
Higher-Order Linearisability

Andrzej S. Murawski1 and Nikos Tzevelekos2

1 University of Warwick, Coventry, UK
2 Queen Mary University of London, London, UK

Abstract

Linearisability is a central notion for verifying concurrent libraries: a library is proven correct if its
operational history can be rearranged into a sequential one that satisfies a given specification. Until now,
linearisability has been examined for libraries in which method arguments and method results were of
ground type. In this paper we extend linearisability to the general higher-order setting, where methods of
arbitrary type can be passed as arguments and returned as values, and establish its soundness.

1998 ACM Subject Classification F.1.2 Models of Computation

Keywords and phrases Linearisability, Concurrency, Higher-Order Computation.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.30

1. Introduction

Software libraries provide implementations of routines, often of specialised nature, to facilitate code
reuse and modularity. To support the latter, they should follow specifications that describe the range of
acceptable behaviours for correct and safe deployment. Adherence to specifications can be formalised
using the classic notion of contextual approximation (refinement), which scrutinises the behaviour of
code in any possible context. Unfortunately, the quantification makes it difficult to prove contextual
approximations directly, which motivates research into sound techniques for establishing it.

In the concurrent setting, a notion that has been particularly influential is that of linearisability [12].
Linearisability requires that, for each history generated by a library, one should be able to find another
history from the specification (a linearisation), which matches the former up to certain rearrangements
of events. In the original formulation by Herlihy and Wing [12], these permutations were not allowed
to disturb the order between library returns and client calls. Moreover, linearisations were required to
be sequential traces, that is, sequences of method calls immediately followed by their returns.

In this paper we shall work with open higher-order libraries, which provide implementations of
public methods and may themselves depend on abstract ones, to be supplied by parameter libraries.
The classic notion of linearisability only applies to closed libraries (without abstract methods).
Additionally, both method arguments and results had to be of ground type. The closedness limitation
was recently lifted in [13, 3], which distinguished between public (or implemented) and abstract
methods (callable). Although [13] did not in principle exclude higher-order functions, those works
focussed on linearisability for the case where the allowable methods were restricted to first-order
functions (int → int). Herein, we give a systematic exposition of linearisability for general higher-
order concurrent libraries, where methods can be of arbitrary higher-order types. In doing so, we also
propose a corresponding notion of sequential history for higher-order library interactions.

We examine libraries L that can interact with their environments by means of public and abstract
methods: a library L with abstract methods of types Θ = θ1,⋯, θn and public methods Θ′ = θ′1,⋯, θ′n′
is written as L ∶ Θ→ Θ′. We shall work with arbitrary higher-order types generated from the ground
types unit and int. Types in Θ,Θ′ must always be function types, i.e. their order is at least 1.

A library L may be used in computations by placing it in a context that will keep on calling its
public methods (via a client K) as well as providing implementations for the abstract ones (via a
parameter library L′). The setting is depicted in Figure 1. Note that, as the library L interacts with K

© Andrzej S. Murawski and Nikos Tzevelekos;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Higher-Order Linearisability

Θ

Θ''

L'

Θ'Θ

L

Θ'

Θ''

K
PL

OL

PK
OK

M1

M N

Figure 1 A library L ∶ Θ → Θ′ in en-
vironment comprising a parameter library
L′ ∶ ∅ → Θ,Θ′′ and a client K of the
form Θ′,Θ′′ ⊢M1∥⋯∥MN .

and L′, they exchange functions between each other. Consequently, in addition to K making calls to
public methods of L and L making calls to its abstract methods, K and L′ may also issue calls to
functions that were passed to them as arguments during higher-order interactions. Analogously, L
may call functions that were communicated to it via library calls.

Our framework is operational in flavour and draws upon concurrent [15, 7] and operational game
semantics [14, 16, 8]. We shall model library use as a game between two participants: Player (P),
corresponding to the library L, and Opponent (O), representing the environment (L′,K) in which
the library was deployed. Each call will be of the form callm(v) with the corresponding return of
the shape retm(v), where v is a value. As we work in a higher-order framework, v may contain
functions, which can participate in subsequent calls and returns. Histories will be sequences of moves,
which are calls and returns paired with thread identifiers. A history is sequential just if every move
produced by O is immediately followed by a move by P in the same thread. In other words, the
library immediately responds to each call or return delivered by the environment. In contrast to classic
linearisability, the move by O and its response by P need not be a call/return pair, as the higher-order
setting provides more possibilities (in particular, the P response may well be a call). Accordingly,
linearisable higher-order histories can be seen as sequences of atomic segments (linearisation points),
starting at environment moves and ending with corresponding library moves.

In the spirit of [3], we are going to consider two scenarios: one in which K and L′ share an
explicit communication channel (the general case) as well as a situation in which they can only
communicate through the library (the encapsulated case). Further, we also handle the case in which
extra closure assumptions can be made about the parameter library (the relational case), which can be
useful for dealing with a variety of assumptions on the use of parameter libraries that may arise in
practice. In each case, we present a candidate definition of linearisability and illustrate it with tailored
examples. The suitability of each kind of linearisability is demonstrated by showing that it implies
the relevant form of contextual approximation (refinement). We also examine compositionality of
the proposed concepts. One of our examples will discuss the implementation of the flat-combining
approach [11, 3], adapted to higher-order types.

Example: a higher-order multiset library

Higher-order libraries are common in languages like ML, Java, Python, etc. As an illustrative example,
we consider a library written in ML-like syntax which implements a multiset data structure with
integer elements. For simplicity, we assume that its signature contains just two methods:

count ∶ int→ int, update ∶ (int × (int→ int))→ int .

The former method returns for each integer its multiplicity in the multiset – this is 0 if the integer
is not a member of the multiset. On the other hand, update takes as an argument an integer i and a
function f , and updates the multiplicity of i in the multiset to ∣f(i)∣ (we use the absolute value of f(i)
in order to meet the multiset requirement that element multiplicities not be negative; alternatively,
we could have used exceptions to quarantine such client method behaviour). Methods with the same
functionalities can be found e.g. in the multiset module of the ocaml-containers library [1]. While our
example is simple, the same kind of analysis as below can be applied to more intricate examples such
as map methods for integer-valued arrays, maps or multisets.

A. S. Murawski and N. Tzevelekos 30:3

1 public count, update;
2 Lock lock;
3 F := λx.0;
4

5 count = λi. (!F)i
6 update = λ(i, g). aux(i ,g,count i)
7

8 aux = λ(i, g, j).
9 let y = | g j | in

10 lock . acquire ();
11 let f = !F in
12 if (j == (f i)) then {
13 F := λx. if (x == i) then y
14 else (f x) ;
15 lock . release ();
16 y }
17 else {
18 lock . release ();
19 aux(i ,g , f i) }

call.cnt(i) ret.cnt(j)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

ret.cnt(j)

call.cnt(i)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

ret.cnt(j')call.cnt(i)

call.cnt(i) ret.cnt(j')

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

(a)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(k')

call.upd(i,m') call.m'(j) ret.m'(k) ret.upd(k)

call.m(k) ret.m(k')

call.upd(i,m) call.m(j) ret.m(j') ret.upd(k')

call.upd(i,m') call.m'(j) ret.m'(k) ret.upd(k)

call.m(k) ret.m(k')

(b)

Figure 2 Multiset library Lmset with public methods count ∶ int→ int and update ∶ int × (int→ int)→ int.

▸ Example 1 (Multiset). Consider the concurrent multiset library Lmset in Figure 2. It uses a private
reference for storing the multiset’s characteristic function and reads optimistically, without locking
(cf. [10, 19]). The update method in particular reads the current multiplicity of the given element i
(via count) and computes its new multiplicity without acquiring a lock on the characteristic function.
It only acquires a lock when it is ready to write the new value (line 10) in the hope that the value at i
will still be the same and the update can proceed; if not, another attempt to update the value is made.

