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Abstract 

 

Platelets play a pivotal role in both normal hemostasis and pathological bleeding and 

importantly also contribute to the development of atherothrombosis. Even though 

platelet function tests traditionally are utilised mainly for the diagnosis and management 

of patients presenting with bleeding problems rather than thrombosis, new and improved 

platelet function tests are now increasingly used to monitor anti-platelet therapy in 

patients and to identify patients at risk of arterial disease. Based on light transmission 

traditional aggregometry, this thesis reports data from a new model of platelet 

aggregation using a modified 96-well plate format. This method allows examination of 

many agonists at a range of concentrations at the same time. Thus, more information can 

be collated about different aspects of platelet function and smaller assay volumes can be 

used while still obtaining reliable results. To further utilise this method, agonist 

combinations were used in the 96-well plate approach that resemble the actions of 

machines such as the PFA-100, which uses combined agonists within a cartridge, but at 

much lower cost. Platelet cyclooxygenase has been widely studied; however, the functions 

of platelet 12-lipoxygenase and NADPH oxidase in platelets are still generally not 

understood. Data presented here demonstrate that both pathways are partly essential in 

platelet activation following exposure to stimulatory agonists. To further explore the 

relationship between dietary intake and the risk of atherothrombosis, an in vivo study was 

performed to observe the antiplatelet effects following from consumption of dark 

chocolate in baseline hypertensive patients. Based on findings in this thesis, it can be 
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concluded that this new method of evaluating platelet aggregation and adhesion in a 96-

well plate format is very useful, and that new observations into influences on platelets of 

pathways other than cyclooxygenase may be beneficial in the development of new 

antiplatelet drugs.  
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1.1 PLATELET 

 

1.1.1 Introduction 

 

Platelets are derived and released from bone marrow megakaryocytes in the bone 

marrow. Once the polyploid cell reaches maturation, it can form proplatelet extensions 

from which platelets are released (Patel et al., 2005). Platelets are the smallest formed 

elements in the blood, and circulate as anucleate discoid cells with a mean volume of 

about 7 to 9 fL and have a life span of approximately 8-10 days. Thrombopoietin is the 

major hormonal regulator of platelet production that binds to c-mpl, a specific receptor 

expressed on megakaryocytes and platelets. However, recently nitric oxide (NO) has also 

been reported to stimulate platelet production from megakaryocytes (Battinelli et al., 

2001).  

 

Platelets consist of many organelles, such as mitochondria, lysosomes and three types of 

granules. Dense granules release adenosine diphosphate (ADP), adenosine triphosphate 

(ATP), serotonin and calcium ions. Alpha granules release constituents include fibrinogen, 

growth factors (platelet derived growth factor, β-transforming growth factor), and 

cytokines (platelet factor 4, neutrofil-activating peptide-2, β-thromboglobulin). Lysosomal 

granules contain acid proteases, acid glycosidases, acid phosphatases, and aryl 

sulphatases (McNicol et al., 2003). Plasma membrane of the platelets consists of 
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glycoproteins (GPs) that bind specific adhesive proteins to promote platelet-to-surface 

interactions (adhesion) and platelet-to-platelet interactions (aggregation) (Rand et al., 

2005). Recent studies demonstrate that platelets and many of their products are 

important not only in hemostasis, but also essential in immunoregulation and 

inflammation as platelets produce mediators that regulate inflammation. 

 

Normal endothelium not only acts as physical barrier, but also maintains local vascular 

homeostasis by assuring regular vasopermeability, by promoting vasodilatation, by 

limiting activation of coagulation cascade and by inhibiting platelet aggregation, white 

blood cell adhesion and smooth muscle cell proliferation (Zardi et al., 2005). Under normal 

conditions of blood flow and shear stress, the vascular source of nitric oxide (NO) which is 

synthesized from L-arginine, is likely derived from biochemical agonist- and shear-

dependent release of endothelial NO to prevent excessive platelet activation (Cooke et al., 

1990). Endothelial NO attenuate intracellular signalling of platelet activation by increasing 

levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP) (Brass, 2003). There are evidence showing that in suspended platelets, NO inhibits 

platelet activation by targeting inositol triphoshate (IP3) receptor (Cavallini et al., 1996), 

TXA2 receptor (Reid et al., 2003) and vasodilator-stimulated phosphoprotein (VASP) 

(Halbrugge et al., 1990). Interestingly, NO also causes down-regulation of Ca2+ levels thus 

preventing platelet granule secretion and platelet GPIIb-IIIa activation (Le Quan Sang et 

al., 1996). NO also inhibits platelet activation independent of cGMP pathway by targeting 

Ca2+ and PI3kinase thus inhibit GPIIb-IIIa-mediated adhesion (Oberprieler et al., 2007). 
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Under conditions of endothelial dysfunction, generation of platelet NO from may become 

important in regulating platelet responses with active constitutive NO synthase has been 

found in platelets (Sase et al., 1995). A previous important study showed that NO synthase 

inhibitor, L-N-nitroarginine methyl ester (L-NAME) reduce NO production in vitro by 

causing a decrease of cGMP level and increase of serotonin release (Freedman et al., 

1996). In addition, this study also suggested that platelet-derived NO regulates platelet 

recruitment to the growing thrombus. Endothelium expresses constitutive form of nitric 

oxide synthase (NOS), endothelial NOS (eNOS) and under certain condition such as 

inflammation, could also express inducible NOS (iNOS) (Naseem, 2005). Recently, platelets 

also have been shown to express NOS and produce NO to inhibit other platelet 

recruitment thus keeping aggregation under control (Pronai et al., 1991) (Vasta et al., 

1995) (Sase et al., 1995). Sase et al. (1995) demonstrated that only eNOS is present in 

platelet but not iNOS or nNOS, as shown by PCR amplification of platelet cDNA by  eNOS 

primers but not iNOS or nNOS primers. 
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Table 1: Nitric oxide synthase (NOS) isoforms, localisations and functions. 
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Apart from NO, prostacyclin (PGI2), another major product of arachidonic acid metabolism 

is also synthesized in platelets (Hammarstrom et al., 1977) and vascular endothelium 

(Marcus et al., 1978), respectively. It has been demonstrated that an increase in shear 

stress was shown to increase PGI2 synthesis by endothelium (Frangos et al., 1985) and 

upregulate mRNA levels for COX-1, COX-2, and prostacyclin synthase (PGIS) in vitro 

(Okahara et al., 1998).  An earlier study showed that PGI2 inhibits platelet aggregation and 

thrombus formation in vivo (Higgs et al., 1978). PGI2, synthesized from the conversion of 

PGH2 to PGI2 by PGIS binds to IP receptors on platelets (Vane et al., 1998) and has potent 

vasodilator and anti-thrombotic activities (Vane, 1971). PGI2 and IP mimetics such as 

iloprost and cicaprost inhibits platelet aggregation by activating adenylyl cyclase leads to 

an increase of cAMP and reduce platelet intracellular Ca2+ level (Roma A, 1996).  
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a) 

  

 

 

 

 

 

 

b) 

 

 

 

 

 

 

c) 

 

Figure 1.1: Endothelium produces nitric oxide (NO) and prostacyclin (PGI2) that acts as 
vasodilator and platelet inhibitor (a). (b) NO and PGI2 production are increase during 
elevated sheer stress. (c) NO and PGI2 bioavailability is decrease in endothelial 
dysfunction.  
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Platelets circulate in the blood stream without adhering to the blood vessel endothelium. 

However, in response to endothelial disruption, platelets adhere within seconds to 

subendothelial matrix molecules, in particular to collagen. Activated platelets immediately 

change shape, losing their discoid shape, and form tiny spheres with numerous projecting 

pseudopods (Yardumian et al., 1986). Subsequently, additional platelets and leukocytes 

(neutrophils, monocytes) are recruited to the initial platelet layer, resulting in the 

formation of a thrombus capable of provisionally occluding the vessel perforation. 

Hemostatic plug stabilised by fibrin is formed at the site of vessel injury when a blood 

vessel is injured. However, platelet-fibrin thrombi forms on ruptured atherosclerotic 

plaques are responsible for the clinical complications of atherosclerosis, a process of 

plaque formation in the lining of the arteries resulting different development of diseases 

based on which arteries are affected such as peripheral or coronary. 

 

1.1.2 Platelet Adhesion 

 

Platelet adhesion to extracellular matrix is a complex event involving binding of several 

membrane glycoproteins to plasma and exposed subendothelial tissue components such 

as collagen, fibrinogen and von Willebrand factor (vWF) to form a fragile monolayer. 

Human possess  at least 25 forms of collagen (Hashimoto et al., 2002) and many of these 

(I,III,IV,V,IV,VIII,XII,XIII, and XIV) are present in the blood vessel wall (Barnes et al., 1999). 

In addition, type IV collagen is present in the subendothelial basement membrane. vWF is 

an adhesive protein that is secreted by endothelial cells and platelets, and is present in the 
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subendothelium and in plasma. Platelet adhesion is mediated by several cell-surface 

receptors on the platelet such as α2β1 intergrin and glycoprotein (GP) VI collagen 

receptors and GPIb, the von Willebrand Factor receptor (McNicol et al., 2003). Spreading 

of platelet adhesion is accompanied by the secretion or synthesis of several 

prothrombotic factors such as adenosine 5’-diphosphate (ADP), serotonin and 

thromboxane A2 which act in an autocrine/paracrine fashion and activate or prime 

approaching platelets. 

 

1.1.3 Platelet Activation 

 

Platelet adhesion is followed by platelet secretion and activation. However, platelets may 

have been activated prior to adhesion by exposure to circulating mediators. Platelets are 

activated by several agents that play a role in recruiting additional platelets to the site of 

injury which lead to the formation of haemostatic plug or aggregate. Recruitment of other 

platelets crucially depends on amplification systems provided by autocrine and paracrine 

factors such as ADP and thromboxane A2.  Platelet adhesion to the subendothelium 

stimulates the secretion of platelet dense and alpha storage granule contents, including 

ADP from the dense granules, and formation of thromboxane A2 (TxA2), both of which 

promote aggregation. Activated platelets also enhance coagulation by providing 

phosphatidylserine on the membrane surface on which the coagulation factor complexes 

can assemble, thus provide fibrin for the stabilisation of the newly formed thrombus. The 
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generation of thrombin by the prothrombinase complex mediated predominantly on the 

surface of the activated platelets further stimulates platelets.  

 

1.1.4 Platelet Aggregation 

 

Platelet aggregation at site of vascular injury is an important event for the formation of 

the hemostatic plug and also for the development of thrombi at site of atherosclerotic 

plaque rupture. Platelet aggregation occurs when other platelets in free-flowing blood 

subsequently adhere to the initial layer of adherent platelets (Kulkarni et al., 2000). 

Intergrin αIIbβ3 plays an exclusive role in mediating platelet-platelet adhesion contacts in 

which its activation change their conformation from a low- to a high-affinity receptor 

capable of binding soluble fibrinogen. In addition, the dimeric form of fibrinogen enables 

it to cross-link adjacent activated platelets leading to stable platelet aggregation (Kulkarni 

et al., 2000). 
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c) 

 

 

 

Figure 1.2: Intergrin activation during platelet activation by exposed collagen matrix. 

Platelet tethering occurs when von Willebrand factor (vWf) on endothelium binds to GPIb-

V-IX (a), followed by the binding to exposed collagen matrix with platelet GPIV receptors 

to activate platelets (b). This will activates intergrin α2β1 and intergrin αIIbβ3 that will 

binds to collagen and vWf, respectively to stimulate platelet adhesion to site of injuries 

(c). Platelet activation also causes granule secretion of secondary agonists such as TXA2 

and ADP, thus promotes platelet recruitment and platelet aggregation. 
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1.1.5 Platelet Agonists 

 

In the process of maintaining hemostasis, primary platelet plug will be formed as result of 

platelet activation to stop bleeding and prevent blood loss. Platelet activator can be 

divided into primary agonist or secondary agonist. Primary agonist includes von 

Willebrand factor which binds to GPIb-IX receptor in the platelet membrane, and collagen 

that binds to GPIb and GPIIb-IIIa in high shear stress condition or GPVI and GPIa/IIa in low 

shear (Farndale, 2006). Platelet activation by vWf and collagen leads to platelet adhesion 

at site of endothelial injury and stimulates platelet granule release of secondary agonist. 

Secondary agonist includes ADP, TXA2, serotonin and PAF which further activates platelet 

recruitment and aggregation. Platelet activation will also cause conformational changes to 

GPIIb-IIIa that provide high affinity binding site for soluble fibrinogen. This is important to 

strengthen the primary platelet plug by fibrinogen that acts as bridging molecule between 

GPIIb-IIIa in adjacent activated platelets (Kulkarni et al., 2000).  

 

1.1.5.1 Collagen 

 

As a consequence of damage to blood vessels, subendothelium is exposed to the 

bloodstream, which results in circulating platelets reacting with the collagen in the 

subendothelium, adhering to it and forming aggregates on the damaged surface. Collagen 

is a very important physiological activator because of its high content in the 

subendothelium and its strong ability to induce platelet aggregation and adhesion (Jung et 



38 
 

al., 2000). Platelets adhere to exposed collagen fibers and undego activation via a tyrosine 

kinase-dependent signalling pathway (Gibbins et al., 1998), resulting in the activation of 

intergrins (adhesive proteins), which in turn leads to platelet adhesion and aggregation. 

Collagen binds directly to several receptors on the platelet surface, notably intergrin α2β1 

and glycoprotein VI (GPVI), which play a major role in cell adhesion and activation (Jung et 

al., 2000). A previous study showed that in a patient who demonstrated no reactivity to 

collagen, the normal level of intergrin α2β1 was reduced by about 80-85% (Nieuwenhuis et 

al., 1986). Activation causes an increase in the binding capability of the fibrinogen 

receptor, intergrin αIIbβ3 and the secretion of various mediators that culminate in the 

formation of an irreversible platelet aggregate, or hemostatic plug. Even though the 

precise function of intergrin α2β1 and GPVI is still a matter of debate; α2β1 intergrin 

appears to be mainly involved in platelet adhesion (Jung et al., 2000), while the GPVI is 

responsible for activation through a signal tranduction pathway involving FcRγ chain, 

tyrosine phosphorylation and phospholipase C (PLC) γ2 activation (Nieswandt et al., 2003).  

 

1.1.5.2 Thrombin 

 

Thrombin is a strong agonist that can cause complete secretion of the contents of both 

the α-granules and the dense granules, regardless of the concentration of Ca2+ in the 

suspending medium, and independent of strirring, aggregation, or the presence of an 

inhibitor such as aspirin (Rand et al., 1996). It is known that thrombin-mediated platelet 

aggregation is critical for acute vascular thrombosis following mechanical injury or rupture 
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of artherosclerotic plaques. Thrombin is generated from the conversion of prothrombin by 

Factor Xa in the coagulation pathway which its main role is to convert fibrinogen to fibrin 

(Monroe et al., 2002). There are at least three receptors for thrombin on human platelets, 

two protease-activated receptors (PAR), PAR1 and PAR4, and also GPIbα. PAR-1 is a high-

affinity receptor for platelet activation at low concentrations of thrombin, whereas PAR4 

is a low-affinity receptor that mediates thrombin signalling at high concentrations. 

Thrombin cleaves the receptors within the large N-terminal extracellular domain, creating 

a new amino terminal, SFLLRN and GYPGQV respectively. Therefore, specific agonist 

peptides that resemble the new N-terminus, have been designed, for PAR1 the most often 

used is SFLLRN (PAR1-AP), whilst for PAR4 the most potent is AYPGKF (PAR4-AP) 

(Ramström et al., 2008). TRAP-6, a synthetic peptide of a sequence SFLLRN-NH2 can fully 

stimulate PAR-1 receptor function although the potency is 1000-fold less than that of 

native thrombin (Derian et al., 2003). However, the availability of synthetic peptides for 

PAR receptor has provided the means to understand interaction of ligand-receptor 

interaction and to fascilitate drug design. 

 

1.1.5.3 Ristocetin 

 

Another platelet agonist is the antibiotic ristocetin, that is the presence of normal 

platelets and a normal complement of von Willebrand factor (vWf) antigen causes 

GPIb/vWF-dependent platelet agglutination. However, aggregation induced by ristocetin 

at concentrations of up to 1.2mg/mL, may change at concentrations above 1.5mg/mL to 
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platelet clumping due to activation with fibrinogen (Yardumian et al., 1986 145). In 

platelet-rich- plasma (PRP), ristocetin causes a primary and secondary wave of aggregation 

due to granule release. vWf plays an essential role in platelet aggregation. Therefore the 

quantitative determination of its levels in patients with von Willebrand disease is very 

important. The concentration of vWf in plasma can be assessed by its ability to promote 

agglutination of platelets in the presence of the antibiotic ristocetin (Ermens et al., 1995). 

The ristocetin cofactor (vWf:RCof) assay that measures vWF activity in plasma involves the 

mixing of patient’s plasma and commercial formalin-fixed or fresh washed platelets with a 

standard amount of ristocetin, and then determination of the velocity of platelet 

agglutination by the use of aggregometry (Ewenstein, 2001).  

 

1.1.5.4 Thromboxane A2 

 

Arachidonic acid (AA) is an essential fatty acid precursor in the biosynthesis of 

leukotrienes, prostaglandins, and thromboxanes. In platelets, cyclooxygenase (COX)-1 

converts AA to thromboxane A2 (TXA2), which induces and mediates aggregation, and as 

such is an important pathway in platelet aggregation. In addition, exposure of platelets to 

AA not only results in aggregation but also secretion of the dense- and α-granule contents 

dependent upon the conversion of AA into TXA2 (Linder et al., 1979). It is interesting to 

note that despite the fact that AA induces platelet activation, high exogenous AA also 

attenuated platelet activation by increases cAMP levels and decreases cytoplasmic Ca2+ 

concentration, thus inhibiting platelet aggregation and secretion (Kowalska et al., 1988). 
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Agonist-induced platelet stimulation produces a rise in the cytoplasmic Ca2+ concentration 

caused by both release of Ca2+ from the intracellular stores and entry through plasma 

membrane that leads to platelet activation. Previous studies have shown that AA 

stimulates platelets by increasing Ca2+ concentration which was inhibited by COX 

inhibitors but imitated by the TXB2 mimetic, U46619 (Alonso et al., 1990).   The 

measurement of TXB2 levels can be employed to quantify the inhibition of platelet COX-1 

in AA-induced ex vivo platelet aggregation. In addition to that, AA used as an agonist in ex 

vivo aggregometry is specific for COX-1 mediated aggregation (Burke et al., 2003). 

 

The receptor for TXA2 belongs to the group of G-protein-coupled receptors (Offermanns et 

al., 1994). Initial studies showed that G12 and G13 are important in transmembrane signal 

transduction upon stimulation by TXA2 and thrombin, indicating that both GPCR receptors 

are involved in platelet activation pathway (Offermanns et al., 1994). Signal tranduction by 

G12/13-coupled TP receptors causes platelet shape change, and in concert with Gi-mediated 

signalling fully activates platelet aggregation and degranulation (Klages et al., 1999). This 

observation was followed by another finding that showed TXA2 binds to the specific TPα 

and TPβ receptor subtypes leading to G-protein-coupled receptor, Gq and G12/13 signalling 

(Dorsam et al., 2002). U46619, the thromboxane analogue triggers some platelet 

responses, for example platelet shape change and adhesion to surface bound fibrinogen. 

However, there is no detectable aggregation or secretion at low doses of U46619 that 

were effective at stimulating tyrosine phosphorylation (Minuz et al., 2006). 
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1.1.5.5 ADP 

 

As a secondary agonist, ADP is a weak aggregating agent and plays a role in propagation of 

platelet activation that is greatly influenced by extracellular conditions such as Ca2+ levels 

or the presence of platelet inhibitors especially aspirin. The common concentrations of 

ADP used in assessment of platelet aggregation are 1 to 10µM with lower concentrations 

(1-3µM) producing either single aggregation response curves or clearly biphasic curves.  

ADP was identified as a factor derived from erythrocytes which influenced platelet 

adhesion to glass and induced platelet aggregation (Gachet et al., 2006) and plays a very 

important physiological role because it is one of the positive feedback mechanisms that 

act to spread and enhance platelet aggregation for hemostasis. Together with other 

aggregating agents, ADP causes an increase in intracellular calcium from internal 

sequestered stores, as well as extracellularly by influx via calcium channels. Apart from 

increasing intracellular Ca2+ levels, ADP also inhibits stimulation of adenylyl cyclase 

(Cusack et al., 2000). As adenylate cyclase stimulation inhibits platelet activation, it seems 

likely that inhibition of stimulated adenylyl cyclase by ADP has some significance as it may 

offset effects of stimulators of adenylyl cyclase, such as adenosine and prostacyclin, to 

which platelets may be exposed in vivo. ADP-induced platelet aggregation results from the 

co-activation of two P2 receptors, G-protein-coupled receptors (GPCRs), P2Y1 and P2Y12 

(Mangin et al., 2004). The P2Y1 receptor is responsible for the calcium mobilisation by ADP 

receptor through the activation of phospholipase (Jin et al., 1998). In addition, the P2Y1 

receptor is responsible for inositol triphosphate formation through activation of 
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phosholipase C, leading to mobilisation of calcium, platelet shape change and transient 

aggregation in response to ADP (Kunapuli et al., 2003). The P2Y12 receptor is the target for 

antithrombotic thienopyridine compounds such as clopidogrel and is responsible for 

completion and amplification of the response to ADP itself, and to other agonists (Gachet, 

2001).  

 

1.1.5.6 Adrenaline 

 

Adrenaline is well known as an agonist that causes platelet aggregation in citrated platelet 

rich plasma (Nakamura et al., 1997) detected either by an increase in light transmission or 

by a decrease in the single platelet content of the suspension (Shattil et al., 1989). 

Adrenaline binds to α2-adrenergic receptors and stimulates variable platelet aggregation 

and secretion. However, previous studies have shown that adrenaline does not function as 

a single platelet agonist but, rather, that it enhances activation initiated by other agonists 

(Dunlop et al., 2000). In addition, adrenaline does not induce platelet shape change 

leading to aggregation, at the common final concentrations used of around 1-10µM 

(Yardumian et al., 1986). Adrenaline increases thromboxane A2 (TxA2) formation by 

promoting low-level activation of phospholipase A2 that releases free arachidonic acid 

which is converted by cyclooxygenase to TxA2 (Banga et al., 1986). In contrast, adrenaline 

is the least consistent agonist in ex vivo tests.  In particular, if a subject has taken aspirin or 

any other drugs that inhibit TxA2 formation the platelets will not aggregate in response to 

any concentration of adrenaline (Rand et al., 2003). 
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Table 2: Primary and secondary platelet agonist, receptors and functions in platelet 

activation. 
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1.2 PLATELET FUNCTION TESTING 

 

Platelet function is measured clinically with a variety of techniques such as bleeding time, 

platelet aggregometry that measures platelet aggregation after stimulation with different 

agonists and obstruction of blood flow through a filter impregnated with different 

agonists, as in the case of the PFA-100 (Schwartz et al., 2002). However, the most 

common method of assessing platelet function has been the measurement of platelet 

aggregation in citrated platelet rich-plasma (PRP) by turbidometry (Rand et al., 2003). In a 

traditional aggregometry method, a minimum of 500µL of PRP in a cuvette in an 

aggregometer is warmed to 370C with rapid stirring followed by the detection of light 

transmission through PRP by photometer. Upon addition of an aggregating agent (e.g. 

collagen, ADP, arachidonic acid, adrenaline, the thromboxane analogue U46619, the PAR-

1 activating peptide TRAP (e.g SFLLRN), the platelets change from their disc shape to a 

more rounded form with pseudopods, resulting in a transient, small decrease in light 

transmission that is followed by an increase as the platelets aggregate. Measurements 

include the rate and extent of the increase in light transmission. However, there is also 

limitation on platelet aggregometry because its sensitivity is limited to large aggregates 

formation whilst the formations of a few platelet aggregate are not detected (Cox, 1998).    

 

Aggregometry is the gold standard for monitoring the effects of antiplatelet drugs such as 

aspirin, the thienopyridines and GPIIb/IIIa antagonists. By using platelets pre-labelled with 

radiolabeled serotonin, secretion of dense granule contents can be determined in 
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conjunction with aggregometry. Lumiaggregometry can also be used to measure the 

aggregation and secretion of the dense granule ATP simultaneously. Impedance 

aggregometry is used to measure platelet aggregation in anticoagulated whole blood. 

Other methods of measuring platelet function are rapid platelet function analyzer, platelet 

function analyzer (PFA-100). 

 

1.3 THE ROLE OF PLATELETS IN ATHEROSCLEROSIS 

 

Platelet plays a major role in the pathophysiology of atherosclerosis through their effects 

on inflammation. Despite their roles in modulating inflammation, platelets are directly 

involved in thrombosis and subsequent acute vascular events including acute coronary 

syndromes, ischaemic strokes and symptomatic peripheral arterial disease. Under 

pathological conditions, platelet aggregate formation, i.e. a thrombus, rapidly occurs 

within vasculature as a response to events such as plaque rupture (Willoughby et al., 

2002). The formation of thrombus may partially or totally occlude a vessel, resulting in the 

disruption of blood flow and tissue ischemia or necrosis. For this reason, development and 

clinical presentation of thrombi are often correlated with atherosclerotic disease. In 

addition, unstable angina as well as myocardial infarction (MI) may be the direct 

pathological result of thrombi in coronary arteries (Frishman et al., 1995). Previous studies 

have shown a platelet hyperaggregable state in subjects who have various risk factors that 

are associated with atherosclerosis or coronary artery diseases, including diabetes 

mellitus, hypercholesterolemia, hypertension, and smoking (Willoughby et al., 2002). 
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Endothelial dysfunction can be caused by high levels of circulating modified LDL-

cholesterol, physical shear stress, free radicals, toxins from smoking, vasoactive amines, 

and infectious micro-organisms, results in a breakdown in the anti-inflammatory and anti-

thrombotic properties of the endothelium that normally maintain cardiovascular 

homeostasis (Brydon et al., 2006). At the site of vascular lesions, extracellular matrix 

proteins like von Willebrand factor (vWF) and collagen are exposed to the blood. Platelets 

adhere to vWF via the membrane adhesion receptor GPIb-V-IX and to collagen via GPVI 

Figure (1.2). This results in platelet activation and transformation of the integrin receptors 

αIIbβ3 (GPIIb-IIIa, fibrinogen receptor) and α2β1 (collagen receptor) (Nieswandt et al., 

2003), which firmly bind to the respective extracellular matrix components. Subsequently, 

platelets spread and form a surface for the recruitment of additional platelets via 

fibrinogen bridges between two αIIbβ3 receptors. This is followed by the release of 

adhesive and pro-inflammatory factors, which include pro-inflammatory cytokines, 

chemokines, vasoactive amines, and growth factors permits recruitment of leukocytes, 

lipids, smooth muscle cells, fibroblasts, and platelets to the arterial wall (Brydon et al., 

2006).  

 

Atherosclerosis, the combined end-result of genetic modifiers, environmental factors, and 

spontaneous cellular-molecular events is a chronic disease that affects only medium to 

large sized arteries, primarily the coronary and cerebral arteries and aorta (Frishman et 

al., 1995). Dysfunctional endothelial cells promote an increase of adhesiveness to platelets 

as well as leukocytes and secrete procoagulant compounds as a result of expression of 
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adhesion molecules, chemokines, growth factors, and inflammatory mediators. Although 

atherosclerosis usually is not fatal, it can develop into more complex lesions known as 

atherosclerotic plaques. If such plaques rupture the progression of a complex thrombus 

formation is facilitated by tissue factor that activates the coagulation cascade leading to 

thrombin generation, a potent platelet agonist as an end product and fibrin formation 

(McNicol et al., 2003). These platelet-rich thrombi acutely block the blood supply to vital 

organs causing ischemic injury e.g. heart and brain (Ruggeri, 2000). 

