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ABSTRACT 

Many Gram-negative commensal and pathogenic bacteria use a type II secretion 

system (T2SS) to transport proteins out of the cell. These exported proteins or 

substrates play a major role in toxin delivery, maintaining biofilms, replication in the 

host and subversion of host immune responses to infection. We review the current 

structural and functional work on this system and argue that intrinsically disordered 

regions and protein dynamics are central for assembly, exo-protein recognition, and 

secretion competence of the T2SS. The central role of intrinsic disorder-order 

transitions in these processes may be a particular feature of type II secretion. 	
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1. Introduction 

Gram–negative bacteria have evolved sophisticated multi-protein assemblies that can 

transport molecules across their outer membrane for manifold purposes including: 

offense, defense, nutrient acquisition, competition and communication. Some of these 

external assemblies, such as: pili, fimbriae, polysaccharides and flagella enable 

adhesion to host and abiotic surfaces, facilitate motility and allow invasion of the host 

[1-3]. Other bacterial systems can recognize specific cargo and transport this cargo 

into the extracellular milieu or directly into other cells to release nutrients and subvert 

the machinery of the other cells. Over ten outer-membrane protein assembly and 

secretion systems have been identified across Gram-negative bacteria which include 

the flagellum, the β-barrel assembly machinery (BAM) complex, the Wza translocon 

that assures secretion of capsular polysaccharides, the lipopolysaccharide assembly 

transport system (Lpt), the chaperone-usher and type IV pilus assembly systems, and 

the type I through to type IX secretion systems [3-9]. Although some of these 

machines are involved in essential cellular processes (e.g. BAM), others facilitate 

specific functions related to colonization of niche environments and persistence and 

can be acquired through horizontal gene transfer [10]. As such these outer-membrane 

machines and their cargos are often key virulence determinants and directly involved 

in pathogenesis. 

The relatively large number of secretion systems that occur across Gram-negative 

bacteria reflects the importance of communicating with the environment. Gram-

negative bacteria contain two membranes, inner or cytoplasmic and outer, that delimit 

together an intervening periplasmic space with peptidoglycan mesh. Therefore, 

transport out of the cell must either proceed directly from the cytosol through a single 

step involving a tunnel through the periplasm, or using a two-step process with a 

periplasmic intermediate. For example, effectors released through type III secretion 

systems (T3SS) must unfold during a one-step translocation process and then fold into 

their native conformation post ‘injection’ inside the host cell [11]. On the other hand, 

substrates of the type II secretion system (T2SS) are fully folded before being 

recruited, they are often oligomeric, contain disulfide bonds and can harbor complex 

cofactors [12-14]. Consequently, these proteins first enter the periplasm via either the 
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Sec or TAT translocon [15, 16] before their release from the cell in their final native 

state by the type II secretion system. 

2. The type II secretion system 

The T2SS was initially considered as the main terminal branch of the general 

secretory pathway (Gsp), where unstructured substrates first enter the periplasm via 

the Sec translocon [15], fold, and are then secreted by the T2SS. However, it has since 

been discovered that some T2SS substrates can also be exported into the periplasm by 

the TAT (twin-arginine translocation) pathway, which translocates proteins in their 

native folded state [15, 16]. Nonetheless, the term Gsp is often still used to refer to the 

T2SS components, from GspA to GspO and GspS.  

T2SSs have been identified in both commensal and pathogenic bacteria belonging to 

α, β, γ and δ-proteobacteria, and in some strains, several T2SSs are present [17]. For 

instance, Legionella pneumophila and Vibrio cholerae each carry a single T2SS [18] 

while Dickeya dadantii and several Escherichia coli pathotypes carry two [19, 20]. 

Often, the same T2SS secretes multiple proteins, e.g. the D. dadantii, V. cholerae and 

L. pneumophila T2SSs each secrete 20 to 30 substrates with functions that include 

biofilm formation; adhesion to, invasion of and replication in their hosts; and 

subversion of host immune responses to infection [21-23]. In contrast, the T2SS of the 

human pathogen Klebsiella oxytoca secretes just one known substrate [24]. 

In this review, we will concentrate our analyses on the V. cholerae and V. 

parahaemolyticus Eps, E. coli Gsp, D. dadantii Out, P. aeruginosa Xcp, K. oxytoca 

Pul, Aeromonas hydrophila Exe, Xanthomonas campestris Xps and the L. 

pneumophila Lsp systems; since significant structural and functional data is available 

for these bacteria. 

2.1 Genetic organization 

There are 12 core components of the T2SS that are essential for biogenesis and 

secretion (Fig. 1A). These are the outer membrane secretin (GspD), the inner-

membrane platform (GspC, GspF, GspL and GspM), the cytosolic ATPase (GspE), 

the pseudo-pilus composed of (GspG, GspH, GspI, GspJ and GspK) and the prepilin 
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peptidase, GspO, which is responsible for processing of pseudo-pilin subunits. In 

addition, Vibrio- and Dickeya-like systems also express pilotins, AspS and GspS, 

small lipoproteins each with a unique structure, which enhance the kinetics of secretin 

targeting and assembly in the outer-membrane [20, 25-29]. In P. aeruginosa Hxc and 

X. campestris Xps T2SSs, the secretin contains its own lipid anchor and they can pilot 

themselves [30]. A crystal structure is also available for P. aeruginosa protein 

PA3611, which shares structural homology with the V. cholerae pilotin, AspS, 

although its function as a pilotin has still to be confirmed experimentally [31]. 

However, no pilotin has yet been identified for the L. pneumophila Lsp system. 

