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Abstract

The aim of this thesis is the development and the application
of econometric models with time-varying parameters in a policy
environment.

The popularity of these methods has run in parallel with advances in
computing power, which has made feasible estimation methods that
until the late ‘90s would have been unfeasible. Bayesian methods, in
particular, benefitted from these technological advances, as sampling
from complicated posterior distributions of the model parameters became
less and less time-consuming. Building on the seminal work by Carter
and Kohn (1994) and Jacquier, Polson, and Rossi (1994), bayesian
algorithms for estimating Vector Autoregressions (VARs) with drifting
coefficients and volatility were independently derived by Cogley and
Sargent (2005) and Primiceri (2005).

Despite their increased popularity, bayesian methods still suffer from
some limitations, from both a theoretical and a practical viewpoint.
First, they typically assume that parameters evolve as independent
driftless random walks. It is therefore unclear whether the output
that one obtains from these estimators is accurate when the model
parameters are generated by a different stochastic process. Second, some
computational limitations remain as only a limited number of time series
can be jointly modeled in this environment. These shortcomings have
prompted a new line of research that uses non-parametric methods to
estimate random time-varying coefficients models. Giraitis, Kapetanios,
and Yates (2014) develop kernel estimators for autoregressive models
with random time-varying coefficients and derive the conditions under
which such estimators consistently recover the true path of the model
coefficients. The method has been suitably adapted by Giraitis,
Kapetanios, and Yates (2012) to a multivariate context.

In this thesis I make use of both bayesian and non-parametric methods,
adapting them (and in some cases extending them) to answer some of
the research questions that, as a Central Bank economist, I have been
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tackling in the past five years. The variety of empirical exercises proposed
throughout the work testifies the wide range of applicability of these
models, be it in the area of macroeconomic forecasting (both at short
and long horizons) or in the investigation of structural change in the
relationship among macroeconomic variables.

The first chapter develops a mixed frequency dynamic factor model
in which the disturbances of both the latent common factor and of
the idiosyncratic components have time varying stochastic volatility.
The model is used to investigate business cycle dynamics in the euro
area, and to perform point and density forecast. The main result is
that introducing stochastic volatility in the model contributes to an
improvement in both point and density forecast accuracy.

Chapter 2 introduces a nonparametric estimation method for a large
Vector Autoregression (VAR) with time-varying parameters. The
estimators and their asymptotic distributions are available in closed
form. This makes the method computationally efficient and capable
of handling information sets as large as those typically handled by
factor models and Factor Augmented VARs (FAVAR). When applied
to the problem of forecasting key macroeconomic variables, the method
outperforms constant parameter benchmarks and large Bayesian VARs
with time-varying parameters. The tool is also used for structural
analysis to study the time-varying effects of oil price innovations on
sectorial U.S. industrial output.

Chapter 3 uses a bayesian VAR to provide novel evidence on changes
in the relationship between the real price of oil and real exports in
the euro area. By combining robust predictions on the sign of the
impulse responses obtained from a theoretical model with restrictions
on the slope of the oil demand and oil supply curves, oil supply and
foreign productivity shocks are identified. The main finding is that from
the 1980s onwards the relationship between oil prices and euro area
exports has become less negative conditional on oil supply shortfalls
and more positive conditional on foreign productivity shocks. A general
equilibrium model is used to shed some light on the plausible reasons for
these changes.

Chapter 4 investigates the failure of conventional constant parameter
models in anticipating the sharp fall in inflation in the euro area in 2013-
2014. This forecasting failure can be partly attributed to a break in the
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elasticity of inflation to the output gap. Using structural break tests
and non-parametric time varying parameter models this study shows
that this elasticity has indeed increased substantially after 2013. Two
structural interpretations of this finding are offered. The first is that the
increase in the cyclicality of inflation has stemmed from lower nominal
rigidities or weaker strategic complementarity in price setting. A second
possibility is that real time output gap estimates are understating the
amount of spare capacity in the economy. I estimate that, in order
to reconcile the observed fall in inflation with the historical correlation
between consumer prices and the business cycle, the output gap should
be wider by around one third.
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Chapter 1

Short-term GDP forecasting with a
mixed frequency dynamic factor
model with stochastic volatility

1.1 Introduction

The conduct of monetary and fiscal policy relies on the timely assessment of current
and future economic conditions. However, the task of providing a timely picture of
the cyclical position is hindered by the publication lag of crucial economic indicators.
GDP data, for example, are usually published with a significant delay both in the
US and in the euro area. Important quantitative monthly indicators, like industrial
production indexes, suffer from a similar publication delay. Survey data, on the
other hand, provide very timely information as they are published roughly at the
end of the reference month. Unfortunately, forecasts based on qualitative data
only are known to be much less reliable than predictions based on quantitative
information, see Banbura and Runstler (2011). The econometric literature has
progressed significantly in the field of short-term forecasting in the past decade, and
a number of tools have been developed, capable of dealing with the asynchronous
timing of data releases, integrating data at different frequencies and dissecting the
information content of monthly releases for tracking quarterly variables. Small and
large scale factor models, in particular, have become the workhorse for short-term
forecasting. Mariano and Murasawa (2003, henceforth MM03), building on the
coincident indicator developed by Stock and Watson (1989), have proposed a unified
framework for modeling quarterly GDP together with monthly indicators in a small
scale factor model. The approach has recently been extended by Camacho and Perez-
Quiros (2010) to accommodate real time issues and different GDP releases. On the
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DYNAMIC FACTOR MODEL, STOCHASTIC VOLATILITY

large data side, research by Giannone, Reichlin, and Small (2008, henceforth GRS),
Angelini, Camba-Mendez, Giannone, Reichlin, and Runstler (2011) and Banbura
and Modugno (2010) has documented the predictive content of a large number of
indicators for GDP growth. These models are nowadays used on a regular basis to
inform decision makers both at Central Banks as well as in private institutions.1

Although the literature has moved very rapidly, there are still some gaps between
the demands posed by policy makers and the answers that the models discussed
above can provide. In particular, policy makers have become more and more
interested in having not only point forecasts, but also a model based assessment
of the uncertainty surrounding the outlook. This is testified by the number of
Central Banks that have started publishing fan charts and confidence bands around
their medium/long term forecasts (Bank of England, Bank of Canada, Norges
Bank, South Africa Reserve, the Sveriges Riksbank, the Bank of Italy and the
US Fed). Despite the growing preference for a probabilistic assessment of economic
projections, however, the focus of short-term forecasting models is still on point
forecasts.

Another open issue relates to parameter instability. As economic systems evolve
and are hit by large shocks, the link between different indicators is likely to change
over time. The issue of forecast failure in the presence of structural breaks, which has
been explored extensively in the case of points forecasts, has been recently extended
to density forecasting. In particular Jore, Mitchell, and Vahey (2010) show that
changes in the underlying data generating process can severely worsen the accuracy
of density forecasts produced with models with constant parameters. Building on
an intuition that dates back to Sims (1993), Clark (2011) finds that allowing for
stochastic shifts in the volatility of the shocks significantly increases the accuracy of
density forecast produced by a BVAR.

In this paper we take stock of these issues and develop a mixed frequency small
scale factor model that is suitable for producing density forecasts and that allows for
time variation in some of the parameters. We start off with the basic setup of MM03
and twist it in two directions. First, we cast the model in a Bayesian estimation
framework, which makes the model suitable for producing density forecasts. Second,
following Clark (2011), we extend the model to allow for random shifts in the
volatility of the underlying shocks.2

1An alternative approach to short-term forecasting with mixed frequency data is based on the
MIDAS regressions introduced by Ghysels, Santa-Clara, and Valkanov (2004), see e.g. Clements
and Galvão (2008), Foroni and Marcellino (2014) and Marcellino and Schumacher (2008) for
macroeconomic applications. Mixed frequency VARs provide a third option, see e.g. Kuzin,
Marcellino, and Schumacher (2011).

2See Baumeister, Liu, and Mumtaz (2013), Del Negro and Otrok (2008) and Korobilis (2013)
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After showing how to estimate the model we turn to an empirical application in
which we use a small number of monthly indicators to predict quarterly GDP growth
in the euro area. We present three sets of results. First we show how macroeconomic
releases not only improve point forecast accuracy but also increase the precision of
density forecasts and reduce the width of forecast intervals. Second, we illustrate
how, in a given quarter, our new tool can be applied not only to interpret the news
content of monthly releases, like in Banbura and Modugno (2010), but also to assess
how much confidence the model places on the revisions implied by the release of
monthly indicators. Third, we design a (pseudo) real time out of sample forecasting
exercise and evaluate both the point and density forecasts produced by the model.
In line with Clark (2011) we find that the introduction of stochastic volatility leads
to an improvement in both point and density forecast accuracy.

The paper is structured as follows. In section 2.2 we describe the model. In
section 1.3 we discuss the main steps of the Gibbs sampler used for simulating
the posterior distribution of the parameters. Section 1.4 presents the empirical
application, with robustness checks discussed in 1.5. Section 1.6 concludes. An
Appendix contains additional technical details and information.

1.2 The model

Let Yq,t be a quarterly series, which can be seen as a monthly variable with its value
associated to the third month of the quarter and missing observations in the first
two months, and Ym,t a vector of k monthly series Ymj,t, for j = 1, 2, . . . , k (from this
point onwards we use the convention that whenever we write mj we mean the jth
element in the vector of monthly variables, for j = 1, 2, . . . , k). Now, as in MM03,
let Yq,t be the geometric mean of a latent random variable Y ?

qt such that:

lnYq,t =
1

3
(lnY ?

q,t + lnY ?
q,t−1 + lnY ?

q,t−2) (1.1)

Filtering both sides with the filter (1−L3), after some simple manipulation yields:

yq,t =
1

3
y?q,t +

2

3
y?q,t−1 + y?q,t−2 +

2

3
y?q,t−3 +

1

3
y?q,t−4 (1.2)

where small case letters indicate growth rates over the previous three months:
yq,t = ∆3lnYq,t. We assume a dynamic (single) factor3 model for the latent process

for examples of Bayesian dynamic factor models with stochastic volatility. In their models they do
not handle mixed frequency data.

3The use of more than one common factor does not pose any additional technical difficulty as
it would simply result in an enlargement of the state vector in the State Space representation of
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y?q,t and the monthly observed variables ym,t, that is:(
y?q,t

ym,t

)
=

(
α?1

α2

)
+

(
βqft

βmft

)
+

(
uq,t

um,t

)
(1.3)

Since the variable y?q,t is not observed, the model can be rewritten in terms of the
observable variable yq,t using the identity (1.2), resulting in the following system of
measurement equations:(

yq,t

ym,t

)
=

(
α1

α2

)
+

(
β1(1

3
ft + 2

3
ft−1 + ft−2 + 2

3
ft−3 + 1

3
ft−4)

β2ft

)
+ (1.4)(

1
3
uq,t + 2

3
uq,t−1 + uq,t−2 + 2

3
uq,t−3 + 1

3
uq,t−4

um,t

)

where α1 = 3α?1.
The law of motions of the factor and of the the idiosyncratic disturbances of the

quarterly and monthly variables are described by the following:

Φf (L)ft = vte
λf,t/2 (1.5)

Φq(L)uq,t = εq,tσqe
λq,t/2 (1.6)

Φmj(L)umj,t = εmj,tσmje
λmj,t/2 j = 1, . . . , k (1.7)

where vt, εq,t and εmj,t are uncorrelated N(0,1) and the Φi(L) polynomials are lag
polynomials of order pi:

Φi(L) = 1− φi1L− φi2L2 − · · · − φipiL
pi (1.8)

for i = f, q,mj. The log-volatilities λi,t follow a driftless random walk:

λi,t = λi,t−1 + θi,tσλ,i θi,t ∼ N(0, 1) (1.9)

for i = f, q,mj, and are assumed to be independent across equations.4 A more
compact state space representation of the model is the following:

yt = Fµt (1.10)

µt = Hµt−1 + ηt ηt ∼ N(0, Qt) (1.11)

Λt = Λt−1 + ζt ζt ∼ N(0,Ξ) (1.12)

the model. The case of two factors is discussed theoretically and empirically in the Appendix.
4In the empirical application we consider as a robustness check an alternative specification in

which the stochastic volatilities evolve as an AR(1).

17



1.DYNAMIC FACTOR MODEL, STOCHASTIC VOLATILITY

where yt collects both quarterly and monthly variables, the state vector µt includes
the unobserved factor ft and the idiosyncratic components (uq,t and um,t), the
matrix F collects the factor loadings, H collects the autoregressive parameters of the
unobserved factors and of the idiosyncratic components, the time varying variance
matrix Qt is a diagonal matrix with elements eλf,t , σ2

qe
λq,t , σ2

me
λmj,t , Λt is the vector

of drifting volatilities, Ξ is a diagonal matrix collecting the variances of the log-
volatilities disturbances.

This model nests the one proposed by MM03, which can be recovered by shutting
off the drifting volatilities, that is by setting Λ0 = 0 and Ξ = 0. In this case the
matrix Qt is replaced by a time invariant matrix, Q.

To identify the model parameters some restrictions are placed. First, the scale of
the factor loadings and of the factor cannot be separately identified, so we restrict
the variance of the errors of the common factors to be 1 (see equation 1.5). Second,
like Del Negro and Otrok (2008), we fix to zero the initial condition of the stochastic
volatilities.

1.3 Model Estimation

The model is estimated with Bayesian methods using a Metropolis within Gibbs
sampling procedure. The algorithm consists of six blocks, which we briefly describe.
More details on the sampler can be found in the Appendix.

1.3.1 Steps 1 and 2: drawing F and the time constant

elements of Qt

Since the model disturbances are uncorrelated, elements of the F matrix can be
drawn row by row (equation by equation). Take the ith measurement equation:

yi,t = F (i)µt = β(i, L)ft + Φi(L)−1εi,tσie
λi,t/2 (1.13)

Conditioning on ft, Φi(L) and λi,t, this is a standard regression with autocorrelated
and heteroscedastic disturbances. Pre-multiplying by Φi(L) and dividing by eλi,t/2

one obtains a standard regression model with homoscedastic, uncorrelated residuals.
Positing a Normal-gamma conjugate prior, the conditional posterior for β(i, L) and
σi is also Normal-gamma.
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1.3.2 Step 3: drawing H

The parameters in the transition matrix H can also be drawn row by row. Take the
ith transition equation:

µi,t =

pi∑
j=1

φjµi,t−j + ηi,t (1.14)

Conditioning on µi,t and on the ith element of the Qt matrix (qi,t), this is a regression
with heteroscedastic residuals. The residuals can be whitened by dividing by qi,t.
Positing a Normal prior for the regression coefficients the conditional posterior is
also Normal.5

1.3.3 Step 4 and 5: drawing the stochastic volatilities

There are a number of methods for drawing the stochastic volatilities λi,t and the
related variances σλ,i. We employ the Jacquier, Polson, and Rossi (1994) algorithm,
which involves drawing from a log-normal density and a Metropolis acceptance step.
Details on the algorithm can be found in Cogley and Sargent (2005), Appendix
B.2.5.

1.3.4 Step 6: drawing µt

Conditioning on all the other parameters and on the data, draws of the state vector
are obtained via the disturbance smoother proposed by Koopman and Durbin (2003).