 

1.4 ANTIPLATELET THERAPY 

 

1.4.1 Aspirin 

 

Acetylsalicylic acid, or aspirin, is a synthetic compound with antipyretic, analgesic, anti-

inflammatory, and antiplatelet properties. The pharmacological effects of aspirin are 

mediated primarily through its interference with prostaglandin biosynthesis. Aspirin’s 

inhibitory effect on prostaglandin biosynthesis is due to its ability to acetylate 

cyclooxygenase-1 (COX-1), resulting in the inhibition of thromboxane A2 release from 

platelets and prostaglandin (PG) I2 from endothelial cells (Israels et al., 2006). Although 

aspirin irreversibly inhibits both COX-1 and COX-2, its inhibitory effect on COX-1 is 

approximately 170-fold greater (Vane et al., 1998). Platelets lack the synthetic machinery 

to generate significant amounts of new COX thus aspirin inhibitory effect persists for the 
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lifetime of the platelet. However, aspirin is still considered as a weak inhibitor of platelets 

because it blocks only thromboxane-dependent platelet activation and aggregation.  

 

1.4.2 GPIIb-IIIa antagonists 

 

As the final common pathway underlying platelet aggregation is binding of the adhesive 

proteins fibrinogen and von Willebrand factor (vWf), the fibrinogen receptor known as 

intergrin αIIbβ3 (GPIIb-IIIa) is a target for antithrombotic therapy. The blockade of 

fibrinogen binding to GPIIb-IIIa is the mechanism of action for this group of antiplatelet 

agent (Israels et al., 2006). There are only three drugs of this class that are licensed by the 

FDA for clinical use. These three agents are a humanised antibody, abciximab; a non-

peptide, tirofiban; and a peptide, eptifibatide, based on a snake venom sequence and a 

mimetic of the γ-chain peptide.  The major potential adverse events resulting from GPIIa-

IIIb antagonist therapy are bleeding, with the incidence of severe bleeding appearing to be 

more significant with abciximab than other GPIIa-IIIb antagonists. Other side effects are 

thrombocytopenia and pseudo-thrombocytopenia.   

 

1.4.3 ADP receptor antagonist 

 

There are four commercially available ADP receptor antagonists of thienopyridines, 

clopidogrel and ticlopidine (Israels et al., 2006) and more recently prasugrel and ticagrelor 

(Cattaneo 2011). Clopidogrel, an irreversible P2Y12 ADP receptor antagonist is well 
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established drug in clinical use for the treatment of peripheral artery disease and acute 

coronary syndrome as well as secondary prevention of ischemic stroke, vascular death 

and myocardial infarction while prasugrel, which acts similarly, and ticagrelor, which is a 

reversible inhibitor, have more recently become available (Pfefferkorn et al., 2008).  

 

1.4.4 Dipyridamole 

 

Dipyridamole inhibits adenosine uptake in to erythrocytes and endothelial cells. This 

increases plasma adenosine levels, so permitting more binding of adenosine with platelet 

adenosine receptors (Chakrabarti et al., 2008). This leads to increase in the platelet levels 

of cAMP and cGMP, and aggregation is inhibited.  
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Antiplatelet effects  Antiplatelet Drugs  References  

Irreversibly acetylating 

COX and inhibits 

generation of TXA2  

Aspirin (75mg once daily)  (Israels and 

Michelson 2006)  

ADP receptor antagonist  Ticlopidine (250mg twice daily) 

Clopidogrel (75mg onve daily) 

(Schror, 1993), 

(Berglund et al., 

1998), (Collet et 

al., 2011) 

GPIIb/IIIa antagonists  Abciximab (bolus 0.25 mg/kg body 

weight, infusion 10 µg per min for 

12 h) 

Tirofiban (bolus 10 µg/kg, infusion 

0.15 µg/kg per min for 72 h) 

Eptifibatide (bolus 180 µg/kg, infusion 

2 µg/kg per min for 72 h) 

(Neumann et al., 

2001) 

Adenosine reuptake 

inhibitor 

Dipyridamole (200mg twice daily) (Chakrabarti et al., 

2008) 

 

Table 3: Current antiplatelet drugs and mechanism of action. 
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1.5 REACTIVE OXYGEN SPECIES AND ANTIOXIDANT DEFENSE SYSTEM IN PLATELETS 

 

Reactive oxygen species (ROS) are generated in nearly all tissues in animals, plants and 

microbes and occur as byproducts of other biological reactions. Basically, ROS are oxygen-

derived small molecules that include superoxide anion (O2
•-), hydroxyl (•OH), and also 

hydrogen peroxide (H2O2). Production of ROS as byproducts occurs with monoxygenases 

and dehydrogenases such as cytochrome P450 enzymes, xanthine 

oxidase/dehydrogenases, COX, LOX, and NADPH oxidase (Plumb et al., 2005). ROS are 

crucially involves in many biological processes such as intracellular signalling in apoptosis 

and immunity, however, high levels of ROS or insufficiency in its removal will initate 

damages to tissues (Mates et al., 1999). The enzymatic antioxidant defenses include 

superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), and 

glutathione (GSH) (Mates et al., 1999).  

 

Intracellular enzymatic antioxidant defenses eliminate superoxide and peroxides before they 

react with metal catalysis to form more reactive species. SOD is the antioxidant enzyme that 

catalyses the dismutation of the highly reactive superoxide anion to O2 and to the less 

reactive species H2O2 that will be destroyed by CAT or GPX reactions (Fridovich, 1995). In 

humans, there are three forms of SOD: cytosolic Cu/Zn-SOD, mitochondrial Mn-SOD, and 

extracellular SOD (EC-SOD) (Sun et al., 1995). Catalase protects cells from hydrogen 

peroxide that is produce in cells thus maintain the balance of oxidative stress in the 

adaptive response in cells.The most essential antioxidative defense mechanisms is 
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glutathione metabolism, by which GPX (80 kDa) catalyses the reduction of hydroperoxides 

using GSH to protect mammalian cells against oxidative damage (Mates et al., 1999).  

 

It has been shown that SOD activates human platelets exposed to subtreshold 

concentrations of AA and collagen (Iuliano et al., 1991). Moreover, another study also 

found that in collagen-stimulated platelet, burst of hydrogen peroxide is important during 

aggregation process (Pignatelli et al., 1998). ROS generation, Ca2+ mobilization and 

platelet aggregation were significantly greater in platelets from diabetic donors than in 

controls (Alexandru et al., 2008). In contrast, platelet concentrations of GSH-Px, SOD and 

catalase activities are not changed in the whole group of diabetic patients in comparison 

to healthy subjects, suggesting that antioxidative enzymatic defence in blood platelets 

may have a minor role in affecting the modifications of haemostasis as well as the process 

of lipid peroxidation commonly observed in these patients (Seghieri et al., 2001). 

Interestingly, an in vivo study found that acute exercise at 65% maximal oxygen uptake 

leads to platelet hyperreactivity which could be related to oxidative stress and/or TxA2 

pathway induced by exercise (Ficicilar et al., 2003). 
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1.6 LIPOXYGENASE PATHWAY 

 

Arachidonic acid (AA) released from platelet membrane phospholipid is metabolised 

through both cyclooxygenase (COX) and lipoxygenase (LOX) pathways with eicosanoids 

being produced as the end products. The influences of COX products, prostanoids, on 

platelet function have been extensively defined. On the other hand, the influences of 

hydroxyl derivatives synthesised from LOX pathway on platelet activation is not well 

understood, as different researchers report different findings. 12-LOX isoforms are named 

after the cells in which the enzyme isoforms were originally discovered; platelet, leukocyte 

and epidermis. In platelets, 12-lipoxygenases (12-LOX) catalyses dioxygenation of AA to 

the primary product, 12S-hydroperoxyeicosatetranoic acid (12S-HPETE) (Yoshimoto et al., 

2002). Then, 12(S)-HPETE is subsequently reduced to 12S-hydroxyeicosatetranoic acid, 

12(S)-HETE, by glutathione-dependent peroxidase, and this is the major product of 

platelet 12-LOX.  

 

There is relatively limited understanding of the function of 12-LOX despite its wide 

distribution in various tissues. For instance, myeloproliferative disorders are usually 

associated with thrombocythemia that often leads to bleeding complications. Reduced 

platelet 12-LOX activity is also found in these patients, associated with decreased platelet 

12-LOX mRNA (Matsuda et al., 1993). There has been a report of increased 12-LOX activity 

in the platelets of spontaneously hypertensive rats supporting previous evidence of an 

involvement of 12(S)-HETE in the pathogenesis of atherosclerosis (Chang et al., 1985). AA 
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metabolism produces reactive oxygen species such as free radicals and oxidised lipid 

intermediates which are responsible for DNA damage and the generation of mutations. In 

vitro studies using cancer cell lines have demonstrated that LOX inhibitors are more 

potent than COX inhibitors at reducing cancer cell proliferation (Hong et al., 1999). It has 

also been suggested that 12-LOX plays an essential role in regulating cell proliferation and 

apoptosis, with 12-LOX mRNA being highly expressed in various cancer tissues such as 

prostate and breast cancer (Yoshimoto et al., 2002). The role of 12-LOX in cell growth and 

degeneration has been supported by another study that found a decrease in glutathione 

led to the neuronal activation of 12-LOX (Li et al., 1997). Thus, neuronal degeneration will 

occur as a result of peroxide generation and increased calcium influx following 12-LOX 

activation.  

 

1.7 NADPH OXIDASE 

 

NADPH oxidase is composed of seven members, Nox1, Nox2, Nox3 and Nox4 which are 

formed with the small membrane bound subunit p22phox whilst the other three are 

calcium-dependent, Nox5, Duox1 and Duox2 (Ambasta et al., 2004). However, it appears 

that only Nox4 requires no activator, constitutively active and expressed ubiquitously in 

vascular cells (Brandes et al., 2008). In contrast with Nox4, Nox1 and Nox2 requires 

activation by cytosolic subunits which involves translocation of p67phox and p47phox to 

form complex with Nox1 and Nox2 (Bedard et al., 2007). The functions of each NADPH 

oxidase are dependent on their localisation as all vascular oxidases generate ROS (Table 
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4). In vasculature, Nox1 is activated mainly by growth factors in an agonist-dependent 

manner, such as angiotensin II, platelet-derived growth factors, basic fibroblast growth 

factor as well as cytokines and mechanical stress (Brandes et al., 2008). In addition, Nox2 

is stimulated by vascular endothelial growth factor (VEGF) (Tojo et al., 2005). Although 

Nox4 is constitutively expressed in vascular cells, overexpression of Nox4 can occur in 

vascular injury and can be down regulated by cytokines, angiotensin II or PDGF (Lassegue 

et al., 2001). 

 

The important role of NOX in vasculature was noted to be ROS-dependent increase in 

blood pressure as demonstrated in vivo in Nox1 knockout mice which develop less 

angiotensin II-induced hypertension (Matsuno et al., 2005). In addition, ROS formations by 

vasculature NOX are thought to interact with NO, therefore limit NO bioavailability and 

elicits endothelial dysfunction (Jung et al., 2004). The NOX-derived ROS also has been 

implicated in various vascular diseases such as vascular diabetes complications. Nox2 has 

been associated with overproduction of ROS in diabetes, and deletion of Nox2 gene 

showed an improvent of postischemic neovascularisation in mouse with Type I Diabetes 

Mellitus (Ebrahimian et al., 2006). In addition, Nox2-derived ROS also has been linked to 

atherosclerosis although more evidence is needed to support this (Bedard et al., 2007).  
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Table 4: Composition of NADPH oxidase in vasculature. At least 3 different Nox isoforms 

are expressed in vascular cells. 
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1.8 RESEARCH OBJECTIVES 

 

The main aims of my research is to optimise, modifies and validate of traditional platelet 

aggregometry in a 96-well plate format to determine mouse platelet activity, settings of 

combination agonists and also in vitro and in vivo investigation of the effects of COX-1 and 

COX-2 pathways on platelet reactivity. In platelets, superoxide anion and H2O2 are 

constitutively released with enhanced production following platelet stimulation by 

thrombin or collagen, or by immunological stimuli (Del Principe et al., 2009). Previous 

findings showed that phagocyte NADPH oxidases apparently produce superoxide anions 

as primary products, rather than as byproducts (Brandes et al., 2008). Therefore, I 

investigated the possible role of non-cyclooxygenase pathways, which are 12-lipoxygenase 

and NADPH oxidase on platelet function using a combined platelet aggregation and 

adhesion assay in a 96-well plate format. By using this technique, dietary influences of 

dark chocolate consumption on platelet function in midline hypertensive patients will also 

be determined. 
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USING 96-WELL PLATE FORMAT 
 

 

 

 

 

 

 

 

  



60 
 

2.1 Introduction 

 

Platelet function tests traditionally are utilised mainly for the diagnosis and management 

of patients presenting with bleeding problems rather than thrombosis. However, new and 

improved existing platelet function tests are now increasingly used to monitor anti-

platelet therapy in patients as well as to identify patients at risk of arterial disease. Light 

transmission aggregometry is still regarded as the gold standard of platelet function 

testing. In this study, traditional light transmission aggregometry (LTA) was modified to a 

96-well plate format to evaluate platelet aggregation as well as adhesion using platelet-

rich plasma. This method allows examination of response to many agonists at a range of 

concentrations on platelets at the same time point, thus more information can be collated 

about many different aspects of platelet function. For example, different agonists activate 

platelets through different pathways. Thus, changes in platelet aggregation induced by 

particular agonists may indicate the involvement of different pathways in changes in 

platelet function or the effects of different antiplatelet agents. Modification of the same 

method by reducing the samples volume to use half-area 96-well plates allows the 

measurement of platelet aggregation in samples from small laboratory animal, such as 

mice. It is important to note that in physiological conditions, platelets are activated not 

only by a single agonist but by multiple platelet activators. Therefore, to further explore 

this method some experiments employed combinations of agonists in the 96-well plate 

format. 
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2.2 Methodology 

 

2.2.1 Blood Collection 

 

2.2.1.1 Human Blood 

Human platelets were obtained from whole fresh blood drawn from donors who had not 

consumed any medication for 10 days prior to the test. Healthy volunteers can be male or 

female aged 18-40 years old who are fit and healthy, not receiving current healthcare or 

have any known allergic to medicines.  Blood was collected by venepuncture as 9 parts 

blood and 1 part anticoagulant. The anticoagulant used in this study was sodium citrate at 

3.2% w/v or 0.105M.  

 

2.2.1.2 Mouse Blood 

Male C57B/6 mouse aged 8-10 weeks were acclimatised for a week before any procedure 

was performed. For each experiment 4-5 mice were used to obtain whole blood by 

terminal cardiocentesis.  Mouse were anaethesised using inhaled halothane and further 

narcosis with a slowly rising concentration of CO2, 1mL of C57B/6 mouse blood was 

withdrawn by surgical cardiac puncture with a 1 ml syringe and 23G needle into 0.1 ml of 

100U/mL heparin.  
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2.2.2 Preparation of Platelet Rich and Platelet Poor Plasma 

 

Human platelet-rich plasma (PRP) was obtained from blood by centrifugation at 1100 rpm 

for 15 minutes at room temperature. The cloudy yellow supernatant containing the 

platelets was removed carefully with a disposable plastic pipette and placed into a clean 

polypropylene tube and capped. Care was taken not to disturb the WBC and RBC cell 

layers when removing the PRP. The prepared PRP was kept at 370C in a waterbath prior to 

use. Platelet-poor plasma (PPP) was prepared by further centrifugation of PRP at 15000 

for 2 min using a microcentrifuge. PRP and PPP were used soon after the preparation or if 

not within 2 hours of preparation to avoid any spontaneous platelet aggregation and 

adhesion. Platelet counts were checked to ensure they were within the normal range 

which is 150-400 x 109/L.  

 

To obtain mouse PRP, blood was diluted, 6:1, in by the addition of 200µl of 10U/mL 

heparin in each tube before being centrifuged at 900 rpm using a bench top 

microcentrifuge. Heparin was prepared to the desired concentration by further diluting 

the stock with Tyrodes Buffer containing 134mM NaCl, 2.9mM KCl, 1mM MgCl2, 0.34mM 

Na2HPO4, 12mM NaHPO3, 20mM HEPES and 5mM glucose, at pH 7.3. Then the plasma was 

taken out from the microcentrifuge including the 1/3 of blood remaining and transferred 

into a fresh microcentrifuge tube followed by centrifugation at 700 rpm for 5 minutes. The 

PRP was then removed into a new tube and diluted for platelet counting. Platelet counting 

was done by adding 10µl of PRP into 5mL of water followed by transferance of 10µl into a 
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haemacytometer to be counted under a microscope. PPP was obtained by further 

centrifugation at 15000 rpm for 2 minutes.  

 

2.2.3 Platelet adhesion assay in 96-well plate using modified Bellavite method 

Platelet adhesion assay in 96-well plate format using modified Bellavite method (Bellavite 

et al., 1994) was carried out using pre-coated plates to determine the effects of coating 

upon platelet adhesion. To coat the plates, 2mg/ml of fibrinogen or human albumin were 

prepared in PBS before adding 100µl into each well. Plates then were left overnight at 40C 

and washed with 100µl of 0.9% saline prior to use. Initially prepared PRP was further 

diluted to ¼ into either dilution buffer or PPP respectively. Dilution buffer contained 

145mM NaCl, 5mM KCl, 10mM HEPES, 0.5Mm NAHPO4, 6mM glucose and 0.2% human 

serum albumin. 25µl of agonist, example collagen at concentration ranging from 0.1-30µM 

is added into each agonist well followed by 50µl diluted PRP. Plate was then incubated for 

1 hour at room temperature on the bench. This was followed by washing the plate twice 

with 100µl 0.9% NaCl each well. During final washing, the plate was tapped a few times on 

a paper towel to remove any remaining saline. Once the plate was washed, 100% 

adhesion controls were prepared by centrifugation of 500µl PRP at 6000rpm for 2 

minutes. The plasma was discarded and the pellet resuspended in 700µl assay buffer. The 

Buffer B was prepared by combining 16.2ml of distilled water, 5.2ml of 0.1M citric acid, 

16.5ml of 0.1M sodium citrate and 40µl of Triton-X-100 with a final pH of 5.4. This was 

followed by preparation of assay buffer containing p-nitrophenol phosphate with addition 
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of 2 ml of 10x assay buffer (1 tablet of p-nitrophenol phosphate dissolved in 10ml of 

Buffer B) into 36ml of buffer B.  Then, 100µl of 100% control adhesion was pipetted into 

control wells. For remaining wells, 100µl of assay buffer containing p-nitrophenol 

phosphate was pipetted into each well before 15 minutes incubation on rotary shaker. To 

stop the reaction, 100µl of 2M NaOH was added into each well, which turned the solution 

yellow if p-nitrophenol was present. Then, the plate was read at 405nm using a microplate 

reader. Background absorbance was subtracted from these values. The percentage of 

adhesion was calculated using formula; {(Absorbance of sample-Blank) / (Absorbance of 

control-Blank)} x 100. 

 

2.2.4 Combined  Platelet Aggregation and Adhesion Assay using 96-well plate format 

 

Platelet aggregation was adapted into 96-well plate format starting by combining 100µl 

PRP in each well with 10µl of agonist or vehicle, phosphate buffer saline (PBS). All agonists 

used in these experiments were diluted in PBS. The final concentrations of agonists used 

were; ADP, U46619, thrombin and TRAP-6 amide 0.1, 0.3, 1, 3, 10 and 30µM; collagen 0.1, 

0.3, 1, 3 .10 and 30µg/mL; adrenaline 0.001, 0.01, 0.1, 1, 10 and 100µM; ristocetin 0.2, 

0.3, 0.6, 1, 2 and 3mg/ml; arachidonic acid, 10µM to 1.6mM (Figure 2.1) (Table 5). All 

agonists were prepared freshly prior to use and kept on ice. Plate setup was designed so 

that the first row was dedicated for PPP, PRP and H2O/buffer as a control. Then, the plate 

was quickly placed on a microplate reader with absorbance determined at 595nm and 
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read for 64 cycles, each cycle consisting of vigorous shaking for 7 seconds interval and 

reading for 8 seconds with temperature setting at 370C; this resulted in a total assay time 

of approximately 16 minutes for each 96-well plate. To test inhibition of platelet 

aggregation and adhesion, PRP was pre-incubated for 30min before being added into a 

plate in the presence of agonists. For half-area plates used in human platelet and mouse 

platelet experiments the volumes used for the platelet aggregation procedures were 

reduced by half. 
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Figure 2.1: Plate design for combined platelet aggregation and platelet adhesion in 96-well 

plate. 
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Table 5: List of agonist and concentration used in combined platelet aggregation and 

adhesion in 96-well plate. 

 

 

For platelet adhesion determination at the end of the platelet aggregation tests, plates 

were emptied of PRP by inversion. Then, the wells were washed twice with 100µl of 0.9% 

saline. During final washing, the plate was tapped a few times on a paper towel to remove 

any remaining saline. Starts from this stage, platelet adhesion method was carried out as 

previously described in section 3.2.3. For studies of mouse platelet adhesion, all the 

volumes were reduced by half, as half-area plates were used. It is noteworthy to 

acknowledge that all the experiments beginning from human and mouse platelet 

aggregation and adhesion in half-area 96-well plates onward were to follow combined 

platelet aggregation and adhesion assay using 96-well plate format described in this 

section. 
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2.2.5 Combination of Agonists 

 

For experiments examining the effects of combinations of agonists on platelet, the lowest 

three concentrations of collagen, TRAP-6 and adrenaline were used. The combinations for 

these experiments are summarised in the Table 6 below. 

 

Combination Collagen Adrenaline TRAP-6 

                            Single agonist 

COL •   

ADR  •  

TRAP-6   • 

                             Dual agonists 

COL+ADR • •  

COL+TRAP-6 •  • 

ADR+TRAP-6  • • 

                                Triple agonists 

COL+ADR+TRAP-6 • • • 

  

Table 6: Summary of combinations of agonists for 96-well plate assays. Each agonist was 

tested in three different concentrations both individually and in combination. Notes: 

Collagen, COL; adrenaline, ADR; and TRAP-6. 
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2.2.6 Investigation of platelet inhibition 

 

To investigate the effects of prostacyclin (PGI2), sodium nitroprusside (SNP), rosiglitazone 

and aspirin on platelet function, platelets were incubated with drug for 30 min at 370C 

prior to exposure to platelet agonists. Concentrations of drugs used were as follows: 

prostacyclin (100nM, 1µM and 10µM); SNP (0.001 and 0.1µM); rosiglitazone (10 and 

100µM); and aspirin (0.1-300µM). 

 

2.2.7 Thromboxane B2 Determination by Radioimmunoassay 

 

Plasma samples for measurement of TxB2 were obtained by adding 10µl of 10mM 

diclofenac into each well at the end of platelet aggregation to stop TxA2 production, 

followed by transfer into a fresh plate. Then, the plate was centrifuged at 3000 rpm for 15 

minutes at 40C, the plasma removed and stored at -200C. The samples were thawed prior 

to use. Plasma samples were diluted at 1:5 with mix-Tris buffer. Then, either samples or 

standard concentrations ranging from 0.017 to 20ng/ml of TxB2 were mixed with TxB2 

tracer and TxB2 antibody before being incubated overnight at 4ºC. Separation of bound 

antibody from free antibody was achieved by adding 50µl of charcoal-Dextran buffer and 

centrifugation at 40°C for 10min at 3000rpm. Then, 100µl from each well was transferred 

into fresh white transparent bottom 96-well plates and sealed. Radioactivity was counted 

in a liquid scintillation counter.   
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2.2.8 Statistical Analysis 

 

Pharmacological parameters were analysed by GraphPAD Prism 5.0 (San Diego, USA) 

software. ANOVA was performed when appropriate. Data are expressed as mean ± 

standard error of mean (S.E.M.). All experiments were performed in duplicates of at least 

n=4 unless stated.   
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2.3 Result 

 

2.3.1 Optimisation of Platelet Adhesion in 96-Well Plates 

 

PRP for use in these experiments was diluted 4-fold with dilution buffer prepared as 

described above. To study the adhesion of platelets in buffer-diluted PRP, 3 different 

types of plates were used; fibrinogen-coated, human albumin-coated and uncoated 

plates. As shown in Figure 2.2, platelet adhesion on fibrinogen-coated plates was higher as 

compared to non-coated, whilst coating with albumin reduced platelet adhesion as 

compared to non-coated plates.  

 

ADP stimulated platelet adhesion in a concentration-dependent manner in both pre-

coated and uncoated plates. However, platelet adhesion to fibrinogen-coated plates was 

higher than that to uncoated plates, with maximal adhesion being 24±1% compared to 

20±2%, respectively. In contrast, platelets adhered significantly less to albumin-coated 

than uncoated plates. Since the fibrinogen coating increased platelet adhesion, samples of 

PRP diluted in PPP were further tested in fibrinogen-coated and non-coated plates in the 

presence of various agonists, including ADP, calcium ionophore A23187, collagen, 

arachidonic acid and adrenaline. All agonists tested in this experiment caused 

concentration-dependent increases in platelet adhesion that was greater in pre-coated 

than uncoated plates (Figure 2.3 and Figure 2.4).  



72 
 

i. Platelet adhesion of PRP diluted 1:3 in Dilution Buffer 

a) 

 
 

 

b) 

 
 

Figure 2.2: Platelet adhesion of PRP diluted in dilution buffer in response to ADP on 

differently coated plates. Platelet adhesion; a) on fibrinogen-coated and uncoated 

plates and b) on albumin-coated and uncoated plates. Data shown as mean ± S.E.M. 

mean from duplicate responses from four different individuals. * indicates p<0.0001 

by two-way ANOVA. 

 

 

 

 

 

 

 

 



73 
 

ii. Platelet adhesion of PRP diluted 1:3 in PPP  

 

 
 

Figure 2.3: Platelet adhesion of PRP diluted in PPP in response to ADP, calcium 

ionophore A23187, or adrenaline on differently coated plates. Platelet adhesion a) 

on fibrinogen-coated plates and b) on uncoated plates. Data shown as mean ± 

S.E.M. mean from duplicate responses from four different individuals. 

 

 

 
 

Figure 2.4: Platelet adhesion of PRP diluted in PPP in response to collagen or 

arachidonic acid on differently coated plates. Data shown as mean ± S.E.M. mean 

from duplicate responses from four different individuals.  
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2.3.2 Inhibition of Prostacyclin on Platelet Adhesion in 96-Well Plate 

 

Since previous experiments demonstrated that this method is reliable to determine 

platelet adhesion in 96-well plate format following stimulation with platelet agonists, the 

effects of prostacyclin, a platelet inhibitor, on adhesion in response to ADP was 

determined for both albumin and fibrinogen-coated 96-well plates. As shown in the Figure 

2.5, albumin-coated plates demonstrated lower platelet adhesion as compared to 

uncoated plates whilst the adhesion was greatest on fibrinogen-coated plates.  No 

inhibition of platelet adhesion by prostacyclin was observed in albumin coated plates in 

respect of unstimulated platelets, however, a slight inhibition was shown in ADP-

stimulated platelets at the highest three concentrations of prostacyclin. Addition of 

prostacyclin slightly reduced ADP-stimulated platelet adhesion to fibrinogen-coated 

plates, but not that of unstimulated platelets. For instance, after incubation with 100nM, 

1µM and 10µM prostacyclin, platelet adhesion was decreased to 23±3%, 24±3% and 

22±3% as compared to control vehicle, 26±3%. In unstimulated platelets the highest two 

concentration of prostacyclin slightly decreased the adhesion of platelets to fibrinogen-

coated plates. For uncoated plates, a pattern of inhibition of platelet adhesion by 

prostacyclin was found in both albumin and fibrinogen-coated plate experiments although 

unstimulated platelets displayed higher levels of inhibition by prostacyclin. For example, in 

fibrinogen-coated plate experiments, prostacyclin at 100nM, 1µM and 10µM inhibited 

unstimulated platelet adhesion to 19±7%, 18±8% and 16±7% as compared to control 

vehicle, 21±5%.  
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Figure 2.5: Inhibition by prostacyclin of platelet adhesion. PRP diluted in PPP was 

incubated with prostacyclin before addition to fibrinogen or albumin coated plate 

and stimulation with 10µM ADP or vehicle. Each value represent means ± S.E.M. 

(n=3-4).* indicates p<0.05 by one-way ANOVA as compared with control vehicle. 
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2.3.3 Inhibition by Sodium Nitroprusside on Platelet Adhesion in 96-Well Plate 

 

Figure shows that an increased of platelet adhesion is observed following stimulation by 

several agonist (Figure 2.6). As compared to control (2±0%), platelet adhesion was 

increased to 8±2%, 5±3% and 12±3% (p<0.01) when stimulated with ADP, A23187 or 

adrenaline, respectively.  As shown in Figure 2.7, incubation with SNP reduced the 

stimulated platelet adhesion in a concentration-dependent manner. For example, 1µM 

and 10µM SNP significantly inhibited stimulate platelet adhesion to 39±7% and 6±4%, for 

ADP; 76±7% and 48±5%, for adrenaline-stimulated; and, 76±13% and 43±12%, for 

arachidonic acid (p<0.05). SNP also inhibited calcium ionophore (A23187)-stimulated 

platelet adhesion to 68±9% and 42±5%, and slightly inhibited adhesion following 

stimulation by collagen. 

