
the bmj | BMJ 2017;358:j3064 | doi: 10.1136/bmj.j3064 1

RESEARCH METHODS AND REPORTING

How to design efficient cluster randomised trials
K Hemming,1 S Eldridge,2 G Forbes,2 C Weijer,3 M Taljaard4,5

Cluster randomised trials have 
diminishing returns in power and 
precision as cluster size increases. 
Making the cluster a lot larger while 
keeping the number of clusters fixed 
might yield only a very small increase in 
power and precision, owing to the 
intracluster correlation. Identifying the 
point at which observations start 
making a negligible contribution to the 
power or precision of the study—which 
we call the point of diminishing 
returns—is important for designing 
efficient trials. Current methods for 
identifying this point are potentially 
useful as rules of thumb but don’t 
generally work well. We introduce 
several practical aids to help 
researchers design cluster randomised 
trials in which all observations make a 
material contribution to the study. 
Power curves enable identification of 
the point at which observations begin 
to make a negligible contribution to a 
study for a given target difference. 
Under this paradigm, the number 
needed per arm under individual 
randomisation gives an upper bound 

on the cluster size, which should not be 
exceeded. Corresponding precision 
curves can be useful for 
accommodating flexibility in the choice 
of target difference and show the point 
at which confidence intervals around 
the estimated effect size no longer 
decrease. To design efficient trials, the 
number of clusters and cluster size 
should be determined concurrently, not 
independently. Funders and 
researchers should be aware of 
diminishing returns in cluster trials. 
Researchers should routinely plot 
power or precision curves when 
performing sample size calculations so 
that the implications of cluster sizes 
can be transparent. Even when data 
appear to be “free,” in the sense that 
few resources are needed to obtain the 
data, excessive cluster sizes can have 
important ramifications

Cluster randomised trials (CRTs) involve randomisation 
of groups (clusters) of individuals to control or 
intervention conditions.1 The CRT design is commonly 
used to evaluate non-drug interventions, such as policy 
and service delivery interventions. Its use is likely to 
grow as we move towards the learning healthcare 
system2 and large simple trials.3

In a CRT the total sample size is a function of both 
the number of clusters and cluster size. Invariably, 
one of these is fixed and the other is determined using 
published formulas.1 For example, the number of 
clusters available or feasible might be considered fixed 
and the necessary cluster size then determined. 

The intracluster correlation coefficient (ICC) 
measures the degree to which observations (that 
is, outcome measurements from participants) in a 
cluster are correlated. The need to account for the ICC 
when designing and analysing these trials is widely 
appreciated, but the effect of clustering on the choice 
of cluster size has received less attention. A CRT could 
be designed with an excessively large cluster size, such 
that not all observations in the cluster make a material 
contribution to the power or precision of the trial.

In this paper we examine the trade-offs that are 
made when determining the number of clusters and 
cluster sizes. We introduce methods that will enable 

1Institute of Applied Health 
Research, University of 
Birmingham, Birmingham B15 
2TT, UK 
2Pragmatic Clinical Trials Unit, 
Centre for Primary Care and 
Public Health, Queen Marys 
University, London, UK
3Rotman Institute of Philosophy, 
Western University, London 
N6A 5B8, Canada
4Clinical Epidemiology Program, 
Ottawa Hospital Research 
Institute, 1053 Carling Avenue, 
Ottawa, Ontario, K1Y4E9, 
Canada
5School of Epidemiology, 
Public Health and Preventive 
Medicine, University of Ottawa, 
Ottawa, Ontario, Canada
Correspondence to: K Hemming 
k.hemming@bham.ac.uk
Additional material is published 
online only. To view please visit 
the journal online.
Cite this as: BMJ 2017;358:j3064  
http://dx.doi.org/10.1136/bmj.j3064

Accepted: 05 June 2017

SUMMARY POINTS
•   Cluster randomised trials have diminishing returns in power and precision as 
cluster size increases

•   In some situations a small increase in the number of clusters can lead to a 
large drop in the total number of observations needed for the same level of 
power

•   When the target effect size is the true minimally important difference, or the 
minimum plausible difference, cluster size should not exceed the number 
needed per arm under individual randomisation

•   Power calculations for cluster randomised trials should report the sample size 
required under individual randomisation

•   Plots of power or precision against cluster size enable identification of points 
beyond which further increases in cluster size make no material contribution 
to the study

•   To facilitate efficient trial design, the number of clusters and cluster size 
should be determined concurrently, not independently
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researchers to design efficient CRTs and funders to 
appraise the efficiency of CRTs that they commission.