1.4 Empirical application: short-term forecasts of

euro area GDP

We apply the model to the problem of forecasting euro area GDP growth at short
horizons. Our information set consists of nine indicators, namely our target variable,
which is the rate of growth of quarterly GDP, two Industrial Production indicators
(the total index and the index for the Pulp and Paper sector), four surveys (the
Germany IFO Business Climate Index, the Composite Purchasing Manager Index
for the euro area, the Michigan Consumer Sentiment for the US, the euro area
Economic Sentiment Indicator), the bilateral US dollar euro exchange rate and a
the difference between the 3 months and the 10 years spread on US Government
Bonds. Data start in January 1991 and end in May 2011. The indicators, listed in

5When drawing from the conditional posterior we discard explosive roots.
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Table 1.1, were selected from a large pool of candidate series adapting the selection
algorithm used by Camacho and Perez-Quiros (2010) to our Bayesian setting, see the
Appendix for details. The empirical specification of the model also follows closely
the one proposed by Camacho and Perez-Quiros (2010). In particular we use a
single factor that summarizes the current state of the business cycle. In this setting
the Industrial Production indexes and the interest rate spread load on the common
factor contemporaneously. Survey data, on the other hand, are treated as if they
were in phase with the year-on-year growth rate of the Industrial Production index,
therefore loading a 11 terms moving average of the common factor.6 We also let
the bilateral exchange rate enter the model in year-on-year percentage growth, the
rationale being that pricing to market is likely to buffer temporary exchange rate
short-term movements with a variation in profit margins so that only more persistent
changes impact on economic growth.

Our empirical analysis proceeds as follows. After a brief discussion on the
priors, we present estimates obtained on the full sample, to gauge the relative
contributions of the various indicators to the common factor and also to evaluate if
the model actually captures any significant shifts in the variance of the common and
idiosyncratic errors. We then turn to three empirical exercises. In the first one we
discuss the typical situation of a forecaster that is required to update her forecasts
at each new data release. In this context we replicate the analysis of news performed
by Giannone, Reichlin, and Small (2008) and evaluate how point forecast accuracy
is affected by data releases. We take advantage of the Bayesian nature of our model
and extend GRS results to examine how new data affects density forecast accuracy
and the width of forecast intervals. We then turn to a different concept of news,
introduced in the literature by Banbura and Modugno (2010). We show how our
set up adds a new dimension to their tool, as one can use draws from the posterior
to derive a measure of uncertainty around the news content of each data (or block
of data) release. Finally, we conduct an out-of-sample forecast exercise in which we
assess the point and density forecasting performance of our model.

1.4.1 Priors

To set the prior hyperparameters we retain a three years training sample. Since
6Details on the state space matrices for this specification can be found in the Appendix. We also

experimented with a different specification in which we relaxed this restriction and let the survey
indicators load freely on 12 distributed lags of the common factor. This modification worsened
slightly the results. Our intuition for this is that as the model is already heavily parametrized
restricting the model space leads to more efficient estimates. Also, notice that our setup allows for
serial correlation in the idiosyncratic components, so that any phase shift induced by our restriction
will be picked up by the AR(2) structure of the idiosyncratic terms.
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the model features an unobserved component that is common to the indicators, we
obtain an initial estimate of the common factor ft as the cross-sectional average
of the monthly indicators, f̂t, over this training sample. Conditioning on this, an
estimate of the factor loadings is obtained with an OLS regression of the indicators
on f̂t. The prior distributions of the factor loadings are then centered around this
β̂OLS with a large variance, equal to 103V (βOLS). By regressing the residuals of these
regressions on their first two lags we also obtain an estimate of the autoregressive
parameters of the idiosyncratic shocks to the observable indicators. The prior
distributions of the φ are then centered on this estimate and their variance is set
to 103V (φOLS). Similarly, we use this training sample estimate of the factor f̂t to
set the prior mean and variance of φf,1, φf,2. Finally, we need to set the degrees of
freedom and the scales of the prior inverse-Gamma distributions for the variances of
the idiosyncratic shocks. For the constant terms, σ2

q and σ2
m, we set the degrees of

freedom to 1 and the scale parameters to the squared sum of the residuals of the OLS
estimates obtained on the training sample data. For the time varying volatilities,
σ2
λ,i we adopt a tighter belief, due to the fact that our sample is relatively short and

that this is the only source of time variation in the model. Following Del Negro and
Otrok (2008), we parametrize the degrees of freedom of these prior distributions as
a fraction of the actual sample size and set it to T

10
(so that the weight of the prior

relative to that of the data in determining the posterios is 1 to 10) and set the scale
parameter to 0.1. We check the robustness of these assumptions in Section 1.5. The
Gibbs sampler is initialized at the prior means.

1.4.2 Full sample results: loadings and volatilities

A first evaluation of the relative importance of the indicators that are included in
the model is given by the full sample posterior estimates of the factor loadings (β),
which are shown in Table 1.2. The highest posterior median weight (0.49) is given
to the Industrial production index, followed by GDP (0.38) and by the Industrial
production index in the Pulp and Paper sector. Survey data receive roughly the
same weight (around 0.1), with a slight prevalence given to the PMI and the weakest
contribution coming from the Michigan US Consumer Survey. The annual rate of
change of the euro-dollar exchange rate and the US spread have a counter-cyclical
effect on GDP. The sign of these two parameters is easily rationalized by considering
that these indicators typically lead the business cycle, so that their correlation with
current cyclical conditions (measured by the common factor) is negative.7

7An alternative way to look at the relative contribution of the indicators to the unobserved
factor is through the Kalman filter weights derived in Koopman and Harvey (2003). The results

21



1.DYNAMIC FACTOR MODEL, STOCHASTIC VOLATILITY

To see whether the model picks up any significant time variation in the variances
of the common and idiosyncratic errors we plot the posterior median of selected
members of Qt together with their 68% confidence bands (Figure 1.1). Starting
from the common factor (which can be seen as a measure of the underlying business
cycle) the model identifies two shifts in volatility over the past twenty years. The
former is a temporary increase at the beginning of the past decade, roughly around
the brief recession experienced by the world economy in 2001. The latter, more
persistent, starts between 2007/2008, and peaks in 2008, during the recent Great
Recession. We next look at the hard indicators that receive the largest weights in the
estimation of the common factor (GDP and IP). Visual inspection of the variances
of the idiosyncratic shocks to these two indicators reveals that volatility has been
rather stable over most of the sample, with the exception of the latest recession,
when it surged significantly until 2008 to fall thereafter. Finally, the variance of
the US spread shows a slight upward trend during the Nineties and a much more
persistent increase during the 2007/2009 recession, consistently with the financial
origins of the recent economic downturn.

1.4.3 News and forecasts 1

Given the mixed-frequency nature of our model, GDP forecasts are continuously
updated as new monthly data become available. The impact of data releases on
forecast revisions can be assessed using the methodology developed by GRS. To
clarify the spirit of the exercise, the concept of vintage needs to be introduced. The
Ωvj vintage is defined as:

Ωvj = {Xit/vj ; t = 1, . . . , Tivj , i = 1, . . . , n} (1.15)

that is the information set Ωvj is composed of n indicators available from month
1 to month Tivj , where the date for which the last observation is available varies
across indicators. Within our model, a GDP forecast is obtained as an expectation
of future GDP conditional on this information set.

Now consider a new vintage Ωvj+1
, which differs from the previous one for the

release of a new observation of the ith indicator:

Ωvj+1
− Ωvj = Xit/vj+1

(1.16)

confirm the findings in Banbura and Runstler (2011) indicating that in the months of the quarter
when the dataset is “balanced", over half of the estimate of (unobserved) real activity growth
depends on hard indicators, with soft indicators playing a role in the months when neither GDP
nor Industrial Production are available.
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The updated information entails a change in the conditioning set and, consequently,
a forecast revision. Notice that we work with final data vintages in a pseudo real
time context, that is, we do not consider data revisions but only new end of sample
releases. This means that, starting from a given point in time, we let the information
set gradually expand, one indicator at the time.

Data releases can occur at different intervals within the month but, for simplicity,
we set up a stylized calendar in which the order of release of the various indicators
is kept fixed within the month, see Table 1.3. From a given point in time we start
enlarging our dataset by including new data on Industrial Production, typically
published around the middle of each month. In the second month of each quarter,
right after Industrial Production data are made available, GDP data are included in
the information set. From the third week onwards survey data start being published
by various sources. Surveys cannot be clearly ranked in terms of timeliness, since
their release dates sometimes cross each other. We use the convention to place the
IFO index release first, followed by the PMI, the Economic Sentiment Indicator and
the US Michigan Consumer index. Finally we include exchange and interest rates,
which enter the model as monthly averages of daily data.8

GRS evaluate how efficiently their large factor model incorporates data news in
terms of Mean Squared Errors (MSE) reduction. Indeed, since successive vintages
carry more information, one can reasonably expect to see a systematic fall in the
forecast error variance as indicators are updated. Exploiting the Bayesian nature
of our model we add two dimensions to this metrics. First, we look at the width of
the forecast distribution at different horizons and investigate whether it shrinks as
the information set expands. In a way this gives us some indication to whether the
model forecast gains confidence as new information accrues and the forecast horizon
decreases.

Second, we move beyond point forecast accuracy and evaluate the evolution of
density forecast accuracy. To this end we use the log-score, that is the logarithm of
the predictive density generated by the model evaluated at the outturn of the series.

We consider releases from January 2006 to May 2011 and forecast each quarter
from the first month of the quarter to the first month of the subsequent one, that
is we compute three nowcasts and one backast. For each month we update the
vintages sequentially according to our stylized calendar, sample 1000 draws from the
posterior, run the Kalman filter and smoother and, for each posterior draw, produce
nine GDP estimates, corresponding to the release of each of the nine indicators, and
consequently nine forecast errors. We compare our model forecasts with those of a

8This timing convention, which is the same used by GRS, somewhat penalizes financial variables
as daily information on the dollar-euro and on the spread are disregarded.
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naive constant growth model.9

In Figure 1.2 we show the evolution of the MSE within the month, relative
to the MSE obtained with the naive model. In the first month the MSE falls
monotonically within the month, albeit at a very slow rate. From the first to
the second month there is a discrete jump corresponding to the publication of the
Industrial production index. In the second month a large fall in the MSE occurs
at the publication of the GDP for the previous quarter and the impact of survey
and financial indicators weakens. From the third month onwards only Industrial
production provides some further refinement of the GDP estimate. Also notice
that throughout the forecast cycle the MSE ratio remains below one, reflecting the
valuable content of conjunctural indicators. We next assess the evolution of forecast
confidence over the forecasting cycle, as measured by the standardized interquartile
range, that is the difference between the 75th and the 25th percentiles standardized by
the median.10 The evolution of the interquartile range over the forecast cycle, shown
in Figure 1.3, reveals a clear downward tendency in the dispersion of GDP estimates,
indicating that the confidence that the model places on its GDP forecasts increases
as conjunctural information accrues. Moreover, soft data play an important role in
driving the reduction in forecast dispersion, especially at the very beginning of the
forecast cycle when a strong fall in forecast uncertainty occurs as the first surveys
become available.

Finally, in Figure 1.4 we show the evolution of the log-score (crossed line) together
with the log-score obtained with the constant growth model (dotted line). Density
forecast accuracy monotonically increases at the release of each new indicator,
indicating that as the forecast horizon shortens the model assigns (ex ante) a
progressively higher probability to the actual GDP releases.

1.4.4 News and forecasts 2

In a recent paper Banbura and Modugno (2010) derive an alternative way to map
directly news into forecast revisions. They motivate this alternative measure of
news by noticing that in factor models the forecast of the unobserved factors
is a weighted average of present and past observable indicators, with weights
endogenously assigned by the Kalman smoother. When the information set is

9GRS provide evidence that the precision of the signal increases within the month as new data
are released in both an in-sample and an out of sample exercise. Due to computational constraints
we provide evidence only on the in-sample effect of news.

10We choose the interquartile range since it has some desirable statistical properties, in particular
it is a robust statistics (i.e. it is not affected by outliers) and in a symmetric distribution it equals
the median absolute deviation.
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enriched by a new release, the Kalman smoother incorporates the new information
by revising the weights assigned to all the available indicators making it impossible
to discern whether an improvement in forecast accuracy is due to the new release or
to a revision of the weights assigned to other indicators. They therefore devise a way
to dissect more precisely the contribution of each release to forecast revisions. Their
method is of particular interest in cases when, instead of considering the release of
a single indicator, a whole block of data is released and the contribution of the news
content of each single indicator needs to be assessed.

Our setup, by providing a quantification of the the uncertainty surrounding the
news content of a new data (or block of data) release, provides a more complete
picture of the forecast revision implied by the intra-monthly information flow. We
illustrate this point using as a case study the GDP forecast of the second quarter
of 2010. We start nowcasting this GDP release in the first half of April, when the
February Industrial Production numbers become available. We update our forecasts
twice a month until the first half of August, right before the first GDP estimate is
published. The first by-monthly update coincides with the release of a string of
hard data, the second with the publication of survey and of the monthly averages
of financial indicators. The resulting forecast updates are shown in Figure 1.5. The
bars below the dotted line depict the contribution of the release (the news) of each
new indicator computed according to Banbura and Modugno methodology.11

At the beginning of the forecast cycle (mid-April) the prediction of the model
stands quite far from the final outcome, as the model envisages barely positive
growth against a GDP growth outturn of around 1%. Between the end of April
and the middle of May positive signals coming from the survey first, and from
Industrial production and the release of GDP data for Q1 afterwards, push the
forecast progressively upwards. In May a false signal sent by the release of survey
data depresses again GDP growth expectations. From June onwards, positive news
from both soft and hard data set the model forecasts on the right track and GDP
predictions start fluctuating more or less around 1%.

To complement the analysis with a measure of uncertainty on both (1) the overall
revision implied by the release of an entire data block and (2) the contribution of
each indicators to such revision, at each by-monthly update of our information set
we draw 1000 forecasts from the predictive density and map each of these forecasts
onto the news. In Figure 1.6 we report estimated kernel densities of the overall
revision to the forecast due to the release of ‘hard’ (upper panel) and ‘soft’ (lower
panel) data between April and July. To show what the individual contributions

11In order to evaluate the direct effect of news it is assumed that model parameters are unchanged
between vintages.
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look like we report in Figure 1.7 similar densities for two selected indicators, namely
Industrial production and the Economic Sentiment Indicator, which appear to be
responsible for most of the revisions over the forecast cycle.

From the comparison of these distributions with the information provided in
Figure 1.5, the importance of having a tool to identify the credibility of forecast
updates emerges quite clearly. In the second half of April and May, for example,
the model picks up first a strong upward, then a strong downward revision due
to the release of survey data, which can be largely attributed to news in the
Economic Sentiment Indicator. However, results in Figures 1.6 and 1.7 show
that in both months the overall revisions and the contribution of the Economic
Sentiment Indicator to such revisions are measured with considerable uncertainty,
calling for some caution in the interpretation of these forecast updates. In June and
in July, on the other hand, as monthly information accumulates and the forecast
horizon shortens, the dispersion of estimated revisions and contributions shrinks
considerably.

1.4.5 Out of sample forecasting performance

Last, we conduct a (pseudo) out of sample forecast exercise. The design of the
exercise is similar in spirit to the sequence of forecasts updates discussed in the
previous section. For each quarterly GDP release we provide sixteen forecasts,
starting from six months before the end the quarter of interest to one month
afterwards (backcast). Taking as a target, for example, the third quarter of each
year, we produce the first forecast in March and the last one in October. We update
each of these projections twice a month, when, respectively, hard and soft data are
released. The forecast exercise runs from the first quarter of 2006 to the last quarter
of 2010. To appraise the contribution of the stochastic volatilities we contrast the
forecasting performance of the proposed model with that of a restricted version in
which the variance of the disturbances is constant.