    

Figure 2.6: Maximal response of platelet adhesion stimulated by various agonist as 

compared to control PBS. Each value represent means ± S.E.M. (n=6). ** indicates 

p<0.01 by one-way ANOVA. 
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Figure 2.7: Inhibition by sodium nitroprusside (SNP), 0.001µM and 0.01µM of 

platelet adhesion of PRP diluted in PPP. Platelets were stimulated by various 

agonists including ADP, calcium ionophore A23187, adrenaline, arachidonic acid 

and collagen. Each value represent means ± S.E.M. (n=6). * indicates p<0.05 by 

two-way ANOVA. 
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2.3.4 Platelet Aggregation and Adhesion in Half-Area 96 Well Plate 

 

The use of 96-well format to determine platelet function was further explored in a study 

of platelet aggregation and adhesion in half-area well plates in response to various 

platelet agonists. In these studies PRP was used without dilution into buffer or PPP. 

Platelet agonists used to induce platelet aggregation and adhesion in these experiments 

were arachidonic acid, ADP, adrenaline, TRAP-6, ristocetin, collagen and U6619. An 

example of absorbance read in stimulated PRP is shown in Figure 2.8. All platelet agonists 

induced platelet aggregation and adhesion of human platelets in concentration-

dependent and time-dependent manners (Figure 2.9-2.10; Figure 2.14-2.15). The same 

method was used to determine aggregation and adhesion of mouse platelets (Figure 2.11-

2.12; Figure 2.14-2.15). However, despite concentration-dependent platelet stimulation 

by most agonists mentioned above, mouse platelets did not show activation in response 

to thrombin or TRAP-6. 
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Figure 2.8: Absorbance traces of ADP-stimulated human PRP in half-area 96-well 
plate. For platelet aggregation in half-area 96-well plate, PRP is added into agonist 
plate, for example ADP; then read at 595nm for 64 cycles. Each cycle consisting of 
vigorous shaking for 7 seconds interval and reading for 8 seconds with temperature 
setting at 370C; this resulted in a total assay time of approximately 16 minutes for 
each 96-well plate. Data are mean ± S.E.M. from duplicate samples. 
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i. Human platelet aggregation and adhesion in half-area well plates 

 

Figure 2.9: Aggregation traces of human platelets in PRP stimulated by various 

agonists in half-area 96-well plates. Platelets were stimulated with AA (0.03mM-

10mM), ADP, TRAP-6, or thromboxane mimetic, U46619 (0.1-30µM), collagen (0.1-

30µg/mL), adrenaline (0.001-100µM), and ristocetin (0.2-3mg/ml). Each value 

represents mean ± S.E.M. (n=4). 
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 Figure 2.10: Concentration response curves of human platelets stimulated by 

various agonists in half-area 96-well plates. Platelets were stimulated with AA 

(0.03mM-10mM), ADP, TRAP-6, or thromboxane mimetic, U46619 (0.1-30µM), 

collagen (0.1-30µg/mL), adrenaline (0.001-100µM), and ristocetin (0.2-3mg/ml). 

Each value represent mean ± S.E.M. (n=4). 
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ii. Mouse platelet aggregation and adhesion in half-area small well plate 

 

 

Figure 2.11: Aggregation traces of mouse platelets stimulated by various agonists in 

half-area 96-well plates. Platelets were stimulated with AA (0.03mM-10mM), ADP, 

or thromboxane mimetic, U46619 (0.1-30µM), collagen (0.1-30µg/mL), adrenaline 

(0.001-100µM), and ristocetin (0.2-3mg/ml). Each value represents mean ± S.E.M. 

(n=4). 
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Figure 2.12: Aggregation traces of mouse platelets stimulated by TRAP-6 and 

thrombin in half-area 96-well plates. Each value represents mean ± S.E.M. (n=2). 
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Figure 2.13: Concentration response curves of mouse platelets stimulated by various 

agonists in half-area 96-well plates. Platelets were stimulated with AA (0.03mM-

10mM), ADP, or thromboxane mimetic, U46619 (0.1-30µM), collagen (0.1-30µg/mL), 

adrenaline (0.001-100µM), and ristocetin (0.2-3mg/ml). Each value represents mean 

± S.E.M. (n=4). 
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Figure 2.14: Adhesion of human and mouse platelets stimulated by various agonists 

in half-area 96-well plates. Platelets were stimulated with AA (0.03mM-3mM), ADP, 

or thromboxane mimetic, U46619 (0.1-30µM), collagen (0.1-30µg/mL), adrenaline 

(0.001-100µM), and ristocetin (0.2-3mg/ml). Each value represents mean ± S.E.M. 

(n=4). 
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Figure 2.15: Adhesion of human and mouse platelets stimulated by adrenaline and 

TRAP-6 in half-area 96-well plates. Platelets were stimulated with TRAP-6 (0.1-

30µM), and adrenaline (0.001-100µM). Each value represents mean ± S.E.M. (n=4). 
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2.3.5 Effects of Rosiglitazone on Human Platelet Aggregation and Adhesion Stimulated by 

ADP and Collagen 

Rosiglitazone did not affect platelet aggregation or adhesion at either 10 or 100 M. 

i) ADP 

 

ii) Collagen

 

Figure 2.16: Effects of rosiglitazone on aggregation stimulated by ADP or collagen. 

Human PRP was incubated with 10µM and 100µM rosiglitazone before addition of 

(i) ADP and (ii) collagen. Each value represent means ± S.E.M. (n=4).   
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2.3.6 Platelet Aggregation and Adhesion to Combined Agonists Collagen, Adrenaline and 

TRAP-6 Using the 96-Well Plate Method 

 

These combination studies were performed to mimic more closely the physiological 

condition of platelets stimulated by multiple factors within the vascular system. However, 

the combination of either collagen or adrenaline with TRAP-6 did not result in aggregation 

responses that were any different to those in response to single agonists. In contrast, 

combination of collagen and adrenaline did result in additive effects on platelet 

aggregation. For example at 4min, percentage of aggregation by combined 1µg/ml 

collagen and 10-7 M adrenaline was 56±16% compared with 1µg/ml collagen alone, 

27±12% or 10-7 M adrenaline alone, 22±5%. At 8 min, combinations of 10-7 M adrenaline 

with 0.1, 0.3 and 1 µg/ml collagen enhanced the aggregation to 61±12%, 64±14 and 79±9 

respectively as compared with collagen alone (0.1µg/ml, 34±10; 0.3µg/ml, 42±14; 1µg/ml, 

57±7) or 10-7 M adrenaline, 46±9% (Figure 2.17-2.19). As shown in Figure 2.20, platelet 

adhesion was increased in combined collagen and adrenaline but not when collagen alone 

is used. Combination of adrenaline and TRAP-6 or all three agonists did not have additive 

effects as compared to respective single or dual combination agonists. To further 

understand this, levels of thromboxane B2 in the plasma was determined, however no 

significant difference was found between single and combined agonists (Figure 2.21). 
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Figure 2.17: Aggregation traces of single concentrations of collagen or in combination with 

adrenaline. Human PRP was stimulated with collagen (0.1, 0.3 and 1µg/ml) and/or 

adrenaline (10-9, 10-8, 10-7M). Each value represent mean ± SEM (n=8). 
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Figure 2.18: Aggregation traces of collagen alone or in combination with TRAP-6. Human 

PRP was stimulated with collagen (0.1, 0.3 and 1µg/ml) and/or TRAP-6 (0.1, 0.3 and 1µM). 

Each value represent mean ± SEM (n=8). 
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Figure 2.19: Platelet aggregation at 16 minutes induced by combinations of collagen (0.1, 

0.3 and 1µg/ml) and adrenaline (10-9, 10-8 and 10-9M) respectively. Each value represent 

mean ± SEM (n=8). 
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Figure 2.20: Platelet adhesion induced by combinations of collagen (COL) and/or 

adrenaline (ADR). Each value represent mean ± SEM (n=4). 

 

 

Figure 2.21: Levels of thromboxane B2 in PRP following aggregation induced by 

combinations of collagen (COL) and/or adrenaline (ADR) at 16 minutes. Each value 

represent mean ± SEM (n=4). 
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2.3.7 Inhibition by Aspirin of Platelet Aggregation and Adhesion Induced by Combinations 

of Collagen and Adrenaline 

 

Combination of collagen 1µg/ml with adrenaline, 0.01µM or 0.1µM, was chosen to test 

the effects of aspirin on platelet aggregation and adhesion. Combination of collagen with 

0.1µM adrenaline significantly increased the platelet aggregation to 76±3% as compared 

to collagen alone, 61±8%, and adrenaline, 26±5%, respectively (n=8, p<0.0001) (Figure 

2.23). Aspirin inhibited platelet aggregation induced by collagen plus adrenaline either 

alone or in combination; e.g. aggregation induced by 1µg/ml collagen plus 0.01µM 

adrenaline was reduced by 30µM aspirin to 26±7%, as compared to control, 56±7% (n=8; 

p<0.0001). For the combination of collagen and 10-7M adrenaline control aggregation, 

76±3%, was reduced to 40±3%, 48±3%, and 54±3%, when treated with aspirin at 30, 100, 

and 300µM aspirin respectively (p<0.0001). Platelet adhesion was also inhibited by 

aspirin, against both single and combined agonists (Figure 2.24). For instance, platelet 

adhesion of combined collagen and 0.1µM adrenaline, 37±3%, was decreased by 

treatment with aspirin; for example, in the presence of 10µM and 30µM aspirin platelet 

adhesions were 30±2%and 26±2%, respectively. 
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Figure 2.23: Inhibition by aspirin of platelet aggregation induced by combined 

agonists. PRP was incubated with aspirin at various concentrations ranging from 

1µM-300µM for 30 minutes before addition of platelet agonists. Each value 

represent mean ± SEM (n=4). * indicates p<0.0001 by one-way ANOVA. 
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Figure 2.24: Inhibition by aspirin of platelet adhesion induced by combined agonists. 

PRP was incubated with aspirin at various concentrations ranging from 1µM-300µM 

for 30 minutes before addition of agonists. Each value represent mean ± SEM (n=4). 

* indicates p<0.0001 by one-way ANOVA. 
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2.4 Discussion 

 

Platelets are essential for normal haemostasis. For instance, platelets are crucial to arrest 

bleeding from both the arterial and venous circulations. In pathological conditions, 

platelets are the major contributor to arterial thrombosis, which often occurs at sites of 

atherosclerosis within vessel lumens. Because platelets are keys to thrombus formation, 

the mechanisms underlying platelet adhesion and aggregation are of particular interest to 

the study of cardiovascular disease. 

 

The aim of this study was to modify an existing method to allow the measurement of 

platelet aggregation and adhesion in platelet-rich plasma (PRP) using 96-well plates with 

minimal effort, preparation steps and equipment. Modification of the acid phosphatase 

assay provided a straightforward and responsive method for the measurement of platelet 

numbers in platelet suspension after stimulation with platelet agonists (Bellavite et al., 

1994). Bellavite et al. (1994) showed that this method works for the evaluation of platelet 

number irrespective of whether the platelets are resting or agonist-stimulated because 

acid phosphatase activity is not affected by the functional state of the platelet. Platelet 

quantification using this assay is based on the conversion of p-nitrophenyl phosphate to p-

nitrophenol by cytosolic acid phosphatase. Consequently, we can estimate platelet 

number as acid phosphatase activity is proportional to the platelet number. Furthermore, 

previous studies have demonstrated the use of acid phosphatase assay to count various 

adherent and non-adherent cells in a manner which can have higher sensitivity and 
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reproducibility than cell proliferation assays (Yang et al., 1996). Usefully, platelet adhesion 

measured by the acid phosphatase method requires no radioactive procedures and 

produce non-hazardous waste. Modification of the platelet adhesion assay to a 96-well 

microplate allows larger numbers of samples to be assayed in shorter periods of time and 

for the comparison of multiple experimental conditions, for example the use of different 

agonists at various concentrations. Initial study of platelet adhesion in 96-well plate using 

modified Bellavite method involved the dilution of PRP in dilution buffer or PPP to 

increase the reproducibility of the assay and sensitivity of yellow p-nitropenol detection 

especially if inhibitory effects of platelet antagonist are used. However, PRP diluted in PPP 

appreared to give low response when stimulated by agonist as compared to PRP diluted in 

Dilution Buffer. This may be because of the use of sodium citrate as anticoagulant which 

effects of chelating extracellular calcium in the plasma is still present in PPP, therefore 

reducing platelet activation responses by agonist tested in these experiments. Since the 

use of PRP can produce similar results for platelet adhesion studies as the use of platelet 

suspensions, platelets in PRP were used throughout the study instead of platelets 

prepared in dilution buffer or platelet-poor plasma (PPP). Furthermore, platelet count or 

standardisation of platelet density is not required if using PRP (Eriksson et al., 2005). PRP 

also provides a physiological milieu in which to test platelet function with the presence of 

various adhesive plasma compounds and requires less pre-procedure preparation of 

platelets that can affect platelet function.  
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The extracellular components that react with platelets include different types of collagen, 

von Willebrand factor (vWF) and other adhesive proteins such as thrombospondin. 

Platelet activation also leads to a conformational change of receptors such as GPIIb/IIIa 

that facilitate fibrinogen binding and platelet aggregation. Even though fibrinogen is not 

synthesized by vascular wall cells, it must be considered as a potentially relevant 

thrombogenic substrate as it becomes immobilised onto extracellular matrix at sites of 

injury. In this study, platelets showed better adherent to fibrinogen and non-coated 96-

well microplates than albumin coated plates when activated by ADP. This result is similar 

to a previous study that reported ADP-stimulated platelet adhesion in a concentration-

dependent manner to fibrinogen coated plate, but not to albumin (Bellavite et al., 1994).  

 

Prostacyclin is a potent platelet inhibitor, and vasodilator, that is produced by the COX 

pathway mainly in the vascular endothelium. Together with TXB2, prostacyclin plays an 

important role in an ‘agonist-antagonist’ relationship in vascular hemostasis (Dogné et al., 

2005). Previous study demonstrated that in vitro platelet prostacyclin receptor 

desensitization caused a marked augmentation of platelet-endothelial cell adhesion, thus 

supports previous evidence showing prostacyclin inhibits platelet adhesion (Darius et al., 

1995). By using modified Bellavite’s 96-well plate method of platelet adhesion, 

prostacyclin has been shown to inhibit platelet adhesion, suggesting that this assay can be 

useful to determine the antiplatelet effects of various agents. Endothelial injury or 

dysfunction also reduces the production of nitric oxide, which is a key step in 

atherogenesis and thrombogenesis. Nitrovasodilators, such as SNP, releases nitric oxide 
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and are used widely in the therapy of cardiovascular artery diseases, most notably for 

angina (Anfossi et al., 2001). Using this new method of adhesion, the effects of SNP on 

platelets in PRP diluted in PPP on non-coated plates was examined. SNP inhibited the 

adhesion of platelets induced by ADP, arachidonic acid, calcium ionophore, adrenaline and 

collagen. Previous studies have shown that SNP elevates the intraplatelet levels of cGMP 

and cAMP which synergise to reduce platelet reactivity (Anfossi et al., 2001). Cyclic GMP-

independent effects of NO are associated with the inhibition of protein phosphorylation 

crucial to calcium entry into platelets and inhibition of TXB2 receptors (Sogo et al., 2000). 

It was noted that inhibitory actions induced by cyclic nucleotide-elevating substances are 

mainly mediated by cyclic-nucleotide dependent protein kinases and interfere at multiple 

sites of the platelet activation signaling cascades, PLC (Ryningen et al., 1998), PKC, and 

MAPK pathways which affects several steps of cytosolic Ca2+ elevation (Russo et al., 2004). 

 

During blood taking, anticoagulant that was used in this study was sodium citrate as it has 

become the anticoagulant-of choice for platelet testing for many years. Sodium citrate 

which mechanism of action is chelating extracellular calcium in the blood prevents 

coagulation as a result of reducing calcium-dependent responses (Bell et al., 1990). In 

contrast with sodium citrate, heparin prevents coagulation by forming heparin-

antithrombin (AT) complex which inactivates coagulation enzymes such as thrombin and 

factor Xa (Hirsh et al., 2001). Throughout my studies, all blood taking from human used 

sodium citrate as standard anticoagulant whilst blood taking from mouse involves the use 

of heparin to prevent blood coagulation. The reasons behind this was because cardiac 
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puncture during mouse’s blood taking increase the possibility of traumatic blood clot, thus 

the use of heparin reduced the possibility of blood clotting in the syringe.   The most 

commonly used techniques in measuring platelet aggregation is aggregometry, however it 

has few weak points such as being time-consuming, and requiring relatively large volumes 

of blood, skilled staff and special equipment (Moran et al., 2006).  In this study, platelet 

aggregation was adapted to a 96-well plate format which could be read in a normal 

microplate reader that has shaking properties. The shaking effects applied during the 

measurement of aggregation imitate the circulating blood platelets that frequently collide 

with each other or blood vessels. The optimum wavelength with higher sensitivity for 

aggregation is the shortest one available on the microplate readers, normally 405nm 

(Bednar et al., 1995). However, due to the yellow colour of plasma which produces a high 

background signal, we used a much longer wavelength, 595nm. To standardise the 

method of platelet aggregation, PRP was used as the setting equivalent to 0% aggregation, 

whilst 100% of aggregation was taken being the maximal transparent reading to PPP. 

Combination of platelet aggregation and adhesion assay in this 96-well plate method 

generates more data of platelet function in response with various agonists in a shorter 

period of time as compared with traditional Born aggregometry. Concern about pipetting 

PRP into agonist-well at the same time so that the onset of platelet activation is not varies 

from one well to another was overcome by the use of automated multichannel pipettes. 

This will not only reduce time taken to add PRP into 96-wells, but will decrease the 

possibility of bubble formation that can interrupt absorbance reading. In addition, the use 
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of microplate reader with 12-channel optical system that read the entire 96-well plate at 

the same time adds to the reproducibility of this assay. 

 

To further maximise the advantages of using 96-well plate format, half-area 96-well plates 

were tested for human and mouse platelet aggregation and adhesion. This method is very 

useful because it requires less sample volumes, which could be particularly useful for 

blood samples obtained from mice or, for instance, human newborns. Furthermore, this 

new method allows the measurements of platelet aggregation under the influences of 

various platelet agonists at the same time, thus providing more data in a very short time 

compared with traditional aggregometry. In this study, increases in human platelet 

aggregation and adhesion in response to ADP, adrenaline, collagen, TRAP-6, ristocetin, 

U46619 (thromboxane analogue) and arachidonic acid were seen. Similar observations 

were made in mouse platelets. As thrombin cannot be used in PRP as an aggregating 

agent because it stimulates clotting, TRAP-6 was used as it mimics the strong aggregating 

effect of thrombin. However, mouse platelets did not response to TRAP-6, or to thrombin 

at the concentrations tested in this study. These may be related to differences in the 

expression of thrombin receptors, protease-activated receptors (PAR) in human and 

mouse platelets. Human platelets express PAR-1, a high-affinity receptor that is activated 

at low concentrations of thrombi and PAR-4, a low affinity receptor that mediates 

thrombin signalling at higher concentrations (Ofosu, 2003), whereas mouse platelets 

express PAR-3 and PAR-4. In mouse platelets, PAR-3 serves as a co-receptor for PAR-4, 

wherein thrombin binds to PAR-3 and PAR-4, and cleaves the amino terminus of PAR-4 
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(Mao et al., 2008). Therefore, because TRAP-6 activates platelet through the PAR-1 

receptor mouse platelets are not activated by TRAP-6.  Although thrombin activates 

mouse platelets, the thrombin that was used in this study may not fully stimulate the 

thrombin receptors of mouse platelets, thus the weak activation may not have been 

sufficient to stimulate platelet aggregation. 

  

Peroxisome proliferator-activated receptor-  (PPAR-γ) plays a crucial role in immune 

function by suppressing inflammation and attenuating macrophage/monocyte formation 

of proinflammatory cytokines. It had been thought that PPAR-γ is expressed only in 

nucleated cells since it is known as a transcription factor mainly located in the nucleus, 

however, recent studies have shown that PPAR-γ is also present in the anucleated platelet 

(Akbiyik et al., 2004). PPAR-γ is important for regulating gene expression in metabolism, 

insulin reactivity, and adipocyte differentiation. Thiazolidinediones (TZDs) such as 

rosiglitazone are insulin-sensitising agents which exert their effects through PPAR-γ. It has 

been reported that treatment with TZDs is linked with significant improvements in 

surrogate markers of cardiovascular disease, including lipid profile, blood pressure and 

markers of inflammation and oxidative stress (Khanolkar et al., 2008). In addition to this, 

previous studies have shown that platelets express functional PPAR-γ (Akbiyik et al., 

2004). Despite the largely unknown function of PPAR-γ in platelets, clinical data indicate 

that rosiglitazone reduces platelet activation in non-diabetic patients with coronary artery 

disease and reduces post-coronary stent restenosis rates in patients with Type-II Diabetes 

Mellitus (T2DM). This is supported by recent studies which have demonstrated that 
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rosiglitazone attenuates platelet activation as measured by reduced platelet aggregation 

and sCD40L in patients with T2DM (Khanolkar et al., 2008). Previous evidence of the 

presence of all PPAR sub-family in non-nucleated platelets resulted in more research has 

been done to study the role of PPARs in platelets (Bishop-Bailey, 2010). For example, 

PPARβ has been shown to have synergistic antiplatelet effects with NO, suggesting PPARs 

activation is crucial in inhibition of platelet function by prostacyclin (Ali et al., 2005). 

Another family of PPARs, PPARγ also showed a functional role in inhibition of platelet 

function in vivo (Li et al., 2005). In this study, pioglitazone, an inhibitor of PPARγ reduced 

arterial thrombus formation in rats fed with pioglitazone as compared with normal chow 

fed rats. Although rosiglitazone at tested concentration failed to show any inhibitory 

effects on platelet aggregation and adhesion in this study, previous investigation showed 

that activation of PPARα and PPARγ is important in the antithrombotic effects of statins 

and fibrates, thus suggesting that PPARs is a mediator for platelet inhibition (Ali et al., 

2009).      

 

The platelet responses to different platelet agonists can be enhanced when they are 

present in low concentrations, or are added together or in sequence to PRP (Steen et al., 

1988). Synergistic effects of thrombin and adrenaline have been demonstrated in platelet 

aggregation, granule secretion and mobilization of cytoplasmic Ca2+. In the 96-well plate 

format additive effects of combinations of low concentrations of collagen and adrenaline 

were found on platelet aggregation.  However, combination of either collagen or 

adrenaline with TRAP-6 did not produce any additive effects on platelets. This finding 



104 
 

could be indicative since low concentrations of several agonists may mimic the conditions 

under which thrombosis occurs in vivo. Furthermore, this shows that the 96-well format 

could be used as cheaper alternative of using combined platelet agonists as employed in 

machines such as the PFA-100. In the PFA-100, whole blood is transferred into standard 

cartridges that contain membranes coated with collagen and either ADP or adrenaline. 

The time necessary to occlude the microscopic aperture in the cartridge is measured and 

reported as closure time. PFA-100 closure times are known to be influenced by several 

factors such as platelet count, hematocrit, platelet activity and von Willebrand factor. 

Therefore, combined agonists 96-well plate method may offer another approach to 

platelet function testing that is less influenced by the factors that can confound the PFA-

100. 

 

The use of combinations of platelet agonists in the 96-well plate method of platelet 

aggregation and adhesion was further tested for utility in evaluating the effects of platelet 

inhibitors by examining the effects of aspirin. Inhibition of platelet function by aspirin is 

dependent upon the inhibition of platelet COX-1 that catalyzes the conversion of 

arachidonic acid to PGH2 and then via thromboxane synthase to TXA2 (Howard et al., 

2004). TXA2 is a strong platelet agonist that causes platelet aggregation, vasoconstriction 

and smooth muscle proliferation (Hermann et al., 2006b). Long term aspirin use 

attenuates the risks or myocardial infarction, stroke, and vascular related deaths in 

cardiovascular disease patients. Unlike other NSAIDs, aspirin inhibiting effects is 

irreversible that involves the acetylation of the serine domain located in the active site of 
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COX (Takahashi et al., 2008), thereby blocking the access of arachidonic acid to catalytic 

site of COX-1 (Campbell et al., 2007). Platelets are anucleated, and thus are incapable of 

protein synthesis to repair COX-1 inhibition by aspirin. The prolonged effects of aspirin are 

overcome by platelet turnover, in which nearly 10% of the platelet population is replaced 

with new platelets containing functioning COX-1 each day (Burch et al., 1978 ). This means 

following termination of aspirin treatment, COX-1 platelet activity is fully restored after 

around 10 days. However, only small doses of aspirin, as low as 40mg daily, are needed in 

order to maintain the antiplatelet effects (Zimmermann et al., 2008).  

 

The results presented here demonstrate that the 96-well modified light transmission 

aggregation assay using low concentrations of agonists in combination is useful for the 

detection of inhibition of the platelet COX-1 dependent pathway of aggregation by aspirin, 

as our group has also reported for individual agonists (Armstrong et al., 2008).  

 

VerifyNow™ Aspirin is a point-of-care platelet aggregation test with special cartridges 

designed to detect aspirin resistance. Nielson and colleagues have studied the effects of 

aspirin determined by the VerifyNow™ Aspirin System and traditional light transmission 

aggregometry (LTA) in healthy volunteer and patients with stable CAD (Nielsen et al., 

2008). Despite LTA being a labour-intensive and time-consuming procedure, in contrast 

with VerifyNow™ Aspirin System, this study shows that LTA detected higher aggregation 

levels in patients compared to healthy volunteers. In addition, several subjects with 

‘aspirin resistance’ were found by LTA but not by VerifyNow™ Aspirin System (Nielsen et 
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al., 2008).  Therefore, this combined agonist’s setup in 96-well plates that uses minimal 

concentration of platelet agonists may provide another alternative method to determine 

the effects of aspirin in patients with sensitivities and advantages similar to those of LTA. 

Furthermore, a previous study has shown the uses of combined agonists to detect the 

inhibitory effects of aspirin against the release of 5HT platelets in whole blood (May et al., 

1997). In this study, use of single agonists ADP, adrenaline or PAF did not produce platelet 

5HT release, but combination of any two or all of the agonists caused release of 5HT that 

was inhibited by aspirin. Thus, a combined agonist method may provide a better 

understanding of the additive or synergistic effects of platelet agonists that could be more 

useful in monitoring the effectiveness and influences of aspirin therapy. 

 

Overall, the use of 96-well plate assays could have great utility as a common approach to 

determine platelet function, notably aggregation, adhesion, and release reactions. Even 

though this method uses PRP that has to be processed from whole blood, it is highly 

repeatable, cost and time-effective, and particularly useful for testing large numbers of 

samples or assay conditions. It could well be useful in both the clinical setting and also for 

basic research into platelet function. 

 

 

 

 

 



107 
 

 

 

 

 

 

 

 

 

 

CHAPTER THREE: 

INVESTIGATION OF THE EFFECTS OF 

INHIBITION OF COX-1 AND COX-2 ON 

PLATELET FUNCTION  
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3.1 Introduction 

 

Arachidonic acid metabolism and the formation of eicosanoids is central to the regulation 

of the cardiovascular system through a variety of mechanisms (Linton et al., 2008). The 

syntheses of PGs are cell specific, for instance TXA2 is produced by platelets via COX-1, but 

can also be produced by macrophages via COX-1 and COX-2 (Grosser et al., 2006). Platelet 

TXA2 is an important stimulator of platelet aggregation and the platelet inhibitory effects 

of aspirin that are beneficial for protection against thrombotic events are explained by the 

blocking of platelet COX-1 pathway and TXA2 production (Cipollone et al., 2008; 

Hennekens et al., 1997). COX-2 inhibitor was developed with the objective of reducing the 

gastrointestinal toxicity associated with the use of NSAIDs and linked to inhibition of 

gastrointestinal COX-1 (FitzGerald et al., 2001). However, more recently it has become 

apparent that inhibition of COX-2 could well be associated with an increased risk of 

thrombotic events.  

