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Abstract

Replicating the human visual system and cognitive abilities that the brain ugpeedess the
information it receives is an area of substantial scienti ¢ interest. With teegdence of video
surveillance cameras a portion of this scienti ¢ drive has been into prayidseful automated
counterparts to human operators. A prominent task in visual surveillartbati®f matching
people between disjoint camera viewsr@fidenti cation. This allows operators to locate people
of interest, to track people across cameras and can be used as a@nestep to multi-camera
activity analysis. However, due to the contrasting conditions between aarevs and their
effects on the appearance of people re-identi cation is a non-trivial tahis thesis proposes
solutions for reducing the visual ambiguity in observations of people beteamera views

This thesis rst looks at a method for mitigating the effects on the appeaiaoeople un-
der differing lighting conditions between camera views. This thesis buildsak modelling
inter-camera illumination based on known pairs of images. A Cumulative Brighthiensfer
Function (CBTF) is proposed to estimate the mapping of colour brightnesssvahised on lim-
ited training samples. Unlike previous methods that use a mean-basecreaties for a set of
training samples, the cumulative nature of the CBTF retains colour informatom éinderrep-
resented samples in the training set. Additionally, the bi-directionality of the mgybpirction
is explored to try and maximise re-identi cation accuracy by ensuring sangukesiccurately
mapped between cameras.

Secondly, an extension is proposed to the CBTF framework that addrigsissue of chang-
ing lighting conditions within a single camera. As the CBTF requires manually labedaing
samples it is limited to static lighting conditions and is less effective if the lighting dsrithis
Adaptive CBTF (A-CBTF) differs from previous approaches thategitho not consider lighting
change over time, or rely on camera transition time information to update. By utitsimigx-
tual information drawn from the background in each camera view, an estmitibe lighting
change within a single camera can be made. This background lighting mode$ &lewmnap-

ping of colour information back to the original training conditions and thus xentioe need for



retraining.

Thirdly, a novel reformulation of re-identi cation as a ranking problemrggmsed. Previous
methods use a score based on a direct distance measure of set fiedfiumasa correct/incorrect
match result. Rather than offering an operator a single outcome, the rgyddiadigm is to give
the operator a ranked list of possible matches and allow them to make theecigi@h. By util-
ising a Support Vector Machine (SVM) ranking method, a weighting on tipeaance features
can be learned that capitalises on the fact that not all image featureguakyamportant to
re-identi cation. Additionally, an Ensemble-RankSVM is proposed to asklszalability issues
by separating the training samples into smaller subsets and boosting the traitheld.mo

Finally, the thesis looks at a practical application of the ranking paradignealavorld ap-
plication. The system encompasses both the re-identi cation stage ancethagory extraction
and tracking stages to form an aid for CCTV operators. Segmentationedadtidn are com-
bined to extract relevant information from the video, while several contibima of matching
techniques are combined with temporal priors to form a more comprehengvall matching
criteria.

The effectiveness of the proposed approaches is tested on datsiséted from a variety
of challenging environments including of ces, apartment buildings, atspand outdoor public

spaces.
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Chapter 1

Introduction

The human visual system is very effective at sorting through the vasttigies of information
that passes through the eyes and extracting useful information fromitigys that we see. We
draw on many years of implicit training and experience at processing the wmund us and
are able to identify objects or people quickly and accurately. A huge anodw@ftort has been
invested in replicating some of the visual tasks we as humans take for gusinigd/isual sensors
and computing power fueled by the signi cant rise in the amount of digitalovidéormation.
One of the prominent drivers for video-based analytics is that of 8lawee, stemmed from the
rise in popularity of Closed Circuit TeleVision (CCTV) cameras. As earl@82 there were
over 4 million CCTV cameras deployed throughout the UK, with a high conagoir (over
400,000) of those active in London [113].

The goals of CCTV installations are often to monitor crowd activity and deteaswal or
unlawful acts. They are commonly located in public spaces, such as towres®r shopping
areas, and transport infrastructure, such as rail stations andtairpbe various UK councils and
private companies that operate these cameras employ dedicated staff smendostrol rooms,
as seen in Figure 1.1, to survey the camera network. However, thereiisaohuge disparity
between the number of CCTV operators and the number of cameraset Gill[59] noted that
each operator could be responsible for over 90 cameras at a time, withafhti®ycameras that
cover quieter regions not being monitored at all [58]. Further to thise®[82] suggested that
operators attention often drops below desirable levels after only 20 minutes.

Due to the sheer scale of the task, only a small portion of the cameras amd\vieweal-
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time and much of the CCTV footage is often simply kept as a record or usedsiregent
investigation. Because of this, signi cant work has gone into computerrvisggearch to try
and reduce the scale of the problem. Ideally, vision algorithms could betogedvide a fully
automated aid that advises operators of unlawful acts or points them wpaogle of interest,
but in reality this is a signi cant challenge. One of the key tasks in achievirsggbal, and the

focus of this thesis, is that of matching people between camera viewsrson re-identi cation

Figure 1.1: A typical CCTV control room with a few operators monitoring géanumber of
cameras. Image from Chelmsford Borough Council [24].

1.1 Person Re-ldenti cation

Person re-identi cation is the task of forming a correspondence betalesgrvations of the same
person in different cameras. Typically this is performed by taking an imaigsef of images)
of a person as seen in one camera view and forming a descriptive modisl tisad to compare
against images of people observed in another camera view or point in tireaimhof which is
to nd the correct matching image(s) (Figure 1.2) thus determine the pastfiresiereabouts
of the person within a set of cameras. An important point to note is that them&t of the
cameras leads to varying distances between the views, some of which ceerlapped. While
methods exist to exploit such overlap [53, 93, 175], the assumption ofapgeng views is not
valid for all cases. Instead, this thesis focuses on the more geneeabtasbitrarily disjoint

camera views, where no overlap is assumed, as this is a applicable to aladaymarts.

The ability to monitor the movement of people between disjoint camera views using re
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identi cation is an important precursor to higher level multi-camera vision tag¥g linking
observations through cameras over time operators can determine the pagfiveh individual
through the network of cameras, allowing them to see where they haveahdemho they have
interacted with, both important aspects of post-event investigation for dgaidpt only does it
allow an operator to re-trace the path of a desired individual, it can lmbtaseonitor trends in
crowd movement between cameras that leads to various pro ling and anaeiggtion tasks,

or even to estimate the relative position of cameras themselves.

Figure 1.2: A conceptual example of re-identi cation. An observation péeson in one camera
(left) is compared with observations in another camera (right) to try and swcaessful match.

One may note that there is some conceptual overlap between the taskoof eidenti cation
and that of person tracking: both require identifying a target individiweth a set of potential
observations. However, there are vast differences in the consttiaatthese two elds operate
on. Tracking is performed on a single camera view and as such it carporete many addi-
tional cues that re-identi cation cannot. Tracking can make use of thetiat the location of
the object within the scene is at some point known, in the previous frameegtid® upon en-
tering the view for example, and from this it can reduce the search spacituset of locations.
The appearance of an object is more stable in a single view than it is betwstarg camera
views. The angle of the camera relative to the person remains the san@ncetthe differences
in object appearance between observations. Changes in the size bfeaty due to varying
distance from the camera for example, are more tractable that the differesize between ob-

servations in several cameras. Lighting within a single camera view carebgehble over time
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and between areas of shadowing or uneven lighting, but the changppéaarance can be less
severe given a suf cient frame rate. Additionally, tracking has the hefdeing able to use a
combination of these factors to mitigate the effects of the others. For exampleerson enters
an area of substantial shadowing altering its appearance we still haverdomeation about the
previous location, trajectory and size of the object from which we carowadown the search
space.

Person re-identi cation can be seen as a form of tracking in which the-aftservation
changes are less constrained by the environment. Any two camera viewveng@mypass several
factors that change the appearance of an object: camera settingsnglifighting, distance to
target, resolution and camera angle relative to the object. In addition to thipakial and tem-
poral information that tracking bene ts from is severely reduced, camean be signi cantly
disjoint with multiple paths between them, making estimation of a persons positiosiastial
challenge. When looking for an object over multiple camera views scalabilibypdds/s a part,
many more observations are considered increasing the number of similercgeect observa-
tions one must distinguish between. This highlights another major differestageen tracking
and re-identi cation, that of appearance comparison. In tracking tla igdo nd regions of
similar appearance within a view, but in re-identi cation the goal is to highligtiqueness of an

observation in order to distinguish it from a set of very similar observations

1.2 Challenges and Motivation

In order to form a correspondence between persons in differenér@aviews one may look
to popular biometric methods such as face or gait recognition. Howeveg thethods often
require relatively constrained viewing conditions to operate successiullg CCTV scenario
one cannot rely on being able to see a person's face, or accurateyraazit as the cameras
are often poor resolution and placed at arbitrary angles and distaglegise to the persons
within the scene. Instead, we are forced to use basic appearanamatifor, like colour and
texture, that are inherently more generic due to their simplicity. While these sipp&aence
cues are more applicable, there are many additional factors that eff@erson's appearance,

similarities between people and the fact that scenes are often not cloddd tecconsider.
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1.2.1 Appearance Variations

As outlined above, a key problem in re-identi cation is that the observatimditions between
camera views are often very different, either through changes in ahgleservation, the number
of people in the view, objects between a person and the camera, the lightiditj@as within the

scene or simply the distance from camera. Each of these factors chihegeay that a person
looks in some way or another, and each of these factors can changemugdatly, meaning
that all of the them can change between views. This makes the task ofnteedgon very

challenging as it involves trying to form correspondences betweenlgdugt may appear to
look quite different between camera views. The following are the main saafsappearance

change between camera views:

Viewpoint:

The path of people moving through a scene can mean that they walk agdiféergles relative to
each of the cameras. This has a direct effect on the appearanceaititur that can be obtained
in each camera as their observed pose is often quite different. The abili tihe face is lost
when a person is viewed from the side or rear, measuring walking styddt} i@ challenging
from non-pro le views, and the shape of a person is different betvisant/rear and side views.
Additionally, the clothing that people wear can vary in pattern or colour fimmt to back, or
have items that are only visible from certain angles, such as ties or b&skgdégure 1.3 gives
an example of a case where an individual is wearing a jumper with a distirpditern on it,
but this pattern is only printed on the front of the jumper and so this textureniation is not
available when seen from the side. Because of this loss of information iandl difference
between cameras it is likely that this person could be mistaken for someor® cildtbing is

more homogeneous but similar to the colour/texture of the observation in ahe cimeras.

Size:

The distance from the camera also has a drastic effect on the appeafanperson. Objects
which are closer to the camera are captured in much greater detail thathtaicese further away.
While the rough colour information is retained and people wearing brightinptimay still be
recognisable, those who are wearing less distinctive clothing lose othiagdishing detail. An
example of this can be seen in Figure 1.4, where the difference in resobétareen the two
images is caused by a vast contrast in the distance from the camera. U$es the texture of

the man's top to be degraded to such an extent that he is barely recdgrisaleen the two
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@ (b)

Figure 1.3: The same person captured in different poses relative t@athera. Note that the
highly textured pattern on the jumper can only be observed from the fraetal(a).

|

(@) (b)

Figure 1.4: Two images of the same person in the i-LIDS dataset [119] fatendifferent

camera views, due to the varying distance from the cameras the size (anésbiution) of the
people is substantially different. The original size of the image on the leis (E)0x264, while
the right (b) is only 28x47. This is only 4% of the number of pixels of (allt#sg in a huge loss
of detail.

images. To a certain extent this indicates a poor choice of camera placesnentdmputer
assisted system, but many such CCTV cameras are already in placed loseemust look to

representations that have some invariance to scale to try and mitigate thisrdiffen resolution.

Occlusion:
Occlusion is where part of an person/object is not visible becauseithenether person/object
between it and the camera. While this is not much of an issue in uncrowdeéssocedatasets

of static images [60] occlusions are frequent in busier scenes like terstptions or public
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@) (b)

Figure 1.5: Even people who's appearance is visually distinctive caif beltto match. While
the person seen in (a) can be easily extracted from the scene, wheagpears in (b) he is
heavily occluded by a group of people, making extraction and thus matckirygctallenging.
Images extracted from the i-LIDS dataset [119]

spaces. Occlusion presents several problems to re-identi cation in tdraasjoisition, tracking
and appearance modelling for the re-identi cation step itself. For acquisioeiusion effects
many algorithm's ability to actually extract the person from the image, be it gngup fore-
ground/background segmentation or missed detections in pedestrian detéatidusions are
dif cult to deal with when tracking a person through a single camera ashaum successfully
handle disappearances and merges of people. Misdetection at eithextrdien or track-
ing stages means that the person may not even appear in the pool of paotextthes at the
re-identi cation stage. Finally, occlusion hides visual information that cdaddvital when it
comes to forming a representation of the appearance of a person ompied a comparison.
Figure 1.5(a) shows an un-occluded fairly distinctive individual, whileuFegl.5(b) shows the
same individual under heavy occlusion from two other people. In this tesman may not be
detected/extracted from the second camera view at all or simply groupeithithe other two
people, resulting in either no comparison to make or a comparison basedluirghappearance

data.

[llumination:

The lighting conditions within a camera view are one of the most important cotitniisuto
a person's appearance, but sadly one of the aspects that are higfytbkchange between
views. Indoor and outdoor locations have different types of lightingatian that not only cause

appearance changes between them, also have major effects on theaappdsetween camera
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@ (b)

Figure 1.6: The difference in lighting conditions between views has a sulataffect on the
appearance of a person. The low lighting conditions seen in (a) givamiitession that this
person is wearing a black and grey top. However, when the same peidoserved in a camera
with brighter lighting (b) it is clear that the top is in fact black and bright red.

views of the same type. Outdoor lighting is directly lit by the Sun and is therdfeaily
effected by the day-night cycle and the weather. On a cloudy day th&ssisight and so the
colours of objects becomes duller, sunny days give richer coloursftern leave some areas
of shadowing which can make an object appear much darker. Additiottalyyeather is very
unpredictable and can change dramatically throughout the course, mhdaging that an object's
appearance within a single camera can change over time. Indoor lightingeisadjg more stable,
as the actual illumination sources are less likely to change on a short teisn Qasthe other
hand, indoor lighting is less uniform than outdoor lighting as the light soulacesmaller and
localised. Within a given room there may be a selection of overhead lightekhssvlight
coming in from windows. This variation in light sources causes differezdigof the room to
be covered by varying levels of light, an example of this variation could ba seany room
with spotlighting. The cameras themselves can also have an effect on teé/pdrillumination
within a scene. Modern cameras often come with a variety of settings whichecelmalmged to
suit the environment that can change over time either due to their dynamie yeatuauto white
balance, or due to situational events like maintenance or hardware resets.

As lighting conditions can vary drastically even within a single view, this effeatom-
pounded over multiple camera views. A person may move from a well lit roomgimby lit
room or to an outdoor area, each of which can be completely differeirthas the person would

appear to look at least slightly different in each of the views. Figure Y/iésgin example of this
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in an indoor environment where the colour of a bright red top is affecyettidillumination in
one camera such that it appears almost grey. As the appearancesba iseso heavily affected
by light it is important to try and mitigate its effect between camera views in ordperimrm

successful re-identi cation.

1.2.2 Inter-Person Similarity

A substantial issue in re-identi cation is that of distinguishing between similadgskd people.
This problem becomes more prevalent in busier public spaces wherertit'enof people can
be very large, and as such the likelihood of people with similar appearamcramatically
increased. Unfortunately for the computer vision community, few peoplkereed in such spaces
wear distinctive clothing such as those seen in Figure 1.5(b). Insteategead to wear clothing
that is less visually distinctive, as Figure 1.7 demonstrates, such that iecasry challenging
to pick the correct match. This means that in addition to handling variable camlibiatlined
in Section 1.2.1, re-identi cation algorithms need to be able to distinguish betwagrsimilar

objects under such conditions.

(@) Cam1 (b) Cam 2

Figure 1.7: Sample images from the VIPeR dataset [60]. Each of the peapilered in Camera 1
(a) re-appear in Camera 2, but the similarity in appearance combined witbremental effects
makes it very challenging to nd the correct matches even for a human.

1.2.3 Open World Environments

Ideally, the cameras within a scene would cover all entry and exit pointspinge¢hat once
a person has entered the scene they can be accounted for and nsusirpagh another view
before leaving the scene. Unfortunately, this closed-world scenariocisnomon and in most
cases there are several entry and exit points to a scene, many of \&@hitie outside of camera
view. This introduces an additional level of ambiguity in re-identi cation in tliad person

leaves a camera view they may never enter one of the other views in the scene
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1.2.4 Utilising Context

With the combination of appearance variations and inter-person similariggengi-cation algo-
rithms need to draw from more than just the immediate visual information to praaioeate
comparisons. The incorporation of summtextuainformation can provide the edge. Contextual
information can be drawn from aspects of the scene that have eithel inigagct on the scene,
or aspects that provide additional information about the relationship betiweendividual and
the scene.

A common non-visual contextual cue is that of inter-camera transition time.igtiie time
it takes for a person to move from one camera view to another, often modslladlistribution
rather than a single value as people traverse the scene at differedsspy knowing the distri-
bution of transitions times a prediction can be made about where and whesoa [ likely to
re-appeatr, thus reducing the potential search space of visual targetspare. However, deter-
mining this temporal distribution automatically is not straight forward. In ordemddhow long
it takes for a person to move from one camera to another you must eithbtebm ae-identify
that person, a chicken and egg scenario, or merely look at the statisticdétin entrances and
exits from each camera [109]. The later of which is limited to low density clogstéss, where
there are few areas that people can enter/exit the camera network frioite.ikl¢orporating such
temporal information undoubtedly can improve results [78], obtaining it foitrarily disjoint
camera views, as is a principal of Chapters 3,4 and 5, is not easily od&inab

Knowledge of scene lighting is contextual information that has a direct ivedtext on the
people within the scene. While the complexity of lighting is such that we cannuotda accurate
model of the scene illumination without extensive calibration, approximatiotigeddifferences
in lighting levels between views can be utilised to lessen their effect. Usingxtoatenfor-
mation, like the effect on the background, is a vital step to modelling illuminationggsover
time, a problem that effects both indoor and outdoor scenes.

An indirect visual cue is that of re-identi cation by association, using thegbe in surround-
ing groups to aid re-identi cation of the person of interest [178]. Ipawating visual information
from people in the immediate vicinity of an individual can be a useful aid to mitigatie@mbi-
guity found in matching people of similar appearance. A key challenge withppi®ach is that
it is hard to differentiate between people who are walking past/next to éhehat a given time

and those that are genuinely grouped together and thus more likely teeegappether. Because
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of this, the ability to accurately identify groups of people is key to its success.

1.2.5 Selecting Features

Modelling the appearance of an individual can be done using manyatitfapproaches based
on colour, texture, face, motion, size, shape or a combination of degsripihile a compre-
hensive description will certainly contain more useful information abowgragns appearance,
certain elements of the appearance are more distinguishable than otheggafple, in an of-
ce environment the tie colour will be more of a distinctive feature than theseosi or shoes.
To this end it can be said that not all features are equally relevant t@né-mhtion. Therefore
it becomes critical to the re-identi cation process to select a subset of distnfeatures that
provide more separation of visually similar individuals. Finding such a swdise allows for
an implicit compensation of inter/intra-camera appearance changes thtmuiglariance of the

features chosen.

1.3 Approach

1.3.1 Mitigating Inter-Camera Illumination

As discussed in Section 1.2.1, the same object observed under sepanaitgiiion conditions
can look signi cantly dissimilar, therefore a core task is mitigating the effedifééring scene
lighting in order to preserve some visual similarity. Ideally, one would like tonfardetailed
model of lighting within a scene using knowledge of the lighting types, locatindslaections.
However, in the general case such a model would be very challengingipute as many areas
have multiple light sources and complex time-sensitive shadowing. Insteapoximation
of lighting change can be obtained from a selection of training pairs carsbée to form a
Brightness Transfer Function (BTF) that maps colour values betwegindisameras based on
the proportions of colour within each sample pair. Of course these trairdimg peed to be
manually labelled, so to minimise the manual intervention required a Cumulative GBFR)
[132] is utilised that attempts to retain colour information that is under-repredén the training

samples that can be lost using mean-based representations.

1.3.2 Adapting to Lighting Change Over Time

The ability to update inter-camera illumination models is vital to their practical applicasat

is very ndve to assume that the lighting conditions within a camera view will remain constant.
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Cameras based outdoors are effected by the day/night cycle and wedihe indoor cameras
are effected by windows and camera parameters, all of which can elwueg time. Previous
approaches have either treated the illumination conditions as static [78]Jingsemhental learn-
ing to continuously learn the inter-camera relationship [57], or to simply thrveydearned
models when the conditions change and rely on spatial methods to bootstiadtless [26].
However, none of these approaches really handles the problentiveffecEven in the case of
the incremental learning approach, the number of iterations required makesitable for use
in changing environments.

Instead, this thesis looks to additional contextual information to both monitor tha&ation
conditions within a scene and to use this to update the illumination models when itltmege.
By looking to the effect that changes in illumination makes on the backgrobjedts within a
scene, an estimation of their effect on the foreground is made. To thig ext@alaptive version
of the CBTF model (A-CBTF) is formed by using the information gained fromtihckground
to update the learned inter-camera CBTF without the need for retrainingthas additional

manual labelling [131].

1.3.3 Re-identi cation by Ranking

Many current re-identi cation approaches compare observationsjrol score for this com-
parison, and use this score to determine if the observations are the saoe. pdowever, re-
identi cation is a dif cult vision problem and the accuracies of such apggttes on complex
datasets from public spaces are low [133]. Because of this the use ajdsdhat give categoric
correct/incorrect answers is questionable. Instead, consider thertese a re-identi cation
algorithm is used to aid a human, not replace them. In this case, a diffgnerdaah can be
undertaken that gives the operator the nal decision on which obgerves the correct match.
Similar to a Google search, and indeed drawing from the text retrieval coitynfi2d, this thesis
presents the idea of providing the operator with a ranked list of possibldasat€his approach
reduces the amount of time that an operator may take nding an individudk wtilising their
skills to distinguish between the people that the algorithms struggle to sepaaje [1
Additionally, previous work focuses on de ning a feature space thatiately describes
an individuals' appearance, while providing some invariance to the clggteautlined in Sec-
tion 1.2.1. Few consider that not all of the features contribute equally, femtgres in a given

representation will have more distinguishing ability than others. To this extisrthigsis details
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a method of comparison based on a weighting of the individual features hihifeature space
based on training samples. Following the ranking paradigm above, a REhkSutilised to
form a observation ranker in a higher dimensional space that allowsdatey separation of the

data [133].

1.4 Contribution

The contributions of this thesis to person re-identi cation over distributedesp and time are:

1. A cumulative approach to the representation of multiple inter-camera BaFattempts
to preserve sparse colour information that is under-represented irathimdy set, instead
of a mean-based approach that favours the more prevalent coloulditiofhally, a bi-
directional approach to person comparison that gives preferenceserations whose
colour has been successfully updated using the two CBTF mappings beaneemera
pair [132].

2. The CBTF requires a training stage of labelled data and because ofdhld vequire
manual intervention when the model needs to be retrained for differetinliptonditions.
To this end, an Adaptive-CBTF is proposed that uses the backgrotorhition to es-
timate changes in the illumination conditions of the foreground [131]. Comselyithe
CBTF can be updated without the need for manual re-training. This slififem previous
approaches that either rely on knowledge of the relative camera platg6gror try to

interactively build upon potentially incorrect models [57].

3. Anovel reformulation of the re-identi cation problem as a relative iaghroblem [133].
Previous approaches perform comparisons based on an absolutedistaasure that is
used to decide if a given probe/gallery image pair are in fact the samepbrgdhis relies
on the algorithms in question to be very accurate to actually be of use in a C@Txot
centre. Instead, the proposed ranking method presents an operata naitked list of
possible matches allowing them to use their training and intuition to select thecttorre
correspondence, while reducing the time needed to nd the desired indivilhe move
to a relative distance measure is key as it adds some tolerance to large intdéisse

variation over the direct distance alternatives.

4. A new comparison approach through feature selection using an ElesRartkSVM [133],
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a novel combination of boosting and SVM within the ranking framework. iBusavork
that has looked at feature selection for re-identi cation has been lmasathoosting frame-
work in which each feature is selected independently, despite havinqp\etween cor-
rect and incorrect matches in the feature space. Instead, an Ran&gpfiglach is utilised
to analyse all feature channels simultaneously to nd a ranking functiorfuriber this,
several RankSVM built from subsets of the training data are combined inEnaemble

RankSVM to reduce the memory overheads and thus scalability.

1.5 Thesis Outline

This thesis is organised into seven chapters as follows:

» Chapter 2 provides an overview of past and current work on the componentersbp
re-identi cation, including extraction of relevant information from imageresentation

of people for re-identi cation and matching techniques.

e Chapter 3 provides a detailed explanation of the process for modelling the CBTFt-It ou
lines the potential bene t of a cumulative representation of BTFs that mase®f small

training sets with sparse colour information.

» Chapter 4 details a method for adapting the CBTFs from Chapter 3 to new illumination
conditions caused by a change in the lighting or camera settings. In partib@ahap-
ter proposes using some background information to estimate the change in itiomina

conditions thus removing the reliance on manual sampling for updating the model.

