditions

by simply throwing away previously learned information and relying on spatiallinks between

cameras to bootstrap the learning process. While this approach may work in well constrained
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areas, a reliance on spatial information alone is not suitable for less constrained or busier areas

like train stations.

The goal of this chapter is to try to re-use and update some previously learned or manually

trained information upon a change in lighting conditions in order to reduce the amount of ef-

fort required to obtain usable inter-camera illumination model. To achieve this, the proposed

approach makes use of illumination information from the background, to inferchanges in the

foreground as described in Figure 4.2. Firstly, an inter-camera illumination model, in this case

the CBTF, is formed from a set of known correspondences. Secondly, the changes in lighting over

time are extracted from the background in regions of interest within each camera (yellow boxes

in Figure 4.2). These background CBTF models are then are then combinedwith the trained fore-

ground CBTF to infer the inter-camera CBTF under the new lighting conditions. This process

allows objects to be compared using previously trained models when the illuminationconditions

are different. Experiments are performed on a challenging dataset collected at two disjoint times

and show signi�cant differences in lighting conditions. The results demonstrate that the adap-

tive CBTF estimation using background information is a viable approach and that it outperforms

other existing methods.

4.2 Adaptive Multi-camera Person Matching

The underlying re-identi�cation process is similar to that in Chapter 3. The aimis still to �nd

the solution to the of the multi-camera re-identi�cation problems as described in Section 3.4.

Similarly, the formulation of the CBTF used to train the inter-camera matching function is as

described in Section 3.4. Figure 4.3 illustrates the additional notation used to describe the adap-

tive concept outlined in Section 4.1. Speci�cally, given a pair of camera views i and j and a

set of object correspondences, the �rst step is to compute the CumulativeBrightness Transfer

Function (CBTF), denoted asc fi j , to model the illumination difference between the camera pair

at the time when the correspondence set was collected. Subsequently, theaim to adaptively up-

date the CBTF to any change of illumination condition over time without collecting newobject

correspondences. The camera views under a different illumination condition is denoted asi0and

j0, and the updated CBTFc fi0 j0. This adaptation is achieved through calculating a colour map-

ping function for each of the two camera views over time, denoted asfi0i and f j0 j , respectively,

from the background information alone. These background BTFs enable a conversion of object
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Figure 4.2: This �gure illustrates the underlying concept of this chapter. 1) using a training
set of pairs of known correspondences a CBTF can be trained for aninitial set of illumination
conditions as per Chapter 3. In order to model the difference in illumination conditions within
a single camera over time one can form a BTF from the regions of interest in the background
(yellow). 3) A linear combination of the two background BTFs and the trainedforeground CBTF
can be used to infer the foreground illumination change between the two viewsunder the new
illumination conditions.

images under a different illumination condition back to the illumination conditions under which

the original CBTF was learned.

4.3 Adapting CBTF under Temporal Illumination Change

4.3.1 Inferring Temporal Illumination Change

The aim here is to model the illumination change over time within a single camera view. The

�rst stage in modelling this is to derive a single background image from each camera for each of

the two datasets, i.e. one background image per camera, per illumination condition. In order to

obtain a background image that is representative of the lighting conditions in the same dataset it

is formed from several frames of the video using a background modelling/extraction technique

such as [86,100,103]. The two background images for the two different illumination conditions

in camerai are denoted asMi(x;y) andMi0(x;y).

Regions of interestR are de�ned in each of the background images that correspond to en-
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Figure 4.3: Camera viewsi, j andi0, j0under different illumination conditions. By modelling the
illumination change for each camera view (fi0i and f j0 j ) the original trained inter-camerac fi j can
be used to infer the new inter-camerac fi0 j0 without re-training.

Figure 4.4: Corresponding regions of interest from the same entry/exit region of a camera on
Day 1 and 2 respectively with pixels with large value changes removed automatically (shown in
black). Those removed pixels correspond to an LCD display, a chair, and some magazines, all of
which have been changed/moved over the two days.

try/exit regions of a camera. In this work these regions are manually de�ned, however there are

several works that extract these automatically, such as [98, 108]. As the background of a scene

may change over time due to reasons other than illumination change, e.g. the movement of a
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static object. Frame differencing is performed to remove these areas so thatthey do not pollute

the �nal colour mapping, as it is based on proportions of colour. LetM̂i(x;y) denote a region of

interestR after frame differencing:

8x;y 2 R;M̂i(x;y) =

8
><

>:

Mi(x;y) if abs(Mi(x;y) � Mi0(x;y)) < s

0 otherwise
(4.1)

wheres was typically between 30 and 50. An example of the regions of interest fromtwo

background images is shown in Figure 4.4, where the objects that have moved have been �ltered

out.
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Figure 4.5: Background illumination BTF from the blue channel of Camera 3 from Scenario 1
(see Figure 3.5). Note the values on the x-axis (Day 2) corresponding tolower (darker) values
on the y-axis (Day 1).

FromM̂i(x;y) and similarly calculatedM̂i0(x;y) the illumination change is then estimated for

each camera. To model the illumination changes the principles of the brightnesstransfer function

outlined in Section 3.3 are incorporated. It is assumed that the percentage ofpixels in background

imageMi0(x;y) with the brightness value less thanBi0 is equal to the percentage of image points

seen inMi(x;y) of brightness less than or equal toBi . Thus, Equation (3.5) is modi�ed to compute

fi0i and f j0 j from Figure 4.3 as follows:

fi0i(Bi0) = H � 1
i (Hi0(Bi0)) (4.2)
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As this mapping may not contain one-to-one brightness mappings a linear interpolation is per-

formed to estimate unmapped regions. A sample illumination mapping can be seen in Figure 4.5.

The mapping betweenj0and j is then calculated in the same way.

Figure 4.6: Example of the conversion from the new illuminations (bottom row) tothe old (top
row). From here the image from camerai is converted to the illumination conditions ofj for
comparison using the similarity measure.

Once fi0i and f j0 j have been calculated using Equation (4.2) objects can be mapped into

the illumination conditions under which the original inter-camera CBTFc fi j was trained. This

allowsc fi j to be used to convert the objects seen in viewi to the mapped illumination conditions

of view j for comparison. Speci�cally, in order to compare two observationsOi0;a andO j0;b, their

colours are converted to the corresponding colours inEi andE j , i.e. �Oi0;a(Bi0) and �O j0;a(B j0),

using fi0i and f j0 j respectively:

8B0
i ; �Oi0;a(Bi0) = fi0i(Oi0;a(Bi0)) (4.3)

8B0
j ; �O j0;b(B j0) = f j0 j (O j0;b(B j0)) (4.4)

Next �Oi0;a(Bi0) must be converted to the illumination conditions ofE j , becomingÔi0;a(Bi), using
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the learned inter-camera CBTF:

8Bi ; Ôi0;a(Bi) = c fi j ( �Oi0;a(Bi)) (4.5)

�Oi0;a(Bi0) has now undergone transformation by a combination offi0i and c fi j as depicted in

Figure 4.3. An example of the combination of background BTFs and trained CBTF can be

seen in Figure 4.6. As explained in Section 3.4, the BTFs and CBTF are smoothed using a

Equation 3.6 and comparisons are performed using the Bhattacharya distance, as per Section 3.4,

and averaged over the three colour channelsR, G andB.

4.4 Experiments

The experiments were carried out using a challenging dataset collected from a distributed camera

network. In this set of experiments, the A-CBTF method was evaluated whendifferent camera

views were subject to temporal illumination changes. Again comparative results are presented to

demonstrate that with temporal adaptation, the adaptive CBTF signi�cantly outperforms alterna-

tive approaches. Additionally the A-CBTF is compared against human performance to provide

an insight into the dif�culty of the dataset, and the effect of segmentation on the CBTF approach

is investigated. All the experimental results (except the manual ones) are presented as rank 1-5

values indicating the rate of correctly identifying an observation as the bestmatch, within the

top 2 matches and so on through to within the top 5. Note that there are various performance

metrics for person re-identi�cation, among which the top-rank matching rate isconsidered to be

appropriate for this speci�c problem and has been widely used in previous work [60].

4.4.1 Datasets

Figure 4.7: Scenario 1 camera con�guration. All cameras are mounted indoors.

The scenario used to test this approach (referred as Scenario 1) is inside an of�ce building



4.4. Experiments 92

observed by three cameras. The topology of this camera network is shownin Figure 4.7 with

example views shown in Figure 4.8. The illumination conditions and colour quality vary between

these views. Camera 1 displays a corridor scene where objects are periodically lit by spotlights

causing darker regions in the bottom part of a person's body. Camera 2shows a shared space

connecting several of�ces with fairly dim illumination. Camera 3 is placed in a foyer region

where there is poor lighting in the back right region making it a good spot to test potential

algorithms. A single entry/exit region was determined in each camera to capturetargets.

Two sets of data were obtained from scenario 1 over two different days. Example views are

shown in Figure 4.8. Both datasets prove challenging as they contain sparse colour information

and objects in similar clothing. The illumination conditions also vary greatly betweenthe two

data sets. The �rst dataset (Scenario 1: Day 1) was recorded on a cloudy afternoon where lighting

condition was relatively stable during the data collection. This dataset was used in the �rst set

of experiments to evaluate different approaches without temporal illuminationchanges. In this

dataset, 15 individuals giving 45 entry/exit transitions were used in the training phase, and the

remaining 20 individuals with 51 entry/exit transitions, were used in testing. The second dataset

(Scenario 1: Day 2), including the training par of Scenario 1: Day 1 as a subset, also contained

data recorded on a much brighter day. Scenario 1: Day 2 was also divided into a training set and

a test set. In the training dataset, 15 individuals giving 45 entry/exit transitions were observed

(same as that in Scenario 1: Day 1); 20 individuals with 52 entry/exit transitions, were observed

in the testing set.

4.4.2 Matching under Both Inter and Intra-Camera Illumination Chan ges

The effectiveness of the proposed Adaptive CBTF method is demonstratedvia experimental re-

sults obtained from Scenario 1. Scenario 1 was collected over two days and featured with both

illumination changes across different camera views and temporal illumination changes within

individual camera views.