 

Thus, the primary objective of this study was to determine the effects of inhibition of COX-

1 and COX-2 on platelet function using 96-well plate aggregometry in both in vitro and ex 

vivo assays with healthy volunteers, and to investigate changes in blood flow within the 

forearm caused by reactive hyperaemia in the absence and presence of diclofenac.  
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3.2 Methodology 

 

3.2.1 Effects of Diclofenac and Parecoxib in vitro 

 

PRP was prepared from whole blood withdrawn from healthy donors as described 

previously. Diclofenac sodium (Sigma) and parecoxib sodium (Dynastat® 40mg) were used 

in this study. PRP was incubated for 30 minutes at 370C with diclofenac, parecoxib or 

vehicle before the addition of platelet agonists. Determinations of platelet aggregation 

and adhesion were made in 96-well plates as described in Chapter 3. Data (n=4) were 

calculated and analysed using GraphPad Prism 4.0 (GraphPad Software, CA, USA).  

 

3.2.2 Effect of Intravenous Diclofenac on Platelet Function, Prostanoid Production and 

Forearm Blood Flow in Healthy Adult Volunteers  

 

3.2.1 Study Population and Study Design 

 

8 healthy male individuals  18 years and  40 years were included in the study. Exclusion 

criteria were smoking or receiving any healthcare treatment, especially with aspirin or any 

non-steroidal anti-inflammatory drugs (NSAIDs) or other drugs known to affect platelet 

function (refer lists of inclusion and exclusion criteria below). Ethical approval was 

obtained from the NHS St. Thomas’s Hospital Research Ethics Committee reference 06/ 
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Q0702/150 and conducted according to the Declaration of Helsinki. All volunteers were 

informed briefly about the clinical trial and were required to sign an informed consent 

prior of setting a start date. The trial was being conducted with the notification of 

volunteers’ GPs. Study design for this trial was performed as one-centre, double blind, 

placebo-controlled crossover mechanisms of action study in which all healthy male 

volunteers received treatment of diclofenac sodium or normal saline during two 

scheduled visit (Figure 2.1).  

 

3.2.2 Inclusion Criteria 

 

Volunteers met the following criteria to be included in this study: 

1) Caucasian, male and aged between 18 and 40 years of age. 

2) Free of significant abnormal findings as determined by medical history, screening 

physical examination, haematology, biochemistry, urinalysis (including specific 

gravity), and vital signs (sitting blood pressure, sitting pulse rate, sitting respiratory 

rate and body temperature) within 2 weeks of commencement of the study. 

3) Normal fasting lipid profile. 

4) Non-smoking (due to vasoactive and pro-aggregatory effects of nicotine). 

5) Clear venous access in upper limbs. 

6) BMI between 18 and 30. 

7) No history or signs of drug abuse (including alcohol), licit or elicit. 



111 
 

8) Agrees not to use any medications (prescribed or over-the-counter including 

herbal remedies) judged to be clinically significant by the Principle Investigator 

during the 4 weeks preceding the study, and during the course of the study. 

9) Able to understand and sign the written Informed Consent Form. 

10) Able and willing to follow the Protocol requirements.   

 

3.2.3 Exclusion Criteria  

 

Volunteer were not included in this study if any of the criteria below applied: 

1) Females, due to the confounding effects of the menstrual cycle on circulatory 

behaviour. 

2) Smoking and tobacco consumption, due to confounding effects on circulatory 

behaviour. 

3) Any significant history of allergy and/or sensitivity to any of the contents of either 

the study drugs or to any other NSAIDs. 

4) Any evidence or history of organ dysfunction, or any clinically significant deviation 

from normal in the physical or clinical determinations. 

5) History of disorders of the gastrointestinal, hepatic, renal, cardiovascular, 

endocrine (including diabetes), neurological (including epilepsy, migraine 

headaches, depression and convulsions), metabolic, psychiatric, haematological 

(especially anaemia and coagulation disorders) or systemic disease judged to be 

clinically significant). 
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6) Asthma. 

7) A pulse rate of less than 50 beats/minute, a sitting systolic blood pressure >160 or 

<80 mmHg and/or a sitting diastolic pressure of >100 or <60 mmHg. 

8) Any significant illness during the 4 weeks preceding the screening period of the 

study. 

9) Any contraindication to blood sampling.  

10) Positive urine drug screen or indication. 

11) Alcohol consumption greater than community norms (for example more than 21 

standard drinks per week for males). 

12)  Participation in any clinical study during the weeks preceeding the dosing period 

of the study. 

13) Donation of blood during the 8 weeks preceeding the screening period of the study 

or during the investigation. 

14) Concerns regarding the subject’s participation in the study are raised by their GPs. 

 

 

Figure 3.1: Study design for the evaluation of intravenous diclofenac on platelet 

function and post-hyperaemia prostanoid production in healthy adult volunteer.  
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Figure 3.2: Diagram above shows detail of visit schedule which includes blood taking and 

drug administration time. There were two visits for each participants following 

randomisation visit and participants will be administered with diclofenac or control saline 

in each visit. There was 4 weeks interval between visits to allow wash out period.  
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3.2.4 Drug Administration 

 

The active agent, Voltarol®Novartis (25mg/ml diclofenac sodium) was given as 

intravenous administration with total dose of 75mg/3ml into the arm vein of the 

dominant arm followed by 10 ml of normal saline flush. 3 ml 0.9% physiological saline was 

given intravenously for placebo control. During crossover a period of at least 4 weeks was 

left to allow full drug washout and both blood cell and platelet replacement (Figure 3.2). 

 

3.2.5 Platelet Study  

 

For the purposes of the platelet study, 52 ml of venous blood was taken from each 

participant before and after administration of treatment. The first 2 ml of blood for each 

collection was discarded as this represents residual blood and saline from within cannula. 

The same amount of normal saline was returned via the cannula for blood replacement. 

Study of platelet reactivity was conducted as platelet aggregation followed by platelet 

adhesion, as described in Chapter 3. Quantification of platelet adhesion was made 

immediately after platelet aggregation. 
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3.2.6 Platelet Function Analyser-100 System (PFA-100) 

 

Blood samples from all subjects were taken to measure platelet function by use of the 

Platelet Function Analyser (PFA-100®, Dade Behring). In this instrument, citrated whole 

blood is aspirated at high shear rates (5000-6000 s-1) through a glass capillary (diameter 

200 µm) into a membrane pore (diameter 150 µm). The membrane is coated with 2 µg of 

type I collagen and 10 µg adrenaline or 50 µg ADP. Platelet function is measured as a 

function of the time (closure time/ CT) that platelets take to occlude an aperture in a 

coated membrane; both types of cartridges were used in this study, collagen/adrenaline 

(CEPI) and collagen/ADP. Cartridges were prewarmed to room temperature before loaded 

into the device. 

 

3.2.7 Postocclusive Forearm Skin Reactive Hyperaemia  

 

Participants were in a supine position with arms and hands kept stationary. The 

uncovered right arm was supported comfortably with cushion and was slightly lifted 

above heart level. Forearm blood flow was then occluded using a pneumatic pressure cuff 

(Accoson, England) placed on the non-dominant upper arm about 1-2cm above the 

antecubital crease following inflation to a suprasystolic pressure (systolic blood pressure + 

10 mmHg) for 3 minutes. Reactive hyperaemia was produced by the rapid release of the 

cuff to re-institute blood flow. Blood samples were taken before and after each forearm 

occlusion for baseline and after drug administration.  
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3.2.8 Prostanoid Production by Radioimmunoassay 

 

Serial 10 ml blood samples were collected for measurement around baseline hyperaemia 

(pre-intravenous injection of drug) and around hyperaemia after intravenous drug 

administration. One portion of blood was centrifuged to prepare plasma and stored for 

future analysis of thromboxane B2, a stable metabolite of thromboxane A2. Another 

portion of blood was incubated with 500 µM of calcium ionophore or 1mg/ml LPS for 30 

min to activate the COX pathway and prostanoid production by platelets. Samples were 

centrifuged to obtain plasma and stored for analysis of TXB2 and PGE2 by 

radioimmunoassay, as described previously. 
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3.3 Results 

 

3.3.1 Part One: Effects of Diclofenac and Parecoxib in Vitro  

 

3.3.1.1 Inhibition by Diclofenac (1mM) of Platelet Activation by Various Agonists 

 

AA-induced effects on platelet aggregation and adhesion were inhibited by diclofenac. For 

instance, aggregations induced by 0.3, 1.0 and 1.6mM AA were decreased to 4±1%, 1±4% 

and 0% from 47±23%, 54±20% and 79±16%. Adhesions stimulated by same concentration 

of AA were also inhibited from 22±9%, 22±9% and 27±4% to only 1% for all three 

concentrations. Collagen and adrenaline were also strongly inhibited by diclofenac. 

Stimulation by collagen at 3, 10 and 30µg/ml induced aggregations of 55±9%, 88±6% and 

91±2% which were decreased to 19±4%, 58±4% and 66±4%, respectively, by diclofenac. 

Diclofenac also reduced aggregation induced by adrenaline at 1, 10 and 100µM to 22±9%, 

34±13% and 37±12% as compared to the controls, 54±15%, 66±15% and 72±10%, 

respectively.  Diclofenac also significantly inhibited platelet adhesion induced by collagen 

and adrenaline. For example, at 3 and 10µM collagen, platelet adhesion was decreased to 

11±3% and 32±3% as compared to 25±4% and 44±4% in control, respectively. Adhesion 

induced by 10 and 100µM adrenaline was also decreased from 24±6% and 29±4% to 

15±5% and 17±5% following incubation with diclofenac. ADP, TRAP-6 and ristocetin-

stimulated platelets also showed significantly decreased platelet aggregations after 
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treatment with diclofenac. However, only ADP-stimulated platelet adhesion was inhibited 

by diclofenac. In addition, platelet aggregation in response to lower concentrations of 

TRAP-6 was more greatly inhibited by diclofenac. In contrast to the other agonists, 

U46619-stimulated platelet activation was not affected by diclofenac (Figure 3.3-3.7). 
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Figure 3.3: Aggregometery traces showing effects of diclofenac on platelet 

aggregation induced by AA, ADP and collagen. PRP was incubated for 30 min, 370C 

with 1mM diclofenac before agonist-stimulated platelet aggregation was 

determined in 96-well plates. Each data point represents mean ± S.E.M.  (n=4-5). 
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Figure 3.4: Aggregometry traces showing effects of diclofenac on platelet 

aggregation induced by adrenaline, ristocetin and TRAP-6. PRP was incubated for 30 

min, 370C with 1mM diclofenac before agonist-stimulated platelet aggregation was 

determined in 96-well plates. Each data point represents mean ± S.E.M.  (n=5). 
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Figure 3.5: Aggregation traces of the effects of diclofenac on platelet aggregation 

induced by U46619. PRP was incubated for 30 min, 370C with 1mM diclofenac before 

agonist-stimulated platelet aggregation was determined in 96-well plates. Each data 

point represents mean ± S.E.M.  (n=5). 
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Figure 3.6: Inhibitory effects of diclofenac on platelet aggregation stimulated by 

various agonists. PRP was incubated with 1mM diclofenac before agonist-stimulated 

platelet aggregation was determined in 96-well plate. Each data point represents 

mean ± S.E.M.  (n=4-5). * = P<0.05; ** = P<0.01; *** = P<0.001 determined by two-

way ANOVA. 
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Figure 3.7: Inhibitory effects of diclofenac on platelet adhesion stimulated by various 

agonists. Each data point represents mean ± S.E.M.  (n=4-5). * = P<0.05; and *** = 

P<0.001 determined by two-way ANOVA. 
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3.3.1.2 Concentration-Dependent Inhibition by Diclofenac of AA-Stimulated Platelet 

Responses  

 

To determine the concentration-dependent effects of diclofenac the effects of diclofenac 

0.001-100µM against the stimulatory effects of AA were measured as shown in Figure 3.8. 

The concentration-dependent inhibitory effects of diclofenac can be seen clearly against 

aggregation induced by both 1.0 and 1.6mM AA, and platelet adhesion induced by both 

0.3 and 1mM of AA. For instance, aggregation induced by 1.0mM AA was 63±12%, which 

decreased to 57±13%, 35±15% and 5±2% (p<0.0001) in the presence of 0.001, 0.01 and 

0.1µM diclofenac. For adhesion induced by 1.0mM AA, the control response was 29±7% 

which was decreased to 27±7%, 12±5% and 3±1% (p<0.0001) in the presence of the same 

concentrations of diclofenac. 

 

Figure 3.8: Diclofenac inhibits platelet aggregation stimulated by arachidonic acid (AA) 
in a concentration-dependent manner. PRP was incubated with diclofenac 1nM-
0.1mM for 30 min, 370C before determination of platelet aggregation and adhesion 
induced by various concentrations of AA. Each data point represents mean ± S.E.M., 
n=4.  
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3.3.1.3 Concentration-Dependent Inhibition of Diclofenac on Collagen-Stimulated Platelet  

 

Since platelet responses induced by collagen were also sensitive to the effects of 

diclofenac, the concentration effects of diclofenac against collagen-induced platelet 

aggregation and adhesion were also determined (Figure 3.9). As for AA, diclofenac 

inhibited collagen-stimulation of platelets in a concentration-dependent manner, although 

the effects lessened with higher concentrations of collagen. For instance, 3µg/ml collagen 

induced platelet aggregation of 70±8%, which decreased following treatment with 0.1, 1, 

10, and 100µM diclofenac to 51±9%, 34±7%, 29±10% and 26±8%, respectively. For 

adhesion induced by 3µg/ml collagen, treatment with the same concentrations of 

diclofenac reduced platelet adhesion to 26±4%, 5±1%, 17±5% and 20±6% compared to 

control response of 30±4%. 

 

Figure 3.9: Diclofenac inhibits platelet aggregation stimulated by collagen (COL) in a 

concentration-dependent manner. PRP was incubated with various concentrations of 

diclofenac ranging from 1nM-0.1mM for 30 min at 370C before determination of 

platelet aggregation and adhesion induced by various concentrations of AA. Each 

data point represents mean ± S.E.M. (n=4). 
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3.3.1.4 Concentration-Dependent Inhibition of Diclofenac on Combined Collagen and 

Adrenaline-Stimulated Platelet  

 

The effects of diclofenac were also studied on platelets stimulated by combination of 

collagen at 1µg/ml and adrenaline at 0.01µM and 0.1µM (Figure 3.10). In platelets 

stimulated by collagen alone, aggregation was decreased by 0.01 and 0.1 µM diclofenac to 

27±4% and 15±3% from 28±5% in control conditions. For the same concentrations of 

diclofenac, platelet aggregation induced by 0.1µM adrenaline was decreased to 20±7% 

and 7±2% from 21±7%. Combination of agonists increased platelet aggregation and 

adhesion and was still sensitive to diclofenac. For example, for collagen combined with 

0.01µM adrenaline the aggregation was 33±6% which decreased to 20±4% and 17±3% in 

the presence of 0.01 and 0.1 µM diclofenac. For collagen combined with 0.1µM 

adrenaline, the aggregation was reduced by diclofenac to 52±5% and 29±5% from the 

control level of, 55±7%. Inhibitory effects of diclofenac on platelet adhesion were also 

seen against both agonist combinations. For instance, collagen and 0.01µM adrenaline 

induced platelet adhesion of 19±3% which was decreased in the presence of diclofenac 

0.01 and 0.1 µM to 12±1% and 9±1%, respectively. 
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Figure 3.10: Diclofenac inhibits in a concentration-dependent manner platelet 

aggregation and adhesion induced by combination of agonists. PRP was incubated 

with various concentrations of diclofenac before addition of combined collagen 

(1µg/ml) and adrenaline (ADR: 0.1 and 0.01µM). Each data point represents mean ± 

S.E.M., n=4. * indicates P<0.05 as compared to control vehicle determined by one-

way ANOVA. 
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3.3.1.5 Effects of COX-2 Inhibitor, Parecoxib (1mM) on Platelet Activation by Various 

Agonists  

 

Parecoxib was used to study the effects of selective COX-2 inhibition on platelet activation 

by various agonists using the methods described above. As expected, there were no 

changes in platelet aggregation or adhesion noted (Figure 3.11 and Figure 3.12). 

 

3.3.1.6 Effects of COX-2 Inhibitor, Parecoxib, on Platelet Activation by Combination of 

Collagen and Adrenaline  

 

As above, parecoxib did not affect platelet aggregation or adhesion stimulated by collagen 

and adrenaline (Figure 3.13). 
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Figure 3.11: Effects of parecoxib on platelet aggregation stimulated by various 

agonists. PRP was incubated with 1mM parecoxib before agonist-stimulated platelet 

aggregation was determined in 96-well plates. Each data point represents mean ± 

S.E.M.  (n=5).  



130 
 

 

Figure 3.12: Effects of parecoxib on platelet adhesion stimulated by various agonists. 

PRP was incubated with 1mM parecoxib before agonist-stimulated platelet 

aggregation was determined in 96-well plates. Each data point represents mean ± 

S.E.M.  (n=5).  
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Figure 3.13: Effects of parecoxib on platelet aggregation and adhesion induced by 

combined agonists. PRP was incubated with various concentrations of diclofenac 

before addition of combination of collagen (1µg/ml) and adrenaline (ADR: 0.1 and 

0.01µM). Each data point represents mean ± S.E.M., n=4.  
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3.3.1.7 Effects of the COX-2 Inhibitor, Lumiracoxib, on Platelet Activation by Various 

Agonists  

 

Another novel COX-2 selective inhibitor, lumiracoxib was also tested for its effects on 

platelet function and found to be without effect at concentrations of up to 1mM (Figure 

3.14-3.18). 
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Figure 3.14: Effects of lumiracoxib on platelet aggregation stimulated by various 

agonists. PRP was incubated with 100µM lumiracoxib before agonist-stimulated 

platelet aggregation was determined in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4).  
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Figure 3.15: Effects of lumiracoxib on platelet adhesion stimulated by various 

agonists. PRP was incubated with 100µM lumiracoxib before agonist-stimulated 

platelet aggregation was determined in 96-well plate. Each data point represents 

mean ± S.E.M.  (n=4).  
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Figure 3.16: Effects of lumiracoxib on platelet aggregation induced by various 

agonists. PRP was incubated with 1mM lumiracoxib before agonist-stimulated 

platelet aggregation was determined in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4).  
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Figure 3.17: Effects of lumiracoxib on platelet adhesion stimulated by various 

agonists. PRP was incubated with 1mM lumiracoxib before agonist-stimulated 

platelet aggregation was determined in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4).  
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3.3.2 Part Two: Effect of Intravenous Diclofenac on Ex Vivo Platelet Function and Other 

Measurement 

 

3.3.2.1 Effects of intravenous diclofenac on platelet aggregation and adhesion 

 

As shown in Figure 3.18-3.24, diclofenac in vivo potently decreased platelet function ex 

vivo as determined by aggregation and adhesion. For example, the aggregation to 1.2mM 

AA at baseline was 28±9% which was decreased to 9±5% after diclofenac administration 

(Table 7). Platelet aggregation to 10 M ADP was not affected by administration of normal 

saline (pre: 56±4%; post: 55±4), however, aggregation was decreased following diclofenac 

administration to 39±5% from 56±5%. Similar observations were also made for collagen at 

10µg/ml, in which platelet aggregation decreased at post-treatment to 28±7% from 

68±7% before treatment. Platelet aggregation stimulated by adrenaline and TRAP-6 was 

also inhibited with diclofenac administration; aggregation stimulated by 100µM 

adrenaline was inhibited from 51±7% to 18±4% and platelet aggregation stimulated by 

30µM TRAP-6 was reduced to 62±5% from 81±3%. There were also significant inhibitions 

in responses to ristocetin and U46619. Changes in AA-stimulated platelet adhesion caused 

by diclofenac were not readily observed, probably due to very low baseline percentage of 

adhesion. However, platelet adhesions stimulated by other agonists were strongly 

inhibited by diclofenac. For instance, 30µg/ml collagen caused platelet adhesion of 26±4% 

after diclofenac compared to 43±5% in control conditions (Table 8). Similar observation 

was found for other agonists, such as ADP, TRAP-6, U46619 and ristocetin.  
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PLATELET AGGREGATION (%) 

AGONISTS 
SALINE DICLOFENAC 

PRE POST PRE POST 

AA (log M) 

-3.0 16±8 25±10 11±6 7±5 

-2.9 15±7 36±9 28±9 9±5 

-2.8 26±8 38±8 49±10 32±8 

ADP (log M) 

-5.5 37±5 39±4 43±5 31±7 

-5.0 56±4 55±4 56±5 39±5 

-4.5 70±3 70±4 71±5 56±6 

Collagen (log g/ml) 

-5.5 27±6 23±5 44±9 15±7** 

-5.0 71±5 66±7 68±7 28±7*** 

-4.5 87±2 84±4 82±5 40±6*** 

Adrenaline (log M) 

-6.0 29±6 27±7 30±7 10±4* 

-5.0 43±6 38±6 39±6 15±6* 

-4.0 53±5 47±6 51±7 18±4*** 

Ristocetin (log g/ml) 

-6.0 5±1 5±1 25±7 5±4 

-5.7 76±4 81±3 71±6 60±7 

-5.5 84±5 89±2 83±6 73±6 
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TRAP-6 (log M) 

-5.5 41±7 39±6 43±7 28±6 

-5.0 74±2 73±3 73±2 60±5 

-4.5 79±4 81±2 81±3 62±5** 

U46619 (log M) 

-5.5 83±3 85±3 75±8 60±9 

-5.0 85±1 86±1 83±2 73±7 

-4.5 88±1 89±2 86±2 74±7 

 

Table 7: Inhibitory effects of intravenous diclofenac on platelet aggregation 

stimulated by various agonists. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Data shown is for top three 

concentrations of each agonist tested. Each data represents mean ± S.E.M. from 8 

different healthy volunteers. * = P<0.05; ** = P<0.01 and *** = P<0.001 determined 

by one-way ANOVA. 
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PLATELET ADHESION (%) 

AGONISTS 
SALINE DICLOFENAC 

PRE POST PRE POST 

AA (log M) 

-3.0 6±3 2±1 3±2 14±6 

-2.9 4±2 6±1 7±3 7±3 

-2.8 6±2 7±3 6±3 7±3 

ADP (log M) 

-5.5 17±3 13±3 18±3 11±3 

-5.0 29±3 22±3 26±3 20±4 

-4.5 37±3 34±3 36±4 26±4 

Collagen (log g/ml) 

-5.5 18±4 13±3 21±4 9±4 

-5.0 46±4 41±4 40±5 20±5 

-4.5 45±2 44±3 43±5 26±4 

Adrenaline (log M) 

-6.0 15±3 11±4 13±2 8±4 

-5.0 25±4 18±4 22±3 12±4 

-4.0 32±3 25±4 28±4 14±4 

Ristocetin (log g/ml) 

-6.0 3±1 2±0 8±2 2±2 

-5.7 35±3 35±5 37±5 25±5 

-5.5 35±4 29±3 44±5 23±4 
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TRAP-6 (log M) 

-5.5 16±3 16±4 19±3 12±4 

-5.0 43±3 38±3 44±3 35±4 

-4.5 50±3 49±4 50±5 36±4 

U46619 (log M) 

-5.5 57±3 54±2 56±5 40±7 

-5.0 64±4 63±4 63±6 52±6 

-4.5 66±6 65±5 62±6 52±6 

 

Table 8: Inhibitory effects of intravenous diclofenac on platelet adhesion stimulated 

by various agonists. Blood samples were taken before and after I.V. administration 

of diclofenac sodium or saline. Data shown is for top three concentrations of all 

agonists tested. Each data represents mean ± S.E.M. from 8 different healthy 

volunteers. Data has been analysed by one-way ANOVA. 

 



142 
 

 

Figure 3.18: Inhibitory effects of intravenous diclofenac on AA-stimulated platelet 

aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data represents mean ± S.E.M. of 

data from 8 different healthy volunteers. Two-way ANOVA was performed to 

compare between pre and post-treatment. 
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Figure 3.19: Inhibitory effects of intravenous diclofenac on ADP-stimulated platelet 

aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data point represents mean ± 

S.E.M. from 8 different healthy volunteers. Two-way ANOVA was used to compare 

between pre and post-treatment in which * = P<0.05, ** = P<0.01 and *** = 

P<0.001. 
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Figure 3.20: Inhibitory effects of intravenous diclofenac on collagen-stimulated 

platelet aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data point represents mean ± 

S.E.M. from 8 different healthy volunteers. Two-way ANOVA was used to compare 

between pre and post-treatment in which * = P<0.05, ** = P<0.01 and *** = 

P<0.001. 
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Figure 3.21: Inhibitory effects of intravenous diclofenac on adrenaline-stimulated 

platelet aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data point represents mean ± 

S.E.M. from 8 different healthy volunteers. Two-way ANOVA was used to compare 

between pre and post-treatment in which * = P<0.05, ** = P<0.01 and *** = 

P<0.001. 
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Figure 3.22: Inhibitory effects of intravenous diclofenac on ristocetin-stimulated 

platelet aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data point represents mean ± 

S.E.M. from 8 different healthy volunteers. Two-way ANOVA was used to compare 

between pre and post-treatment in which * = P<0.05, ** = P<0.01 and *** = 

P<0.001. 
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Figure 3.23: Inhibitory effects of intravenous diclofenac on TRAP-6 -stimulated 

platelet aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data point represents mean ± 

S.E.M. from 8 different healthy volunteers. Two-way ANOVA was performed to 

compare between pre and post-treatment in which * = P<0.05, ** = P<0.01 and *** 

= P<0.001. 
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Figure 3.24: Inhibitory effects of intravenous diclofenac on U46619-stimulated 

platelet aggregation and adhesion. Blood samples were taken before and after I.V. 

administration of diclofenac sodium or saline. Each data point represents mean ± 

S.E.M. from 8 different healthy volunteers. Two-way ANOVA was performed to 

compare between pre and post-treatment in which * = P<0.05, ** = P<0.01 and *** 

= P<0.001. 
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3.3.2.2 Determination of Blood TXB2 and PGE2 Level Following Administration of 

Diclofenac 

 

Radioimmunoassays were performed to investigate the changes in the levels of TXB2 and 

PGE2 in the blood following I.V. administration of diclofenac sodium. Blood were taken at 

various time points before and after hyperaemia to study the changes of eicosanoids. As 

shown in Figure 3.25, there were no significant changes of TXB2 production in non-

stimulated blood when compared between baseline, pre- and post hyperaemia in control 

saline and diclofenac treatment. When stimulated by calcium ionophore, baseline levels of 

TXB2 were increased as shown in Figure 3.26, which were clearly decreased at post-

hyperemia in both saline and diclofenac administration.  PGE2 levels were clearly and 

significantly suppressed following intravenous diclofenac administration suggesting 

inhibition of blood COX-2 activity (Figure 3.27).  
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Figure 3.25: Effects of intravenous diclofenac on TXB2 production in non-stimulated blood. 