Starting from point forecast evaluation, the evolution of the Root Mean Squared
Forecast Errors (RMSFE) over the forecast cycle of the two specifications are shown
in Figure 1.8. RMSFE are reported as a ratio to the RMSFE attained by a constant
growth benchmark. Two observations are in order. First, time variation in the
variances increases forecast accuracy, since the model with stochastic volatility
has lower relative RMSFE over most of the forecast horizon, from the beginning
to the first two nowcasts. From the end-month update of the second nowcast
to the backcast, when more recent industrial production figures are released, the
two models deliver instead broadly similar results. Second, the RMSFE of both
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models decline as the flow of information accumulates, yet the model with stochastic
volatility exploits more efficiently early data releases and starts outperforming the
naive benchmark (i.e. its RMSFE falls below 1) earlier in the forecast cycle.

Turning to density forecast evaluation, we look first at coverage rates, that is the
frequency with which the actual outcome falls within a given confidence interval. If
the model produces accurate density forecast actual GDP growth should fall 10%
of the times within our 10% confidence interval, 20% of the times within our 20%
confidence interval and so forth. Uncertainty can be measured through a t-test on
the null hypothesis that the actual coverage equals the nominal one.12 We look at
backcast (projections one month after the end of the quarter), nowcast (projections
during the quarter), and 1 step ahead forecast (projections for the next quarter).
In Table 1.4 we report the coverage rate for the model without stochastic volatility.
In some cases this specification produces far too wide confidence intervals. This is
especially true in the case of the nowcast, when the test frequently rejects. Table
1.5 shows that adding stochastic volatility yields gains in density forecast accuracy
as confidence intervals are usually well calibrated, especially when nowcasting.

Finally, we examine the normalized probability integral transforms (PITS) of
the forecast errors. According to the testing framework developed by Berkowitz
(2001), if the model forecast density matches the density that generated the data,
the PITS should be independent standard normal. We follow Clark (2011) and test
these conditions (zero mean, unit variance and no serial correlation) separately and
jointly.

The p-values of the tests are presented in Table 1.6, in the top panel for the
constant volatility model and in the bottom one for the model with stochastic
volatility.13 For each month we consider a mid-month and an end-month update,
so that we have six different results for the nowcast and two results for the
backast. Despite a few rejections of the individual tests, for both models the joint
Normality/Independence hypothesis cannot generally be rejected for the nowcast.
For the backast, again, the inclusion of stochastic volatility induces some gains, as
the PITS do not display any serial correlation and the hypothesis that they are
jointly Normally and Independently distributed cannot be refuted.

12As emphasized by Clark (2011) this test is slightly imprecise as it abstracts from parameter
uncertainty

13The the testing framework developed by Berkowitz (2001) for the PITS applies to one step
ahead forecast. We therefore consider only backast and nowcast, since forecasting into the next
quarter actually implies two steps ahead predictions of GDP.
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1.5 Robustness checks

We check the robustness of the results to some of our modeling choices. We start
from assessing how sensitive the predictive accuracy of the model is to the choice
of the parameters of the prior distributions. Since the priors on the factor loadings
and on the AR coefficients are virtually flat, we concentrate on those of the log-
volatilities. We experiment with two alternative prior scale parameters obtained by
multiplying the baseline scale parameter by, respectively, 4 and 1

4
. This should give

us a rough indication of whether further tightening or loosening this prior changes
the results. We repeat the out of sample forecast exercise and report in the top panel
of Figure 1.9 the resulting RMSFE (labeled scale1 and scale2, respectively), together
with the RMSFE of the baseline specification. The plot suggests that variations in
the prior scales does not result in substantial changes in the model performance.
Similar experiments conducted by altering the degrees of freedom (not reported for
the sake of brevity) confirm these results.

As a second robustness check we modify the law of motion of the the stochastic
volatilities by letting them follow an AR(1) process:

λi,t = αiλi,t−1 + θi,tσλ,i θi,t ∼ N(0, 1) (1.17)

For the parameter αi we assume a Normal prior and try two values for the prior
mean, 0.5 and 0.9, while keeping the prior variance at 1000. Again, the RMSFE
attained by these two specifications do not differ significantly from those of the
model in which the stochastic volatilities follow a random walk, as shown in the
bottom panel of Figure 1.9.

We have also experimented with a model featuring two factors like in Frale,
Marcellino, Mazzi, and Proietti (2011). In our application, however, the second
factor turned out not to be well identified, as all the estimated loadings were not
different from zero.

1.6 Conclusions

This paper introduces a mixed frequency factor model with stochastic volatility,
and develops a Bayesian procedure for its estimation. The model deals with all
the challenges faced by a forecaster that needs to produce updated quarterly GDP
forecasts at each relevant data release, like data sampled at different frequencies
and ragged-edge data. Differently from existing linear models, our setup allows for
random shifts in the volatility of the errors.
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The method is applied to the problem of forecasting euro area GDP. The
Bayesian setup allows an assessment of the uncertainty around the news content
of monthly releases of hard, soft and financial indicators. Consistently with findings
in the literature, we find that forecast accuracy improves significantly in connection
with the release of monthly data as the forecast horizon decreases. Also, forecast
uncertainty (measured by the width of the forecast distribution) progressively
decreases as more information on the quarter of interest becomes available. Out-of-
sample evidence indicates that the introduction of stochastic volatility contributes to
higher point forecast accuracy and tends to yield more precise confidence intervals.
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Table 1.1: Variable selection summary

Indicator Country
GDP Euro Area
Industrial Production Euro Area
Industrial Production - Pulp/paper Euro Area
Business Climate - IFO Germany
Economic Sentiment Indicator Euro Area
PMI composite Euro Area
dollar-euro US-Euro
10y-3m spread US
Michigan Consumer Sentiment US

Table 1.2: Factor Loadings - posterior estimates

Percentiles 25th 50th 75th
GDP 0.27 0.38 0.54
IP 0.40 0.49 0.60
IP-PULP 0.23 0.29 0.36
IFO 0.10 0.12 0.13
ESI 0.10 0.12 0.14
PMI 0.12 0.13 0.15
dollar-euro -0.08 -0.05 -0.02
US-spread -0.06 -0.04 -0.02
Michigan Consumer 0.04 0.06 0.08

Table 1.3: Stylized data release calendar

Indicator Timing Publication lag Frequency
IP 11th − 15th of month 2 Monthly
IP-PULP 11th − 15th of month 2 Monthly
GDP 1 day after IP 2 Quarterly
IFO 20th − 30th of month 0 Monthly
PMI 20th − 30th of month 0 Monthly
ESI 20th − 30th of month 0 Monthly
Michigan Consumer Last Friday of the month 0 Monthly
dollar-euro Last day of month(Monthly ave.) 0 Monthly
US-spread Last day of month(Monthly ave.) 0 Monthly
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Table 1.4: Coverage Rates - Model without Stochastic Volatility

Nom Cov Backcast Nowcast 1 step ahead
Coverage P-value Coverage P-value Coverage P-value

0.1 0.25 0.03 0.15 0.10 0.14 0.15
0.2 0.32 0.10 0.30 0.01 0.23 0.46
0.3 0.36 0.39 0.39 0.03 0.36 0.18
0.4 0.48 0.32 0.48 0.05 0.48 0.08
0.5 0.57 0.37 0.58 0.06 0.55 0.22
0.6 0.68 0.26 0.67 0.11 0.62 0.62
0.7 0.75 0.45 0.77 0.08 0.70 0.94
0.8 0.84 0.47 0.84 0.20 0.73 0.06
0.9 0.89 0.78 0.88 0.46 0.76 0.00

Table 1.5: Coverage Rates - Model with Stochastic Volatility

Nom Cov Backcast Nowcast 1 step ahead
Coverage P-value Coverage P-value Coverage P-value

0.1 0.05 0.09 0.12 0.55 0.09 0.57
0.2 0.25 0.45 0.23 0.48 0.24 0.27
0.3 0.39 0.25 0.34 0.30 0.36 0.17
0.4 0.45 0.48 0.41 0.89 0.45 0.31
0.5 0.48 0.77 0.46 0.38 0.54 0.38
0.6 0.61 0.86 0.57 0.50 0.56 0.40
0.7 0.77 0.26 0.67 0.50 0.69 0.76
0.8 0.86 0.23 0.79 0.76 0.73 0.07
0.9 0.93 0.41 0.88 0.40 0.76 0.00

Note to Tables 1.4 to 1.5. The table shows p-values for the test of the hypothesis that Nominal
and estimated Coverage Probabilites are equal.
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Table 1.6: Density forecast evaluation using the pits

Model without Stochastic Volatility
Backcast Nowcast

1 2 1 2 3 4 5 6
Mean 0.01 0.01 0.03 0.02 0.03 0.02 0.05 0.00
Variance 0.02 0.02 0.49 0.18 0.12 0.49 0.24 0.01
AR(1) 0.10 0.13 0.39 0.45 0.11 0.54 0.60 0.14
Joint 0.03 0.05 0.15 0.13 0.19 0.23 0.28 0.04

Model with Stochastic Volatility
Backcast Nowcast

1 2 1 2 3 4 5 6
Mean 0.02 0.05 0.04 0.11 0.22 0.06 0.07 0.03
Variance 0.09 0.00 0.84 0.70 0.76 0.71 0.99 0.03
AR(1) 0.43 0.48 0.13 0.15 0.81 0.70 0.48 0.52
Joint 0.25 0.26 0.07 0.21 0.67 0.22 0.31 0.17

Note to Table 1.6. The table displays p-values for the test of the hypotheses of zero mean, unit
variance, no serial correlation and joint Normality/Indipendence of forecast errors at different
horizons.

32



DYNAMIC FACTOR MODEL, STOCHASTIC VOLATILITY

Figure 1.1: Stochastic volatility for the common factor and for selected variables
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Figure 1.2: RMSE at different releases
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Note to Figure 1.2: the Figure shows the ratio of the RMSE of the factor model with stochastic
volatility to that of a naive constant growth model for each of the indicated data release. Data
releases follow the stylized calendar 1.3.

Figure 1.3: Forecast dispersion at different releases
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Note to Figure 1.3: the Figure shows the difference between the 75 and the 25 percentiles (both
scaled by the median) of the forecast distribution obtained with the factor model with stochastic
volatility updated at each data release. Data releases follow the stylized calendar 1.3.
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Figure 1.4: Log-predictive score at different releases
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Note to Figure 1.4: the Figure shows the log-predictive score of the factor model with stochastic
volatility updated at each data release and of the naive constant growth model. Data releases
follow the stylized calendar 1.3.

Figure 1.5: Forecast revisions 2010Q2
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Note to Figure 1.5: the Figure shows the by-monthly GDP forecasts revisions relative to the second
quarter of 2010 and the contributions of the new releases. The firs forecast update is at the end of
April, the last update in the middle of August.
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Figure 1.6: Revisions Density evolution 2010Q2
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Figure 1.7: Revisions Density evolution 2010Q2, contribution of selected indicators
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Note to Figures 1.6 and 1.7: The density estimation is based on a normal kernel function, using an
optimal window parameter function of number of data points. The distribution is based on 1000
draws from the predictive density.
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Figure 1.8: RMSE - baseline specification

−7 −6 −5 −4 −3 −2 −1 0 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 

 

Model with SV
Model without SV

Figure 1.9: RMSE - alternative specifications
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Note to Figures 1.8 and 1.9. The Figure shows the RMSFE obtained between the first quarter of
2006 and the last quarter of 2010. The forecast horizon goes from six months ahead to one month
after the end of the quarter of interest (backast).
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Appendix

1.A Details of the Gibbs sampler

We describe in more details the six blocks that compose our Gibbs sampler
procedure. The sampler is based on the algorithm by Del Negro and Otrok (2008)
modified to account for missing data and mixed frequencies.

1.A.1 Block 1: drawing the factor loadings βq, βh, βs

In the first block of the Gibbs sampler we draw the factor loadings. Start from the
measurement equation of the hard indicator:

yh,t = βhft + uh,t (1.18)

where the law of motion of the idiosyncratic shock is uh,t = φh,1uh,t−1 + φh,2uh,t−2 +

εh,te
λh,t/2 and εh,t ∼ N(0, σh). Since we are conditioning on all the parameters, on

the factor ft and on the stochastic volatilities λh,t we treat this as a regression with
autocorrelated and heteroscedastic residuals. Now we quasi-difference the equation
by filtering both sides with the filter 1− φh,1L− φh,1L2 and divide each observation
by eλh,t/2:

y?h,t = βhx
?
t + εh,t (1.19)

where x?t = (1 − φh,1L − φh,1L
2)ft/e

λh,t/2. We posit a Normal prior so thath the
posterior is also Normal, see Kim and Nelson (1999) for a textbook treatment.

The case of survey variables can be treated in the same way after noticing that
x?t = (1− φh,1L− φh,1L2)

∑11
j=0 ft−j/e

λs,t/2.
In the case of quarterly variables two adjustments are needed. First, since the

variable is observed only every three months only these observations can be used
for estimating the factor loading. Second, in the measurement equation an MA(4)
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regression error appears:

yq,t = βqw(L)ft + w(L)uq,t (1.20)

where w(L) = 1
3

+ 2
3
L+L2 + 2

3
L3 + 1

3
L4. Furthermore the error term ut is an AR(2)

process uq,t = φq,1uq,t−1 +φq,2uq,t−2 + εq,te
λq,t/2. We work out the variance covariance

matrix of the error terms of equation (1.20), Φ(φq,1, φq,2, σ
2
q ), which, at this step of

the sampler, can be treated as known. Then we divide each observation by eλq,t/2

and pre-multiply both sides of the equation by Φ−
1
2 to obtain a standard regression

with uncorrelated residuals. Assuming a normal prior, draws of βq are obtained
from a normal posterior.

1.A.2 Block 2: drawing φf,1, φf,2, φq,1, φq,2, φh,1, φh,2, φs,1, φs,2

To draw the AR parameters of the idiosyncratic shocks notice that, conditioning on
the state vector µt, we can treat the common factor ft and the residuals uq,t, uh,t, us,t
as known. The transition equations become standard regression problems which
can be analyzed using the same steps used for drawing the factor loadings. We
employ normal priors and rule out explosive roots by discarding draws if the roots
of φj(L) = 0 lie outside the unit circle.

1.A.3 Block 3: drawing the innovation variances σ2
f , σ

2
q , σ

2
h, σ

2
s

We again proceed by treating the transition equations one at the time. Consider a
generic element of the state vector µi,t. Its law of motion is:

µi,t = φi,1µi,t−1 + φi,2µi,t−2 + ηi,t ηi,t ∼ N(0, σ2
i e
λi,t) (1.21)

For the innovation variance σ2
i we posit an inverse-Gamma prior p(σ2

i ) = IG(ni, s
2
i ).

Since the prior is conjugate it can be interpreted as adding ni artificial observations
to the state variable µi,t. The prior embodies the belief that the sum of squared
residuals of these artificial observations equals s2

i :

s2
i =

1

ni

ni∑
t=1

(µ?t,i − φi,1µ?t−1,i − φi,2µ?t−2,i)
2 (1.22)

Given our assumption that the idiosyncratic disturbances are normal the
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posterior is also an inverse-Gamma, IG(T + ni,
nis

2
i+Td

2
i

T+ni
) where:

d2
i =

1

ni

ni∑
t=1

(µt,i − φi,1µt−1,i − φi,2µt−2,i)
2 (1.23)

The weight of the prior is therefore proportional to the prior degree of freedom
parameter ni.

1.A.4 Block 4: drawing the state vector µt

Since the model can be cast in state space draws of the state vector can obtained
via a state vector simulation smoother as in Carter and Kohn (1994) or with the
disturbance smoother proposed by Koopman and Durbin (2003). We resort to the
latter, which turns out to be slightly more efficient from a computational point of
view.