« Chapter 5 presents a novel relative ranking-based approach to the matchingsprosed
in re-identi cation, as opposed to the absolute scoring approachespusebusly. A
RankSVM approach is selected and justi ed, with extensions made to this agpto

allow for better memory scaling through the use of an Ensemble RankSVM.

e Chapter 6 outlines a practical implementation of a re-identi cation system, indicating
some of the major technical challenges associated with real-world data. tsiirgIDS
[119] dataset as an example of a real environment, this chapter looksiasikke person
extraction, dealing with multiple observations and matching technique, angporating

temporal information to reduce the search space. While the illumination changetioitig
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techniques Chapters 3 and 4 are not used in this chapter due to mandsdaus the
RankSVM-based techniques from Chapter 5 incorporated into the frarkemplicitly

handle some of the lighting changes.

e Chapter 7 concludes the work conducted in this thesis and outlines possible extetwsions

some of the ideas and techniques presented.
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Chapter 2

Literature Review

An important precursor to re-identi cation is to obtain the relevant data fitweroriginal images
or video streams. The process of extracting an object from a set of intagebe undertaken
through the removal of unwanted image data using segmentation, or diretdliyedb using
detection. Obtaining features over time, to enrich appearance models epgé#a information,
also requires tracking of an object as it passes through the scene.

The task of re-identi cation itself can be broken down into two main tasks:ctele of
features and feature comparison. Appearance features are lfjeselected because they best
represent the visual make up of a person in a way which increasesparabity of similar
objects. The process of matching people over camera views is thus ratianitigating the

effect of inter-camera appearance changes while maintaining this béjpara

2.1 Person Extraction

The initial stage of person re-identi cation is to actually extract the pedestrieom CCTV
images. This process cannot be treated independently as it has sanvusitions on the infor-
mation that can be obtained to represent an individual. There are twomieaht approaches to
this; foreground/background subtraction and pedestrian detectiosectidepending on whether
the re-identi cation algorithm in question requires pixel-wise extraction or simapbounding
box. As a single image is often not suf cient to capture the appearanagefson, these meth-
ods can be extended to incorporate additional information over time. Impletioenétracking

enables the use of multiple instances of the persons appearance butig@iabtask in itself as
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the appearance of an object may change within a single camera view dudusiogs, lighting

and appearance variation.

2.1.1 Foreground/Background Segmentation

Foreground/Background segmentation is a key initial step for many visiamiglgs, as large
portions of the image are often not relevant to the task at hand [19, b6t @&empts to classify
each pixel in an image as either belonging to the background or fored{@igure 2.1). In the
case of re-identi cation it enables extraction of appearance feattoesdbjects within the scene
with reduced noise from the unwanted background pixels. In ordectrta the regions of the
image that are to be considered foreground, one could start with an inegeturately captures
the background of the scene. In a known scene in which the foregrdutter is minimal one
could simply select an empty frame and use this to represent the backgemehslubsequently

use a frame differencing method [75].

Figure 2.1: An example of background subtraction, in this case using Ru#yiGpeci c Lo-
cal Binary Patterns (RSLBP) [142] to mitigate the effect of moving baakggoon subtraction.
Images taken from [142].

In many applications this crude approximation may not be suf cient due tsigient fore-
ground clutter or busy scenes. One such approach for backgestineation is to take a pixel-
wise median of a set of images [103]. However, Cohen [31] notes that fpven pixel the

background must be visible for at least half the frames, which limits its usesiebscenes.
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Instead he presented a labelling approach, whereby at each pixibioadabel indicates which
frame the pixel is to be taken from. Each label combination is given a costllas pixel la-
bels having spatial and temporal correspondences, with a nal optimellitadp obtained using
graph-cuts [15].

Another approach is to perform per-pixel modelling, a commonly used meshoased on
the adaptive Gaussian Mixture proposed by Stauffer and Grimson.[T4@jir method models
the value of each pixel as a mixture of adaptive Gaussians whose mehuarances together
represent multiple alternative background distributions. As the pixelrmdition is updated over
time, consistent pixels can then be incorporated into the background alltigimigng changes
and moving objects to be accounted for. However, this approach camlefid to stationary
foreground objects eventually being treated as background thus coatamgithe background
distributions, this requires careful selection of the decay time constant.

Instead of modelling the background on a pixel level Oliegral. [120] suggest that an
eigenspace method could be used instead. They construct aeigenbackgroundbased on
the mean background and its covariance, using Principal Componehtsin@CA) to reduce
the dimensionality by retaining only the tdy eigenvectors. This implicitly removes moving
objects since for a given pixel they are statistically insigni cant over timeveédkt al. suggests
this method is more computationally effective than its GMM counterparts, andh&anodel
can easily be adapted over time. However, updating PCA is in itself computatierpensive
as discussed by st al. [101], who suggest an incremental PCA approach to deal with theeipda
issue.

Russellet al. [142] noted that previous methods assume that while the backgrounttbje
in the scene may move, or foreground objects become background,dkgrémand of a scene
settles and is not constantly in motion. Their counter example to this was movirgslaad
branches in the wind, which both obscure people and are non-statioRassellet al. [142]
noted that the per-pixel methods like Stauffer and Grimson's [149] laclpitked connectivity
to model such movement, while subspace methods like [120] could not copdoaéthareas
of independent stochastic motion as they consider the variance over the sdene. Instead,
they de ne an intermediate representation of connectivity, a Rotationallgi 8deocal Binary
Pattern (RSLBP), to model localised regions of textured motion. While theiltseshow impres-

sive detections of pedestrians occluded by moving leaves (Figure Z2l13etimentation masks
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actually include the pixels corresponding to the leaves themselves, meartitag tpearance
model drawn from this segmentation would in fact be polluted by them.

Other common alternatives are methods based on motion features like LucKsuaae's
work on optical ow [106], an example of which can be seen in Mittal anchBes' work [114].
Here the authors use a hybrid kernel density approach, utilising a cotiobitdé optical ow es-
timation and normalised colour channels. Their method handled changes indightinwveather
as well as recurring movements like ocean waves by modelling the motion feature

Another consideration to segmentation is that of the affect of shadowsgmentation re-
sults, often erroneously being incorporated into foreground regiohgddvs can be caused
by a variety of illumination conditions, such as the number of lighting sourcestenahten-
sity of light. The angle of camera relative to the light source can also affiecshadowing
severity. Shadowing is particularly occurrent in outdoor scenes wirgght sunlight can can
cause strong, time varying shadowing. In order to perform an accsegtaentation of a scene
shadow removal techniques can be incorporated. Invariant colourisra@eoften used to iden-
tify shadow regions [25, 143, 156], some methods also use edges@gadteehgth [12,143,168].
Salvadoret al. [143] use a combination of colour models and edges, nding darkéomsgising
a luminance sensitive colour space and removing them from object enlged in a photomet-
ric invariant colour space. Chen and Aggarwal [25] also make usermésspatial logic, using
log-polar coordinates to looks speci cally for pedestrian shadowsdasthe feet and combine
this with colour and texture information to identify and remove the shadowsdd®heemoval
techniques have not been used in the technical chapters of this thesily; dusrto predomi-
nantly indoor scenes where segmentation was relatively accurate withnbaguid still be used
to increase the segmentation accuracy.

While separating the foreground and background allows potentially |kEssrd information
to be ignored it does not take into consideration the task-speci ¢ useililokeach of the re-
gions that are deemed to be foreground. Using a segmentation algoritesnngivindication of
the types of objects described by the moving region, it might be assumedegarthpeople. In
fact scenes will often contain other less relevant moving objects sudrsdmins and luggage,
and categorising these observations is a non-trivial task in itself. By itsenaggmentation
is less useful in busier scenes as people can often be grouped into miogley regions that

are dif cult to separate using the segmentation results alone. Insteadyayaish to focus on
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searching speci cally for people within a scene by employing object detedtiois further re n-
ing the classi cation of relevant and irrelevant information. Additionallyeiground/background
segmentation alone is limited in that it provides no temporal continuity betweenrémgréond
regions, and it is here that further methods must be incorporated to pravicher representation

for tasks like tracking.

2.1.2 Person Detection Techniques

In contrast to the foreground/background segmentation approalbbes, abject detection does
not try to separate objects by retaining and updating knowledge abouatkground appear-
ance. Instead it is based on modelling the appearance of the type of obg® looking for,
in this case humans, and searching through an image for a region thatrhassnilarity with
the appearance model as can be seen in Figure 2.2. An early examplestyidnisf approach
can be seen in [135], where a HSV colour model was used to desciibéosle for detection
within a tracking framework. Alternatively, a rigid template approach wagttbby Papageor-
giou et al. [123], in which they use an over-complete selection of coef cients thaseHaar
wavelets [110] to capture the intensity gradients throughout the image. ridieythat by nor-
malising and averaging the coef cients over a large training sample, themampatterns will
average out at roughly 1, while those that have a value much higher tbammelspond to sig-
ni cant patterns in the dataset. These signi cant patterns are kept@mad & set of spatially
constrained templates for which a Support Vector Machine (SVM) class gained. Samples
are then collected using a sliding window approach, and assigned a ckdssn score using the
SVM.

Viola and Jones' [162] work is a similar approach that uses a set ofngular Iters with
Adaboost [50] to select a subset of features. The choice of radndters over the more
detailed steerable Iters [63] enables them to speed up the feature extractioess using their
Integral Imagerepresentation. At eacl;y) location in the integral image one stores the sum of
all the values above and to the left &fy), inclusive, allowing very rapid extraction of rectangular
regions. By using this approach they collect a set of 180,000 featusrsactraining sample
and use AdaBoost to create a nal classi er from a feature subsstdan weak classi cation
performance. They later extended this approach [163] to include motiomriafmn, as a form
of short term tracking, to enforce some temporal consistency on detgctiors reducing the

false positive rate.
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Instead of using a set of Iters, Dalal and Triggs [33] break the imagerdimto grids of
gradients, which they show to greatly improve on the results of Iter-basdtiads. The image
is subdivided into smaller regions calledlls and for each cell they compute a gradient based
representation called Histogram of Oriented Gradients (HOG), formed lolelfivag the distri-
bution of intensity gradients within each local region. In order to reduceftieet of shadowing
in an image they perform some local contrast normalisation within larger giobeorblocks
These blocks then form the basis of the HOG descriptor, which is thentosea@rch the image
at varying scales using a sliding window and SVM classi er [81].

Felzenszwallet al. [42] extended this approach by coupling a coarse root Iter with aeco
position of the object into several higher resolution part-based lteis) @ath a relative spatial
constraint. as illustrated in Figure 2.2. In addition noting that the 36-dimensi@ Hescriptor
in [33] contains redundant information, they apply PCA to reduce the dimeality and hence
computation time. In order to address the issue of selecting training samptég 8¥M (it is
easy to extract thousands of negative samples from a single image, bytntigre redundant)
they formulate a margin-sensitive method for data-mining hard examples to ffemrt@vely train
their latent-SVM classi er. Coupled with a post processing stage to formuading box from
the root and part detections, this approach can be considered stateadfithhterms of results on
published datasets like PASCAL [38, 40].

An issue that the above methods do not take into consideration is that aftedrthe fore-
ground pixels from the detection window. A bounding box is useful farcang for objects
within a scene, but one often wishes to perform further processingenlject pixels with-
out the in uence of the background. One could consider a crude sggiien of data within a
bounding box by simply removing the outermost pixels, leaving a rectanglecalar region,
and relying on the assumption that the pixels nearer the centre of the deteictéow are more
likely to belong to the foreground region. However, it is dif cult to strike aldnce between
including too much background and losing too much of the foregroundnrdton. Lin and
Davis [102] attempt to tackle this segmentation issue without knowledge of thgtmand ap-
pearance, as is required in many of the methods outlined in Section 2.1.1. dllest a tree
of partial poses for each of the body parts (head, torso, upper fehtower legs) from a set
of synthesised silhouettes, allowing for several degrees of freedlonoement. They form a

hierarchical pose tree using a set of real human silhouettes to tune tiehimg parameters on
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Figure 2.2: Top: example pedestrian detections using Felzensetvalls [42] part based de-
tector. Bottom: root Iter (based on Dalal and Triggs' HOG [33]), palters and location
distributions, respectively. Image from Felzenszwetial. [42].

a greedy basis. Detections are based on a sliding window using texttueeteésimilar to those
in [33]) and an SVM classi er. For each detection they nd the optimal patouigh the pose
tree resulting in a best t pose estimation. The synthesised pose silhouettiedmiltihe tree can
then be directly used as a template for foreground extraction.

Recently, Farenzeret al. [41] used a customised version of the part bagadtture elements
(STEL) component analysis (SCA) [84] to perform segmentation. THeLSiodel captures un-
derlying structural information common in a class of images using weightecbilatic index
map (PIM) [83] components, and is used to divide the pixels into two grazgrsesponding
to the foreground and background. Farenzenal [41] train this model using a database of
pedestrian images and applies it to datasets possessing pre-extractdihdmoxes. While this
is similar in concept to the results of a pedestrian detection algorithm, it is uthdessensitive
the STEL method would be to imperfect localisation or the occlusions that terattw during

actual pedestrian detection, as it is based on hand selected training saBihiesway, the re-
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sults reported in both papers indicate its effectiveness at removing foackdy which while not
perfect, are impressive and as such could be incorporated into re-icktitin methods to reduce
the background information incorporated into the appearance models.

Ferrariet al. [45] also attempt to address the segmentation from detection problem ie a pos
estimation framework without the need of a trained model. Initial location usepper body
detector based on [33], and this region of interest is then expandedoetzate for placement
of the arms, and to a certain extent the legs. They use prior knowledge bkehy placement
of body-parts to initialise colour models for foreground and backgraegsnentation using the
Grabcut technique of [139]. The qualitative results presented in thek are not as impressive
as those in [102], however the authors state the method to be deliberatsbneative, since
losing body-parts would reduce the effectiveness of their subsegasnhestimator.

While the detection based approaches extract regions from the sceatediby an appear-
ance model, the disadvantage they have over foreground/backgsohtrdction methods is that
they require regions to have a certain level of similarity to the original appearmodel. In
order to train such a model, a single image would not cover any object variatich as pose
and scale changes. Instead, methods require much larger trainingdetsshose used in the
PASCAL detection challenge [40], where hundreds of hand labeleth@es are used to build
the models. This requirement for a number of hand-labelled training sampéessitiat training
a detector for new objects or objects in different poses requires stibstauman effort. An ad-
ditional issue with detection is that localisation of objects becomes very dificddtisier scenes
where problems like inter-object occlusions become more prevalent oeesavhere the reso-
lution of the people is too low for the detector to function correctly. In these<ane can revert
back to segmentation-based methods, using them as a crude detectotiby #aeh region of
foreground as a person/people. Segmentation can also be used esragrto detection in that
the detector can be applied only to the foreground regions resulting in tweputational cost
in the detection step and implicit removal of background information from thectlen results.

As with the foreground/background segmentation methods outlined in Sectidrd2tection
methods alone do not impose temporal consistency on observations taertharinformation
gained from video frames. Linking observations temporally within a single c@iaa key step
towards minimising the search space for multi-camera tasks. Without groupieciidas over

time, each must be treated as a separate object, thus complicating the tagleotireation.
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2.1.3 Person Tracking Techniques

Tracking enables the temporal correlation of observations within a singlereaenvironment
through the use of motion [16] and/or appearance modelling [6, 87, 821¥74]. Grouping
observations through tracking in this manner is a necessary precunssidenti cation, as it
reduces the space of inter-camera hypotheses, while enabling more tmaggearance models
to be created using multiple images. It differs from re-identi cation in that sumptions of
tracking within a single camera: small changes in appearance, shap@nrduoetween frames,
do not scale to that of multiple disjoint cameras. However, tracking itself isnanaal task,
especially in crowded scenes where each object must be trackedhtappgarance changes and
occlusions. A survey of common tracking techniques can be found in Yighak [169].

One potential tracking approach is to represent the object simply as a blminoected
pixels, then incorporate a Kalman Iter [16] to estimate the motion over time usinglstested
estimation in which the state of a linear system is estimated using a prediction aacticorstep
at each frame. Later works [6, 21, 169] have suggested that the Kali®ais too restrictive
in that it always assumes a Gaussian distribution of the state, and theyststigateparticle
Itering is a more effective way to track objects based on sets of points/iélile both of these
approaches work reasonably well in single camera tracking, they asaiitable for expansion
into in re-identi cation. They rely on frame-wise temporal continuitg, measurable changes in
appearance or position over small time gaps, whereas re-identi catios pékee over arbitrarily
disjoint camera views.

Instead of attempting to track a point or set of points as in the methods aborerniiu
et al [32] represent the object as a normalised histogram of colour takem the initial re-
gion (a ellipsoid) in the image. The colour information extracted from the regfionterest is
weighted towards the centre using a spatial kernel. In order to track feetab subsequent
frames the mean-shift [28] algorithm is employed as shown in Figure 2.3kds tdne initial
position from the previous frame and iteratively maximises the similarity of colensitly of the
regions around the initial hypotheses until convergence is achievdduiCGippearance models
like this are better suited for extension to re-identi cation, as described étid®e2.2, but the
localised search using mean shift is not. It relies on the prior location kdgelgained from
the previous frame for inter-frame correspondence, and while intees@atransition time can in

certain cases be estimated, it is not accurate enough to perform sudhdrac
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Figure 2.3: Non-consecutive sample frames from a person trackey ceitire-weighted colour
information and the Mean-Shift algorithm. An appearance model allows tisempéo be tracked
based on small intra-camera movements between frames, this requirement linpfdidataon
to the more general re-identi cation case. Image from [32].

The approaches above concentrate on tracking a single object as i thovegh a scene.
In order to extend this to more general usage one must track multiple objectsasienusly.
While multiple instantiation or extensions of the above methods, like [73] for jrrtiering,
can perform this to a certain degree one must consider that multiple objeataineaa view are
likely to overlap. For a system to function effectively a method for handlug ®cclusion must
be incorporated, and this has been the focus of many recent workseiaioet al. [111] use a
Kalman lter and a shape matching algorithm to distinguish people. Kdtaat [92] use colour
to try and separate passing people by their differing visual appearBazeaniet al. [9] extend
this method by employing an online feature selection method to pick out the mosgdistimg
features between two overlapping tracks. Chah@l [22] actually make use of overlapping
cameras to recover occlusions but as stated previously, camera oigedlapunreasonable as-
sumption in the general mutli-camera scenario.

The effect of illumination, as variation within a scene, or the effects of @lvam can cause
tracking methods to drift away from the correct correspondences.effbcts of shadows have
been discussed in [130] along with a comparison of shadow removali¢ee® In terms of

mitigating the lighting variation within a scene several recent approachesl@atuwodelling il-
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lumination changes within a camera [87, 148], and adaptively updatingaegopee models on
the y [138,174]. This is a common problem across many computer visiorstas# is partic-

ularly important in re-identi cation where lighting conditions between camera site hugely

variable. The difference among these methods and the re-identi catieu lmasthods described
in Section 2.3.1 is the severity of illumination change between observations, Wwihcsaimera

being more gradual and inter-camera very abrupt.

In general, tracking objects within a camera view relies on there being onldifferences
between consecutive observations, and using this knowledge to nilantify the same person
in the next frame. As the scenarios in which tracking takes place becomecamgex; such
as dynamic backgrounds, multiple targets, varying lighting and object aoogjshe problem
becomes very challenging. In these cases the localisation of the objectgiby ared/or appear-
ance must deal with multiple hypotheses and larger changes in objectrappedbut these are
still con ned to local changes as opposed to potentially uncorrelatedgesathat occur in multi-
camera environments. For this reason, a different set of descriptdnmatching methods must
be employed for re-identi cation tasks that are able to mitigate the effectvefreeappearance

changes, like those found in different lighting conditions.

2.2 Features Descriptors for Person Re-ldenti cation

In order to describe the appearance of a person such that it maydenteed in another camera
view careful consideration must be taken as to the selection of suitablegeatiihey must
be able to distinguish between similar people, but also mitigate the effect of thecamera
appearance changes outlined in Section 1.2.1. Such visual featurgpttgsaan generally be
grouped into two main categories: static and dynamic. Static features aretltads=an be
obtained from a single observation, capturing the immediate visual informatobres colour [1,
13,26,56,68,71,77,78,80,91,164] or texture [61, 65, 74a8d]are often combined with spatial
cues [7,55,122,165] to localise this information. Dynamic features regeiveral observation
frames and generally capture the way a person moved through a cameyanéethis is the

foundation of the biometric Gait [94,127,171,175].
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2.2.1 Colour

Colour is an obvious choice for appearance representation in any \@g&iem as it directly
contributes to the way we as humans interpret the world around us. FEmrpes-identi cation
algorithms it is an important cue as it covers considerable variation singéepeear a wide
variety of clothing. It does not require a speci ¢ view angle, as the dontioalours of cloth-
ing tend to be similar from front and back views, and remains useful evienvar resolutions
or at range. Because of this many different colour spaces haveuseehin pedestrian rep-
resentations. The standard RGB colour space has been employed insvaimenti cation
works [1, 26, 56, 77, 78,131, 132]. Several variations on the RGBuc space have also been
tried. Hahnekt al. [65] combined the RGB channels with a luminance channel calculated from
the R, G and B components and related this to a chrominance histogram cahgbrisemalised
R, G and B components, thus removing the intensity information. Note that onlyfwlte
normalised channels (red and green) were kept as the third is reduhgamo the combined
normalisation. Their matching results suggested that the normalisation of theethaeduced
the recognition performance marginally on a single camera experiment. ¥¥aig164] im-
plemented a variation of this by combining the normalised RG values with intensityriafimn,
RGI, and hint that this combination of colour information is more robust to sicateera light-
ing changes than RGB alone. However, their conclusions are basadhbiative evaluation of
tracking results and as the intensity changes may be more distinctive betaveeras it may not
yield any bene t in the case of re-identi cation.

Other common derivatives of RGB have also been used in many re-ideitincand track-
ing approaches. Chrominance information in the form of the U and V clsifroen YUV space
were selected to remove the luminance information in order to reduce thé @flerying illu-
mination [80]. This work suggested that the removal of the Y componentdsesethe accuracy
and that it marginally outperforms RGB-based matching when using simplistighastocom-
parison techniques. However, previous uses of the YUV space darttthe removal of the
luminance channel by showing that matching based on YUV space actughgrtarms that of
UV space over multiple cameras [85], indicating that the luminance informatiocatittibutes
to discriminability.

Conversion of the RGB space to Hue, Saturation and Value (HSV) or laght(HSL) are

other common place colour representations [1, 13, 68, 71, 91]. Biaeh [13] use a fairly
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coarse quantisation of the HSL space in order to balance colour informaiibbra reduction
in illumination variance, but no comparison is given between this and otheurcgppaces. Alahi
et al. [1] compared RGB and HSV represented using several sets of lastdgn sizes, some
with equal weighting on the three HSV channels (64 bins each) and sombkatyeta coarser
qguantisation on the S and V channels (16 bins for H, 4 for S and 4 for MirTesults suggest
that placing a coarser quantisation on the S and V bins actually lowers tredl@arformance
and that RGB actually slightly outperforms the HSV based method. Hadiradl [65] made
use of the Colour Structure Descriptor (CSD) de ned in the MPEG-7 stahf29]. This uses a
colour space in which lower saturations are coarsely quantised in thenhhneel placing more
value on their luminance information [65], but this favours brighter shitisare less common
in CCTV images.

Other re-identi cation methods have made use of colour spaces basegbfatts/e hu-
man visual responses to colour, such as the Munsell colour systeth B@&den and Kaew-
TraKulPong [14] gave a comparison of RGB, HSL and consensugecsion of Munsell Colour
Space (CCCM) [151] which is a sparse quantisation of RGB space intolddrs. They reported
that the CCCM outperformed RGB and HSL within a single camera view and wagar with
HSL over multiple camera views. They considered that RGB was unlikely tfornpemvell with-
out some form of colour calibration in the cameras. This point was lateregcby Gilbert and
Bowden [56] who used CCCM to bootstrap an RGB calibration method as thugfit to be
more accurate from the outset, but they noted that the calibrated RGB wasmaue accurate
than the initial CCCM approach.

Piccardi and Cheng [128] proposed a more complex colour quantisatimme aimed at
reducing the size of the colour space in order to combat illumination chamg@sdn cameras.
To do this an object's appearance is converted from RGB colour spxelvat the authors call
major coloursby raster scanning the foreground object and applying a thresholdctores-
malised colour channel in increments of 0.01. A Major Colour Spectrum HetogMCSH) of
the colour occurrence frequencies is then created from the fonedimage pixels. The propor-
tion of a certain colour appearing in an object can be calculated by norngalisfrequency of
occurrence of the colour by the total frequency of occurrence.sirhitarity between objects A
and B can be calculated by comparing each colour in A against all otheursdloB. A good

colour match consists of a similar colour with a similar normalised frequency. ol gwerall
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match between two objects is one in which the difference between the lovekkigirest colour
match scores is small and the lowest colour match is above a pre-de nstidhote However, the
appearance of people changes between views and without any pto@apt to this the major
colour approach may tend towards similar incorrect matches whose MCSékexr ¢o that of
the original image. Farenzeeaal. [41] adopt a similarly principled quantisation based on Max-
imally Stable Colour Regions (MSCR) [47], whose stability is based on re¢iatisre retained
under several threshold values. This method achieves some invariamnaedfmrmations of the
colour regions, but not the inter-camera lighting changes.

Colour is the most prominent of the features extracted in re-identi catiorksvfi, 13, 26,
56,68,71,77,78,80,91,131,132, 164]. Apart from being mdstndtive than any other fea-
tures [61, 65] it gains some invariance to scale and orientation when storedistograms
form [152]. It can even be extracted in low resolution images, where cwrglex representa-
tions like face, gait and even textural information become severely degyradowever, colour
is effected heavily by differing illumination conditions, common between camiesasv[78],
and to combat this some form of normalisation or illumination modelling must be coeaditiz
improve performance. Additionally, colour based methods fail to utilise artyraixor spatial
information contained within an object, such as the texture of the clothing or ybetlaf the
colours themselves. Incorporating this information should provide a me&sdurther distin-

guish between observations whose colour histograms are otherwise similar.