2.2 Species variations  

Some T2SSs also express auxiliary genes within core components (Fig. 1A). In 

Aeromonas and Vibrio, GspA and GspB span the inner membrane once and form 

together a large multimeric complex that is thought to modify or organise the 

peptidoglycan to allow assembly of the GspD secretin [32-35]. GspA is an ATPase; 

its periplasmic domain interacts with peptidoglycan and forms a complex with GspB. 

The GspAB complex is essential for type II secretion in Aeromonas while its presence 

is not apparently obligatory in Vibrio [34]. However, in cross-complementation 

experiments, GspAB from V. cholerae restored secretin assembly and secretion in an 

A. hydrophila gspA mutant suggesting that GspAB performs the same role in Vibrio 

and Aeromonas. Supporting this idea that GspA and GspB act together, in Vibrio 

vulnificus they are naturally fused into a single polypeptide, the periplasmic portion of 

which possess a canonical peptidoglycan-binding domain [36]. However, in D. 

dadantii, K. oxytoca and some other bacteria, only GspB is present. OutB of D. 

dadantii interacts with the cognate secretin OutD but its precise function remains 

unclear [37]. These ancillary proteins might therefore stabilize or aid the assembly of 

the outer membrane secretin, tether the complex to the peptidoglycan or help the 

complex form across the peptidoglycan mesh [33-35]. Interestingly, although no 

additional genes are present in the L. pneumophila T2SS, its outer membrane secretin 

LspD is predicted to contain a supplementary peptidoglycan binding domain at its 

extreme N-terminus [38]. 
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2.3 Architecture of the T2SS 

Over the past 20 years X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy and cryo-electron microscopy (EM) have delivered atomic structures for 

almost all components of the T2SS, the exemplar structures spread over several 

bacterial systems. However, the structure of an intact T2SS complex has yet to be 

determined. The T2SS, T3SS, type IV pilus system (T4PS), DNA uptake systems and 

the filamentous phage-assembly system all feature an outer-membrane oligomeric 

protein called a ‘secretin’ [39]. In V. cholerae the secretin, EpsD, features in both type 

II secretion but also the extrusion of filamentous bacteriophage [40]. Furthermore, the 

T2SS is ancestrally related to the T4PS and many of the T2SS components have 

sequence and structural homologs in the T4PS [41]. 

Analysis of V. cholerae GspD and K. oxytoca PulD cryo-EM maps at low resolution 

reveals a dodecameric arrangement of subunits [42-45], which is consistent with cryo-

EM and cryo-electron tomography (ET) studies with the ancestrally related Neisseria 

meningitidis and Myxococcus xanthus T4PS, respectively [46, 47]. However, the 7 Å 

cryo-EM structure of the T4PS PilQ secretin is a 14-mer [48]. Furthermore, near 

atomic resolution structures have recently been published for the E. coli K12 and V. 

cholerae GspD proteins, which display predominantly 15-fold symmetry [49] and this 

is also observed in the Salmonella T3SS secretin [50]. Differences in recombinant 

expression strategies and sample preparations could lead to these discrepancies in 

oligomeric state; for example, replacement of lipid bilayers with detergent micelles 

may introduce artefacts in how secretins oligomerize. It is also possible that 

oligomeric variability is an innate property of these systems, for instance, 28% of the 

E. coli K12 GspD oligomers have 16-fold symmetry [49]. This remains a puzzle and 

the native stoichiometry of the T2SS is still to be unambiguously established.  

The atomic model of the M. xanthus type IVa pilus system, based on data collected in 

situ, has revealed that the inner and outer membrane platforms both display the same 

12-fold symmetry [47]. However, it is not yet clear whether this symmetry match is 

also important in the functioning of the T2SS; we currently know too little about the 

mechanics of secretion to understand if a symmetry match or a symmetry mismatch 

would be optimal. Using all available structural data, we have generated a model of 

the V. cholerae T2SS in its closed state where we have orientated structures or 
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homology models using the M. xanthus T4PS model, based on cryotomography, as a 

template (Fig. 1B). This results in dodecameric symmetry within the inner and outer-

membrane platforms. The ATPase is assumed to have 6-fold symmetry for the 

purpose of generating this cartoon [51] and only core components that are present in 

all types of T2SS are shown (e.g. the GspC C-terminal PDZ domain that modulates 

the specificity of some secretion systems is not shown). 

2.4 Current model of type-II dependent secretion 

In contrast to many other secretion systems that transport unfolded proteins, the T2SS 

recruits and transports fully folded proteins. Consequently, it has been suggested that 

the secretion signal is conformational in nature; it could be a patchwork of structural 

signals embedded on the substrate surface yet conserved across various substrates 

[52-54]. Studies on different T2SSs have pointed to several, distant and often large 

regions of various substrates, which are essential for secretion and able to promote 

secretion of heterologous cargos [55-62]. Recent structure-guided mutagenesis, cross-

linking and functional studies in D. dadantii shed a new light on the nature of the type 

II secretion signal and showed that a short 9-residue intrinsically disordered loop of 

pectate lyase PelI acts as a specific secretion signal that interacts directly with GspC 

and GspD and controls substrate recruitment by the T2SS [60]. Furthermore, a 

concerted bioinformatics approach has suggested an occurrence of equivalent 

secretion motifs in other T2SS substrates [60]. A recent structure/functional study on 

the PulA substrate of K. oxytoca has also revealed that several structurally dynamic 

regions of this large multi-domain protein are important for its secretion [61]. 

Therefore, it seems likely that at least in some systems a few surface exposed, 

intrinsically disordered and highly dynamic regions of secreted substrates act as 

composite secretion signals via their transient folding on appropriate T2SS 

components. 