1.A.5 Block 5: drawing λi,t

To sample the stochastic volatilities λi,t notice that conditional on all parameters
and on the states µt the orthogonal innovations ηi,t/σh,i are observable. The λi,t can
then be sampled adopting the date-by-date blocking scheme developed by Jacquier,
Polson, and Rossi (1994).14.

1.A.6 Block 6: drawing σ2
h,i

The final block of the sampler involves drawing the variances of the log-volatilities.
Conditioning on the log-volatilities and postulating an inverse-Gamma prior
distribution, the σ2

h,i can also be drawn from an inverse Gamma posterior.

1.B The selection of the monthly indicators

Small scale models have their own “curse of dimensionality": since they rely on
a small set of indicators, they are prone to the criticism of potentially leaving
out relevant information compared to factor models that use hundreds of time
series. Part of the literature has, however, advocated the use of a models of small
dimensions. Bai and Ng (2008) and Boivin and Ng (2006), for example, question
the usefulness of ’too much information’ for forecasting purposes, showing that a
number of variable selection techniques (already widely used in biomedical statistics

14Details on the algorithm, which involves a Metropolis Hastings step within the Gibbs sampler,
can be found in Cogley and Sargent (2005) Appendix B.2.5
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where the number of covariates is typically very large) give encouraging results when
applied to economic time series. To make the choice of the indicators to be included
in our model as objective as possible we proceed as follows. We start by considering
a dataset of more than a hundred variables for the period 1987-2011

We then set a priori four core variables that we decide to include in the model,
which are Industrial Production for the euro area (IP), the composite Purchasing
Manager Index (PMI), the European Commission Economic Sentiment Indicator
(ESI) and the Germany IFO Business Climate Index. To select the remaining
variables, we calculate as a benchmark the percentage of GDP variance explained by
the factor computed from the core variables only, as in Camacho and Perez-Quiros
(2010), and design an algorithm for the selection of a set of additional indicators
which maximize this statistic.

1. We evaluate datasets with all core variables and one other variable at a time in
order to calculate the explained variance, and the probability that it is higher
than in the dataset with core variables only. In this way we obtain a ranking
of the other series.

2. We add a variable at a time, starting with the ones with an higher probability
to increase the explained variance with respect to the benchmark; we keep the
variable only if this probability increases. We end up with the small set of 8
variables described in the main text.

The specification we adopt follows Camacho and Perez-Quiros (2010) where surveys
are modeled as a 12 terms moving average of the unobserved factor, while hard
variables load the factor contemporaneously. This amounts to imposing that surveys
are in phase with the year on year growth rate of Industrial Production (and of the
other hard indicators).

Toget an idea of the state representation of the model while keeping notation
to a minimum we present the case of a toy model with one quarterly variable, one
hard indicator and one soft indicator in which all the idiosyncratic shocks follow an
AR(2) process. The more general case can be easily derived from this example. The
loading matrix F in the measurement equation (1.10) can be written as:

F =


βq

1
3

βq
2
3

βq βq
2
3

βq
1
3

0 0 0 0 0 0 0 1
3

2
3

1 2
3

1
3

0 0 0 0

βh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

βs βs βs βs βs βs βs βs βs βs βs βs 0 0 0 0 0 0 0 1 0


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where βq, βh and βs are the loadings of, respectively, the quarterly variable, the
hard and the soft indicators. The state vector is:

µt =
(
ft ft−1 . . . ft−11 uq,t . . . uq,t−4 uh,t uh,t−1 us,t us,t−1

)′
(1.24)

The transition matrix is:

H =



φf,1 φf,2 0 0 0 . . . 0 0 0 0 0 0 0 0 0

1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . φq,1 φq,2 0 0 0 0 0 0 0

0 0 0 0 0 . . . 1 0 0 0 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 0 0 φh,1 φh,2 0 0

0 0 0 0 0 . . . 0 0 0 0 0 1 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 φs,1 φs,2

0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 0



(1.25)

Since the idiosyncratic shocks are collected in the state vector the matrix Rt is a
(k+2) dimension zero matrix while the matrix Qt is a diagonal matrix which collects
all the variances:

Qt = diag

(
1 0 0 0 . . . σ2

qe
λq,t 0 0 0 0 σ2

he
λh,t 0 σ2

se
λs,t 0

)
(1.26)

1.B.1 The model with two factors

As a robustness check we have extend the baseline model to include a second factor,
which we model as a (restricted) ARMA(2,2) process as in Frale, Marcellino, Mazzi,
and Proietti (2011). The two monthly unobserved factors have the following reduced
form representations:

(1− ϕ11L− ϕ12L
2)f1,t = ε1t

(1− ϕ21L− ϕ22L
2)f2,t = (1− θL)2ε2t

where ε1t ∼ N(0, σ1ε) and ε2t ∼ N(0, σ2ε). Frale et al. (2009) set θ = 0.5, motivating
such restriction as a way to enhance the fit at low frequencies, see also Morton and

42



DYNAMIC FACTOR MODEL, STOCHASTIC VOLATILITY

Tunncliffe-Wilson (2004). We sketch the State Space representation of the modified
model in a simple setup with three indicators (GDP, a hard monthly variable and
a soft monthly variable). Since the presence of these extra MA terms produces a
smoother factor we drop the 12 terms moving average representation of the loadings
of the surveys in favour of a more standard contemporaneous relationship, so that
the measurement matrix F is composed of the three following blocks:

F1 =

 βq,1
1
3

βq,1
2
3

βq,1 βq,1
2
3

βq,1
1
3

βh,1 0 0 0 0

βs,1 0 0 0 0



F2 =

 βq,2
1
3

βq,2
2
3

βq,2 βq,2
2
3

βq,2
1
3

0 0

βh,2 0 0 0 0 0 0

βs,2 0 0 0 0 0 0



F3 =


1
3

2
3

1 2
3

1
3

0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0


where F1, and F2 collect the loadings on the first and second factor and F3 the
loadings on the idiosyncratic disturbances, which are also modelled as AR(2)

processes. Notice that F2 has two extra column vectors of zeros, necessary to
accommodate the MA terms in the second factor.

F = [F1, F2, F3]

We adopt the max(p, q+ 1) representation, see Durbin and Koopman (2006), which
requires the slightly more general specification of the transition equations:

µt = Tµt−1 +Rηt

where ηt ∼ (0, Qt), Qt is a 5 dimensional diagonal matrix (collecting the variances
of the 5 idiosyncratic terms, 3 for the observable indicators, 2 for the unobserved
factors) and R is a 21× 5 selection matrix. The matrix T is block diagonal with the
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following blocks:

T1 =


ϕ11 ϕ12 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 , T2 =



ϕ21 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

ϕ22 0 0 0 0 0 1

0 0 0 0 0 0 0


,

T3 =


ϕq,1 ϕq,2 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 , T4 =

[
ϕh,1 ϕh,2

1 0

]
, T5 =

[
ϕs,1 ϕs,2

1 0

]

the state vector is 21 dimensional:

µt = [f1t, f1t−1, ..., f1t−4, f2t, f2t−1, ...f2t−4, z1,t,z2,t,uqt, uqt−1, ..., uqt−4,uht,uht−1, ust,ust−1]
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and the selection matrix R is

R =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −2θ 0 0 0

0 θ2 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


It can be seen that the two additional state variables z1

t and z2
t are:

z1,t = ϕ22f2,t−1 + z2,t−1 − 2θεt

z2,t = θ2εt

Finally, Qt = (1, σ2
f2
eλf2,t , σ2

qe
λq,t , σ2

he
λh,t , σ2

se
λs,t).

In our empirical application, however, this second factor is not well identified.
In fact, as shown in Table 1.C.1, the loadings of the indicators on the second factor
collapse to zero, with the first factor accounting for the co-movement in the data.

1.C News and forecast revisions

In their paper Banbura and Modugno (2010) derive a way to decompose a forecast
revision as a linear function of news.

They denote as Ωv a vintage of data corresponding to a statistical data release v,
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which as an example can be mid-month for industrial production and end of month
for surveys, in order to define news as:

Iv+1,j = yij ,tj − E[yij ,tj |Ωv] (1.27)

the surprise incorporated in a new data with respect to what was expected given
information Ωv. A forecast revision is defined as:

E[yk,tk |Iv+1] = E[yk,tk |Ωv+1]− E[yk,tk |Ωv] (1.28)

and can be expressed as weighted average of news:

E[yk,tk |Iv+1] = Bv+1Iv+1 = E[yk,tkI
′
v+1]E[Iv+1I

′
v+1]−1Iv+1 (1.29)

where:

E[yk,tkIv+1,j] = HkE[(µtk − E(µtk |Ωv))(µtj − E(µtj |Ωv)
′)]H ′ij (1.30)

E[Iv+1,jIv+1,l] = HijE[(µtj − E(µtj |Ωv))(µtl − E(µtl |Ωv)
′)]H ′il (1.31)

where E[(µtj − E(µtj |Ωv))(µtl − E(µtl |Ωv)
′)] is the state vector covariance matrix

obtained as a by-product of the Kalman Smoother.
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Table 1.C.1: Factor loadings, two factor model

Percentiles First factor Second factor

75th 50th 25th 75th 50th 25th
GDP 0.44 0.27 0.08 0.00 0.00 0.00
Industrial Production 0.67 0.55 0.41 0.00 0.00 0.00
Industrial Production - Pulp/paper 0.34 0.28 0.21 0.00 0.00 0.00
Business Climate - IFO 0.04 0.02 0.00 0.00 0.00 0.00
Economic Sentiment Indicator 0.03 0.01 -0.01 0.00 0.00 0.00
PMI composite 0.02 0.01 -0.01 0.00 0.00 0.00
dollar-euro 0.01 -0.01 -0.04 0.00 0.00 0.00
10y-3m spread 0.03 0.01 0.00 0.00 0.00 0.00
Michigan Consumer Sentiment 0.09 0.05 0.02 0.00 0.00 0.00
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Chapter 2

Large Time-Varying Parameter
VARs: A Non-Parametric Approach

2.1 Introduction

In recent years macro-econometric research has been particularly active on two
fronts. First, increasing availability of economic time series has prompted the
development of methods capable of handling large dimensional datasets. Second a
number of changes in the economic landscape (a renewed stream of oil price shocks,
the Great Recession, unconventional monetary policy in most advanced countries)
further stimulated work on models with time-varying parameters.

On the large models front typical solutions include data reduction and parameter
shrinkage. Data reduction reduces the data space through linear combinations
(factors) of the observed variables. This parsimonious representation of the
data typically yields benefits in terms of estimation precision and forecasting.
Shrinkage, on the other hand, constraints the parameter space within values that
are (a priori) plausible. It therefore reduces estimation uncertainty, providing an
alternative solution to the over-fitting problem. In the context of large Vector
Autoregressions (VARs), for example, Banbura, Giannone, and Reichlin (2010) show
that progressively tightening shrinkage as the cross-sectional dimension of the VAR
increases, results in more accurate forecasts than those obtained on the basis of
unrestricted VARs. Despite different premises, data reduction and shrinkage go
in the same direction since, as shown by De Mol, Giannone, and Reichlin (2008),
both methods stabilise OLS estimation by regularising the covariance matrix of the
regressors.

Turning to time-varying parameters (TVP) models, a prolific line of research
has grown in the Bayesian context, starting from the seminal work on VARs with
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time-varying coefficients and variances by Cogley and Sargent (2005) and Primiceri
(2005). The estimation procedure of these models rests on the assumption that the
VAR coefficients follow a random walk (or autoregressive) process. The assumed law
of motion for the model parameters, coupled with the VAR equations, form a State
Space system. Given the presence of time-varying second moments, a combination
of Kalman filtering and Metropolis Hasting sampling is then used to deal with such
models. The need to use the Kalman filter, however, limits the scale of the models, so
that the numerous empirical applications that have followed this approach usually
model a relatively small number of time series. Furthermore, in settings where
the nature of the structural change is uncertain, methods based on simple data
discounting could be more robust than Kalman filter based models.

These motivations are behind a stream of papers that in recent years have
explored the performance of non parametric estimation methods for TVP-models.
The viewpoint of this line of research is that the nature of time variation in
the co-movement across time series is itself evolving, i.e. large infrequent breaks
could coexist with periods of slow gradual time variation. Given this complexity,
adaptive methods can deliver good forecasts and an accurate description of
the structural relationships among macroeconomic variables at a relatively low
computational cost.1 In this framework Giraitis, Kapetanios, and Yates (2014) and
Giraitis, Kapetanios, and Yates (2012) have developed non-parametric estimators
for univariate and multivariate dynamic models. They show that, for a wide class
of models in which the coefficients evolve stochastically over time, the path of the
parameters can be consistently estimated by suitably discounting distant data and
provide details on how to choose the degree of such discounting. Furthermore,
being available in closed form, the estimator proposed by Giraitis, Kapetanios, and
Yates (2012) in the context of VARs partly addresses the curse of dimensionality, as
systems of seven variables are easily handled, see Giraitis, Kapetanios, Theodoridis,
and Yates (2014).

The paths traced by the large model literature and by the TVP model literature
have seldom crossed. Connections have been established for Factor Augmented
VAR (FAVAR) models, see for example Eickmeier, Lemke, and Marcellino (2015)
and Mumtaz and Surico (2012), while they are still scant in the VAR literature.
A notable exception is represented by the paper by Koop and Korobilis (2013)
where the restricted Kalman filter by Raftery, Karny, and Ettler (2010) is used to
make a TVP-VAR suitable for large information sets. This approach, while solving

1A crucial issue in this framework is how to select the degree of data discounting. The problem
is addressed by Giraitis, Kapetanios, and Price (2013), who show how to make this choice data
dependent using cross-validation methods.
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some issues, presents some shortcomings. First, the curse of dimensionality is only
partially addressed since the parametric nature of the model implicitly limits its
size. In practice, this framework cannot handle the large information sets employed
in factor models (or FAVARs) or the large number of lags that are used when fitting
medium-size VARs to monthly data like in Banbura, Giannone, and Reichlin (2010).
Second, if the true data generating process is different from the postulated random
walk type variation, the robustness of the Kalman filter to model misspecification
is an obvious concern.

In this paper we propose an estimator that addresses, in a nonparametric context,
both of these problems. Our idea is to start from the nonparametric estimator
proposed by Giraitis, Kapetanios and Yates (2012), and adapt it to handle large
information sets. To solve the issue of over fitting that arises when the size of the
VAR increases, we recur to the mixed estimator by Theil and Goldberger (1960),
which imposes stochastic constraints on the model coefficients, therefore mimicking
in a classical context the role of the prior in Bayesian models. The resulting
estimator, for which we derive asymptotic properties, mixes sample and non sample
information to shrink the model parameters. It can be seen both as a generalisation
to a time-varying parameter structure of the model by Banbura, Giannone, and
Reichlin (2010) and as a penalised regression version of the estimator by Giraitis,
Kapetanios and Yates (2012). The proposed method is, given its nonparametric
nature, robust to changes in the underlying data generating process and for popular
shrinkage methods delivers equation by equation estimation. This implies that the
estimator can cope with systems as large as those analysed in the FAVAR and factor
model literature.

Our estimator depends crucially on two parameters, the tuning constant that
regulates the width of the kernel window used to discount past data, and the penalty
parameter that determines the severity of the constraints imposed to control over
fitting, akin to the prior tightness in Bayesian estimators. In the paper we explore
a variety of cross-validation techniques to set these two parameters based on past
model performance.2 We also consider model averaging as an alternative strategy
to deal with model uncertainty.