CBTF vs. Adaptive CBTF

Here the improvement of the temporal illumination change modelling on the CBTF is demon-

strated. Each observation was decomposed into its RGB and component histograms at each en-

try/exit region and compared against all other observations. For the CBTF only the inter-camera

CBTF learned from Scenario 1: Day 1 (c fi j ) is used as an estimation of the colour changes be-
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(a) Day 1: Camera 1 (b) Day 1: Camera 2 (c) Day 1: Camera 3

(d) Day 2: Camera 1 (e) Day 2: Camera 2 (f) Day 2: Camera 3

Figure 4.8: Sample frames from Scenario 1 over two days showing the differing lighting condi-
tions between days in addition to the inter-camera illumination changes. The yellowboxes show
the entry/exit zones.

tween views in Scenario 2: Day 2 (c fi0 j0). Figure 4.9(d) shows that adaptive CBTF (A-CBTF)

achieved a signi�cant improvement in overall matching rate over CBTF. Thisvalidates the as-

sumption that changes in illumination can be approximated using a linear combinationof fore-

ground and background changes. The gradient of the results indicates a relatively linear increase

in the number of number of correct matches at each rank, with the exceptionof Figure 4.9(c),

whereby all 4 methods have trouble distinguishing between the similar high ranked observations.

Example of object association results obtained using the two methods are shown in Figure 4.10.

Comparison with alternative approaches

In this experiment, the adaptive CBTF method is compared against the BTF subspace approach

[78] and the Major Colour Spectrum Histogram (MCHR) approach [107]. The results in Figure

4.9 show that the equalisation based MCHR does not cope well with this challenging data set.

Although slightly better, the BTF subspace approach suffers due to its inability to adapt to the

difference between the illumination conditions changes over time. Overall bothCBTF and the

adaptive CBTF yield an increase in matching accuracy at rank 1 with the A-CBTF signi�cantly

outperforming the other methods in ranks 1-5.
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(a) Camera 1 to Camera 2 (b) Camera 1 to Camera 3

(c) Camera 2 to Camera 3 (d) Overall

Figure 4.9: Comparative results on Scenario 1: Day 2 from the MHCR-based method, Mean
BTF, the BTF subspace method and the adaptive CBTF method. The testing set size in the
diagrams above was a) 18, b) 16, c) 18, d) 52 image pairs

4.4.3 Comparison with human performance

This section presents manual matching results to provide insight into the gap between the perfor-

mance of the algorithms and human. Speci�cally experiments were conducted using six human

observers. Each human observer was provided with a sequence of probe images and for each im-

age they were also shown a set of observations obtained from a separate camera view (a gallery

set), each uniquely labeled. The human observer was then asked to select the label corresponding

to the gallery image that best matched the probe image. The size of the gallery sets ranged be-

tween 16-18 images, depending on the camera pair, with the same number of probe images being

displayed one at a time. This process was repeated for all three camera pairs and on both Day

1 and Day 2 from Scenario 1, totaling 51 and 52 probe images respectively. This process was

designed to match the way in which the algorithms were presented with the data in order to avoid

bias in the results. To perform a fair comparison, the images presented to thehuman observers

were manually cropped with a black background, as those used in the experiments described
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.10: (a) and (b): the same individual appeared at entry/exit regions 1 and 2 respectively.;
(c): BTF(subspace) match; (d): MCHR match: (e): CBTF match (correct one). (f) and (g): A
much more challenging case from due to the presence of similar coloured objects in the testing
set. (h)-(j): all three methods found the wrong match.

previously. In addition, the faces were blurred to prevent facial or background information from

being used as cues for matching.

The manual matching result is compared with CBTF on the Scenario 1: Day 1 data and

adaptive CBTF (A-CBTF) using the Scenario 1: Day 2 data in Figure 4.11.There are two

interesting �ndings from the comparison: 1) The performance of the automated methods is better

than half that of the humans. In particular, it can be seen from Figure 4.11(d) that, with the labeled

training data on Scenario 1: Day 1, the rank 1 matching rate of CBTF is about61% of that of

human whilst without labelled training data on Scenario 1: Day 2 the ratio is 52% for A-CBTF.

The rank 4 results on both cases are higher than that of human. 2) Figure4.11(d) also shows

that overall for the three camera pairs the matching rate ratio between A-CBTF and human on

the Scenario 1: Day 2 data is slightly worse than that of CBTF on the Scenario1: Day 1 data

for rank 1 (52% for A-CBTF compared to 61% for CBTF), but slightly betterfrom rank 4 (79%
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(a) Camera 1 to Camera 2 (b) Camera 1 to Camera 3

(c) Camera 2 to Camera 3 (d) Overall

Figure 4.11: Comparative results of the CBTF and manual method from Scenario 1: Day 1 with
the A-CBTF and manual method from Scenario 1: Day 2. The testing set sizein the diagrams
above was a) 18, b) 16, c) 18, d) 52 image pairs

to 75% for rank 4 and 84% to 80% for rank 5). Note that although the manualmatching result

only contains the rank 1 result this has been compared this against the rank1-5 results of the

A-CBTF system. The reason for this comparison with rank greater than 1 is toshow that if the

A-CBTF method returned a few of the top ranking results to a human operator, there would be a

high probability that the correct match is among those top ranking matches, improving the human

score and reducing the human effort required. Note that there was no labelled training data on

Scenario 1: Day 2 for learning the A-CBTF and the illumination condition was signi�cantly

different from that on Scenario 1: Day 1. With A-CBTF achieving a performance comparable

to CBTF, the results show that the proposed A-CBTF algorithm is effectivein compensating

dif�cult unknown illumination change and the lack of labelled training data.

4.4.4 The Effect of Segmentation

As the CBTF method requires good segmentation results, the difference between manual segmen-

tation used in this chapter and a simple method for automatically segmenting images is examined.
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In order to automatically segment the images foreground/background extraction is performed on

small clips from the data ignoring any small foreground regions. A set minimumheight to width

ratio is also enforced in order to ignore any very poorly segmented individuals. As the scenes

are not overly crowded we track the individuals using thex , y coordinates of the center of the

extracted regions. Once the clip has been processed a single image is selected by taking the ob-

servation with the median number of foreground pixels. Examples of the segmented images can

be seen in Figure 4.12, some of the individuals were segmented very well (Figures 4.12(b) and

4.12(c)) but several were poorly extracted as can be seen in Figure 4.12(d). Figure 4.12(a) shows

that the use of automatic segmentation degrades the results as a good segmentation is required in

the training stage because the BTFs are constructed using the assumption ofsimilar proportions

colour. Given outdoor scenes or areas of less consistent lighting, shadows would cause more of

a problem than they did in the relatively stable indoor environments. This indicates a preference

to using a more sophisticated extraction and segmentation approach, which is beyond the scope

of this chapter, to gain closer results to the manual segmentation.

(a) Overall Scenario 1: Day 2 (b) (c) (d)

Figure 4.12: a) results of the automatic segmentation, A-CBTF (S), against the manually seg-
mented images, A-CBTF. b-d) examples of manual segmentation (top) and automatic segmenta-
tion results (bottom)

4.5 Discussion

This chapter has demonstrated that by modelling background illumination changes we can infer

new brightness mapping functions between cameras from the original CBTF. In particular, by

using background illumination we are able to estimate the changes on the foreground objects

without the need for manual association of foreground objects each time these illumination con-
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ditions change, which would be required by other approaches. Obviously, this method has its

limitations in the conditions under which it can be used. Primarily, it requires the background

region chosen to be close to the desired foreground regions to ensure that the lighting conditions

are the same or at least similar. If the camera has a low mounting then the background and

foreground regions may be disjoint to adequately capture the lighting conditions. However, low

mounted camera also emphasise inter-person occlusion within a scene, and for this reason they

are generally only used in areas with low ceilings.

Currently, the A-CBTF method was only tested on scenarios where the data was collected

from two separate days with varying lighting conditions across days but relative stable light-

ing conditions within each day. However, this method could be easily extendedto run in an

automated fashion to cope with rapidly changing illumination conditions typical in anoutdoor

environment. This could be achieved using an online adaptive background modelling approach

such as [141] to construct an empty background from a stack of framescontaining foreground

objects collected from a �xed time interval, allowing us to extract backgroundimages even in

busy environments. From this automatically generated empty background region the brightness

histograms for the entry/exit region can be calculated. In the next time interval, the background

model is updated, so are the brightness histograms. The brightness histograms can then be com-

pared against those from the previous period. Illumination change can then be detected when the

difference between the histograms is larger than a threshold leading to the updating of the model.

The datasets used provide a challenging test for object association due tothe sparse colour

information of the objects observed. Although the A-CBTF method produces relatively low

matching rates, its ability to adapt to new illumination conditions allows it to signi�cantly out-

perform existing methods. To estimate a BTF, object segmentation is required.In order to eval-

uate the effect of segmentation accuracy on the performance of this methoda brief comparison

of manual segmentation against a simple automated segmentation based on background subtrac-

tion followed by the connected component method was undertaken. Figure 4.12 shows that even

with a very coarse segmentation, good performance can be obtained usingthe proposed method

which is comparable against the result obtained using manual segmentation. Incorporating a

more advanced segmentation approach would likely minimise the difference between the manual

and automatic segmentation results, but was outside the scope of this chapter as the problem of

segmentation is a substantial research topic in itself as outlined in Section 2.1.



4.6. Summary 99

An interesting side to this work is to consider that given advances in camera technology are

constantly occurring, will the problem of illumination change still be prevalentin the future? This

question can be addressed by looking at the causes of the challenges, i.e. the illumination changes

captured in the images. There are two major causes of illumination changes: changes in lighting

condition, and changes in the number of people in the scene. Typically the former is more gradual

than the latter. If the camera's auto-gain control and white balancing functions are switched on,

the existing cameras tend to over-adapt to the illumination changes caused by the number of

people in the scene. On the other hand, if those functions are switched off, gradual illumination

changes will cause more problems for matching people. The existing camerascannot deal with

the two types of illumination changes at the same time because the camera adaptationis based

on measuring the overall brightness of the captured images. In the future cameras will have

higher image resolution and frame rate. But these two types of illumination changes, sudden

and gradual, caused by moving object or natural lighting source, will notgo away. The hope for

solving this problem lies on the advance in software rather than hardware.To that end, future

cameras could adapt to illumination changes more intelligently and selectively by adopting an

algorithm that can estimate the illumination changes on foreground objects of interest rather than

blindly the overall scene. Therefore the algorithm suggested in this chapter could actually be

used to contribute towards that objective.

4.6 Summary

This chapter introduced an adaptive method for addressing the problem of changing lighting

conditions over time using background lighting conditions as an estimate for the foreground,

thus removing the need for manual retraining. The �rst step in this processwas to train a CBTF

as described in Chapter 3. Upon a change in the lighting conditions within the observed scene,

the CBTF learned in this step becomes much less accurate. To counter this, and to in effect

to infer a CBTF for these new conditions, a brightness transfer function was formed from the

background information for each camera. This involves acquiring a background image over

several frames for both the old and new lighting conditions, removing any pixels that have a

signi�cant change due to objects being moved, and performing a proportional mapping between

the two. Experiments were conducted on a dif�cult indoor scene with heavyillumination changes

between both the camera views and recording times. The results show that theA-CBTF provides
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a signi�cant performance gain over the CBTF and alternative approaches, indicating the use of

the background illumination is an adequate estimate for the foreground. Additional experiments

were undertaken to assess the effect of segmentation on the results and acomparison was made

against human performance.