2.2.2 Texture

While colour represents the overall chromatic appearance of an indiviael gradient of inten-
sities can provide further detail about them. The gradient information eamsed in order to
distinguish people by the patterns present in their clothing that make themaataftdm others
wearing similar coloured clothing. Hahnet al. [65] compare several different frequency-based
texture features. The rst is the 2D Quadrature Mirror Filter (QMF), analglter based ap-
proach using an image split into low vertical, horizontal and diagonal spatigliéncies. The
second is Oriented Gaussian Derivatives (OGD), as used in [166]uslea a steerable Gaus-
sian lter. Then the Homogeneous Texture Descriptor (HTD) de ned inBBR7 standard [29]
that uses Gabor lIters [46] in the frequency domain. Finally the Edge HiatagDescriptor
(EHD), which consists of a histogram to describe ve different clasgfesdge: 45diagonal,

135 diagonal, vertical, horizontal and undirected edges. Of these method#otired that the
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QMF and OGD performed poorly over multiple cameras, with the HTD providieggtieatest
matching rate, possibly due to its invariance to intensity changes [137] thabarmonly present
between views.

Haritaogluet al. [74] opt for a combination of grey-scale texture and a gait-like represe
tation in what they call the textural temporal template. The texture componéhisdaEmplate
is calculated by recording grey-scale medians of all the foregroundspipedative to the cen-
tre pf the object detection, over time. Likewise, the shape information imageriputed by
incrementing each pixel bin relative to the object centre if it is deemed fouegr The shape
information image can then be used as a normalised probability map for conmzanistexture
information. This method has the potential to reduce the effect of illuminatiorcalodr value
differences between cameras and although it relies on single pose,sat@faposes could be
learned for use over different cameras, it would still be dif cult to aghithis exhaustively.

Edges have been incorporated into several other multi-camera wor&s e8al. [146, 147]
use edges to model the appearance of vehicles in a multi-camera trackiagiscéJpon ob-
taining the edge detection results for two segmented vehicle observationsisthan Iterative
Closest Point (ICP)-based edge alignment method [54] to map both alisaes/onto a common
coordinate system. From here the edge maps are compared using aigehefrics based on
distances, angular differences and magnitudes. This approach iantedl t rigid objects like
vehicles, but nding pixel-wise edge matches in deformable objects like hamwanld be sub-
stantially more challenging. To solve this Kargal [90] use a polar based representation to
describe the edges for human re-identi cation. After edge detection efitte radial bins in
the polar representation is populated with the number of edge pixels in tham refgthe edge
image. The resulting bin values are then normalised to ensure scale andtitbansvariance,
but the effect of deformation and rotation between observations magmirissues for the polar
representation.

Grayet al. [61] draw from some of the object detection work to incorporate texeaeufes
into their representation. They use convolution based methods comprisimg déesigned to
identify gradient change across manually extracted bounding boxesy &fply two types of
Iter to the luminance channel: Gabor lters [46], to detect horizontal aedtical lines, and
Schmid lIters [144], to detect circular gradient change. This giveslaselection of edge, line

and circular gradient features that they prune using Adaboost.
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Using texture alone may not necessarily capture enough variance beéte@aduals, which
is crucial to the task of re-identi cation. Instead it is often complemented witlibtbader chro-
maticity information contained in many colour representations. For example,ap'sGrork
mentioned previously they combine their texture information with several difterolour spaces
in an attempt to create a richer descriptor. Although no results are presesitg texture alone,
as they amalgamate several colour and texture channels, they suggestttiva is better suited
as an accompaniment to colour not a substitute for it. This sentiment is echétthirelet
al.'s [65] work where they found that the combination of colour and texhased descriptors
led only to a minor improvement in matching results. These works highlight thehfacwhile
conceptually including gradient information to capture the textures in clotbingself it lacks
the ability to distinguish between persons in the same way that colour doet@ud be con-

sidered as an additional not stand-alone feature representation.

2.2.3 Incorporating Spatial Information

Colour and texture capture the overall appearance of a persontbuttave to be constrained
to regions otherwise they become too generalised. Including spatial intformtarough size,
models of the shape of the body, or simpler localised regions has the aglvaritheing able
to distinguish between people wearing similar clothing, as can often happesurveillance
setting like an airport, shop or railway station.

Some issues with shape and size descriptors are that they are affetieddost that humans
are deformable objects, that the size of observed objects can be Viengulifoetween camera
views and that lighting effects like shadowing can cause erroneousg ghfapmation. Despite
these drawbacks Het al. [69] use a person's principal axis as a height measure, basedw so
knowledge of the camera's spatial arrangement. By obtaining a vertiopdgbion histogram
from each foreground blob the authors are able to discriminate betwaéatese(more uniform
histograms), people (single peak histograms) and groups of people (mpkigkehistograms).
To distinguish individuals in a group, each person can be obtained byifidieg the highest
peak above a height threshold between two troughs, below anothegight threshold. Least
median of squares is used to calculate the principal axis by minimising the medsauarfed
horizontal distances of foreground pixels from a vertical axis. Usirggitound point of the
object, obtained by taking the lower intersection of the bounding box andrihepal axis, a

homography can then be learned and hence the world coordinatesrtz#fppieg areas of the
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camera views. However, they are still assuming the existence of camelapokat the ground
is planar and the use of a single line is suf cient to distinguish between ingiédfor object
comparison, considering the variation in human height is likely to be less thanftbething
colour for example.

Gheissariet al. [55] couple a dynamic shape model with dynamic colour regions similar
to [7, 165] but extend the method over multiple cameras. The objective ofviloglris to pro-
duce an object descriptor for use in surveillance tagging that is invaogise, illumination and
encompasses the effects of non-rigid items of clothing. The rst step inrobtgtheir colour re-
gions is to over-segment the colour image into similar colour zones overm@érto reduce the
in uence of wrinkles in clothing during movement. Sobel edge detection ags&an smooth-
ing are applied to the grey scale version of the image, then the Watershsfdtraation [161] is
used to segment the image. Once a set of over-segmented images havegiassd over time,
spatial and temporal edges are de ned within an image and over the setgésmaspectively.
A frequency image is then produced to nd the strength of edges. Lotength edges can
then be used to merge colour areas while high strength edges remain to éornmakitolour
segmentation. The major spatial regions of the body can then be calculatisthiya top-down
decomposable triangular graph [3] containing a set number of ordéradles (Figure 2.4). The
major edges of this graph are adjusted so they minimise the distance from theseuggents.
Comparison of objects can easily be performed by comparing the histogfaastoof the or-
dered triangles. However, the structure of this graph is limited by view arsglkeeatriangular
graph would be dif cult to accurately recreate from a non-frontalegpos

Active Shape Models (ASM) are combined with colour in [122] to tag targatsss cameras.
The authors use varying weights for both the shape and colour fe&uresthe best descriptor.
Vehicle matching has also been performed using shape as a main desarieipbpt this work
uses a static shape model based on edge maps and ignores colouet 8h§t70] show low
error rates in object matching but the view variations they choose aresimitar in angle and
the effectiveness of this method over wider angles of change is qudsgona

Many of the colour and texture-based methods use a histogram refatgseas this main-
tains some invariance to scale and pose [152]. However, by using a-bistpgram representa-
tion of an individual the the spatial relationship between areas of colotuvéeis lost. Thus it

is feasible that a person wearing a blue shirt and black trousers couhisbeken for someone



2.2. Features Descriptors for Person Re-ldenti catioA7

Figure 2.4: Ordered triangular graph spatial representation used Jin F5bvides a detailed
spatial description of a person (minus the arms), but is potentially limited to femk/iews.
Image from [55].

wearing a black shirt and blue trousers or vice versa. The simplest vd@gtoibe the spatial lay-
out of appearance features is to use a set of rectangles [36]. A oestian-speci ¢ approach
is to separate the body into regions relating to the head, torso and legsG4#dy.et al. [61]
note that pedestrians can be viewed from any azimuth and they foregestdion along the
horizontal axis by representing objects using horizontal strips.

Alahi et al. [2] expand on this by using a coarse to ne rectangular representalibgir
method encapsulates appearance as a set of progressively deedmgaiangular regions. The
top level is a single region covering the entire bounding box, the nexha®gual size regions
then nine and sixteen (22, 3 3 and 4 4 respectively) [1]. During the matching process
they only compare the regions which have a similarity above a certain threshoisl enables
them to remove some of the background pixels that are often found withirotiveling box and
potentially reduce the effect of object occlusions.

Kang et al. [88] forego rectangular representation for a set of concentritesirihat they
later update to a multi-polar representation [90], in which has been shoveitwdriant to both
scale changes and 2D rigid transform [30]. Upon obtaining a foregroegion of interest they
encompass it in the smallest circle that can contain the whole region. Sewetall@oints are

de ned on the circumference of the circle and from each of these theyagate out a set of
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concentric circles. Each of these circles becomes one spatial bin in whkicbltiur of the object
is used to model its appearance as seen in Figure 2.5. While the invarianedetalsanges has
its obvious advantages, this polar representation may be more susceptilel tingle changes
as its binning structure does not allow for moderate rotations in the same walyemactangular

structures do.

Figure 2.5: Polar alternative to rectangular spatial representation If3@duces scale and 2D
rigid transform variance, but rotations around the principal axis casecparts of the body to
move between bins. Image from [88].

In order to alleviate the effect of view angle on these spatial models Gandhi[53] pro-
posed a Panoramic Appearance Map (PAM) to model colour distributionbBgrving an object
simultaneously in four cameras they are able to map the coordinates of theipigath camera
view into a global coordinate system. From this they approximate the shapperfan using
a cylinder made up of discretised bins for elevation and azimuth. Each & Hies contains
the mean colour appearance and the number of pixels counted, whichitirzalty used as
a con dence measure. Although the method produces promising resultauthers note that
the observed colour from each camera maybe different, due to varyingnlftion, which are
not considered in their model. Additionally, this approach requires multipldapyg@ng views
capturing the person from all angles, which limits its practical application.

A graph-based approach is described in [7] that models objects as abdaour or Region

Adjacency Graphs (RAG). The objective is to maintain the objects appsararierms of the
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layout of the colours to provide a more descriptive representation thaloardistogram. They
suggest this can lead to the reduced need for background subtrabgortraicking an object with
a PTZ camera. The Hough transform followed by local maxima calculati@nssad to extract
the colour regions of the object. Each region can be described by its roleam,cegion area, and
percentage- Il within its bounding box, which can then be used to calculaigasity between
regions. Vectors connect the centres of each region within an objectro the RAG. This
method allows objects to be tracked in a single moving/zooming PTZ camera sinegibies

can be compared without background subtraction after an initial deschi@sdbeen built.

2.2.4 Face

As camera resolution and computation speed increase many researchdosriore sophisti-
cated biometrics to describe humans in an effort to discriminate between sinplearapces.
As such, face recognition is a well established approach for persidiemé cation, and general
surveys of common face recognition techniques can be found in [5117165180]. A simple yet
intuitive approach to face recognition is that of template matching with comparisade using
cross correlation [17]. Another popular approach is thaigenface$158, 159] in which PCA
is used to form a representation of the face based on the variance dditthendhich has later
been extended by decomposing the main regions of the face into major camgpbke eyes,
nose, face and mouth [125]. Machine learning techniques such aalNdeiwvorks (NN) [97]

and Support Vector Machines (SVM) [64,126] have been used todiassi ers on sets of facial
observations.

As with many of the appearance representations outlined in previous sedtoa recogni-
tion techniques are susceptible to illumination changes caused by differirippgjgionditions
upon image acquisition. A general survey of lighting change mitigation tecksican be found
in [140, 180], but the approaches can be broken down into three mastojvariant fea-
tures [136], normalisation [167,177], and modelling the inter-observatdation [37,167]. In
addition to these general weaknesses the unfortunate disadvantagespitictrto CCTV-based
imaging is that the face is often either not visible, due to occlusions or thegbdlse observed
individual, or are observed at insuf cient quality due to low resolutionsees or the distance
from the camera. This means that facial recognition-based re-identircatiethods are better
suited to scenarios in which the camera placement was speci cally desigredimter these

effects and not the general CCTV scenario considered in this thesis.
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2.2.5 Motion and Gait

Aside from the obvious visual attributes like colour and texture mentionedealaoperson can
also be characterised by their movements. The biom&ait is the pattern of motion of the
limbs of an animal, or in this context a human, as they walk or run across airgl. It is
an appearance cue that has been shown in cognitive science to bkinigbé recognition of
others [104, 150]. One approach to modelling an individual's gait is gseg by Phillipset
al. [127]. They extract the silhouette over several video frames anlgsanthe periodicity to
extract roughly one stride. The gallery and probe sequences aredhgmared on a frame-
wise basis. Kimet al. [94] expand on this approach by incorporating an ASM to capture the
locomotion of the selected individual. The ASM allows them to model the shaengters
over time and reduces the effect of shadows in the silhouette extractioagsravhile increasing
overall recognition rates.

Instead of a sequence of gait templates, Han and Bhanu [66] take eedifigoproach by
modelling the motion over time in a single image template. This Gait Energy Image (GEI) is
formed by normalising and aligning a sequence of silhouettes and assigrthgpixel value
in the GEI the number of images in the sequence for which that pixel is artaned pixel
(Figure 2.6). Dimensionality reduction is then performed using a combinatiBrim¢ipal Com-
ponent Analysis (PCA) and Multiple Discriminant Analysis (MDA) [70] arldssi cation per-
formed based on a combination of real and synthetic GEI extracted frooritiieal sequences.

Yu et al. [171] and Bashiet al. [8] have also demonstrated that the GEI technique can be used
to recognise people even when their appearance, both visual and limnaoe changed by
wearing a coat or carrying a bag, a feat which would certainly proedeging if using other

visual cues like colour or texture.

Figure 2.6: Aligned silhouette frames from walking sequences. Far righeisombined Gait
Energy Image (GEI) [66]. Human locomotion (Gait) can be a good identbet,is limited by
narrow viewing angle and accurate segmentations. Image from [66].
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As both gait and face have been found to be successful methods bly tehidentify peo-
ple, Shakhnaroviclet al. [145] attempt to combine the two. In their approach they use four
cameras to obtain both the side view for gait and the frontal view for faejaiuce. They use
visual hulls [112] to represent gait and Eigenfaces [158] for the.fadey note that a feature
level fusion of these two spaces is non-trivial and instead opt for e gasion at the decision
level. However, the reliance on multiple cameras is once again a practical limit&enently,
Zhou and Bhanu [179] addressed this issue by changing the fa@sespation from a method
restricted to frontal views to a pro le face that models the curvature oféhaufes of the face as
viewed from the side.

As with facial recognition, one problem that many works on gait exhibit ig tieéiance on
certain viewing angles. The approaches outlined above all work ontslgjpserved from a side
view, which is unrealistic in the more general camera set up. 2hah [175] attempt to get
around this by using a 3D skeletal representation, but require multiple&appang camera views
to construct and track it. Alternatively, Jeanal. [79] attempt to normalise the trajectory of
the observed individual. To do this they calculate homography transfomsafioo each of the
tracked body parts to a common space, but the observation angle cartootfbontal otherwise
body part tracking is lost and the normalisation to the side view becomes umediita

Through methods like the GEI [171], gait has an advantage over otheasgnce methods in
that it can be used to distinguish people even when their clothing chaniyeseimeobservations.
Furthermore, it is not directly affected by illumination changes as it is ofterdban silhouettes
[66,145,171]. Vast changes in appearance like this would haveaivegmpact on descriptors
based on colour and even texture. However, it does rely on accegteesatation, which is very
challenging in busy scenes, and a near side on view angle. These texsfewrrently limit its

use to more constrained environments.

2.3 Utilising Contextual Information

In addition to the visual representations of people outlined in Section 2.2 i¢eshave been
developed to utilise information that provides indirect aid to visual re-ideatian. Suchcon-
textualinformation can be drawn from several key areas. Firstly, scene illummanowhich
the difference in lighting conditions between camera views can be modelled totmitigaffect

on visual matching [26, 56, 78, 129]. Secondly, the statistics of the time i tikea person
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to move from one camera to the next can modelled [57, 76, 105, 109, T%4§. inter-camera
transition time can then be used as an additional re-identi cation cue. Finatlypgcontext
can be used [20, 178]e. incorporating information about the other people that an individual is

travelling with to help distinguish between observations of similar appearance.

2.3.1 Brightness Transfer Learning

A major issue for appearance based features is the differing lightingtmoredbetween camera
views. These lighting changes have dramatic effects on the appearfandévimuals between
cameras, reducing the likelihood of matching using the metrics describedtiors2¢t.1. Di-
rect comparison of distributions will be unable to deal with large changesetaligtributions
themselves. Outdoor scenes have the obvious problems of changing illumicatiditions due
to weather and shadowing either from surrounding objects or self siaglaf the sun is not
behind the camera. The lighting conditions in indoor scenes are also rsistnt, lights are
placed in different positions relative to the cameras' elds of view and $ighting can create
patches of light and dark areas as little as a few feet apart. Thus, intordecurately compare
two objects using appearance features like colour or texture some foitharoination change
mitigation must take place between camera views.

The simplest method for dealing with illumination change is that of colour consthnmugh
normalisation [152]. Here the RGB channels are normalised and tested oesiobthe same
object taken from two different cameras. Other approaches simplyt setetour space which
is less reliant on illumination [1, 13, 80]. A hardware calibration phase isguted by Ilieet
al. [72] in which they iteratively tune camera hardware parameters in ordecHieve similar
colour responses. However, this method relies on the cameras being abkettee same object
and also having access to hardware parameters both of which limit its usefuinthe context
of re-identi cation.

Maddenet al. [107] extends the work on MCHR [27,128] to include a cumulative intensity
transformation to compensate for colour changes between camera vitews thee MCSH is
created. This intensity transform is based on a cumulative histogram edioalisf the data
from each view. While this data-wise mapping is likely to improve the score oécomatches,
it is likely to increase the score of incorrect ones as well, as it does netinék consideration
any information about illumination in the scene itself.

Porikli [129] proposes an illumination mitigation approach he calls a Brightiiesssfer
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Function (BTF). He suggests that the modelling of illumination change betwiears xan be
achieved by calculating a correlation matrix between two colour histogramsoAibinations
of bins are collated and the minimum cost path is used to create a colour mappiet) ©oace
this mapping has been found, matching individuals can be performed byacizmp of the trans-
formed colour histograms.

Gilbertet al. [56] extends this concept by incorporating an online learning methodda-ca
late the inter-camera illumination changes. An RGB transformation matrix is initiallsritbes!
as an identity matrix assuming that the lighting is constant throughout all. Objecthen
tracked across camera views using a CCCM colour model and single \edoengosition can
be used to calculate the RGB transformation between the two colour deskrifoce enough
training samples have been collected the transformation matrix and RGBee@tsn replace
the CCCM model, leading to better results. However, they initially rely on good-dateera
correspondence to train the model and in order to effectively train theftramation matrix
5000-10000 tracks are required.

Another prominent extension of Porikli's work [129] is that of Jawsdl. [77, 78]. Rather
than a matrix-based transfer function they assume that a certain peeeftagerson in one
camera will have brightness less than or equaBitas equal to the percentage of brightness
less than or equal t8; in another camera view. They use this to form a direct mapping of
brightness values from one view to another, per colour channel. Feghaf these BTFs they
formulate a probability distribution of the set of possible BTFs. Principal Gorapt Analysis
(PCA) is performed to extract the subspace describing the set of teBifies. The appearance
of two individuals can then be compared by measuring the distance betvedeprtjected BTF
and the mean BTF from the training set using the Mahalanobis distance. s€h&f the mean
representation of the set is questionable here as given a sparselatt tife mean can easily be
perturbed by outliers. Additionally, the model is trained for a single illuminatiord@mn and
should the illumination conditions change the models would need to be manualjrreetr

Recently, Cheret al. [26] try to compensate for this xed calibration by incorporating a
machine learning aspect to the estimation of the BTF functions. They suggéstitialisation
of the BTF subspace between camera pairs need not be based on dyrdnad training set.
Instead they use the time gap between camera views as the main matching fedtcaécalate

BTFs of probable matches. Once a certain number of these BTFs haveditzted the BTF
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subspace can be calculated and then used to aid the matching of furth@iuatii. These two
matching features can then be used to update the BTF subspace over timegbgrmsets of
new BTFs into the learned BTF subspace. Although they claim that theybgdcadeal with
lighting changes they actually discard all learned appearance datastad tlee learning process
upon different illumination conditions. In addition, their update method asstima¢suf cient
samples are available when lighting conditions have changed. This assuisptigalid given
rapid lighting change, typical in an outdoor environment, or less crowdedasios where less
retraining data is available.

As colour is a prominent feature in re-identi cation reducing the effectdllomination
change between camera views is an important one. Approaches thatregate an illumination-
invariant colour space [1, 13] or representation [128] fail to makeofisamera-speci c lighting
conditions. Those that are based on training samples to learn speci centegra illumination
functions often require many training samples [56, 77, 78] thus requitibgtantial user input.
The work in Chapter 3 attempts to address this issue by looking at a way rekeging the
average BTF from a small training set, and by reducing the size of traieiisgasd amount of
human effort required in labelling.

In addition to modelling of the illumination changes themselves, lighting can als@ehan
over time as the weather varies or the sun goes down, even affecting ie\conments via
windows or skylights. This change in lighting means that models need expersiaining [56,
77,78], or those that update automatically often throw away trained modkstan again from
scratch [26] relying solely on knowledge of the transition time between caménaChapter 4
a method is proposed that makes use of the previous training data. It attemnypidate the
transfer functions to re ect new illumination conditions by modelling the charigdighting
within each camera over time, thus removing the need to re-train or rely on &draasition

time to bootstrap re-training as in [26].

2.3.2 Inter-Camera Transition Time

While the focus here is on non-overlapping camera views, scene informeatiostill be incorpo-
rated into the matching process. Knowing the layout of the camera netwaak|east the time
it takes to get from one camera view to another, can be crucial in inceetisinperformance
of matching methods. While it does not actually affect the appearance simibdirétgry two

observations, it can be used to dramatically reduce the search spacpeamalize hypotheses
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considerably disjoint in time. For example, given that it takes on average@&ihds to traverse
the gap between two cameras it would be over zealous to consider allatises 30 minutes

before and after the original. Instead one may seek to nd a probabilistisuneaf the time

taken to travel the distance between cameras. The key is to choose apraiprmethod for

estimating transition time and incorporate it into a matching criterion.

A Bayesian approach to tracking people across disjoint camera viewsresented by Ket-
tnaker and Zabih [91]. They apply global constraints on the motion of iididals and specify
that an individual cannot be seen by two cameras at once (forcingventep). However, their
approach requires calibration of the system with the user supplying infimmeuch as expected
transition duration and camera transition probabilities a priori. Effectivelyrti@ans one must
know the environment in advance, which is not a desirable property andusiple in many
situations.

Javedet al. [76] use a training set of known correspondences between viewd theacal-
culation of transition times. They assume that single camera tracking resulesefitidividuals
are available and that entry and exit zones have been established. thusiexjt velocities and
the transition time of the known correspondences they model the inter-caraesition as a
probability distribution using the Parzen window technique. The probabilitgitie functions
for the transition times and appearance are then combined to form the nahimgtcriteria,
which they claim increases the matching rate over the colour based model alon

Dick and Brooks [35] use a stochastic transition matrix to model the pattemstifin, both
within and between camera views, that captures the probabilities of trandiises on the cur-
rent state of the camera regions. They choose a Markov model to dealigdtintinuities within
the tracking process that occur between views. However, the trainiagepdf this approach
requires traversing the camera network carrying an easily identi ablera#tin object, in this
case a bright red ball. This training requirement gives rise to various limigtiothat the whole
camera system must be traversed by someone holding the ball.

All of the above methods require either prior knowledge or a labelled traipinage, and
learning the parameters online would be preferable. One such apgiajlattempts to calcu-
late both a target trajectory between non-overlapping camera views apaditien and direction
of the cameras themselves. As a single target passes through any aigbesses ground plane

position and velocity are recorded. The authors represent thesedragsmover time as Markov
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chains, and for each time step use the velocity to update the current poaditing Gaussian
noise. As the target passes through different camera views the syatease points in local
camera space to estimate the position and rotation of the camera in global $f@cenum

a Posteriori (MAP) estimation is then used to determine the best trajectoriesaameta pa-
rameters, as seen in Figure 2.7. With four cameras installed approximately ¢ raptet the
estimations for sensor position is off, on average, by 28cm and the iarthe angle is less
than 10. The authors do however assume that the image plane is parallel with thelgriaumne

which, again, is uncommon in real surveillance systems.

Figure 2.7: Camera topology recovery using overhead cameras to olafeictary information
from people passing through the views. Image from [134].

Anjum et al. [5] further developed this approach by using linear regression estimfatiothe
observed zones and a Kalman Iter to estimate the tracks between cameygssting as little
as 1% positional error. These approaches provide accurate placeihcameras within an open
small-scale environment. However, they are unable to accurately predidop and orientation
of cameras with walls or other objects in between because they rely on tira@ss of simple
linear movement. This constraint on linear motion is later relaxed in [4] allowingrfore
complex motion prediction, but the model is still unable to compensate for obstaeteeen
views.