We next assess in Monte Carlo experiments the finite sample performance of our
estimator, which turns out to be good, and compare it with the parametric estimator
for TVP-VARs proposed by Koop and Korobilis (2013). We find that when the data

2The use of data discounting in regression models as a way to handle structural breaks is the
focus of a large literature, see in particular Pesaran and Timmermann (2007), Pesaran and Pick
(2011), and Rossi, Inoue, and Jin (2014). All these papers, however, are concerned with single
equation regressions rather than with large models.
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generating process matches exactly the one assumed in the parametric setup, the two
estimators give broadly similar results. Yet, as we move away from this assumption,
the performance of the parametric estimator deteriorates, while our non-parametric
estimator proves quite robust to changes in the underlying data generating process.

After discussing the theoretical and finite sample properties of the non-
parametric estimators, we examine their use through a number of applications.
First, we explore whether time variation is indeed a necessary feature of the model
to successfully forecast key macroeconomic variables using a large panel (up to 78
variables) of U.S. monthly time series. We organise the forecast exercise around three
questions that have been central to the forecasting literature in recent years. The
first one is whether time variation actually improves forecast accuracy. The second
one is whether the performance ofmedium-sized VARs with time-varying parameters
can be approximated by that of large VARs with constant coefficients. This question
is motivated by the contrasting findings in Stock and Watson (2012), who find little
evidence of parameter changes during the financial crisis in the context of a factor
model, and those reported by Aastveit, Carriero, Clark, and Marcellino (2014), who
provide substantial evidence of parameter changes in smaller dimensional VARs.
This conflicting evidence suggests that parameter time variation can be due, at least
partly, to omitted variables, so that enlarging the information set makes parameters’
time variation unnecessary. Once we have established that time variation is indeed
beneficial to forecast accuracy the third question is whether it pays off to go beyond
a medium size system, i.e. if going from a 20 to a 78 TVP-VAR improves forecast
accuracy for the small set of key variables that we are interested in.

The analysis indicates that the introduction of time variation in the model
parameters yields an improvement in prediction accuracy over models with constant
coefficients, in particular when forecast combination is used to pool forecasts
obtained with models with different degrees of time variation and shrinkage. Our
findings also indicate that, especially at longer horizons, medium-sized TVP-VARs
perform better than a VAR with constant parameters that uses a large information
set. Finally, we find that, in the context of TVP-VARs, going beyond 20 variables is
not beneficial to forecast accuracy, in line with the results for the constant parameter
case in studies such as Banbura, Giannone, and Reichlin (2010) and Koop (2013).

Our non-parametric large TVP-VAR is also useful for structural analysis. As
an illustration we revisit, in the context of a large information set, the issue of
the diminished effects of oil price shocks on economic activity, a question that has
spurred a large number of studies in the applied macro literature in recent years,
see for example Hooker (1999), Edelstein and Kilian (2009), Blanchard and Gali
(2007), Blanchard and Riggi (2013) and Baumeister and Peersman (2013). The use
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of a large information set allows us to take a more granular view, allowing us to
uncover some interesting findings on the evolving impact of oil price innovations on
the output of different sectors of the U.S. industry. Specifically, we find that the
declining role of oil prices in shaping U.S. business cycle fluctuations stems from
lower effects on the production of durable materials, rather than on the automotive
sector on which part of the literature has traditionally focused.

The paper is structured as follows. In Section 2.2 we describe the estimation
method and derive its theoretical properties. In Section 2.3, we discuss cross-
validation and model averaging. In Section 2.4 we assess the finite sample properties
of our nonparametric method in Monte Carlo experiments and compare it with
available parametric methods. In Section 2.5 we present the main forecasting
exercise. In Section 2.6 we present an analysis of the time-varying impact of
unexpected increases in the price of oil on U.S. industrial production. In Section
2.7 we summarise our main findings and conclude. Additional details are provided
in Appendixes.

2.2 Setup of the problem

Let us consider a p-order VAR with n variables and time-varying (stochastic)
coefficients:

y′t
1×n

= x′tΘt + u′t
1×n

, t = 1, ..., T (2.1)

x′t
1×k

= [y′t−1, y
′
t−2,...,y

′
t−p, 1]

Θt
k×n

= [Θ′t,1,Θ
′

t,2, ...,Θ
′
t,p, A

′
t]
′

where k = (np + 1) is the number of random coefficients to be estimated in each
equation so that at each time t there are nk parameters to be estimated, collected
in the matrix Θt. For the time being, we assume that ut is a martingale difference
process with finite variance Σn.3 A further crucial assumption is that Θt changes
rather slowly, i.e., that:

sup
j≤h
‖Θt −Θt+j‖ = Op

(
h

t

)
. (2.2)

A number of classes of models satisfy (2.2). For example, one such model is
obtained by setting Θt = [θij,t], Θ̃t = [θ̃ij,t] and letting θ̃ij,t = θ̃ij,t−1 + εθ̃,ij,t and

3The issue of heteroschedasticity is discussed in Section 2.2.5.
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θij,t = θij
θ̃ij,t

max1≤i≤t θ̃ij,t
for some constants θij bounded between 0 and 1 and some set

of stochastic processes εθ̃,ij,t. This is an example of a bounded random walk model.
We can allow for a wide variety of processes, εθ̃,ij,t, making this class suitably wide.

Applying the vec operator to both sides of (2.1) we obtain:

yt
n×1

= (In ⊗ x′t)
n×nk

βt
nk×1

+ ut
n×1

, (2.3)

where βt = vec(Θt). Assuming persistence and boundedness4 of the coefficients in
Θt, Giraitis, Kapetanios, and Yates (2012, henceforth GKY) show that the path of
the random coefficients is consistently estimated by the following kernel estimator:

βGKYt =

[
In ⊗

T∑
j=1

wj,t(H)xjx
′
j

]−1 [ T∑
j=1

wj,t(H)vec
(
xjy

′
j

)]
, (2.4)

where the generic jth element wj,t(H) is a kernel function with bandwidth H, used
to discount distant data. Throughout the paper we use a Gaussian kernel:5

wj,t(H) =
Kj,t(H)∑T
j=1Kj,t(H)

, (2.6)

Kj,t(H) = (1/
√

2π)exp

[
−1

2

(
j − t
H

)2
]
. (2.7)

One appealing feature of the estimator in (2.4) is that, given the Kronecker structure
of the first term, it only requires the inversion of the k×k matrices

∑T
j=1wj,txjx

′
j. In

other words, estimation can be performed equation by equation that, as emphasised
by Carriero, Clark, and Marcellino (2016) in a Bayesian context, substantially
reduces the computing time.

A more compact notation is obtained by introducing the following notation:
Xw,t = WH,tX, where WH,t = diag(w

1/2
1t (H), ..., w

1/2
Tt (H)) and the T × k matrix X is

formed by stacking over t the vectors x′t. Also, let us define Xww,t = WH,tXw,t and
denote with Y the T ×n matrix formed by stacking over t the vectors y′t. The GKY

4More specifically, writing the VAR in companion form as a VAR(1) model, Yt = ΨtYt−1, GKY
assume that the spectral norm (that is the maximum absolute eigenvalue) of Ψt is strictly lower
than 1.

5When forecasting, in order to preserve the pseudo real time nature of the exercise, we introduce
an indicator function that assigns zero weight to the out of sample observations, so that only in
sample information is used to estimate the parameters:

Kj,t(H) = (1/
√

2π)exp

[
−1

2

(
j − t
H

)2
]
I(j ≤ t) (2.5)
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estimator can now be cast in the following matrix form:

ΘGKY
t =

[
X ′w,tXw,t

]−1 [
X ′ww,tY

]
. (2.8)

2.2.1 Shrinkage through stochastic constraints

When the dimension of the system grows, it is desirable to impose some shrinkage
on the model parameters to avoid an increase in the estimation variance (Hastie,
Tibshirani, and Friedman, 2003). While in a Bayesian framework this can be
achieved through the prior distribution, in a classical framework shrinkage can be
performed by using the mixed estimator of Theil and Goldberger (1960). This is
obtained by adding a set of stochastic constraints (i.e., constraints that hold with
some degree of uncertainty) to model (2.3). The constraints are written as linear
combinations of the parameter vector βt plus a vector of noises, where the latter
ensures that the constraints do not hold exactly. The complete model can be written
as:

yt
n×1

= (In ⊗ x′t)
n×nk

βt
nk×1

+ ut
n×1

(2.9)
√
λ r
nk×1

=
√
λ R
nk×nk

βt
nk×1

+ urt
nk×1

. (2.10)

We assume that the errors urt are a martingale difference process with finite
variance and that their variance is proportional to that of the data, that is
var(urt ) = Ik ⊗ Σn. In other words, when the noise in the dynamic relationship
between yt and xt has high variance, uncertainty about the constraints on the
coefficients βt also increases. As for the expected value of urt , for the moment
we leave it unspecified since it plays a crucial role in determining the bias of the
estimator, as we show further below. Notice that both sides of equation (2.10) are
pre-multiplied by a constant

√
λ. It is easy to see that this constant acts as a scaling

factor of the variance of the stochastic constraints urt .6 Hence, low values of λ imply
that the coefficient vector βt is left relatively unrestricted; vice versa, high values of
λ imply that the constraints in (2.10) hold relatively more tightly. Regarding the
structure of the matrix R, we consider two cases. In the first case we assume that
R has a Kronecker structure: R

nk×nk
= (In ⊗ R

k×k
). This case is of particular interest

for two reasons. First, it holds for a number of popular shrinkage methods, like the
Ridge regression and the Litterman prior. Second, it results in an estimator that
can be cast in matrix form, hence being very efficient from a computational point

6Notice that, by multiplying both sides of (2.10) by 1√
λ

the variance of the noise in (2.10)
becomes 1

λ (Ik ⊗ Σn).
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of view and directly comparable to its unconstrained counterpart, i.e. the GKY
estimator. Next, we consider the more general case where R does not have this
particular structure.

2.2.2 Case 1: R has a Kronecker structure

If R has a Kronecker structure, the analysis of the estimator can proceed equation
by equation. First, let us state the following definitions: urt

kn×1

= vec( urt
k×n

) and

r
kn×1

= vec( r
k×n

). Also, since R
nk×nk

= (In ⊗ R
k×k

) and βt = vec(Θt), it follows that

Rβt = (In ⊗ R)vec(Θt) = vec(RΘt). Hence the joint model in (2.9) and (2.10) can
be expressed in matrix form as:

y′t
1×n

= x′t
1×k

Θt
k×n

+ u′t
1×n

, (2.11)
√
λ r
k×n

=
√
λ R
k×k

Θt
k×n

+ urt
k×n

, (2.12)

or more compactly:
y∗t

(k+1)×n
= x′∗j Θt + u∗t , (2.13)

where y∗t = [yt,
√
λr′]′, x′∗j = [xt,

√
λR
′
]′, u∗t = [ut, u

′r
t ]′, and var(vec(u∗t )) =

Ink+1 ⊗ Σn. The extended regression model in (2.13) can be analysed using the
GKY estimator, with related properties. The estimator has the form:

Θ̂t
k×n

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
jy
∗
j

)
, (2.14)

where, for simplicity, we have omitted the dependence of wj,t from the bandwidth
H. Separating the contribution of the actual data from that of the constraints, the
estimator can equivalently be written as:7

Θ̂t
k×n

=

(
T∑
j=1

wj,txjx
′
j + λR

′
R

)−1( T∑
j=1

wj,txjy
′
j + λR

′
r

)
(2.15)

=
(
X ′w,tXw,t + λR

′
R
)−1 (

X ′ww,tY + λR
′
r
)
. (2.16)

It is worth making the following observations. First, when λ = 0 the constrained

7Notice that
∑T
j=1 wj,tx

∗
jx
∗′
j =

∑T
j=1 wj,t

[
xt
√
λR
′
] [ x′t√

λR

]
and

∑T
j=1 wj,tx

∗
jy
∗
j =∑T

j=1 wj,t

[
xt
√
λR
′
] [ yt′√

λr

]
.
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estimator equals the unconstrained one: Θ̂t,GKY =
(
X ′w,tXw,t

)−1 (
X ′ww,tY

)
. Second,

and vice versa, as λ→∞, Θ̂t converges to the value implied by the constraints, that
is Θt → ΘC = (R

′
R)−1(R

′
r). Hence, the constant term

√
λ can also be interpreted

as the weight of the sample size of the artificial observations (r and R) relative to T ,
the sample size of the observed data yt and xt. It is worth remarking that the value
implied by the constraints (ΘC) is time invariant. This means that the stochastic
constraints anchor the evolution of Θt around a fixed value that is specified ex ante.
Third, Θ̂t can be expressed as the weighted sum of its unrestricted and restricted
versions, Θ̂t,GKY and ΘC . To see this point, re-write (2.16) as follows:

Θ̂t
k×n

=
(
X ′w,tXw,t + λR

′
R
)−1 [

(X ′w,tXw,t)Θ̂t,GKY + (λR
′
R)ΘC

]
(2.17)

= S−1
w (X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)ΘC , (2.18)

where Sw =
(
X ′w,tXw,t + λR

′
R
)
.

The properties of Θ̂t are derived in the following theorem.

Theorem 1 Let the model be given by (2.13) where u∗t is a martingale difference
sequence with finite fourth moments. Let (2.2) hold and H = o(T 1/2). Let X∗w,t =

WH,tX
∗ where X∗ is obtained by stacking over t the vectors x′∗t , X∗ww,t = WH,tX

∗
w,t,

Γ∗w,t = p lim 1
H
X∗′w,tX

∗
w,t, Γ∗ww,t = p lim 1

H
X∗′ww,tX

∗
ww,t. Then,

(
Γ∗−1
w,t Γ∗∗ww,tΓ

∗−1
w,t ⊗ Σn

)− 1
2
√
Hvec

(
Θ̂′t −Θ′t −Θ′Bt

)
→d N (0, I) , (2.19)

where ΘB
t = p limS−1

w

√
λR
′
urt = p limS−1

w λR
′ (
r −RΘt

)
and Γ∗∗ww,t is defined in

(2.43).

Proof. See Appendix 2.A.
Notice that the bias term ΘB

t = p limS−1
w

√
λR
′
urt = p limS−1

w λR
′ (
r −RΘt

)
depends on the distance between the true parameters Θt from the constraints. Since
the direction towards which we are shrinking is time-invariant it is possible that at
some point in time the constraints RΘt = r actually hold, but in general they cannot
hold at each point in time, or Θt would be time-invariant, which contradicts one of
the assumptions.8

8The estimator could be made consistent by designing a penalty parameter λ that vanishes as
T goes to infinity. This point is discussed in a related context in De Mol, Giannone, and Reichlin
(2008), Appendix A.
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2.2.3 Case 2: R does not have a Kronecker structure

Let us now turn to the more general case when R does not have a Kronecker
structure. In this case the estimator can be written as:

β̂t =


In ⊗ T∑

j=1

wj,txjx
′
j︸ ︷︷ ︸


nk×nk

+ λR′R


−1 [

T∑
j=1

wj,t (In ⊗ xj) yj + λR′r

]

=

[(
In ⊗

T∑
j=1

wj,txjx
′
j

)
+ λR′R

]−1 [ T∑
j=1

wj,tvec(xjy
′
j) + λR′r

]
. (2.20)

A crucial difference between the estimator in (2.20) and the one in (2.16) is
that the latter only requires the inversion of k dimensional matrices, which makes
it computationally much faster. On the other hand, (2.20) can handle more general
constraints. The properties of β̂t are derived in the following theorem.