Let us look at some example executions of the library via their resulting histories, i.e. sequences
of method calls and returns between the library and a client. In the topmost block (a) of history
diagrams of Figure 2, we see three such executions. Note that we do not record internal calls to count
or aux, and use m and variants for method identifiers (names). We use the abbreviation cnt for count,
and upd for update, and initially ignore the circled events for cnt. Each execution involves 2 threads.

In the first execution, the client calls update(i,m) in the second thread, and subsequently calls
count(i) in the first thread. The code for update stipulates that first count(i) be called internally,
returning some multiplicity j for i, and then m(j) should be called. As soon m returns a value j′,
update sets the multiplicity of i to j′ and itself returns j′. The last event in this history is a return
of count in the first thread with the old value j. According to our proposed definition, this history
will be linearisable to another, intuitively correct one: the last return can be moved to the circled
position. At this point the notion of linearisability is used informally, but it will be made precise in
the following sections. In the second execution, the last return of count in the first thread returns the
updated value. In this case, we will be able to move call cnt(i) to the circled position to obtain a
linearisation, which is obviously correct. Finally, in the third execution we have a history that will
turn out non-linearisable to an intuitively correct history. Indeed, we should not be able to return the
updated value in the first thread before m has returned it in the second one.

The two histories in block (b) in the same figure demonstrate the mechanism for updates. The
first history will be linearisable to the second one. In the second history we see that both threads
try to update the same element i, but the first one succeeds in it first and returns k on update. Then,
the second thread realises that the value of i has been updated to k and calls m again, this time with
argument k. An important feature of the second history is that it is sequential: each client event (call
or return) is immediately followed by a library event.

CONCUR 2017

30:4 Higher-Order Linearisability

Observe that the rearrangements discussed above involve either advancing a library action or postpon-
ing an environment action and that each action could be a call or a return. Definition 6 will capture
this formally. For now, we note that this generalises the classic setting [12], where library method
returns could be advanced and environment method calls deferred.

2. Higher-order linearisability

We examine higher-order libraries interacting with their context by means of abstract and public
methods. In particular, we shall rely on types given by the grammar on the left below. We let Meths
stand for the set of method names and assume Meths = ⊎θ,θ′ Methsθ,θ′ , where each set Methsθ,θ′
contains names for methods of type θ → θ′. Methods are ranged over by m (and variants). We let v
range over computational values, which include a unit value, integers, methods and pairs of values.

θ ∶∶= unit ∣ int ∣ θ × θ ∣ θ → θ v ∶∶= () ∣ i ∣m ∣ (v, v)

The framework of a higher-order library and its environment is depicted in Figure 1. Given Θ,Θ′ ⊆
Meths, a library L is said to have type Θ→ Θ′ if it defines public methods with names (and types) as
in Θ′, using abstract methods Θ. The environment of L consists of a client K (which invokes public
methods of Θ′), and a parameter library L′ (which provides code for the abstract methods Θ). In
general, K and L′ may interact via a disjoint set of methods Θ′′ ⊆ Meths, to which L has no access.

In the rest of this paper, we shall implicitly assume that we work with a library L operating in
an environment presented in Figure 1. The client K will consist of a fixed number N of concurrent
threads. Next we introduce a notion of history tailored to the setting and define how histories can be
linearised. In Section 3 we present the syntax for libraries and clients, and in Section 4 we define
their semantics in terms of histories and co-histories respectively.

2.1. Higher-order histories

The operational semantics of libraries will be given in terms of histories, which are sequences of
method calls and returns, each decorated with a thread identifier t and a polarity index XY , where
X ∈ {O,P} and Y ∈ {L,K}, as shown below.

(t, callm(v))XY (t, retm(v))XY

We shall refer such decorated calls and returns as moves. Here, m is a method name and v is a value
of a matching type. The index XY specifies which of the three entities (L,L′,K) produces the move,
and towards whom it is addressed.

If XY = PL then the move is issued by L, and is addressed to L′.
If XY = PK then the move is issued by L, and is addressed to K.
If XY = OL then the move is issued by L′, and is addressed to L.
If XY = OK then the move is issued by K, and is addressed to L.

The choice of indices is motivated by the fact that the moves can be seen as defining a 2-player game
between the library (L), which represents the Proponent player in the game (P), and its environment
(L′,K) that represents the Opponent (O). Moves played between L and L′ are moreover decorated
with L, whereas those between L and K have K instead. Note that any potential interaction between
L′ and K is invisible to L and is therefore not accounted for in the game (but we will later see how it
can affect it). We use O to refer to either OK or OL, and P to refer to either PK or PL. Finally, we
let the dual polarity of XY to be X ′Y , where X /=X ′. For example, the dual of PL is OL.

Next we proceed to define histories. Their definition will rely on a more primitive concept of
prehistories, which are sequences of method calls and returns that respect a stack discipline.

▸ Definition 2. Prehistories are sequences generated by one of the grammars:

PreHO ∶∶= ε ∣ callm(v)OY PreHP retm(v′)PY PreHO
PreHP ∶∶= ε ∣ callm(v)PY PreHO retm(v′)OY PreHP

A. S. Murawski and N. Tzevelekos 30:5

where, in each line, the two occurrences of Y ∈ {K,L} and m ∈ Meths must each match. Moreover,
if m ∈ Methsθ,θ′ , the types of v, v′ must match θ, θ′ respectively. We let PreH = PreHO ∪ PreHP .

Thus, prehistories from PreHO start with an O-move, while those in PreHP start with a P -move.
In each case, the polarities inside a prehistory alternate between O and P , and the polarities of calls
and matching returns are always dual (returns dual to calls). For example, a call made by L to L′

(tagged PL) must be matched by a return from L′ to L (tagged OL).
Histories will be interleavings of prehistories tagged with thread identifiers (natural numbers),

subject to a set of well-formedness constrains. In particular, a history h for library L ∶ Θ→ Θ′ will
have to begin with an O-move and satisfy the following conditions, to be formalised in Definition 3.
1. The name of any method called in h must come from Θ or Θ′, or be introduced earlier in h as a

higher-order argument or result (no methods out of thin air). In addition: if the method is from
Θ′, the call must be tagged with OK (i.e. issued by K); if the method is from Θ, the call must
be tagged with PL (i.e. issued by L towards L′); for a call of method m ∉ Θ ∪Θ′ to be valid,
m must be introduced in an earlier move of dual polarity (calls dual to introductions).

2. Any method name appearing inside a call or return argument in h must be fresh, i.e. not used
earlier. This reflects the assumption that methods can be called and returned, but not compared
for identity (introductions always fresh).

Given h ∈ PreH and t ∈ N, we write t × h for h in which each call or return is decorated with t.
We refer to such moves with (t, callm(v))XY or (t, retm(v))XY respectively. If we only want to
stress the X or Y membership, we shall drop Y or X respectively. Moreover, when no confusion
arises, we may sometimes drop a move’s polarity altogether. We say that a move x introduces a name
m ∈ Meths when x ∈ {callm′(v), retm′(v)} for some m′, v such that v contains m.

▸ Definition 3. Given Θ,Θ′, the set of histories over Θ→ Θ′, writtenHΘ,Θ′ , is defined by

HΘ,Θ′ =⋃N>0 ⋃h1,⋯,hN ∈PreHO
(1 × h1) ∣ ⋯ ∣ (N × hN)

where (1 × h1) ∣ ⋯ ∣ (N × hN) is the set of all interleavings of (1 × h1),⋯, (N × hN) satisfying:

1. For any s1(t, callm(v))XY s2 ∈HΘ,Θ′ , either m ∈ Θ′ and XY = OK, or m ∈ Θ and XY = PL,
or there is a move (t′, x)X′Y in s1 such that X ≠X ′ and x introduces m.