In an alternative approach Makris and Ellis [109] forego accuratéapalationships be-

tween cameras and rely instead on temporal transitions alone. Their elp@ivas to create
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a topological map of the network based on these transitions and use this totedtanaition

probabilities. They begin by tracking people across each camera indilidund clustering their
entry/exit points using Expectation Maximisation from previous work [1T8 resulting clus-
ters form the entry/exit nodes for the system. The ow of people throwth enode is then
considered as a signal in terms of rates of people appearing/disagpestead of concentrat-
ing purely on characterising visual appearance. The system logs the ifferertte between
disappearances at exit nodes and the appearing events at entsywithde a given time frame.
Peaks in the time difference indicate a link between the two nodes. Theyrfdetelop this by

removing implied links where a person travels from one camera to anothegtihnen interme-

diate camera. The resulting graph of nodes is the topology of the systemweitige transition

time probability distributions as its links.

@) (b)
Figure 2.8: Camera topology estimation using statistical measures of entryigmdneeach
camera [108]. a) transition time probabilities, b) camera topology recotisttudmage from
[108].

Gilbert and Bowden [57] also expand on Makris and Ellis' work by incogting an online
recursive topology decomposition and using appearance as thepmrdesice measure, similar
to [76] but without the need of a training phase. Initially each camera is tt@ata single node
in the camera network, and as people are matched between views, uspyueanance model the
distribution of transitional times is populated (Figure 2.8(a)). If a link is fobetlveen two cam-
era views each view is subdivided into four equal regions and the predata is fed back into
the system to populate their time-frequency histograms. This process &eadmser time with
regions containing little or no entry/exit data being removed. Once the rebeomne smaller

and the data is spread out, neighbouring regions with similar amounts of ahtisambutions
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are then combined and a camera topology can be estimated (Figure 2.8(b)defie t of this
approach is that association can begin without a lengthy training phaseato te transition
probabilities, but does require good initial tracking or quiet scenes taraiaty train the model.

One criticism of Markris and Ellis' [L09] approach is that they assume the-gamera tran-
sitions times to be a simple Gaussian distribution [154]. Heal [154] expand on this idea
suggesting that the transition time is better modelled as a multi-modal distribution s€ébkyo
calculate the statistical dependence between two camera views using Mitraddtion (MI)
employing a a Markov Chain Monte Carlo (MCMC) process [34] to gain exprate inter-
camera inference without prior knowledge of correspondences. allbigs for factors such as
differing routes between cameras, or obstacles such as traf ¢ lights acdminted for. Caét
al. [18] also expand on the single Gaussian by grouping the transition timesKisireans clus-
tering based on slow, medium and fast walking paces, and forming a miXtGussians. While
this is a crude grouping of speeds, their mixture approach appears tbditerapproximation
than a single Gaussian.

Recently, Loyet al. [105] show that individual correspondences are not requiredtimate
camera transition times and instead use activity correlation. They form segia@ach camera
that correspond to different activities based on their spatio-temporeg¢laton. From these
activity regions they can search through other cameras for activitynegiith a similar time-
series. This approach allows them to nd temporal links between camerasyrslbenes without
any appearance matching, but does require varying levels of activitynvilte scene such as
trains arriving, making it best suited to tube/train stations.

Incorporating inter-camera transition time as a constraint or feature intensysuld po-
tentially assist re-identi cation in small or quiet scenes by reducing the dileecobservation
search space. However, its effect will be dramatically lowered in crdvpdsblic spaces, or in
camera networks where there are a lot of unobserved entrance/exi, pshich could cause
problems for methods based both on appearance [57,76] and on eihtigtes [109, 154] as the

persons that re-appear might be statistically less prevalent.

2.3.3 Group Matching
In order to further reduce the subset of suitable matches in re-identircati@ could consider
incorporating contextual information from the association between indilsda a scene. Re-

cently, Zhenget al. [178] proposed the use of surrounding foreground information inr¢he
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identi cation process. They work on the observation that many people rimogeoups, and
exploit this to add extra visual information from nearby people to the appearmodel of an
individual. This addition of context means that persons of common appsacan also be dis-
ambiguated by the appearance of the people around them. In order totalldngaadditional
issues this creates, namely the non-rigidity of the shape of the group asein@at of people
therein, Zhenget al. de ne two spatial group representations. The rstis a Centre Realang
Ring Ratio-Occurrence descriptor (CRRRO) and the second is the Blasdd Ratio-Occurrence
Descriptor (BRO), that attempt to provide rotation invariance around thgpgeentre and sup-
port for local structure, respectively. Examples of group repitesen as well as the CRRRO

regions are depicted in Figure 2.9.

Figure 2.9: Deriving contextual information from groups of people to &ttt watching [178].
The green rectangles denote the regions of the CRRRO descriptor. froagg.78].

This concept of matching by groups was also adopted byeCali [20]. They opt for a more
rigid spatial representation of the group by extracting a position-label&dre vector for each
pixel and use a covariance descriptor based on [160] to measure simildréyresults demon-
strate that incorporating group information yields a sizable performarice lya the authors'
use of a rigid spatial structure is questionable, as the spatial compositioowgisggof people
often varies over time. The effectiveness of the rigid representatioroisply a result of the
small difference in viewing angle in the CASIA dataset used.

While using the information gained from a group of people to identify specidiviiduals
is very intuitive, it is not without practical issues. In manually labelled dasatbes process is
straightforward, but in a busy CCTV environment it is dif cult to distinguisbtween people
walking near each other in a single camera view and those who are actuadlssing the scene

as a group.

2.4 Matching Techniques for Re-ldenti cation

Once the objects have been extracted and the appearance reprasehtagian, the task of nd-

ing a correspondence score between observations must be addiegsaditional single camera
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tracking, this is a process of nding regions that are similar in order to idettig next bound-
ing box in a sequence. In re-identi cation however, the task is to distingogttveen many
observations of similar appearance. Therefore, the goal is to emphasigeeness within the
appearance of an individual and use this to nd its correspondingredgens. While complex
appearance representations may require speci cally crafted metri62,[¥07] there are many
that use general metrics for re-identi cation tasks [2,10,32,76,188,165,172]. Many of these
approaches are based on the principal of single observation matchaveevelr, when dealing
with video sequences where a person may be extracted from many fraveismds for multi-
instance comparison [2,172] must be considered. In addition to the moeeadlg used distance
metric approaches, a few recent studies consider that the choseam fiegixesentation may con-

tain redundant data, and that some form of feature selection criteridd loelearned [61].

2.4.1 Distribution Comparison and Template Matching

Matching metrics form the basis of the matching scores that are ultimately usextitte df

two observations are in fact the same person. For matching their shajp@pearance features
Wanget al. [165] use the 1-norm or City-Block distance measure. This measure is a sum of the
absolute difference between two points' coordinates in a given feghamesakin to the distance
taken to move between two points on a grid without any diagonal motion. Othepdef&9,

124] simply use thé,-norm (Euclidean norm) that measures the distance between two points in
space. While these methods are standard distance measures they evideathpmansideration

of the distribution of the underlying data within the feature space.

Ghiessiariet al [55] chose the Histogram Intersection (HI) technique presented @amnSw
and Ballard [153], which is speci cally designed to compare histogramsloiuc images for re-
identi cation. Histograms are used to estimate the probability distribution of areahannel,
in this case each of R, G and B, and due to their inherent invariance toftusedf scaling
and rotation through normalisation [153], are commonly used in re-identi 0dfi0, 32, 55, 56,
76,118, 121]. HI then computes the number of pixels in two histograms wlasards the
same, normalised by the total number of pixels. Swain and Ballard claim thatppisach
alleviates the need for accurate segmentation and is robust to occlusimsvét, their method
is sensitive to changes in lighting conditions between views and requiresfeomef lighting
change calibration (see Section 2.3.1) to achieve accurate results.

Yu et al. [172] use the Kullback-Leibler (KL) divergence to measure the similartyvieen



2.4. Matching Technigues for Re-Identi catior61

samples of their PDF-based representation of appearance. KL eln@rgneasures the informa-
tion gain over two distributions of continuous random variables throughritieg. In order to
reduce the computational complexity they sample a subset of the pixels in aetihbased on
the distribution of distance from the top of the head, but this means that temydice score
vary based on the subsets chosen. Additionally the KL divergence isyrametric resulting in

a score that may be different if the probe and gallery camera views agosd. Orozcet al's
work on head pose estimation [121] suggested that the logarithmic nature ¥t tbivergence
can cope with larger non-linear variation than methods like the Bhattachdistgace [11], al-
though Kanget al. [89] have shown that for identifying an object the KL and Bhattacharyy
distance measures have similar level of performance.

The Bhattacharyya coef cient is a popular distance measure for hatobased approaches
[10,32,76,118]. It forms an approximate measure of the overlap leetiveo continuous prob-
ability distributions through integration of the square root of the distributiaalpets. It can be
adapted to discrete distributions, like histograms, by performing the summattbe bin-wise
comparison.

Interestingly, a recent study by Alaét al. [2] performs a comparison of-norm, " >-norm,
Bhattacharyya, histogram intersection and Chi-sqard measures. They suggest that the
Bhattacharyya coef cient has a better, or at least similar performandteet@ther measures,
supporting its use in re-identi cation problems.

Instead of a direct distance measure in a given feature space duakl[160] opt for a
comparison of the inter-feature covariances. Given an arbitrary |dagtbre vector they form
a covariance matrix to describe feature variance and correlation. én tirdnake a comparison
between two such matrices they use the sum of the squared logarithms ofeéheeeigrs [48].
Unfortunately, the comparison time &(d?) for a d-dimensional feature vector, making it an
expensive method for larger feature spaces.

Nakajimaet al. [117] look to subspace classi cation techniques to match individualsir The
work compares several types of SVM in order to classify both identity ase pThis approach
requires a training stage in which the target individuals must be manually igentiVvhile this
may be appropriate for searching for a speci ¢ person it cannot Ipdeapto general multi-
camera matching tasks where training and testing sets contain differentlirads:

Other methods using non-standard appearance representationssofi¢hdir own matching
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metric, as the general approaches described above would not béesufiabexample in Madden
et al. [107] the researchers compare objects on the relative proportiooslairs from their

MCHR colour clustering. A neural network is used to optimise the comparitarset of graph

nodes in [7]. While in [52] they propose a distance measure to comparetbeiepresentation
of a 3-D appearance model (The reader is referred to the indivicdaprp for details of their
implementation).

Specialised appearance representations clearly require custontandiassl matching met-
rics like those described above, as they are built around a uniquehfesgLoe representation.
Other methods that are based on PDF or histogram comparison showtoanriesults given on
differing datasets. This indicates that the effectiveness of the distarasines are dependent on
the data itself so ideally one must know the underlying structure of the sspacie beforehand.
None of these methods actually look further into the data itself to identify afeasiqueness

that may be focused upon to nd a better matching criterion.

2.4.2 Multi-Frame Matching

Assuming the presence of single camera tracking results, as sevétahtecation works do
[26, 57, 78], the task of calculating correspondences is hot simply andestaeasure between
two image representations. Instead one must decide how to use the inforgeitied from a
set of images of an observed person in each camera view.

Producing a single distribution of appearance for an observation peereais a method
adopted by several approaches [57,78]. The idea here is thafibarapce model can be updated
as the object is tracked across a camera view and the resulting distributiald gimncompass an
average of the visual information, thus lessening the effect of smallgms®yes.

A similar single model approach is taken in [19]. Here a size-normalisednaiigm is
broken down into patches, each of which is described by its dominantrsol@ver a set of
frames the dominant colours in each frame are compared (per patch)cmedttiat have a high
reoccurrence rate are keptin a nal model used to match between camera

The underlying assumption in the above methods is that the illumination is consteamtas
only slightly. Presented with a scenario in which the illumination changes thoutghe scene,
such as emerging from a shadow, would corrupt the appearance nmodgéerease the chances
of matching between camera views.

In order to address these single camera appearance change®tA#hi2] proposed the
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extraction of a subset of observations from a single view. They foenyasombinatorial set of
single camera observations with a pre-determined set size. Each sataistehiaed by the sum-
mation of the similarity measure between every pair of observations within théheeset with
the lowest intra-set similarity score is kept as it contains the most variatigrpeaance. While
this method is likely to produce a good sample of key frames from each viewpthputational
cost of forming the sets based on combinations is high, especially as it mugtiated for each
new observation within a camera.

This sentiment is shared by ¥t al. [172] who suggest that a key frame method can be used
to reduce computational overheads. Similar to the approach above thes faaenselected using
self similarity. The rst frame of the observation is taken as the key frame eath successive
frame is then compared using the KL divergence. This process is redeatevery successive
frame until the KL divergence is above a set threshold after which thremiirame becomes the
next key frame, and the process continues. For each key frame inaatherkey frame with
the lowest KL divergence is found in the key frames of camer@he overall score is then the

median of these minimum distances.

2.4.3 Learning for Feature Selection

The vast majority of re-identi cation approaches base their comparisorisroplate matching
using direct distance measures as described in Section 2.4.1, but fevedasidered that the
feature space might contain redundancy. The methods used rely omtadied representations
and manually selected comparison functions. Instead, one may consiteotlad features are
equal, and that there is a subset of features in these representatiom®tivore discriminative
for the task of re-identi cation. Finding such a set is non-trivial as oaenot easily extract
the information by eye. Instead a machine learning approach could bedpplieis problem
to nd a subset or weighting of the features through the use of training lesm@p-rom here
a distance measure could be narrowed down from some broader sedeaftifteature spaces.
General approaches can be seen in image retrieval [67] and detegfipwliiere a distance
function is learned from a set of training data in order to provide a doméénwamet distance
measure.

Recently, Gray and Tao [61] adopted this methodology for re-identi catiosearch for
more discriminative features enabling a more reliable matching. They chosskection of

colour spaces and texture methods and group the pixels using thin hokiztipis, where each



2.5. Summary 64

bin from each channel in each region is treated as a feature. Theyhe@ssimilarity function
on the features themselves using likelihood ratio tests. Each test is perfomtieel absolute dif-
ference of the features, where the distributions are modelled as eaxgbaoiential, gamma, and
Gaussian. The feature/model combinations are then treated as weakastaasid boosted to cre-
ate an overall similarity function the authors call the Ensemble of LocalisedfesgELF). They
show that their ELF method signi cantly outperforms histogram based metlsidg hand se-
lected feature spaces. However, the method is not without aws. Tledinfe selection becomes
less effective if object feature distributions overlap signi cantly in a multi-diasienal feature
space, as each of their weak learners only aims to seek the most rekstames$ in each feature
dimension independently, not across the entire multi-dimensional feature splaboratively.
To this end Chapter 5 explores the use of an SVM-based classi er irkingaframework. This
allows all of the features to be assessed simultaneously, providing bgiteagen of heavily

overlapping positive and negative samples.

2.5 Summary

An important precursor to multi-camera re-identi cation is that of extractingrimation rele-
vant to re-identi cation from an image or sequence of images. Many aopes to extract said
information fall into the categories of foreground/background segmentatid object detection,
whose respective approaches are those of extracting salient regi@asrching for areas of the
image that have visual similarity to a human. The eld of tracking then allows orgrdap
these observations over time within a single camera view, as long as charsggsearance and
location are not too drastic and that the scene is quiet enough to allowmasseequential ob-
servations. These constraints that are rarely upheld in re-identi capiplications. Many works
on re-identi cation assume that these problems are solved and that simgera#racking re-
sults are available. This assumption does not hold in real scenarios likst@dons or airports,
as the number of people, occlusions and appearance changes withirasaaue drastically re-
duce tracking accuracy. However, taking this as an assumption cantbedjliecause solving
both tracking and re-identi cation simultaneously is a substantial challengewich is more
manageable when broken down into its separate stages.

Extensive work has gone into biometrics such as face and gait enablinppgoformance

over a variety of datasets, even enabling the recognition of objects wlathing has changed



2.5. Summary 65

between observations, a very challenging task for many appeargeseatations. Despite this
apparent success they both tend to rely on certain observation condifiaos recognition by
de nition requires an observation of the persons face, limiting it to situatiohergs subjects
approach the camera head on. Gait on the other hand often relies on\desid® capture
dominant motion information. While the use of face and gait for identi catiomoabe ignored,
these techniques seems better suited to speci c applications or camerasdbanm general
multi-camera environment.

Colour and texture, occasionally combined with spatial information, offi@esiovariance to
pose and as such are a common choice for feature representationvedowee of the predom-
inant issues in matching objects with these features is the effect of varyingriition on the
appearance of an object. To address this issue previous work hasllabkither attempting to
select a feature set that is tolerant of such conditions, or to try and raadehus compensate
for them. As the illumination effects can vary greatly, a simple selection of fesiurtargeted
binning to overcome this problem is not suf cient. Methods that model thegésiin lighting
between camera views provide a much better vessel for mitigating this probéxerabof these
methods are based on the idea that a cruder method of re-identi cation aslplagailable and
that this can be used to bootstrap a learning process. In reality whehvigbecomplex or busy
scenes, such as those found in train stations and airports, this assunge®nat hold, as a
combination of the number of people involved and low levels of separabilityepao challeng-
ing. Instead the techniques rely on simpler scenes using spatial informatampredominant
feature, or thousands of online training samples to achieve a reasonatéé r@dher methods
that use a manually labelled training set to form an illumination model are able to imnigdiate
improve results without these factors, but do instead rely on a suitable amiocwolour infor-
mation in the training samples themselves. To address this problem, in ChapteisSuef
extracting illumination information from a limited training set containing sparse cahforma-
tion, as is common in CCTV footage, is addressed using a cumulative appdmoeepresent the
inter-camera data.

Another key aspect in modelling lighting change is that many approaches atiigwior a
single set of illumination conditions. Should the lighting change due to any nuafileaternal
factors, which are often unknown, these models are then no longeam¢kewd may even prove

a hindrance to the matching process. Methods that are based on incridesniag of the illu-
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mination conditions are less effected by change, but will either incorptrateew illumination
information blindly, polluting any model they had previously been acquirethrow away use-
ful previous information and start again. The issue of illumination changetowe is addressed
in Chapter 4 using a simple but novel incorporation of background lightamglitions to update
a learned model.

Combinations of features have proven to be more effective than relyirgsomgle method
of information extraction. Different combinations of colour, texture, spegjgresentations, face
and gait analyses have been reviewed in Section 2.2, but few havdemushow fusing features
may create redundancy. The different matching metrics often just pedmtance measures in
a given feature space irrespective of how useful each of the &saaatually are. One recent ap-
proach attempts to address this issue but fails to consider the overlap irefspéice of incorrect
matches and correct matches whose appearance is very similar. Within tt@st¢be matching
process is also questionable. Currently the task of re-identi cation is tteste classi cation
query,i.e. is this probe image the same person as our gallery image? However, ggigmi a
cantly large dataset the likelihood of the correct match being the best matchsiesninstead
of a binary hypothesis one may wish to presents a user with a list of potent@i@saordered by
their similarity, from which they can form their own nal hypothesis, perhagen manually. To
this end Chapter 5 suggests that a more appropriate approach is refortinelegddenti cation
problem as a ranking problem.

The bene t of video over static images is that multiple observations of a simgtop can be
made. The advantage this brings is that over a period of time differentl wisaa may present
themselves that enable a better level of discrimination. This in turn also psesproblem in that
if the appearance changes over time in a single camera, how does on eabjeuts between
cameras? Some approaches simply create a single model of the appeatiainca camera, but
this is tainted by the intra-camera appearance changes and is not nigctssdest approach.
Therefore Chapter 6 investigates this issue and considers some otticgbreonstraints of a

real working re-identi cation system.
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Chapter 3

Modelling lllumination Change Between Views

To re-establish a match of the same person over different camera vieatsdat different phys-
ical sites one aims to match observations of the person's appearancesditaim each cam-
era. However, many appearance representations are based onasuléar texture descriptors
that are sensitive to illumination changes caused by differing lighting condifmmd between
camera views. Thus, mitigating the effect of lighting conditions is an importamtgbger-
son re-identi cation. While methods exist to address the problem of illuminati@nge be-
tween camera views, none of them is able to deal with the problems inherexat warld data
with low/varying image quality of very sparse colour information from limited tragngam-
ples. Figure 3.1 shows some examples of corresponding observatitetenh from a public
residential area CCTV network and demonstrates the signi cant challeinggerying illumina-
tion conditions between views. The aim of this chapter is to mitigate the effeciden data
arising from these real world conditions. Firstly, a cumulative approachddelling a set of
Brightness Transfer Functions (BTF) is proposed to make use of smaileinty sets with sparse
colour information. Secondly, the effect of mapping colour information betwcamera views

bi-directionality is examined to determine its effect on matching results.

3.1 Modelling Illumination

This chapter focuses on the problem of modelling illumination differencesdsgtwamera views
from small training samples, often containing sparse colour information. 8ppearance based

methods currently exist to handle the lighting condition changes betweenasarer example,
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Figure 3.1: Corresponding images of a person appearing in four exitmggions across three
cameras. Poor image quality and large variation in both colour and illuminatian gg®©us
problems for person re-identi cation even by an experienced humaratgye

Javedet al. [78] proposed a subspace based colour brightness transfeéiofu@8TF), but their
method relies on training subjects with a good range of brightness value®targaccurate mean
BTF. This implicitly assumes both extensive colour variations on object clotmidgvery large
number of objects being sampled for the training set to accurately model thgesagbof the data.
Both assumptions are unlikely to be met given in a real world scenario in Wirgh training sets
are costly and colour variation can be minimal. Chen@l. [27] cluster colours into a subset
of major coloursand to alleviate the effect of illumination changes, they apply a histogram
equalisation technique. However, (linear) equalisation is insuf cientfodelling illumination
changes in real world data. Gilbert and Bowden [56] model inter-caowoar transformations
using an incrementally updated transformation matrix. However, this methodhisutationally
expensive as it requires thousands of objects to construct an sedraasformation matrix.
A similar model was proposed in [72] but it requires a hardware calibrgittase which is
infeasible with camera installations of unknown camera parameters.

This chapter aims to show that even given a sparse set of colour infomaatmour mapping
function can be obtained and used to recognise individuals acrossaamees. Speci cally, a
cumulative BTF (CBTF) is proposed as a more suitable representatiorbdBBTFs compared
to the subspace based method in [78]. This approach involves an amalgaofatie training
set before computing any BTFs in contrast with computing individual BTistlhen nding the
mean [78]. This method maintains more of the colour information from the traimntnan the
mean based approach on small training sets. In addition, a bi-directiondlintptriterion is
formulated that allows an assessment of the symmetry of a similarity measurtousethpar-

ing individuals in order to reduce false positives. This criterion is morecéffe than both the
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uni-directional criterion used in most previous approaches and awctoral bi-directional one
proposed in [107]. The proposed methods are evaluated using chiaflefajasets obtained from
real world CCTV camera networks. The results demonstrate that the CBd Biadirectional
CBTF methods outperforms signi cantly existing approaches such agf#B]107] using small

training sets of sparse colour information.

3.2 Brightness Transfer Function

Scene illumination varies between disjoint camera views, and in some cases avisitigle
cameraview. Thus, a vital stage in inter or intra-camera appearanaezEsen re-identi cation
is to mitigate the effect of such changes. Approaches have been ptbijwosd colour-to-colour
correspondences between cameras and using these to create a cploimgrfunction known as
the Brightness Transfer Function (BTF). Jawtdl [78] de ned a non-parametric form of BTF
that will be outlined in this section.

Their method suggested that a BTf() between cameraS; andC; can be constructed

age,d is set to 256. To establish such a mapping function between views, a pairooik
correspondence must be available. Ideally this correspondence b@olithe pixel level to en-
sure precise colour matches, but this is not possible due to differingtqlagse between views.
Instead normalised histograms of RGB brightness values are used asathesere tolerant of
changes in pose.

Computing a mapping function can be achieved as follows. It is assumedéhaeritentage
of pixels in an observatio®; with the brightness value less th&nis equal to the percentage
of image points seen i@; of brightness less than or equalBg. H; andH; are then de ned as
cumulative histograms. More speci cally, féf; each bin of brightness valu®; :::; Bm; :::; Bosg

in one of the three colour channels is obtained from the colour ihaggefollows:

Hi(Bm) = & li(By) 3.1)
k=1

wherel;(By) is the count of brightness vallg in O;. Each bin is then normalised using the

total number of pixels i0;. H;(B;) represents the proportion bl less than or equal tB;, then
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Hi(Bi) = H;(Bj) = H;(fij(Bi)) and the BTF mapping function can be de ned:
fij(B) = H; *(Hi(B1)) (3.2)

with H ! representing the inverted cumulative histogram. Figure 3.2 shows an exBiple
constructed from the cumulative histograms of two sample observation imétgsisould be

noted that as histograms are not truly invertible as they can contain multipledastahthe

same value, in this implementation the rst instance is taken as the inverted value.