Whilst the method described �nds a reasonable estimation of illumination change,it is built

upon a limited set of features with which to describe an observation and relieson simple dis-

tance measure to compare objects. Chapter 5 looks at incorporating many more features for an

over-rich representation containing redundant information, and �nds acomparison measure from

related training data in a ranking framework.



101

Chapter 5

Learning to Rank for Person Re-Identi�cation

Many existing works focus on the selection of features channels for object representation and

determining a score for a pair of probe/gallery images which indicates its similarity. In con-

trast, this chapter introduces a novel reformulation of the re-identi�cation problem to one of a

ranking problem and learns a weighting such that the potential true match is given the highest

rank, rather than a score based on a direct distance measure. By doingso, the re-identi�cation

problem is converted from an absolute scoring problem to a relative ranking problem, whereby

the distance measure is learned from the data itself. Additionally, some consideration is made

for the scalability of re-identi�cation. In this respect an Ensemble RankSVM, a novel combi-

nation of ranking SVMs and Boosting, is de�ned to reduce the computationaloverheads while

incorporating SVM tuning parameters.

5.1 Ranking People for Re-Identi�cation

Commonly used comparison methods for re-identi�cation are often based around template match-

ing. Firstly, this involves compiling feature sets as a template to describe an individual, often

selecting feature spaces that attempt to minimise the effect of inter-camera appearance changes,

like view angle or scale. As seen in the previous chapters, these representations are sometimes

combined with a specialised methods to model the lighting changes between views.Secondly,

the comparison itself is then preformed using a direct distance metric chosen independently of

the data. These are either designed around the feature representation itself, or standard distance

metrics for distribution comparison. Regardless of the choice of features and distance measures,
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(a) VIPeR Dataset (b) i-LIDS Dataset

Figure 5.1: (a) Sample image pairs from the VIPeR dataset [60] and (b) thei-LIDS dataset
(http://www.ilids.co.uk). Each column represents a matching pair of observations with the top
and bottom rows representing different camera views.

re-identi�cation by this approach is dif�cult because there is often too muchof an overlap be-

tween the feature distributions of different objects, so much so that givena probe image, an

incorrect gallery image can appear to be more similar to the probe image than the gallery image.

This is demonstrated in Figure 5.1, which shows that incorrect matches can often appear almost

identical to the correct match. Under these conditions it is clear that a more discriminative dis-

tance measure is required as a direct comparison of the features is likely to lead to similar scores

for each of the pairs of observations.

Person re-identi�cation by ranking can be formulated as follows. Assume there exists a set

of relevance ranksl = f r1; r2; � � � ; rr g such thatrr � rr � 1 � � � � � r1 wherer is the number of

ranks and� indicates the order. In the re-identi�cation problem there are only two relevance

levels/ranks, that of relevant and irrelevant observation feature vectors, i.e. the correct and incor-

rect matches. Given a datasetX = f (xi ;yi)gm
i= 1 wherexi is a multi-dimensional feature vector

representing the appearance of a person captured in one view,yi is its label andm is the number

of training samples (images of people). Each vectorxi(2 Rd) has an associated set of relevant

observation feature vectorsd+
i = f x+

i;1;x+
i;2; � � � ;x+

i;m+ (xi )
g and related irrelevant observation fea-

ture vectorsd�
i = f x�

i;1;x�
i;2; � � � ;x�

i;m� (xi )
g corresponding to correct and incorrect matches from

another camera view. Herem+ (xi) (m� (xi)) is the number of relevant (related irrelevant) obser-

vations for queryxi and havem� (xi) = m� m+ (xi) � 1. In general,m+ (xi) << m� (xi) because
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there are likely only a few instances of correct matches and many incorrect matches. The goal of

ranking any paired image relevance is to learn a ranking functiond for all pairs of(xi ;x+
i; j ) and

(xi ;x�
i; j0) such that the relevance ranking scored(xi ;x+

i; j ) is larger thand(xi ;x�
i; j0).

Ranking can be based on either Boosting or kernel based learning suchas Support Vector

Machines (SVMs). RankBoost [49] uses a set of weak rankers boosted to form a strong ranker.

However, the re-identi�cation problem intrinsically suffers from a large degree of feature over-

lapping in a multi-dimensional feature space, as can be seen in Figure 5.1. Because of this,

picking weak rankers in each individual feature dimension, as considered by [49], is likely to

lead to very weak rankers thus reducing matching effectiveness. In contrast, SVM based models

such as RankSVM [82] seek to learn a ranking function in a higher dimensional feature space

where true matches and wrong matches become more separable than the original feature space

via the kernel trick. RankSVM is thus potentially more effective for coping with highly over-

lapped feature distributions in person re-identi�cation.
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Figure 5.2: Principal Component Analysis (PCA) plot showing the overlapbetween the relevant
samples (red) and the irrelevant ones (blue) in the top three principal components. Note that
only a subset of the samples is displayed here; 250 relevant samples and 1000 irrelevant samples
corresponding to roughly 40% and 0.25% of the VIPeR dataset, respectively.

However, a main issue with running RankSVM on large datasets such as the LETOR dataset1

is that it is computationally very expensive due to a large amount of inequality constraints. As

a result, RankSVM based learning to rank is limited as much fewer iterations canbe performed,

resulting in a sub-optimal ranker. Given the necessarily large number of candidate matches for

1http://research.microsoft.com/en-us/um/beijing/projects/letor/Baselines/RankSVM.html
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person re-identi�cation, this poses a severe scalability limitation on RankSVM's applicability to

person re-identi�cation.

5.1.1 Ranking by Support Vector Machine

Here the goal is to compute the scored in terms of a pairwise sample (xi ,xi; j ) by a linear function

w as follows:

d(xi ;xi; j ) = w> jxi � xi; j j; (5.1)

wherejxi � xi; j j = ( jxi(1) � xi; j (1)j; � � � ; jxi(d) � xi; j (d)j)> andd is the dimensionality ofxi . The

vectorjxi � xi; j j is refered to as the absolute difference vector.

Note that for a query feature vectorxi , the following rank relationship for a relevant feature

vectorx+
i; j and a related irrelevant feature vectorx�

i; j0 is desired:

w> (jxi � x+
i; j j � j xi � x�

i; j0j) > 0; (5.2)

Let x̂+
s = jxi � x+

i; j j andx̂�
s = jxi � x�

i; j0j. Then, by going through all samplesxi as well as thex+
i; j

andx�
i; j in the datasetX, one can obtain a corresponding set of all pairwise relevant difference

vectors in whichw> (x̂+
s � x̂�

s ) > 0 is expected. This vector set is denoted byP = f (x̂+
s ; x̂�

s )g. A

RankSVM model is then de�ned as the minimization of the following objective function:

1
2

kwk2 + C
jPj

å
s= 1

xs

s:t: w> (x̂+
s � x̂�

s ) � 1� xs; s= 1; � � � ; jPj; xs � 0; s= 1; � � � ; jPj;

(5.3)

whereC is a positive parameter that trades margin size against training error.

One of the main problems with using an SVM to solve the ranking problem is the poten-

tially large size ofP. In problems with lots of queries and/or queries with lots of associated

observation feature vectors, the size ofP means that forming the ˆx+
s � x̂�

s vectors becomes com-

putationally challenging. Particularly, in the case of person re-identi�cation,assuming there is

a training set consisting ofm person images in two camera views. The size ofP is proportional

to m2, it thus increases rapidly asm increases. SVM-based methods also rely on parameterC,

which must be known before training. In order to yield a reasonable modelone must use cross

validation to tune model parameters. This step requires the rebuilding of the training/validation

set at each iteration, thus further increasing the computational cost and memory usage. Hence,



5.2. Ensemble RankSVM105

the RankSVM in Eqn (5.3) is not computationally tractable for large-scale constraint problems

due to both computational cost and memory use.

Chapelle and Keerthi [23] proposed a method based on primal RankSVM (PRSVM) that

relaxes the constrained RankSVM and formulated a non-constraint modelas follows:

w = argmin
w

1
2

kwk2 + C
jPj

å
s= 1

`
�

0;1� w> �
x̂+

s � x̂�
s

� � 2
; (5.4)

whereC is a positive importance weight on the ranking performance and` is the hinge loss

function. Moreover, a Newton optimisation method is introduced to reduce the training time

of the SVM. Additionally, it removes the need for an explicit computation of the ˆx+
s � x̂�

s pairs

through the use of a sparse matrix. However, whilst the computational costof RankSVM has

been reduced signi�cantly, the memory usage issue remains. Speci�cally, inthe case of person

re-identi�cation, the spacial complexity (memory cost) of creating all the training samples is

O

 
m

å
i= 1

d � m+ (xi) � m� (xi)

!

; (5.5)

whered is the feature dimensionality. Assuming there areL people in the training set, andmL

images for each person, thenm+ (xi) = m
L � 1 and the spacial complexity can be re-written as:

O(d � ((
1
L

�
1
L2 ) � m3 + (

1
L

� 1) � m2)) : (5.6)

This complexity is very high given large number of training samplesm and high dimensional

feature spaced, and it cannot be reduced using PRSVM. In order to make RankSVM tractable

for the large scale person re-identi�cation problem, an Ensemble RankSVMis proposed to both

signi�cantly reduce the spacial complexity and solve the problem of tuningC in RankSVM.

5.2 Ensemble RankSVM

Rather than learning a batch mode RankSVM, the aim to learn a set of weak RankSVMs each

computed on a small set of data and then combine them to build a stronger ranker using ensemble

learning. More precisely, a strong rankerwopt is constructed by a set of weak rankerswi as

follows:

wopt =
N

å
i

a i � wi : (5.7)
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5.2.1 Learning the weak rankers

The data set is divided into groups and each weak ranker is learned based on that group of data.

Speci�cally, assume there are in totalL peopleC= fC1; � � � ;CLg, they are equally divided inton

groupsG1; � � � ;Gn without overlap, i.e.C=
S n

i= 1Gi and8 i 6= j, Gi
T

G j = ; . Then the training

data setZ is divided inton groupsZ1; � � � ;Zn as follows:

Zi = f (xi ;yi)jyi 2 Gig: (5.8)

The simplest way to learn a weak ranker is to perform RankSVM on each subsetZi . In order to

avoid learning a rather weak ranker, the weak rankers are learnt from a subset̃Zi andZ̃i = Zi
S

Oi

so that all weak rankers are not completely learned on separate datasets, whereOi is a subset of

data of the same amountjZi j randomly selected from the remaining data setZ � Zi . This allows

us to learn weak rankers on overlapping subsets. In the experiments (Section 5.3), for eachZi

and for each importance weightC, a weak ranker is learned; that is if there arescandidate values

of parameterC, thenN = s� n weak rankers are computed. This makes selection of the parameter

C in the primal-based RankSVM uni�ed into the ensemble learning framework, without using

any additional cross-validation that requires reforming training samples.