Recruitment of substrates in the periplasm would necessitate their interaction with one 

or several T2SS components. GspC, GspD and pseudopilins have been shown to 

interact with the secreted substrates but it is generally assumed that the initial 

recognition is primarily performed by GspC [60, 63-65], which results in their 

transport into the interior of the T2SS (Fig. 1C).  Although as the cargo are generally 
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very large (Fig. 1B) there are presumably substantial conformational changes to allow 

them to enter the departure vestibule [43].  

Interactions have been observed between substrates and GspD periplasmic domains in 

D. dadantii Out, V. cholerae Eps, and P. aeruginosa Xcp, although it is unknown 

whether these contacts represent periplasmic recruitment (in conjunction with GspC), 

positioning within the T2SS vestibule, gating of the secretin pore, or a combination of 

these steps [43, 62, 63]. Once inside the secretion apparatus, substrates are thought to 

sit on the tip of the pseudopilus [63] and with the recruitment of GspE and the 

hydrolysis of ATP the pseudopilus grows and forces the substrate out of the cell [66]. 

3. Intrinsic disorder and dynamics within the T2SS 

The T2SS transports soluble substrates into the extracellular space but it can also 

mediate the attachment of some substrates to the cell surface [67]. In this review, we 

will focus on the export of ‘soluble’ cargo, although it is likely that all type II 

dependent translocation events, including those that result in surface attachment, share 

a common secretion mechanism. In particular, here we will emphasize our current 

knowledge of how the interplay between intrinsic disorder and dynamics within the 

core T2SS components allows for the secretion of cargo and to what extent this is also 

observed in other secretion systems. 

3.1 Biogenesis and role of the GspD outer membrane pore 

GspD is formed of three regions: an N-terminal periplasmic N-domain region, the 

secretin domain and a short C-terminal S-domain (Fig. 2A,B). In the pentadecameric 

GspD structures, these regions assume an almost linear arrangement but are tilted at 

an approximately 30° angle with respect to the channel axis (Fig. 2B), which 

generates a highly stable assembly. The secretin domain forms a pore in the outer-

membrane and allows for gated secretion of proteins into the extracellular space, 

whilst the S-domain provides stability to the mature structure by embracing the 

adjacent subunits [49, 50]. Four N-domains termed N0 to N3 (numbered from the N-

terminus) extend from the inner leaflet of the outer membrane into the periplasm (Fig. 

2B). They act to funnel selected protein substrates into the membrane pore. In other 

secretin containing systems (T3SS, T4PS, filamentous phage) the arrangement and 
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number of these domains varies, consistent with different functioning of these systems 

[39]. In the T2SS, the N-domains communicate with the inner-membrane platform, 

penetrate the peptidoglycan and also interact with substrates during their secretion 

[42, 60, 62-64, 68, 69]. 

3.1.1 Dynamic partnering between N-domains 

Several structures of GspD have been published, ranging from individual domains to 

almost complete GspD chains. To aid comparison of these structures, throughout this 

review we have numbered GspD secondary structure based on the full sequence, 

which begins at the N0 domain. The N0 domain shares the same fold as the signaling 

domain of TonB-dependent outer membrane receptors [70]. An anti-parallel two α-

helical core (α1-α2) is packed between an anti-parallel β1-β3 sheet on one side and an 

anti-parallel β2-β5-β4 sheet on the other (Fig. 2C) [71, 72]. The N1, N2 and N3 

domains on the other hand share structural homology with the KH-domain motif and 

are composed of a three stranded anti-parallel β-sheet (N1:β6-β8-β7; N2:β9-β11-β10; 

N3:β12-β14-β13) packed against two α-helices (N1:α3-α4; N2:α5-α6; N3:α7-α8) (Fig. 

2C) [39, 49, 72, 73]. KH-domains usually mediate binding of DNA/RNA [74], as 

does the N1 domain of the HofQ secretin involved in uptake of external DNA [75]. 

However, the GxxG motif,	 which is essential for the nucleotide binding, is not 

conserved in GspD and other secretins.  

The cryo-EM structures of E. coli and V. cholerae GspD, coupled with secondary 

structure predictions [76, 77], highlight significant intrinsic disorder that is inherent 

within GspD across different T2SSs (Fig. 2A). The first disordered region is localized 

to an approximate ten-residue linker connecting N0 and N1. In the absence of an inner-

membrane platform to dock with, in the structures of E. coli and V. cholerae 

pentadecameric GspD the N0 domain is disordered and could not be modeled [49]. 

Linkers that connect the N1/N2 and N2/N3 domains, albeit shorter, also provide some 

flexibility between rings of N-domains [78]. Within these rings the β-sheet of one 

domain packs against the α-helices of an adjacent identical domain, with a buried 

dimer interface of ~500 A2 (N3 domains) and ~250 A2 (N1 domains). 

Disorder of the N0 domain in pentadecameric GspD structures suggest that the N0 

domain is highly dynamic when not docked to the inner-membrane platform. It may 
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also adopt multiple conformations during secretion, a suggestion supported by the 

crystal structures of isolated N-domains. For example, in both P. aeruginosa XcpQ 

N012 and E. coli N012 crystal structures, the β-3 strand of N0 forms parallel interactions 

with the β-6 strand of their N1 domain (Fig. 2C) [72, 73]. However, this interface is 

not compatible with the arrangement of N1-domains in the pentadecameric GspD 

structures and would lead to clashes [49]. Furthermore, in the crystal structure of an 

isolated E. coli N0 domain, the β-3 strand from one subunit forms antiparallel 

interactions with the β-2 strand of another, which results in formation of a helical 

dodecameric ring-like structure that runs throughout the crystal lattice (Fig. 2C) [71]. 