2. For any s1(t, x)XY s2 ∈HΘ,Θ′ and any m, if m is introduced by x then m must not occur in s1.

A history h ∈HΘ,Θ′ is called sequential if it is of the form

h = (t1, x1)OY1(t1, x′1)PY ′1 ⋯ (tk, xk)OYk
(tk, x′k)PY ′k

for some ti, xi, x′i, Yi, Y
′
i . We writeHseq

Θ,Θ′ for the set of all sequential histories fromHΘ,Θ′ .

We shall range over HΘ,Θ′ using h, s (and variants). The subscripts Θ,Θ′ will often be omitted.
Given a history h, we shall write h for the sequence of moves obtained from h by dualising all move
polarities inside it. The set of co-histories over Θ→ Θ′ will beHcoΘ,Θ′ = {h ∣ h ∈HΘ,Θ′}.

While in this section histories will be extracted from example libraries informally, in Section 4
we give the formal semantics JLK of libraries. For each L ∶ Θ→ Θ′, we shall have JLK ⊆HΘ,Θ′ .

▸ Remark 4. The notion of history introduced above extends the classic notion from [12] to higher-
order types. It also extends the notion presented in [3]. The intuition behind the definition is that a
history is a sequence of (well-bracketed) method calls and returns, called moves, each tagged with a
thread identifier and a polarity, where polarities track the originators and recipients of moves. Moves
may be calls or returns related to methods given in the library interface (Θ → Θ′), or dynamically
created methods that appear earlier inside the histories – recall that, in a higher-order setting, methods
can be passed around as arguments to calls or be returned as results by other methods. On the other

CONCUR 2017

30:6 Higher-Order Linearisability

hand, a sequential history is one in which the operations performed by the library can be perceived as
atomic, that is, each move produced by O is to be immediately followed by the library’s response,
which is a P move in the same thread.

▸ Example 5 (Multiset spec). We now revisit our first example and provide a specification for it.
Recall the multiset library Lmset from Figure 2. Our verification goal will be to prove linearisability
of Lmset to a specification Amset ⊆Hseq

∅,Θ, where Θ = {count,update}, which we define below. Amset
will certify that Lmset correctly implements some integer multiset I whose elements change over
time according to the moves in h. For a multiset I and natural numbers i, j, we write I(i) for the
multiplicity of i in I , and I[i ↦ j] for I with its multiplicity of i set to j. We shall stipulate that
moves inside histories h ∈ Amset be annotatable with multisets I in such a way that the multiset is
empty at the start of h (i.e. I(i) = 0 for all i) and:

If I is changed between two consecutive moves in h then the second move is a P -move. In other
words, the client cannot directly update the elements of I .
Each call to count on argument i must be immediately followed by a return with value I(i), and
with I remaining unchanged.
Each call to update on (i,m) must be followed by a call to m on I(i), with I unchanged.
Moreover, m must later return with some value j. Assuming at that point the multiset will have
value J, if I(i) = J(i) then the next move is a return of the original update call, with value j;
otherwise, a new call to m on J(i) is produced, and so on.

We formally define the specification next.
LetH○

∅,Θ contain sequences of moves from ∅→ Θ accompanied by a multiset (i.e. the sequences
consist of elements of the form (t, x, I)XY). For each s ∈H○

∅,Θ, we let π1(s) be the history extracted
by projection, i.e. π1(s) ∈ H∅,Θ. For each t, we let s ↾ t be the subsequence of s of elements with
first component t. Writing ⊑pre for the prefix relation, and dropping the Y index from moves (Y is
always K here), we define Amset = {π1(s) ∣ s ∈ A○

mset} where:

A○
mset = { s ∈H○

∅,Θ ∣ π1(s) ∈Hseq
∅,Θ ∧ ∀t. s ↾ t ∈ S ∧ ∀s′(_ , I)P (_ , J)O ⊑pre s. I = J }

and, for each t, the set of t-indexed annotated histories S is given by the following grammar:

S → ε ∣ (t, call cnt(i), I)O (t, ret cnt(I(i)), I)P S

∣ (t, call upd(i,m), I)OMi,j
I,J (t, ret upd(∣j∣), J[i↦ ∣j∣])P S

Mi,j
I,J → (t, callm(I(i)), I)P S (t, retm(j), J)O provided J(i) = I(i)

Mi,j
I,J → (t, callm(I(i)), I)P S (t, retm(j′), J′)OMi,j

J′,J provided J′(i) ≠ I(i)

By definition, all histories in Amset are sequential. The elements of A○
mset carry along the multiset I

that is being represented. The conditions onA○
mset stipulate thatO cannot change the value of I , while

the rest of the conditions above are imposed by the grammar for S . With the notion of linearisability
to be introduced next, we will be able to show that JLmsetK is indeed linearisable to Amset.

2.2. Three notions of linearisability

We present three notions of linearisability. First introduce a general notion that generalises classic
linearisability [12] and parameterised linearisability [3]. We then develop two more specialised
variants: a notion of encapsulated linearisability, following [3], that captures scenarios where the
parameter library and the client cannot directly interact; and a relational notion whereby context
behaviour (client and parameter library) is known to be relationally invariant.

We begin by introducing a class of reorderings on histories. SupposeX,X ′ ∈ {O,P} andX ≠X ′.
We let ◁XX′ ⊆HΘ,Θ′ ×HΘ,Θ′ be the smallest binary relation overHΘ,Θ′ satisfying, for any t /= t′:

s1(t′, x′)Z′(t, x)Z s2 ◁XX′ s1(t, x)Z(t′, x′)Z′s2

A. S. Murawski and N. Tzevelekos 30:7

whenever Z =X or Z ′ =X ′.Intuitively, two histories h1, h2 are related by ◁XX′ if the latter can be
obtained from the former by swapping two adjacent moves from different threads in such a way that,
after the swap, an X-move will occur earlier or an X ′-move will occur later. Note that, because of
X ≠X ′, the relation always applies to adjacent moves of the same polarity. On the other hand, we
cannot have s1(t, x)X(t′, x′)X′s2 ◁XX′ s1(t′, x′)X′(t, x)Xs2.

▸ Definition 6 (General Linearisability). Given h1, h2 ∈HΘ,Θ′ , we say that h1 is linearised by h2,
written h1 ⊑ h2, if h1 ◁∗

PO h2. Given libraries L,L′ ∶ Θ → Θ′ and a set of sequential histories
A ⊆ Hseq

Θ,Θ′ we write L ⊑ A, and say that L can be linearised to A, if for any h ∈ JLK there exists
h′ ∈ A such that h ⊑ h′. Moreover, we write L ⊑ L′ if L ⊑ JL′K ∩Hseq

Θ,Θ′ (i.e. for all h ∈ JLK there is
sequential h′ ∈ JL′K such that h ⊑ h′).

▸ Remark 7. The classic notion of linearisability from [12] states that h linearises to h′ just if the
return/call order of h is preserved in h′ (and h′ is sequential), i.e. if a return move precedes a call
move in h then so is the case in h′. Observing that, in [12], return and call moves coincide with P -
and O-moves respectively, we can see that our higher-order notion of linearisability is a generalisation
of the classic notion.

We next show that a more permissive notion of linearisability applies if the parameter library L′

of Figure 1 is encapsulated, that is, the client K can have no direct access to it (i.e. Θ′′ = ∅). To
capture the more restrictive nature of interaction, we introduce a more constrained notion of a history.
Specifically, in addition to sequentiality in every thread, we shall insist that a move made by the
library in the L or K component must be followed by an O move from the same component.