For eachZ̃i , a weak rankerwi is computed by using a primal-based RankSVM of Chapelle

and Keerthi [23], which is tractable given a moderate size dataset. The �rst step in computing

the RankSVM is to calculate a set of relevant and the related irrelevant absolute difference vec-

tors in Z̃i , denoted byPi = f (x̂+
i;s; x̂

�
i;s)g. Then, for some positive parameterC, the primal-based

RankSVM solves the squared hinge loss function based on criterion of Eqn. (5.4).

5.2.2 Learning a i

SupposeN weak rankersf wigN
i= 1 have been learned from the previous step. Next, boosting is

used to learn the weighta i on the whole datasetX iteratively (see Algorithm 1). Speci�cally, at

thet step, the best weak rankerwkt is selected such that it minimises the following cost function:

kt = argmin
i

jPj

å
s= 1

Ds
t � Iw>

i (x̂�
s � x̂+

s )� 0 (5.9)
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whereDs
t is the weight of pairwise difference vectors att step,å

jPj
s= 1Ds

t = 1 andI is a boolean

function. Then,Ds
t is updated as follows:

Ds
t+ 1 = F � 1Ds

t � exp
n

at �
�

w>
kt

(x̂�
s � x̂+

s )
�o

; (5.10)

whereF is the normaliser such thatå
jPj
s= 1Ds

t+ 1 = 1 andDs
1 is initialised asDs

1 = 1
jPj . The weight

at is then determined by:

at = 0:5� log
1+ r
1� r

; r =
jPj

å
s= 1

Ds
t (w

>
kt

�
x̂+

s � x̂�
s )

�
: (5.11)

Note that in order to ensure that the boosting algorithm both converges andupdates the above

weight, the input weak rankerswi are normalised by 2� maxi;s
�
�w>

i (x̂�
s � x̂+

s )
�
� , so thatw>

i (x̂+
s �

x̂�
s ) 2 [� 1;+ 1], as suggested in [49].

Compared to the batch mode RankSVM, the advantages of Ensemble RankSVMare two-

fold. Firstly, it is not required to select the best parameterC for each weak ranker using cross-

validation, as the ensemble learning algorithm automatically selects the optimal valueof C by

assigning different weights to weak rankers of different parameter values ofC. Secondly and

more importantly, each weak ranker is learned on a small set of data and the boosting process is

based on the data projection values of each weak ranker. To learn eachweak ranker, the spacial

complexity isO(d � ( 1
n2 ( 1

L � n
L2 ) � m3 + 1

n( 1
L � 1

n) � m2)) , whered is the dimension of each image

feature vector andn is the number of subsets. After learning each weak learner, for the ensemble

learning process, the space complexity isO(N� (( 1
L � 1

L2 ) � m3+( 1
L � 1) � m2)) whereN is the total

number of weak rankers, and as the number of featuresd > 2000 in re-identi�cationN << d.

Overall the space complexity of the Ensemble RankSVM is around 1=n2 of that of the original

RankSVM. The experiments show the ensemble RankSVM can obtain comparable performance

as the batch mode RankSVM but with signi�cant reduction in memory usage.

5.3 Experiments

5.3.1 Datasets

Two challenging datasets were used in this work, the VIPeR dataset presented by Gray et al. [60]

and a set of images extracted from the i-LIDS dataset [119]. Example images from both datasets

can be seen in Figure 5.3. The VIPeR dataset consists of 632 pedestrianimage pairs taken from
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Algorithm 1: Algorithm of Ensemble RankSVM
Data: Pairwise relevant difference vector setP, Initial distributionD1 = f Ds

1g
begin

for t = 1; � � � ;T do
Select the best rankerwkt by Eqn. (5.9);
Compute the weightat by Eqn. (5.11);
Update the distributionDt+ 1 by Eqn. (5.10).

end
end
Output : wopt = å T

t= 1at � wkt

two camera views. Each of the images has been scaled to a standard size andcontains stark

differences in pose, orientation and illumination making this dataset a good representation of

challenging real world data. The i-LIDS dataset used in this work contained 208 image pairs that

have been extracted from the HOSDB's i-LIDS multi-camera tracking dataset. Each person has

two manually extracted images from two different camera views (one from each). The dataset

contains a selection of camera view combinations from different videos in thei-LIDS multi-

camera selection. As with the VIPeR dataset these images were scaled to a standard size and were

not segmented from the background. As such the i-LIDS dataset in this chapter has individuals

captured under a diverse set of camera conditions. While the images from both datasets �t to

each subject closely, some background noise is present in every image (see Fig. 5.3).

5.3.2 Feature Extraction

The features used were 8 colour channels (RGB, HS and YCbCr) and 21 texture �lters (Gabor

[46] and Schmid [144]) applied to the luminance channel. The Gabor �lter used was de�ned as:

g(x;y;g; l ;q;s ;y ) = exp
�

�
x́+ g2ý2

2s 2

�
cos

�
2p

x́
l

+ y
�

; (5.12)

wherex0= xcosq + ysinq andy0= � xsinq + ycosq. The parameters for the gabor wavelets

used in this chapter can be seen in Table 5.1. The Schmid �lter used was de�ned as :

f (x;y; t ;s ) = f (t ;s ) + cos(

p
x2 + y2pt

s
) e� x2+ y2

2s 2 (5.13)

where f (t ;s ) is added to obtain a zero DC component. The parameters fort ands are detailed

in Table 5.2 and are similar to those used by Grayet al. [61]. A common bin size was selected

for each feature channel of 16 bins. As different regions of the imageare likely to contain
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(a) VIPeR Dataset Sample

(b) i-LIDS Dataset Sample

Figure 5.3: 10 randomly selected image pairs from a) VIPeR dataset and b)i-LIDS dataset.
The top row in each shows the probe image while the bottom row shows the corresponding
image from the gallery data. Both datasets contain a variety of inter-camera apperance changes
including differring illumination conditions and substancial pose variation.

visually distinct areas of interest some form of spatial representation is clearly needed. Some

approaches use a single rectangle to capture the whole appearance [131], and others opt for a

more complicated structural representation [55]. These approaches are either too simple or too

constrained. Instead, a representation using six equal sized horizontal strips is chosen in order to

roughly capture the head, upper and lower torso and upper and lower legs.

5.3.3 Methods for Comparison

The PRSVM was implemented using parameterC in the setf 0:0001;0:005;0:001;0:05;0:1;

0:5;1;10;100;1000g using cross validation. For Ensemble RankSVM, the number of groups of

datan was set to 5. The performance of method is relatively insensitive to the valueof n, as
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g l q s 2 y

0.3 0 4 2 0
0.3 0 8 2 0
0.4 0 4 1 0
0.4 0 8 1 0
0.3 p

2 8 1 0
0.3 p

2 8 2 0
0.4 p

2 4 1 0
0.4 p

2 8 2 0

Table 5.1: Gabor �lter parameters

t s

2 1
4 1
4 2
6 1
6 2
6 3
8 1
8 2
8 3
10 1
10 2
10 3
10 4

Table 5.2: Schmid �lter parameters

seen in Section 5.3.8. For comparison, another four different existing person re-identi�cation

models were tested, including two non-learning distance based measures Bhattacharyya and L1-

norm, a state-of-the-art Adaboost-based person re-identi�cation system (ELF) [61], and a ranking

based model using RankBoost [49]. All six methods were tested using exactly the same image

feature set and image representation. Five random trials were conducted and the results reported

were averaged over the trials. Presented are the results of using 75% ofthe total samples for

testing with the rest 25% for training, and 50% for testing with the rest 50% training. All six re-

identi�cation methods are comparitively evaulated using the cumulative matching characteristic

(CMC) curve [165], which is based on the ranking of each of the galleryimage with respect to

the probe, thus resulting in the expectation of the correct match being at rank r.

5.3.4 Ranking vs. Non-Ranking Approaches

Figure 5.4(a) shows the CMC curves for the VIPeR dataset with 50% (316) of the data used

for training and 50% for testing while Figure 5.4(b) uses less samples for training (158) and

more for testing (474). Due to the high number of possible matches coupled withthe intrinsic

dif�culty of the data in which objects appear in different viewing conditions,the non-learning

based distance measures (Bhattacharyya and L1-Norm) perform fairlypoorly overall. In contrast

the ELF method shows that by learning from training samples a more accurate distance measure

can be obtained. It is clear that a signi�cant boost in performance can be obtained by employing a

ranking framework, with the PRSVM and Ensemble-RankSVM being the bestoverall. Similarly,
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(b) 158 training, 474 testing

Figure 5.4: Cumulative Matching Characteristic (CMC) curves for the VIPeR dataset.

the results on the i-LIDS dataset (Figures 5.5(a) and 5.5(b)) show that with the exception of

RankBoost, explained below, the non-ranking methods still show lower overall performance.

Some example query and ranked observation results can be seen in Figure5.6.
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(b) 52 training, 156 testing

Figure 5.5: Cumulative Matching Characteristic (CMC) curves for the i-LIDS dataset.

5.3.5 Ensemble RankSVM vs. PRSVM

On the VIPeR dataset (Figures 5.4(a) and 5.4(b)) the difference in performance between the En-

semble RankSVM and the PRSVM is negligible. This demonstrates that given a large dataset

like VIPeR the Ensemble-RankSVM is an equal in terms of performance, whileallowing a bet-

ter scaling of memory usage (5.6GB needed for the PRSVM with 50% training onthe VIPeR

dataset, while the Ensemble-RankSVM needed only 740MB and this gap will widen on larger
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datasets). On the i-LIDS dataset (Figures 5.5(a) and 5.5(b)) the gap between them is slightly in-

creased, with the Ensemble RankSVM having a lower overall score when the number of training

samples is decreased. This is because that given a small training set, thereare too few sam-

ples in each subset for learning a weak ranker which affects the performance of the Ensemble

RankSVM. Nevertheless, since the primary goal of the introduction of the ensemble framework

was to increase scalability, it is natural that on smaller experiments the PRSVM ismore suitable.

5.3.6 SVM-based vs. Boosting

From both datasets it is clear that the RankSVM based methods are more suitedto this task

than the Boosting methods (ELF and RankBoost). The performance on the VIPeR dataset (Fig-

ures 5.4(a) and 5.4(b)), shows that the ELF method outperforms the RankBoost method with the

setting used, both being signi�cantly lower than the two SVM based ranking methods. On the

i-LIDS dataset (Figures 5.5(a) and 5.5(b)) it can seen that the RankBoost method shows similar

results to the ELF, both of which are lower even than the baseline non-learning methods, indicat-

ing that the weak rankers/classi�ers based on single feature channels are not effective. On this

dataset the rank 1 matching rate of PRSVM is more than double those of ELF and RankBoost.