However, structural studies of T3SS secretins resulted in a different model for the 

arrangement of N0/N1 domains in the T3SS (Fig. 2C) [50, 79, 80] and a particular 

dodecameric-ring structure was formed by N-domains of the HofQ secretin that 

involves a domain swapping mechanism [75]. Therefore, flexibility seems to be an 

inherent property of the chain of secretin N-domains. 

In the crystal structure of P. aeruginosa XcpQ N012 the alignment of N1/N2 is again 

inconsistent with the pentadecameric GspD structures [49, 72], with the β-sheet of N2 

packing against the α-helices of N1 (Fig. 2C). This forms a face-to-face dimer in the 

crystal lattice, which has also been observed in vivo with cross-linking studies in the 

D. dadantii Out system [68]. On the other hand, in the E. coli N012 structure these two 

domains adopt orientations similar to that observed in full-length pentadecameric 

GspD (Fig. 2C) [49, 73]. Looking across all N-domain structures, the interaction 

between domains is mainly the hydrophobic burial of a relatively small contact 

surface. It is presumably these numerous small hydrophobic regions that enable GspD 

to adopt several conformations and allow access to large cargo (Fig. 1B). Disulfide-

bonding analysis in a functional D. dadantii T2SS established multiple in vivo 

interactions involving N0-N3 domains and showed that the same sites of N0 are 

involved in self-interactions (N0-N0) but also interactions with GspC [68]. The 

dynamics of these transient contacts was inverted by secreted substrates and by inner 

membrane components GspE, L and M. Therefore, it may be that upon periplasmic 

recognition of substrates the N-domains can unzip, rotate and change their association 

with adjacent chain; analogous to a curtain opening. This would open up the entire 

periplasmic face of the T2SS, which would close up again once the cargo has entered. 
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The second disordered region of GspD is located within the homologous α5-β10 and 

α7-β13 loops of the N2 and N3 domains, respectively. Whilst in the N1 domain this 

loop is only a few residues long and well ordered, in N2 there are up to 15 residues, 

which are disordered in all available structures [49, 72, 73] (Fig. 2A, C). Moreover, in 

the N3 domain this loop is longer still and in D. dadantii and L. pneumophila it 

contains up to 80 residues of serine-glycine rich sequence (Fig. 2A, C). The cryo-EM 

structure reveals this disordered region to be a flexible weak N3 constriction site, 

which is anticipated to be more appreciable in D. dadantii and L. pneumophila. 

3.1.2 Structure and gating mechanism of the secretin 

The structure of the secretin domain is a unique double β-barrel assembly composed 

of mainly β-sheet secondary structure. It is arranged in two distinct regions: a 

predominantly β-sheet outer-barrel (six β-strands and two α-helices) and a four-

stranded β-sheet forming inner barrel and internal gate (Fig. 2B,C) [49, 50].  In the V. 

cholerae EpsD secretin there is also an additional feature; an external gated cap (two 

β-sheets and two α-helices) that extends into the extracellular space (Fig. 2B). 

However, many other T2SS secretins, e.g. E. coli K12 GspD, D. dadantii OutD, L. 

pneumophila LspD and P. aeruginosa XcpQ, do not possess such an external gated 

cap and instead their exit channel is in a constitutively open conformation (Fig. 2B) 

[49]. The functional significance of this external gate for species-specific type II 

secretion is not clear. In the Salmonella T3SS secretin, this region contains just a 

single short helix, presumably functioning as an interface for its needle filament [50].  

Although the overall structure of secretins appear to be tremendously stable [49, 50] 

and in some systems they require extreme conditions to denature [81], the gate 

regions must undergo significant conformational change to allow substrates to exit 

through the pore. Three gate regions have been observed in the T2SS GspD 

structures, the N3 constriction site, the internal gate and the external gate discussed 

above [43, 49]. The flexible N3 constriction site (unstructured loop between α7-β13) 

corresponds to the N3 variable loop in T3SS secretins and was not observed in the 

structure [49, 50]; its length varies significantly in both T2SS and T3SS secretins. The 

intervening loop of the internal gate β-strands, β16-β17 [49], is also flexible and was 

not seen [49], however, in the T3SS secretin structure, the equivalent loops of the 
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internal gate hairpin pack against one another and could therefore be modeled [50]. 

The cholera toxin is the archetypal substrate of the V. cholerae T2SS and its 

orientation within the closed secretin vestibule has been determined by cryo-EM [43]. 

In this conformation, the cholera toxin is too large to pass through these gates, but the 

growing pseudopilus may simply push the gates open, which have glycine pivots, 

during active transport of its substrates [49, 50]. 

3.1.3 Biogenesis of GspD 

The best-characterized intrinsically disordered region of GspD is its C-terminal 60 

residues termed; the S-domain. Evidence from NMR spectroscopy reveals that the C-

terminal region of the secretin protomer (incipient α14) is disordered before binding 

to the pilotin (Fig. 2A) [26, 68, 82].  However, upon binding of D. dadantii OutD to 

its OutS pilotin, this region adopts an α-helical conformation and forms a high affinity 

complex [68, 82]. As will be discussed below, the formation of the secretin 

oligomeric pore also orders this region of the secretin, yet to a different extent in the 

secretins from V. cholerae and E. coli K12 (Yan, Yin et al. 2017). 

During T2SS biogenesis pilotins bind their cognate secretin S-domain as the secretin 

emerges from the Sec translocon in the inner-membrane and they are transported to 

the inner-leaflet of the outer-membrane probably via the Lol system [83]. The absence 

of a lipidated pilotin results in the degradation and mis-location of the assembled 

secretin to the inner-membrane, which suggests that the pilotin has a major role in 

transport and targeting of the secretin to the outer-membrane [25, 27, 62]. 