▸ Definition 8. We call a history h ∈ HΘ,Θ′ encapsulated if, for each thread t, we have that if
h = s1 (t, x)PY s2 (t, x′)OY ′ s3 and moves from t are absent from s2 then Y = Y ′. Moreover, we set
Henc

Θ,Θ′ = {h ∈HΘ,Θ′ ∣ h encapsulated} and JLKenc = JLK ∩Henc
Θ,Θ′ (if L ∶ Θ→ Θ′).

We define the corresponding linearisability notion as follows. First, let ◇ ⊆HΘ,Θ′ ×HΘ,Θ′ be the
smallest binary relation onHΘ,Θ′ such that, for any Y,Y ′ ∈ {K,L} with Y ≠ Y ′ and t ≠ t′:

s1(t,m)Y (t′,m′)Y ′s2 ◇ s1(t′,m′)Y ′(t,m)Y s2

▸ Definition 9 (Encapsulated linearisability). Given h1, h2 ∈Henc
Θ,Θ′ , we say that h1 is enc-linearised

by h2, and write h1 ⊑enc h2, if h1(◁PO ∪ ◇)∗h2 and h2 is sequential. A library L ∶ Θ → Θ′ can
be enc-linearised to A, written L ⊑enc A, if A ⊆ Hseq

Θ,Θ′ ∩H
enc
Θ,Θ′ and for any h ∈ JLKenc there exists

h′ ∈ A such that h ⊑enc h
′. We write L ⊑enc L

′ if L ⊑enc JL′Kenc ∩Hseq
Θ,Θ′ .

▸ Remark 10. Suppose Θ = {m ∶ int → int} and Θ′ = {m′ ∶ int → int}. Histories from HΘ,Θ′

may contain the following actions only: callm′(i)OK, retm(i)OL, callm(i)PL, retm′(i)PK. Then
(◁PO ∪ ◇)∗ preserves the order between callm(i)PL and retm(i)OL as well as that between
retm′(i)PK and callm′(i)OK, i.e. it coincides with Definition 3 of [3].

▸ Example 11 (Parameterised multiset). We revisit the multiset library of Example 1 and extend
it with a public method reset, which performs multiplicity resets to default values using an abstract
method default as the default-value function (again, we use absolute values to avoid negative mul-
tiplicities). The extended library is shown in Figure 3 and written Lmset2 ∶ {default} → Θ′, with
Θ′ = {count, update, reset}. In contrast to the update method of Lmset, reset is not optimistic: it
retrieves the lock upon its call, and only releases it before return. In particular, the method calls
default while it retains the lock.

Observe that, were default able to externally call update, we would reach a deadlock: default
would be keeping the lock while waiting for the return of a method that requires the lock. On the

CONCUR 2017

30:8 Higher-Order Linearisability

1 public count, update, reset;
2 abstract default;
3 Lock lock;
4 F := λx.0;
5 ...

20 reset = λi.
21 lock . acquire ();
22 let y = | default i | in
23 let f = !F in
24 F := λx. if (x == i) then y
25 else (f x);
26 lock . release ();
27 y

1 public run; . . . ;
2 Lock lock;
3 struct {fun , arg , wait , retv } requests [N];
4

5 run = λ (f,x).
6 requests [tid].fun := f ;
7 requests [tid].arg := x;
8 requests [tid].wait := 1;
9 while (requests [tid].wait)

10 if (lock . tryacquire ()) {
11 for (t=0; t<N; t++)
12 if (requests [t]. wait) {
13 requests [t]. retv :=
14 requests [t]. fun (requests [t]. arg);
15 requests [t]. wait := 0;
16 }; lock . release () };
17 requests [tid].retv;

Figure 3 Left: Parameterised multiset library Lmset2 (lines 5-19 as in Fig. 2) with public methods count , reset :
int→ int, update∶ int×(int→ int)→ int; abstract method default ∶ int→ int. Right: Flat combination library Lfc.

other hand, if the library is encapsulated then the latter scenario is not possible. In such a case, Lmset2
linearises to the specification Amset2, defined next. Let Amset2 = {π1(s) ∣ s ∈ A○

mset2} where:

A○
mset2 = { s ∈H○

∅,Θ′ ∣ π1(s) ∈Hseq
∅,Θ′ ∧ ∀t. s ↾ t ∈ S ∧ ∀s′(_ , I)P (_ , J)O ⊑pre s. I = J }

and the set S is now given by the grammar of Example 5 extended with the rule:

S → (t, call reset(i), I)OK (t, call default(i), I)PL (t, ret default(j), I)OL (t, ret reset(∣j∣), I ′)PK S

with I ′ = I[i↦ ∣j∣]. Our framework makes it possible to confirm that Lmset2 enc-linearises to Amset2.

We finally extend general linearisability to cater for situations where the client and the parameter
library adhere to closure constraints expressed by relationsR on histories. Let Θ,Θ′ be sets of abstract
and public methods respectively. The closure relations we consider are closed under permutations of
methods outside Θ∪Θ′: if hRh′ and π is a (type-preserving) permutation on Meths∖ (Θ∪Θ′) then
π(h)Rπ(h′). The requirement represents the fact that, apart from the method names from a library
interface, the other method names are arbitrary and can be freely permuted without any observable
effect. Thus,R should not be distinguishing between such names.

▸ Definition 12 (Relational linearisability). LetR ⊆HΘ,Θ′ ×HΘ,Θ′ be closed under permutations
of names in Meths∖(Θ∪Θ′). Given h1, h2 ∈HΘ,Θ′ , we say that h1 isR-linearised by h2, and write
h1 ⊑R h2, if h1(◁PO ∪R)∗h2 and h2 is sequential. A library L ∶ Θ→ Θ′ can beR-linearised to
A, written L ⊑R A, if A ⊆Hseq

Θ,Θ′ and for any h ∈ JLK there exists h′ ∈ A such that h ⊑R h′. We write
L ⊑R L′ if L ⊑R JL′K ∩Hseq

Θ,Θ′ .

▸ Example 13. We consider a higher-order variant of an example from [3] that motivates relational
linearisability. Flat combining [11] is a synchronisation paradigm that advocates the use of a single
thread holding a global lock to process requests of all other threads. To facilitate this, threads share an
array to which they write the details of their requests and wait either until they acquire a lock or their
request has been processed by another thread. Once a thread acquires a lock, it executes all requests
stored in the array and the outcomes are written to the array for access by the requesting threads.

Let Θ′ = {run ∈ Meths(θ→θ′)×θ,θ′}. The library Lfc ∶ ∅ → Θ′ (Figure 3, right) is built following
the flat combining approach and, on acquisition of the global lock, the winning thread acts as a

A. S. Murawski and N. Tzevelekos 30:9

Libraries L ∶∶= B ∣ abstract m; L ∣ public m; L Clients K ∶∶= M ∥⋯∥M
Blocks B ∶∶= ε ∣m = λx.M ; B ∣ r ∶= λx.M ; B ∣ r ∶= i; B Values v ∶∶= () ∣ i ∣m ∣ ⟨v, v⟩
Terms M ∶∶= () ∣ i ∣ tid ∣ x ∣m ∣M ⊕M ∣ ⟨M,M⟩ ∣ π1M ∣ π2M ∣ if M then M else M

∣ λxθ.M ∣ xM ∣mM ∣ let x =M in M ∣ r ∶=M ∣ !r

Γ ⊢() ∶ unit Γ ⊢ i ∶ int Γ ⊢ tid ∶ int
Γ(x) = θ
Γ ⊢ x ∶ θ

m ∈ Methsθ,θ′
Γ ⊢m ∶ θ → θ′

Γ ⊢M ∶ int Γ ⊢M0,M1 ∶ θ
Γ ⊢ if M then M1 else M0 ∶ θ

Γ ⊢M ∶ θ1 × θ2
Γ ⊢ πiM ∶ θi (i = 1,2)