In order to produce a more accurate transfer function, multiple BTFs eastimated. A
BTF is typically calculated for each of a set of training pairs of observatand thus a set of
BTFsf f;; f7;:::fl\g can be computed for camei@sandC; given a training set dfl observation
pairs. An example of this can be seen in Figure 3.3 which shows a samplersft@Ken from
ve individuals given 5 pairs of appearances in two different camefagm this set a mean BTF
fij can be produced to incorporate all of the training set information. This lB&&ncan then

be used to match objects by transforming testing observations from onescemagrother, or by

comparing testing BTFs against this mean BTF in a subspace as propog8&dl in [

3.3 Cumulative Brightness Transfer Functions

Mean BTF based methods rely on having a consistent set of coloureddunals to accurately
model the BTF. Taking the mean of a set of BTFs actually removes vital catéanmmation
that may only be contained in a small subset of the training data. For examplesifof the
training data consists of dark clothed individuals and one single persaringea bright blue
shirt, the averaging process will remove most of the useful bright catdarmation from this
individual, which is under sampled in the training set. To combat this a cumukgtipeach to
averaging sets of training BTF is presented. Instead of computing a BTdah training pair
one can address use an accumulation of the brightness values of thenatmtey set before the

BTF computation. The cumulative histogratnof N training samples in camera vievzan be

m N
Hi(Bm)= & & IL(BY): (3.3)

Note that this cumulative histogram must then be normalised by the total numpiets
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Figure 3.2: An example of the process of forming a BTF from a pair ofesmonding extracted
images. Observations of the same individual taken in (a) Site 2 and (b) Sitg &1d (d) their
corresponding normalised cumulative histograms. (e) the resulting Breghmansfer Function
for this sample pair.
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Figure 3.3: Five example BTFs (coloured grey) in the green channehth&tween Site 1 and
Site 3 from Scenario 1 (see Figure 3.5) used in these experiments. Tieisti@ase in the
gradient of the lines is due to a lack of high end colour values in the data.mEaa BTF is
displayed in red (dotted) and the proposed CBTF in blue (dashed).

in the training set to alleviate the effect of size difference between vieviter Abtaining this
single cumulative histogram using all image pairs in a training set, this histogramnecused to

compute a cumulative BTF (CBTF) as follows
cfi(B)= Hj “(Fi(B) (3.4)

The key advantage of CBTF over a standard mean BTF is that brightaksss\that are
not common in the training set are still preserved. As a result uncommontegghvalues in
the training data can be mapped between cameras given a small set of teaniptes. This
advantage is demonstrated in Figure 3.3. It can be seen that the mean B€Etedaby the lack
of bright colour values in some of the BTFs which causes a premature risghrthe original
BTFs and the mean BTF. In contrast, the CBTF retains the colour informatialh the initial

training BTFs and produces a more accurate colour mapping function.

3.4 Re-ldenti cation using CBTF

Re-identi cation involves comparing the similarity of objects observed in two disjcamera
views, in this case based on their colour information. More formally, A cametaork hagnm
camera<y;::;;Cy, all of which are assumed to have no-overlapping views. Unlike the aplproa

in [78] which considers whole camera views, each view is broken dowreimiy/exit regions.
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The reasoning behind this is that illumination varies between both inter- anecennara regions
S0 one cannot consider the camera view as a whole because local lightatgpwa will pollute
the colour mapping. Speci cally, for each of the camera views a satesftry/exit regions can

be de ned asEél; G Egl. This can then be simpli ed by describing the global seg@ntry/exit

learned [109]. Next, the set &fobject observations in each entry/exit regignis de ned as
fOi.1;::1;01:k0. These observations are represented by the colour histogram okadajgct as
its passes through an entry/exit region.

In order to solve the multi-camera re-identi cation problem a brute forceaauh is taken
to the comparison of all observations. For an entry/exit BaandE;, the best match for a given
Oi.a from the set of observations By, f Oj1;:::; Ojp; 11 Oikg, is theO;;, that yields the highest
similarity scoreSimilarity(O;.a; Oj:p), assuming that an object  is seen no more than once in
Ej.

In order to compare two observatio®s, andOj.,, the colours of0;.; are rst converted to

the corresponding illumination conditionsf usingcfi; () such that:
8B;;Oa(Bi) = cfij(Ora(B)) (3.5)

Note that so far it has been assumed that the CBTF contains only one-tmlour relationships.
However, in reality the mapping function obtained from the training set ofterains cases of
many-to-one colour correspondences due to incomplete ranges of ealogs found in the
training data. To address this problem, a nearest neighbour smoothictgpfuis employed to

smooth out the noisy peaks in the resulting histogram:

cfij(Bi 2+ cfij(Bi 1)+ cfij(B)+ cfij(Bi+ 1)+ cfjj(Bi+ 2)
5

cfij(Bi) = (3.6)

Finally, the similarity betwee®;;, andO;;5, denoted asimG;.a; Ojp), is calculated as 1
D(Gi.a; Oj), WhereD(Oi.5;Ojip) is the Bhattacharya distance [11] betwe@g, and Ojy, as
this has been shown to give good results in re-identi cation tasks [2, 7Bis process can be
repeated for the transfer in the opposing direction by transfe@inginto the colours found in
E; and thus comparin@;.a andOjy, usingSin(Oi.a; O;:p). Until now, only single colour channel

images have been considered. In order to compare two colour objedd,Ri€ calculated and
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applied to each of the three RGB channels separately. Thus, the oumikdlisy measure is the

mean of the similarity values obtained in all three channels.

3.5 Exploring Bi-Directionality

The transfer functions, and the resulting similarity scores, are subjecinte differences de-
pending on direction. One may model the CBTF from entry/exit Zoioezonej and use this
to transform and match individuals, but conversely one may model frtoni. This means that
one direction may result in better matching scores or a combination of the twomhapee the
matching performance. However, this cannot be determined beforegiiésrare obtained. In
order to utilise the additional information from this bi-directionality the following noehare

considered to try and stabilise performance:

* Mean: Assuming that the similarity values for each direction give close humericaltses

an average of the two values are used to estimate the overall match:

!
Sin(Oi;a; Oj;b)+ Sim(Oi;a; Oj;b)
2

Similarity(Oj.a; Oj:p) = (3.7)

« Maximum: Taking the highest value of the two as the matching result ensures that if one
direction produces a better matching score it will be selected, but may sectteachances

of false positives:

8

Similarity(Oia; Ojp) =

A (3.8)
Sim(Oi;a;Ojp)  otherwise
e Minimum: Taking the smaller of the two values assumes that both values will be high
enough to qualify as a match but selects the lower each time to try and rethecpdaitives

and thus the overall matching rate:

8
2 Sirr(éi;a; Ojp) If Sin(éi;a;oj;b) < Sm(oi;a;éj;b)

Similarity(O;:a; Oj.p) = S (3.9)

Sim0ya;Ojp)  oOtherwise
* Symmetry Ratio Weighting (SRWssuming that a correct match will produce a higher

and more symmetri§im() score for each direction, and an asymmetric score would indi-
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cate an incorrect match. An adaption of the similarity score presented ihiflioposed

to weight the mean of th8im() values using the Symmetry Ratio as follows:

!
SiMnax  SiMhin Sirr(oi;aioj;b)"' SimMO;.a; Oj;b)
SiMax+ SiMhin 2

Similarity(Oy.;Ojp) = 1 (3.10)

3.6 Experiments

Three sets of experiments were carried out using challenging datafietstemb from two dis-
tributed camera networks of real world scenarios. First, a comparis@rfisrmed between the
proposed CBTF and the mean BTF using a uni-directional transformatiodén to demonstrate
that the estimated mapping function using CBTF is more accurate. Secondhitlieegtional
CBTF approach is compared against the proposed bi-directional CBpifoaches to evaluate
the effect of the proposed bi-directional similarity measures. Finally, thé& ®Rdirectional
CBTF method is compared against alternative approaches from [78)]a@&Ach of these exper-
iments, the BTFs and CBTFs for each colour channel were estimated fsetroétraining pairs
with known correspondences. In each set of results rank 1 thr@umhSrare shown, indicating
the presence of the correct match as the highest scoring result thmtighcorrect match being

within the top 5 highest similarity scores respectively.

(a) (b)

Figure 3.4: (a) Scenario 1 camera con guration. All cameras are moundedis. (b) Scenario
2 camera con guration. Cameras 1 & 2 are indoors whilst camera 3 is ostdoo

3.6.1 Datasets
The rst scenario (referred as Scenario 1) is inside an of ce buildibgerved by three cameras.
The topology of this camera network is shown in Figure 3.4(a) with examplesvalown in

Figure 3.5(a)-(c). The illumination conditions and colour quality vary betwihese views.
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Camera 1 displays a corridor scene where objects are periodically liobygéps causing darker
regions in the bottom part of a person's body. Camera 2 shows a styzaed connecting several
of ces with fairly dim illumination. Camera 3 is placed in a foyer region where¢his poor
lighting in the back right region making it a good spot to test potential algorithfsingle
entry/exit region was determined in each camera to capture targets. Tliegaid testing data
were obtained from the entry/exit regions marked in yellow (Figure 3.5)s dataset consists
of synchronised videos recorded simultaneously from 3 different @sndn this dataset, 15
individuals giving 45 entry/exit transitions were used in the training presgthe remaining 20

individuals with 51 entry/exit transitions, were used in testing.

(a) Scenario 1: Site 1 (b) Scenario 1: Site 2 (c) Scenario 1: Site 3

(d) Scenario 2: Site 1 (e) Scenario 2: Site 2 (f) Scenario 2: Site 3

Figure 3.5: Sample frames from two scenarios: the same person reggredifferent camera
sites in each scenario. The yellow boxes show the entry/exit zones.ifféret camera views
in both scenarios show signi cant changes in both illumination and pose.

The second experimental scenario (referred as Scenario 2) wasembfeom both inside
and outside a residential building. The camera topology is depicted in Figift®.3Camera 1
shows a foyer scene with relatively rich colours and good illumination. Cashows a large
variation in illumination from right to left due to the presence of an outside doothe right
hand side of the view. Thus data was captured from the entry/exit regi@ach side of this
camera view. Camera 3 captures objects entering the building. Due to theli$targnces in
illumination and colour between the 4 entry/exit regions, this is an even moltergiag dataset

than that from Scenario 1. From this dataset 63 and 78 entry/exit trarssitiere used in training
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and testing respectively.

3.6.2 Mean BTF vs. CBTF

In order to show that the CBTF provides a better estimation of the colour nmeitween
entry/exit regions a uni-directional comparison is performed using thet&tearya distance
as similarity measure. For each individual their RGB histograms are codvirtdhe target
entry/exit region illumination conditions using the appropriate transfer fumciibey were then
compared against all individuals observed in this region. Figure 3.6@ysan approximate
20% improvement in matching rate when compares CBTF with the mean BTF. IreR3di(b),
it can be seen that although both methods are affected by the harsher itiomiaad colour
differences in Scenario 2, the CBTF is still a better approximation of the mapinction. An

example of the colour mapping using mean BTF and CBTF can be seen in Bigure

(a) Scenario 1 (b) Scenario 2

Figure 3.6: A comparison of CBTF with mean BTF using uni-directional similaritycimag.
The testing set size was 51 image pairs in Scenario 1 and 78 pairs in Sc&nario

3.6.3 Bi-Directional vs. Uni-Directional

In this experiment, the differences in results are explored between theosgibfe directions of
colour transfer, and that by adding a comparison method to the two direttiereffect of the
differences in their value can be minimised. Figure 3.8 shows that only usrgirtgle direction
matching can produce different results depending the on the directiserchaf which the dom-
inant direction may differ between data sets as show or even betweeidualiobjects. Of the

bi-directional measures tested, the minimum value clearly indicates that by attgngotémove
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@) (b) (© (d)

Figure 3.7: (a) Original frame from Scenario 1 entry/exit point 3. (b Tame individual in
entry/exit point 2. (c) Original frame in (a) mapped using CBTF which ltesa a correct
matching. (d) Original frame mapped mean BTF which results in a wrong matcNiogp the
mean BTF inaccurately maps the higher brightness values found in the whits the higher
brightness values are under-represented in the training set.

false positive matches from each direction the information from the moreatectomparisons
is kept and thus the overall match rate is improved. The improvement made B\Reap-
proach was lower than expected. This appears to be due to the splagedistribution in the

datasets resulting in less variation in the symmetry values making the mean teroatiidg. 10

dominant over the symmetry weighting term.

(a) Scenario 1 (b) Scenario 2

Figure 3.8: Comparing bi-directional and uni-directional matching usingf2BThe testing set
size was 51 image pairs in Scenario 1 and 78 pairs in Scenario 2

3.6.4 Comparison with alternative approaches

In this experiment, the bi-directional similarity ratio weighted CBTF method is coetpagainst

other reported approaches. First is an implementation of the BTF subappiaach proposed
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by Javecet al. [78], however the spatio-temporal information is omitted from this experitpent
cause the focus is on the colour results alone as the incorporation cdditional information
is not always easily obtainable. The second approach used for ceomp@ based on the Ma-
jor Colour Spectrum Histogram (MCHR) approach [107], in which obgetbur histograms are
equalised before being decomposed into major colours. Note, as theragsumoed knowledge
of the relationship between cameras, the equalisation graph for the MCHRasad on a stan-
dard linear equalisation, whilst the graph in [107] was non-linear basedme rather arbitrary
a priori knowledge. In addition, as the number of frames in which an object is appassing
through the entry/exit zones is low, the incremental MCHRs cannot be Udede critically
though, as the CBTF model is designed for online processing, their bas®#d post matching

integration has been excluded as it cannot be performed online.

(a) Scenario 1

(b) Scenario 2

Figure 3.9: A comparison of the matching success rates of the BTF subspettiod [78],
MCHR colour conversion [107] and the proposed Bi-Directional CBTRhom@. The testing
set size was 51 image pairs in Scenario 1 and 78 pairs in Scenario 2
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The results from Scenario 1 (Figure 3.9(a)) show that the MCHR is lyaafflected by both
illumination changes and visual appearance changes of objects. ThewbEpace approach
performs better than MCHR in both rank 1 and rank 5 scores. In compatismperformance of
the CBTF method is signi cantly better than both. In particular, the bi-directiG® F method
obtains more than 80% match rate in the rank 5 comparison and an almost 18&sair rank 1
matching rate over the BTF subspace method, demonstrating its clear sityp@riovercoming
both illumination changes and changes in the visual appearance of objects.

Due to the challenging circumstances in the Scenario 2 dataset (Figurp ,38(® methods
produce low rank 1 results but the CBTF method shows some improvementuimeg While
the CBTF and MCHR methods show a steady increase in correct matcinel fioet BTF method
has a small increase over until the higher ranks indicating a dif culty in digisting between
correct matches and similar matches with the harsh lighting changes.

Figure 3.10 shows an example of matched and unmatched objects using thditterent
approaches. The transfer from the faded red in Figure 3.10(a) taghertbrightness values in
Figure 3.10(b) is better de ned in the CBTF method thus giving a correctmatgures 3.10
(f-(j) show an extremely challenging case for appearance basdémé-cation where all three

methods failed.

3.7 Discussion

The experiments detailed in Section 3.6 have shown that an accumulatiesesfation prior
to calculating brightness transfer functions can improve model estimation ashdhrange of
brightness values is not observed or unavailable in the training data. Heweyalso demon-
strated the advantage of a bi-directional CBTF re-identi cation appraaeimsuring the colour
mapping information from both directions is considered therefore reddalsg positives. The
datasets presented in this chapter pose challenging circumstances frrebgenti cation as
the lighting conditions between views have a signi cant effect on the perdeappearance of
people.

In this method, different BTFs are estimated for different colour chianimelependently.
Since the different colour channels in the RGB colour space may not keendent, it could
be more desirable to learn a BTF for the three colour channels jointly. Haw@vmust be

noted that BTF is computed from cumulative proportions of colour; thusnhaabe directly
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() (b) () (d) (e)

(® @) (h) @) @

Figure 3.10: (a) and (b): the same individual appeared in Scenaritry/exit points 3 and 2
respectively.; (c): BTF(subspace) match; (d): MCHR match: (e): EBihtch (correct one). (f)
and (g): A much more challenging case from Scenario 2 due to self oaclo$ithe bag and
poor segmentation. (h)-(j): all three methods found the wrong match.

extended to cover multiple channels simultaneously because the mapping stiigtiora higher
colour feature space between two views is no longer one-to-one. Asguh@nndependence
between colour channels is therefore the approximation one must makexgdrmental results
suggest that this is a good approximation. Note that other colour spatesscabe considered
for the CBTF method. For instance, the HSV space may provide a decoumimgen the
chromatic and intensity information. However, there is no guarantee that #melt$ channels
are independent. Therefore, computing BTF in the HSV space doesocessarily give better
performance.

Itis worth pointing out that this method was designed to tackle the more chaltepgiblem
of matching across non-overlapping camera views but can easily deabwdtlapping views
without any modi cation. In fact, the spatial information that is available in therapping case

could be used to enhance the CBTF method using algorithms like [93].
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Although the matching rates show improvement over alternative apprgatlees are un-
solved problems. Currently this method uses a brute force approachdentecation by com-
paring a target unknown individual with all known individuals in all canser®ne method to
reduce the search space is to add temporal links to the individuals, swemasa transition
time [109], which has been shown to improve tracking results [56, 78]. édew this is limited
to reasonably con ned scenarios and the aim of this chapter was toalisedo an arbitrary set
of cameras.

A signi cant issue with all illumination modelling techniques is that of lighting chaoger
time, caused by weather conditions, camera settings or otherwise. Tleatdanplementation
requires a set of manually labelled data for training and assumed static lightidgions. This
assumption is only applicable in very constrained environments and will bessit in Chap-

ter 4.

3.8 Summary

This chapter described an approach to model the differing lighting conslibietween disjoint
camera views in order to improve re-identi cation performance by mitigating ffexteof il-
lumination change on appearance models. Firstly, the construction of thietiBrgs Transfer
Function (BTF) from a pair of corresponding images was outlined. Negtjgbue of repre-
senting a group of BTFs obtained from small training sets containing limited icolfarmation
was addressed. Previous methods relied on richer colour informationlétger training sets
through the use of subspace methods [78] or long iterative re nemenepses [56]. Instead, a
cumulative approach to modelling a set of BTFs was used (CBTF), whiamatitel to preserve
sparser colour information without using an averaging process. Thigalthe CBTFs to main-
tain some of the brighter colour information in the transfer function that wasaramon in the
training set. This process involves taking each of the appearance distnbtrom the training
set and merging them into a single distribution per camera that is represerthtive entire
training set. These distributions were then used to calculate a CBTF, withdtkimg curve
being smoothed using a nearest neighbour function. Comparisons etohbjere then made
by applying the CBTF to an probe image and using the Bhattacharya distetjde [assess its
similarity with the gallery observations.

The CBTF was compared against the mean-based representation ofithreytBl Fs and
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gave a signi cant improvement in results. In order to explore the effecamera ordering on the
creation of the CBTF several bi-directionality methods were implemented.€Buts indicated
that using a single mapping of illumination yielded varying results, but thereavpasformance
gain obtained by utlising the bi-directionality. The CBTF matching process waky evaluated
against the subspace-based method of Jated. [78] and the MCHR representation [107],
showing improvements over both on two challenging datasets.

The question of the effect of lighting change over time highlights an obvimission from
this method. In its current state, any lighting change within a camera, due toetdhev for
example, will mean that the model has to be retrained using hand labelled da&ality, this

level of continued manual interaction is too costly, and Chapter 4 attemptsitesadtis issue.
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Chapter 4

Multi-camera Matching under lllumination

Change Over Time

The problem of differing illumination conditions between camera views on theajance repre-
sentations for re-identi cation is not a static problem. That is the illumination itimmd within
each of the cameras should not be assumed constant. Chapter 3 looietti@ds for modelling
the illumination changes between such views, but lacked the ability to handigehavithin a
camera over time. Clearly, as one cannot always control the lighting comslitvthin a scene,
some form of adaptation to new lighting conditions must be addressed. Tdptechnvestigates
the use of background illumination conditions to model within-camera lightinggetsaim order
to update the CBTFs, forming an Adaptive Cumulative Brightness TraRsfgstion (A-CBTF).
Sets of background images from two different times are used to model ecartrara camera
mapping. This intra-camera information is then combined with the inter-camer& £®Tpro-
vide a mapping between cameras under different illumination conditions witetraining the

underlying CBTFs.

4.1 Inferring lllumination Relationships Over Time

While the focus of Chapter 3 was to model the illumination conditions between aerd/$orm
a CBTF to mitigate their affect, this chapter looks at how to deal with temporaiggsin
scene conditions. Among those conditions that vary across cameréngdeith illumination

condition change is particularly challenging. This is because lighting conditibfferent
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camera views can change over time in an unknown manner. This can be olédas issues
like changes in the weather or day night cycles; such changes hedgidyaifitdoor environments
where the lighting is completely unconstrained, and even to windowed indeas as seen in
Figure 4.1. The movement of objects within the scene can also affect the ¢jgiftidifferent

areas, for example if a door were to be opened in a corridor the light freradhnecting room
would effect the corridor itself. Changes in camera parameter and faatti which are not
often under the control of a system that monitors the cameras, can als@ paofound effect.
Updates in brightness or changes in white balance can drastically changehvalues and

thus the perceived appearance of an individual.

(a) Day 1 (b) Day 2

Figure 4.1: Illumination condition can change over time especially when outiding plays
a part. In this case Day 1 was a dull cloudy day and Day 2 was sunny.

Two main approaches exist to model the illumination conditions between viewslén tor
mitigate its effect. The rst is that of incremental learning, in which a simpletesysis used to
bootstrap an illumination modelling method that updates itself as more people atieeitias
passing through the scene, as is the basis of [56]. The second is Hatlfrocessing, in which
a set of training samples is used to derive an illumination mapping function, @8jimafd the
CBTF from Chapter 3. However, both approaches rely on static lightindittons; batch-based
methods fail if the lighting conditions are suf ciently different to those foundhe training
set, and incremental approaches will degrade as new samples are epgrdng a signi cant
number of samples to outweigh the contribution of samples from earlier corglitiGhenet
al. [26] proposed a method for adapting an incremental method to changelstindigonditions
by simply throwing away previously learned information and relying on sphtik$ between

cameras to bootstrap the learning process. While this approach may worllinonstrained
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areas, a reliance on spatial information alone is not suitable for less @ioestror busier areas
like train stations.

The goal of this chapter is to try to re-use and update some previouslgtearrmanually
trained information upon a change in lighting conditions in order to reducentiaiat of ef-
fort required to obtain usable inter-camera illumination model. To achieve tlsritposed
approach makes use of illumination information from the background, to aff@nges in the
foreground as described in Figure 4.2. Firstly, an inter-camera illuminatiareinio this case
the CBTF, is formed from a set of known correspondences. Secahdlghanges in lighting over
time are extracted from the background in regions of interest within eanbrea(yellow boxes
in Figure 4.2). These background CBTF models are then are then comtithetie trained fore-
ground CBTF to infer the inter-camera CBTF under the new lighting conditidhss process
allows objects to be compared using previously trained models when the illumicatidlitions
are different. Experiments are performed on a challenging datasettedligictwo disjoint times
and show signi cant differences in lighting conditions. The results detnatesthat the adap-
tive CBTF estimation using background information is a viable approach and tutperforms

other existing methods.

4.2 Adaptive Multi-camera Person Matching

The underlying re-identi cation process is similar to that in Chapter 3. Theisistill to nd

the solution to the of the multi-camera re-identi cation problsras described in Section 3.4.
Similarly, the formulation of the CBTF used to train the inter-camera matching funigias
described in Section 3.4. Figure 4.3 illustrates the additional notation useddolsethe adap-
tive concept outlined in Section 4.1. Speci cally, given a pair of camerawyieand j and a
set of object correspondences, the rst step is to compute the CumuBtiiyetness Transfer
Function (CBTF), denoted afj;, to model the illumination difference between the camera pair
at the time when the correspondence set was collected. Subsequendiyn ttteadaptively up-
date the CBTF to any change of illumination condition over time without collectingatgect
correspondences. The camera views under a different illuminatioritonis denoted a& and

j® and the updated CBTé&fjojo. This adaptation is achieved through calculating a colour map-
ping function for each of the two camera views over time, denotefhaand fjo;, respectively,

from the background information alone. These background BTFdenatbnversion of object



4.3. Adapting CBTF under Temporal lllumination Change7

Figure 4.2: This gure illustrates the underlying concept of this chaptgrusing a training
set of pairs of known correspondences a CBTF can be trained fmite set of illumination

conditions as per Chapter 3. In order to model the difference in illuminatiaditons within

a single camera over time one can form a BTF from the regions of interest inattkground
(yellow). 3) A linear combination of the two background BTFs and the trafoestyround CBTF
can be used to infer the foreground illumination change between the two visdes the new
illumination conditions.

images under a different illumination condition back to the illumination conditionguwtich

the original CBTF was learned.

4.3 Adapting CBTF under Temporal Illumination Change

4.3.1 Inferring Temporal lllumination Change

The aim here is to model the illumination change over time within a single camera viesv. T
rst stage in modelling this is to derive a single background image from easteca for each of
the two datasets, i.e. one background image per camera, per illumination contfitiorder to
obtain a background image that is representative of the lighting conditions sathe dataset it
is formed from several frames of the video using a background modellingétion technique
such as [86, 100, 103]. The two background images for the two diffdiemination conditions

in camera are denoted alsli(x;y) andMio(X;y).

Regions of interesR are de ned in each of the background images that correspond to en-
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Figure 4.3: Camera viewsj andi® j°under different illumination conditions. By modelling the
illumination change for each camera viefis(and fjo;) the original trained inter-camecd;; can
be used to infer the new inter-camerkp;jo without re-training.

Figure 4.4: Corresponding regions of interest from the same entryfgiim of a camera on
Day 1 and 2 respectively with pixels with large value changes removed atitafha(shown in
black). Those removed pixels correspond to an LCD display, a chais@me magazines, all of
which have been changed/moved over the two days.

try/exit regions of a camera. In this work these regions are manually demavever there are
several works that extract these automatically, such as [98, 108]. eAsattkground of a scene

may change over time due to reasons other than illumination change, e.g. thmemb\a a
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static object. Frame differencing is performed to remove these areas sbehato not pollute

the nal colour mapping, as it is based on proportions of colour. NIgk; y) denote a region of

interestR after frame differencing:

8
2 Mi(xy) if ab(Mi(xy) Mi(xy)) <
Bxy2 RN (xy) = i(y) if abgMi(xy) Mio(xy)) < s @.1)
>
-0 otherwise

wheres was typically between 30 and 50. An example of the regions of interest fiam

background images is shown in Figure 4.4, where the objects that havel imave been ltered

out.
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Figure 4.5: Background illumination BTF from the blue channel of Camera® Scenario 1
(see Figure 3.5). Note the values on the x-axis (Day 2) correspondiiogvér (darker) values

on the y-axis (Day 1).