In the V. cholerae EpsD cryo-EM structure, the S-domain reaches across two adjacent 

protomers and interacts with them via two helices (α13/α14) separated by a linker 

[49]. This provides significant stability to the final quaternary structure but 

importantly, the location of the α14-helix is such that it could also still bind the 

pilotin in its folded state [49]. In the E. coli GspD structure, the S-domain provides a 

similar function in stabilizing the mature structure [49]. However, the equivalent α14-

region has less defined secondary structure and it is not as apparent how it can interact 

with its pilotin without some rearrangement in the complex. The E. coli and V. 

cholerae pilotins belong to two structurally dissimilar groups [29, 84] suggesting that 

the mode of binding to their cognate secretins could vary. Nonetheless, this disorder 



	

	
12 

to order transition appears to be important for regulating secretin oligomerization in 

addition to transport. It is also possible that the ordering of unstructured regions is a 

similarly important step in the assembly of other components of the T2SS, such as 

assembly of the inner-membrane platform. 

3.2 Substrate recognition and entry 

3.2.1 Overall structure of GspC  

GspC proteins from different bacteria range in mass from approximately 20 to 35 

kDa. They are inserted into the inner membrane through an N-terminal 

transmembrane (TM) helix, which is followed by an intervening flexible linker 

(TMHR) and a structured homology region (HR) (Fig. 3A). The sequence of HR 

domains, a 7-stranded β sandwich fold [69, 85], is relatively well conserved across 

bacterial species, whereas the TMHR shares very little sequence homology. Intrinsic 

disorder and secondary structure predictions [76, 77] suggest that the TMHR linker is 

not fully unstructured though and contains a single α-helix. Moreover, this has been 

confirmed by NMR, at least for the D. dadantii GspC protein OutC [85] (Fig. 3B).  

The C-terminal regions of GspC proteins, however, can vary between different 

T2SSs. For example, Vibrio- and Dickeya-like T2SSs possess a PDZ domain at their 

extreme C-terminus (Fig. 3C) [86], while in P. aeruginosa XcpP, this region 

comprises a coiled-coil domain [87] and in L. pneumophila LspC there is no 

additional sequence. The C-terminal domains of the D. dadantii Out and P. 

aeruginosa Xcp GspC proteins have both been shown to mediate homomeric 

interactions but whilst these domains are superfluous for correct biogenesis of the Out 

system (an outC PDZ-domain deletion mutant affects secretion specificity but does 

not totally compromise function), they are essential for correct functioning of Xcp 

[65, 87]. 

3.2.2 Substrate recognition 

There is significant evidence from in vivo experiments that the OutC PDZ domain is 

involved in recruiting pectate lyase type cargo from the D. dadantii periplasm [60, 

64]. However, for secretion of some other exoproteins of the Out system, the PDZ 
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domain is dispensable [64]. PDZ domains are relatively promiscuous protein-protein 

interaction modules and commonly recognize short peptide ligands [88]. The crystal 

structure of the V. cholerae EpsC PDZ domain contains 4 α-helices and 6 β-strands 

and the putative binding site between the β1 strand and α1 helix accommodates the α4 

helix from an adjacent molecule in the lattice (Fig. 3C) [86]. This is noteworthy 

because interactions between the OutC PDZ domain and its cargo are mediated 

through a conserved partially-helical/loop region within the substrate [56, 60]. 

However, this could also represent a mechanism for oligomerization or a dynamic 

combination of the two. 

In P. aeruginosa GspC, XcpP, the TMHR linker has been assumed to be involved in 

the capture of its cargo (Fig. 3A) [65] yet the entire XcpP periplasmic region was 

used to demonstrate such interactions in vitro [63]. In D. dadantii, both HR and PDZ 

domains of OutC have been shown to interact with the secreted substrates [60], 

suggesting that substrate recruitment should involve multiple contacts with GspC.   

Interactions between substrates and GspD N-domains have also been observed in 

several T2SSs but it is unclear whether these may represent contacts made within the 

vestibule after substrate entry or actual periplasmic recruitment [42, 60, 62, 63]. It has 

been shown that OutD does play a role in selecting D. dadantii substrates for 

secretion [60, 62, 64] and this has also been confirmed in P. aeruginosa [63] and V. 

cholerae [42]. Furthermore, direct interaction was observed between the substrate and 

the pseudopilus tip [63] but this would correspond to the final step of the secretion 

process prior to substrate release from the cells. Recently, structural and 

computational approaches employed with K. oxytoca pullulanase PulA revealed the 

significance of inner membrane association of T2SS substrates, and showed that 

structurally dynamic regions and subdomains are important for T2SS-mediated 

protein transport [61]. Therefore, it is unclear whether there is a universal core 

mechanism for substrate capture (e.g. the TMHR linker) that can be augmented with 

additional recognition processes (e.g. PDZ, GspD N-domains) or whether there are 

multiple mechanisms that have evolved for different T2SSs and for the selection of 

different types of cargo. 

3.2.3 Substrate entry into the T2SS vestibule 
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Another major function of GspC is bridging the inner membrane platform and the 

secretin through interactions within its HR domain and the periplasmic N-domain(s) 

of GspD. However, it is expected that many substrates will be too large to enter the 

interior of the T2SS without disruption of this hetero-dimer and so GspC or GspC 

together with GspD can be considered as the gatekeepers for entry into the vestibule. 

Although we do not know exactly how substrate recognition is coupled to changes 

within the system, several different dimer orientations of GspC and GspD have been 

suggested from structural studies and/or trapped with in vivo cross-linking [39, 68, 72, 

85, 86]. 