TXB2 levels were measured by radioimmunoassay before and after diclofenac sodium or 

saline administration. Each data point represents mean ± S.E.M. from 8 different healthy 

volunteers. 
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 Figure 3.26: Effects of intravenous diclofenac on TXB2 production in calcium 

ionophore-stimulated blood. TXB2 levels were measured by radioimmunoassay 

before and after diclofenac sodium or saline administration. Each data point 

represents mean ± S.E.M. from 8 different healthy volunteers. 
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Figure 3.27: Effects of intravenous diclofenac on PGE2 production in LPS-stimulated 

blood. PGE2 levels were measured by radioimmunoassay before and after diclofenac 

sodium or saline administration at different time point. Each data point represents 

mean ± S.E.M. from 8 different healthy volunteers. * indicates P<0.05 by one-way 

ANOVA. 
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3.3.2.3 Effects of Intravenous Diclofenac on PFA-100 CADP and CEPI Cartridge Closure 

Time (CT) Measured by PFA-100 

 

Further study of platelet function was made before and after administration of diclofenac 

or control saline as measured by Platelet Function Analyzer 100 (PFA 100) as shown in 

Figure 3.28. No significant changes of CADP closure times followed administration of 

control saline or diclofenac. For CEPI closure times, no changes followed administration of 

control saline; however, CEPI closure times were increased by administration of diclofenac 

to 181±18 seconds from 149±14 seconds. 
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Figure 3.28: Effects of intravenous diclofenac on platelet function measured by PFA-

100. Closure times (sec) for both collagen/ADP and collagen/epinephrine cartridges 

were measured before and after administration of diclofenac sodium or saline. Each 

data represent mean ± S.E.M. from 6 individual healthy volunteers. Statistical 

analysis student t-test was performed to compare between pre- and post-

treatment. 
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3.4 Discussion 

 

This study confirms previous clinical trials that have shown inhibition of platelet function 

by NSAIDs. A study in healthy male volunteers by Bauer et al. (2010) found that diclofenac 

impaired platelet function as measured by platelet count and PFA-100, but to a lesser 

extent than preferential COX-1 inhibitors such as aspirin and ketorolac. The current study 

also shows that parecoxib did not exert an inhibitory effect on platelet in vitro. Parecoxib 

(Dynastat) is an amide prodrug of valdexocib, an oral COX-2 inhibitor and is the first 

injectable COX-2 inhibitor for the management of pain (Graff et al., 2007). Parecoxib is 

converted in vivo to valdecoxib and propionic acid, with its t1/2 being approximately 30 

minutes. Earlier work has found that parecoxib produces longer analgesic effects than 

diclofenac in patients undergoing elective general surgery. However, platelet aggregation 

measured by ADP-induced optical aggregometry was more strongly inhibited by diclofenac 

than parecoxib (Bajaj et al., 2004). This study suggested an advantage of parecoxib over 

diclofenac in that it could provide more effective analgesic and anti-inflammatory effects 

without increasing the risk of bleeding complications following inhibition of platelet COX-

1. A previous study has also shown that parecoxib did not affect platelet function or TxB2 

formation in patients undergoing routine partial menisectomy (Graff et al., 2007). 

Similarly, another COX-2 inhibitor, rofecoxib did not effects PFA-100 closure time whereas 

aspirin, diclofenac and lornoxicam significantly prolong the CTs in healthy volunteers 

receiving the drugs orally (Blaicher et al., 2004).  Conversely, another study has shown 
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that parecoxib enhanced shear stress-induced platelet aggregation in the presence of an 

arterial stenosis in rats (Borgdorff et al., 2006).  

 

In addition, lumiracoxib (Prexige®), a novel COX-2 selective inhibitor use in the treatment 

of osteoarthritis, rheumatoid arthritis and acute pain was also studied for its platelet 

inhibitory effects in vitro. With regard to its chemical structure, lumiracoxib is different 

from other COX-2 inhibitors, which are typically sulphonamides (celecoxib and valdecoxib) 

or sulfones (rofecoxib and etoricoxib). In this study, lumiracoxib exhibited no effect on 

platelet function in vitro consistent with a selective effect upon COX-2 inhibitor with no 

influence on platelet COX-1 and the formation of TXA2.    

 

It is vital to understand the role of COX-1 and COX-2 products in maintaining normal 

physiology before the side effects of both NSAIDs and COX-2 inhibitors are explored. COX-

1 exists in most tissues and is responsible for maintaining normal gastric mucosa and 

regulates platelet function (Konstam et al., 2002). In contrast, COX-2 is nearly 

undetectable in non-stimulated cells but is inducible in the presence of pro-inflammatory 

cytokines and produces prostaglandins that are involved in pain and inflammatory 

reaction (Urban, 2000). Traditional NSAIDs inhibits both COX-1 and COX-2, thus decreasing 

the biosynthesis of prostaglandins and other proinflammatory agents explaining their 

therapeutic and toxic effects (Vane, 1971). It appears in general terms that COX-1 

inhibition in gastric mucosa and decreases of PGI2 and PGE2 synthesis leads to the loss of a 

local protective effect of GIT (Emery, 1996). This hypothesis supported the development 
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of selective COX-2 inhibitors that should have less GIT toxicity and produce less bleeding 

than traditional NSAIDs.  

 

Another concern is that COX-2 inhibitors may cause an increase in the risk of 

cardiovascular disease due to their inhibition of vascular PGI2 synthesis (Connolly, 2003). 

Although The Vioxx Gastrointestinal Outcomes Research (VIGOR) trial was initially carried 

out to investigate the GIT adverse events caused by rofecoxib or naproxen, cardiovascular 

findings in this research suggested the potential for prothrombotic effects of rofecoxib 

(Bombardier et al., 2000). As the incidence of myocardial infarction was found similar in 

patients taking rofecoxib in the VIGOR study and celecoxib in the Celecoxib Long-term 

Arthritis Safety Study (CLASS), Mukherjee et al. (2001) suggested an association between 

the use of coxibs and an increased risk of cardiovascular events such as myocardial 

infarction (Mukherjee et al., 2001). It is widely understood that COX-2 selective inhibition 

has no effect on functional platelet COX-1, but it may have reduce the production of 

vascular prostacyclin, thereby produce an imbalance between TXA2 and PGI2, thus 

promoting a prothrombotic state (McAdam et al., 2005). However, more evidence is 

required to explore the effects of COX-2 inhibitors aligned with their different 

pharmacokinetic and pharmacodynamic profiles in regard to the risk of cardiovascular 

adverse effects. Nevertheless, it was suggested that based on the previous studies and 

analyses, COX-2 selective inhibitors at a standard recommended doses do not increase the 

risk of thrombotic events more than do traditional NSAIDs (Warner et al., 2004).  
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There are many point-of-care type instruments such as VerifyNow and Platelet Function 

Analyser (PFA-100, Dade-Behring) that can be used to measure platelet function, as well 

as other methods such as optical aggregometry. PFA-100 is very useful in determining the 

function of blood platelets under similar conditions to those in the circulation, as this 

method uses whole blood in a high-shear stress system (Watala et al., 2003). Although 

PFA-100 has been classified as a method that shows high sensitivity to a variety of clinical 

situations, such as vWF dysfunction and von Willebrand disease, there is no definite 

conclusion as to which PFA-100 closure time reflects the ability of platelets to aggregate 

and adhere (Watala et al., 2003). As prolongation of CTs reflects the degree of platelet 

inhibition, our data shows that there is no change in the PFA-100 occlusion time of 

collagen-ADP (CADP) cartridges after administration of diclofenac to the volunteers. 

However, inhibition of aggregation and adhesion of ADP-induced PRP were detected when 

using our 96-well plate format method. Further, our data shows that collagen and 

adrenaline-induced aggregation and adhesion were in agreement with CEPI CTs which 

shows an inhibition following diclofenac treatment. Previous study also showed that PFA-

100 CEPI CT and adrenaline-induced aggregometry is the pair of methods with the higher 

agreement in monitoring of platelet dysfunction due to aspirin treatment (Tsantes et al., 

2008). However, the same study also reported that the PFA-100 CADP CT were not 

consistent with ADP-induced aggregometry which suggested there are some variables 

affected both methods in different way.  
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It is noteworthy that Tsantes et al. (2008) have used AA, adrenaline and ADP as agonists in 

optical aggregometry to compare with PFA-100 CTs whilst Malinin et al. (2003) used only 

adrenaline-induced conventional aggregometry. In parallel, both studies have found that 

despite the use of different agonists in aggregometry, both aggregometry and PFA-100 

seems to be reliable in reflecting the various responses of anti-aggregating agents. The 

correlation between platelet counts and the PFA-100 measurements is not well-known, 

however, CADP CT in patients with thrombocytosis not taking aspirin was statistically 

significantly inversely correlated to platelet count (Tsantes et al., 2008). Meanwhile, our 

96-well plate format method is not affected by platelet count in measuring platelet 

function in response to various agonists (Armstrong et al., 2008). In addition, several 

studies have suggested that the PFA-100 is more reliable and sensitive than optical 

aggregometry in detecting aspirin resistance and platelet dysfunction caused by the intake 

of aspirin in healthy volunteers (Marshall et al., 1997). Marshall et al. (1997) also reported 

that the bleeding time measured using the Simplate™ method and PFA-100 closure time 

were in agreement with the inhibition of arachidonic acid-induced aggregation 

determined when aspirin is given to healthy volunteers. The same study suggested that 

PFA-100 demonstrated less false positive results than the bleeding time method, which is 

of the main concern when evaluating the effects of drugs on haemostasis. Another 

prospective investigation also suggested that PFA-100 is useful in the detection of platelet 

dysfunction, particularly during the preoperative period (Konrad et al., 2006).  However, 

more research is needed when comparing point-of-care testing such as PFA-100 to clinical 

outcomes related associated with poor aspirin response (Wong et al., 2004).  
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The 96-well plate format of platelet aggregation has been shown to be a reliable method 

in determining aspirin-induced platelet inhibition, as described in our previous paper 

(Armstrong et al., 2008). The ability to investigate TXB2 levels using the same samples 

from agonist-induced aggregation in the 96-well plate format provides advantages in 

finding associations between platelet aggregation and platelet TXB2 formation. For clinical 

testing, even though PFA-100 and other tests such as VerifyNow and multiplate electrical 

impedance aggregometry (MEA) are also reliable to test aspirin effects on platelets, pre-

treatment values should be taken into account so that the risk of overestimation in the 

assessment of platelet inhibition by aspirin is eliminated (Can et al., 2010).  

 

Post occlusive forearm skin reactive hyperaemia is determined as increased skin blood 

flow to tissue following the release of short arterial occlusion (Tee et al., 2004). Even 

though functional abnormalities of the microcirculation have been accepted as reflecting 

abnormalities in the pathogenesis of cardiovascular diseases, the exact mechanism of skin 

post-ischaemic hyperaemia responses are not fully established (Beinder et al., 2001). Here 

the levels of COX prostanoids were investigated following reactive hyperaemia in healthy 

volunteers given parenteral diclofenac sodium. Measurement of PGE2 production in 

response to LPS added to citrated blood samples indicates the induction of COX-2, whilst 

concurrent measurement of TXB2 production in non-induced and calcium ionophore-

induced citrated whole blood represents COX-1 activity before and after reactive 

hyperaemia. In parenteral administration of diclofenac, both TXA2 and PGE2 levels were 

decreased as a result from the non-selective COX inhibition of diclofenac. The opposite 
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actions of PGI2 and TXA2 on vascular systems are well studied; with the balance of those 

two being very crucial in the development of various thrombotic diseases (Yuhki et al., 

2011). TXA2 is a potent vasoconstrictor which is produced mainly by platelets, whilst PGI2 

is a potent vasodilator and produced by vascular endothelial cells (Yuhki et al., 2011). In a 

previous study performed in obese rats it was found that COX-1 derived prostanoids are 

responsible for vasoconstriction, but endothelial COX-2 is upregulated to increase 

production of vasodilator prostaglandins in insulin resistant obese rats (Sánchez et al., 

2010). Studies such as this demonstrate the importance of vasodilator prostanoids to the 

maintenance of normal basal vascular tone, which, however, can be limited by the 

vasoconstrictor products of COX (Campia et al., 2002). Although PGE2 is the most 

abundant prostanoids, its role in the skin reactive hyperaemia is not clearly observed in 

this study. Therefore, it is unclear whether PGE2 or COX-2 is involved in the regulation of 

microcirculation. This study however, is limited as no measurements were made to look at 

6-keto-prostaglandins F1α, a stable metabolite of prostacyclin. Diclofenac suppressed 

COX-1- and COX-2-dependent prostanoid production in citrated blood; i.e. decreased the 

production of TXA2 and PGE2. Consequently, the fact that TXA2 is a vasoconstrictor will 

suggest an improvement of endothelial function in patients with risk factors for 

atherosclerosis for whom aspirin is given as part of therapeutic treatment (Campia et al., 

2002). 
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In conclusion, this study determined the use of 96-well plate format for monitoring 

platelet function in humans, and its potential usefulness as a routine laboratory platelet 

test. Further, this study shows that NSAIDS such as diclofenac is a platelet inhibitor, in 

vitro and ex vivo but not the COX-2 selective inhibitors, parecoxib and lumiracoxib, as 

shown in vitro. Diclofenac was also found to decrease vascular TXA2 production, which is 

suppressed during post occlusive forearm skin reactive hyperaemia. 
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CHAPTER FOUR: 

STUDY OF INFLUENCES OF  

12-LIPOXYGENASE AND NADPH 

OXIDASE PATHWAYS ON PLATELET 

REACTIVITY 
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4.1 Introduction 

 

Previous reports regarding 12-LOX function in platelets have been relatively limited and 

inconsistent. Irreversible platelet aggregation has been demonstrated to be independent 

of 12-LOX (Rao et al., 1985), although the inhibitor used in this study was not specific to 

platelet 12-LOX. An important role for the 12-LOX pathway in platelets has been reported 

with 12(S)-HETE formation being increased following treatment of washed platelets with 

ATP, suggesting that the anti-aggregatory effects of ATP are due to enhance platelet 12(S)-

HETE production (Dragan et al., 1990). In the studies reported here the involvement of 

platelet 12-LOX in platelet aggregation and adhesion following stimulation by various 

agonists was examined. Two selective inhibitors of 12-LOX, baicalein (5, 6, 7-

trihydroxyflavone) (Sekiya et al., 1982) and CDC (cinnamyl-3, 4-dihydroxy-α-

cyanocinnamade) (Kälvegren et al., 2007) were used along with 12-LOX products, 12(S)-

HPETE and 12(S)-HETE. 

 

Platelet NADPH oxidase composed of gp91-phox and p22-phox, both are membrane-

bound subunits that are responsible for the catalytic reaction of electron transfer from 

NADPH to oxygen molecule (Seno et al., 2001). Besides that, NADPH oxidase also consists 

of regulatory subunits located intracellularly, small GTPases (Rac1 or Rac2) and cytosolic 

factors (p47-phox, p67-phox and p40-phox). Phosphatidylinositol 3-kinase (PI3K) and 

protein kinase C (PKC) -dependent phosphorylation induces the translocation of cytosolic 

factors and Rac to form NADPH oxidase complex, with gp91-phox and p22-phox thus 
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activating the catalytic reaction (Regier et al., 1999). Recently, new homologues of the 

NADPH oxidase subunit, gp91-phox also known as Nox2, have been identified, so that the 

NADPH oxidase family currently consists of 7 members: Nox1, Nox2, Nox3, Nox4, Nox5, 

DUOX1 and DUOX2 (Brandes et al., 2008). 

 

It is well understood that phagocytes produce ROS through a respiratory burst for the 

purposes of bacterial killing. ROS formation in platelets may play a different role, as 

suggested by previous evidence of aggregation-induced ROS production. Thus, as well as 

investigating the LOX pathway, we have studied the role of NADPH oxidase in platelets.  

Diphenylene iodonium (DPI) and apocynin, often used as a classic NADPH oxidase 

inhibitors, were used in this study however the specificity of these inhibitors are unclear 

(Brandes et al., 2008). This is due to a recent report suggesting that apocynin function as 

an antioxidant in endothelial cells and vascular smooth muscle cells, thus its inhibitory 

actions on NADPH oxidase is debatable (Heumüller et al., 2008). 
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4.2 Methodology 

 

To study the biological function of 12-LOX in platelets both well-known inhibitors of 12-

LOX, baicalein (Sekiya et al., 1982) and CDC (Kälvegren et al., 2007) were used. Citrated 

PRP were used throughout this study unless stated otherwise. The concentration of 

baicalein used was 10µM except when concentrations ranging from 0.001-100µM were 

used to establish concentration-dependent effects. In the experiment where baicalein was 

co-incubated with aspirin, 30µM aspirin was used.  For CDC, a concentration of 300µM 

was chosen to investigate its effects on platelet responses to agonist stimulation. 

Preparation of platelet agonists and combined agonists was as described in previous 

chapter. In all experiments, incubation with inhibitors was for 30 min before 

determination of platelet aggregation and adhesion by the 96-well plate method 

described in previous chapter. In the study of 12-LOX products on platelet functions, 

20pg/ml 12(S)-HPETE and 12(S)-HETE were used, with extra care being taken during 

preparation as these peroxides are easily oxidised and degraded. In contrast with 12-LOX 

inhibitors, any incubation involving 12(S)-HPETE or 12(S)-HETE was for 2 min because of 

the short half-lives of these peroxides.  

 

300µM DPI and 1mM apocynin (Begonja et al., 2005) were used as NADPH oxidase 

inhibitors in this study. However, for study of the concentration dependent effects of DPI 

a range from 50-300µM was used. Following 30 min incubation with NADPH oxidase 
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inhibitors, platelet aggregation and adhesion studies were performed as previously 

described. Statistical analyses were performed as appropriate. 
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4.3 Results 

 

4.3.1 Effects of 12-Lipoxygenase Inhibitors, Baicalein and Cinnamyl-3,4-Dihydroxy-

Cyanocinnamate (CDC) on Platelet Activation by Various Agonists 

 

Baicalein decreased platelet aggregation in adrenaline and AA-stimulated platelet and 

weakly reduced ADP- and ristocetin–induced aggregation whilst no effects were against 

the other agonists (Figure 4.1). For instance, controls aggregation when induced by 0.3, 

1.0 and 1.3mM AA were 25±24%, 63±22% and 63±14% were reduced to 21±23%, 17±22% 

and 41±22%, respectively, in the presence of baicalein. Aggregations induced by 1µM and 

10µM adrenaline were decreased from 33±15% and 35±12% to 13±6% and 24±7% by 

baicalein. Platelet adhesion was also affected by baicalein, as adhesions induced by AA, 

adrenaline and ADP were reduced (Figure 4.2). For example, when incubated with 

baicalein, adhesion induced by 1µM and 10µM adrenaline was decreased to 7±3% and 

13±5% from 15±7% and 22±8% in controls.  

 

CDC had little effect upon platelet aggregation and adhesion when PRP prepared from 

citrated blood was used, as shown in Figure 4.3 and Figure 4.4. There was slightly reduced 

platelet aggregation to the middle concentrations of collagen but no effect on other 

agonists’ stimulation, with decreased of platelet adhesion only being demonstrated in 

ristocetin-treated platelets. For instance, control adhesions following 1 and 2mg/ml 

ristocetin were 10±8% and 15±6%, which were reduced to 0% and 12±3% in the presence 
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of CDC. As citrated PRP was less sensitive to CDC, heparinised PRP was used to investigate 

further the effects of CDC upon platelet activation. In these experiments platelet 

aggregations induced by collagen, adrenaline and ristocetin were slightly decreased whilst 

no changes were seen in other agonist-induced aggregations (Figure 4.5). Moreover, slight 

reduction in platelet adhesion following stimulation with ADP, collagen and ristocetin was 

observed in CDC-treated platelets, as shown in Figure 4.6. For instance, ADP at 10 and 

30µM stimulated adhesion to 26±11% and 32±14% which were decreased to 22±9% and 

27±12% with CDC. Although the inhibitory effects of baicalein and CDC are varied and 

differed with the agonists used to activate the platelets, there was evidence that the 

platelet 12-LOX pathway is involved during activation of platelets by AA, adrenaline, ADP, 

collagen and ristocetin but not by TRAP-6 and U46619. The variability of inhibition by both 

12-LOX inhibitors suggested that the action is dependent on specific agonists where 

primary platelet activation is involved. 
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Figure 4.1: Inhibitory effects of baicalein on platelet aggregation in response to 

various agonists. PRP was incubated with 10µM baicalein before agonist-stimulated 

platelet aggregation was measured in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4). 
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Figure 4.2: Inhibitory effects of baicalein on platelet adhesion in response to various 

agonists. Each data point represents mean ± S.E.M.  (n=4). * = P<0.05 as determined 

by two-way ANOVA. 
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Figure 4.3: Inhibitory effects of CDC on platelet aggregation in response to various 

agonists. Citrated PRP was incubated with 300µM CDC before agonist-stimulated 

platelet aggregation was measured in 96-well plate. Each data point represents 

mean ± S.E.M.  (n=4). 
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Figure 4.4: Inhibitory effects of 300µM CDC on platelet adhesion in citrated PRP in 

response to various agonists. Each data point represents mean ± S.E.M.  (n=4).  
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Figure 4.5: Inhibitory effects of CDC on platelet aggregation in response to various 

agonists. Heparinised PRP was incubated with 300µM CDC before agonist-

stimulated platelet aggregation was measured in 96-well plate. Each data point 

represents mean ± S.E.M.  (n=4). 
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Figure 4.6: Inhibitory effects of 300µM CDC on platelet adhesion in citrated PRP in 

response to various agonists. Each data point represents mean ± S.E.M.  (n=4).  
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4.3.2 Effects of Baicalein on Platelet Activation in Response to Combination of Collagen 

and Adrenaline 

 

PRP was incubated with baicalein, 0.001-100µM, before introduction of either single or 

combined agonists. As shown in Figure 4.7, platelet aggregation increased with the use of 

combined agonists as compared to single agonists as expected. In the presence of 

baicalein, there was a concentration-dependent reduction platelet aggregation and 

adhesion. For instance, in PRP activated by combined collagen and 0.1µM adrenaline, 

control aggregation was 41±7% decreased to 34±8%, 31±6% and 29±7% for baicalein at 

0.01, 0.1 and 1µM baicalein, respectively. The decrease of platelet adhesion was most 

clearly affected in single agonist and combined agonists’ experiments when adrenaline 

was used at 0.01µM. This data suggests that when platelets are activated by low 

concentrations of collagen or adrenaline, 12-LOX is particularly involved. 
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Figure 4.7: Concentration-dependent effects of baicalein on platelet aggregation and 

adhesion induced by combined agonists. PRP was incubated with various 

concentrations of baicalein before addition of combination of collagen (1µg/ml) and 

adrenaline (ADR: 0.1 and 0.01µM). Each data point represents mean ± S.E.M., n=4.  
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4.3.3 Effects of Combination of Aspirin and Baicalein on Platelet Activation in Response to 

Various Platelet Agonists 

 

Aggregation in response to most agonists was not affected by combination of aspirin and 

baicalein, except for that to AA (Figure 4.8). In the presence of aspirin alone, aggregations 

induced by AA at 0.3, 1.0 and 1.3mM were 17±11%, 27±14% and 32±1%. However, when 

co-incubated with baicalein, these were reduced to 0%, 7.0±2% and 27±8%. Similar 

observations were demonstrated for platelet adhesion in which only AA and ristocetin-

induced platelet adhesion were decreased, as shown in Figure 4.9. For instance, 

percentage of aspirin-incubated platelet adhesion was 7±5% and 12±5% at 0.3 and 1.0mM 

AA, which were reduced to 1±1% and 2±1% in the presence of baicalein. Ristocetin-

induced adhesion was decreased to 1±1% in the presence of both aspirin and baicalein as 

compared to 22±5% in the presence of aspirin alone. This suggested that when COX 

pathway is inhibited, the platelet may shift to become more dependent on the 12-LOX 

pathway. 
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Figure 4.8: Effects of combination of aspirin and baicalein on platelet aggregation in 

response to various agonists. PRP was incubated with 30µM aspirin with or without 

combination of 10µM baicalein before agonist-stimulated platelet aggregation was 

measured in 96-well plates. Each data point represents mean ± S.E.M.  (n=4). 
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Figure 4.9: Effects on platelet adhesion of combination of aspirin and baicalein. Each 

data point represents mean ± S.E.M.  (n=4). 
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4.3.4 Effects 12(S)-HETE on Platelet Activation by Various Agonists 

 

Addition of exogenous 12(S)-HETE increased platelet aggregation induced adrenaline and 

ristocetin but not that induced by any other agonists (Figure 4.10). For instance, 

aggregation induced by 10 and 100µM adrenaline in control condition was 31±16% and 

34±13% which were increased to 36±14% and 58±9% in the presence of 12(S)-HETE. As 

shown in Figure 4.11, adhesion in response to AA, ADP, ristocetin and adrenaline were 

enhanced by exogenous 12(S)-HETE, whereas adhesion to other agonists was little 

affected. For example, for adrenaline-stimulated adhesion, controls were 16±10% and 

14±9% at 10 and 100µM agonist concentrations which were increased to 23±9% and 

33±7% in the presence of exogenous 12(S)-HETE. 
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Figure 4.10: Effects of 12(S)-HETE on platelet aggregation stimulated by various 

agonists. PRP was incubated with 20pg/ml 12(S)-HETE before agonist-stimulated 

platelet aggregation was measured in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4). 
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Figure 4.11: Effects on platelet adhesion of 12(S)-HETE stimulated by various 

agonists. Each data point represents mean ± S.E.M.  (n=4). 
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4.3.5 Effects of 12(S)-HPETE on Platelet Activation by Various Agonists 

 

12(S)-HPETE did not affect platelet aggregation in response to most agonists except AA, 

for which aggregation was reduced (Figure 4.12). For instance, platelet aggregations in 

response to 1.0 and 1.3mM AA were 21±17% and 49±13%, which were decreased to 4±1% 

and 17±4%, respectively. Platelet adhesion showed less effect of 12(S)-HPETE against most 

agonists with the exception of AA and ristocetin for which adhesion was reduced (Figure 

4.13). 
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Figure 4.12: Effects of 12(S)-HPETE on platelet aggregation stimulated by various 

agonists. PRP was incubated with 20pg/ml 12(S)-HPETE before agonist-stimulated 

platelet aggregation was measured in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4). 
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Figure 4.13: Effects on platelet adhesion of 12(S)-HPETE stimulated by various 

agonists. Each data point represents mean ± S.E.M.  (n=4). 
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4.3.6 Effects of CDC and 12(S)-HETE on Platelet Activation Stimulated by Various Agonists 

 

As shown in Figure 4.14, there was not much effect of exogenous 12(S)-HETE on platelet 

aggregation and adhesion. However, ristocetin-induced platelet adhesion was reduced in 

the presence of exogenous 12(S)-HETE (Figure 4.15). For example, platelet adhesions 

when 12-LOX was blocked were 8±3% and 18±9% in response to 1.0 and 2.0 mg/ml 

ristocetin and these were reduced to 1±1% and 10±5% in the presence of exogenous 

12(S)-HETE.  
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Figure 4.14: Effects of 12(S)-HETE on CDC pre-treated platelet aggregation 

stimulated by various agonists. PRP was incubated with 300µM CDC and then 

20pg/ml 12(S)-HETE before agonist-stimulated platelet aggregation was measured in 

96-well plates. Each data point represents mean ± S.E.M.  (n=4). 
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Figure 4.15: Effects on platelet adhesion of combined CDC and 12(S)-HETE. Each data 

point represents mean ± S.E.M.  (n=4). 
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4.3.7 Effects of CDC and 12(S)-HETE on Platelet Activation Stimulated By Combination of 

Collagen and Adrenaline 

 

As shown in Figure 4.16 and Figure 4.17, CDC reduced activation of platelets by single and 

combined agonists. For instance, collagen-induced aggregation in control, 54±2%, was 

reduced to 48±10, 39±6 and 35±6% by 0.1, 1 and 10µM CDC, respectively. Interestingly, 

platelet aggregation was increased by the addition of exogenous 12(S)-HETE in the 

presence of 10µM CDC, the response being 48±7%. The pattern of increase platelet 

aggregation following addition of exogenous 12(S)-HETE was also observed in PRP 

activated by 0.1µM adrenaline and by the combination of collagen with both adrenaline 

concentrations. Platelet adhesion was less affected by CDC except for that to 0.1 µM 

adrenaline which was decreased.  
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Figure 4.16: Effects of CDC (0.1-10µM) alone or in the presence of 20pg/ml 12(S)-HETE on 

platelet adhesion stimulated by collagen, adrenaline or combination of both agonists. Data 

shown are mean ± S.E.M. from duplicate reading of PRP from 4 different individuals. 

*P<0.05 when compared to vehicle as analyzed by one-way ANOVA. 
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Figure 4.17: Effects of CDC (0.1-10µM) alone or in the presence of 20pg/ml 12(S)-HETE on 

platelet adhesion stimulated by collagen, adrenaline or combination of both agonists. Data 

shown are mean ± S.E.M. from duplicate reading of PRP from 4 different individuals.  
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4.3.8 Effects of Diphenylene Iodonium Chloride (DPI), a NADPH Oxidase Inhibitor, on 

Platelet Activation by Various Agonists 

 

DPI at 300µM attenuated platelet aggregation induced by ADP, collagen and adrenaline 

with lesser effects on TRAP-6–induced platelet activation, whilst aggregations induced by 

other agonists were not affected (Figure 4.18). For instance, aggregation induced by 10 

(23±9%) and 30µM (40±7%) ADP was reduced to 15±8% and 24±7% respectively. Similarly, 

collagen-induced aggregation at 10 (37±16%) and 30µM (38±23%) was reduced to 21±13% 

and 19±13%, respectively. With 100µM adrenaline, platelet aggregation was reduced to 

11±7% from 23±8%.  