Theorem 2 Let the model be given by (2.9) and (2.10) where ut is a martingale
difference sequence with finite fourth moments. Let (2.2) hold, H = o(T 1/2). Let us
define Φ = λ

H
R′R, Γw,t = p lim 1

H

∑T
j=1wj,t(xjx

′
j), Γww,t = p lim 1

H

∑T
j=1 w

2
j,txjx

′
j

and βBt = p lim
[(
In ⊗

∑T
j=1wj,txjx

′
j

)
+ λR′R

]−1

λR′r. Then,

√
H
[
(In ⊗ Γw,t + Φ)−1 (Σn ⊗ Γww,t + Φ) (In ⊗ Γwt + Φ)−1]−1/2

(
β̂t − βt − βBt

)
→d N (0, I)

(2.21)

Proof. See Appendix 2.B.

2.2.4 Conditional Variance and MSE of the constrained

estimator

In this subsection we analyse the effects of stochastic constraints on the variance
of the penalised estimator relative to that of the unconstrained one. In particular,
we show that the stochastic constraints have the unambiguous effect of lowering the
variance of the non-parametric estimator. This is a standard finding in penalised
estimators where a bias/variance trade off emerges, but it is a novel result in
models with stochastic time varying coefficients. Notice that, since the model
coefficients are stochastic, we need to condition the derivation of the variance of
the estimators on a given realisation of the whole time series of the true coefficients
(β1, β2, . . . , βt, . . . , βT ). Still, the ranking of the conditional variances derived in the
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theorem is unambiguous for any given realisation of the coefficients and therefore
absolutely general.

Theorem 3 Let the model be given by (2.9) and (2.10). Let E = In⊗
∑T

j=1wj,txjx
′
j,

F = λR′R,and G =
∑T

j=1wj,tvec(xjy
′
j) =

∑T
j=1wj,t(In ⊗ xj)y

′
j. Define a given

realisation of the stochastic coefficients βT = (β1, β2, . . . , βt, . . . , βT ). Then the
constrained estimator can be written as

β̂t = [E + F ]−1
[
Eβ̂t,GKY + λR′r

]
.

Further, we have that avar(β̂t,GKY |βT ) − avar(β̂t|βT ) is a positive semi-definite
matrix, where the avar(.|.) operator indicates the conditional asymptotic variance.

Proof. See Appendix 2.C.
In Appendix 2.C we also discuss the ranking of the conditional Mean Square

Error (MSE, given by the sum of the variance and of the squared bias) of the two
estimators. We show that the stochastic constraints also lower the conditional MSE
as long as there is sufficient collinearity in the dataset.

2.2.5 Time-varying volatilities

When both the error variances and the VAR coefficients change over time, variations
in the parameters and in the variances can be confounded, see Cogley and Sargent
(2005). An important implication is that if changes in the variances of the errors
are neglected then the importance of variation in the VAR coefficients could be
overstated. Giraitis, Kapetanios, and Yates (2014) show that the properties of their
estimator are unaffected by the presence of stochastic volatilities as long as standard
errors are studentised by an appropriate time-varying covariance matrix for the error
terms. When performing structural analysis in a VAR context, GKY suggest to
model time variation in the variance of the disturbances with a two-step approach.
The method consists of fitting first an homoschedastic VAR, then estimating the
time-varying volatilities on the residuals obtained in the first stage via the following
kernel estimator:

Ψ̂t =
T∑
j=1

wj,t(HΨ)utu
′
t, (2.22)

where the bandwidth parameter HΨ is not necessarily the same as the one used to
estimate the coefficients. Orthogonalisation of the residuals is then based on the
time-varying covariance matrix Ψ̂t.
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Our penalised kernel estimator can be adapted to account for changing volatilities
along these lines, using the GLS correction proposed in Theil and Goldberger (1960).
In the first step, the VAR coefficients are estimated using (2.20) and the resulting
residuals are used to compute Ψ̂t as in (2.22). In a second step a GLS correction is
applied:

βt =

[
T∑
j=1

wj,t

(
Ψ̂−1
t ⊗ x′jxj

)
+ λR′R

]−1 [ T∑
j=1

wj,tvec
(
x′jy

′
jΨ̂
−1
t

)
+ λR′r

]
(2.23)

Notice that this GLS correction requires the inversion of potentially large
matrices (nk × nk), which slows down computation and limits the size of the VAR.
In the empirical applications and in the Monte Carlo analysis discussed in Sections
2.5 and 2.4, where we experiment with relatively large systems, we therefore do not
apply this correction. However, in section 2.5.5 we appraise the merits of this GLS
correction in terms of forecasting performance. We find that the estimator that does
not account for time-varying volatility actually produces more accurate forecasts.

In the next two sub-sections we describe how two popular shrinkage methods can
be adapted to our setup. Notice that this is just an illustration of how the method
can be used, not an exhaustive list of the constraints that can be applied. As long
as the matrix R has column rank nk (i.e. the number of independent constraints is
at least as large as the number of parameters of the VAR, but it can also be larger),
the matrix R′R appearing in the estimator will regularise estimation.

2.2.6 Ridge type shrinkage

The Ridge regression penalty shrinks all the parameters uniformly towards zero at a
given penalty rate λ. A TVP-VAR with Ridge shrinkage can be obtained by setting
R = Ink and r = 0, which consists of imposing the following stochastic constraints
at each t:

0 =
√
λβt + urt . (2.24)

where the properties of urt are as defined in Theorem 1.
The resulting estimator takes the form:

βRidget (λ,H) =

[
In ⊗

(
T∑
j=1

wj,tx
′
jxj + λIk

)]−1 [
vec

(
T∑
j=1

wj,tx
′
jy
′
j

)]
(2.25)

Notice that, given the Kronecker structure of the constraints (as R is an identity
matrix), estimation can proceed equation by equation and the estimator can be
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written in matrix form as:

ΘRidge
t (λ,H) =

[
X ′w,tXw,t + λIk

]−1 [
X ′ww,tY

]
(2.26)

2.2.7 Litterman type shrinkage

Some of the features of the Ridge penalty can be unappealing in the context of VAR
models. First, the fact that all the coefficients are shrunk towards zero imposes a
structure of serially uncorrelated data, which is at odds with the strong persistence
that characterises most macroeconomic time series. Second, the same penalty is
imposed on all the coefficients (including the intercept). Yet, having some flexibility
in the penalisation of the different parameters could be desirable. A more general set
of stochastic constraints, which produce the same effects that the Litterman prior
has in a Bayesian framework,9 is given by setting r and R as follows:

r =

(
diag(δ1σ1, δ2σ2, δ3σ3, ..., δnσn)

0n(p−1)+1×n

)
R =

(
Σ 0

0 σ2
c

)
, where

Σ = diag(1, 2, 3, ..., p)⊗ diag(σ1, σ2, ..., σn) (2.27)

Notice that the vector r = vec(r) towards which the VAR coefficients are driven by
the constraints is generally different from zero. In empirical applications, for data
in levels, the n values δi are typically set to 1, so that the model is pushed to behave
like a multivariate random walk plus noise. Moreover, unlike in Ridge regressions,
the precision of the constraints is not uniform across parameters but it is higher for
more distant lags, as implied by the decay terms (1, 2, ..., p). The scaling factors
σ2

1, ..., σ
2
n appearing in Σ can be obtained by univariate regressions and the precision

on the intercept σ2
c can be set to an arbitrarily small or large value, depending on

the application.10

Summarising, by appropriately penalising the GKY estimator, some discipline
on the VAR coefficients can be imposed through stochastic constraints a la Theil
and Goldberger (1960). This makes the GKY method, originally designed for
small/medium scale VARs, suitable for handling large n dataset. We have seen that
the resulting estimator has a well defined asymptotic distribution under rather mild

9Karlsson (2012) distinguishes the Litterman prior from the more general Minnesota prior based
on the assumptions on the covariance matrix of the VAR residuals, which is assumed to be diagonal
in the Litterman prior, full in the more general Minnesota prior, see Kadiyala and Karlsson (1993,
1997).

10For example, in a Bayesian context, Carriero, Kapetanios, and Marcellino (2009) adopt a very
tight prior centred around zero on the intercept in a large VAR, favouring a driftless random walk
behaviour, to capture the behaviour of a panel of exchange rates.
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conditions, and is generally more efficient than the unconstrained GKY estimator.
Moreover, for popular shrinkage methods the resulting estimator can be cast in
matrix form, with notable computational advantages.

The double nature of the estimator (being both nonparametric and penalised) is
captured by its dependence on the two constants: H, the bandwidth parameter that
determines the weight that each observation has as a function of its distance from
t, and λ, a constant that determines the severity of the penalty. In the next section
we discuss alternative solutions to the problem of determining these two parameters
in empirical applications.

2.3 Model specification

The problem of setting appropriate values of λ and H can be tackled in two ways.
The first is model selection, which typically rests on the optimisation of a given
criterion. We describe two such criteria. The former adapts to our problem the
procedure devised by Banbura, Giannone, and Reichlin (2010), and has an “in
sample” fit flavour. The latter favours models with better out of sample performance
and is inspired by the method proposed by Kapetanios, Labhard, and Price (2008)
for assigning weights to different models in the context of forecast averaging. In
the remainder of the paper we will refer to these two criteria as Lfit and Lmse. The
second route consists of pooling the results obtained on the basis of a large range of
different specifications. We describe each strategy in turn.

2.3.1 Model selection criteria

The Lfit criterion

The first criterion that we consider adapts to our problem the method by Banbura,
Giannone, and Reichlin (2010). The intuition of the method is that, when forecasting
with large datasets, some variables are more relevant than others. Over fitting should
then be penalised up to the point where a large VAR achieves the same fit as that
of a smaller VAR that only includes the key variables of interest. We adapt their
criterion to the problem of choosing simultaneously λ and H. Formally, the criterion
involves the following steps:

1. Pick a subset of n1 variables of interest out of the n variables in the VAR.

2. Compute the in sample fit of a benchmark VAR with constant coefficients that
only includes these n1 variables.
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3. Select λ and H to minimise the distance between the in sample fit of the large
n variate VAR (featuring both time-varying parameters and shrinkage) and
the benchmark VAR.

Formally, the loss function to be minimised is the following:

Lfit(λ,H) =

∣∣∣∣∣
n1∑
i=1

rssin(λ,H)

var(yt,i)
−

n1∑
i

rssin1

var(yt,i)

∣∣∣∣∣
where the scaling by var(yt,i) is needed to account for the different variance of the
variables.

The Lmse criterion

As an alternative, λ and H can be selected at each point in time based on the
predictive performance of the model in the recent past. The method, which has a
cross-validation flavour, is similar in spirit to the one used by Kapetanios, Labhard,
and Price (2008) to compute model weights in the context of forecast averaging.
The necessary steps are the following:

1. Pick a subset of n1 variables of interest out of the n variables in the VAR.11

2. At each step t in the forecast exercise and for each forecast horizon h consider
a relatively short window of recent data t−L− h, t−L− h+ 1, . . . , t− 1− h
and compute the h steps ahead Mean Square Error (MSE) mseih(λ,H), for
each i ∈ n1.

3. Pick the values of λ and H that minimise the sum of these n1 MSEs.

Formally, the loss function to be minimised is:

Lmse(λ,H) =

n1∑
i=1

mseih(λ,H)

var(yt,i)

where, again, the msei is scaled by the variance of yi.

Practical considerations

In principle, standard optimisation algorithms could be used to minimise bot the Lfit
and the Lmse criterion. However, we have often found that the minimum occurs at
a kink. A problem of this type could arise because the stochastic constraints shrink

11Notice that, when using this criterion, we could set n1 = n, that is we could focus on the
whole set of variables in the VAR rather than only on a subset.
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the VAR coefficients towards a constant parameter structure but time variation is
also affected by the width of the kernel.

Since our estimator is easy to compute a feasible solution is represented by a grid
search approach, along the lines of Carriero, Kapetanios, and Marcellino (2009) and
Koop and Korobilis (2013). More specifically, in the empirical analysis that follows,
we experiment with a wide (38 elements) grid for (the reciprocal) of λ, ϕ = 1/λ.

ϕgrid = 10−10, 10−5, 10−4, 10−3, 10−2, 10−2 + .3, 10−2 + 2× .3, 10−2 + 3× 03, . . . , 1

(2.28)
We suggest the use of a wider grid than the one used, for instance, by Koop and
Korobilis (2013) because the stochastic constraints that we apply are binding at
each point in time (rather than just at the initial condition like in Kalman filter
based estimation methods), so that higher values of ϕ (i.e. lower values of λ) are
needed to allow for meaningful time variation in the VAR coefficients.

Regarding the width of the kernel function wj,t, we work with a six points grid
for the tuning parameter H:

Hgrid = 0.5, 0.6, 0.7, 0.8, 0.9, 1, (2.29)

consistently with the parameterisation used in Monte Carlo experiments by Giraitis,
Kapetanios, and Price (2013).

2.3.2 Pooling

An alternative strategy to model selection consists of pooling model estimates
obtained with different values of λ and H. This could be particularly valuable in
the context of forecasting. From a theoretical standpoint, the rationale for forecast
pooling in the presence of structural breaks is offered for example by Pesaran and
Pick (2011), who show that averaging forecasts over different estimation windows
reduces the forecast bias and mean squared forecast errors, provided that breaks are
not too small. In empirical applications pooling is typically found to be effective
in improving forecast accuracy both in Bayesian (Koop and Korobilis, 2013) and in
frequentist (Kapetanios, Labhard, and Price, 2008) settings.12 In our context, model
pooling could be based on relatively sophisticated weighting schemes, based on the
selection criteria described in the previous subsections, or on simpler strategies like
equal weights averaging.

12Kuzin, Marcellino, and Schumacher (2013) show that forecast pooling also works well in
nowcasting GDP.
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2.4 Finite sample properties

To assess the finite sample properties of our estimator we design a Monte Carlo
exercise in which we contrast the forecasting performance of the non-parametric
estimator with that of a popular parametric alternative.

We consider three alternative DGPs. In the first DGP (DGP-1) we assume that
the coefficients follow a random walk plus noise process:

Yt = ΛtYt−1 + εt

Λt = Λt−1 + ηt

We make the stochastic process of the coefficients broadly consistent with a
Litterman prior by bounding the first autoregressive parameter to lie between 0.85
and 1.13 In the second one (DGP-2) we let the coefficients break only occasionally
rather than at each time t:

Λt = (1− I(τ))Λt−1 + I(τ)Λt−1 + ηt

The probability of the coefficients breaking equals a constant τ that we set to
.025, implying that, with quarterly data, we would observe on average a discrete
break once every ten years. We also relax the bounds on Λt and let them fluctuate
randomly between 0 and 1.14 In the third set of simulations (DGP-3) coefficients
evolve as a sine functions and are bounded between -1 and 1:

Λt = sin(10πt/T ) + ηt

In all DGPs we assume ηt v N(0, 1) and random walk stochastic volatilities for the
measurement equations:

εit = uit exp(λit)

λit = λit−1 + νit

where uit v N(0, 1) and νit v N(0, ση). We calibrate ση = 0.01.15 For the remaining
13Details on how this is achieved are presented in Appendix 2.D.
14With tight boundaries (like the 0.85-1 interval imposed in DGP-1) the difference between

coefficients that break only occasionally and coefficients that drift slowly, is negligible.
15Notice that this value for ση is quite large. Cogley and Sargent (2005) for example, assume that

a priori ση is distributed as an inverse gamma with a single degree of freedom and scale parameter
0.012. Since the scale parameter can be interpreted as the (prior) sum of square residuals, this means
that a priori they set the variance of the innovations to the log-volatility to 0.012/T . Assuming
T = 100, the prior variance is 10−6 , as opposed to our choice of 10−2.
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technical details on the design of the Monte Carlo exercise see Appendix 2.D
We assess the performance of our method based on the accuracy of one step

ahead forecast errors. As a benchmark, we use the parametric estimator developed
by Koop and Korobilis (2013), which we briefly describe in the next sub-section.
While the controlled environment provided by the Monte Carlo exercise allows us
to evaluate how robust the two methods are to different assumptions on the law
of motion of the model parameters, a comparison of the two approaches based on
actual data is presented later in section 2.5.