Γ ⊢Mi ∶ θi (i = 1,2)
Γ ⊢ ⟨M1,M2⟩ ∶ θ1× θ2

Γ ⊢M1,M2 ∶ int
Γ ⊢M1 ⊕M2 ∶ int

Γ, x ∶ θ ⊢M ∶ θ′

Γ⊢ λxθ.M ∶ θ → θ′

Γ(x) = θ → θ′ Γ ⊢M ∶ θ
Γ ⊢ xM ∶ θ′

m ∈ Methsθ,θ′ Γ ⊢M ∶ θ
Γ ⊢mM ∶ θ′

Γ ⊢M ∶ θ Γ, x ∶ θ ⊢ N ∶ θ′

Γ ⊢ let x =M in N ∶ θ′

r ∈ Refsint Γ ⊢M ∶ int
Γ ⊢ r ∶=M ∶ unit

r ∈ Refsθ,θ′ Γ ⊢M ∶ θ → θ′

Γ ⊢ r ∶=M ∶ unit
r ∈ Refsint
Γ ⊢ !r ∶ int

r ∈ Refsθ,θ′
Γ ⊢ !r ∶ θ → θ′

⊢B ε ∶ ∅
m ∈ Methsθ,θ′ x ∶ θ ⊢M ∶ θ′ ⊢B B ∶ Θ

⊢B m = λx.M ; B ∶ Θ ⊎ {m}
r ∈ Refsθ,θ′ x ∶ θ ⊢M ∶ θ′ ⊢B B ∶ Θ

⊢B r ∶= λx.M ; B ∶ Θ

r ∈ Refsint ⊢B B ∶ Θ
⊢B r ∶= i; B ∶ Θ

⊢B B ∶ Θ
Meths(B) ⊢L B ∶ ∅→ Θ

Θ ⊎ {m} ⊢L L ∶ Θ′ → Θ′′ m ∈ Θ′′

Θ ⊢L public m;L ∶ Θ′ → Θ′′

Θ ⊎ {m} ⊢L L ∶ Θ′ → Θ′′ m ∉ Θ′′

Θ ⊢L abstract m;L ∶ Θ′ ⊎ {m}→ Θ′′

⊢Mj ∶ unit (j = 1,⋯,N)
Θ ⊢K M1∥⋯∥MN ∶ unit

∀j.Meths(Mj) ⊆ Θ

Figure 4 Library syntax, and typing rules for terms (⊢), blocks (⊢B), libraries (⊢L), clients (⊢K).

combiner of all registered requests. Note that the requests will be attended to one after another (thus
guaranteeing mutual exclusion) and only one lock acquisition will suffice to process one array of
requests. Using our framework, one can show that Lfc can beR-linearised to the specification given
by the library Lspec defined by

run = λ (f,x). (lock . acquire (); let result = f (x) in lock . release (); result)

where each function call in Lspec is protected by a lock. Observe that we cannot hope for Lfc ⊑ Lspec,
because clients may call library methods with functional arguments that recognise thread identity.
Consequently, we can relate the two libraries only if context behaviour is guaranteed to be independent
of thread identifiers. This can be expressed through ⊑R, where R ⊆ H∅,Θ′ ×H∅,Θ′ is a relation
capturing thread-blind client behaviour.

3. Library syntax

We now look at the concrete syntax of libraries and clients. Libraries comprise collections of typed
methods whose argument and result types adhere to the grammar: θ ∶∶= unit ∣ int ∣ θ → θ ∣ θ × θ.

We shall use three disjoint enumerable sets of names, referred to as Vars, Meths and Refs, to
name respectively variables, methods and references. x, f (and their decorated variants) will be used
to range over Vars; m will range over Meths; and r over Refs. Methods and references are implicitly
typed, i.e. Meths = ⊎θ,θ′ Methsθ,θ′ and Refs = Refsint ⊎ ⊎θ,θ′ Refsθ,θ′ , where Methsθ,θ′ contains
names for methods of type θ → θ′, Refsint contains names of integer references and Refsθ,θ′ contains
names for references to methods of type θ → θ′. We write ⊎ for disjoint set union.

The syntax for libraries and clients is given in Figure 4. Each library L begins with a series of
method declarations (public or abstract) followed by a block B containing method implementations
(m = λx.M) and reference initialisations (r ∶= i or r ∶= λx.M). The typing rules ensure that each

CONCUR 2017

30:10 Higher-Order Linearisability

public method is implemented within the block, in contrast to abstract methods. Clients are parallel
compositions of closed terms.

Terms M specify the shape of allowable method bodies. () is the skip command, i ranges over
integers, tid is the current thread identifier and ⊕ represents standard arithmetic operations. Thanks to
higher-order references, we can simulate divergence by (!r)(), where r ∈ Refsunit,unit is initialised
with λxunit.(!r)(). Similarly, while M N can be simulated by (!r)() after r ∶= λxunit.let y =
M in (if y then (N ; (!r)()) else ()). We also use the standard derived syntax for sequential
composition, i.e. M ;N stands for let x = M in N , where x does not occur in N . For each term
M , we write Meths(M) for the set of method names occurring in M . We use the same notation for
method names in blocks and libraries.

▸ Remark 14. In Section 2 we used lock-related operations in our example libraries (acquire, tryac-
quire, release), on the understanding that they can be coded using shared memory. Similarly, the
array of Example 13 in the sequel can be constructed using references.

For simplicity, we do not include private methods, yet the same effect could be achieved by
storing them in higher-order references. As we explain in the next section, references present in
library definitions are de facto private to the library. Note also that, according to our definition, sets of
abstract and public methods are disjoint. However, given m,m′ ∈ Refsθ,θ′ , one can define a “public
abstract” method with: public m; abstract m′; m = λxθ.m′x .

Terms are typed in environments Γ = {x1 ∶ θ1,⋯, xn ∶ θn}. Method blocks are typed through
judgements ⊢B B ∶ Θ, where Θ ⊆ Meths. The judgments collect the names of methods defined in
a block as well as making sure that the definitions respect types and are not duplicated. Also, the
initialisation statements must comply with types.

Finally, we type libraries using statements of the form Θ ⊢L L ∶ Θ′ → Θ′′, where Θ,Θ′,Θ′′ ⊆
Meths and Θ′ ∩Θ′′ = ∅. The judgment ∅ ⊢L L ∶ Θ′ → Θ′′ guarantees that any method occurring in
L is present either in Θ′ or Θ′′, that all methods in Θ′ are declared as abstract and unimplemented,
while all methods in Θ′′ are declared as public and defined. Thus, ∅ ⊢L L ∶ Θ → Θ′ is a library in
which Θ,Θ′ are the abstract and public methods respectively. In this case, we also write L ∶ Θ→ Θ′.

4. Semantics and soundness

The semantics of our system is given in several stages.First, we define an operational semantics for
sequential and concurrent terms that may draw methods from a repository. We then adapt it to capture
interactions of concurrent clients with closed libraries (no abstract methods). This notion is then used
to define contextual approximation for arbitrary libraries. Finally, we introduce a trace semantics of
arbitrary libraries, which generates the histories on which our notions of linearisability are based.

4.1. Library-client evaluation

Libraries, terms and clients are evaluated in environments comprising:
A method environmentR, called own-method repository, which is a finite partial map on Meths
assigning to each m in its domain, with m ∈ Methsθ,θ′ , a term of the form λy.M (we omit
type-superscripts from bound variables for economy).
A finite partial map S ∶ Refs ⇀ (Z ∪Meths), called store, which assigns to each r in its domain
an integer (if r ∈ Refsint) or name from Methsθ,θ′ (if r ∈ Refsθ,θ′).