Diminishing returns 
A unique characteristic of CRTs is that, as more 
individuals are recruited or data are accrued without 
increasing the number of clusters, the increase in 
power starts to level off.4-7 The point at which this 
happens—that is, when observations start making 
a negligible contribution—depends on key design 
characteristics, such as type of outcome, target 
difference, proportion of people with the outcome (for 
binary outcomes), and ICC. In studies with larger ICCs, 
each observation contributes less to the overall power 
than in studies with smaller ICCs. Furthermore, not 
only power reaches a plateau, but also the resulting 
precision. Power is the ability of a trial to detect a target 
effect size, whereas precision is its ability to measure 
the effect size with a sufficiently narrow confidence 
interval. This lessening in effective contribution can be 
considered “diminishing returns.”

How to identify the point of diminishing returns
Identifying the point at which increases in power or 
precision become negligible is not easy, because it 
occurs gradually. The point of diminishing returns 
cannot be identified definitively, but attempts to do 
so have led to simple rules of thumb. For example, 
some researchers have proposed that, for continuous 
outcomes, power does not increase appreciably when 
the number of participants in a cluster exceeds 1/ICC; 
others have proposed 2/ICC.8-10 In the examples that 
follow, however, we show that these rules of thumb 
tend to overestimate the point of diminishing returns for 
power when the ICC is low and underestimate it when 
the ICC is high. Moreover, these rules don’t accurately 
estimate the point of diminishing returns for precision.

Power and precision curves are more useful, 
enabling clear determination of the extent to which all 
observations contribute to the study. Power curves are 
plots of the power achievable as cluster size increases. 
These curves enable identification of the point at which 
observations start making no material contribution to 
a study for a given target difference. Trials are often 
designed to detect a minimally important effect size at a 
specified power. Under this paradigm, observations that 
make a negligible contribution are those beyond the 
point at which the power curve plateaus. Observations 
beyond this point might still contribute to precision. 
After the precision curve has reached its plateau, 
however, observations make negligible contributions 
(under the postulated design conditions). We have 
provided formulas for power and precision in a data 
supplement (Appendix 1), as well as Stata and R code 
(Appendix 2) to construct these curves. We have also 
provided an Excel calculator (details in Appendix 2).

How to identify an absolute upper bound for 
cluster size
Although increasing cluster size can reduce the 
required number of clusters up to a point, doing so 

beyond the sample size needed under individual 
randomisation does not reduce it further (Appendix 3). 
This means that the sample size needed for each 
arm under individual randomisation is the absolute 
upper bound for cluster size. For example, the sample 
size needed to detect a standardised effect size of 
0.25 with 90% power using a two sided significance 
level of 5% is about 340 people in each arm under 
individual randomisation. If this target difference was 
the minimum that could plausibly be achieved by the 
intervention, or the minimum clinically important 
difference, then cluster sizes should not exceed 340. 
If target differences were smaller, then larger cluster 
sizes might be justifiable. For example, if effect sizes 
of 0.1 were plausible (needing about 2100 in each arm 
under individual randomisation), then cluster sizes 
should not exceed 2100. Although this upper bound 
is independent of the ICC, the point of diminishing 
returns is frequently obtained at much smaller cluster 
sizes than that needed under individual randomisation 
(for example if the ICC is very small).