2.4.1 A parametric estimator

The model specification adopted by Koop and Korobilis (2013) follows closely the
literature on (small) TVP-VARs in that it assumes a random walk evolution of
the VAR coefficients. The model can then be cast in State Space, where the VAR
equations

yt = Ztβt + εt (2.30)

serve as measurement equations and the unobserved states, the parameters βt, evolve
as driftless random walks plus noise:

βt+1 = βt + ut+1, (2.31)

with εt ∼ N(0,Σt) and ut ∼ N(0, Qt). Also εt and ut are independent of one another
and serially uncorrelated. Even for medium-sized VARs the estimation algorithms
developed by Cogley and Sargent (2005) and Primiceri (2005) become unfeasible due
to computational complexity. To overcome these difficulties, following the literature
on Adaptive Algorithms, see for example Ljung (1992) and Sargent (1999), Koop
and Korobilis (2013) make two simplifying assumptions. The first one involves the
matrix Qt, which is specified as follows:

Qt =

(
1− θ
θ

)
Pt−1/t−1 (2.32)

where Pt−1/t−1 is the estimated covariance matrix of the unobserved states βt−1

conditional on data up to t− 1 and θ is a forgetting factor (0 < θ < 1).16 A similar
simplifying assumption on Σt ensures that this matrix can be estimated by suitably

16Equation (2.32) basically states that the amount of time variation of the model parameters at
time t is a small fraction of the uncertainty on the unobserved state βt, so that large uncertainty
on the value of the state at time t translates into stronger parameter time variation
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discounting past squared one step ahead prediction errors:

Σ̂t = κΣ̂t−1 + (1− κ)vtv
′
t (2.33)

where vt = yt − Ztβt/t−1. These assumptions make the system matrices Qt and Σt

(which are an input to the Kalman filter at time t) a function of the t-1 output
of the Kalman filter itself. This recursive structure implies that, given an initial
condition and the two constants θ and κ, an estimate of the coefficients βt can be
obtained through a single Kalman filter pass. Although it is laid out in a Bayesian
spirit, the restrictions imposed on the Kalman filter recursions reduce the estimation
procedure to a discounted least squares algorithm.

Before moving to the results of the Monte Carlo exercise let us make some
remarks on the relative merits of the parametric approach compared to our non-
parametric estimator. First, the use of a parametric model, and the simplifications
imposed on the model structure to make the estimation feasible, do not come without
costs. One potential pitfall is that the model assumes a very specific evolution
for the model parameters. The driftless random walk assumption, widely used
in econometrics and macroeconomics, does not have any other grounding than
parsimony and computational convenience. If the true data generating process
(DGP) is, however, very different from the one posited, the model is misspecified
and this could result in poor performance. The second issue is that the curse of
dimensionality is only partially solved. For 20 variables and 4 lags (a standard
application in the large VAR literature with quarterly data) the stacked vector βt
contains 1620 elements. Larger model sizes (arising from a higher number of series
in the system or by a higher number of lags, like the 13 lags conventionally used with
monthly data in levels) are intractable in this setup. Finally, since the only source
of time variation in the model is the prediction error, it can be shown that this
forgetting factor algorithm boils down to an exponential smoothing estimator.17

This means that the effect of the prior on the initial condition β1 will die out
relatively quickly. Also, the longer the sample size, the lower the effect of the prior
on the parameter estimates. In contrast, the stochastic constraints that we use to
penalise our estimator are effective at each point in time.

2.4.2 Monte Carlo results

For all the DGPs we fit our non-parametric estimator with Litterman-type stochastic
constraints and average forecasts using equal weights across all the possible values

17See Delle Monache and Petrella (2014), Section 2.

66



LARGE TVP-VAR

of H and λ specified in the grids described in the previous Section. The parametric
method also needs a prior on the initial value of the parameters, β1 to discipline
the estimation towards values that are a priori plausible. To keep the comparison
with our method as fair as possible we also impose on the initial condition of the
parametric model a Litterman type prior. The remaining details of the model
specification of the parametric model are quite lengthy and are documented in the
Appendix 2.E.

The results of the Monte Carlo exercise are shown in Table 2.1. The methods
are compared in terms of 1 step ahead RMSE (relative to that of the parametric
estimator and averaged across the n variables using either equal or inverse RMSE
weights) for VARs of different sizes (n = 7 and n = 15) and for different sample
sizes (100, 150 and 200). Throughout the exercise forecasts from our proposed
estimator are obtained by equal weights averaging across different values for H and
λ. Forecasts are computed on the second half of the sample, i.e. when T=100,
forecasts are computed recursively for t=51 to t=100, when T=150 forecasts are
computed recursively for t=76 to t=150 and so forth.

In the case of DGP-1 the performance of the two estimation methods is broadly
comparable, with the parametric estimator improving slightly (by at most 2%)
on the nonparametric one only for VARs of larger sizes. Notice that in this
context one would expect the parametric estimator to have an edge, given the
tight correspondence between the assumptions made by the model and the actual
DGP. The gain attained by this method proves, however, negligible. When we
move to DGP-2 and DGP-3 the relative performance of the nonparametric estimator
improves steadily, with gains of the order of 15% in the case of DGP-3 and n=15.
Although these DGPs are probably less representative of the typical relationship
across macroeconomic time series, they do unveil some fragility of the Kalman
filter based method, whose performance rapidly deteriorates when the behaviour
of the coefficients moves further and further away from the random walk setting.
The nonparametric estimator, on the other hand, not only proves robust to
heteroschedastic errors but also to a wide range of different specifications of the
coefficients.

Summing up, the results of the Monte Carlo analysis are quite supportive
of the nonparametric estimator coupled with stochastic constraints. While this
does not constitute conclusive evidence in favour of our non-parametric approach,
we believe that its good theoretical and finite sample properties, combined with
its computational efficiency, make it a very competitive benchmark for modelling
and forecasting with large VARs, taking into consideration the possibility of time
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variation.

2.5 Forecast Evaluation

After evaluating the finite sample properties of our estimator by means of simulation
experiments, we now explore its performance in the context of an extensive forecast
exercise based on U.S. data. We first discuss the set-up of the exercise, next we
present the results, evaluate the role of forecast pooling and of model size in the
TVP context, and finally consider a comparison with the Koop and Korobilis (2013)
approach.

2.5.1 Set-up of the exercise

Throughout the exercise we use Litterman type constraints, like Banbura, Giannone,
and Reichlin (2010). The information set is composed of 78 time series spanning
around five decades, from January 1959 to July 2013. Table 2.2 reports the list of
the series used in the exercise together with the value of r used for each variable.
Following the convention in the Bayesian literature we set to 1 the elements of r
corresponding to variables that display a trend and to 0 those corresponding to
variables that have a stationary behaviour (typically surveys). We examine the
performance of VARs of two sizes. A medium sized VAR that includes only the 20
indicators that are highlighted in red in Table 2.2 and a large VAR that makes use
of all the available information.18

We experiment with different model specifications obtained by intersecting
various options for setting λ and H as summarised in Table 2.3. The table is
organised in two panels. The top panel refers to model specifications that make use
of the Lfit criterion, the bottom panel, on the other hand, to specifications based
on the Lmse criterion. Starting from the top panel, the first set of models (M1 in
Table 2.3) is obtained by fixing H at a given point in the grid and, conditional on
this value of H, setting λ optimally at each t at the value that minimises the Lfit
function. The second set of models (M2) are obtained as variants of M1 by choosing
the λ that minimises Lfit in the pre-sample and then keeping it fixed for the rest of
the exercise. In the third set of models (M3) the function Lfit is optimised at each
t both with respect to λ and H. The fourth case (M4) is obtained as variant of M3
by choosing λ optimally in the pre-sample and then keeping it fixed for the rest of

18Koop and Korobilis (2013) also look at the performance of trivariate VARs with TVP. We do
not pursue this route as over fitting is not an issue in small systems and in those cases the use of
the unconstrained GKY estimator is appropriate.
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the exercise. The remaining models (M5 to M8) are obtained by replacing the Lfit
with the Lmse criterion. These different model specifications allow us to assess the
importance of the various elements that characterise the proposed estimator.

The subset n1 of variables of interest on which we focus the forecast evaluation
is set to n1 = 3, and we monitor the performance of three indicators of particular
interest for monetary policy, i.e. the Fed Fund Rates (FEDFUNDS), the number of
non farm payroll employees (PAYEMS) and CPI inflation (CPIAUCSL). We fix the
lag length to 13 and retain 10 years of data (120 observations) as the first estimation
sample. We then produce 1 to 24 months ahead pseudo real time forecasts with the
first estimation sample ending in January 1970 and the last one ending in July 2011,
for a total number of 499 forecasts. Finally, in the case of the Lmse criterion we need
to choose L, that is the width of the short window of data on which to measure the
predictive performance of the model. We set L =36 (corresponding to three years of
data). As a benchmark we adopt the large Bayesian VAR (BVAR) with a Litterman
prior and constant coefficients, which can be obtained as a restricted version of our
estimator by shutting down the time variation in the VAR coefficients.

2.5.2 Results

As a first piece of evidence, in Figure 2.1 (for the 20 variables VAR) and Figure 2.2
(for the 78 variables VAR) we show the behaviour of the penalty parameter λ in the
specifications where both λ and H are optimised over time with the Lfit criterion
(specification M7 in Table 2.3).19 As mentioned, high values of λ imply that the
constraints hold more tightly, so that the VAR coefficients are less informed by the
data. Starting from Figure 2.1, three distinct phases can be identified. In the first
one λ starts from relatively low values and increases smoothly over time. In the 80s
and throughout the Great Moderation it stays relatively constant around this value,
to start falling again in the mid 1990s, with a steeper slope at the beginning of
the 2000s. These results are broadly in line with those stressed in the literature on
the predictability of macro times series before and after the Great Moderation. For
example D’Agostino, Giannone, and Surico (2006) find that the predictive content
for inflation and economic activity of common factors extracted from large panels
weakened significantly during the Great Moderation, while in periods of higher
volatility cross-sectional information proved more relevant for forecasting. Given
the direct relationship between the relevance of cross sectional information and

19Results obtained using the Lmse are qualitatively similar, but for some data points the penalty
parameter λ goes to infinity (i.e. the model is driven towards a multivariate random walk) making
the visual result less clear.
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λ, the results in Figure 2.1 send a similar message, as the contribution of cross-
sectional information is progressively penalised by higher values of λ in the 1980s.
When the dimension of the VAR increases (Figure 2.2) the optimal value of λ is
higher, confirming the theoretical results in De Mol, Giannone, and Reichlin (2008)
on the inverse relationship between the optimal level of shrinkage and cross-sectional
dimensions in large panels. An inverse U shaped evolution of λ can be detected also
in this case.

To verify that time variation in the coefficients is indeed useful for forecasting,
we compare the performance of the 20 variables TVP-VAR with that of its constant
coefficient counterpart. The results of this exercise are shown for the various model
specifications in Table 2.4 where we report relative Root Mean Square Forecast
Errors (RMSE). Values below 1, which imply that the introduction of time variation
through the kernel estimator induces an improvement in prediction accuracy, are
highlighted in grey. We assess the statistical significance in forecast accuracy through
a Diebold-Mariano test (Diebold and Mariano, 1995) and underline the cases in
which the null hypothesis can be rejected at the 10% significance. A bird-eye view
of the table reveals that in many instances time variation increases forecast accuracy,
as the majority of the cells (around 70% of the cases) report values below 1. However,
the average improvement appears to be small as in most of the cases the gain is of
the order of 5%. As a consequence, most of the differences in forecast accuracy
are not significant, according to the Diebold Mariano test. Looking more in detail,
three results emerge. First, time variation matters at long horizons for inflation
and interest rates, while for employment the improvement is more consistent across
different horizons. Second, the specifications that work best are those in which H is
fixed at around 0.7 and λ is optimised in real time according to the Lmse criterion
(M6 in the Table). In this case the TVP-VAR improves on the constant coefficients
benchmark by more than 10% at long-horizons. Third, specifications in which both
λ and H are optimised in real time (M3 and M8) do not perform well and, in fact,
are often outperformed by the benchmark.

2.5.3 The role of forecast pooling

The substantial heterogeneity observed in the forecasting results across model
specifications suggests that the performance of TVP-VAR could be further improved
through forecast combination. Since combination schemes based on equal weights
are usually found to perform remarkably well, we proceed by pooling forecasts
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through simple averaging.20

The results obtained by forecast pooling are summarised in Figure 2.3. The
plots, which show the RMSEs of the combined TVP-VARs relative to the fixed
coefficients benchmark, are organised in three panels corresponding to the three
different target variables, CPI, Fed Fund Rates and employment. The six bars in
each panel correspond to different forecast horizons, from 1 to 24 months ahead.
Bars in grey identify the forecast horizons for which a Diebold-Mariano test does
not reject the null hypothesis of equal forecast accuracy, while those in red denote
the cases for which forecast accuracy is significantly different at the 10% confidence
level.21

The forecasts obtained by pooling predictions from the different time-varying
model specifications prove to be more accurate than those obtained from the
benchmark at basically all horizons. Furthermore, according to the Diebold Mariano
test, the improvement is statistically significant at the 10% confidence level, as
evident from the large prevalence of red bars. There is also a tendency of the
relative RMSEs to fall as the forecast horizon increases, as it was already apparent
in the results displayed in Table 2.4, suggesting that time variation in the VAR
coefficients is relatively more important for forecasting at longer than at shorter
horizons. In Figure 2.4 we report the cumulative sum of squared forecast error
differentials, computed as

CSSEDt =
t∑

j=1

(e2
j,BV AR − e2

j,TV P−V AR). (2.34)

This statistics is very useful in revealing the parts of the forecast sample where the
TVP-VAR accrues its gains. Positive and increasing values indicate that the TVP
model outperforms the benchmark, while negative and decreasing values suggest the
opposite. At relatively shorter horizons (top panels) the model with time-varying
coefficients performs better than the one with constant parameters around economic
downturns, as indicated by the jumps of the CSSED in periods classified by the
NBER as recessions (grey shaded areas). At longer horizons (bottom panels), the
gain is relatively uniform across the sample for interest rates and employment, while
it is relatively concentrated in the 70s-80s for inflation.22

20More sophisticated weighting schemes, based on the selection criteria described in Table 2.3,
deliver very similar results. The analysis is available upon request.

21The test is two sided so that bars in red and higher than 1 indicate that the forecast of the
benchmark model is significantly more accurate.

22A fluctuation test over windows of 120 months shows that for interest rates and employment
the gain of using the TVP-VAR is statistically significant over most of the sample. For inflation,
the test rejects the null of equal predictive accuracy more sporadically.
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2.5.4 The role of model size

To answer the question of whether enlarging the information set eliminates the need
for time variation in the coefficients, we compare the performance of the 20 variables
TVP-VAR with that of a fixed coefficients BVAR with 78 variables. The relative
RMSEs reported in Figure 2.5 show that at shorter horizons (1 to 6 months ahead)
the performance of the two models is overall comparable, although the time-varying
model is more accurate in tracking interest rates. However, when we move to longer
horizons, the performance of the TVP-VAR improves considerably. Looking at
Figure 2.6 we find again that the CSSED tends to jump around recession periods.
Hence, the importance of TVP is not (mainly) due to omitted variables.