FromM;(x;y) and similarly calculatet/ijo(x; y) the illumination change is then estimated for
each camera. To model the illumination changes the principles of the brigltzester function
outlined in Section 3.3 are incorporated. Itis assumed that the percentaigelsfin background
imageM;o(X;y) with the brightness value less thBnp is equal to the percentage of image points
seen inVli(x;y) of brightness less than or equaBp Thus, Equation (3.5) is modi ed to compute

fiq and fjo; from Figure 4.3 as follows:

fioi(Bio) = H; *(Hio(Bio)) (4.2)
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As this mapping may not contain one-to-one brightness mappings a lineariatép is per-
formed to estimate unmapped regions. A sample illumination mapping can be seearm4 gy

The mapping betweejPandj is then calculated in the same way.

Figure 4.6: Example of the conversion from the new illuminations (bottom rowhdamld (top
row). From here the image from cameéris converted to the illumination conditions ¢ffor
comparison using the similarity measure.

Once fiq and fjo; have been calculated using Equation (4.2) objects can be mapped into
the illumination conditions under which the original inter-camera CBT-was trained. This
allowscfjj to be used to convert the objects seen in vieawthe mapped illumination conditions
of view j for comparison. Speci cally, in order to compare two observatiopg andOjo, their
colours are converted to the corresponding colour§;inndE;j, i.e. Ojoa(Bjo) and Ojo4(Bjo),

using fiq and fjo; respectively:

8B Ojo.a(Bio) = fia(Orea(Bio)) (4.3)
8B?;Oj0;b(Bj0)= fjoj(ojo;b(Bjo)) (44)

Next Ojo.5(Bjo) must be converted to the illumination conditionsGf becomingﬁio;a(Bi), using
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the learned inter-camera CBTF:
8Bi; Oioa(Bi) = cfij(O0a(Bi)) (4.5)

Ojoa(Bio) has now undergone transformation by a combinatiorfiofand cfj; as depicted in
Figure 4.3. An example of the combination of background BTFs and trairebFGan be
seen in Figure 4.6. As explained in Section 3.4, the BTFs and CBTF are smdoo$ing a
Equation 3.6 and comparisons are performed using the Bhattacharyadjstamper Section 3.4,

and averaged over the three colour chanRels andB.

4.4 Experiments

The experiments were carried out using a challenging dataset colleate@fistributed camera
network. In this set of experiments, the A-CBTF method was evaluated different camera
views were subject to temporal illumination changes. Again comparativégese presented to
demonstrate that with temporal adaptation, the adaptive CBTF signi cantyedotms alterna-
tive approaches. Additionally the A-CBTF is compared against humaonpeahce to provide
an insight into the dif culty of the dataset, and the effect of segmentation@BITF approach
is investigated. All the experimental results (except the manual onesjesernped as rank 1-5
values indicating the rate of correctly identifying an observation as thenhatsth, within the
top 2 matches and so on through to within the top 5. Note that there are vaadosnpance
metrics for person re-identi cation, among which the top-rank matching raterisidered to be

appropriate for this speci ¢ problem and has been widely used in prewiauk [60].

4.4.1 Datasets

Figure 4.7: Scenario 1 camera con guration. All cameras are mountedisado

The scenario used to test this approach (referred as Scenario lidis @amsof ce building
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observed by three cameras. The topology of this camera network is shdvigure 4.7 with
example views shown in Figure 4.8. The illumination conditions and colour qualitybetween
these views. Camera 1 displays a corridor scene where objects aréigahjolit by spotlights
causing darker regions in the bottom part of a person's body. Camshas a shared space
connecting several of ces with fairly dim illumination. Camera 3 is placed inyefaegion
where there is poor lighting in the back right region making it a good spot toptaential
algorithms. A single entry/exit region was determined in each camera to captyets.

Two sets of data were obtained from scenario 1 over two different day@mple views are
shown in Figure 4.8. Both datasets prove challenging as they contaire sygdosir information
and objects in similar clothing. The illumination conditions also vary greatly betweiwo
data sets. The rst dataset (Scenario 1: Day 1) was recorded ondycidternoon where lighting
condition was relatively stable during the data collection. This dataset veasinghe rst set
of experiments to evaluate different approaches without temporal illuminalianges. In this
dataset, 15 individuals giving 45 entry/exit transitions were used in thdrtgaphase, and the
remaining 20 individuals with 51 entry/exit transitions, were used in testing.s€sond dataset
(Scenario 1: Day 2), including the training par of Scenario 1: Day 1 afbset, also contained
data recorded on a much brighter day. Scenario 1: Day 2 was alsodlinigea training set and
a test set. In the training dataset, 15 individuals giving 45 entry/exit transita@re observed
(same as that in Scenario 1: Day 1); 20 individuals with 52 entry/exit transitivere observed

in the testing set.

4.4.2 Matching under Both Inter and Intra-Camera lllumination Chan ges

The effectiveness of the proposed Adaptive CBTF method is demonstiategperimental re-
sults obtained from Scenario 1. Scenario 1 was collected over two ddyfeatured with both
illumination changes across different camera views and temporal illuminatamgels within

individual camera views.

CBTF vs. Adaptive CBTF

Here the improvement of the temporal illumination change modelling on the CBTHrisrde
strated. Each observation was decomposed into its RGB and componentdnstag each en-
try/exit region and compared against all other observations. For thé&=©BIy the inter-camera

CBTF learned from Scenario 1: Day &f(j) is used as an estimation of the colour changes be-
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(a) Day 1: Camera 1 (b) Day 1: Camera 2 (c) Day 1: Camera 3

(d) Day 2: Camera 1 (e) Day 2: Camera 2 (f) Day 2: Camera 3

Figure 4.8: Sample frames from Scenario 1 over two days showing themiffieghting condi-
tions between days in addition to the inter-camera illumination changes. The yedl®g show
the entry/exit zones.

tween views in Scenario 2: Day 2foj0). Figure 4.9(d) shows that adaptive CBTF (A-CBTF)
achieved a signi cant improvement in overall matching rate over CBTF. Valislates the as-
sumption that changes in illumination can be approximated using a linear combinéfine-
ground and background changes. The gradient of the results iralacatéatively linear increase
in the number of number of correct matches at each rank, with the exceyftieigure 4.9(c),
whereby all 4 methods have trouble distinguishing between the similar highdariservations.

Example of object association results obtained using the two methods are shbigure 4.10.

Comparison with alternative approaches

In this experiment, the adaptive CBTF method is compared against the BEpasaéapproach
[78] and the Major Colour Spectrum Histogram (MCHR) approach [1T#E results in Figure
4.9 show that the equalisation based MCHR does not cope well with this ofjialedata set.

Although slightly better, the BTF subspace approach suffers due to itdityab adapt to the

difference between the illumination conditions changes over time. Overall@BiF+ and the

adaptive CBTF yield an increase in matching accuracy at rank 1 with th8 RFGigni cantly

outperforming the other methods in ranks 1-5.
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(a) Camera 1 to Camera 2 (b) Camera 1 to Camera 3

(c) Camera 2 to Camera 3 (d) Overall

Figure 4.9: Comparative results on Scenario 1: Day 2 from the MHCRebasthod, Mean
BTF, the BTF subspace method and the adaptive CBTF method. The tedtisigesén the
diagrams above wag 48, b) 16, g 18, d 52 image pairs

4.4.3 Comparison with human performance

This section presents manual matching results to provide insight into the tyapdpethe perfor-
mance of the algorithms and human. Speci cally experiments were condusitegi six human
observers. Each human observer was provided with a sequencamefiprages and for each im-
age they were also shown a set of observations obtained from a tsepansera view (a gallery
set), each uniquely labeled. The human observer was then asked tdlselabel corresponding
to the gallery image that best matched the probe image. The size of the gattersrsged be-
tween 16-18 images, depending on the camera pair, with the same numbarefrpages being
displayed one at a time. This process was repeated for all three canirsran@hon both Day
1 and Day 2 from Scenario 1, totaling 51 and 52 probe images respectMaly process was
designed to match the way in which the algorithms were presented with the datiiriaavoid
bias in the results. To perform a fair comparison, the images presentedhartien observers

were manually cropped with a black background, as those used in thamegpts described
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(@) (b) (© (d) (e)

() @ (h) @) )

Figure 4.10: (a) and (b): the same individual appeared at entry/gxitne 1 and 2 respectively.;
(c): BTF(subspace) match; (d): MCHR match: (e): CBTF match (cowee). (f) and (g): A

much more challenging case from due to the presence of similar coloureztinj¢he testing

set. (h)-(j): all three methods found the wrong match.

previously. In addition, the faces were blurred to prevent facial okggaound information from
being used as cues for matching.

The manual matching result is compared with CBTF on the Scenario 1: Dayaladd
adaptive CBTF (A-CBTF) using the Scenario 1: Day 2 data in Figure 4THere are two
interesting ndings from the comparison: 1) The performance of the autmimaethods is better
than half that of the humans. In particular, it can be seen from Figuréd).ttfht, with the labeled
training data on Scenario 1. Day 1, the rank 1 matching rate of CBTF is @&iéatof that of
human whilst without labelled training data on Scenario 1: Day 2 the ratio is 52%-CBTF.
The rank 4 results on both cases are higher than that of human. 2) Bigur@) also shows
that overall for the three camera pairs the matching rate ratio between A&~@Bd human on
the Scenario 1: Day 2 data is slightly worse than that of CBTF on the Scehiabay 1 data
for rank 1 (52% for A-CBTF compared to 61% for CBTF), but slightly beftem rank 4 (79%
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(a) Camera 1 to Camera 2 (b) Camera 1 to Camera 3

(c) Camera 2 to Camera 3 (d) Overall

Figure 4.11: Comparative results of the CBTF and manual method fromraBcdn Day 1 with
the A-CBTF and manual method from Scenario 1: Day 2. The testing seinsiie diagrams
above waspl18, b 16, g 18, d 52 image pairs

to 75% for rank 4 and 84% to 80% for rank 5). Note that although the manatdhing result
only contains the rank 1 result this has been compared this against thé-Eandsults of the
A-CBTF system. The reason for this comparison with rank greater than Iskote that if the
A-CBTF method returned a few of the top ranking results to a human opgttatoe would be a
high probability that the correct match is among those top ranking matches yvimgptbe human
score and reducing the human effort required. Note that there wadbelkelh training data on
Scenario 1: Day 2 for learning the A-CBTF and the illumination condition wasi signtly
different from that on Scenario 1: Day 1. With A-CBTF achieving a perfance comparable
to CBTF, the results show that the proposed A-CBTF algorithm is effeativ@mpensating

dif cult unknown illumination change and the lack of labelled training data.

4.4.4 The Effect of Segmentation

As the CBTF method requires good segmentation results, the differencedretmanual segmen-

tation used in this chapter and a simple method for automatically segmenting imagasiseck
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In order to automatically segment the images foreground/backgroundtiras performed on
small clips from the data ignoring any small foreground regions. A set minifmeight to width
ratio is also enforced in order to ignore any very poorly segmented ingilsd As the scenes
are not overly crowded we track the individuals using xhey coordinates of the center of the
extracted regions. Once the clip has been processed a single imagetsdskietaking the ob-
servation with the median number of foreground pixels. Examples of the s¢gtdhenages can
be seen in Figure 4.12, some of the individuals were segmented very \ggltés 4.12(b) and
4.12(c)) but several were poorly extracted as can be seen in Fidut@i Figure 4.12(a) shows
that the use of automatic segmentation degrades the results as a good ségmiemtguired in
the training stage because the BTFs are constructed using the assumiioiiasfproportions
colour. Given outdoor scenes or areas of less consistent lightinggwkavould cause more of
a problem than they did in the relatively stable indoor environments. This tedieapreference
to using a more sophisticated extraction and segmentation approach, whegtorglithe scope

of this chapter, to gain closer results to the manual segmentation.

(a) Overall Scenario 1: Day 2 (b) (c) (d)

Figure 4.12: a) results of the automatic segmentation, A-CBTF (S), aga:stdhually seg-
mented images, A-CBTF. b-d) examples of manual segmentation (top) amdatitgegmenta-
tion results (bottom)

4.5 Discussion

This chapter has demonstrated that by modelling background illumination eharegcan infer
new brightness mapping functions between cameras from the original GBParticular, by
using background illumination we are able to estimate the changes on theofamdgobjects

without the need for manual association of foreground objects each time ithenination con-
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ditions change, which would be required by other approaches. Olyidhis method has its
limitations in the conditions under which it can be used. Primarily, it requires dlokground

region chosen to be close to the desired foreground regions to enatiteetighting conditions
are the same or at least similar. If the camera has a low mounting then the doandkgnd

foreground regions may be disjoint to adequately capture the lighting camslitibowever, low

mounted camera also emphasise inter-person occlusion within a scener #md feason they
are generally only used in areas with low ceilings.

Currently, the A-CBTF method was only tested on scenarios where the dataollected
from two separate days with varying lighting conditions across days hatives stable light-
ing conditions within each day. However, this method could be easily exteiodad in an
automated fashion to cope with rapidly changing illumination conditions typical ioudthoor
environment. This could be achieved using an online adaptive backdjroodelling approach
such as [141] to construct an empty background from a stack of fraprgaining foreground
objects collected from a xed time interval, allowing us to extract backgroumages even in
busy environments. From this automatically generated empty backgrouod thg brightness
histograms for the entry/exit region can be calculated. In the next time ihtéresbackground
model is updated, so are the brightness histograms. The brightnessdmssagan then be com-
pared against those from the previous period. lllumination change caméeetected when the
difference between the histograms is larger than a threshold leading todhgngpof the model.

The datasets used provide a challenging test for object association theesparse colour
information of the objects observed. Although the A-CBTF method produslasiviely low
matching rates, its ability to adapt to new illumination conditions allows it to signi cantly o
perform existing methods. To estimate a BTF, object segmentation is requiredier to eval-
uate the effect of segmentation accuracy on the performance of this meetivaef comparison
of manual segmentation against a simple automated segmentation based aolatkgbtrac-
tion followed by the connected component method was undertaken. Figixslows that even
with a very coarse segmentation, good performance can be obtainedhssimgposed method
which is comparable against the result obtained using manual segmentatmorpdrating a
more advanced segmentation approach would likely minimise the differencedietine manual
and automatic segmentation results, but was outside the scope of this clsagbiepaoblem of

segmentation is a substantial research topic in itself as outlined in Section 2.1.
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An interesting side to this work is to consider that given advances in canwmaclegy are
constantly occurring, will the problem of illumination change still be prevatetite future? This
guestion can be addressed by looking at the causes of the challenghs,illemination changes
captured in the images. There are two major causes of illumination changeseshin lighting
condition, and changes in the number of people in the scene. Typicallyrtherfes more gradual
than the latter. If the camera's auto-gain control and white balancing furscéice switched on,
the existing cameras tend to over-adapt to the illumination changes caused byrtiber of
people in the scene. On the other hand, if those functions are switchegtaaffial illumination
changes will cause more problems for matching people. The existing cacaemast deal with
the two types of illumination changes at the same time because the camera adaptadised
on measuring the overall brightness of the captured images. In the fiaoreras will have
higher image resolution and frame rate. But these two types of illumination eeasgdden
and gradual, caused by moving object or natural lighting source, willjoatway. The hope for
solving this problem lies on the advance in software rather than hardwarthat end, future
cameras could adapt to illumination changes more intelligently and selectivelgdpyiag an
algorithm that can estimate the illumination changes on foreground objectsrefsintather than
blindly the overall scene. Therefore the algorithm suggested in this cheqiéd actually be

used to contribute towards that objective.

4.6 Summary

This chapter introduced an adaptive method for addressing the prolflehanging lighting

conditions over time using background lighting conditions as an estimate footbgréund,

thus removing the need for manual retraining. The rst step in this prosasgo train a CBTF
as described in Chapter 3. Upon a change in the lighting conditions within gesvad scene,
the CBTF learned in this step becomes much less accurate. To counter thi® ianeffect

to infer a CBTF for these new conditions, a brightness transfer functesfarmed from the
background information for each camera. This involves acquiring agoackd image over
several frames for both the old and new lighting conditions, removing arglgpthat have a
signi cant change due to objects being moved, and performing a propattmapping between
the two. Experiments were conducted on a dif cult indoor scene with hilavgination changes

between both the camera views and recording times. The results show tAaCBEF provides
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a signi cant performance gain over the CBTF and alternative appexadhdicating the use of
the background illumination is an adequate estimate for the foreground. Addigmperiments
were undertaken to assess the effect of segmentation on the results@mgarison was made
against human performance.

Whilst the method described nds a reasonable estimation of illumination chérng®uilt
upon a limited set of features with which to describe an observation and oglissnple dis-
tance measure to compare objects. Chapter 5 looks at incorporating mamyeatures for an
over-rich representation containing redundant information, and raswgparison measure from

related training data in a ranking framework.
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Chapter 5

Learning to Rank for Person Re-ldenti cation

Many existing works focus on the selection of features channels focboigpresentation and
determining a score for a pair of probe/gallery images which indicates its simildnitgon-
trast, this chapter introduces a novel reformulation of the re-identi catimblpm to one of a
ranking problem and learns a weighting such that the potential true matcbeis tijie highest
rank, rather than a score based on a direct distance measure. Bysdoithg re-identi cation
problem is converted from an absolute scoring problem to a relativén@pkoblem, whereby
the distance measure is learned from the data itself. Additionally, some craigides made
for the scalability of re-identi cation. In this respect an Ensemble Rank$¥Movel combi-
nation of ranking SVMs and Boosting, is de ned to reduce the computatiorertheads while

incorporating SVM tuning parameters.

5.1 Ranking People for Re-ldenti cation

Commonly used comparison methods for re-identi cation are often basad@template match-
ing. Firstly, this involves compiling feature sets as a template to describe andnaivoften
selecting feature spaces that attempt to minimise the effect of inter-camerarappe changes,
like view angle or scale. As seen in the previous chapters, these ref@atses are sometimes
combined with a specialised methods to model the lighting changes between Sewaandly,
the comparison itself is then preformed using a direct distance metric chasgreimdently of
the data. These are either designed around the feature representetfparitstandard distance

metrics for distribution comparison. Regardless of the choice of featarkediatance measures,
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(a) VIPeR Dataset (b) i-LIDS Dataset

Figure 5.1: (a) Sample image pairs from the VIPeR dataset [60] and (h}LiiES dataset
(http://mwwi.ilids.co.uk). Each column represents a matching pair of obsersatiith the top
and bottom rows representing different camera views.

re-identi cation by this approach is dif cult because there is often too motthn overlap be-
tween the feature distributions of different objects, so much so that giverobe image, an
incorrect gallery image can appear to be more similar to the probe image thaailérg gnage.
This is demonstrated in Figure 5.1, which shows that incorrect matchestearappear almost
identical to the correct match. Under these conditions it is clear that a marndisative dis-
tance measure is required as a direct comparison of the features is likedyl timlsimilar scores
for each of the pairs of observations.

Person re-identi cation by ranking can be formulated as follows. Assurietbxists a set
of relevance ranks = frq;rp;  ;rrgsuchthatr, r, ; r1 wherer is the number of
ranks and indicates the order. In the re-identi cation problem there are only two agles
levels/ranks, that of relevant and irrelevant observation featuterge.e. the correct and incor-
rect matches. Given a datasét f(x;yi)giL, wherex is a multi-dimensional feature vector
representing the appearance of a person captured in oneyisvits label andnis the number
of training samples (images of people). Each vegit? RY) has an associated set of relevant
observation feature vectody = fX;;X5; ;X ., 0 and related irrelevant observation fea-
ture vectorsd; = X.1:%50 X ()9 COrresponding to correct and incorrect matches from
another camera view. Herg" (x)) (m (X)) is the number of relevant (related irrelevant) obser-

vations for query; and havem (x))= m m"(x) 1. Ingeneralm'(x) << m (x) because
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there are likely only a few instances of correct matches and many intaregches. The goal of
ranking any paired image relevance is to learn a ranking functitor all pairs of(xi;xi’jj) and
(xi;xi;jo) such that the relevance ranking scd(e(i;x;j) is larger thard(xi;xi;jo).

Ranking can be based on either Boosting or kernel based learningasustipport Vector
Machines (SVMs). RankBoost [49] uses a set of weak rankerstbeddo form a strong ranker.
However, the re-identi cation problem intrinsically suffers from a larggieee of feature over-
lapping in a multi-dimensional feature space, as can be seen in Figure 5caudgeof this,
picking weak rankers in each individual feature dimension, as corsldey [49], is likely to
lead to very weak rankers thus reducing matching effectivenessntrast, SVM based models
such as RankSVM [82] seek to learn a ranking function in a higher dimeaisieature space
where true matches and wrong matches become more separable than trad fe@gime space
via the kernel trick. RankSVM is thus potentially more effective for copirithwighly over-

lapped feature distributions in person re-identi cation.

-3

o Irelevant Samples
PC1 + Relevant Samples

Figure 5.2: Principal Component Analysis (PCA) plot showing the ovdrtpeen the relevant
samples (red) and the irrelevant ones (blue) in the top three principalamnis. Note that
only a subset of the samples is displayed here; 250 relevant sample8Ghirélevant samples
corresponding to roughly 40% and 0.25% of the VIPeR dataset, resggcti

However, a main issue with running RankSVM on large datasets such aETi@R dataset
is that it is computationally very expensive due to a large amount of inequalitsti@ints. As
a result, RankSVM based learning to rank is limited as much fewer iteratiortsecperformed,

resulting in a sub-optimal ranker. Given the necessarily large numbemadfidate matches for

Lhttp://research.microsoft.com/en-us/um/beijing/gctg/letor/Baselines/RankSVM.html
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person re-identi cation, this poses a severe scalability limitation on RankS\dplicability to

person re-identi cation.

5.1.1 Ranking by Support Vector Machine

Here the goal is to compute the scaké terms of a pairwise samplg;(x;;;) by a linear function
w as follows:

d(xi;%i:j) = W% Xiiji; (5.1)

wherejx  Xi;jj = (jx(1)  x:;;(Dj;  ;jx(d) xi;j(d)j)> andd is the dimensionality o%;. The
vectorjx;  x;jj is refered to as the absolute difference vector.
Note that for a query feature vectgy the following rank relationship for a relevant feature

vectorx,-’jj and a related irrelevant feature vecxor, is desired:
WX 50X %) > 0; (5.2)

LetX = jx  Xjj andxg = jx X.jol- Then, by going through all samplgsas well as theg’;
andx;.; in the datasekK, one can obtain a corresponding set of all pairwise relevant differen
vectors in whichw” (X{ X, ) > 0 is expected. This vector set is denotedby f (X5 ;% )g. A
RankSVM model is then de ned as the minimization of the following objective fiomc

1 iP;

“kwk®+ C § Xs

2 =1 (5.3)

stw (X %) 1 X5s=1 jPiixs 0 s=1; ;jPj;

whereC is a positive parameter that trades margin size against training error.

One of the main problems with using an SVM to solve the ranking problem is th@-pote
tially large size ofP. In problems with lots of queries and/or queries with lots of associated
observation feature vectors, the sizePaheans that forming thef ~ X vectors becomes com-
putationally challenging. Particularly, in the case of person re-identi cati@suming there is
a training set consisting ah person images in two camera views. The siz® @& proportional
to 7, it thus increases rapidly as increases. SVM-based methods also rely on parar@eter
which must be known before training. In order to yield a reasonable nwaemust use cross

validation to tune model parameters. This step requires the rebuilding of thiedgvaalidation

set at each iteration, thus further increasing the computational cost andrsnasage. Hence,
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the RankSVM in Eqgn (5.3) is not computationally tractable for large-scalstaint problems
due to both computational cost and memory use.

Chapelle and Keerthi [23] proposed a method based on primal RankPR&YM) that
relaxes the constrained RankSVM and formulated a non-constraint msdalows:

1, A8 o 2
w= aigmin_kwk®+Cg * 01 W R (5.4)
s1

whereC is a positive importance weight on the ranking performance “aisdthe hinge loss
function. Moreover, a Newton optimisation method is introduced to reduce divénty time
of the SVM. Additionally, it removes the need for an explicit computation oféhe %, pairs
through the use of a sparse matrix. However, whilst the computationabt&#nkSVM has
been reduced signi cantly, the memory usage issue remains. Speci callyeinase of person

re-identi cation, the spacial complexity (memory cost) of creating all the trgis@mples is
!
'
O adm(x) m(x) ; (5.5)
i=1
whered is the feature dimensionality. Assuming there hrpeople in the training set, arfl

images for each person, theti (x) = T 1 and the spacial complexity can be re-written as:
1 1 5., 1 .
od ([ ) M+(; 1) m): (5.6)

This complexity is very high given large number of training sampieand high dimensional
feature spacd, and it cannot be reduced using PRSVM. In order to make RankSV Natriec
for the large scale person re-identi cation problem, an Ensemble RankiS\fivbposed to both

signi cantly reduce the spacial complexity and solve the problem of tuGingRankSVM.

5.2 Ensemble RankSVM

Rather than learning a batch mode RankSVM, the aim to learn a set of weddSRisls each
computed on a small set of data and then combine them to build a strongearuaimgeensemble
learning. More precisely, a strong rankes: is constructed by a set of weak rankevsas
follows:

N

Wopt= Q @i Wi (5.7)
i



5.2. Ensemble RankSVML06

5.2.1 Learning the weak rankers

The data set is divided into groups and each weak ranker is learned taghat group of data.