 

DPI had greater effects against platelet adhesion, where DPI clearly reduced that induced 

by ADP, adrenaline, TRAP-6, ristocetin and slightly collagen (Figure 4.19). However, the 

inhibition of platelet adhesion to adrenaline and ristocetin were best seen at low agonists’ 

concentrations. For instance, at 0.1 and 1µM adrenaline, 11±4% and 21±9% platelet 

adhesions were reduced to 3±2% and 7±3%, respectively. Similar observations were made 

for platelet adhesions stimulated by 1.0 (28±4%) and 2.0mg/mL (37±6%) ristocetin whihch 

were reduced to 2±1% and 24±6%, respectively. Based on these results, three agonists 

were chosen to investigate the inhibitory effects of DPI concentrations ranging from 50-

300µM. For all agonists tested, collagen, ADP and TRAP-6, DPI inhibited both platelet 

adhesion and aggregation in a concentration-dependent manner, as shown in Figure 4.20. 
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Figure 4.18: Effects of DPI, a NADPH oxidase inhibitor on platelet aggregation 

stimulated by various agonists. PRP was incubated with 300µM DPI before agonist-

stimulated platelet aggregation was measured in 96-well plates. Each data point 

represents mean ± S.E.M.  (n=4). 
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Figure 4.19: Effects of DPI, a NADPH oxidase inhibitor on platelet adhesion 

stimulated by various agonists. Each data point represents mean ± S.E.M.  (n=4). 
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Figure 4.20: Concentration dependent effects of DPI on platelet aggregation and 

adhesion stimulated by collagen, TRAP-6 amide and ADP. PRP was incubated with 

50-300µM DPI before agonist-stimulated platelet aggregation was measured in 96-

well plates. Each data point represents mean ± S.E.M.  (n=1-3). 
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4.3.9 Effects of Combination of CDC and DPI on Platelet Activation Stimulated by Various 

Agonists 

 

Combination of CDC, a 12-LOX inhibitor and DPI, used as a NADPH oxidase inhibitor 

inhibited platelet aggregation in response to ADP and collagen, whilst aggregations to 

other agonists were not affected (Figure 4.21). For instance, 10 and 30µM ADP induced 

platelet aggregations of 31±5 and 47±8% in the presence of CDC alone, but these were 

reduced to 18±3% and 23±3%, respectively, when CDC was combined with DPI. Upon 

stimulation by 10 and 30µg/ml collagen, platelets incubated with CDC alone demonstrated 

aggregation to 54±12% and 81±35 that were decreased following combined treatment to 

41±10% and 53±6%. For platelet adhesion, combination of CDC and DPI significantly 

decreased ristocetin and TRAP-6 -induced adhesion as well as that to ADP and collagen, as 

shown in Figure 4.22. For instance, in the presence of CDC alone, adhesions of platelet 

stimulated by 1.0 and 2.0mg/ml ristocetin were 19±11% and 22±12% which were reduced 

to 0% and 19±9%. The inhibition of ristocetin-induced platelet adhesion by DPI is in accord 

with previous data in this study that found DPI inhibited platelet adhesion but not platelet 

aggregation. Similar findings were also demonstrated in TRAP-6–induced platelet 

activation where inhibition was more against adhesion than aggregation. 
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Figure 4.21: Effects of combination of CDC, a 12-LOX inhibitor and DPI, a NADPH 

oxidase inhibitor on platelet aggregation and adhesion stimulated by various 

agonists. PRP was incubated with 10µM CDC with or without the combination of 

300µM DPI before agonist-stimulated platelet aggregation was measured in 96-well 

plates. Each data point represents mean ± S.E.M.  (n=4). 
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Figure 4.22: Effects of combination of CDC and DPI on platelet adhesion stimulated 

by various platelet agonists. Each data represents mean ± S.E.M.  (n=4). 
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4.3.10 Effects of Apocynin, a NADPH Oxidase Inhibitor, on Platelet Activation by Various 

Agonists 

 

Platelet aggregations in response to ADP, collagen and TRAP-6 were decreased by 

apocynin whilst those to other agonists’ stimulation did not show any changes (Figure 

4.23). For instance, aggregations to 3µM ADP, 23±15%, and 3µM collagen, 22±11%, were 

decreased to 8±5% and 10±1%, respectively, by apocynin. Similar observations were seen 

for aggregation induced by adrenaline at 1, 10 and 100µM which were decreased from 

19±17%, 17±15% and 21±17% to 1±3%, 9±11% and 11±14%, respectively. Platelet 

adhesion was much more affected by apocynin compared to aggregation, as shown in 

Figure 4.24, with adhesion to other agonists, ristocetin and TRAP-6, being affected in 

addition to those to ADP, collagen and adrenaline. Although inhibition of platelet adhesion 

by apocynin was not great, the pattern of inhibition was similar to that for DPI, which also 

reduced adhesions of platelets challenged by the same agonists. 
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Figure 4.23: Effects of apocynin on platelet aggregation and adhesion stimulated by 

various agonists. PRP was incubated with 1mM apocynin before agonist-stimulated 

platelet aggregation was measured in 96-well plates. Each data point represents 

mean ± S.E.M.  (n=4). 
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Figure 4.24: Effects of apocynin on platelet adhesion stimulated by various platelet 

agonists. Each data point represents mean ± S.E.M.  (n=4). 
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4.4 Discussion 

 

The results presented here demonstrate that the platelet 12-LOX pathway is involved in 

platelet responses to AA, adrenaline, ADP, collagen and ristocetin, although the effects on 

aggregation and adhesion are generally weak. However, the variability of the effects of 

the 12-LOX inhibitors, CDC and baicalein, suggest that the action is different for different 

agonists. The data also suggests that when platelets are activated by low concentrations 

of collagen or adrenaline 12-LOX products are more involved in the primary platelet 

activation than following stronger platelet activation, such as by combination of collagen 

and adrenaline.  

 

Several studies have investigated the activation of platelet 12-lipoxygenase (p12-LOX) 

following platelet stimulation by agonists. 12(S)-HPETE synthesis is activated in washed 

human platelets stimulated by collagen and collagen reactive peptides (CRP) (Coffey et al., 

2004b). However, this study also showed that ADP and U46619 alone did not activate p12-

LOX pathway whilst a high concentration of thrombin (>0.2 U/ml) is required to activate 

12(S)-HPETE synthesis. Further, src-tyrosine kinases, PI3 kinase, Ca2+ mobilization and p12-

LOX translocation is essential for p12-LOX activation by the GPVI collagen receptor, which, 

however, is down regulated by PKC and PECAM-1 (Coffey et al., 2004b). As 12(S)-HPETE is 

produced in dose- and time-dependent manner following activation by CRP, this 

suggested that GPVI alone is sufficient for the activation of p12-LOX. P12-LOX is unable to 
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directly oxidise AA that is esterified to membrane phospholipids. Therefore, 

phospholipase A2 (PLA2) is required to provide the supply of AA for p12-LOX product 

synthesis. Several PLA2 isoforms are expressed in platelets such as cPLA2, calcium-

independent (iPLA2) and secretory phospholipase (sPLA2). However, only c- and sPLA2 are 

responsible for the AA liberation leading to 12(S)-HPETE generation following GPVI 

collagen receptor activation in washed human platelet (Coffey et al., 2004a).  

 

The role of the LOX pathway in platelet function is unclear and continually debated. 

Platelet aggregation requires Ca2+ mobilization; however, indomethacin attenuated ADP-

induced platelet aggregation without affecting Ca2+ signal generation suggesting that the 

COX pathway is not the prerequisite (Hallam et al., 1985). Moreover, previous 

investigations have shown that both LOX inhibitors, nordihydroguaiaretic acid (NDGA) and 

BW-755C suppressed ADP-induced platelet aggregation and Ca2+ signals dose dependently 

(Borin et al., 1989). Thus, this study suggested that LOX pathway may have an important 

role in ADP-induced Ca2+ mobilisation and platelet aggregation. In contrast, more recent 

reports have concluded that products from the LOX pathway are not responsible for the 

ADP-induced Ca2+ mobilisation and platelet aggregation (Vindlacheruvu et al., 1991). This 

investigation involved the use of more specifics LOX inhibitor than NDGA, BW A4C and MK 

866, on basal Ca2+ signal generation and platelet aggregation stimulated by ADP, which 

was found not affected by these two compounds. On the contrary, treatment with aspirin 

or indomethacin reduced Ca2+ signal generation. Overall, therefore, the involvement of 
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p12-LOX pathway on platelet aggregation and Ca2+ mobilisation upon ADP stimulation is 

still unclear (Vindlacheruvu et al., 1991).  

 

In addition, the hypothesis that p12-LOX pathway is involved in platelet activation is 

contradicted by the findings by Johnson and colleagues who reported an anti-aggregatory 

effects of the LOX pathway (Johnson et al., 1998). This study was performed in mice with 

disrupted platelet LOX gene (P-12LO-/-) that had hypersensitivity to ADP-induced 

aggregation and an increased mortality in ADP-induced models of thrombosis (Johnson et 

al., 1998). Even though this finding provides further evidence of the suppressive effects of 

LOX products in platelets, this conclusion has to be balanced by consideration of the 

species and agonists used in the study. Moreover, AA liberation in thrombin-stimulated 

human platelets results in the synthesis of both COX and LOX products which were dose-

dependently reduced by BW 755C (Smith et al., 1985), as BW-755C is a combined LOX and 

COX inhibitor, suggesting that products from both pathways are responsible for the 

effects seen. This is in agreement with a previous study which reported that TXB2 and 

12(S)-HETE are elevated after thrombin-induced aggregation of washed platelet (Hamberg 

et al., 1974). Moreover, another investigation reported an inhibition of thrombin and 

U46619-induced aggregation in human washed platelets by 5,8,11-eicosatriynoic acid 

(ETI), baicalein and phenidone (Nyby et al., 1996). Nyby et al. (1996) also suggested that 

LOX inhibitors may play a role in the regulation of cyclic AMP metabolism.  
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Overall, there is still lack of agreement as to whether LOX pathway is involved in the 

regulation of platelet function. However, a recent study has reported the pro-atherogenic 

co-effects of TP receptor signalling and 12/15 LOX gene disruption in vivo suggesting the 

importance of both pathways as therapeutic targets for the treatment of atherosclerosis 

(Tang et al., 2008).  In addition, 12(S)-HETE is suggested to play a role as a modulator of 

the expression of P-selectin (CD-62), following observation of thrombin’s ability to 

increase 12(S)-HETE levels and P-selectin expression while not affecting TXA2 (Ozeki et al., 

1998). Interestingly, the LOX inhibitors, quercetin and NDGA inhibited P-selectin 

expression whereas the COX inhibitors, indomethacin and aspirin, did not. Thus, the 

addition of 12(S)-HPETE and 12(S)-HETE were found to enhance P-selectin expression, 

suggesting both 12-LOX metabolites are involved in platelet activation (Ozeki et al., 1998).  

 

LOX inhibitors are important to the elucidation of the biological significance of LOX 

products. Catecholic antioxidants, nordihydroguaiaretic acid, NDGA or 5,8,11,14 

eicosatetraynoic acid, ETYA are known as non-specific LOX inhibitors; both were widely 

used in early research of the LOX pathway, regardless of the type of LOX and its isoforms. 

Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one) is a phenolic flavonoid 

compound that is found in abundance in Huang Qin (Scutellaria baicalensis Georgi), a 

Chinese medicinal plant. This compound has been shown to exert wide biological effects 

including anticancer, antiviral, antithrombotic and anti-inflammatory (Lee et al., 2011),. In 

most all these cases the effects of baicalein are thought to be explained by selective 

inhibition of p12-LOX (Deschamps et al., 2006). However, Deshamps and colleagues (2006) 
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have showed that baicalein is unselective between platelet 12-LOX and reticulocyte 15-

LOX in vitro. 

 

Previous significant research has been done to study the formation of hydroxyl radical by 

baicalein using Electron Spin Resonance (ESR) Spectophotometry in human platelet 

suspensions (Chou et al., 2007). This study found that baicalein induced hydroxyl radical 

formation in resting human platelets which was enhanced by addition of low but not high 

concentrations of AA. It has also been shown that the hydroxyl radical formation induced 

by baicalein is due to the p12-LOX pathway and that the liberation of AA is essential for 

the activation of p12-LOX. It is noteworthy that in this paper, a high concentration of 

baicalein, 300µM was used to compensate for the competitive nature of baicalein. 

Interestingly, this study suggested p12-LOX dependent roles of baicalein as antioxidant or 

as a pro-oxidant in human platelet suspension (Chou et al., 2007). Following this study, 

another investigation has been performed using B16F10 melanoma cells and baicalein has 

been shown to produce hydroxyl radical in these cells (Chou et al., 2009). More 

importantly, the viability of these cells was reduced by baicalein along with an increase in 

the formation of hydroxyl radical without alteration in 12-LOX protein expression. A 

growing number of investigations of the importance of 12-LOX in cardiovascular problems 

have involved studies of baicalein, for example in Chlamydia pneumoniae activated 

platelets (Kälvegren et al., 2007). This study has used various pharmacological agents and 

found that 12-LOX, purinergic receptors and PAF but not COX, are important in harmful C. 

pneumoniae induced platelet activation. In contrast, baicalein and another 12-LOX 
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inhibitor, cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC) were found to have no effects 

on collagen-stimulated platelets. Baicalein was suggested to be useful as a novel 

treatment for acute ischemic stroke (Lapchak et al., 2007) and to improve myocardial 

contractility in LPS-induced sepsis in vivo (Lee et al., 2011). Recently, a cathechin from tea 

leaves, (-)-epigallocatechin gallate, was found to be a very potent and highly selective 

inhibitor of human p12-LOX (Yamamoto et al., 2005).  

 

12-LOX metabolism of arachidonic acid metabolism in platelets results in the formation of 

12-(S)-hydroxyperoxy-eicosatetraenoic acid [12-(S)-HPETE]. The latter is further reduced 

to 12-hydroxy-eicosatetranoic acid (12(S)-HETE) by glutathione peroxidase, explaining the 

unstable and short life-span of 12(S)-HPETE. Results presented here show that 12(S)-

HPETE may inhibit platelet function following activation by AA and decrease ristocetin-

stimulated platelet adhesion, whilst activation by other agonists is not affected. An earlier 

study by Siegel et al. (1979) suggested that 12(S)-HPETE is involved in the regulation of 

platelet AA metabolism. By using platelet homogenates, this study demonstrated that 

12(S)-HPETE increased the 12-LOX activity but not 12(S)-HETE, and decreased the activity 

of platelet COX-1 and TXB2 formation (Siegel et al., 1979). Unfortunately, studies on 

physiological effect of 12(S)-HPETE on platelets are limited and controversial. However, 

12(S)-HPETE has been reported to inhibit platelet aggregation stimulated by AA and 

collagen in PRP using traditional aggregometry (Siegel et al., 1979). The inhibitory effect of 

12(S)-HPETE has also been extensively investigated by Aharony and his colleagues using 

washed platelets (Aharony et al., 1982). Inhibitory effects of 12(S)-HPETE on platelet 
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aggregation and platelet secretion in response to AA, U46619 and collagen were found. In 

contrast, thrombin-induced platelet aggregation was not affected but platelet secretion 

was reduced after treatment with 12(S)-HPETE. Further, this study showed that platelet 

secretion is reduced in untreated and aspirin-treated volunteers suggesting that inhibition 

by 12(S)-HPETE of platelet secretion is independent of platelet COX (Aharony et al., 1982). 

These findings were supported by further research that found that aggregation in 

response to U46619 and thrombin of platelets in PRP from aspirin-treated donors were 

inhibited (Brune et al., 1991).  

 

Even though previous studies have mainly reported inhibitory effects of 12(S)-HPETE on 

platelet aggregation, there is an evidence of 12(S)-HPETE stimulating platelet function for 

instance in the presence of low non-aggregating concentrations of AA (Calzada et al., 

1997). In this study, concentration-dependent platelet aggregation was demonstrated to 

12(S)-HPETE, 0.5-2µM, with the effect being dependent upon COX activity but not via a 

receptor-mediated mechanism. Therefore, is has been concluded that 12(S)-HPETE is pro-

aggregatory at low concentrations close to those seen physiologically, although inhibitory 

effects are observed at higher concentrations of 12(S)-HPETE (Calzada et al., 1997). A 

further study by Calzada et al. (2001) has shown that 12(S)-HPETE increases platelet 

aggregation and TXA2 formation to sub-threshold concentrations of collagen in washed 

platelet (Calzada et al., 2001). Moreover, this study found that 12(S)-HPETE is involved in 

the liberation of nonesterified AA by translocation and phosphorylation of cPLA2. This 

study suggested that 12(S)-HPETE is responsible for the regulation of endogenous AA and 
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TXA2 formation and so influences platelet function. However, this conclusion is only 

applicable in the nanomolar range of 12(S)-HPETE concentrations used in this studies; 

previous studies by Siegel et al. (1979), Aharony et al. (1982) and Brune et al. (1991) used 

12(S)-HPETE at micromolar concentrations. Similarly, the results presented here suggest 

the importance of the pro-platelet effects of 12(S)-HETE in the presence of low 

concentration of platelet agonists, notably adrenaline and collagen. 

 

The biological significance of 12(S)-HETE on platelets is still unknown although an 

inhibitory effects of 12(S)-HETE on platelet aggregation has been suggested by many 

studies (Takenaga et al., 1986; Sekiya et al., 1990; Croset et al., 1988; Fonlupt et al., 1991). 

Meanwhile, previous studies have also been conducted to compare the LOX metabolites 

formed from AA and eicosapentanoic acid (EPA) on human platelet function, because EPA 

has been reported to have an anti-platelet affects by several investigators (Takenaga et 

al., 1986). For these studies LOX metabolites, 12(S)-HPETE and 12(S)-HETE derived from 

AA whilst 12(S)-HPEPE and 12(S)-HEPE produced from EPA were isolated from human 

platelet lysates. Takenaga et al. (1986) found that addition of 12(S)-HPETE and 12(S)-

HPEPE reduced both platelet aggregation and 5-HT release induced by AA and collagen in 

concentration-dependent manners. This study also reported that both 12(S)-HETE and 

12(S)-HEPE demonstrated weaker inhibitory effects on platelet function.  

 

Another study proposed an inhibitory effect of 12(S)-HETE on platelet aggregation, based 

on  enhanced collagen-induced aggregation and AA liberation in bovine platelets in the 
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presence of the 12(S)-HETE inhibitor, 15-HETE (Sekiya et al., 1990). Moreover, this study 

reported exogenous addition of 12(S)-HETE attenuated collagen-induced aggregation and 

liberation of AA. Therefore, Sekiya and colleagues inferred that 12(S)-HETE is involved in a 

negative feedback loop upon platelet function. This is possible as during the increase of 

AA liberation and TXA2 production that follows stimulation of platelet aggregation, 12(S)-

HETE also accumulates and so could interfere aggregation by inhibiting further AA 

liberation from platelet membrane. This is also supported by another study that found 

U46619-induced platelet aggregation is inhibited by 12(S)-HETE (Croset et al., 1988). 

Subsequent studies showed that 12(S)-HETE inhibited the binding of radio-labelled 

thromboxane mimetic, U44069 at the receptor sites suggesting the inhibitory effects of 

12(S)-HETE might be because of explained by blocking of PGH2/TXA2 receptor sites 

(Fonlupt et al., 1991). The potentiating effects of 12(S)-HETE on collagen and U46619 are 

contradicted by another study using different platelet agonist. It was demonstrated that 

12(S)-HETE enhanced bovine and human platelet aggregation induced by thrombin with 

PGE1-induced cGMP elevation being abolished by 12(S)-HETE (Sekiya et al., 1991). 

However, another evidence of proaggregatory effects of platelet 12(S)-HETE was 

published after confirming a regulatory role of 12(S)-HETE.  

 

A newly specific 12(S)-HETE synthesis inhibitor, (S)-(+)-6-[3-(1-o-tolylimidazol-2-

yl)sulfinylpropoxy]-3,4-dihydro-2(H)-quinolinone (OPC-29030) has been found to reduce 

ex vivo platelet aggregation and 12(S)-HETE formation following stimulation of platelets 

with ADP and U46619 (Katoh et al., 1998). In addition, activation of platelet gpIIb-IIIa upon 
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stimulation by ADP, U46619 and thrombin was shown to be reduced by baicalein and 

OPC-29030 in the same study. The expression of platelet P-selectin was also suggested to 

be involved in the activation of platelets by 12(S)-HETE following the finding that non-

specific 12-LOX inhibitors, quercetin and nordihydroguiaiaretic acid but not aspirin 

decreased P-selectin expression following stimulation with thrombin (Ozeki et al., 1998). 

The use of OPC-29030 has been further explored with another finding suggesting that the 

translocation of 12-LOX from cytosol to the membrane is required for the generation of 

12(S)-HETE (Ozeki et al., 1999).  

 

The significance of 12(S)-HETE on platelet function has been indirectly investigated by 

many research groups in various conditions. Increase levels of 12(S)-HETE have been 

suggested in hypertension and to acts as a vasoconstrictor in small arteries. Although 

thrombin stimulation did not increase platelet 12(S)-HETE generation in samples from 

normal and hypertensive patients, the basal platelet 12(S)-HETE levels, urinary 12(S)-HETE 

and platelet 12-LOX expression are higher in patients than normal (Gonzalez-Nunez et al., 

2001). The activation and recruitment of thrombin-induced platelets is inhibited by 

unstimulated neutrophils. However, these effects are reduced in the presence of ETYA 

suggesting 12-LOX products are important in thrombin-stimulated platelet thrombus 

formation (Valles et al., 1993). Previous findings also showed that 12(S)-HETE is involved in 

tumor-induced platelet aggregation with activation of gpIIb-IIIa (Steinert et al., 1993), and 

that low 12(S)-HETE levels in neonates is associated with bleeding tendencies (Fretland et 

al., 1989). 
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In the studies presented here evidence points to the fact that when the platelet COX 

pathway is inhibited, platelet shifts to become more dependent on the 12-LOX pathway, 

although this appears to apply only when platelets are activated by AA. The relationship 

between COX and LOX pathway in platelets is highly debated and there is lack of concrete 

evidence. Earlier in vitro studies by McDonald-Gibson and colleagues demonstrated 

attenuation of 12(S)-HETE production by the same concentration of aspirin that is 

required to inhibit platelet aggregation but not by the aspirin concentration that inhibits 

TXA2 production in human washed platelets (McDonald-Gibson et al., 1984). This study 

suggested a possible role for the LOX pathway in aggregation of washed platelets in 

buffer, independent of the platelet COX pathway. The role of the LOX pathway was further 

explored by Eynard et al. (1986), who looked into the effects of aspirin on 12(S)-HETE 

formation in human and in vitro. This study reported that following administration of low 

(20mg) and high (500mg) doses of aspirin to healthy volunteers, platelet aggregation, TXA2 

and 12(S)-HETE levels were significantly decreased (Eynard et al., 1986). In vitro data in 

this study also suggested that plasma is a prerequisite for the aspirin effect on LOX 

products as seen by the inhibition of formation of 12(S)-HETE in PRP, but not in washed 

platelets. This study is supported by another in vitro investigation that found inhibitory 

effects of aspirin, indomethacin and BW 755C but not sodium salicylate on 12(S)-HETE 

synthesis on collagen-stimulated PRP (Tremoli et al., 1986). Therefore, it can be concluded 

that aspirin not only inhibited COX pathway but also caused reversible effects on the LOX 
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pathway, both in vitro and ex vivo, with 12(S)-HETE synthesis being constantly inhibited 

over a 24 hour period following administration of aspirin (Maderna et al., 1988).  

 

All of these studies, however, did not investigate the relationship of COX and LOX in terms 

of platelet function, which is important in determining the relative biological effects of the 

two pathways in platelets. A previous earlier study investigated the effects of the LOX 

inhibitors, ETYA and NDGA, on platelet function measured as aggregation and adhesion of 

PRP (Gimeno et al., 1983). This found that the aggregation response to collagen and ADP 

of PRP from aspirin-treated patients was reduced after pre-incubation with ETYA or NDGA 

and that the same was true for adhesion in response to collagen. As a result, this study 

concluded that LOX pathway and its product are essential to the mechanism of platelet 

function, particularly platelet aggregation and adhesion (Gimeno et al., 1983). Another 

study used human washed platelet suspensions to determine the effects of aspirin and 

salicylate treatment on platelet aggregation and adhesion along with TXA2 and 12(S)-HETE 

formation (Buchanan et al., 1986). This study found that aspirin decreased platelet 

aggregation associated with TXA2 production but increased adhesion associated with an 

increase in 12(S)-HETE formation. In contrast, following salicylate treatment, platelet 

aggregation was increased as TXA2 production was higher than control; however 12(S)-

HETE formation was decreased as expected resulting in decreased platelet adhesion. 

These observations may be explained by the shift of AA metabolism to LOX pathway as a 

result of COX pathway inhibition suggesting endogenous 12(S)-HETE facilitates platelet 

adhesion which can be reduced by treatment with salicylate. 
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It is interesting to note that AA can also be metabolized by cytochrome P450 in which its 

products are derived from the NADPHdependent P450 catalyzed insertion of a single atom 

of oxygen into the AA molecules (Figure 4.25) (Capdevila et al., 2000). In contrast, the 

reactions catalyzed by COX and LOX are initiated by regioselective hydrogen atom 

abstraction from a bis-allylic methylene carbon, followed by regio- and enantioselective 

coupling of the resulting carbon radical to ground-state molecular oxygen (Smith et al., 

1991). Both COX and LOX metabolism are also NADPH-independent, thus they are 

dioxygenases that catalyze substrate carbon activation whilst P450 are typical 

monoxygenases (Smith et al., 1991). P450-derived products are epoxy- and hydroxy-

metabolites of AA (EETs and HETEs) that involve in the conversion of cholesterol, steroids, 

bile acids, vitamins, and xenobiotics and also generate biologically relevant amounts of 

ROS (Capdevila et al., 2002).  

 

EETs cause membrane hyperpolarization in endothelial and smooth muscle cells via 

regulation of calcium-permeable plasma membrane channels. In addition to regulating 

calcium concentration and membrane potential, EETs also induce tyrosine kinase, p42/44, 

and p38 activity in EC (Hoebel et al., 1998). In contrast to EETs, 20-HETE inhibits Ca2+-

dependent K+ channels, inducing depolarization, and increases intracellular calcium 

concentration through voltage-sensitive calcium channels (Kroetz et al., 2002). 

Interestingly, overexpression of epoxygenases and exogenous addition of EETs has been 

demonstrated to increase eNOS expression and its activity, consequentially raising NO 

biosynthesis in endothelial cells in vitro (Wang et al., 2003). Furthermore, 11,12-EET has 
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been reported to increase NOS activity in human platelets in vitro (Zhang et al., 2008). 

Therefore, overexpression of epoxygenases may promotes anti-atherosclerotic effects 

that are correlated with elevated EET levels and associated with improvement of 

endothelial function (Xu et al., 2011). 

 

 

 

Figure 4.25: The arachidonic acid cascade. This schematic diagram depicts arachidonic 

acid conversion products. Names of primary enzymes are in pink box under the 

appropriate arrow. PG, prostaglandin; LT, leukotriene; H(P)ETE, 

hydro(pero)xyeicosatetraenoic acid; EET, epoxyeicosatrienoic acid; Lx, lipoxin; COX, 

cyclooxygenase, LOX, lipoxygenase; Cytochrome P450, cytochrome P450 oxygenase. 

Adapted from Bogatcheva et al.(2005). 
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In order to determine the possibility of NADPH oxidase involvement in platelet 

aggregation and adhesion, studies here examined the effects of DPI and apocynin upon 

platelet activation. The results suggested that blocking NADPH oxidase reduces the ability 

of platelets to aggregate but that this effect is limited to specific agonist pathways as the 

inhibition is clearly observed in ADP, collagen, adrenaline and TRAP-6 but not in AA, 

U46619 and ristocetin. In contrast, platelet adhesion was found to be more sensitive to 

treatment with NADPH oxidase inhibitors, with ristocetin-induced adhesion being 

decreased.  