The evaluation rules are presented in Figure 5, where we also define evaluation contexts E.

▸ Remark 15. We shall assume that reference names used in libraries are library-private, i.e. sets of
reference names used in different libraries are assumed to be disjoint. Similarly, when libraries are
being used by client code, this is done on the understanding that the references available to that code
do not overlap with those used by libraries. Still, for simplicity, we shall rely on a single set Refs of
references in our operational rules.

A. S. Murawski and N. Tzevelekos 30:11

(L)Ð→lib (L,∅, Sinit) (r ∶= i;B,R, S)Ð→lib (B,R, S[r ↦ i])
(abstract m;L,R, S)Ð→lib (L,R, S) (m = λx.M ;B ,R, S)Ð→lib (B,R∗∗, S)

(public m;L,R, S)Ð→lib (L,R, S) (r ∶= λx.M ;B,R, S)Ð→lib (B,R∗∗, S[r ↦m])

(E[tid],R, S)Ð→t (E[t],R, S) (E[if i∗ then M1 else M0],R, S)Ð→t (E[Mj∗],R, S)
(E[i1 ⊕ i2],R, S)Ð→t (E[i∗∗],R, S) (E[πj⟨v1,v2⟩],R, S)Ð→t (E[vj],R, S)

(E[!r],R, S)Ð→t (E[S(r)],R, S) (E[let x = v in M],R, S)Ð→t (E[M{v/x}],R, S)
(E[λx.M],R, S)Ð→t (E[m],R∗∗, S) (E[mv],R∗, S)Ð→t (E[M{v/x}],R∗, S)

E ∶∶= ● ∣ E⊕M ∣ i⊕E ∣ if E thenM elseM ∣ πj E ∣ ⟨E,M⟩ ∣ ⟨v,E⟩ ∣mE ∣ let x = E inM ∣ r ∶= E

(M,R, S)Ð→t (M ′,R′, S′)
(M1∥⋯∥Mt−1∥M∥Mt+1∥⋯∥MN ,R, S)ÔÔ⇒ (M1∥⋯∥Mt−1∥M ′∥Mt+1∥⋯∥MN ,R′, S′)

(KN)

Figure 5 . Evaluation rules for libraries (Ð→lib), terms (Ð→t) and clients (ÔÔ⇒). In the rules above we use the
conditions/notation: R∗∗ =R ⊎ (m↦ λx.M), i∗∗ = i1 ⊕ i2,R∗(m) = λx.M , and j∗ = 0 iff i∗ = 0.

First we evaluate the library to create an initial repository and store. This is achieved by the first
set of rules in Figure 5, where we assume that Sinit is empty. Thus, library evaluation produces a tuple
(ε,R0, S0) including a method repository and a store, which can be used as the initial repository and
store for evaluating M1∥⋯∥MN using the (KN) rule. We shall call the latter evaluation semantics for
clients (denoted byÔÔ⇒) the multi-threaded operational semantics. The latter relies on closed-term
reduction (Ð→t), whose rules are given in the middle group, where t is the current thread index. Note
that the rules for E[λx.M] in the middle group, along with those for m = λx.M and r ∶= λx.M in
the first group, involve the creation of a fresh method name m, which is used to put the function in the
repositoryR. Name creation is non-deterministic: any fresh m of the appropriate type can be chosen.

We define termination for clients linked with libraries that have no abstract methods. Recall
our convention (Remark 15) that L and M1,⋯,MN must access disjoint parts of the store. Terms
M1,⋯,MN can share reference names, though.

▸ Definition 16. Let L ∶ ∅ → Θ′ and Θ′ ⊢K M1∥⋯∥MN ∶ unit. We say that M1∥⋯∥MN termi-
nates with linked library L if (M1∥⋯∥MN ,R0, S0)ÔÔ⇒∗ (()∥⋯∥(),R, S), for someR, S, where
(L)Ð→∗

lib (ε,R0, S0). We then write link L in (M1∥⋯∥MN)⇓.

We shall build a notion of contextual approximation of libraries on top of termination: one library
will be said to approximate another if, whenever the former terminates when composed with any
parameter library and client, so does the latter.

We will be considering the following notions for composing libraries. Let us denote a library
L as L = D;B, where D contains all the (public/abstract) method declarations of L, and B is
its method block. We write Refs(L) for the set of references in L. Let L1 ∶ Θ1 → Θ2 be of the
form D1;B1. Given L2 ∶ Θ′

1 → Θ′
2 (= D2;B2) such that Θ2 ∩ Θ′

2 = Refs(L1) ∩ Refs(L2) = ∅,
Θ = {m1,⋯,mn} ⊆ Θ2 and L′ ∶ ∅→ Θ1,Θ′, we define the union of L1 and L2, the Θ-hiding of L1,
and the sequencing of L′ with L1 respectively as:

L1 ∪L2 ∶ (Θ1 ∪Θ′
1) ∖ (Θ2 ∪Θ′

2)→ Θ2 ∪Θ′
2 = (D1;B1) ∪ (D2;B2) =D′

1;D′
2;B1;B2

L1∖Θ ∶ Θ1 → (Θ2 ∖Θ) = (D1;B1) ∖Θ =D′′
1 ;B′

1{!r1/m1}⋯{!rn/mn}
L′;L1 ∶ ∅→ Θ2,Θ′ = (L′ ∪L1) ∖Θ1

where D′
1 is D1 with any abstractm declaration removed for m ∈ Θ′

2, dually for D′
2; and where D′′

1
is D1 without public m declarations for m ∈ Θ and each ri is a fresh reference matching the type of

CONCUR 2017

30:12 Higher-Order Linearisability

mi, and B′
1 is obtained from B1 by replacing each mi = λx.M by ri ∶= λx.M . Thus, the union of L1

and L2 corresponds to merging their code and removing any abstract declarations for methods that
become defined. The hiding of a public method simply renders it private via the use of references.

▸ Definition 17. Given L1, L2 ∶ Θ → Θ′, we say that L1 contextually approximates L2, written
L1 ⊏∼ L2, if for all L′ ∶ ∅→ Θ,Θ′′ and Θ′,Θ′′ ⊢K M1∥⋯∥MN ∶ unit, if link L′;L1 in(M1∥⋯∥MN)⇓
then link L′;L2 in(M1∥⋯∥MN)⇓. In this case, we also say that L2 contextually refines L1.

Note that, according to this definition, the parameter library L′ may communicate directly with the
client terms through a common interface Θ′′. We shall refer to this case as the general case. Later on,
we shall also consider more restrictive testing scenarios in which this possibility of explicit communi-
cation is removed. Moreover, from the disjointness conditions in the definitions of sequencing and
linking we have that Li, L′ and M1∥⋯∥MN access pairwise disjoint parts of the store.

4.2. Trace semantics

Building on the earlier semantics, we next introduce a trace semantics of libraries in the spirit of
game semantics [2]. As mentioned in Section 2, the behaviour of a library will be represented as an
exchange of moves between two players called P andO, representing the library and its corresponding
context respectively. The context consists of the client of the library as well as the parameter library,
with an index on each move (K/L) specifying which of them is involved in the move.

In contrast to the previous section, we handle scenarios in which called methods need not be
present in the repositoryR. Calls to such undefined methods are represented by labelled transitions –
calls to the context made on behalf of the library (P). The calls can later be responded to with
labelled transitions corresponding to returns, made by the context (O). On the other hand, O is able
to invoke methods inR, which will also be represented through suitable labels. Because we work in
a higher-order setting, calls and returns made by both players may involve methods as arguments or
results. Such methods also become available for future calls: function arguments/results supplied
by P are added to the repository and can later be invoked by O, while function arguments/results
provided by O can be queried in the same way as abstract methods.