5.3.7 Computation Time

All the experiments were run on a server machine with 8 CPU cores and 24GBof RAM in order

to accommodate any required RAM consumption. The implementation was in Matlab, no special

effort was made in terms of multi-threading so the experiments generally took up1 CPU core

and at most 3 for some Matlab functions. The computation times of the SVM-based ranking

methods were much lower than that of the ELF and RankBoost methods. For instance, for one-

fold training and testing for the VIPeR dataset with a training size of 316 pairsof images, the

PRSVM took about 11 minutes and the Ensemble-RankSVM 13 minutes while the ELF took

over 5 hours and the RankBoost method 10 days.

5.3.8 Effect of the Groupsize Parametern

One of the bene�ts of the Ensemble based PRSVM is that it encompases the tuning validation

of the SVM parameterC, both removing the need for validation stages and any parameterisation

of the SVM. However, this approach does introduce the group size parametern that determines

the number of groups that the training set will be split into. Obviously, performance is a concern
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(a) VIPeR Dataset Examples

(b) i-LIDS Dataset Examples

Figure 5.6: Examples of re-identi�cation on the VIPeR and i-LIDS datasets respectively. The
�rst column indicates the query image, the middle column shows the PRSVM ranked results with
the correct match in red. The bottom row in each diagram shows an example where the correct
match was not in the top 19
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when incorporating additional parameters. In order to assess the effect of the n parameter on

the overall matching performance, several trials were performed on the VIPeR dataset with the

n = f 5;10;15;20g. The results of which are reported in Figure 5.7. The overall performance

shows a very slight degradation from then = 5 trial to then = 20 and this may be reduced as

the overall number of training samples is increased. More importantly, the rank1 result differs

by less than 1%. These factors indicate that the group size parameter doesnot have a signi�cant

effect on the performance, thus does not require a validation stage to tune it as is performed in

the batch PRSVM with theC parameter.
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Figure 5.7: Analysis of the effect of the group size parametern on the performance of the
Ensemble-PRSVM. Note that the difference in rank 1 performance is less than 1% and the per-
formance drop fromn = 5 ton = 20 is minimal.

5.4 Discussion

The experiments in this chapter demonstrate the advantage of the proposed reformulation of the

person re-identi�cation problem as a ranking problem. They show that a ranking relevance-based

model can improve the reliability and accuracy in person re-identi�cation under challenging

viewing conditions. Better separability of samples is obtained by using an SVM torank the

data as it considers all features simultaneously, rather than attempting separation on a per-feature

basis. Little performance is lost by the Ensemble-RankSVM, which has the bene�t of lowering

the memory cost by reducing the training sample size per SVM, while incorporating the SVM

tuning parameter. Unlike the SVM tuning parameter, which is incorporated into the boosting

framework, the group size parameter is less sensitive. Figure 5.7 indicatesthat the proposed
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method does not show any signi�cant degradation with an increase in the number of groups.

The degradation in performance on the i-LIDS dataset shown by the Ensemble-RankSVM

indicates a potential limitation in that it may need more training samples than the PRSVM in

order to obtain a good matching rate. However, this situation is contradictory tothe principal

behind the Ensemble-RankSVM as its main purpose is to reduce the overheads of processing

large training sets. Therefore, in situations where the training samples are very limited the re-

identi�cation PRSVM would be more suitable.

5.5 Summary

This chapter outlined an alternative way of approaching the re-identi�cation problem; that of

a relative ranking problem instead of absolute scoring. Firstly, the general formulation for re-

identi�cation by ranking was outlined, introducing the idea of related relevant/irrelevant obser-

vations to describe a dataset. Each observation was described using features extracted from sev-

eral colour and texture channels grouped from six horizontal strips. Next, a primal form of rank

SVM [23] was selected as the ranking function due to the computationally tractable of the par-

ticular implementation to larger scale problems in reasonable time. In order to further reduce the

overheads for larger datasets an Ensemble-based RankSVM was proposed. This method aimed to

reduced the memory overheads of training with large datasets by splitting the datasets into subsets

and training multiple PRSVMs, then using these as the weak rankers in a boosting framework to

obtain an overall ranking function. An added bene�t of this approach was that the SVM tuning

parameter could be incorporated into the boosting framework, thus removingthe need for a val-

idation stage. This approach was evaluated on two challenging datasets; theVIPeR dataset [60]

and a large set of images taken from the i-LIDS multi-camera dataset2. Both the PRSVM and the

Ensemble-RankSVM demonstrated a signi�cant performance gain over baseline distance metrics

and boosting-based ranking methods. There was also a notable performance difference over the

boosting-based ELF method, indicating the SVM approach was more suitable to datasets con-

taining substantial feature overlap. Additionally, the Ensemble-RankSVM maintained a similar

performance and computation to the PRSVM, while reducing the memory overheads based on

the group size parameter, which was shown to have an insigni�cant effect on the matching rate.

While this chapter has dealt with feature sampling and scalability issues the datasets used

2http://www.ilids.co.uk
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only consider small numbers of observations per person and each is extracted by hand. In a

system that is tracking-based, each person can be captured in an image several times per second

with imperfect person extraction results. The following chapter explores methods for addressing

the practial issues found in a full multi-camera tracking system.
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Chapter 6

An Integrated Re-Identi�cation System

This chapter looks at some of the practical considerations of implementing re-identi�cation in

a relative-ranking framework. Due to the challenging nature of re-identi�cation, attempting to

create a fully automated surveillance system that strives for de�nitive re-identi�cation corre-

spondences is not yet realistic. Instead, the approach in this chapter is toprovide an interactive

search tool to aid an operator in locating persons within a network of CCTV cameras. Unlike

the previous chapters, whose focus in solely on re-identi�cation, this chapter looks at the system

as a whole. To that end, the system design outlines the precursory processes: detection, fore-

ground/background segmentation, feature extraction, single camera tracking and inter-camera

transition time estimation. Practical aspects of then re-identi�cation process are examined, in-

cluding: segmentation on the detections, methods of comparing multiple detections and overall

re-identi�cation score. The combination of components was incorporated into an industrial pro-

totype and tested on the challenging i-LIDS dataset [119], captured in a busy airport environment,

showing promising results.

6.1 System Design

Building a working re-identi�cation system requires more than just selecting asuitable re-identi�cation

algorithm and applying it to some pre-labelled data as was the case in the previous chapter. The

process of extracting meaningful information from the original data source is in itself non-trivial.

Figure 6.1 outlines the structure of the re-identi�cation process in this system.In each of the

camera views within a camera network detection must take place to localise the pedestrians, sub-
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Figure 6.1: Conceptual �ow diagram of the search-based ranking system. A localisation module
that consists of background subtraction and pedestrian detection is usedas a precursor to feature
extraction and single camera tracker, each of which is performed on a per-camera basis. The
resulting tracklets and pre-learned camera transition distributions are then utilised by the re-
identi�cation stage to produce a ranked list of observations based on an operators nominated
search image.

traction must be performed to remove background information and tracking isutilised to tempo-

rally correlate detections. The �nal stage of the system is that of the re-identi�cation step itself.

In this stage an operator nominates a person by selecting one of the detectionwindows from a

single camera views and the tracklet that this detection corresponds to is used as the search query.

This tracklet is then compared with all the other tracklets in the database that have been extracted

from the other camera views in terms of the visual similarity and the temporal viability. Finally,

a ranked list of search results is returned to the operator so they can quickly assess which of these

are informative matches. While the primary focus of this thesis is on the re-identi�cation section,

each of the precursory sections strongly effect the chances of re-identi�cation and as such they
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are outlined below.

6.1.1 Localisation

The localisation step is responsible for identifying the pixels that belong to the people within

the input image. The �ow of people is different in each camera as they eachcover a different

area of the scene and are positioned at different angles, heights and distances from the people

within them. Because of this, the �rst aspect of the localisation stage is to try and reduce the

search space to the regions of interest within each camera view. For example, some cameras may

contain regions that are constrained by barriers and thus not used by people. This segmentation

into regions can be done on a semantic basis using algorithms such as [99], or using a motion

map of the scene based on foreground objects over time, and is best constrained by operator

knowledge of the scene.

The goal is then to locate pedestrians within these regions of interest. As discussed in Sec-

tion 2.1, there are two main processes for doing this, foreground/background segmentation and

pedestrian detection. In this system both processes are used, segmentation is used as a precur-

sor to the detector reducing the search area that the detector has to coverby only considering

the foreground pixel, as described in Section 2.1.2. The process of extracting useful foreground

data is of paramount importance to the challenge of re-identi�cation as this information forms

the basis of the appearance models and thus the matching scores. Poor segmentation means that

more background or non-relevant information pollutes the foreground objects of interest. Poor

detection means that you either include regions which are not people,i.e. false positives, or you

fail to detect persons leading to gaps in your search space,i.e. false negatives.

Foreground/Background Segmentation

As the scenes were often very busy a motion estimation approach [106] wasused for segmen-

tation as it requires no prior knowledge of the background, and focuses on the persons that are

moving throughout the scene. For a given window ofw points p1; p2; : : : ; pw, the velocity vec-

tor v can be calculated from the partial derivativesIx(pi); Iy(pi); It(pi) with respect to position

p = ( x;y) and timet:

v = ( ATA) � 1ATB; (6.1)
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where A =

2
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6
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7
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(6.2)

The magnitude ofv is then used to determine areas that are moving foreground regions by thresh-

olding and retaining pixels of higher magnitude. The resulting binarised image isthe segmen-

tation result ormotion maskand is used as an input to the detector. An example of the motion

mask result can be seen in Figure 6.2(a).

Detection

Ideally detection results should provide accurate detection results on every person in a given

frame. Obviously this is an unreasonable assumption in real world data where the people within

a scene are often occluded. In order to guide the detector to the regions of interest, the detector

is run on the pre-segmented image described above. This helps to reduce the number of false

detections on the background and also to reduce the overhead of detections for stationary people,

a common sight in airport scenes. Detection for this system was done using amulti-scale part-

based detector [44]. The detections are formed from the combination of a root (full body) detector

that is applied at several scales, and part models of a person that are applied at higher resolutions

to the corresponding full body detections. The root �lter is convoluted across the image at several

scales on a pyramid of image resolutions and a score for the �lter is obtained for each point

p̂ = ( x;y;s) at location(x;y) and scales. Each of the parts is then convoluted through a subset

of the image based on the location relative to the root detection. Detections aredetermined by

computing an overall score for each root location according to the best placement of each of the

z parts:

score( p̂0) = max
p̂1;:::;p̂z

score( p̂0; :::; p̂z); (6.3)

wherep̂0 is the location of the root �lter and ˆp1; :::; p̂z are the locations of the parts. For further

details the reader is referred to [43].