Speci cally, assume there are in tolapeopleC= fC;; ;G g, they are equally divided into
S T

groupsG;; ;G without overlap, i.eC= "{L, G and8i 6 j, G Gj = ;. Then the training

data se¥ is divided inton groupsZ;; ;Z, as follows:
Zi = f(x;yiyi 2 Gig: (5.8)

The simplest way to learn a weak ranker is to perform RankSVM on edisess). In order to
avoid learning a rather weak ranker, the weak rankers are leamifiubse?; andZ; = Z S O

so that all weak rankers are not completely learned on separate datdsesO; is a subset of

data of the same amoujz;j randomly selected from the remaining data&etZ; . This allows

us to learn weak rankers on overlapping subsets. In the experimewt®(5g.3), for eacly;

and for each importance weig@t a weak ranker is learned; that is if there amandidate values

of parameteC, thenN = s nweak rankers are computed. This makes selection of the parameter
C in the primal-based RankSVM uni ed into the ensemble learning framework owithsing

any additional cross-validation that requires reforming training samples.

For eachZ;, a weak rankew; is computed by using a primal-based RankSVM of Chapelle
and Keerthi [23], which is tractable given a moderate size dataset. Bhestep in computing
the RankSVM is to calculate a set of relevant and the related irrelevaoluédslifference vec-
tors inZ;, denoted byR = f(>“<i+;s;>“<i;s)g. Then, for some positive parameteythe primal-based

RankSVM solves the squared hinge loss function based on criterionrof(&4).

5.2.2 Learning a;

SupposeN weak rankerg wigi’\il have been learned from the previous step. Next, boosting is
used to learn the weiglat; on the whole dataset iteratively (see Algorithm 1). Speci cally, at
thet step, the best weak rankey, is selected such that it minimises the following cost function:

iPi
ke = argn?inalDf IWi>()2s %) 0 (5.9)
=
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whereDy is the weight of pairwise difference vectorstaﬂtep,z‘;ij;jlDt = 1 andl is a boolean

function. ThenpDy is updated as follows:

n 0
Di1=F 'Df exp ar W (% %) (5.10)

whereF is the normaliser such théi{;lef+l = 1 andDj is initialised adD$ = % The weight

a is then determined by:
1+r o s A~ oA
a;= 0.5 Iogﬁ; r=abDiwg X X): (5.11)

Note that in order to ensure that the boosting algorithm both convergespatades the above
weight, the input weak rankerg are normalised by 2max.s w;’ (X, X% ) , so thatw; (X¢
Xs) 2 [ 1;+1], as suggested in [49].

Compared to the batch mode RankSVM, the advantages of Ensemble Ran&®uo-
fold. Firstly, it is not required to select the best paramé&édor each weak ranker using cross-
validation, as the ensemble learning algorithm automatically selects the optimalofaluley
assigning different weights to weak rankers of different parameteesafC. Secondly and
more importantly, each weak ranker is learned on a small set of data anddsignlg process is
based on the data projection values of each weak ranker. To learnveaklranker, the spacial
complexity isO(d (%(£ 3) m®+ X(f ) m?), whered is the dimension of each image
feature vector and is the number of subsets. After learning each weak learner, for thenblese
learning process, the space complexit§iN (( ) m*+({ 1) m?)) whereN is the total
number of weak rankers, and as the number of feattire2000 in re-identi cationN << d.
Overall the space complexity of the Ensemble RankSVM is arownd df that of the original
RankSVM. The experiments show the ensemble RankSVM can obtain cdigpesformance

as the batch mode RankSVM but with signi cant reduction in memory usage.

5.3 Experiments

5.3.1 Datasets
Two challenging datasets were used in this work, the VIPeR datasenhtedds Gray et al. [60]
and a set of images extracted from the i-LIDS dataset [119]. Example g1fiaaye both datasets

can be seen in Figure 5.3. The VIPeR dataset consists of 632 pedasiigs pairs taken from
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Algorithm 1: Algorithm of Ensemble RankSVM
Data: Pairwise relevant difference vector $etinitial distributionD1 = f D3g
begin
fort=1; ;Tdo
Select the best rankey, by Eqn. (5.9);
Compute the weighd; by Eqgn. (5.11);
Update the distributiod:+ 1 by Eqn. (5.10).
end
end
output: Wopt = &{-qar Wi

two camera views. Each of the images has been scaled to a standard sizentaids stark
differences in pose, orientation and illumination making this dataset a gooesegyiation of
challenging real world data. The i-LIDS dataset used in this work cord&108 image pairs that
have been extracted from the HOSDB's i-LIDS multi-camera tracking dat&seh person has
two manually extracted images from two different camera views (one fram)ed he dataset
contains a selection of camera view combinations from different videos inltH2S multi-
camera selection. As with the VIPeR dataset these images were scaled teadstre and were
not segmented from the background. As such the i-LIDS dataset in thearhhas individuals
captured under a diverse set of camera conditions. While the images &ibndatasets t to

each subject closely, some background noise is present in every ineggei¢s 5.3).

5.3.2 Feature Extraction

The features used were 8 colour channels (RGB, HS and YChCr) litekfire lters (Gabor

[46] and Schmid [144]) applied to the luminance channel. The Gabor Iteduwgas de ned as:

%+ Y

252

axy.a.l:q;s,y)= exp cos 2p,5+ y (5.12)

wherex?= xcosqg + ysing andy’=  xsing + ycosq. The parameters for the gabor wavelets

used in this chapter can be seen in Table 5.1. The Schmid lter used wasdlas:

P———
2 2 Piy?
x+ypt) o 2

f(xy;t;s)= f(t;s)+ cog 252 (5.13)

wheref(t;s) is added to obtain a zero DC component. The parametetsdods are detailed
in Table 5.2 and are similar to those used by Geagl [61]. A common bin size was selected

for each feature channel of 16 bins. As different regions of the inzagdikely to contain
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(a) VIPeR Dataset Sample

(b) i-LIDS Dataset Sample

Figure 5.3: 10 randomly selected image pairs from a) VIPeR dataset aindiDP dataset.
The top row in each shows the probe image while the bottom row shows thesponding
image from the gallery data. Both datasets contain a variety of inter-cameesaage changes
including differring illumination conditions and substancial pose variation.

visually distinct areas of interest some form of spatial representationasl\cleeeded. Some
approaches use a single rectangle to capture the whole appearahfkeafiBothers opt for a
more complicated structural representation [55]. These approachegiaer too simple or too
constrained. Instead, a representation using six equal sized hotigwiptais chosen in order to

roughly capture the head, upper and lower torso and upper and layger le

5.3.3 Methods for Comparison
The PRSVM was implemented using paramé&tén the setf 0:0001 0:005;0:001; 0:05;0:1;
0:5;1;10;100,1000y using cross validation. For Ensemble RankSVM, the number of groups of

datan was set to 5. The performance of method is relatively insensitive to the vélneas
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Table 5.1: Gabor Iter parameters ~ Table 5.2: Schmid Iter parameters

seen in Section 5.3.8. For comparison, another four different existirsppee-identi cation
models were tested, including two non-learning distance based measuatéscBaryya and L1-
norm, a state-of-the-art Adaboost-based person re-identi catidesp&ELF) [61], and a ranking
based model using RankBoost [49]. All six methods were tested usimjlyeXae same image
feature set and image representation. Five random trials were codd@untehe results reported
were averaged over the trials. Presented are the results of using 7% total samples for
testing with the rest 25% for training, and 50% for testing with the rest 50%niAll six re-
identi cation methods are comparitively evaulated using the cumulative matchigcteristic
(CMC) curve [165], which is based on the ranking of each of the galleage with respect to

the probe, thus resulting in the expectation of the correct match beingkat.ran

5.3.4 Ranking vs. Non-Ranking Approaches

Figure 5.4(a) shows the CMC curves for the VIPeR dataset with 50%) @lthe data used
for training and 50% for testing while Figure 5.4(b) uses less samples fomiga(158) and

more for testing (474). Due to the high number of possible matches coupledhsithtrinsic

dif culty of the data in which objects appear in different viewing conditiotiee non-learning
based distance measures (Bhattacharyya and L1-Norm) performdaotly overall. In contrast
the ELF method shows that by learning from training samples a more accistaecd measure
can be obtained. Itis clear that a signi cant boost in performance eabtained by employing a

ranking framework, with the PRSVM and Ensemble-RankSVM being thedvesall. Similarly,
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Figure 5.4: Cumulative Matching Characteristic (CMC) curves for the RIBataset.

the results on the i-LIDS dataset (Figures 5.5(a) and 5.5(b)) show fitfatthve exception of
RankBoost, explained below, the non-ranking methods still show loweathygerformance.

Some example query and ranked observation results can be seen ing=&ure
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Figure 5.5: Cumulative Matching Characteristic (CMC) curves for the iS ataset.

5.3.5 Ensemble RankSVM vs. PRSVM

On the VIPeR dataset (Figures 5.4(a) and 5.4(b)) the differencefiorpence between the En-
semble RankSVM and the PRSVM is negligible. This demonstrates that givegeadataset
like VIPeR the Ensemble-RankSVM is an equal in terms of performance, aftileing a bet-
ter scaling of memory usage (5.6GB needed for the PRSVM with 50% trainirtgeok'IPeR

dataset, while the Ensemble-RankSVM needed only 740MB and this gap wéhvad larger
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datasets). On the i-LIDS dataset (Figures 5.5(a) and 5.5(b)) the gapdrethem is slightly in-
creased, with the Ensemble RankSVM having a lower overall score wkenthber of training
samples is decreased. This is because that given a small training setardt¢o® few sam-
ples in each subset for learning a weak ranker which affects therpeifwe of the Ensemble
RankSVM. Nevertheless, since the primary goal of the introduction ofrieerable framework

was to increase scalability, it is natural that on smaller experiments the PRSvibtéssuitable.

5.3.6 SVM-based vs. Boosting

From both datasets it is clear that the RankSVM based methods are moretsuitesl task

than the Boosting methods (ELF and RankBoost). The performance onReRk\dataset (Fig-
ures 5.4(a) and 5.4(b)), shows that the ELF method outperforms theBRaskmethod with the
setting used, both being signi cantly lower than the two SVM based rankingadsthOn the

i-LIDS dataset (Figures 5.5(a) and 5.5(b)) it can seen that the RarstBeethod shows similar
results to the ELF, both of which are lower even than the baseline noridganethods, indicat-
ing that the weak rankers/classi ers based on single feature chameet®teffective. On this

dataset the rank 1 matching rate of PRSVM is more than double those of ElLRaarkBoost.

5.3.7 Computation Time

All the experiments were run on a server machine with 8 CPU cores and a#BBM in order
to accommodate any required RAM consumption. The implementation was in Matlapenial
effort was made in terms of multi-threading so the experiments generally todkQRU core
and at most 3 for some Matlab functions. The computation times of the SVMtiras&ing
methods were much lower than that of the ELF and RankBoost methods. skande, for one-
fold training and testing for the VIPeR dataset with a training size of 316 pdirsages, the
PRSVM took about 11 minutes and the Ensemble-RankSVM 13 minutes while thedek

over 5 hours and the RankBoost method 10 days.

5.3.8 Effect of the Groupsize Parameten

One of the bene ts of the Ensemble based PRSVM is that it encompases thg tafidation
of the SVM parametet, both removing the need for validation stages and any parameterisation
of the SVM. However, this approach does introduce the group sizengdean that determines

the number of groups that the training set will be split into. Obviously, perémce is a concern
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(a) VIPeR Dataset Examples

(b) i-LIDS Dataset Examples

Figure 5.6: Examples of re-identi cation on the VIPeR and i-LIDS datasetpectively. The
rst column indicates the query image, the middle column shows the PRSVM daekelts with

the correct match in red. The bottom row in each diagram shows an exarhpte tihe correct
match was not in the top 19
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when incorporating additional parameters. In order to assess thé efffédee n parameter on
the overall matching performance, several trials were performed onlfPeR/dataset with the
n= f5;10;15;20g. The results of which are reported in Figure 5.7. The overall perfotman
shows a very slight degradation from thes 5 trial to then = 20 and this may be reduced as
the overall number of training samples is increased. More importantly, thelraedult differs
by less than 1%. These factors indicate that the group size parameteraldese a signi cant
effect on the performance, thus does not require a validation stageeat tas is performed in

the batch PRSVM with th€ parameter.
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Figure 5.7: Analysis of the effect of the group size paramaten the performance of the
Ensemble-PRSVM. Note that the difference in rank 1 performance is lasslé# and the per-
formance drop froorm= 5 ton= 20 is minimal.

5.4 Discussion

The experiments in this chapter demonstrate the advantage of the propfisetutation of the
person re-identi cation problem as a ranking problem. They show thetlimg relevance-based
model can improve the reliability and accuracy in person re-identi cation uctallenging
viewing conditions. Better separability of samples is obtained by using an S\Vinio the
data as it considers all features simultaneously, rather than attemptingtsmpan a per-feature
basis. Little performance is lost by the Ensemble-RankSVM, which has tietlad lowering
the memory cost by reducing the training sample size per SVM, while incdipgrhe SVM
tuning parameter. Unlike the SVM tuning parameter, which is incorporated istbdbsting

framework, the group size parameter is less sensitive. Figure 5.7 indibatethe proposed
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method does not show any signi cant degradation with an increase in thbenof groups.

The degradation in performance on the i-LIDS dataset shown by thertbhsdkankSVM
indicates a potential limitation in that it may need more training samples than the PRSVM in
order to obtain a good matching rate. However, this situation is contradictahetprincipal
behind the Ensemble-RankSVM as its main purpose is to reduce the overiepbcessing
large training sets. Therefore, in situations where the training samplegaréimited the re-

identi cation PRSVM would be more suitable.

5.5 Summary

This chapter outlined an alternative way of approaching the re-identiegtimblem; that of
a relative ranking problem instead of absolute scoring. Firstly, the gefagmulation for re-
identi cation by ranking was outlined, introducing the idea of related rel#iraglevant obser-
vations to describe a dataset. Each observation was described usurgdextracted from sev-
eral colour and texture channels grouped from six horizontal stripgt, i primal form of rank
SVM [23] was selected as the ranking function due to the computationally bfact&the par-
ticular implementation to larger scale problems in reasonable time. In order terfuetiuce the
overheads for larger datasets an Ensemble-based RankSVM wasgdof his method aimed to
reduced the memory overheads of training with large datasets by splittingtdsetiainto subsets
and training multiple PRSVMs, then using these as the weak rankers in a lgofoatitework to
obtain an overall ranking function. An added bene t of this approaek that the SVM tuning
parameter could be incorporated into the boosting framework, thus remibvngeed for a val-
idation stage. This approach was evaluated on two challenging datasersP#ie dataset [60]
and a large set of images taken from the i-LIDS multi-camera détaBeth the PRSVM and the
Ensemble-RankSVM demonstrated a signi cant performance gain ogetiba distance metrics
and boosting-based ranking methods. There was also a notable peréerdifierence over the
boosting-based ELF method, indicating the SVM approach was more suitabdeaisets con-
taining substantial feature overlap. Additionally, the Ensemble-RankSVMteinaed a similar
performance and computation to the PRSVM, while reducing the memory @adsltmsed on
the group size parameter, which was shown to have an insigni cant efifeitie matching rate.

While this chapter has dealt with feature sampling and scalability issues thetdatasd

2http://www.ilids.co.uk
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only consider small numbers of observations per person and each astextiby hand. In a
system that is tracking-based, each person can be captured in an ewagsd §mes per second
with imperfect person extraction results. The following chapter explorekade for addressing

the practial issues found in a full multi-camera tracking system.
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Chapter 6

An Integrated Re-Identi cation System

This chapter looks at some of the practical considerations of implementigigmé-cation in

a relative-ranking framework. Due to the challenging nature of re-ideation, attempting to
create a fully automated surveillance system that strives for de nitive eetidation corre-

spondences is not yet realistic. Instead, the approach in this chaptersvtde an interactive
search tool to aid an operator in locating persons within a network of CGifvecas. Unlike
the previous chapters, whose focus in solely on re-identi cation, thiptelndooks at the system
as a whole. To that end, the system design outlines the precursorysgesceletection, fore-
ground/background segmentation, feature extraction, single camekangraod inter-camera
transition time estimation. Practical aspects of then re-identi cation processxamined, in-
cluding: segmentation on the detections, methods of comparing multiple detectiboseaall

re-identi cation score. The combination of components was incorporatecamindustrial pro-
totype and tested on the challenging i-LIDS dataset [119], captured syegiport environment,

showing promising results.

6.1 System Design

Building a working re-identi cation system requires more than just selectsgtable re-identi cation
algorithm and applying it to some pre-labelled data as was the case in theysretiapter. The
process of extracting meaningful information from the original data soigrin itself non-trivial.
Figure 6.1 outlines the structure of the re-identi cation process in this systereach of the

camera views within a camera network detection must take place to localise #sdnmats, sub-
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Figure 6.1: Conceptual ow diagram of the search-based rankingsysA localisation module
that consists of background subtraction and pedestrian detection issisgurecursor to feature
extraction and single camera tracker, each of which is performed on@apera basis. The
resulting tracklets and pre-learned camera transition distributions are titisaduby the re-
identi cation stage to produce a ranked list of observations based orparmtors nominated
search image.

traction must be performed to remove background information and trackitiised to tempo-
rally correlate detections. The nal stage of the system is that of the ratidation step itself.
In this stage an operator nominates a person by selecting one of the deteiciitows from a
single camera views and the tracklet that this detection corresponds taliasifee search query.
This tracklet is then compared with all the other tracklets in the database treabdan extracted
from the other camera views in terms of the visual similarity and the temporal viailitglly,

a ranked list of search results is returned to the operator so they cadtycqassess which of these
are informative matches. While the primary focus of this thesis is on the réi-@gion section,

each of the precursory sections strongly effect the chances oéng-htion and as such they
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are outlined below.

6.1.1 Localisation

The localisation step is responsible for identifying the pixels that belong todbpl@ within
the input image. The ow of people is different in each camera as they eawdr a different
area of the scene and are positioned at different angles, heightdsaamdcéds from the people
within them. Because of this, the rst aspect of the localisation stage is to ttyeguce the
search space to the regions of interest within each camera view. Forlexampe cameras may
contain regions that are constrained by barriers and thus not usezbpiep This segmentation
into regions can be done on a semantic basis using algorithms such asr[@Sin@ a motion
map of the scene based on foreground objects over time, and is bestaowt by operator
knowledge of the scene.

The goal is then to locate pedestrians within these regions of interest. Asskstin Sec-
tion 2.1, there are two main processes for doing this, foreground/taokdrsegmentation and
pedestrian detection. In this system both processes are used, segmestatied as a precur-
sor to the detector reducing the search area that the detector has tdgaway considering
the foreground pixel, as described in Section 2.1.2. The process attryy useful foreground
data is of paramount importance to the challenge of re-identi cation as thigmatttion forms
the basis of the appearance models and thus the matching scores. PoartaBgmmeans that
more background or non-relevant information pollutes the foregrobjetts of interest. Poor
detection means that you either include regions which are not pe@plialse positives, or you

fail to detect persons leading to gaps in your search spacélse negatives.

Foreground/Background Segmentation

As the scenes were often very busy a motion estimation approach [106]sedsfor segmen-

tation as it requires no prior knowledge of the background, and feooiséhe persons that are

tor v can be calculated from the partial derivativg&p;); ly(pi);lt(pi) with respect to position
p=(Xy) and timet:
v=(ATA) ATB: (6.1)
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2 3 2 3
Ix(p1) ly(p1) lt(p1)

where A= IX(PZ) Iy(_pZ) and B= ItFPZ) (6.2)
Ix(Pn)  Ty(Pw) lt(Pw)

The magnitude of is then used to determine areas that are moving foreground regions $ly-thre
olding and retaining pixels of higher magnitude. The resulting binarised imate segmen-
tation result omotion maskand is used as an input to the detector. An example of the motion

mask result can be seen in Figure 6.2(a).

Detection

Ideally detection results should provide accurate detection results oy peeson in a given
frame. Obviously this is an unreasonable assumption in real world data wieepeople within
a scene are often occluded. In order to guide the detector to the regimnsrest, the detector
is run on the pre-segmented image described above. This helps to redunentber of false
detections on the background and also to reduce the overhead of detdotistationary people,
a common sight in airport scenes. Detection for this system was done usiogiacale part-
based detector [44]. The detections are formed from the combinatiomof &ull body) detector
that is applied at several scales, and part models of a person thaipdisglat higher resolutions
to the corresponding full body detections. The root Iter is convolutedssthe image at several
scales on a pyramid of image resolutions and a score for the lIter is obtagreglth point
p=(xy,s) at location(x;y) and scales. Each of the parts is then convoluted through a subset
of the image based on the location relative to the root detection. Detectiodgsterenined by
computing an overall score for each root location according to the lEstment of each of the
zparts:

scord Po) = max scord Po;:::; Pr); (6.3)
P

1525 Pz

wherepyp is the location of the root lIter angby;:::; p, are the locations of the parts. For further
details the reader is referred to [43].

The detector was trained using the PASCAL 2009 pedestrian models [3&)llasting
dataset speci c training samples is a very laborious task. The use of thegigdraining set
still gives reasonable performance, as can be seen in Figure 6.2{lheldetector does not per-

form well on all the camera views. Firstly, cameras where the object oesités too far away
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(a) Motion Mask

(b) Detection Results

Figure 6.2: Example frames showing the result pf@otion segmentation and Ipedestrian
detection on the same frame of video.

from the camera itself means that the resolution of the people is too low for thetoieto work
effectively. Secondly, cameras that cover busy areas are heaf@btef by inter-person occlu-
sion, which drastically reduces detector effectiveness as the roatipdels cannot be located.

For cameras that are effected by these two issues a separate detectiod wetincorporated
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by grouping foreground pixels intalobsunder the assumption that foreground regions are likely

to be people.

Segmentation of Detection Boxes

For a given frame, the pedestrian detector returns detection boundieg bmr each region in
the image it believes to be a person. The initial bounding boxes can betegtfemm the orig-
inal image frames, thus containing both the foreground region (the pexsdrthe background
information, or from the segmented image. While re-identi cation can be pmdd on the
bounding boxes alone [61, 133], the removal of the backgroundmegiltikely to improve the
accuracy of the appearance models, as shown in Section 4.4.4 providisggimentation is ac-
curate enough. Two predominant removal techniques were tested towebdy effected the
re-identi cation results. Firstly, a subset of the motion mask obtained in Se6tioh was used
to identify possible background pixels. As one cannot rely on perigicinaated segmentation
the second approach was a simpli ed ellipse shaped mask, used to se¢panragion around the

edge of the detection window that is likely to contain background pixels.

6.1.2 Single Camera Tracking

After appearance features, such as those described in Section Ee®®racted from each of the
detected people within a camera view, the next step is to form temporal condesces through
tracking. The desired results from this stage are sets of related detectiatesning one or more
detection of the same person, referred ttrasklets This stage has two main advantages; rstly,
by forming temporal correspondences between observations of thepsaswn a more stable
appearance representation can be formed from several frameswdé¢oe Secondly, grouping
observations of the same person reduces the number of observatibiisetihe-identi cation
step has to search through. For example, if there pepple and/ frames, without tracking this
would giverv tracklets rather thantracklets ofv related frames with perfect tracking, the later
of which is clearly preferable to re-identi cation.

The tracking process in this system is constrained to the output of thetpadetetector,
which may not detect a particular person in every frame. Tracklets aretbby assigning each
detection to a tracklet using the Hungarian (Munkres Assignment) algoriti] fo nd the
minimum cost of assignments. The cost functief) used for each tracklet is based on three

main components:
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1. Appearance Costln order to compare the appearance differences between detections, a
cost functionf,p, can be computed between the feature vedtgrand/ , extracted from
detectionsa andb. | Y I indicates the feature vector for chanmelextracted from strig
from detectiora. Histogram Divergence, a cost measure based on Histogram Irtensec
[152], was used that was calculated for each feature channel asleherizontal strip and

the nal result is averaged over the number of strips and channels:

. o
1 o & AL min(l 2" (i); 15 (0))

fapol 23/ 0) = zjW W?'wgl . ad, 1) ©9

2. Spatial Cost:Given high enough frame rates, detections of a person are likely tocreg-oc
within a similar region of the camera view. As such the spatial cost is formed &@D

Gaussian distribution placed at the expected locations of subsequetttatete

x %)%, (v ¥0)?
v y9*

fspat - 1 e 252 2s : (65)

wherex, andy, are the(x;y) positions estimated from the previous detections in the track-
let using a Kalman lter [16]. The Gaussian variance parameat&rcan be used to modify

the spatial cost for smaller detections, busier scenes or different fiatese

3. Size Cost:As a person moved through a scene the size of the detection boxes ghange
dependent on the distance or angle from the camera, but these claaagasall unless
the frame rate is very low. In order to ensure that subsequent deteat®nst disjoint in
terms of height and width a size cofi,e is incorporated. This is calculated in a similar
approach to the spatial cost using Kalman Iter and 1D Gaussian distribugiaept the
height and width are modelled independently and the nal cost is taken adtiplioation

The overall cost functiofr () can be calculated by taking a weighted summation of the cost

components:

FO = chfappt tbfspart Bfsize (6.6)

where the weightsh + b+ ds = 1. Obviously, for most scenarios one cannot assume perfect
tracking results and some compromise must be made between a high thresth@léppearance

score or a low Gaussian variance and a lower threshold or a higheticvarighe former likely to



6.1. System Designl125

give several tracklets for a single person, while the latter risks mergingéople into the same
tracklet. A preference is taken to obtaining multiple tracklets for a single petisis is because
merging multiple people into a single tracklet would mean they are less likely to bd fhuring
the re-identi cation stage. The weighting of the appearance, spatialiaadasts was not fully
explored within the scope of this chapter due to the large cost of manuaiatien of tracking
results. Crude tuning was performed on a small sample of data with weightitig,d4 and
0:2 for appearance, spatial and size costs, respectively. Tuning efeéigbting almost certainly
effects the overall score of the system, and this is something that couldol®ezkon a fully

ground truthed dataset as part of the future work.