In a crystal structure of the E. coli GspD-N01/GspC-HR complex, the dimer interface 

is a β-sheet augmentation created by the β1 strands of both components (Fig. 3D) 

[39]. However, these domain orientations are not compatible with the full length 15-

fold symmetry GspD structure [49], but are compatible with the N0 domain 12-fold 

structure [71]. On the other hand, solution structural studies with the isolated D. 

dadantii OutD-N0 and OutC-HR domains show an alternative arrangement, where the 

β1 strand of OutC-HR augments the β3 strand of OutD-N0 (Fig. 3E) [85]. In the E. 

coli GspD-N01/GspC-HR structure [39], the GspD β3 strand forms the interface with 

the adjacent N1 domain, although in the dodecameric N0 structure [71] the GspD β3 

strand forms the interface with the β2 strand of the adjacent N0 domain. Therefore, 

one of these models may embody an “open” state while the other a “closed” 

arrangement of the secretion system, made available through disruption of the GspD-

N0/N1 or N0/N0 interface. 

In vivo cross-linking studies in D. dadantii and in vitro binding assays also suggest 

that the β7 strand of OutC-HR may form additional interfaces with the β2 strand of 

OutD-N0 and the β10 strand of OutD-N2 [68, 89]. This work also indicates that there 

could be local rearrangements within the HR structure caused by secreted substrates 

and the inner membrane components GspE, L and M to accommodate these 

displacements, although there is currently no structural data to corroborate these 

findings. Finally an interaction has also been proposed between the OutC-TMHR 

linker and OutD-N0 but the implications of this are not understood [89]. In all it is 

clear that complexes formed between GspC and GspD are transient and highly 
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dynamic and they must be related to selection and passage of cargo into the interior of 

the secretion device.  

 

3.3 Conformational signaling through the inner-membrane platform 

In addition to substrate recognition “opening” the T2SS to allow entry, it must also 

stimulate a signal cascade that initiates the active transport of the cargo from the cell; 

this is the role of the inner membrane platform. Along with GspC, GspL and GspM 

form integral components of this sub-complex, which are thought to encircle a 

membrane embedded GspF [90]. Fluorescent microscopy studies suggested that 

during biogenesis of the T2SS, the secretin is first inserted into the outer membrane 

and then, components of the inner membrane platform are co-assembled using GspD 

as a template [91-93]. The transmembrane helix of OutC has been shown to self-

associate in D. dadantii and it has been suggested that this drives the formation of the 

platform complex [94]. The transmembrane helix of V. cholerae EpsM has also been 

shown to homo-dimerize in vivo [95] and interact with the equivalent region of EpsL 

in a species-specific manner [78]. More comprehensive analysis showed that the 

transmembrane regions of OutC, OutL and OutM form together a dynamic network in 

the inner-membrane and so it seems likely that inter-TM helix interactions are not 

maintained throughout the secretion process but are later displaced by other 

components [96]. 

GspL and GspM have a similar architecture: a transmembrane helix followed by a C-

terminal periplasmic domain; however, GspL is bitopic and contains an additional N-

terminal cytoplasmic region.  The periplasmic domain of both GspL and GspM adopts 

a ferredoxin-like fold, which may indicate a common evolutionary origin [97, 98]. 

They exist as homo-dimers in solution and these states have been trapped in the 

crystal lattices of V. parahaemolyticus EpsL and V. cholerae EpsM [97, 98] (Fig. 4A), 

where they are formed through interactions between the cβA strand or the β3 strand 

and α2 helix, respectively. Furthermore, in vivo cross-linking studies in the D. 

dadantii Out system has detected both homo- and hetero-dimerization of these 

proteins and here the cβC and cα2 helix of OutL and again the β3 strand and α2 helix 

of OutM are implicated in mediating both dimerization states [96] (Fig. 4A). These 
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dynamic in vivo homo- and heterodimers of GspL and GspM are formed via a process 

called partner switching and imply that there are large rotations of both core 

periplasmic interfaces but also in the cognate TM domains [96]. This mechanism was 

proposed to signal between the cytoplasmic and periplasmic portions of the T2SS 

machinery. Recent structure-based mutagenesis and cross-linking analysis in the 

related T4PS has provided a similar picture [99]. PilN and PilO (equivalent to 

periplasmic GspL and M) form both homo- and heterodimers in vivo via equivalent 

interfaces and their dynamic rearrangement is necessary for T4PS function [99]. In 

another study of the V. cholerae Eps system, it was reported that the β1 strand of 

EpsM could be important for homo-dimerization, while the α1 helix helped to 

stabilize the EpsL/EpsM complex [100]. Therefore, several potential GspL/GspM 

interfaces have been identified in different studies, yet it is unclear which are 

important in the context of the assembled secretin system. 

Displacement of the periplasmic domain of GspM has been shown to propagate 

changes in the orientation and/or conformation of the cognate transmembrane region 

[96]. Since the TM helices of GspL, M and C interact, this therefore represents a 

potential mechanism for signalling between the periplasmic and cytoplasmic portions 

of the T2SS. The cytoplasmic region of GspL is ~25 kDa, composed of three domains 

[101] and has structural homology with actin like ATPases (Fig. 4B) but ATPase 

activity has not been detected. It forms a ring on the cytosolic face of the inner 

membrane and upon activation of the T2SS it is anticipated that the GspL intra-

domain and/or inter-GspL orientations are altered, which allows recruitment of the 

GspE ATPase [102, 103].  