The detector was trained using the PASCAL 2009 pedestrian models [39] ascollecting

dataset speci�c training samples is a very laborious task. The use of this generic training set

still gives reasonable performance, as can be seen in Figure 6.2(b), but the detector does not per-

form well on all the camera views. Firstly, cameras where the object of interest is too far away
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(a) Motion Mask

(b) Detection Results

Figure 6.2: Example frames showing the result of a) motion segmentation and b) pedestrian
detection on the same frame of video.

from the camera itself means that the resolution of the people is too low for the detector to work

effectively. Secondly, cameras that cover busy areas are heavily effected by inter-person occlu-

sion, which drastically reduces detector effectiveness as the root/partmodels cannot be located.

For cameras that are effected by these two issues a separate detection method was incorporated
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by grouping foreground pixels intoblobsunder the assumption that foreground regions are likely

to be people.

Segmentation of Detection Boxes

For a given frame, the pedestrian detector returns detection bounding boxes for each region in

the image it believes to be a person. The initial bounding boxes can be extracted from the orig-

inal image frames, thus containing both the foreground region (the person) and the background

information, or from the segmented image. While re-identi�cation can be performed on the

bounding boxes alone [61, 133], the removal of the background region is likely to improve the

accuracy of the appearance models, as shown in Section 4.4.4 providing the segmentation is ac-

curate enough. Two predominant removal techniques were tested to see how they effected the

re-identi�cation results. Firstly, a subset of the motion mask obtained in Section6.1.1 was used

to identify possible background pixels. As one cannot rely on perfect automated segmentation

the second approach was a simpli�ed ellipse shaped mask, used to separatethe region around the

edge of the detection window that is likely to contain background pixels.

6.1.2 Single Camera Tracking

After appearance features, such as those described in Section 5.3.2, are extracted from each of the

detected people within a camera view, the next step is to form temporal correspondences through

tracking. The desired results from this stage are sets of related detections, containing one or more

detection of the same person, referred to astracklets. This stage has two main advantages; �rstly,

by forming temporal correspondences between observations of the sameperson a more stable

appearance representation can be formed from several frames of thevideo. Secondly, grouping

observations of the same person reduces the number of observations that the re-identi�cation

step has to search through. For example, if there arer people andv frames, without tracking this

would giverv tracklets rather thanr tracklets ofv related frames with perfect tracking, the later

of which is clearly preferable to re-identi�cation.

The tracking process in this system is constrained to the output of the pedestrian detector,

which may not detect a particular person in every frame. Tracklets are formed by assigning each

detection to a tracklet using the Hungarian (Munkres Assignment) algorithm [115] to �nd the

minimum cost of assignments. The cost functionF() used for each tracklet is based on three

main components:
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1. Appearance Cost:In order to compare the appearance differences between detections, a

cost functionfapp can be computed between the feature vectorsl a andl b extracted from

detectionsa andb. l w; j
a indicates the feature vector for channelw, extracted from stripj

from detectiona. Histogram Divergence, a cost measure based on Histogram Intersection

[152], was used that was calculated for each feature channel over each horizontal strip and

the �nal result is averaged over the number of strips and channels:

fapp(l a; l b) =
1

z jWj å
w2 W

z

å
j= 1

 

1�
å d

i= 1min(l w; j
a (i); l w; j

b (i))

å d
i= 1 l w; j

b (i)

!

(6.4)

2. Spatial Cost:Given high enough frame rates, detections of a person are likely to re-occur

within a similar region of the camera view. As such the spatial cost is formed from a 2D

Gaussian distribution placed at the expected locations of subsequent detections:

fspat = 1� e
�

�
(x� xo)2

2s 2 + (y� yo)2

2s 2

�

; (6.5)

wherexo andyo are the(x;y) positions estimated from the previous detections in the track-

let using a Kalman �lter [16]. The Gaussian variance parameter,s 2, can be used to modify

the spatial cost for smaller detections, busier scenes or different framerates.

3. Size Cost:As a person moved through a scene the size of the detection boxes changes

dependent on the distance or angle from the camera, but these changesare small unless

the frame rate is very low. In order to ensure that subsequent detectionsare not disjoint in

terms of height and width a size costfsize is incorporated. This is calculated in a similar

approach to the spatial cost using Kalman �lter and 1D Gaussian distribution,except the

height and width are modelled independently and the �nal cost is taken as a multiplication

of the two, fsize= fh fw.

The overall cost functionF() can be calculated by taking a weighted summation of the cost

components:

F() = d1 fapp+ d2 fspat+ d3 fsize (6.6)

where the weightsd1 + d2 + d3 = 1. Obviously, for most scenarios one cannot assume perfect

tracking results and some compromise must be made between a high threshold onthe appearance

score or a low Gaussian variance and a lower threshold or a higher variation. The former likely to
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give several tracklets for a single person, while the latter risks merging twopeople into the same

tracklet. A preference is taken to obtaining multiple tracklets for a single person, this is because

merging multiple people into a single tracklet would mean they are less likely to be found during

the re-identi�cation stage. The weighting of the appearance, spatial and size costs was not fully

explored within the scope of this chapter due to the large cost of manual veri�cation of tracking

results. Crude tuning was performed on a small sample of data with weighting of0:4, 0:4 and

0:2 for appearance, spatial and size costs, respectively. Tuning of thisweighting almost certainly

effects the overall score of the system, and this is something that could be explored on a fully

ground truthed dataset as part of the future work.

6.1.3 Tracklets Appearance Comparison

The appearance component of the re-identi�cation stage is formed from an combination of a

single frame matching technique used to compute a score for each pair of detections, and a

tracklet score that forms the overall appearance score between two tracklets.

Matching Techniques

To compare detections a scoref can be computed between the feature vectorsl a andl b extracted

from detectionsa andb, wherel w; j
a indicates the feature vector for channelw, extracted from

strip j from detectiona. In order to determine the best overall performing technique a comparison

was made between the following methods:

• Kullback-Leibler divergence (KLD)[95], in which the KLD is calculated for each feature

channel over each horizontal strip and the �nal result is averaged over the number of strips

and channels:

f KLD(l a; l b) =
1

z jWj å
w2 W

z

å
j= 1

 

�
d

å
i= 1

l a(i) log
l a(i)
l b(i)

!

(6.7)

• Bhattacharyya Coef�cient[11], as with the KLD above, the Bhattacharyya Coef�cient is

calculated over each feature channel and horizontal strip but thel a(i) and l b(i) must be

normalised before computation.

f Bhatt(l a; l b) =
1

z jWj å
w2 W

z

å
j= 1

 

1�
d

å
i= 1

p
l a(i); l b(i)

!

; (6.8)
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• Histogram Intersection (HI)[152], in which the HI is calculated for each feature channel

over each horizontal strip and the �nal result is averaged over the number of strips and

channels:

f HI (l a; l b) =
1

z jWj å
w2 W

z

å
j= 1

�
å d

i= 1min(l a(i); l b(i))

å d
i= 1 l b(i)

�
(6.9)

• RankSVM:For the ranking approach from Chapter 5 the RankSVM was chosen overthe

Ensemble-RankSVM as performance is a key issue in application based systems, and the

RankSVM has a marginal performance gain. Training the RankSVM requires many la-

belled pairs of images between a pair of cameras, which can have substantial manual over-

heads. In order to reduce this, a general inter-camera RankSVM modelwas trained using

the static image pairs extracted from the i-LIDS dataset used in Section 5.3. This consisted

of all the 208 pairs of images across Cameras 1, 2, 3 and 5, as Camera 4 has few people

passing through it.

It should be noted that the CBTF and A-CBTF from Chapters 3 and 4 werenot tested in this sys-

tem as the per-camera manual training phase was deemed too time intensive andthe RankSVM

approach implicitly handles the smaller lighting changes.

Multi-Observation Matching

Many of the previous re-identi�cation works [20, 41, 61, 133, 178] focus on datasets which are

constructed from single images, or contain small sets of images extracted from a video [41,131–

133,178]. One of the main reasons for constructing datasets in this manor isthe amount of time

required to hand label a whole video sequence on a frame-by-frame basis is very high. However,

in order to produce a working system on a full video dataset, or live camera feed, a method

must be used for dealing with multiple detections of the same person such as the multiple images

contained within a tracklet. In order to compare two tracklets, a score can beproduced between

every combination of detections within the two tracklets. However, this produces signi�cant

computational overheads due to the number of tracklets involved in re-identi�cation. To reduce

this overhead the detections from the user nominated tracklet are merged intoa single feature

distribution, l̄ and comparisons are made between this and all the detections in the tracklets

from other cameras. Given that a tracklet of personl containingn detections is de�ned asQl =

f l l
1; l l

2; : : : ; l l
ng, the overall appearance score,f̂ , between personl and the user-nominated person

k can be computed using one of the following:
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• Mean. This ensures a high average of scores across all combinations of detections from

the two tracklets:

f̂ MEAN(Qk;Ql )) =
1
n

a

å
b= 1

f ( l̄ k; l l
a) (6.10)

• Median. Similar to the mean, this ensures that the average score is high, but is less effected

by outliers.

• Max. Taking the highest of the scores assuming that correctly matching trackletswill have

particular detections that are closer in appearance.

f̂ MAX(Qk;Ql )) = max(f ( l̄ k; l l
a)) ; 8a = 1; : : : ;n (6.11)

• Min. Taking the lowest of the scores under the assumption that all of the detections within

the tracklets will give high score values.

f̂ MIN(Qk;Ql )) = min(f (f l̄ k; l l
a)) ; 8a = 1; : : : ;n (6.12)

6.1.4 Incorporating Transition Distributions

Although the other chapters in this thesis did not incorporate camera transitiontime as the focus

there was on appearance matching, it is utilised here as a cue for re-identi�cation as the cameras

are known to be relatively close in proximity and the transition time can be used to substantially

reduce the search space. As cameras 2,3 and 5 have multiple entry/exit regions and there are

multiple routes between cameras, automatically calculating the transition times using methods

like that of Makriset al. [109] are not feasible. Instead, a manually selected sample of people

were chosen for each camera pair.

A person can be detected at any point during their traversal of a cameraview, because of this

the transition times are not calculated between entry and exit regions, but over the whole camera.

To this end, the entrance framet and exit framêt are recorded for each personk for each camera.