How to determine whether a small increase in the 
number of clusters can substantially reduce cluster 
size
Data in Appendix 3 show that a simple rule can help 
determine whether a small increase in the number 
of clusters can lead to a much more efficient design. 
Firstly, the user needs to determine the minimum 
number of clusters needed to detect the desired effect 
size at the desired power (assuming an unlimited 
cluster size). This is simply n×ICC, where n is the sample 
size for each arm under individual randomisation.57 
Increasing the number of clusters to one more than the 
minimum means that the required cluster size will be 
at most n/1; increasing the number of clusters to two 
more than the minimum means that the cluster size 
will be at most n/2; and so on. Although this won’t 
give the exact cluster size needed, this simple rule is 
a very useful guide to determining if the trial could be 
made more efficient, without resorting to extensive 
calculations.

How to design an efficient trial with a limited number of 
clusters and limited cluster size
Case study: the Group B streptococcus trial
As an example, we consider a recently funded CRT to 
assess the effectiveness of a new rapid test to diagnose 
Group B streptococcus infection at the time of labour. 
Hospitals are randomised to either the rapid test arm 
or the current standard of care, which consists of 
prophylactic antibiotics for all women with known 
risk factors. This results in a high rate of relatively 
untargeted prescribing. The aim of the trial is to 
determine whether the intervention can reduce the 
proportion of women who are prescribed antibiotics.

The number of clusters in the trial is limited by the 
number of rapid test machines, which are costly and 
are rented from the manufacturer. Minimising the 
number of clusters is preferable, but there is no exact 
limit. Furthermore, the outcome data are not routinely 
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collected, so every observation accrued in each cluster 
is associated with additional cost.

About 60% of patients are estimated to receive 
prescriptions for prophylactic antibiotics, and an 
absolute risk reduction of about 15% is considered 
a clinically important effect size. Under individual 
randomisation, this would require a sample size of 
about 228 in each arm at 90% power and two sided 
significance level of 5% (see formula in Appendix 1). 
For a CRT, this sample size needs to be increased to 
account for the ICC. The estimated ICC is 0.03, a fairly 
typical value in CRTs.

We consider two common starting points for designing 
this trial. In the first approach the number of clusters is 
fixed, and we determine the required cluster size. We 
show how allowing some flexibility in the number of 
clusters can lead to a more efficient design. We then 
determine the required number of clusters when the 
cluster size is fixed. We show how inspecting power and 
precision curves can lead to a more efficient design.

Designing a trial when the number of clusters 
is fixed
Assuming that the 15% absolute risk reduction is 
the target difference, our simple rule says that the 
minimum number of clusters required for each arm is 
seven (228×0.03). With one more than the minimum 
(eight clusters in each arm), the cluster size should 
not exceed the number needed in each arm under 
individual randomisation (228). Increasing the number 
of clusters to nine (two more than the minimum) would 
make the cluster size less than 114 (228/2), and with 
10 clusters in each arm, the cluster size would be less 
than 76 (228/3). This shows that, if resources and 
logistics allow, increasing the number of clusters by 
a small amount above the minimum could drastically 
reduce cluster sizes. These simple calculations are 
easily performed by hand (assuming knowledge of 
the number needed under individual randomisation) 
and could be used as a quick scrutiny assessment by a 
funding panel or reviewer.

The exact calculations are shown in Appendix 1. To 
achieve 90% power with seven clusters in each arm, 
cluster size should be 1383, yielding a total sample 
size of 19 362 (table 1). To achieve 80% power with the 
same number of clusters, the required cluster size is 
only 89, yielding a total sample size of 1246. Moreover, 
if the number of clusters were increased by two, to nine 
in each arm, then a cluster size of 103 would achieve 
90% power (equating to a total sample size of 1854—a 
fraction of that required with for seven clusters in each 
arm). With 15 clusters in each arm, the cluster size 
required would be 28, giving a total sample size of 840.

Designing a trial when the cluster size is fixed
Now we assume that the trial will run for about six 
months and that the cluster size is set as the number of 
women meeting the eligibility criteria over this period: 
about 400 women from each hospital or about 70 
observations a month. The cluster size of 400 can be 
considered the maximum available for a given amount 
of funding or trial duration.