6.1.3 Tracklets Appearance Comparison
The appearance component of the re-identi cation stage is formed frosombination of a
single frame matching technique used to compute a score for each pair ofiaieteand a

tracklet score that forms the overall appearance score between tktetsa

Matching Techniques

To compare detections a scdrean be computed between the feature vedtgend/ ,, extracted

from detectionsr andb, wherel 5 "] indicates the feature vector for chanmel extracted from
strip j from detectiora. In order to determine the best overall performing technique a comparison

was made between the following methods:

 Kullback-Leibler divergence (KLDP5], in which the KLD is calculated for each feature
channel over each horizontal strip and the nal result is averagedtbe number of strips

and channels:

J ()
9 I a(i) Iog, N0 (6.7)

1
zZjW

frio(laslp) =

|| QJoN

é
w2 W

» Bhattacharyya Coef cienfl1], as with the KLD above, the Bhattacharyya Coef cient is
calculated over each feature channel and horizontal strip but ipand/ (i) must be

normalised before computation.
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» Histogram Intersection (HI)152], in which the HI is calculated for each feature channel

over each horizontal strip and the nal result is averaged over the euwibstrips and

channels:
o 2 AL min(la(i); /(i)
far(lalp)= —~ T 6.9
HI(la;l'b) ZJV\'jWaz‘ng PERVING) (6.9)

* RankSVMFor the ranking approach from Chapter 5 the RankSVM was chosertlwer
Ensemble-RankSVM as performance is a key issue in application bagethsysind the
RankSVM has a marginal performance gain. Training the RankSVM regjarany la-
belled pairs of images between a pair of cameras, which can have sulbsteamtieal over-
heads. In order to reduce this, a general inter-camera RankSVM mwaddtained using
the static image pairs extracted from the i-LIDS dataset used in Section s3orsisted
of all the 208 pairs of images across Cameras 1, 2, 3 and 5, as Camesdethaeople

passing through it.

It should be noted that the CBTF and A-CBTF from Chapters 3 and 4 marested in this sys-
tem as the per-camera manual training phase was deemed too time intendive RacthkSVM

approach implicitly handles the smaller lighting changes.

Multi-Observation Matching

Many of the previous re-identi cation works [20, 41, 61, 133, 178}ue on datasets which are
constructed from single images, or contain small sets of images extracted frimleo [41,131-
133, 178]. One of the main reasons for constructing datasets in this maheramount of time
required to hand label a whole video sequence on a frame-by-frariseidasry high. However,
in order to produce a working system on a full video dataset, or live carfieed, a method
must be used for dealing with multiple detections of the same person such adltipéerimnages
contained within a tracklet. In order to compare two tracklets, a score cprodaced between
every combination of detections within the two tracklets. However, this pexis@ni cant
computational overheads due to the number of tracklets involved in re-idatiobn. To reduce
this overhead the detections from the user nominated tracklet are mergedsimgle feature
distribution, / and comparisons are made between this and all the detections in the tracklets
from other cameras. Given that a tracklet of personntainingn detections is de ned a®, =

fl {; | é; ::2;1 )\, the overall appearance scofe petween persolnand the user-nominated person

k can be computed using one of the following:
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* Mean This ensures a high average of scores across all combinations oficietefrom

the two tracklets:

fuean(QcQ) = & F(1) (610)
b=1

« Median Similar to the mean, this ensures that the average score is high, but iféessdef

by outliers.

» Max. Taking the highest of the scores assuming that correctly matching trackildiave

particular detections that are closer in appearance.
Fuax(QcQ)) = max(f (1'%10); 8a= 1;:::;n (6.11)

* Min. Taking the lowest of the scores under the assumption that all of the detewatithin

the tracklets will give high score values.
fvin(Qe Q) = min(f (F151)); 8a= 1;::::n (6.12)

6.1.4 Incorporating Transition Distributions

Although the other chapters in this thesis did not incorporate camera trarisitioas the focus
there was on appearance matching, it is utilised here as a cue for re-gigiun as the cameras
are known to be relatively close in proximity and the transition time can be usedbstesitially
reduce the search space. As cameras 2,3 and 5 have multiple entry/exisragd there are
multiple routes between cameras, automatically calculating the transition times usingdmeth
like that of Makriset al. [109] are not feasible. Instead, a manually selected sample of people
were chosen for each camera pair.

A person can be detected at any point during their traversal of a caegrebecause of this
the transition times are not calculated between entry and exit regions,dnthewvhole camera.
To this end, the entrance framhend exit framd are recorded for each perskfor each camera.
Consequently, the transition time distributidrcan be estimated by forming a histogram of the
possible frame pairings between samples from a given camera pair akypeittin 2. Note that
T is then normalised and used as a probability distribution. Comparisons detisaokmultiple

detections are performed combinatorially over the detections, with the higgmsttaken as the
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temporal prior scor@ :

T(QuQ)= maxT(i;})); 8i=t& ;f28j=1tP ;&P (6.13)

The highest score is chosen to allow a little more deviation in the transition times than o
measures like the mean. A mean of the comparisons would heavily favouletrpeks whose
distribution was closest to that @f, but would penalise people who take longer to cross through

a single camera.

Algorithm 2: Computing the Transition Time distributidn

Data: Entrance frameg,2 andtp, and exit frameg2 andf? for every persork from
camera paifa;b)
begin
fork=1, ;Kdo
fori=t2 ;f2do
for j=t2 ;fPdo
| incremenfT(j 1))
end
end
end
end
Output: histogram of transitions timek,, for camera paifa; b)

Final Matching Score
In order to compute the nal relative matching scdfe and thus produce the ranked list of

results, the appearance score is combined with the temporal prior:

F(OcQ) = T(Qk;Ql)Zf (Q Q). (6.14)

whereZ is a normalising constant. As this work was part of an industrial prototydeuader
time constraints no quantitative validation was performed on the inclusion ofrtigeotal prior.
However, it has been shown in previous works [56, 78] to have ataofis impact in the re-

identi cation results
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6.2 Experiments

6.2.1 Scenario: i-LIDS MCT Dataset

The i-LIDS Multi-Camera Tracking Scenario [119] is a publicly available sietaleveloped by
the UK Home Of ce Scienti ¢ Development Branch (HOSDB). It was desdrio allow vision
groups to test tracking, detection and re-identi cation algorithms on realiati abtained from
London's Gatwick airport. The data itself consists of over 50 hours atafge from ve camera
views covering a range of times and crowd densities. The main goal of tasadds to perform
comprehensive tracking of people through the scene, where thedytouth bounding boxes
of target individuals are used to test a given system. However, in thigtehthe aim is not
to track people over all the cameras, instead the focus is on a post-eeech Hased system,
motivated by the ranking formulation in Chapter 5, where an operator caninate a person
in any view and search for similar individuals in different views. The dgtésrms a very
challenging combination of disjoint cameras, busy environments and hu@ioa in inter-

camera appearance through scale, pose and illumination differences.

(@) Cameral (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 5

Figure 6.3: Sample images from the ve cameras in the i-LIDS Multi-CameraKimgscenario
[119].

Cameras and Layout
Figure 6.3 shows example frames taken from each of the ve camera viéasiera 1 shows

an enclosed area with shops on either side whereby the people walk feobottom left to
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the top of the view. The camera is placed such that each person is absergeod detalil,
but some occlusions take place. Camera 3 covers a central region betevegal shops, while
Camera 4 covers the entrance to two lifts that remain unused in much of theQtatezeras 2
and 5 are patrticularly challenging as they cover much larger regions tbatgass people at
starkly contrasting distances from the camera. Camera 5 has the addéehptbat is it the
least constrained of the camera views, meaning it has many entry and iexs {pat complicate
both inter-camera transition time estimation and tracking. The layout of the cacetde seen
in Figure 6.4. The main ow of people is from Camera 1, through the rearah€a 2 into
Camera 3, then round to Camera 5. Only a subset of the people that mov€&mera 2 to 5

pass through Camera 3, and many of these pass under the cameratvid.o

Figure 6.4: Floor plan of the i-LIDS camera layout, showing camera locatods elds of
view, at London Gatwick airport. Image from the National Information Texdbgy Laboratory
website [96].

Validation Set

In order to tune some of the parameters and setting described in Section et Sf aalidation

samples had to be manually extracted from the data. As hand-labelling framieadklets in

each view, and then across views is a very time consuming process a ganiised approach
was taken. Firstly, the detection and subtraction algorithms were run onla segera view.

The resulting tracklets were then loaded into a MATLAB-based tracklet gditial. This en-

abled the merging of tracklets of the same person, to allow the connectiorody piacked
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people, and the ability to remove poor detections from a given tracklet. Togegs was re-
peated on several cameras. Secondly, these edited tracklets weie asether MATLAB tool
to nd correspondences between views. The nal validation set wagxsed of 26 sets of pairs

of tracklets.

Testing Set

In order to test the overall performance of the system a large testingasdabelled from three
of the i-LIDS videos; 4i, 10g and 4j, corresponding to scenes thatared as easy, medium
and busy by the i-LIDS dataset. The process for obtaining the testingetiatas different to
the validation set, as the detection rates needed to be analysed and no megmuanhtion of

the tracklets could take place. Instead, people from the testing sets whonaeually recorded
using a brief a written description and camera entry/exit times. A total of 16@lgdrom the

three video clips were marked as being in two of more camera views.

6.2.2 Localisation Results

The rst aspect of the localisation results to consider is that of the detecites of the system.
Figure 6.5 shows the detection rates of the 152 people who pass throughhaorone camera.
The blue bar indicates the percentage of the people who appear in agivema, while the red
bar indicates the percentage of those individuals who are detected lysthms The appearance
rates for Camera 1 and 2 are almost 100% as the majority of people who dstareh do so
through Camera 1 and the exit to Camera 1 leads almost directly to Camera 2tamtpo note
is that only a subset of the people who pass through more than one canier@ noaCameras
3 and 5, with only a subset of those being detected. The drop in detectiofordCamera 3 is
partially because many of the people that do pass through this view areanilly visible as
they move across the bottom right, while in Camera 5 there is a huge variatiodnaisrom
the camera as well as a higher level of inter-person occlusion than atimeras.

The effect of the two background removal techniques on the validatioplsa can be seen
in Figure 6.6. Interestingly, the ellipse method appears to gives no improvedmeine re-
identi cation rate, indicating that removing the edge of the detection window isanourate
enough a segmentation to be useful. However, the motion mask taken froregimerstation
stage indicates that the background segmentation results were accuragd ¢ém have an im-

provement when building the appearance models, with higher results withtaldoKLD. The
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Percentage of set

1 2 4 5
Camera

(a) Appearance rates of validation set

Detection Rates
T

Percentage of set

1 2 4 5
Camera

(b) Detection rates of those that appeared

Figure 6.5: Appearance and detection rates in the testing videos. (ajsdg@mumber per-

centage of people who passed through more than one camera thateghipezaich of the given

cameras. Of those people that did appear in a given camera (b) indicafesr tientage that were
actually detected by the system. Note that no people enter Camera 4, whilale§9% appear

in Camera 3 and less than 75% in Camera 5.

RankSVM shows the highest performance, with the motion mask providin§w&id@rovment

over the Ellipse and standard methods.
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Figure 6.6: Experimental results comparing the effects of using diffdrackground removal
techniques on the detection windows when extracting features for ré-téd¢ion. Using an
ellipse as a nae segmentation by removing the outermost pixels provides no improvement on
the validation set, while using a motion mask obtained from the backgroundastibtr stage
yields better re-identi cation rates.
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6.2.3 Tracklet-Matching Results

A comparison of the multi-observation scores can be seen in Figure 6.7. tii@vealidation
samples, the mean achieves the best overall result on all but the Bhattechaef cient mea-
sure, whereby the max has the better performance. A comprehensipadson of the different
matching, segmentation and multi-observation techniques can be seen inG-gjurae highest
overall performance was obtained from the RankSVM approach, withekescores found in
trials 1 and 4. Trial 1 corresponds to the motion mask segmentation combined evithegmn
score, while trial 4 is a combination of motion mask and minimum scoring. While the ar@hn
minimum seem to lead to a similar score on the validation set, the mean may be mogiappro
for the nal testing data. The reason for this is that the validation set hasatigicollated track-
let results that contain only images of the same person. Itis quite possibie thatesting data,
which will rely entirely on automated tracklet generation, that the tracklets matain poor or
detections belonging to different people. Under these circumstances threumirscore would
base a match on the poorest score, which could be due to a mistake in thet gacleration pro-
cess. Consequently, the nal matching technique combination chosen atasf ttmotion mask

segmentation, RankSVM and mean scoring.

0.35
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Figure 6.7: Comparative results for RankSVM, Kullback-Leibler diesige (KLD), Bhat-
tacharyya distance and Histogram Intersection (HI) using different fmatliie matching tech-
niques.

6.2.4 Overall Results

Unlike the datasets used in Chapter 5 where the data is exhaustively mamuaihataed, the

correct match is not always contained in the dataset during re-identircatithis is because
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Figure 6.8: Comparative matching rates for RankSVM, Kullback-Leibleerdience (KLD),
Bhattacharyya distance and Histogram Intersection (HI) over separameter trials based on
varying the background subtraction and multi-frame matching metrics. Thathlgs used in
each of the trials are detailed in the table. The RankSVM provides the higtagshing rate
over all trials, the highest scoring of which were trials 1 and 4, cormedipg to motion mask
background removal with mean matching and minimum score matching respective

they either do not actually reappear in a given camera, or they are weutteld This results in
an overall lower overall matching rate than the manually extracted data, dris realistic.
In addition to the 152 individuals that passed through more than one camang, more were
present in only a single camera and these constitute additional negativeesangpeasing the
dif culty of the data. For each of these people a camera number wasmtladsandom from the
cameras that they passed through and this was taken as the nominatiomweah Inomination
between 1 and 5 frames were selected, again at random, to form theappemodel from the
tracklets that corresponded to the nomination frames. Next the searcHasnped, with the

top 20 results being returned from each camera and are ranked lraadith@ar combination of
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the transition time probability distribution and the result of the RankSVM. Thie saare is then
taken as the highest returned correct match. The overall systemteddton performance can
be seen in Figure 6.9. The RankSVM achieves a 30.3% chance of thedoestt match lying
within the top 5 returned results an 84% improvement over the Bhattachaaggdirie method,
which only acheives 16.4%. This is increased to 45.5% correct matchestopti20, as opposed
to the 33.6% of the baseline, with the RankSVM providing a clear advantagyeativanks on

the CMC curve, consistent with Sections 5.3 and 6.1.3.
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Figure 6.9: CMC curve showing the overall re-identi cation performaofdtde system. Compar-
ison is shown between the baseline Bhattacharyya distance metric (reithediedture selection
based RankSVM (blue). Note that the number of individuals in the sceaeaiftber limit of the
x-axis) was not manually veri ed but was in the region of several haddr

6.3 Discussion

While the overall results are impressive they do give some indication ot@&spethe dataset
that are unfavourable to the re-identi cation task. Primarily is that of carplreement. While
cameras are often already in &tand are simply fed into computer vision systems, the effect of
poor camera placement can been signi cant. For example, Section 6.1slthatehe detection
results on Cameras 2 and 5 using a conventional detection algorithm wgrpog due to the
stark contrast in distances from the camera. While the blob-based deteckad well in Cam-
era 2, the low camera angle in Camera 5 caused occlusions to pollute the d@Eapioe 6.5).
While the detector worked well on Camera 3, the camera was actually pladedéd@ the main

walk way and thus many of the people who enter this area pass under theagatier than
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through its view.

Nomination Camera-Specific CMC
100~
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Figure 6.10: CMC curve indicating comparative results of nominating als¢arget in each of
the 5 cameras (note: camera 4 contained no people). Note that nominatetg fewghn Camera
2 gives a much lower matching rate than Cameras 1,3 and 5.

The distance of the main walking path from Camera 2 also caused problemsewinacting
the appearance features for re-identi cation. Often the target indiiduso far away that all
texture information is lost and the appearance is only a few pixels of cdfogure 6.10 shows
the effect of nominating a target individual in each of the camera viewse M@t nominating
from Camera 2 produces a poor appearance model to search fronresulisng in poor re-
identi cation results. To emphasise this Figure 6.11 shows the result of ieagthe nominations
from Camera 2 from the testing set, with the resulting CMC curve shows aageref 12.2%

improvement.

6.4 Summary

This chapter detailed the construction of a prototype CCTV application andaimponents
that are incorporated in its implementation. The goal of this system was to praxidperator
orientated search through the network of cameras for persons ofsnt&ve different localisa-
tion approaches were used to detect pedestrians where the cametmuosnekere appropriate,
and utilise motion information to segment larger regions where they were noérms of re-
identi cation, the experiments in Section 6.2.2 show that further utilising the moticsksntm
remove background pixels makes an improvement to the re-identi catioftgegudditionally,
taking the mean score of the detections between two tracklets combined with th&\Rd

method has highest overall performance.
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Figure 6.11: CMC curves of the overall results vs the matching rate whianfidem Camera
2 is removed. Note that the poor placement of Camera 2 means that the low aidlity

observations reduces the likelihood of re-identi cation. By removing tha &@m this camera
results in a 12.2% improvement on the test set.

An issue with generalising re-identi cation is the reliance of several of tmegonents in the
system on training data. In order to reduce the manual overheadsa@fpiirsuch training, both
the detector and RankSVM were trained using existing datasets/models. Tladétramsition
distributions on the other hand are clearly dataset-dependent andudeene@nual labelling of
some of the frames, although Section 6.1.4 suggests a method for minimising thiedatoe
only a few frames per person, per camera pair.

Detection of persons in the system is a signi cant problem. While most of tbplpare
detected in Camera 1 and 2, only a few of these people either appeardatacted in Cameras
3, 4 and 5. Part of the problem is that the airport scene is very opennvaitly entry and exit
points, making it hard to encompass the movement of all the people in the Jeddidonally,
Section 6.3 indicated that camera placement can play an important role in ¢oévefiess of
re-identi cation systems. In hindsight, the placement of Camera 2 relativeetontin ow of
people through the scene is a poor choice, as the low resolution of detetiakes tagging very
challenging. Despite these points, the overall results of the system argsprg with 30% of

nominated individuals being found within the top 5 returned results.
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Chapter 7

Conclusions

7.1 Studied Topics and Achievements

This thesis has set out to explore the effectiveness of using variategts to mitigate the
effects of the variation in a person’s appearance between disjoint aanssvs and distinguish
between people of similar appearance for the purpose of re-identi catiovo different ap-
proaches are taken in order to achieve this goal: (1) estimation of an artezra brightness
mapping function to mitigate the effect of differing illuminations between camemdsoaer
time, (2) an operator focused ranking method that learns a subset aéahed space better
suited to re-identi cation. Additionally, the ranking paradigm is incorporated a post-event
search based surveillance application.

Lighting has a substantial effect on the appearance of a person ankecseverely con-
trasting between views. In order to mitigate its effect, Chapter 3 builds on tBegh Transfer
Function (BTF) approach [78] to modelling inter-camera illumination changeSumulative-
BTF (CBTF) is proposed that attempts to retain under-represented énfoumation from the
training set in order to provide a more accurate mapping function. Additighia#hybi-directional
nature of the mapping function was explored, which yielded a performgaicewhen consid-
ering observations whose matching scores were high in both directiorssempirical results
show that the CBTF and its bi-directional counterpart outperform otrdédenti cation tech-

niques when trained on a dif cult dataset containing sparse colourrrdton.

There is an important issue with the CBTF method detailed in Chapter 3 in that tihe inte
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camera brightness mappings are speci ¢ for a the lighting conditions unidiehwhe training
set was obtained. lllumination conditions within a camera view are rarely curstar time,
they are affected by the weather, time of day, camera settings and humderértee such as
turning on/off a light. To this end, Chapter 4 set out a framework for tipgdhe inter-camera
models using some scene context, without the need for manual retrainggou®r approaches
had either relied on static illumination [78, 132], iteratively build models withoutsatering
the effect of illumination change [56], or bootstrap retraining by utilising canransition time
information [26], which is only feasible in spatially constrained environmdnttead the adap-
tive CBTF (A-CBTF) draws contextual information from the backgroilhanination changes
over time to infer the affects on the foreground illumination. This allows an tipgiatep to
be incorporated that enables the original models trained from labelled dataresused when
the illumination conditions change within any camera-view. While the lighting withineaec
will have a different affect on the foreground and backgrounibregy the experiments show that
utilising the background information provides an adequate approximatigerkxents are also
conducted to provide a comparison to human performance that demonsgraiédtity of the
problem and provide an indication the relative performance of the A-Cippiroach. The effects
of segmentation accuracy are also explored. As the CBTF is basedretatiog proportions of
colour foreground/background segmentation is required. It is shoatnotlly a small drop in
performance is noticed with a simple segmentation algorithm and that utilising a tthteant
method would likely achieve performance levels closer to that of the mamygbicig.

Many re-identi cation works focus on a selection of feature and objeptesentation cou-
pled with a followed by template matching using a direct distance measure dhdspendently
from the data. However, re-identi cation by this approach is dif cult base there is often too
much of an overlap between feature distributions of different objectsszh so that given a
probe image, an incorrect gallery image can appear to be more similar to thesthem a correct
gallery image. Instead, Chapter 5 takes a different approach to ré-ea¢ion and reformulates
it as a relative ranking problem, in which the absolute scoring is replacaddlgative ranking of
these scores that re ects the relevance of each likely match to the probe thetgs more tol-
erant of large intra/inter-class variation. Unlike the previous chapteocs@/bhppearance models
were based on colour alone, this chapter also incorporates a featurepresentation contain-

ing colour, texture and structural information. As this over-rich featpees is likely to contain
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subsets of features that are more useful a Support Vector Machifid)(&nking method is
considered to learn a weighting of these features. Previous featurbtimgighave been based
on boosting [61], in which a ranker is obtained on a per feature basisputitonsidering the
entire feature set simultaneously as the SVM does. This is re ected in tregimgntal results,
where by the SVM-based ranker consistently out performs both théirmseetrics and the
boosting approaches. While the RankSVM also has a computation perfmergam over other
learning methods tested, it does require a lot of memory to construct the grai@mmples. An
extension was then proposed to reduce memory overheads, thus scalapitigining several
SVM rankers on smaller subsets of the data, then using boosting to comhimeThe resulting
Ensemble-RankSVM maintains a similar level of performance while reducingyémeory cost.
Chapters 3,4 and 5 looked at some key components for re-identi catibegoh was tested

in relative isolation from the whole re-identi cation process and using miinganstrained
datasets. Chapter 6 takes a step further towards a fully working protwtygkich the whole
pipeline is considered from multiple video input streams, through persofisaiian, feature
extraction, tracking and nally the re-identi cation step itself. Experimentsaveonducted
on sections of video from the i-LIDS multi-camera dataset [119] of varyawgls of crowd
density. The results show high accuracy in detection and re-identi catepssre-enforcing
the results of ranking methodology detailed in Chapter 5. The results als@giindication as
to the effectiveness of camera placement to re-identi cation. One of theiees in particular
was placed at a large distance from the region of interest, resulting in mhial¢e detection
tasks as well as low pixel-count detections leading to poor feature extramtih thus lower re-
identi cation rates. The other camera placement issue was that of thevagréshenvironment
created by not covering the entry/exit points to a scene, resulting in peopfEassing through

some cameras.

7.2 Future Direction

e Currently the CBTF and A-CBTF methods use only a single spatial regioadorithe the
appearance of a person. This makes it very hard to distinguish betweeptepvho are
wearing a grey top and blue trousers or those wearing a blue top andrgusgrs for
example. Adding in some spatial regions like those used in Chapter 5 may all@asec

separability of people. An interesting addition to this would be to separate giense
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before the CBTFs have been calculated to see if there is a differenceaiiséutlighting
between the upper and lower regions of the body. For example, spotlightiior scenes
often cause self shadowing as a person walks through the scenpasatizgy the CBTFs

may provide a more accurate mapping.

An issue with the datasets used in Chapter 5 is that both the VIPeR and ideti®are not
separated into camera speci c images. That is both datasets are made ugefpaics
taken from several camera views and separated randomly into two grbhigdimits the
effectiveness of the RankSVM and Ensemble-RankSVM training stagiheg are being
trained for a generic re-identi cation case. Building a general modelitseedvantages,
namely fewer training samples required overall and a wider application. ei#mwcol-
lecting a large dataset containing image pairs that are camera speci ¢ wimceamore

thorough testing of the algorithms and would likely lead to a performance seeerall.

A possible extension to the RankSVM approaches in Chapter 5 would mmsider dif-
ferent loss functions in Equation 5.4 that are more relevant to the ramk& stdhe Cu-
mulative Matching Characteristic. For example, ial. [173] consider an loss function
that allows optimisation of the Mean Average Precision (MAP) score usirexsmsion

of Tsochantaridigt al.'s [157] structural SVM.

With the operator making the nal correspondence between obsersaitiothe system
de ned in Chapter 6 a suitable extension would be to incorporate their &kdlAs the
human re-identi cation performance is much higher than that of the systermadkehing
pairs that the operator selects could be added to the training set for th&Renand
temporal priors. Updating the RankSVM after every search would bezeadous, but a
batch process of retraining could be run afiesearches. Given suf cient time, enough
new training samples may be collected to train the RankSVM on a per camerapir b
which would almost certainly lead to better ranking results. As the transition tietegbn
views can be quite complicated due to people walking at different speedsasmg shops,

this addition of training samples would provide a more accurate distribution.
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