 

It is strongly suggested that activated platelets produce reactive oxygen species (ROS) and 

that these are important for the regulation of platelet function. For instance, platelet 

activation induced by thrombin, TRAP-6, U46619 and convulxin but not ADP showed a 

similar elevations in ROS production (Begonja et al., 2005). ROS is synthesised in platelet 

by various cytosolic enzymes, such as xanthine oxidase, monoamine oxidase, LOX, the 

endothelial isoform of nitric oxide (eNOS) and membrane electron transfer system (Del 

Principe et al., 2009). 

 

 It was reported that superoxide production by stimulated platelets increases platelet 

aggregation and adhesion (Salvemini et al., 1989), adding to our understanding of the pro-

aggregatory effects of ROS. A previous study has shown that platelet-derived ROS is 

generated by the activity of intracellular platelet nicotinamide adenine dinucleotide 

phosphate oxidase (NADPH oxidase) (Seno et al., 2001).  
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NADPH oxidase produces ROS via a one electron reduction of molecular oxygen. NADPH 

oxidase is a multicomponent enzyme, consisting of the membrane bound cytochrome b558 

(composed of the two subunits gp91-phox and p22-phox) and the cytosolic proteins, p47-

phox, p67-phox, p40-phox, and small GTP-binding protein Rac. The common NADPH 

oxidase inhibitors used in research are DPI and apocynin. Apocynin is also known as 

acetovanillone or 1-(4-hydroxy-3-methoxyphenyl)ethanone and acts to block oxidase 

assembly. Seno et al. (2001) demonstrated ROS production in washed platelets upon 

stimulation by calcium ionophore, which is known to be a potent activator of phagocytic 

NADH/NADPH oxidase. In this study, it was shown that platelet ROS production is 

generated largely via NADPH oxidase activity rather than xanthine oxidase activity, 

supported by the expression of p22-phox and p67-phox proteins in platelets. NADPH 

oxidase activation involves the phosphorylation and translocation of the cytosolic 

components to the membrane-bound cytochrome b558 where the catalytically functional 

oxidase is assembled. In platelets, inhibition of phosphoinositide 3-kinase (PI3-kinase) by 

NO leads to reduction in functional NADPH oxidase and thus contributes to reduction in 

platelet activation (Clutton et al., 2004). Therefore, it can be concluded that NADPH 

oxidase is an important enzyme responsible for platelet ROS generation and plays an 

important role in the regulation of platelet function.  
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Angiotensin II has been shown to increase superoxide anion production by platelet 

through PKC-dependent NADPH oxidase activation (Plumb et al., 2005). Although the 

enzymes underlying ROS generation in platelets are not well defined, AA metabolism has 

been shown to produce ROS in collagen-stimulated platelets, and this effect is dependent 

upon the AA concentration. In addition, both COX and LOX pathways are able to produce 

ROS, as inhibitors of either pathway caused decreases in ROS production (Seno et al., 

2001). Therefore, a dual major pathway in platelet has been suggested to generate ROS, 

which is the NADPH oxidase pathway, and AA metabolism consisting of COX and LOX 

pathways. A previous study by Plumb et al. (2005) has confirmed the expression of gp91-

phox subunit in platelets taken from patients with essential hypertension. Additionally, 

superoxide anion generation is in complete absence following stimulation by collagen, 

thrombin and AA of platelets taken from patients with gp91-phox deficiency (Pignatelli et 

al., 2004).  

 

As the importance of LOX metabolites in regulating platelet function is still controversial, 

the relationship of between ROS generation and the LOX and NADPH oxidase pathways 

remain elusive. There is evidence showing that 12(S)-HETE play a role in the activation of 

NADPH oxidase. It has been demonstrated that 12(S)-HETE stimulates ROS generation, 

platelet fragmentation and platelet microparticle formation in normal human and mouse 

platelets, however platelets from gp91phox-/-, Rac 2-/- and 12LO-/- mice failed to 

demonstrate these effects (Nardi et al., 2004). The formation of platelet particles is 

suggested to be dependent upon the NADPH oxidase pathway as exogenous 12(S)-HETE 
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induces particle formation in 12LO-/- mouse platelets. This is supported by another finding 

by Nardi et al. (2007) that inhibition of platelet particle formation by dexamethasone 

following induction by either anti-GPIIIa49-66 antibody, calcium ionophore or phorbol 

myristate acetate is due to its blocking of the translocation of PLA2, 12-LOX and p67-phox 

from the cytosol to platelet membranes (Nardi et al., 2007). Based on these findings, it can 

be inferred that platelet PLA2, 12-LOX and NADPH oxidase modulate platelet ROS 

generation that is involved in platelet particle formation. Data reported here shows that in 

the presence of LOX inhibition, NADPH oxidase inhibition can still inhibit platelet function. 

It therefore seems that the role of platelet NADPH oxidase in regulating platelets activity is 

at least partly independent of platelet 12-LOX. 

 

The ROS production by platelet NADPH oxidase has been shown to regulate intergrin 

αIIbβ3 activation but not platelet granule secretion and shape change (Begonja et al., 

2005). In this study, the possible source and type of intracellular ROS in platelet was 

examined using various inhibitors and superoxide scavengers, including DPI and apocynin. 

Begonja et al. (2005) demonstrated that thrombin-stimulated platelet ROS production 

rises from the NADPH oxidase pathway which was inhibited by DPI or apocynin. 

Interestingly, this property is shared by aspirin, thus supporting a partial involvement of 

AA metabolism in ROS generation. There is mounting evidence of functional platelet 

NADPH oxidase and ROS generation being involved in the regulation of platelet function. 

For instance, the inhibitory effects of NO are attenuated in the presence of ROS as 

reaction between NO and superoxide results in the forming of peroxynitrate (ONOO-). 
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Taken together, this may explain the possible mechanism of ROS in promoting platelet 

aggregation; inhibition of ROS generation as a result of attenuation of NADPH oxidase 

activity will increase the dissaggregation effects of NO. The NO/cGMP pathway is an 

established platelet inhibitory mechanism and so this is an attractive hypothesis.  

However, in a previous study, cGMP levels and VASP phosphorylation failed to show any 

increase with DPI or apocynin, despite inhibition of platelet aggregation, suggesting 

NADPH oxidase regulates platelet function independent of NO (Begonja et al., 2005).  

 

In contrast with the study by Begonja et al. (2005), an earlier study by Krotz et al. (2002) 

found that superoxide anion could not be generated by thrombin-stimulated platelets but 

is in agreement that ADP-stimulated platelets do not produce ROS (Krotz et al., 2002). 

Interestingly, ROS production has been shown to be very prominent in collagen-

stimulated platelets. The source of these ROS has been demonstrated by the inhibition of 

superoxide anion production that follows incubation with either DPI, apocynin or specific 

inhibitor of NADPH oxidase, gp91ds-tat, which specifically targeting the interaction 

between gp91-phox and p47-phox. The results in the experiments in this thesis are in 

agreement with previous studies that have shown an inhibition of platelet aggregation as 

a result of inhibition of NADPH oxidase by DPI and apocynin. DPI in concentration-

dependent manner has been demonstrated to inhibit thrombin-induced platelet 

aggregation in washed platelets, and inhibited ADP-induced aggregation in PRP (Salvemini 

et al., 1991). Further, platelet aggregation, ROS generation and TXB2 production upon 

collagen activation of platelets is attenuated by apocynin and this effect have also been 
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demonstrated in thrombin activated platelets (Chlopicki et al., 2004). This is also parallel 

with the findings in this thesis that DPI reduces aggregation and adhesion when platelets 

are activated by ADP, collagen and TRAP-6.  

 

Krotz et al. (2002) demonstrated that there is no influence of superoxide anions on 

platelet aggregation following collagen and ADP stimulation, however platelet recruitment 

after collagen stimulation is found to be decreased with DPI but increased with NO-

synthase inhibitor N-nitro-L-arginine (L-NA). Thus, it is postulated that in collagen-

stimulated platelet activation of NADPH oxidase, production of superoxide anions is 

essential in further platelet recruitment and ADP release but not in the primary 

aggregation. This is supported by another study that investigated the association of 

platelet recruitment and superoxide anion production. In this study, platelet recruitment 

was found to be directly correlated with platelet activation measured by PFA-100, which 

was inversely correlated with platelet superoxide formation (Pignatelli et al., 2006). This 

study also shown that DPI, apocynin and polyphenols significantly reduced platelet 

recruitment and prolonged PFA CADP closure time. As there is evidence of platelet 

recruitment being inversely correlated to platelet NO, it can be postulated that these 

inhibitory effects could be due to reduction in platelet superoxide production leading to 

increased activity of platelet NO. Based on this idea, NADPH oxidase inhibitors and 

polyphenols were found to enhance the bioactivity of NO and eventually inhibited platelet 

function by inhibition of platelet superoxide. Platelet recruitment including adhesion is 

modulated by platelet gpIIb/IIIa expression, which is increased by platelet superoxide 
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(Begonja et al., 2005). Pignatelli et al. (2006) demonstrated that polyphenols reduce 

collagen induced PAC binding to reduce platelet recruitment. Therefore, it can be inferred 

that down-regulation of platelet gpIIb/IIIa expression is involved in platelet inhibition by 

superoxide. This is in line with the findings in this thesis that DPI and apocynin decrease 

platelet adhesion but not aggregation in response to ristocetin.  

 

In conclusion, this study has produced evidence that 12-LOX products may play a role in 

modulation of platelet functions, in which 12(S)-HPETE act as an antiplatelet and 12(S)-

HETE may be responsible for a positive feedback mechanism when platelets are exposed 

to a primary agonist. NADPH oxidase, through different mechanisms, also plays a role in 

the pathways of platelet activation by specific agonists. In addition, 12-LOX and NADPH 

oxidase pathways have been demonstrated to be essential in events following ristocetin-

induced platelet activation. Thus it can be inferred that 12-LOX and NADPH oxidase can be 

a new target for antiplatelet drugs to modify platelet reactivity, although further studies 

would be required to develop this idea. 
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5.1 Introduction 

 

Surprisingly, there is increasing evidence showing the influence of diet on cardiovascular 

disease particularly those with diets with high antioxidant content. For example, a diet 

containing fruit and vegetables, especially green leafy vegetables and vitamin C-rich fruits 

and vegetables exhibits cardioprotective effects against coronary heart disease (Joshipura 

et al., 2001). Cocoa beverages were consumed by people in Mesoamerica for more than 

500 years before they were brought to Europe in the 16th century, with more than 100 

medicinal uses for cocoa and chocolate. Theobroma cocoa beans contain an estimated 

380 identified chemicals and about 10 psychoactive compounds (Rusconi et al., 2010). 

Dark chocolate, with more than 35% cocoa content, contains the highest concentration of 

polyphenols as compared to other cocoa derivatives. As total phenolic contents in diet 

may be associated with nutritional benefits, consumption of dark chocolate may have an 

impact on cardiovascular disease via a number of mechanisms. These include the 

protection of target molecules such as lipids from oxidative damage, suppression of 

inflammation and modulation of vascular homeostasis (Rein et al., 2000b). 

 

The benefits of cocoa have been suggested from the low prevalence of atherosclerotic 

disease, hypertension, diabetes and dyslipidemia in Kuna Indians living on an island off the 

Coast of Panama. An earlier study has also shown that there is decrease in blood pressure 

with a significant improvement in insulin sensitivity in healthy volunteers taking cocoa, 

suggesting protective effects on the vascular endothelium (Grassi et al., 2005). In addition, 
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plasma polyphenol levels are increased following chocolate consumption, thus elevating 

the antioxidant activity of the plasma with a decrease in the concentration of plasma 

oxidation products (Rein et al., 2000a). Consumption of cocoa beverage in overweight 

adult produces a significant improvement in endothelial function without alterating 

biomarkers of cardiac risk such as blood pressure, lipid profile, LDL oxidation and lipid 

hydroperoxides (Njike et al., 2011). This result supports previous research findings 

demonstrating that flavonoid-rich dark chocolate improves endothelial function shown as 

an increase in plasma epicathechin concentrations in healthy adults, which is independent 

of plasma oxidation (Engler et al., 2004). Quiñones et al.  (2010) demonstrated the 

antihypertensive effects of short-term and long-term cocoa treatment in spontaneous 

hypertensive rats (SHR). However, recent findings concluded that the protective effect of 

dark chocolate on endothelial function is mediated by an increased endothelial release of 

nitric oxide. Interestingly, the level of oxidative stress as measured by plasma 

malonylaldehyde (MDA) is also reduced, together with significant inhibition of 

angiotension converting enzyme (ACE) (Quiñones et al., 2011). 

 

In this current study, the antithrombotic effects of dark chocolate consumption was 

determined in 22 mild hypertensive patients measured by ex vivo analysis of platelet 

function, as well as study of the in vitro effects of theobromine, a major methylxanthine 

constitutive of cocoa (Smit et al., 2004), on platelet function. 
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5.2 Methodology 

 

5.2.1 EPICURE Trial 

 

i. Study Design 

This study was conducted as a two-phase crossover study of patients recently 

diagnosed with prehypertension or mild hypertension who were randomised 

to treatment with high-flavonoid or low-flavonoid dark chocolate for 6 weeks 

(50g/day) and then swapped over to the alternative treatment for further 6 

weeks (50g/day). 

 

ii. Study Group Eligibility Criteria 

The eligibility criteria were men with recently diagnosed mild hypertension 

(i.e. SBP 140 – 159 mmHg; DBP 90 – 99 mmHg) or with constant 

prehypertension (i.e. SBP 130 – 139 mmHg; DBP 85 – 89 mmHg) assessed by 

repeated clinic measurements. To exclude patients with white-coat 

hypertension, 24 hours ambulatory blood pressure was performed during pre-

recruitment screening. Individuals recruited to the study were otherwise 

healthy and free of other disease. This was confirmed by physical examination, 

12-lead ECG, and routine blood chemistry including liver function tests. 

Recruitment was for 32 men that met these criteria.  
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Listed below are the exclusion criteria and additional criteria for the study: 

 

a. Exclusion criteria: 

1) Age <45 years or >70 years 

2) Diabetes mellitus or raised fasting blood glucose 

3) Total cholesterol >7 mmol/L 

4) BMI >30 kg/m2 

5) History of cardiac arrhythmias or ECG abnormalities at baseline 

6) History of psychiatric or psychological illness 

7) History of hypo- or hyperthyroidism 

8) Participation in another trial whether active or in follow-up 

9) Abnormal liver function tests or other routine blood chemistry 

10) Excessive alcohol consumption 

11) Regular medicines for any condition 

12) Regular use of herbal medicines or other alternative remedies 

 

b. Additional criteria: 

1) No red wine consumption during the study 

2) No aspirin or other non-steroidal anti-inflammatory agents for 4 weeks 

before the study or during the study 

3) Allowable pain relief paracetamol 
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4) Use of any medicines (e.g. antibiotics) to be recorded by the participants 

during the study for entry into the case report forms.  

 

Every participant was assigned a study number on enrolment. Chocolate bars 

were supplied coded according to a randomisation scheduled provide by Prof. 

Atholl Johnston. The investigators and subjects were fully blinded to the 

treatment schedule. 
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Figure 5.1: Schematic diagram showing the EPICURE trial. 
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5.2.2 Preparation of Wet Agonist Plate  

 

Half-area 96-well plate were used in this study to minimise the PRP required for each 

measurement. However, wet agonists plates were prepared that could be stored at 4oC 

and used when needed. The agonist final concentrations were the same as previously 

described in Chapter 3, however, PBS with 0.1% ascorbic acid was used to make up all 

agonists with arachidonic acid being the last agonist prepared. After all agonists had been 

added into the wells, plates were vacuum sealed to minimise evaporation or oxidation. 

Each plate was then labelled with details of date of preparation and batch. Finally, all 

prepared wet agonist plates were kept at 4oC in a cold room. At least 1 plate from each 

batch was randomly tested for platelet aggregation and adhesion prior to batch usage. 

Measurement of platelet aggregation and adhesion from this clinical trial was tested as 

described in previous chapter. 

 

5.2.3 In vitro Platelet Study of Theobromine 

 

The effects of theobromine on platelet function were studied using PRP from healthy 

volunteers. PRP was incubated with theobromine for 30 minutes prior to addition of 

platelet agonists. Platelet aggregation and adhesion were then followed as described 

previously.  
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5.3 Results 

 

5.3.1 Platelet Investigation in EPICURE Trial 

 

Though there were 32 patients enrolled in this study, only 22 patients successfully 

completed. Consumption of dark chocolate decreased platelet responses to ADP and 

TRAP-6 as shown in Figure 5.2-5.7. These effects appeared enhanced with high flavonoid-

contained dark chocolate, but no statistical differences were found between low- and 

high-flavonoid dark chocolate. For example, with respect to ADP-stimulated platelet 

aggregation, baseline responses at 3, 10 and 30 µM were 12.5±2%, 28.6±2% and 40.7±2%; 

low dark chocolate, 4.4±2%, 17.7±3% and 31.5±3%; high dark chocolate, 3.9±2%, 18.0±2% 

and 35.1±2%. Dark chocolate effectively decreased platelet aggregation induced by TRAP-

6. At TRAP-6 concentration of 3 µM, platelet aggregation was decreased to 1.0±2% 

following consumption of low dark chocolate, and 0% by high dark chocolate as compared 

to control, 24.4±2%, (p<0.01). Platelet aggregation in control conditions in response to 10 

µM TRAP-6 was 41.0±2%, but was reduced to 20.1±3% in both low and high dark 

chocolate, (p<0.05). At the highest concentration of TRAP-6, 30 µM, platelet aggregation 

was decreased to 24.2±3% (p<0.001) in low dark chocolate and 30.0±2% (p<0.01) in high 

dark chocolate as compared to control, 52.2±2%. However, there were little or no changes 

in platelet aggregation responses to other agonists. 
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Platelet adhesion stimulated by ADP and TRAP-6 was also significantly decreased following 

treatment with dark chocolate (Figure 5.8). For instance, at 10 µM ADP, control platelet 

adhesion was 28.6±2% but decreased to 20.2±2% in low dark chocolate and 18.2±2% in 

high dark chocolate. At 30 µM ADP, low dark chocolate reduced platelet adhesion to 

30.7±2% and high dark chocolate, 25.3±2% as compared to control, 40.7±2%. Platelet 

adhesion stimulated by 10 µM TRAP-6 in control (40.4±3%) was decreased in low dark 

chocolate, 23.9±3% (p<0.01), and in high dark chocolate, 19.1±3% (p<0.001). At the 

highest concentration of TRAP-6, 30 µM, platelet adhesion was decreased to 27.6±4% 

(p<0.01) in low dark chocolate and 26.7±3% (p<0.001) in high dark chocolate, as compared 

to control, 46.3±3%. 
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Figure 5.2: ADP-stimulated platelet aggregation responses in 22 patients with high 

blood pressure consuming dark chocolate. Blood samples were collected at 

randomisation (baseline pre-treatment), and after low and high-flavonoid 

chocolate. Each value represent means ± s.e (n=22).  
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Figure 5.3: Collagen-stimulated platelet aggregation responses in 22 patients with 

high blood pressure consuming dark chocolate. Blood samples were collected at 

randomisation (baseline pre-treatment), and after low and high-flavonoid 

chocolate. Each value represent means ± s.e (n=22).  
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Figure 5.4: Adrenaline-stimulated platelet aggregation responses in 22 patients with 

high blood pressure consuming dark chocolate. Blood samples were collected at 

randomisation (baseline pre-treatment), and after low and high-flavonoid chocolate. 

Each value represent means ± s.e (n=22).  
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Figure 5.5: Ristocetin-stimulated platelet aggregation responses in 22 patients with 

high blood pressure consuming dark chocolate. Blood samples were collected at 

randomisation (baseline pre-treatment), and after low and high-flavonoid 

chocolate. Each value represent means ± s.e (n=22).  
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Figure 5.6: TRAP-6 stimulated platelet aggregation responses in 22 patients with 

high blood pressure consuming dark chocolate. Blood samples were collected at 

randomisation (baseline pre-treatment), and after low and high-flavonoid 

chocolate. Each value represent means ± s.e (n=22). Concentrations showing 

significant differences compared to baseline TRAP-6: 3, 10 and 30 µM; LFDC: 

p<0.01, p<0.05 and p<0.001; HFDC: p<0.01, p< 0.05 and p<0.01 respectively. 
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Figure 5.7: U46619-stimulated platelet aggregation responses in 22 patients with 

high blood pressure consuming dark chocolate. Blood samples were collected at 

randomisation (baseline pre-treatment), and after low and high-flavonoid 

chocolate. Each value represent means ± s.e (n=22).  
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Figure 5.8: Platelet adhesion responses in 22 patients with high blood pressure 

consuming dark chocolate. Blood samples were collected at randomisation 

(baseline pre-treatment), and after low and high-flavonoid chocolate. Each value 

represent means ± s.e (n=22). Concentrations showing significant differences 

compared to baseline TRAP-6: 3, 10 and 30 µM; LFDC: p<0.01, p< 0.05 and 

p<0.001; HFDC: p<0.01, p< 0.05 and p<0.01, respectively. 
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5.3.2 Effects of Theobromine, Cocoa Main Components on Platelet Function 

 

Platelet studies performed in the EPICURE Trial showed that both low and high flavonoid 

dark chocolate inhibited platelet responses to ADP and TRAP-6. Therefore, further studies 

were conducted to investigate the effects of theobromine, a major compound in cocoa 

that may responsible for the inhibitory effects of dark chocolate in platelet. In this study, 

theobromine demonstrated various concentration-dependent inhibitory effects against 

platelet function (Figure 5.9 and Figure 5.10). For instance, aggregation to ADP 3µM was 

decreased to 35±9% and 32±7% by 5 and 10µg/ml theobromine, respectively, compared 

to the vehicle control of 45±9% (n=5). Platelet aggregation induced by 3µg/ml collagen, 

69±13%, was also inhibited to 33±14% by 5µg/ml theobromine (n=4). Incubation with 

theobromine also inhibited platelet aggregation and adhesion induced by arachidonic 

acid, adrenaline, and TRAP-6 but not that induced by U46619 and ristocetin. 
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Figure 5.9: Effects of theobromine on platelet aggregation. PRP was incubated with 

theobromine at 2, 5 and 10µg/ml for 30 mins before platelet aggregation was 

measured in 96-well plate. Each value represent means ± s.e (n=4). 
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Figure 5.10: Effects of theobromine on platelet adhesion. PRP was incubated with 

theobromine at 2, 5 and 10µg/ml for 30 mins before platelet adhesion was 

measured in 96-well plate. Each value represent means ± s.e (n=4). 
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5.3.3 Concentration-Dependent Effects of Theobromine Platelet Responses to ADP and 

TRAP-6 

 

To determine if the effects of theobromine were concentration-dependent, 

concentrations of 2-50µg/ml were tested against platelet activation induced by ADP 

(Figure 5.11) and TRAP-6 (Figure 5.12). Aggregation induced by 3µM ADP was indeed 

decreased by theobromine in a concentration-dependent manner.  For example, 

aggregation decreased from 45.8±10% in control to 32.6±7%, 33.8±9% and 26.4±7% 

following incubation with 10, 20 and 50µg/ml theobromine respectively. Platelet 

adhesion was also inhibited in a concentration-dependent manner; control 9.4±3%, 

20µg/ml theobromine 7.6±2%, and 30µg/ml theobromine 5.0±2%. Similar observations 

were also made regarding TRAP-6-induced platelet activation. For instance, at 2, 10 and 

50µg/ml theobromine, platelet aggregation was decreased to 38.0±14%, 35.6±14% and 

34.4±15% as compared to control, 51.8±14%. As dark chocolate consumption reduces 

the ADP and TRAP-6 platelet function in EPICURE trial, this data suggests such an effect 

may be dependent upon the dose of theobromine that is delivered. 
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Figure 5.11: Effects of theobromine on platelet aggregation and adhesion in 

response to ADP. PRP was incubated with theobromine at 2, 5, 10, 20 and 50µg/ml 

for 30 mins before platelet aggregation was measured in 96-well plates. Each value 

represent means ± s.e (n=5). 
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Figure 5.12: Effects of theobromine on platelet aggregation and adhesion in 

response to TRAP-6. PRP was incubated with theobromine at 2, 5, 10, 20 and 

50µg/ml for 30 mins before platelet aggregation was measured in 96-well plates. 

Each value represent means ± s.e (n=5). 
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5.4 Discussion 

 

The 96-well plate method for platelet aggregation and adhesion determination was 

expanded to a ‘ready-made’ wet agonist plate. This allowed the agonist plate to be 

prepared in advance and so reduced the total test time whenever samples were obtained. 

For each agonist preparation, 0.1% ascorbic acid in PBS buffer was used to avoid any 

oxidative reaction and so preserve agonist activity. This method was not used for 

arachidonic acid because it is unstable and prone to oxidation even if careful precautions 

were taken. In order to prevent further oxidation and evaporation, the wet agonist plates 

were vacuum-sealed before being stored at 40C. Each batch was then spot tested to 

confirm all agonists were working. 

 

Even though the effects of dark chocolate on cardiovascular health are still a matter of 

debate, previous studies have suggested a potential diminished risk of CVD following 

regular intake of flavonoid-rich food such as dark chocolate. Potential mechanisms 

underlying this ‘aspirin-like effect’ of dark chocolate include reduced inflammation, 

inhibition of atherogenesis by decreased plasma oxidation status, enhancement of 

endothelial function, inhibition of platelet function to decrease potential thrombosis 

formation and interference in the production of interleukin 1 beta by peripheral blood 

mononuclear cells. 
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Interestingly, the EPICURE study demonstrated that chronic consumption of dark 

chocolate significantly decreased ADP and TRAP-6 induced platelet aggregation and 

adhesion in hypertensive patients.  This is in line with a previous study that showed 

inhibition of the ADP and adrenaline-induced platelet activation marker, granular 

membrane protein CD62P, following acute consumption of cocoa beverage in healthy 

volunteers (Rein et al., 2000c). Fibrinogen binding with glycoprotein IIb-IIIa is central to 

platelet activation, but can be inhibited by nitric oxide which increases the intraplatelet 

levels of cGMP and so reduces agonist-mediated platelet calcium influx. Cocoa beverages 

inhibit platelet activation by decreasing the fibrinogen-binding conformation of platelet 

glycoprotein IIb-IIIa (PAC1-positive platelets) and inhibiting the formation of platelet 

microparticles (Rein et al., 2000c). Furthermore, platelet-related primary haemostasis was 

delayed as measured by a prolonged closure time in the PFA-100 collagen-epinephrine 

cartridge, but no changes in the collagen-ADP induced closure time after consumption of 

cocoa beverage (Rein et al., 2000c).  

 

Cocoa contains a rich mixture of unique flavonoids that has the potential to regulate the 

immune system and enhance antioxidant activity. The flavonoids in cocoa are mainly 

catechin and epicatechin which exist in long polymers; for example procyanidins that 

contain two, three, or up to ten catechin or epicatechin units (Keen, 2001). Cocoa 

procyanidin has been shown to increase platelet PAC-1 binding and P-selectin expression 

in vitro. In contrast, cocoa consumption was reported to inhibit platelet activation in 

healthy volunteers but these effects were not exhibited by dealcoholized red wine or 
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caffeine consumption (Rein et al., 2000b). One possible reason was the polyphenol 

content per gram in dark chocolate is higher as compared to other antioxidant-rich 

sources such as tea, berries or wine ((Hermann et al., 2006a). 

 

From previous studies, it was suggested that dark chocolate would reduce the risk and 

mortality from cardiovascular disease and could have ‘aspirin-like’ effects. Consumption of 

flavonol–rich cocoa decreases the platelet expression of GPIIb-IIIa and P-selectin, with an 

additive effect when used in combination with aspirin (Pearson et al., 2002). Moreover, 

cocoa consumption also prolongs platelet-dependent primary hemostasis in both CEPI and 

CADP closure time in the PFA-100 machine, whilst aspirin only decreased CADP-induced 

closure time (Pearson et al., 2002). Cigarette smoking is commonly associated with 

increased risk of coronary heart disease due to endothelial and platelet dysfunction. 