The trace semantics utilises configurations that carry more components than the previous seman-
tics. We define two kinds of configurations:

O-configurations (E ,−,R,P,A, S) and P-configurations (E ,M,R,P,A, S)

where the component E is an evaluation stack, that is, a stack of the form [X1,X2,⋯,Xn] with
each Xi being either an evaluation context or a method name. On the other hand, P = (PL,PK)
with PL,PK ⊆ dom(R) being sets of public method names, and A = (AL,AK) is a pair of sets of
abstract method names. P will be used to record all the method names produced by P and passed
to O: those passed to OK are stored in PK, while those leaked to OL are kept in PL. Inside A, the
story is the opposite one: AK (AL) stores the method names produced by OK (resp. OL) and passed
to P . Consequently, the sets of names stored in PL,Pk,AL,Ak will always be disjoint.

Given a pair P as above and a set Z ⊆ Meths, we write P ∪K Z for the pair (PL,PK ∪Z). We
define ∪L in a similar manner, and extend it to pairs A as well. Moreover, given P and A, we let
φ(P,A) be the set of fresh method names for P,A: φ(P,A) = Meths ∖ (PL ∪PK ∪AL ∪AK).

We give the rules generating the trace semantics in Figure 6. Note that the rules are parameterised
by: P /O and Y , which together determine the polarity of the next move; Q/A, which stands for
the move being a call (Question) or a return (Answer) respectively. The rules depict the intuition
presented above. When in an O-configuration, the context may issue a call to a public method
m ∈ PY and pass control to the library (rule (OQY)). Note that, when this occurs, the name m is
added to the evaluation stack E and a P -configuration is obtained. From there on, the library will

A. S. Murawski and N. Tzevelekos 30:13

(INT) (E ,M,R,P,A, S) Ð→t (E ,M ′,R′,P,A, S′), given that (M,R, S) Ð→t (M ′,R′, S′) and
dom(R′ ∖R) consists of names that do not occur in E ,A.

(PQY) (E ,E[mv],R,P,A, S)
callm(v′)P YÐÐÐÐÐ→t (m ∶∶ E ∶∶ E ,−,R′,P ′,A, S), given m ∈ AY and (PC).

(OQY) (E ,−,R,P,A, S)
callm(v)OYÐÐÐÐÐÐ→t (m ∶∶ E ,M{v/x},R,P,A′, S), given m ∈ PY , R(m) =

λx.M and (OC).

(PAY) (m ∶∶ E , v,R,P,A, S)
retm(v′)P YÐÐÐÐÐÐ→t (E ,−,R′,P ′,A, S), given m ∈ PY and (PC).

(OAY) (m ∶∶ E ∶∶ E ,−,R,P,A, S)
retm(v)OYÐÐÐÐÐÐ→t (E ,E[v],R,P,A′, S), given m ∈ AY and (OC).

(PC) If v contains the names m1,⋯,mk then v′ = v{m′
i/mi ∣ 1 ≤ i ≤ k} with each m′

i being a fresh
name. Moreover,R′ =R ⊎ {m′

i ↦ λx.mix ∣ 1 ≤ i ≤ k} and P ′ = P ∪Y {m′
1,⋯,m′

k}.
(OC) If v contains names m1,⋯,mk then mi ∈ φ(P,A), for each i, and A′ = A ∪Y {m1,⋯,mk}.

Figure 6 Trace semantics rules. The rule (INT) is for embedding internal rules. In the rule (PQY), the library
(P) calls one of its abstract methods (either the original ones or those acquired via interaction), while in (PAY) it
returns from such a call. The rules (OQY) and (OAY) are dual and represent actions of the context. In all of the
rules, whenever we write m(v) or m(v′), we assume that the type of v matches the argument type of m.

compute internally using rule (INT), until: it either needs to evaluate an abstract method (i.e. some
m′ ∈ AY), and hence issues a call via rule (PQY); or it completes its computation and returns the call
(rule (PAY)). Calls to abstract methods, on the other hand, are met either by further calls to public
methods (via (OQY)), or by returns (via (OAY)).

Finally, we extend the trace semantics to a concurrent setting where a fixed number of N -many
threads run in parallel. Each thread has separate evaluation stack and term components, which we
write as C = (E ,X) (where X is a term or “−”). Thus, a configuration now is of the following form:

N -configuration (C1∥⋯∥CN ,R,P,A, S)

where, for each i, Ci = (Ei,Xi) and (Ei,Xi,R,P,A, S) is a sequential configuration. We shall
abuse notation a little and write (Ci,R,P,A, S) for (Ei,Xi,R,P,A, S). Also, below we write C⃗
for C1∥⋯∥CN and C⃗[i↦ C′] = C1∥⋯∥Ci−1∥C′∥Ci+1∥⋯∥CN and, for economy, we useRPAS to range
over tuples (R,P,A, S). The concurrent traces are produced by the following two rules

(Ci,RPAS)Ð→i (C′,RPAS′)
(C⃗,RPAS)ÔÔ⇒ (C⃗[i↦ C′],RPAS′)

(PINT)
(Ci,RPAS)

xXYÐÐ→i (C′,RPAS′)

(C⃗,RPAS)
(i,x)XYÔÔÔ⇒ (C⃗[i↦ C′],RPAS′)

(PEXT)

with the proviso that the names freshly produced internally in (PINT) are fresh for the whole of C⃗.
We can now define the trace semantics of a library L. We call a configuration component Ci final

if it is in one of the following forms, for O- and P -configurations respectively: Ci = ([],−) or Ci =
([], ()) . We call (C⃗,R,P,A, S) final just if C⃗ = C1∥⋯∥CN and each Ci is final.

▸ Definition 18. For each L ∶ Θ→ Θ′, we define the N -trace semantics of L to be:

JLKN = { s ∣ (C⃗0,R0, (∅,Θ′), (Θ,∅), S0)
sÔÔ⇒∗ρ ∧ ρ final}

where C⃗0 = ([],−)∥⋯∥([],−) and (L)Ð→∗
lib (ε,R0, S0). We may write JLKN simply as JLK.

We are now able to revisit the linearisability claims anticipated in Examples 1, 11 and 13.

▸ Lemma 19 (Linearisability examples). 1. Lmset ⊑ Amset, 2. Lmset2 ⊑enc Amset2, 3. Lfc ⊑R Lspec.

We conclude the presentation of the trace semantics by providing a semantics for library contexts.
Recall that in our setting (Figure 1) a library L ∶ Θ → Θ′ is deployed in a context consisting of a
parameter library L′ ∶ ∅→ Θ,Θ′′ and a concurrent composition of client threads Θ′,Θ′′ ⊢Mi ∶ unit
(i = 1,⋯,N). We shall write link L′;− in (M1∥⋯∥MN), or simply C, to refer to such contexts.

CONCUR 2017

30:14 Higher-Order Linearisability

▸ Definition 20. Let Θ′,Θ′′ ⊢K M1∥⋯∥MN ∶ unit and L′ ∶ ∅→ Θ,Θ′′. We define:

Jlink L′;− in (M1∥⋯∥MN)K = { s ∣ (C⃗0,R0, (Θ,∅), (∅,Θ′), S0)
sÔÔ⇒∗ρ ∧ ρ final}

where (L′)Ð→∗
lib (ε,R0, S0) and C⃗0 = ([],M1)∥⋯∥([],MN).