Consequently, the transition time distributionT can be estimated by forming a histogram of the

possible frame pairings between samples from a given camera pair as per Algorithm 2. Note that

T is then normalised and used as a probability distribution. Comparisons of tracklets of multiple

detections are performed combinatorially over the detections, with the highestscore taken as the
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temporal prior scorêT:

T̂(Qk;Ql ) = max(T(i; j)) ; 8i = t a
k ; � � � ; t̂ a

k 8 j = t b
l ; � � � ; t̂ b

l (6.13)

The highest score is chosen to allow a little more deviation in the transition times than other

measures like the mean. A mean of the comparisons would heavily favour tracklet pairs whose

distribution was closest to that ofT, but would penalise people who take longer to cross through

a single camera.

Algorithm 2: Computing the Transition Time distributionT

Data: Entrance frames,t a
k andt b

k , and exit frameŝt a
k andt̂ b

k for every personk from
camera pair(a;b)
begin

for k = 1; � � � ;K do
for i = t a

k ; � � � ; t̂ a
k do

for j = t b
k ; � � � ; t̂ b

k do
increment(T( j � i))

end
end

end
end
Output : histogram of transitions timesTa;b for camera pair(a;b)

Final Matching Score

In order to compute the �nal relative matching scoreF , and thus produce the ranked list of

results, the appearance score is combined with the temporal prior:

F (Qk;Ql ) =
T̂(Qk;Ql ) f̂ (Qk;Ql )

Z
; (6.14)

whereZ is a normalising constant. As this work was part of an industrial prototype and under

time constraints no quantitative validation was performed on the inclusion of the temporal prior.

However, it has been shown in previous works [56, 78] to have a substantial impact in the re-

identi�cation results
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6.2 Experiments

6.2.1 Scenario: i-LIDS MCT Dataset

The i-LIDS Multi-Camera Tracking Scenario [119] is a publicly available dataset developed by

the UK Home Of�ce Scienti�c Development Branch (HOSDB). It was designed to allow vision

groups to test tracking, detection and re-identi�cation algorithms on realistic data obtained from

London's Gatwick airport. The data itself consists of over 50 hours of footage from �ve camera

views covering a range of times and crowd densities. The main goal of the dataset is to perform

comprehensive tracking of people through the scene, where the ground truth bounding boxes

of target individuals are used to test a given system. However, in this chapter the aim is not

to track people over all the cameras, instead the focus is on a post-event search based system,

motivated by the ranking formulation in Chapter 5, where an operator can nominate a person

in any view and search for similar individuals in different views. The dataset forms a very

challenging combination of disjoint cameras, busy environments and huge variation in inter-

camera appearance through scale, pose and illumination differences.

(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 5

Figure 6.3: Sample images from the �ve cameras in the i-LIDS Multi-Camera Tracking scenario
[119].

Cameras and Layout

Figure 6.3 shows example frames taken from each of the �ve camera views.Camera 1 shows

an enclosed area with shops on either side whereby the people walk from the bottom left to
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the top of the view. The camera is placed such that each person is observed in good detail,

but some occlusions take place. Camera 3 covers a central region between several shops, while

Camera 4 covers the entrance to two lifts that remain unused in much of the data.Cameras 2

and 5 are particularly challenging as they cover much larger regions that encompass people at

starkly contrasting distances from the camera. Camera 5 has the added problem that is it the

least constrained of the camera views, meaning it has many entry and exit points that complicate

both inter-camera transition time estimation and tracking. The layout of the cameras can be seen

in Figure 6.4. The main �ow of people is from Camera 1, through the rear of Camera 2 into

Camera 3, then round to Camera 5. Only a subset of the people that move from Camera 2 to 5

pass through Camera 3, and many of these pass under the camera's �eld of view.

Figure 6.4: Floor plan of the i-LIDS camera layout, showing camera locationsand �elds of
view, at London Gatwick airport. Image from the National Information Technology Laboratory
website [96].

Validation Set

In order to tune some of the parameters and setting described in Section 6.1.3 aset of validation

samples had to be manually extracted from the data. As hand-labelling frames for tracklets in

each view, and then across views is a very time consuming process a semi-supervised approach

was taken. Firstly, the detection and subtraction algorithms were run on a single camera view.

The resulting tracklets were then loaded into a MATLAB-based tracklet editing tool. This en-

abled the merging of tracklets of the same person, to allow the connection of poorly tracked
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people, and the ability to remove poor detections from a given tracklet. This process was re-

peated on several cameras. Secondly, these edited tracklets were usedin another MATLAB tool

to �nd correspondences between views. The �nal validation set was comprised of 26 sets of pairs

of tracklets.

Testing Set

In order to test the overall performance of the system a large testing set was labelled from three

of the i-LIDS videos; 4i, 10g and 4j, corresponding to scenes that are de�ned as easy, medium

and busy by the i-LIDS dataset. The process for obtaining the testing dataset was different to

the validation set, as the detection rates needed to be analysed and no manualintervention of

the tracklets could take place. Instead, people from the testing sets who were manually recorded

using a brief a written description and camera entry/exit times. A total of 152 people from the

three video clips were marked as being in two of more camera views.

6.2.2 Localisation Results

The �rst aspect of the localisation results to consider is that of the detectionrates of the system.

Figure 6.5 shows the detection rates of the 152 people who pass through more than one camera.

The blue bar indicates the percentage of the people who appear in a givencamera, while the red

bar indicates the percentage of those individuals who are detected by the system. The appearance

rates for Camera 1 and 2 are almost 100% as the majority of people who enter this area do so

through Camera 1 and the exit to Camera 1 leads almost directly to Camera 2. Important to note

is that only a subset of the people who pass through more than one camera make it to Cameras

3 and 5, with only a subset of those being detected. The drop in detection rate for Camera 3 is

partially because many of the people that do pass through this view are only partially visible as

they move across the bottom right, while in Camera 5 there is a huge variation in distance from

the camera as well as a higher level of inter-person occlusion than other cameras.

The effect of the two background removal techniques on the validation samples can be seen

in Figure 6.6. Interestingly, the ellipse method appears to gives no improvement to the re-

identi�cation rate, indicating that removing the edge of the detection window is not accurate

enough a segmentation to be useful. However, the motion mask taken from the segmentation

stage indicates that the background segmentation results were accurate enough to have an im-

provement when building the appearance models, with higher results with all but the KLD. The
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(a) Appearance rates of validation set
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(b) Detection rates of those that appeared

Figure 6.5: Appearance and detection rates in the testing videos. (a) depicts the number per-
centage of people who passed through more than one camera that appeared in each of the given
cameras. Of those people that did appear in a given camera (b) indicates the percentage that were
actually detected by the system. Note that no people enter Camera 4, while less than 60% appear
in Camera 3 and less than 75% in Camera 5.

RankSVM shows the highest performance, with the motion mask providing a 40% improvment

over the Ellipse and standard methods.
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Figure 6.6: Experimental results comparing the effects of using differentbackground removal
techniques on the detection windows when extracting features for re-identi�cation. Using an
ellipse as a nä�ve segmentation by removing the outermost pixels provides no improvement on
the validation set, while using a motion mask obtained from the background subtraction stage
yields better re-identi�cation rates.
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6.2.3 Tracklet-Matching Results

A comparison of the multi-observation scores can be seen in Figure 6.7. Over the validation

samples, the mean achieves the best overall result on all but the Bhattacharyya coef�cient mea-

sure, whereby the max has the better performance. A comprehensive comparison of the different

matching, segmentation and multi-observation techniques can be seen in Figure6.8. The highest

overall performance was obtained from the RankSVM approach, with thebest scores found in

trials 1 and 4. Trial 1 corresponds to the motion mask segmentation combined with the mean

score, while trial 4 is a combination of motion mask and minimum scoring. While the meanand

minimum seem to lead to a similar score on the validation set, the mean may be more appropriate

for the �nal testing data. The reason for this is that the validation set has manually collated track-

let results that contain only images of the same person. It is quite possible thatin the testing data,

which will rely entirely on automated tracklet generation, that the tracklets may contain poor or

detections belonging to different people. Under these circumstances the minimum score would

base a match on the poorest score, which could be due to a mistake in the tracklet generation pro-

cess. Consequently, the �nal matching technique combination chosen was that of motion mask

segmentation, RankSVM and mean scoring.
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Figure 6.7: Comparative results for RankSVM, Kullback-Leibler divergence (KLD), Bhat-
tacharyya distance and Histogram Intersection (HI) using different multi-frame matching tech-
niques.

6.2.4 Overall Results

Unlike the datasets used in Chapter 5 where the data is exhaustively manually annotated, the

correct match is not always contained in the dataset during re-identi�cation. This is because
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Trial Segmentation Multi-Observation Score
Motion Elipse None Mean Median Max Min

1 X X
2 X X
3 X X
4 X X
5 X X
6 X X
7 X X
8 X X
9 X X
10 X X
11 X X
12 X X

Figure 6.8: Comparative matching rates for RankSVM, Kullback-Leibler divergence (KLD),
Bhattacharyya distance and Histogram Intersection (HI) over severalparameter trials based on
varying the background subtraction and multi-frame matching metrics. The algorithms used in
each of the trials are detailed in the table. The RankSVM provides the highestmatching rate
over all trials, the highest scoring of which were trials 1 and 4, corresponding to motion mask
background removal with mean matching and minimum score matching respectively.

they either do not actually reappear in a given camera, or they are not detected. This results in

an overall lower overall matching rate than the manually extracted data, but ismore realistic.

In addition to the 152 individuals that passed through more than one camera,many more were

present in only a single camera and these constitute additional negative samples increasing the

dif�culty of the data. For each of these people a camera number was chosen at random from the

cameras that they passed through and this was taken as the nomination view. In each nomination

between 1 and 5 frames were selected, again at random, to form the appearance model from the

tracklets that corresponded to the nomination frames. Next the search is performed, with the

top 20 results being returned from each camera and are ranked based on a linear combination of
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the transition time probability distribution and the result of the RankSVM. The rank score is then

taken as the highest returned correct match. The overall system re-identi�cation performance can

be seen in Figure 6.9. The RankSVM achieves a 30.3% chance of the bestcorrect match lying

within the top 5 returned results an 84% improvement over the Bhattacharyya baseline method,

which only acheives 16.4%. This is increased to 45.5% correct matches in the top 20, as opposed

to the 33.6% of the baseline, with the RankSVM providing a clear advantage over all ranks on

the CMC curve, consistent with Sections 5.3 and 6.1.3.
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Figure 6.9: CMC curve showing the overall re-identi�cation performanceof the system. Compar-
ison is shown between the baseline Bhattacharyya distance metric (red) andthe feature selection
based RankSVM (blue). Note that the number of individuals in the scene (the upper limit of the
x-axis) was not manually veri�ed but was in the region of several hundreds

6.3 Discussion

While the overall results are impressive they do give some indication of aspects of the dataset

that are unfavourable to the re-identi�cation task. Primarily is that of cameraplacement. While

cameras are often already in situé and are simply fed into computer vision systems, the effect of

poor camera placement can been signi�cant. For example, Section 6.1.1 notes that the detection

results on Cameras 2 and 5 using a conventional detection algorithm were very poor due to the

stark contrast in distances from the camera. While the blob-based detectorworked well in Cam-

era 2, the low camera angle in Camera 5 caused occlusions to pollute the detector (Figure 6.5).