3.4 Recruitment of the GspE motor  

Pseudopilin assembly by the inner-membrane complex requires proton motive force, 

and energy from the hydrolysis of ATP by the ATPase, GspE [104]. This hexameric 

AAA+ ATPase motor is structurally related to the assembly and disassembly ATPases 

of the T4PS, PilB and PilT [105, 106]. ATP hydrolysis requires contact between the 

N- and C-terminal domains of GspE with large displacements occurring in the ATP 

and ADP bound forms of these motor domains [107]. GspE has an extended N-

terminal domain compared to other AAA+ ATPases which forms a stable complex 

with the cytoplasmic domain of GspL and the first cytoplasmic domain of GspF, 
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anchoring the ATPase to the rest of the inner-membrane platform (Fig. 4B) [90, 102, 

103, 108]. It has been shown that activation of the ATPase GspE in V. cholerae 

necessitates an interaction between the GspL segment adjacent to the TM region and 

membrane lipids [109]. This is consistent with EpsL displacement up onto the inner 

membrane to activate the ATPase. Therefore, there is the possibility that coordinated 

displacements of the periplasmic and TM domains of GspC, GspL and GspM drive 

these dynamics resulting in ATPase activation.  

It has to be noted that GspE is a reluctant hexamer, preferring to crystallize in 

different oligomeric states [51, 110]. When fused to a hexameric protein, Hcp1, a 

quasi-C6 GspE hexamer can be produced showing increased ATPase activity [51]. 

The oligomeric structures resolved in this study show considerable inter-domain 

flexibility within the GspE subunit. Rotation could also be involved in the pilus 

assembly mechanism, by analogy with the bacterial flagella rotation [111], although 

in the T2SS the rotating element is probably the assembly machinery rather than the 

pilus. If GspL acts as an anchor for the ATPase in the inner-membrane then GspF 

would be a candidate for the rotating component. Moreover, cross linking 

experiments in V. cholerae suggest that GspL may act as a scaffold connecting GspE 

with the pseudopilus [112]. 

GspF is an integral membrane protein with three transmembrane helices, short 

connecting loops on the periplasmic side of the inner membrane and two helical 

bundle cytoplasmic domains. In addition, its N-terminal 75 residues are predicted to 

be significantly disordered, although the relevance of this is not clear (Fig. 4C) [76, 

77]. The first and N-terminal cytoplasmic domain crystallizes and forms dimers, but 

the second cytoplasmic domain which follows the second transmembrane helix has 

resisted crystallization despite being of similar architecture according to sequence 

identity [113]. The first cytoplasmic domain of GspF interacts with GspL and GspE, 

and the full-length GspF binds pseudopilin subunits in two-hybrid assays suggesting it 

plays a central role in pilus assembly [90, 114]. The oligomeric state of GspF in the 

context of the assembled secretion machine is uncertain; it is probably a dimer and 

possibly a tetramer. Based on the EM tomography model of the M. xanthus T4PS 

[47], GspF undoubtedly forms the central part of the inner membrane assembly 
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platform. However, whether it does rotate or whether it simply provides a platform for 

pseudopilus assembly has yet to be elucidated. 

3.5 The final push 

The T2SS pilus is built up from a major component (GspG) and four minor 

components (GspH to GspK) [66]. These pilin subunits share a positively charged N-

terminal cytoplasmic tail within their signal peptide, a conserved inner membrane 

embedded α-helix and a unique C-terminal periplasmic globular domain (Fig. 4D). 

Upon cleavage of the charged tail at a conserved glycine residue and then methylation 

of the new N-terminus by a dedicated peptidase (GspO), these pilin domains are able 

to enter the inner membrane platform and polymerize via their hydrophobic α-helical 

stems [115, 116]. This results in a pilus forming that extends into the periplasm with a 

core composed of helically arranged α-helices, decorated by solvent exposed globular 

domains [115] (Fig. 4E). During the biogenesis of the T2SS it is thought that the 

minor pilin subunits form first within the inner membrane platform [117, 118] and 

initiation of pilus assembly requires minor pilins GspH-I-J-K [119]. Upon activation, 

GspG is then recruited and its incorporation into the pilus allows the fiber to extend 

[120]. Assembly of the pilus has been proposed to occur in a rotation-driven 

mechanism and involve the ATPase GspE together with the inner membrane rotor, 

GspF [114, 119]. This is an attractive idea allowing the ATPase to control the 

assembly process. It might involve rotation, or some more subtle level of molecular 

control; but again this remains to be elucidated in detail. 

In the P. aeruginosa Xcp system, the substrate LasB has been shown to interact with 

GspH, GspI and GspK but not GspG or GspJ [63]. Notably, LasB bound with a higher 

affinity to GspH-I-J-K complex than to each of them alone. The GspI-J-K complex 

adopts an architecture compatible with localisation at the pilus tip and possesses a 

conserved area that might interact with secreted substrates [117]. It therefore seems 

likely that upon entry of substrates into the T2SS vestibule they may orientate 

themselves on the pilus tip, which could then activate pilus elongation. The T2SS 

pilus is usually referred to as a pseudopilus because although it shares high homology 

with the T4PS, it is not extended on the bacterial surface under physiological 

conditions. Nonetheless, through overexpression of GspG it can grow substantially 
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longer and be observed protruding from the cell [121, 122]. As well as minor subunits 

taking part in substrate recognition it is thought that GspK may modulate the extent of 

the fiber growth [123], while GspI and GspJ initiate and therefore control assembly of 

the pilus [120].  However, as the T2SS seemingly lacks the ability to retract its pilus 

after substrate translocation, the mechanism of pilus disassembly remains to be 

established. 