▸ Lemma 21. For any L ∶ Θ → Θ′, L′ ∶ ∅ → Θ,Θ′′ and Θ′,Θ′′ ⊢K M1∥⋯∥MN ∶ unit we have
JLKN ⊆HΘ,Θ′ and Jlink L′;− in (M1∥⋯∥MN)K ⊆HcoΘ,Θ′ .

4.3. Soundness

To conclude, we clarify in what sense all the notions of linearisability are sound. Recall the general
notion of contextual approximation (refinement) from Definition 17. In the encapsulated case libraries
are being tested by clients that do not communicate with the parameter library explicitly. The
corresponding definition of contextual approximation is defined below.

▸ Definition 22 (Encapsulated ⊏∼). Given libraries L1, L2 ∶ Θ → Θ′, we write L1 ⊏∼enc L2
when, for all L′ ∶ ∅ → Θ and Θ′ ⊢K M1∥⋯∥MN ∶ unit, if link L′ ;L1 in (M1∥⋯∥MN)⇓ then
link L′ ;L2 in (M1∥⋯∥MN)⇓.

For relational linearisability, we need yet another notion that will linkR to contextual testing.

▸ Definition 23. Let R ⊆ HΘ,Θ′ ×HΘ,Θ′ be a set closed under permutation of names in Meths ∖
(Θ ∪ Θ′). We say that a context formed by L′ and M1,⋯,MN is R-closed if, for any h ∈
Jlink L′;− in (M1∥⋯∥MN)K, hRh′ implies h′ ∈ Jlink L′;− in (M1∥⋯∥MN)K. Given L1, L2 ∶
Θ → Θ′, we write L1 ⊏∼R L2 if, for all R-closed contexts formed from L′,M1,⋯,MN , whenever
link L′ ;L1 in (M1∥⋯∥MN)⇓ then we also have link L′ ;L2 in (M1∥⋯∥MN)⇓.

▸ Theorem 24 (Correctness). 1. L1 ⊑ L2 implies L1 ⊏∼ L2. 2. L1 ⊑enc L2 implies L1 ⊏∼enc L2.
3. L1 ⊑R L2 implies L1 ⊏∼R L2.

Finally, linearisability is compatible with library composition. ⊑ is closed under union with libraries
that use disjoint stores, while ⊑enc is closed under a form of sequencing that respects encapsulations.

5. Related and future work

Linearisability has been consistently used as a correctness criterion for concurrent algorithms on a
variety of data structures [18], and has inspired a variety of proof methods [5]. An explicit connection
between linearisability and refinement was made in [6], where it was shown that, in base-type
settings, linearisability and refinement coincide. Similar results have been proved in [4, 9, 17, 3].
Our contributions are notions of linearisability that serve as correctness criteria for libraries with
methods of arbitrary order and have a similar relationship to refinement. The next natural target is to
investigate proof methods for establishing linearisability of higher-order concurrent libraries. The
examples proved herein are only an initial step in that direction.

At the conceptual level, [6] proposed that the verification goal behind linearisability is observa-
tional refinement. In this vein, [24] utilised logical relations as a direct method for proving refinement
in a higher-order concurrent setting, while [23] introduced a program logic that builds on logical
relations. On the other hand, proving conformance to a history specification has been addressed
in [20] by supplying history-aware interpretations to off-the-shelf Hoare logics for concurrency. Other
logic-based approaches for concurrent higher-order libraries, which do not use linearisability, include
Higher-Order and Impredicative Concurrent Abstract Predicates [21, 22].

Acknowledgements. We thank the authors of [3] for bringing the higher-order linearisability prob-
lem to our attention, Radha Jagadeesan and Kasper Svendsen for constructive comments, and
C. Tzevelekou for help with Fig. 1. Research was partially supported by the EPSRC (EP/P004172/1).

A. S. Murawski and N. Tzevelekos 30:15

References

1 http://c-cube.github.io/ocaml-containers/0.21/CCMultiSet.S.html.
2 S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and U. Berger, editors,

Logic and Computation. Springer-Verlag, 1998. Proceedings of the 1997 Marktoberdorf Summer
School.

3 A. Cerone, A. Gotsman, and H. Yang. Parameterised linearisability. In Proceedings of ICALP’14,
volume 8573 of Lecture Notes in Computer Science, pages 98–109. Springer, 2014.

4 J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for lineariz-
ability. ACM Trans. Program. Lang. Syst., 33(1):4, 2011.

5 B. Dongol and J. Derrick. Verifying linearisability: A comparative survey. ACM Comput. Surv.,
48(2):19, 2015.

6 I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. Theor.
Comput. Sci., 411(51-52):4379–4398, 2010.

7 D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained concurrency. In Proceedings of
FOSSACS, volume 2987 of Lecture Notes in Computer Science, pages 211–225. Springer-Verlag,
2004.

8 D. R. Ghica and N. Tzevelekos. A system-level game semantics. Electr. Notes Theor. Comput. Sci.,
286:191–211, 2012.

9 A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In Proceedings of ICALP,
volume 6756 of Lecture Notes in Computer Science, pages 453–465. Springer-Verlag, 2011.

10 S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and N. Shavit. A lazy concurrent
list-based set algorithm. In Proceedings of OPODIS, volume 3974 of Lecture Notes in Computer
Science, pages 3–16, Springer-Verlag, 2006.

11 D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-parallelism
tradeoff. In Proceedings of SPAA, pages 355–364, ACM, 2010.

12 M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

13 R. Jagadeesan, G. Petri, C. Pitcher, and J. Riely. Quarantining weakness - compositional reason-
ing under relaxed memory models (extended abstract). In Proceedings of ESOP, volume 7792 of
Lecture Notes in Computer Science, pages 492–511, Springer-Verlag, 2013.

14 A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects. Theor.
Comput. Sci., 338(1-3):17–63, 2005.

15 J. Laird. A game semantics of Idealized CSP. In Proceedings of MFPS’01, pages 1–26. Elsevier,
2001. ENTCS, Vol. 45.

16 J. Laird. A fully abstract trace semantics for general references. In Proceedings of ICALP, volume
4596 of Lecture Notes in Computer Science, pages 667–679. Springer, 2007.

17 H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization points.
In Proceedings of PLDI, pages 459–470, ACM, 2013.

18 M. Moir and N. Shavit. Concurrent data structures. In Handbook of Data Structures and Applica-
tions. Chapman and Hall/CRC, 2004.

19 P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying linearizability with
hindsight. In Proceedings of PODC, pages 85–94, ACM, 2010.

20 I. Sergey, A. Nanevski, and A. Banerjee. Specifying and verifying concurrent algorithms with
histories and subjectivity. In Proceedings of ESOP, volume 9032 of Lecture Notes in Computer
Science, pages 333–358, Springer, 2015.

21 K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates. In Proceedings of
ESOP, volume 8410 of Lecture Notes in Computer Science, pages 149–168, Springer, 2014.

22 K. Svendsen, L. Birkedal, and M. J. Parkinson. Joins: A case study in modular specification of
a concurrent reentrant higher-order library. In Proceedings of ECOOP, volume 7920 of Lecture
Notes in Computer Science, pages 327–351, Springer, 2013.

CONCUR 2017

http://c-cube.github.io/ocaml-containers/0.21/CCMultiSet.S.html

30:16 Higher-Order Linearisability

23 A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-style reasoning in a logic for
higher-order concurrency. In Proceedings of ICFP, pages 377–390, ACM, 2013.

24 A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for fine-grained
concurrency. In Proceedings of POPL, pages 343–356, ACM, 2013.

	. Introduction
	. Higher-order linearisability
	. Higher-order histories
	. Three notions of linearisability

	. Library syntax
	. Semantics and soundness
	. Library-client evaluation
	. Trace semantics
	. Soundness

	. Related and future work