Nevertheless, consumption of dark chocolate increased the total oxidant status of healthy 

smokers hence improving endothelial and platelet function, but this effects was not seen 

white chocolate (Hermann et al., 2006a). In addition, in a study of heart transplantation 

patients, coronary vasodilatation was increased with improved coronary vascular function 

and reduced shear stress-dependent platelet adhesion 2 hours after consumption of 

flavonoid-rich dark chocolate (Flammer et al., 2007). Vascular dysfunctions are often 

associated with increased oxidative stress and impairment of nitric oxide. The fact that 

dark chocolate enhance vascular function could be explained by reduction of oxidative 

stress, activation of nitric oxide synthase and low lipid peroxidation (Flammer et al., 2007).  
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It is noteworthy that nitric oxide inhibits platelet function by increasing the levels of 

cGMP, thus stimulation of nitric oxide synthase by dark chocolate attenuates platelet 

function. The beneficial vascular effects of dark chocolate have been extended to healthy 

smokers known to exhibit endothelial and platelet dysfunction. These effects were 

demonstrated by increased flow mediated dilatation measured by ultrasonography of the 

brachial artery 2 hours after ingestion of dark chocolate. Furthermore, shear stress 

dependent platelet adhesion was also reduced as total antioxidant status was increased 

(Hermann et al., 2006a). As cocoa are rich with flavonoids (Keen, 2001), this suggested 

that the effects of dark chocolate on the pathogenesis of atherothrombosis may rely on 

the antioxidative effects of dark chocolate flavonoids. 

 

Even though this study demonstrated the beneficial inhibitory effects of dark chocolate 

consumption in borderline hypertensive patients, no significant differences were found 

between high and low flavonoids content dark chocolate. Thus, the platelet inhibitory 

effects of dark chocolate may not be due to the antioxidant effects of flavonoids but may 

be caused by other compounds such as methylxanthines. Methylxanthines are found in 

coffee, cocoa products and cola soft drinks. Theobromine (3,7-dimethylxanthine) is a 

naturally occurring alkaloid that is present in chocolate, tea and cocoa products (Stavric, 

1988). Dark chocolate contains higher theobromine, 240-520 mg, as compared to 65-160 

mg in milk chocolate, per 50-g portion (MAFF, 1998). It is a metabolite of caffeine, with 

dark chocolate containing the highest theobromine concentration relative to caffeine, 

which is present in small amounts in dark chocolate (Smit et al., 2004).  
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In contrast with caffeine, which has been studied extensively, there is much less research 

into theobromine.  However, there are examples of theobromine beneficial effects 

associated with cardiac oedema and angina pectoralis, and as a diuretic agent. Moreover, 

a previous in vivo study has shown that theobromine significantly reduces total serum 

cholesterol, LDL-cholesterol and triglycerides, but elevates significantly HDL-cholesterol 

(Eteng et al., 2000). Theobromine and caffeine exert stimulant effects on the central 

nervous system by means of adenosine receptor antagonism, which results in 

psychopharmacological effects such as improvement of mood and cognitive functions 

(Smit et al., 2004).  

 

In order to explain the platelet inhibitory effects of dark chocolate from EPICURE trial, in 

vitro effects of theobromine on platelet aggregation and adhesion were determined. 

Theobromine inhibited the platelet aggregation and adhesion stimulated by ADP, 

collagen, TRAP-6, adrenaline and arachidonic acid, and these effects were concentration 

related.  These effects may due to inhibition of platelet phosphodiesterase, preventing the 

conversion of cyclic AMP to AMP and thus inhibiting platelet aggregation. There was 

limited previous study of other methylxanthines with effects on platelet, but not 

theobromine. For an example, incubation of washed human platelet with theophylline 

leads to increased intracellular levels of cAMP, and inhibition of the release of ADP and of 

lactate production (Wolfe et al., 1970). Since the effects of methylxanthines are related to 

adenosine, theobromine may have direct antiplatelet effects as adenosine plays a key role 
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in negative feedback mechanism of platelet activity. In contrast, (Agarwal et al., 1994) 

suggested that methylxanthines are adenosine receptor antagonists. Nevertheless they 

have reported that addition of theophylline or caffeine to human PRP with replenished 

adenosine increased platelet aggregation induced by platelet activating factor. This study 

also demonstrated the EC50 values of PAF in patients receiving chronic treatment of 

theophylline were significantly lower than those in control subjects (Agarwal et al., 1994).  

 

However, in the case of caffeine, there is a previous report showing that chronic caffeine 

consumption upregulates adenosine receptors thus decreasing the ability of platelets to 

aggregate. Choi (2003) showed that in vitro treatment of PRP with caffeine reduces 

platelet aggregation induced by adrenaline and ADP, but does not affect collagen or 

ristocetin induced platelet activation. Interestingly, in some subjects who are responsive 

to caffeine, there was loss of secondary wave after exposure to ADP suggesting that 

caffeine impaired the release of endogenous ADP from platelets (Choi, 2003). 

Consumption of caffeine and clopidogrel exhibited potential effects in healthy volunteers 

and coronary artery disease patients (Lev et al., 2007). These effects were seen with 

platelet aggregation induced by lower concentrations of ADP; decreased platelet surface 

expression of P-selectin and GPIIb-IIIa receptors and lowered vasodilator-stimulated 

phosphoprotein (VASP) phosphorylation. The same study also determined the effects of 

combination of caffeine and clopidogrel in patients with CAD and observed a decrease in 

P-selectin and PAC-1 binding but no significant effect on aggregation (Lev et al., 2007). 

Therefore, this suggested that since caffeine causes an increase in cAMP by inhibition of 
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adenosine receptors, coadministration of clopidogrel and caffeine may have synergistic 

effects on platelet inhibition. Levels of plasma plasminogen activator inhibitor-1 (PAI-1) 

are increased in patients with CAD or myocardial infarction and this level is contributed to 

by high PAI-1 contents in platelets. However, caffeine intake reduces the platelet PAI-1 

content following stimulation of platelet release by thrombin (Joerg et al., 1990). From 

this evidence it could be suggested that theobromine is a platelet inhibitor depending on 

variations caused by different platelet agonists, and this property may be explained by 

blockade of the adenosine receptor, possibly A2A receptor, leading to elevations in platelet 

inhibitory cAMP levels.  

 

Toxicity of theobromine has been reported previously leading to a decreased interest in 

theobromine research. Rats fed with high amounts of theobromine demonstrated atropy 

of testes and thymus as well as loss of food intake and reduction in bodyweight (Gans, 

1982). Ying et al. (1992) demonstrated that theobromine administration in rats alters 

testicular structure, with vacuolisation of Sertoli cells, abnormal spermatid shape, and 

impairment of late spermatid release. However, this toxicity effect was reduced with the 

administration of cocoa-extract that contain equivalent amount of theobromine. The 

toxicity of theobromine were also influenced by diet, as increased fibre in food tends to 

decrease its absorption thus reducing the bioavailability of theobromine (Gans, 1982).  

 

Nevertheless, the toxicity of methylxanthines is affected by food intake, particularly over 

consumption of coffee, strong teas, cola beverages and cocoa products such as dark 
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chocolate. Whilst theobromine has effects on diuresis, myocardial stimulation, 

vasodilatation and smooth muscle cell relaxation, it should be noted that its toxicologic 

effects resulting from combination with other methylxanthines or caffeine metabolites 

may also limit the potential beneficial effects (Stavric, 1988). In addition, methylxanthines 

are able to across the placenta and may have disrupt the development of fetus brain. 

(Wilkinson et al., 1993) shown that with a single maternal dose of caffeine, there were 

significant dispositions of caffeine and its metabolite, theophylline and theobromine, in 

fetal and maternal brain. Therefore, it should be noted that administration of 

methylxanthines especially during pregnancy has to be carefully monitored for any 

adverse effects. 

 

In conclusion, this study showed clearly that chronic dark chocolate intake inhibits the 

ability of platelets to aggregate upon stimulation by TRAP-6 or ADP in midline 

hypertensive patients. However, there is no difference between dark chocolate containing 

high and low contents of flavonoids, suggesting that it may be methylxanthines such as 

theobromine that play a role in reducing platelet function. This idea is supported by in 

vitro studies demonstrating that theobromine has various inhibitory effects on platelet 

aggregation and adhesion. Therefore it is suggested that the data presented here supports 

previous findings indicating that co-administration of dark chocolate with current 

cardiovascular disease treatments may supply some additional beneficial effects. 
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6.1 General Discussion 

 

Platelet function testing is important in clinical settings such as to monitor antiplatelet 

therapy or prediction of presurgical or perioperative bleeding. Simple point-of-care 

techniques have been developed and used in clinical settings, but continuous 

development is still needed to improve platelet function testing. As light transmission 

aggregometry is still regarded as standard evaluation tool for platelet aggregation, this 

study aimed at using a modification of traditional Born aggregometry to obtain an 

uncomplicated, higher output and more reliable method. This modified method involved 

basic Born aggregometry theory to be adapted to a 96-well plate format to allow higher 

sample throughput. In addition, the integration of a method to measure adhesion allows 

additional data to be obtained from the same 96-well plate. Various known platelet 

inhibitors such as aspirin have been tested using this modified technique with similar 

results being found as for more established techniques. A further advantage of the 96-well 

plate format is that it can be adjusted to the need of researchers/clinicians according to 

their requirement, such as selection of platelet agonists or using a half-volume 96-well 

plate format to minimise the required blood sample volume. It is noteworthy that 

standard values have to be developed by individual laboratories for many platelet function 

test, and this new modified 96-well plate method is without exception. This is because the 

results from different platelet function tests such as PFA-100, whole blood electrical 

aggregometry or flow cytometric test of platelet surface antigen are not comparable and 

not equivalent with each other (Salat et al., 2002). 
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This study provides additional data regarding the antiplatelet effects of aspirin and other 

NSAIDs but not of a COX-2 selective inhibitor. The hypothesis that COX-2 selective 

inhibitors produce a prothrombotic state and so increase cardiovascular adverse effects 

has to be carefully inferred and investigated reliant upon substantial clinical evidence 

obtained for this reason. The Therapeutic Arthritis Research and Gastrointestinal Event 

Trial (TARGET) were designed to compare between COX-2 selective inhibitor, lumiracoxib 

and NSAIDS, naproxen and ibuprofen in the assessment of gastrointestinal and 

cardiovascular safety (Farkouh et al., 2004). This large scale study involved more than 

18,000 patients with osteoarthritis receiving treatment with lumiracoxib 400mg once 

daily, naproxen 500mg twice daily or ibuprofen 800mg three times daily for 52 weeks. In 

this study, researchers found that the primary endpoint which include incidence of 

myocardial infarction, did not differ between lumiracoxib and either ibuprofen or 

naproxen, irrespective of aspirin use. Moreover, the post-hoc study analysis of lumiracoxib 

in the TARGET study did not show any increased risk of developing congestive heart failure 

when using lumiracoxib compared to NSAIDS (Farkouh et al., 2004). This is supported by 

Matchaba et al. (2005) who found no evidence of lumiracoxib-associated increase of 

cardiovascular risk compared with naproxen, placebo, or all comparators (placebo, 

diclofenac, ibuprofen, celecoxib, rofecoxib, and naproxen) through a meta-analysis study 

of 34, 668 patients receiving 1 week and up to 1 year of treatment (Matchaba et al., 

2005). Moreover, the beneficial effect of lumiracoxib was extended to the reduced risk of 

GI ulcer complications compared with NSAIDS, naproxen and ibuprofen in patients with 

osteoarthritis (Hawkey et al., 2007). 
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My findings in these studies suggest that AA metabolism by platelet COX and LOX are both 

essential to sustain and regulate platelet functioning in the maintenance of normal 

hemostasis. Unlike the COX pathway, p12-LOX and its metabolites are much less well 

understood with regard to influences on platelet function. The contrasting physiological 

actions of 12(S)-HPETE and 12(S)-HETE suggest that their function is one of the many key 

regulators of platelet activation. The fact that different biological effects of p12-LOX 

products were observed in particular platelet activation pathways associated with 

different agonists, indicates that more in depth research has to be done to study the 

involvement of these metabolites at molecular level, including cell signalling. Some studies 

have used washed platelets in the investigation of LOX pathway in platelets, which might 

influence normal platelet function as washed platelets can be spontaneously activated. I 

have used PRP in the studies reported here, which contains various plasma proteins 

including albumin that could interact with AA metabolism and its enzyme activity. 

Therefore, the methodological differences between researchers could account for the 

variability of findings. In addition, the lack of biochemical specificity of the p12-LOX 

inhibitors used should be an important consideration in any interpretation of the data. 

 

Previous reports have suggested that 12(S)-HETE is a down-regulator of AA-dependent 

pathway platelet activation with 12(S)-HETE being a competitor of the binding of PTA-OH, 

a thromboxane antagonist, to the thromboxane receptor (TP) (Fonlupt et al., 1991). 

However, my findings did not detect any inhibition of aggregation and adhesion in 

platelets challenged with U46619, a thromboxane mimetic agent. Instead, I found that 
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12(S)-HETE causes an increase in platelet adhesion caused by other agonists such as AA, 

ADP and adrenaline and increases adrenaline-induced platelet aggregation. Therefore, my 

conclusion is that 12(S)-HETE is not platelet inhibitor and does not act on TP receptors. In 

contrast, it may potentiate platelet aggregation by weak agonists through a different 

platelet signalling pathway which is not clearly understood as yet. Findings in this research 

also concluded that, in situations in which low concentrations of agonists such as collagen 

and adrenaline are insufficient to induce high platelet aggregation, amplification of 

platelet aggregation can be induced by 12(S)-HETE. However, the effect of 12(S)-HETE is 

limited if p12-LOX is blocked, suggesting that 12(S)-HETE is not as potent as TXA2 to induce 

aggregation, which means more 12(S)-HETE is required to be produced from activated 

p12-LOX. Thus, the inhibition of p12-LOX prevents self-activation of further 12(S)-HETE 

production through p12-LOX and results in failure to induce platelet aggregation.  

 

My investigations support previous findings that NADPH oxidase is essential for particular 

agonists to induce platelet activation, such as collagen, ADP and TRAP-6. Therefore, it is 

suggested that direct inhibition of NADPH oxidase may have potential clinical benefits in 

preventing thrombotic events among cardiovascular disease patients. However, this 

assumption is limited by the non-specificity of NADPH oxidase inhibitors, even though 

emergent research is being done to identify specific inhibitors for NADPH oxidase. In this 

study, NADPH oxidase inhibitors that are commonly used, DPI and apocynin, were 

investigated with regard to their effects on platelet aggregation and adhesion. 

Nevertheless, although DPI is widely used in in vitro studies by various researchers, it not 
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only targets NADPH oxidase enzyme but also inhibits all flavin-containing enzymes, 

including NO synthases and c-P450 enzymes. It has been established that DPI is a potent 

NADPH oxidase inhibitor but unlikely to show any selectivity across NADPH oxidase 

isoforms. For instance,  DPI has been shown to effectively inhibit NADPH oxidase activity 

in various cell types that express one or two isoforms, including endothelial cells 

(Nox2,Nox4 and Nox1), smooth muscle cells (Nox1 and Nox4), leukocytes (Nox2), 

fibroblasts (Nox4) and bone marrow-derived hematopoietic stem/progenitor cells (Nox1, 

Nox2 and Nox4) (Selemidis et al., 2008). The non-specificity of DPI used in this study is 

overcome by the use of apocynin, which inhibits NADPH oxidase activation by blocking the 

translocation of p47-phox to the catalytic membrane domain. Apocynin, isolated firstly 

from the roots of Apocynum cannabinum (Canadian hemp.) has been shown to prevent 

the STZ-induced translocation of p47-phox and p67-phox to the membrane in isolated 

neutrophils and also to block p47-phox association in endothelial cell membranes. Unlike 

DPI, apocynin has been postulated to be partly NADPH oxidase isoform selective, based on 

its mechanism of action. Therefore, apocynin is thought to be more sensitive in inhibiting 

Nox1, Nox2 and Nox 3 isoforms, which are dependent on the association of cytosolic 

subunits to the membrane-bound catalytic core upon activation, as compared to other 

isoforms, Nox4 and Nox5. Thus, as platelets express Nox2 isoforms, it is thought that 

apocynin effectively inhibits platelet Nox2 since our study demonstrated platelet 

inhibition after apocynin treatment. 
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Apocynin has been regarded as the gold standard for selective NADPH oxidase inhibition, 

despite several lines of evidence showing that its mechanism of action is elusive. It is 

noteworthy to include previous reports that apocynin activation by myeloperoxidase 

(MPO) is obligatory for the inhibitory effects of apocynin, which is enhanced following 

zymosan-induced MPO expression but is inhibited by sodium azide treatment, a MPO 

inhibitor (Simons et al., 1990). Following that, another study revealed that superoxide 

anion generation was not inhibited by apocynin in HEK293 cells overexpressing NADPH 

isoforms (Nox1, Nox2 and Nox4) but interfered with ROS production by other enzymes 

such as xanthine oxidase (Heum ller et al., 2008). The formation of apocynin dimer, an 

active form of apocynin by myeloperoxidase was also not found in endothelial cells and 

smooth muscle cells but detected when myeloperoxidase was supplemented. Therefore, it 

was suggested that apocynin acts as NADPH oxidase inhibitor in leukocytes, since 

myeloperoxidase is expressed in these cells, whereas the effects of apocynin in vascular 

cells is more as an antioxidant (Heum ller et al., 2008). In conjunction to this study, 

another report has investigated the inhibitory effects of apocynin on washed platelets 

from normal and NADPH oxidase knockout mice. Collagen and U46619-activated 

aggregation of washed platelet from male wild type mice C57BL6, Nox2 deficient (Nox2-/y) 

and p47-phox deficient (p47-phox-/-) were effectively inhibited by apocynin (Dharmarajah 

et al., 2010). Even though the protein expressions of Nox2 and p47-phox are significantly 

diminished in Nox2 and p47-phox knockout mice, collagen-induced platelet aggregations 

were similar to those in platelets from normal mice. Based on these investigations, 

Dharmarajah et al. (2010) suggested that the attenuation of platelet aggregation by 
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apocynin as reported in previous studies is unlikely to be mediated by inhibition of NADPH 

oxidase activity. Therefore, caution must be taken before any conclusions are made based 

only upon results from the use of DPI and apocynin. Alternatively, researchers can use 

other NADPH oxidase inhibitors such as AEBSF (4-(2-Aminoethyl)benzenesulfonylfluoride) 

which inhibits NADPH oxidase by interfering with the association of p47-phox. AEBSF, 

however, is not specific as it can also inhibit serine proteases. There is also peptide 

inhibitor gp91ds-tat, which is specifically designed to inhibit gp91-phox.    

 

Substantial amounts of evidence have been proposed in identifying the generation of ROS 

by unstimulated and stimulated platelets along with the relationship between ROS and 

platelet activation. ROS-generating processes other than COX are suggested to be the 

major source of ROS production in platelets as aspirin does not inhibit ROS formation. 

Therefore, NADPH oxidase has been identified as one of the pathways in platelets 

responsible for the ROS formation that may play an important role in platelet function. In 

addition, platelet 12-LOX also has been suggested to be another important source of ROS 

in platelets as it catalyzes the formation of hydroperoxide. The importance of ROS in 

platelet activation has been investigated by looking at platelet aggregation and serotonin 

release induced by platelet-produced superoxide anions (Handin et al., 1977). Further, 

association of platelet ROS production and platelet activation has been suggested as a 

result of studies looking at PLA2 stimulation by ROS to enhance the liberation of AA 

(Hashizume et al., 1991). Another study also supports the involvement of ROS in the 

activation of PLA2, with DPI inhibiting PLA2 activation and ROS formation in a 
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concentration-dependent manner (Goldman et al., 1992). ROS are proposed to exert their 

effects on platelets by facilitating Ca2+ mobilization, activation of protein tyrosine kinase 

(PTK) or reaction with platelet NO, but more lines of evidence are needed to support this. 

A recent study has explored ROS-dependent GPVI activation using convulxin, a specific 

GPVI-selective agonist, and thrombin-treated platelets (Bakdash et al., 2008). It was 

showed that convulxin induces platelet intracellular ROS production, whilst ROS are 

released extracellularly in thrombin treated platelets. In the same study, platelet 

activation induced by both platelet agonists was attenuated by antioxidants including DPI 

and apocynin, but not by extracellular addition of the antioxidant superoxide dismutase 

(SOD). Thus, it can be inferred that the role of ROS in platelet activation is dependent on 

both particular agonists and the localisation of ROS formation. The autocrine and 

paracrine signalling of platelets by intracellular and extracellular release of platelet ROS is 

crucial during the interaction between platelets, leukocytes and endothelial cells in the 

pathogenesis of thrombosis. The extracellular ROS production from activated platelets 

and leukocytes enhances platelet adherence and recruitment to facilitate thrombus 

formation. However, the release of platelet substances such as serotonin, SOD and 

peroxidise will block ROS production by leukocytes, therefore inhibiting further 

stimulation from platelet-leukocyte interactions. This is important in normal hemostasis 

and the prevention of vascular plugs that lead to thrombotic diseases. As several studies 

have reported the involvement of LOX and NADPH oxidase pathways in the formation by 

platelets of ROS and peroxides, the effects on platelet aggregation and adhesion of 

inhibition of both pathways were assessed in vitro. 
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Clinical investigations of dark chocolate on platelet function in baseline hypertensive 

patients suggested the potential of dark chocolate as an anti-thorombotic. This was 

supported by in vitro data in this study showing that theobromine, an antioxidant found in 

cocoa products, attenuated platelet aggregation and adhesion. Although there is 

mounting evidence of platelet activation modulation by antioxidants, their effects on 

platelet function in vivo remains controversial. Despite this, nutritional antioxidants 

continue to be an area research interest regarding possible antiplatelet and 

antithrombotic agents.  For instance, resveratrol (trans-3,4’5-trihydroxystilbene) that is 

naturally contained in red wine, inhibits aggregation of washed platelets and PRP in 

response to ADP, collagen and TRAP-6 (Sobotková et al., 2009). In addition, trolox, a 

vitamin E analogue, was also found to be as potent an antiaggregatory agent as 

resveratrol in this study. However, trolox is not as potent as resveratrol in inhibiting 

platelet COX-1 and TXB2 production, suggesting that its antioxidant effects on ROS-

induced platelet activation is targeted at a specific pathway. 

 

There are several studies of nutritional antioxidants with potential antiplatelet effects. 

One of the studies reported a black soybean extract with potent inhibitory effects on 

collagen-induced platelet aggregation and serotonin secretion (Kim et al., 2011). In 

addition, black soybean was also found to attenuate thrombus formation in a FeCl3-

induced rat venous thrombosis model. Interestingly, another study was done to 

investigate the biological properties of milk produced by cows, goats and donkeys (Simos 

et al., 2011). In this study, of all milk tested, goats’ milk showed the highest total 
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antioxidant capacity in vitro and in vivo. Goats’ milk also reduced platelet aggregation 

when ADP or PAF was used as agonists in ex vivo experiments using PRP from healthy 

volunteers. However, at the same concentration of goats’ milk that caused 100% 

inhibition of platelet aggregation, milk from cows and donkeys had no inhibitory effects 

against platelets. Therefore, it could be concluded that the antiplatelet effects of nutrition 

are strongly related to the antioxidant properties in the food itself. Other studies looking 

at antiplatelet effects of antoxidants include wines (Pace-Asciak et al., 1996), olive 

phenolic compound (Zbidi et al., 2009), and herbal medicines such as Hippophae 

rhamnoides (Cheng et al., 2003). 

 

Based on in vitro and in vivo data in this research, I have concluded that our new modified 

technique of measuring platelet aggregation in 96-well plate is sufficiently reliable to be 

used in research laboratories or in clinical settings. I have also showed that other than 

COX-1, platelet 12-LOX plays a role in controlling platelet function, with 12(S)-HETE as a 

positive regulator of platelet activation.  In addition, my experiments also investigated the 

involvement of NADPH oxidase in platelet function, and suggested that platelet 

stimulation by ADP, adrenaline, collagen and TRAP-6 induces formation of active NADPH 

oxidase complex, either direct or indirectly in the platelet activation pathway. I have 

summarised the proposed mechanism of platelet activation by platelet 12-lipoxygenase 

(12-LOX) pathways and NADPH oxidase in Figure 6.1. Finally, another aspect of antiplatelet 

influences from nutritional sources has been studied in the in vivo trial of dark chocolate 

that could provide a future prospect for research into new drug development.  
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Figure 6.1: Proposed mechanism of platelet activation by platelet 12-lipoxygenase (12-

LOX) pathways and NADPH oxidase. Arachidonic acid, AA is metabolised by 

cyclooxygenase enzyme (COX) to produce thromboxane A2 (TXA2) which is an important 

platelet activator. AA is also metabolised by 12-LOX to produce 12(S)-HPETE and then 

12(S)-HETE. 12(S)-HPETE acts as platelet inhibitor which may inhibit GPIb-IX-V and so 

inhibit ristocetin-induced platelet activation. This is in contrast with 12(S)-HETE, which 

may promote platelet activation through ADP, adrenaline, collagen and GPIb-IX-V 

receptors and initiate further 12(S)-HETE production by 12-LOX. Upon stimulation by 

collagen, ADP, TRAP-6 and adrenaline, NADPH oxidase complex will form by the assembly 

of intracellular components (p47-phox, p67-phox and p40-phox) with the membrane-

bound component (NOX-2, p22-phox) resulting in the formation of reactive oxygen 

species (ROS). Intracellular ROS formation will stimulate the GPIb-IX-V receptor and then 

activate the GPIIb-IIIa receptor. ROS could be a target for antiplatelet influences from 

nutritional antioxidants.  
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Appendix 1: List of materials used in this study 

 

[H3] Thromboxane B2 Tracer GE Healthcare, UK 

[I-125] PGE2 tracer  Perkin Elmer, USA 

12(S)-HETE Cayman Chemical Company, USA 

12(S)-HPETE Cayman Chemical Company, USA 

4-Nitrophenyl phosphate disodium salt 

hexahydrate 

Sigma, UK 

Acetylsalicylic acid (aspirin) Sigma, UK 

Activated charcoal Sigma, UK 

Adenosine diphosphate Labmedics, UK 

Albumin Sigma, UK 

Arachidonic acid (peroxide free) Cayman Chemical Company, USA 

Apocynin 

Baicalein 

Sigma, UK 

Sigma, UK 

C57Black6 mice Harlan, UK 

Calcium ionophore Sigma, UK 
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CDC (cinnamyl-3,4-dihydroxy-α-

cyanocinnamate) 

 

Biomol Research Lab, USA 

Citric acid Sigma, UK 

Collagen Labmedics, UK 

Dextran GE Healthcare, UK 

Diclofenac Sigma, Poole, UK 

Diclofenac sodium (Voltarol®) Novartis, UK 

Disodium hydrogen phosphate Sigma, UK 

Epinephrine (Adrenaline) Labmedics, UK 

Fibrinogen (Fraction I, Type I from human 

plasma) 

 

Sigma, UK 

Glucose Sigma, UK 

Heparin CP Pharmaceuticals Ltd, UK 

HEPES Sigma, UK 

Lipopolysaccharides  Sigma, UK 

Lumiracoxib Novartis, UK 

Magnesium chloride Sigma, UK 
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Parecoxib sodium (Dynastat®) Pfizer, USA 

Phosphate buffered saline (PBS) Sigma, UK 

Potassium chloride Sigma, UK 

Prostacyclin (PGI2) Sigma, UK 

Ristocetin Helena Biosciences Europe 

Rosiglitazone Sigma, UK 

Saline Baxter, UK 

Scintillation fluid (Ultima Gold) Perkin Elmer, USA 

Sodium carbonate Sigma, UK 

Sodium chloride Sigma, UK 

Sodium hydroxide Sigma, UK 

Sodium nitroprusside Sigma, UK 

Thrombin Chronolog, USA 

TRAP-6-amide Bachem, UK 

Tri-Sodium citrate Sigma, UK 

Triton-X-100 Sigma, UK 
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Trizma base Sigma, UK 

U46619 Cayman Chemical Company, USA 

Urethane Sigma, UK 

Theobromine 

 

Sigma, UK 
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Appendix 2: Composition of Buffer  

 

Dilution Buffer: 

 145mM NaCl 

 5mM KCl 

 10mM HEPES 

 0.5Mm NAHPO4 

 6mM glucose  

 0.2% human serum albumin 

 

Tyrodes Buffer: 

 134mM NaCl 

 2.9mM KCl 

 1mM MgCl2 

 0.34mM Na2HPO4 

 12mM NaHPO3 

 20mM HEPES  

 5mM glucose 

(pH 7.3) 

 