4. Conclusion and perspective 

Since the first structures approximately fifteen years ago, structural biology has gone 

a long way in aiding our understanding of type II dependent secretion in Gram-

negative bacteria. The majority of structures have been determined as sub-domains 

using X-ray crystallography and it is likely that we are now approaching the limit of 

what this technique can offer here. On the other hand, recent near-atomic resolution 

structures of the T2SS and T3SS secretins highlight the important role that cryo-EM 

will play in the coming years [49, 50]. The secretin is a very stable complex but we 

also anticipate cryo-EM structures of the more fragile sub-complexes of the secretion 

system to emerge over the next few years. Cryo-ET can also be applied in vivo under 

native conditions and as it has now broken the 10 Å resolution barrier [124]. Recently, 

high-resolution cryo-ET has allowed the in situ visualization of the assembled T4PS 

and T3SS nanomachines in their native state and has shown their functional 

conformational dynamics [47, 125]. Again, this technique will play a significant role 

in determining unambiguous snapshots of intact type II systems. 

Solution state nuclear magnetic resonance (NMR) spectroscopy is also now widely 

used to investigate large complexes and may be particularly useful for probing the 

inherent dynamics within this system including disorder to order transitions 

encountered during substrate secretion.  Furthermore, in vivo solid state NMR has 

been used to study the type IV secretion system [126] and this work indicates that in-

cell analysis of T2SS function and dynamics may also be possible. The T2SS has 

received renewed interest in recent years and with the implementation of cutting-edge 

complementary high-resolution techniques, we can be sure that further exciting 

discoveries in this field are on the horizon. 
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Figure Legends  

Figure 1.  Model of T2SS architecture and secretion. (A) Genetic organization of 

T2SSs from V. cholerae, E. coli, D. dadantii, P. aeruginosa and L. pneumophila. 

Genes are labelled as single letters based on the Gsp nomenclature except for P. 

aeruginosa Xcp (XcpP-XcpZ/GspC-GspM; XcpA/GspO). Genes encoding GspC 

proteins are coloured brown, the secretins are coloured blue, the inner membrane 

platform proteins are orange, the pseudo-pilins are coloured green, pre-pilin 

peptidases are yellow and accessory components are grey. Pilotins are coloured 

magenta. Operons are separated by double lines. (B) Structural model of the V. 

cholerae Eps T2SS in its resting state. All T2SS components are represented as 

cartoons and intact protomers were modelled starting from either V. cholerae 

structures (EpsD, pdb 5wq8; EpsE, pdb 2bh1, 4ksr; EpsF, pdb 2vma; EpsG, pdb 3fu1; 

EpsH, pdb 2qv8; EpsL, pdb 1yf5; EpsM, pdb 1uv7) [49, 51, 97, 103, 113, 127, 128] 

or homologous structures (E. coli GspC/GspD, pdb 3oss; V. parahaemolyticus EpsL, 

pdb 2w7v;  E. coli GspI/GspJ/GspK, pdb 3ci0; M. xanthus T4PS, pdb 3jc9) [47, 69, 

98, 117] using the Phyre2 server [38]. Structures were assembled using the EM model 

of the type IVa pilus system as a guide [47]. The cholera toxin (CT) is also shown as a 

grey surface and to the same scale as the T2SS model [129]. (C) Current model of 

T2SS translocation pathway. T2SS proteins are labelled and coloured as in (A). 

Domains of GspC and GspD are annotated. Numbered pentagons represent the path of 

a substrate during its export.  

Figure 2. Structure and function of GspD. (A) Intrinsic disorder plots of V. 

cholerae EpsD and D. dadantii OutD with domain boundaries annotated above [76]. 

Coloured stars represent significantly disordered regions: black, N0/N1 loop; cyan, N2 

α5-β10 loop; N3 α7-β13 loop; blue, external cap/gate. Numbering of GspD secondary 

structure throughout this review is based on the full sequence and begins from the N0 

domain. (B) Cryo-EM structures of the V. cholerae and E. coli full length GspD 

proteins showing the external and internal features. Coloured stars showing 

disordered regions are as in (A) [49]. (C) Representative T2SS N-domain and S. 

typhimurium InvG T3SS N0N1 domain structures [49, 71-73, 79].	

Figure 3. Substrate recognition by the T2SS. (A) Intrinsic disorder plots of D. 

dadantii OutC, P. aeruginosa XcpP and L. pneumophila LspC with domain 
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boundaries annotated above [76]. Black star represents the helical region in the 

TMHR. (B) NMR structure of the D. dadantii OutC HR domain including its TMHR 

[85]. (C) Crystal structure of the V. cholerae EpsC PDZ domain [86]. Regions 

involved in substrate recognition are colored lighter. (D) Crystal structure of the E. 

coli GspC HR/ GspD N01 complex [39]. (E) NMR derived model of the D. dadantii 

OutC HR/ OutD N0 complex [85].  

Figure 4. T2SS inner membrane platform and pseudopilus assembly. (A) Crystal 

structures of V. parahaemolyticus EpsL [98] and V. cholerae EpsM [97] periplasmic 

domains highlighting homo-dimer formation within these crystal lattices. In one chain 

of each, helices are red and sheets are blue, whilst the other chain is coloured yellow 

(EpsL) or brown (EpsM). Secondary structure elements in D. dadantii OutL and 

OutM that have been shown to mediate both homo- and hetero-dimer formation in 

vivo are coloured cyan and green, respectively. Secondary structure elements in V. 

cholerae EpsM that have been highlighted to mediate either homo- or hetero-

dimerization in vivo are coloured purple and grey, respectively. (B) Crystal structure 

of hexameric V. cholerae EpsE [51]. (C) Intrinsic disorder plots of E. coli GspF with 

domain boundaries annotated above [76]. Black stars represent two regions with 

significant disorder within the initial 75 residues. (D) Crystal structure of the V. 

cholerae EpsG major domain [128]. The signal peptide and membrane embedded 

helix of this domain are absent. (E) Cryo-EM structure of the N. meningitides type IV 

pilus highlighting helical bundle formation [130]. 
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