The required number of clusters must be determined 
for the fixed cluster size. Using the same absolute 
difference as above, a prespecified cluster size of 400 
means we need eight clusters in each arm (equating 
to a total sample size of 6400). Based on our simple 
rule that cluster size should not exceed the number 
needed in each arm under individual randomisation 
(228), this would be an inefficient design (under the 
assumption that a 15% absolute risk reduction is the 
true minimum important difference).

Figure 1 shows that for an ICC of 0.03 the increase 
in power becomes negligible at cluster sizes around 
100. It also shows that increases in precision around 
the estimated treatment effect are almost non-existent 
for cluster sizes around 400. This tells us that, if the 
effect size (the difference between the control and 
treatment proportions) is the true target difference 
then the cluster size should not exceed 100 (equivalent 
recruitment duration of 1.5 months for each cluster). 
Supplementary figure 1 shows that cluster sizes above 

Table 1 | Trade-off between number of clusters and cluster size for the case study
No of clusters in each arm 80% power 90% power

Cluster size Total sample size Cluster size Total sample size
6 191 2292 NA NA
7 89 1246 1383 19 362
8 58 928 191 3056
9 43 774 103 1854
10 35 700 70 1400
11 29 638 54 1188
12 25 600 43 1032
13 22 572 36 936
14 19 532 31 868
15 17 510 28 840
Sample size needed to detect a difference between two proportions of 0.60 and 0.45 at two sided significance level of 5%, assuming normal 
approximations (formula in Appendix 1). 
Assumes 228 in each arm needed for 90% power and 171 for 80% power. 
ICC assumed to be 0.03. 
Rounding has occurred at some levels. 
NA=not achievable
These calculations show that decisions to restrict the number of clusters as far as possible should be made with knowledge of the implications for total 
trial size.
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about 50 would not increase the power under the 
assumption of an ICC of 0.01; but that precision around 
the resulting treatment effect would still increase for 
cluster sizes up to 400. Supplementary figure 2 show 
how these decisions would change if the ICC were 
larger. These figures also show that the common rules 
of thumb (such as 1/ICC) for identifying upper bounds 
on the cluster size are not very useful. 

The calculations in this second approach show that, 
although the cluster size might be deemed to be fixed, 
these effectively ad hoc cluster sizes might be much 
larger than they ought to be. More efficient trials can 
be designed by acknowledging this possibility and 
graphically viewing the contribution each observation 
makes.

An efficient trial design for Group B streptococcus
The feasibility of running the Group B streptococcus 
trial was constrained by a need to limit the number 
of clusters. The trial was also limited by funding 
constraints that limited the resources that could be 
devoted to data collection. Subsequently, there was 
a need to limit the cluster size. With some flexibility 
to increase the number of clusters, it was decided to 
increase the number of clusters in each arm to 10—
with cluster sizes of around 85 (to allow for a small loss 
of follow-up), equating to a total sample size of 1700—
to retain a high power to detect smaller differences, 
which were also thought to be clinically important.

Design implications
How to deal with the practical constraints of limited 
numbers of clusters
Researchers have several options when faced with 
a limited number of clusters and an anticipated ICC 
that indicates very large cluster sizes may be required 
to reach the desired power. Our recommended option 
would be to increase the number of clusters, if possible. 
If not, then a decision has to be made between having 
a smaller cluster size and not achieving the desired 
power or having a potentially excessively large cluster 

size and achieving the desired power. This choice must 
be made on a trial by trial basis and will depend on 
the cost of data collection; the risks of the study to 
research participants also need careful consideration. 
The decision should be made with full awareness of 
the contribution that each observation is making, best 
visualised by a power or precision curve. We think that 
striving for a notional level of power (such as 90%, 
and thus rejecting a level of power of 80%) is akin to 
focusing on a dichotomy of statistical significance and 
should be discouraged.11

When to consider power and when to consider 
precision
Power and precision curves can be used to identify 
excessively large cluster sizes by showing the 
contribution of observations as the cluster size 
increases. Researchers are accustomed to considering 
trial power and are likely to be drawn to using power 
curves rather than precision curves. When the effect 
size used in the power calculation is the true minimally 
important difference, excessive cluster sizes should 
be identified by the point at which the power levels 
off. When smaller effect sizes might be clinically 
important and plausible, or target effect sizes less 
certain, then precision curves can identify the point 
at which observations will begin to make no material 
contribution, however small the effect size.12 These 
curves can be produced for all types of outcomes 
(continuous, binary, rates) and for different analysis 
types (interim analyses and non-inferiority). For binary 
outcomes, the precision curve is dependent not only 
on the target difference but also the control proportion.

