Numbers required for 90\% power

Deaths from x
 $0 \quad 200,000 \quad 400,000 \quad 600,000 \quad 800,000 \quad 1,000,000 \quad 1,200,000$

Intervention X reduces the risk of dying from A by 30% (HR=0.70), but increases the risk of dying from by by 100% ($\mathrm{HR}=2.0$). The risk of A is much higher in population 2 than in population 1 (and vice versa for B). The impact in terms of all-cause mortality in quite different in the two populations.

| | Polulation 1 | | | Polulation 2 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Control | Treated | Differe
 nce | Control | Treated | Differe
 nce |
| Disorder A | 400 | 280 | -120 | 2000 | 1400 | -600 |
| Disorder B | 125 | 250 | +125 | 50 | 100 | +50 |
| Total | $\mathbf{5 2 5}$ | $\mathbf{5 3 0}$ | $\mathbf{+ 5}$ | $\mathbf{2 0 5 0}$ | $\mathbf{1 5 0 0}$ | $\mathbf{- 5 5 0}$ |

Intervention X reduces the risk of dying from A by 30% ($\mathrm{HR}=0.70$), but increases the risk of dying from by by 100% (HR=2.0). The risk of A is much higher in population 2 than in population 1 (and vice versa for B). The impact in terms of all-cause mortality in quite different in the two populations.

Choleserol Treatment Trialists' (CTT) Collaborators, Lancet 2012.