While the detector worked well on Camera 3, the camera was actually placed to close to the main

walk way and thus many of the people who enter this area pass under the camera rather than
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through its view.
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Figure 6.10: CMC curve indicating comparative results of nominating a search target in each of
the 5 cameras (note: camera 4 contained no people). Note that nominating targets from Camera
2 gives a much lower matching rate than Cameras 1,3 and 5.

The distance of the main walking path from Camera 2 also caused problems when extracting

the appearance features for re-identi�cation. Often the target individual is so far away that all

texture information is lost and the appearance is only a few pixels of colour.Figure 6.10 shows

the effect of nominating a target individual in each of the camera views. Note that nominating

from Camera 2 produces a poor appearance model to search from, thusresulting in poor re-

identi�cation results. To emphasise this Figure 6.11 shows the result of removing the nominations

from Camera 2 from the testing set, with the resulting CMC curve shows an average of 12.2%

improvement.

6.4 Summary

This chapter detailed the construction of a prototype CCTV application and thecomponents

that are incorporated in its implementation. The goal of this system was to provide an operator

orientated search through the network of cameras for persons of interest. Two different localisa-

tion approaches were used to detect pedestrians where the camera conditions were appropriate,

and utilise motion information to segment larger regions where they were not. Interms of re-

identi�cation, the experiments in Section 6.2.2 show that further utilising the motion masks to

remove background pixels makes an improvement to the re-identi�cation results. Additionally,

taking the mean score of the detections between two tracklets combined with the RankSVM

method has highest overall performance.
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Including Camera 2
Excluding Camera 2

Figure 6.11: CMC curves of the overall results vs the matching rate when data from Camera
2 is removed. Note that the poor placement of Camera 2 means that the low qualityof the
observations reduces the likelihood of re-identi�cation. By removing the data from this camera
results in a 12.2% improvement on the test set.

An issue with generalising re-identi�cation is the reliance of several of the components in the

system on training data. In order to reduce the manual overheads required for such training, both

the detector and RankSVM were trained using existing datasets/models. The temporal transition

distributions on the other hand are clearly dataset-dependent and do require manual labelling of

some of the frames, although Section 6.1.4 suggests a method for minimising the labelling to

only a few frames per person, per camera pair.

Detection of persons in the system is a signi�cant problem. While most of the people are

detected in Camera 1 and 2, only a few of these people either appear or aredetected in Cameras

3, 4 and 5. Part of the problem is that the airport scene is very open, withmany entry and exit

points, making it hard to encompass the movement of all the people in the scene.Additionally,

Section 6.3 indicated that camera placement can play an important role in the effectiveness of

re-identi�cation systems. In hindsight, the placement of Camera 2 relative to the main �ow of

people through the scene is a poor choice, as the low resolution of detections makes tagging very

challenging. Despite these points, the overall results of the system are promising with 30% of

nominated individuals being found within the top 5 returned results.
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Chapter 7

Conclusions

7.1 Studied Topics and Achievements

This thesis has set out to explore the effectiveness of using various strategies to mitigate the

effects of the variation in a person's appearance between disjoint camera views and distinguish

between people of similar appearance for the purpose of re-identi�cation. Two different ap-

proaches are taken in order to achieve this goal: (1) estimation of an inter-camera brightness

mapping function to mitigate the effect of differing illuminations between cameras and over

time, (2) an operator focused ranking method that learns a subset of the feature space better

suited to re-identi�cation. Additionally, the ranking paradigm is incorporatedinto a post-event

search based surveillance application.

Lighting has a substantial effect on the appearance of a person and can be severely con-

trasting between views. In order to mitigate its effect, Chapter 3 builds on Brightness Transfer

Function (BTF) approach [78] to modelling inter-camera illumination changes.A Cumulative-

BTF (CBTF) is proposed that attempts to retain under-represented colourinformation from the

training set in order to provide a more accurate mapping function. Additionally, the bi-directional

nature of the mapping function was explored, which yielded a performancegain when consid-

ering observations whose matching scores were high in both directions. The empirical results

show that the CBTF and its bi-directional counterpart outperform other re-identi�cation tech-

niques when trained on a dif�cult dataset containing sparse colour information.

There is an important issue with the CBTF method detailed in Chapter 3 in that the inter-
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camera brightness mappings are speci�c for a the lighting conditions under which the training

set was obtained. Illumination conditions within a camera view are rarely constant over time,

they are affected by the weather, time of day, camera settings and human interference such as

turning on/off a light. To this end, Chapter 4 set out a framework for updating the inter-camera

models using some scene context, without the need for manual retraining. Previous approaches

had either relied on static illumination [78, 132], iteratively build models without considering

the effect of illumination change [56], or bootstrap retraining by utilising camera transition time

information [26], which is only feasible in spatially constrained environments.Instead the adap-

tive CBTF (A-CBTF) draws contextual information from the backgroundillumination changes

over time to infer the affects on the foreground illumination. This allows an updating step to

be incorporated that enables the original models trained from labelled data tobe re-used when

the illumination conditions change within any camera-view. While the lighting within a scene

will have a different affect on the foreground and background regions, the experiments show that

utilising the background information provides an adequate approximation. Experiments are also

conducted to provide a comparison to human performance that demonstrate the dif�culty of the

problem and provide an indication the relative performance of the A-CBTFapproach. The effects

of segmentation accuracy are also explored. As the CBTF is based on correlating proportions of

colour foreground/background segmentation is required. It is shown that only a small drop in

performance is noticed with a simple segmentation algorithm and that utilising a state of the art

method would likely achieve performance levels closer to that of the manual cropping.

Many re-identi�cation works focus on a selection of feature and object representation cou-

pled with a followed by template matching using a direct distance measure chosenindependently

from the data. However, re-identi�cation by this approach is dif�cult because there is often too

much of an overlap between feature distributions of different objects, somuch so that given a

probe image, an incorrect gallery image can appear to be more similar to the probe than a correct

gallery image. Instead, Chapter 5 takes a different approach to re-identi�cation and reformulates

it as a relative ranking problem, in which the absolute scoring is replaced bya relative ranking of

these scores that re�ects the relevance of each likely match to the probe image that is more tol-

erant of large intra/inter-class variation. Unlike the previous chapters whose appearance models

were based on colour alone, this chapter also incorporates a feature rich representation contain-

ing colour, texture and structural information. As this over-rich feature space is likely to contain



7.2. Future Direction 140

subsets of features that are more useful a Support Vector Machine (SVM) ranking method is

considered to learn a weighting of these features. Previous feature weightings have been based

on boosting [61], in which a ranker is obtained on a per feature basis, without considering the

entire feature set simultaneously as the SVM does. This is re�ected in the experimental results,

where by the SVM-based ranker consistently out performs both the baseline metrics and the

boosting approaches. While the RankSVM also has a computation performance gain over other

learning methods tested, it does require a lot of memory to construct the training samples. An

extension was then proposed to reduce memory overheads, thus scalability, by training several

SVM rankers on smaller subsets of the data, then using boosting to combine them. The resulting

Ensemble-RankSVM maintains a similar level of performance while reducing thememory cost.

Chapters 3,4 and 5 looked at some key components for re-identi�cation, but each was tested

in relative isolation from the whole re-identi�cation process and using manually constrained

datasets. Chapter 6 takes a step further towards a fully working prototypein which the whole

pipeline is considered from multiple video input streams, through person localisation, feature

extraction, tracking and �nally the re-identi�cation step itself. Experiments were conducted

on sections of video from the i-LIDS multi-camera dataset [119] of varyinglevels of crowd

density. The results show high accuracy in detection and re-identi�cation steps, re-enforcing

the results of ranking methodology detailed in Chapter 5. The results also give an indication as

to the effectiveness of camera placement to re-identi�cation. One of the cameras in particular

was placed at a large distance from the region of interest, resulting in challenging detection

tasks as well as low pixel-count detections leading to poor feature extraction and thus lower re-

identi�cation rates. The other camera placement issue was that of the open-world environment

created by not covering the entry/exit points to a scene, resulting in peoplenot passing through

some cameras.

7.2 Future Direction

• Currently the CBTF and A-CBTF methods use only a single spatial region to describe the

appearance of a person. This makes it very hard to distinguish between people who are

wearing a grey top and blue trousers or those wearing a blue top and greytrousers for

example. Adding in some spatial regions like those used in Chapter 5 may allow increase

separability of people. An interesting addition to this would be to separate the regions
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before the CBTFs have been calculated to see if there is a difference in localised lighting

between the upper and lower regions of the body. For example, spotlights inindoor scenes

often cause self shadowing as a person walks through the scene, so separating the CBTFs

may provide a more accurate mapping.

• An issue with the datasets used in Chapter 5 is that both the VIPeR and i-LIDSsets are not

separated into camera speci�c images. That is both datasets are made up of image pairs

taken from several camera views and separated randomly into two groups. This limits the

effectiveness of the RankSVM and Ensemble-RankSVM training stages as they are being

trained for a generic re-identi�cation case. Building a general model hasits advantages,

namely fewer training samples required overall and a wider application. However, col-

lecting a large dataset containing image pairs that are camera speci�c would allow a more

thorough testing of the algorithms and would likely lead to a performance increase overall.

• A possible extension to the RankSVM approaches in Chapter 5 would be to consider dif-

ferent loss functions in Equation 5.4 that are more relevant to the rank score of the Cu-

mulative Matching Characteristic. For example, Yueet al. [173] consider an loss function

that allows optimisation of the Mean Average Precision (MAP) score using anextension

of Tsochantaridiset al.'s [157] structural SVM.

• With the operator making the �nal correspondence between observations in the system

de�ned in Chapter 6 a suitable extension would be to incorporate their feedback. As the

human re-identi�cation performance is much higher than that of the system, thematching

pairs that the operator selects could be added to the training set for the RankSVM and

temporal priors. Updating the RankSVM after every search would be over zealous, but a

batch process of retraining could be run afterN searches. Given suf�cient time, enough

new training samples may be collected to train the RankSVM on a per camera pair basis,

which would almost certainly lead to better ranking results. As the transition times between

views can be quite complicated due to people walking at different speeds orentering shops,

this addition of training samples would provide a more accurate distribution.
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