How to ensure all data are put to good use
In some situations, trials can be made more efficient 
by choosing a shorter duration or sampling outcomes 
from a subset of available participants. But sometimes 
increased numbers are without added burden—for 
example, where data are routinely collected—or it 
may be counterintuitive to sample observations if the 
expense or logistics of setting up the intervention is 
high.

In these situations full knowledge of the point 
of diminishing returns could enable prespecified 
subgroup effects to be fully powered or the trial could 
be designed with more than one primary outcome with 
the necessary multiplicity adjustments. Information 
from observations above the point of material 
contribution could be redirected to other analyses. 
Knowledge of these diminishing returns might be 
helpful at the interim analysis stage, especially if the 
trial poses burden or risk to participants.

Other practical considerations
Another important consideration is that the point of 
diminishing returns depends on the ICC, which may 
not be reliably estimated at the design stage. Obtaining 
a good point estimate of the ICC is often difficult, but 
generic information of the type of outcome (clinical or 
process) and the size of the cluster can help.13 14 When 
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Fig 1 | Power and precision curves for case study with 
an ICC of 0.03. Curves show increases in power (blue 
line) and precision (red line) as cluster size increases. 
Assumes a CRT with 10 clusters in each arm, designed 
to detect a difference between two proportions 0.6 and 
0.45 at a two sided significance level of 5%. 



RESEARCH METHODS AND REPORTING

No commercial reuse: See rights and reprints http://www.bmj.com/permissions Subscribe: http://www.bmj.com/subscribe

the outcomes are from routinely collected data, good 
point estimates of the ICC can sometimes be obtained in 
advance of the trial. In the Group B streptococcus trial, 
if the ICC was higher than 0.03, cluster sizes greater 
than 85 would risk making negligible contributions; 
if it were lower, then larger cluster sizes might have 
added information.

In addition to considering power and precision at 
the planning stage, appropriate consideration should 
be given to whether the number of clusters, if small, is 
adequate to enable the appropriate analysis models to 
be fitted and to ensure that the trial does not risk the 
possibility of a chance imbalance.15

Other designs, such as the cluster-crossover, might 
not have the same degree of diminishing returns as the 
parallel design; the cluster-crossover design is highly 
efficient and should be considered when bidirectional 
designs are feasible.16 Rather than reducing the 
duration of a study to avoid excessive cluster sizes, 
researchers should consider using a longitudinal 
design: by breaking up the total trial duration (and, 
thus, the total cluster size) into a series of repeated 
measures, the required number of clusters may be 
substantially reduced.16

Limitations
We have focused on the number of clusters and the 
number of observations in each cluster. We have 
mentioned financial costs, but not considered them 
directly. Nor have we considered costs to society and 
the ethical implications for participants. When faced 
with a costly intervention, researchers could consider 
using unequal allocation ratios; we have focused 
on designs with 1:1 allocation ratios and have not 
examined power or precision curves in the case of 
unequal allocation. Finally, our sample size formulas 
assumed a relatively large number of clusters; when 
the number of clusters is small, it is commonly 
recommended to add one cluster to each arm in the 
case of a 5% significance level to account for the use 
of critical values from the normal, rather than the t, 
distribution.4

Conclusions
Decisions about the number of clusters and the cluster 
sizes should be made concurrently, not independently. 
Funders should carefully consider whether striving for 
a notional level of power (such as 90%) is good use of 
public money and should encourage researchers to 
show that their cluster trial has been designed so that 
all observations make a material contribution.
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