The next issue that we want to explore is whether, in the context of a TVP-VAR,
it pays off to go larger than around 20 variables, provided that the set of variables
of interest is small. We tackle this question by comparing the performance of the
20 variables TVP-VAR with that of a 78 variables TVP-VAR. We find that, on
the whole forecast sample, a medium-sized information set is sufficient to capture
the relevant dynamics. The predictive accuracy of the 20 variables VAR is, in
fact, typically higher than that of the larger model, especially for interest rates (see
Figure 2.7). The evolution of the CSSED, shown in Figure 2.8, reveals that the
accuracy gains of the 20 variables VAR are actually concentrated in the first part
of the sample, and that from the 90s onwards, the performance of the two model
sizes is very similar. This is an interesting finding that extends to a time-varying
coefficients context the results obtained by Banbura, Giannone, and Reichlin (2010)
in the case of constant coefficient VARs and those by Boivin and Ng (2006) in
constant coefficient factor models.

2.5.5 Allowing for time varying volatilities

As a final exercise we contrast the predictive performance of the baseline 20 variables
TVP-VAR with that of a TVP-VAR that also includes the GLS correction described
in Section 2.5 to account for the presence of stochastic volatility in the data. For
both models point forecasts are obtained by pooling predictions obtained on the
basis of different values of φ and H. The results reported in Figure 2.9 show that
the model that does not consider a GLS correction performs definitely better both
at short and at longer horizons. Since the differences in terms of RMSEs are quite
large, it is all the more important to understand in which part of the sample these
gains are attained. The CSSED shown in Figure 2.10 reveal that the GLS correction
is particularly detrimental for forecast accuracy in the first part of the sample, and in
particular in the late Seventies. Still, in the remaining part of the sample, an upward
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trend in the CSSED is still well visible, implying that the relative performance of
the two models is still in favour of the simpler method where no GLS correction
is performed.23 One reason for the poor performance of the GLS correction might
be related to the fact that the kernel estimation of the covariance matrix can be
imprecise for models of this size. To check for this possibility we run the exercise on
smaller scale VAR including only seven variables. The results, shown in figures 2.11
and 2.12 show that, while in this setting the relative performance of the model with
time varying volatilities improves, this GLS correction does not yield any significant
gain in forecast accuracy.

2.5.6 Comparison with Koop and Korobilis (2013)

A comparison of the empirical performance of the nonparametric and parametric
TVP-VAR needs to take into account the computational limitations to which the
latter is subject. This means that a forecast competition based on monthly VARs
with 13 lags, like those employed in the previous subsections, is unfeasible. We
therefore proceed by taking quarterly transformations of the variables and specify a
20 variables VAR with 4 lags. The forecast exercise is similar to the one performed
on monthly data, that is we produce 1 to 8 quarters ahead forecasts of the three key
variables in our dataset, CPI, the Fed Fund Rates and payroll employment, with an
out sample period ranging from 1970:q1 to 2013:q2 (167 data points).

Figure 2.13 presents the RMSEs of the kernel based estimator relative to those of
the parametric one. Again, we use red bars to highlight the cases where a Diebold-
Mariano test rejects the null hypothesis of equal forecast accuracy. Visual inspection
of the graph reveals that the nonparametric estimator generates significantly better
predictions for inflation and employment, while the parametric estimator is more
accurate in forecasting short term interest rates. As for the remaining variables, the
only case in which the Diebold-Mariano test rejects in favour of the parametric
estimator is for the 10 year rate and for M1 at very short horizons, while for
the remaining 10 indicators the evidence is either in favour of the nonparametric
approach (red bars lower than one) or inconclusive (grey bars).

Summarising, the outcome of this extensive forecasting exercise provides further
broad support for our method. Moreover, the fact that the estimator can
accommodate a large information set has allowed us to address issues that could
not be investigated with existing methods, such as the relationship between the size

23Results obtained by evaluating forecasts produced only from the mid Eighties onwards (not
reported for brevity but available upon request) confirm this intuition as the simpler model still
produces RMSEs that are 25 percent lower than those obtained with the model that allows for a
GLS correction.

73



2.LARGE TVP-VAR

of the information set and parameters’ time variation and the relevance of the model
size in the context of models with time-varying parameters.

2.6 Structural analysis

Our non-parametric estimator can be useful also in the context of structural analysis
when time variation in the parameters is considered to be an issue. As an illustration,
we use the proposed method to estimate the time-varying responses of industrial
production indexes to an unexpected increase in the price of oil. The changing
response of key macroeconomic variables to unexpected oil price increases has
been greatly debated in the past decade. In particular, using structural VARs
and different identification assumptions a number of studies have found that oil
price increases are associated with smaller losses in U.S. output in more recent
years. While some of these studies have used sample-split approaches, like Edelstein
and Kilian (2009), Blanchard and Gali (2007) and Blanchard and Riggi (2013),
others have relied on Bayesian VARs with drifting coefficients and volatilities, see
Baumeister and Peersman (2013) and Hahn and Mestre (2011). The latter approach,
however, severely constraints the size of the system to be estimated so that only a
small number of variables can be jointly modelled. Partly as a consequence of this
constraint, available evidence on the break in the oil/output nexus mainly refers to
aggregate GDP. Sectoral aspects, however, are equally relevant as the recessionary
effect of oil price shocks is partly due to a costly reallocation of labor and capital
away from energy intensive sectors (Davis and Haltiwanger, 2001). Where a more
granular perspective is taken, like in Edelstein and Kilian (2009), special attention is
paid to the role of the automotive sector, which is considered the main transmission
channel of energy price shocks. Indeed as energy price increases reduce purchases
of cars, and given that the dollar value of these purchases is large relatively to the
energy they use, even small energy price shocks can cause large effects, an intuition
formalised by Hamilton (1988). Given the importance of this sector, one would
expect it to be the main responsible for the changing relationship between oil and
GDP.

In this section we revisit this issue by extending the analysis conducted in
Edelstein and Kilian (2009), based on a bivariate VAR and on a sample-split
approach, to a large TVP-VAR setting in which energy prices are modelled jointly
with industrial output in different sectors. In particular, we augment our baseline
20 variables VAR with 8 industrial production series split by market destination.24

24Since we are not concerned with forecasting, in the structural analysis presented in this
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The additional series are Business Equipment, Consumer Goods and its two sub-
components Durable (half of which is accounted for by Automotive products) and
Nondurable (Food, Clothing, Chemical and Paper products), Final Product goods
(Construction and Business Supplies and Defence and Space equipment), Material
goods and its two sub-components Durable (Consumer and Equipment parts) and
Nondurable (Textile, Paper and Chemical). A list of the series, together with their
weight on the overall index, is reported in Table 2.5.

While the impact of energy prices on macroeconomic variables has typically
been studied in small scale structural VARs, recent papers have investigated the
issue in models of larger scale, see Stock and Watson (2012) and Aastveit (2014)
for applications that use, respectively, a Structural Dynamic Factor Model and
a FAVAR. Neither of these two papers, however, allows for time variation in the
coefficients.

The identification of energy price shocks follows Edelstein and Kilian (2009),
i.e. we assume that energy price shocks are exogenous relative to contemporaneous
movements in the other variables in the system, which implies ordering the price of
oil first in a recursive structural VAR.25 Kilian and Vega (2011) provide a test of this
assumption by regressing daily changes in the price of oil to daily news on a wide
range of macroeconomic data and find no evidence of feedback from macroeconomic
news to energy prices, concluding that energy prices are indeed predetermined with
respect to the U.S. macroeconomy. A shortcoming of this approach is that it does
not allow us to separate the source of variation behind oil price shocks, i.e. whether
they are driven by supply rather than by demand.26 In other words, our identified
energy price shocks will be a linear combination of demand and supply shocks.
However, given that we are interested in identifying the sectors that are central to the
propagation of energy price shocks, rather than in determining the determinants of
energy price fluctuations, the recursive identification is a valid working assumption as
long as the effects of supply and demand shocks are not disproportionately different
across sectors. Furthermore, this final section does not aim at pushing the frontier of
the literature on the oil/macroeconomy nexus but rather at illustrating the potential
usefulness for structural analysis of a large TVP-VAR.

Figure 2.14 shows that an innovation to the real price of oil generates a protracted

Section we follow Giraitis, Kapetanios, and Yates (2012) and use a two sided Gaussian kernel
with smoothing parameter H = 0.5. Furthermore, the penalty parameter λ is chosen over the
full sample through the Lfit criterion and changing volatilities are accounted for through the GLS
correction in equation (2.23).

25A similar identification assumption is maintained by Blanchard and Gali (2007) and Blanchard
and Riggi (2013).

26The debate on the relative role of supply and demand factors in determining oil prices dates
back to Kilian (2009).
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fall in overall industrial output. Furthermore, in line with the literature, the
recessionary impact of an exogenous oil price disturbance is generally more severe in
the Seventies than in later decades. Notice, however that the difference across the
two sub-samples is entirely accounted for by the very early Seventies, a finding that
cannot be uncovered with the simple sample-split strategy considered in Edelstein
and Kilian (2009), Blanchard and Gali (2007) and Blanchard and Riggi (2013) and
that validates the use of time-varying coefficients models.

The results for the individual sectors are reported in Figure 2.15. A number
of interesting results emerge. First, in most sectors the effect of an unexpected
increase in the real price of oil is generally negative in the first part of the sample,
and the fall in production is much more pronounced in energy intensive segments,
like Business Equipment, Durable Consumption and Material Goods. Second, most
sectors display an attenuation of the recessionary impact of energy price shocks. In
some of them unexpected increases in the real price of oil end up being associated
with an expansion in production, consistently with the findings in Kilian (2009) that
attribute energy price surprises in the 2000s to increased demand for commodities
rather than to supply disruptions.27 Again, most of the changes over time occur in
more energy intensive sectors.

To assess the relative importance of each sector in explaining the changing pass-
through of energy price shocks to overall industrial activity we proceed by weighing
the IRFs in different sectors by their shares in overall industrial output (reported in
Table 2.5). The resulting weighted IRFs are reported in Figure 2.16 where, for the
sake of clarity, we only focus on the responses twelve months after the initial shock.
When the relative weight of the various sectors is taken into account, the relevance
for overall business cycle fluctuations of developments in the motor vehicles sector,
which accounts for half of Durable Consumption, appears less relevant than that of
other sectors. Instead, the response of overall industrial output to oil price shocks
and its evolution over time are largely determined by that of the Durable Material
sector, which includes intermediate goods for a wide range of final products. This
outcome suggests that the increased efficiency in the energy use of automobiles has
played a minor role in shaping the oil/output relationship in the U.S. over the past
forty years. In turn, greater energy efficiency at the higher stages of the supply
chain, as well as a larger role for demand shocks, are likely to be the driving forces
behind changes in the relationship between oil prices and U.S. aggregate output.

27Blanchard and Gali (2007) also find that oil price innovations are associated with an increase
in output after the 80s in France and in Germany, see Figure 7.6 therein.
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2.7 Conclusions

In this paper we propose an estimator for large dimensional VAR models with flexible
parameter structure, capable of accommodating breaks in the relationships among
economic time series. Our procedure is based on the mixed estimator by Theil and
Goldberger (1960), which imposes stochastic constraints on the model coefficients,
and on the nonparametric VAR estimator proposed by Giraitis, Kapetanios, and
Yates (2014). The use of stochastic constraints mimics in a classical context the role
of the prior in Bayesian models, allowing to bypass the over-fitting problem that
arises in large dimensional models.

We derive the asymptotic distribution of the estimator and evaluate the
determinants of its efficiency. We also discuss various aspects of the practical
implementation of the estimator, based on two alternative (fit and forecasting)
criteria, and assess its finite sample performance in Monte Carlo experiments.

We then use the non-parametric estimator in a forecasting exercise where we
model up to 78 U.S. macroeconomic time series. We find that the introduction of
time variation in the VAR model parameters yields an improvement in prediction
accuracy over models with a constant parameter structure, in particular when
forecast combination is used to pool forecasts obtained with models with different
degrees of time variation and penalty parameters. We also shed light on an issue
that is central to the forecasting literature, namely how the size of the information
set interacts with time variation in the model parameters. Specifically, we find that
the relevance of time variation is not related to omitted variable problem and that,
as in the constant parameter case, a medium-sized TVP-VAR is at least as good as
a large TVP-VAR.

In a forecasting context, our non-parametric estimator compares well with the
alternative parametric approach by Koop and Korobilis (2013), when using either
actual or simulated data, and can handle a larger number of variables.

Finally, to illustrate the use of our method in structural analysis, we analyse the
changing effects of oil price shocks on economic activity, a question that has spurred
a large number of studies in the applied macro literature in recent years. We find
that the declining role of oil prices in shaping U.S. business cycle fluctuations stems
from changes related to Business Equipment and Materials sector, rather than from
the automobiles sector as argued by part of the literature.

Overall, we believe that our findings illustrate how the econometric tool that we
have proposed opens the door to a number of interesting analyses on forecasting
and on the nonlinear transmission of shocks, which have been so far constrained by
computational issues.

77



2.LARGE TVP-VAR

Table 2.1: 1 step ahead, relative RMSEs

T Parametric Non parametric
Inv. RMSE Equal weights

DGP-1 (Random walk coefficients)
n=7

100 1 1.004 1.005
150 1 0.999 1.000
200 1 0.997 0.997

n=15
100 1 1.021 1.024
150 1 1.012 1.013
200 1 1.006 1.007

DGP-2 (Occasionally breaking coefficients)
n=7

100 1 0.96 0.96
150 1 0.96 0.96
200 1 0.96 0.96

n=15
100 1 0.96 0.96
150 1 0.95 0.95
200 1 0.94 0.94

DGP-3 (Sine function coefficients)
n=7

100 1 0.95 0.96
150 1 0.96 0.98
200 1 0.97 0.99

n=15
100 1 0.87 0.88
150 1 0.86 0.87
200 1 0.85 0.86

Note to Table 2.1. The table shows the ratio between the one step ahead RMSE attained by, respectively,
the nonparametric and the parametric model, averaged across the n variables. Forecasts are computed
on the second half of the sample, i.e. when T=100, forecasts are computed recursively for t=51 to
t=100, when T=150 forecasts are computed recursively for t=76 to t=150 and when T=200 forecasts are
computed recursively for t=101 to t=200.
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No. Acronym (FRED database) Description SA Logs Prior mean 

1 AAA Interest rates on AAA bonds Not Seasonally Adjusted 0 1

2 AHEMAN Average Hourly Earnings Of Production And Nonsupervisory Employees: Manufacturing Not Seasonally Adjusted 1 1

3 AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Seasonally Adjusted 1 0

4 AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Seasonally Adjusted 1 0

5 BAA Interest rates on BAA bonds Not Seasonally Adjusted 1 1

6 CE16OV Civilian Employment Seasonally Adjusted 1 1

7 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel Seasonally Adjusted 1 1

8 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items Seasonally Adjusted 1 1

9 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Seasonally Adjusted 1 1

10 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care Seasonally Adjusted 1 1

11 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation Seasonally Adjusted 1 1

12 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food Seasonally Adjusted 1 1

13 DMANEMP All Employees: Durable goods Seasonally Adjusted 1 0

14 DSPIC96 Real Disposable Personal Income Seasonally Adjusted 1 1

15 DPCERA3M086SBEA Real personal consumption expenditures (chain-type quantity index) Seasonally Adjusted 1 1

16 FEDFUNDS Effective Federal Funds Rate Not Seasonally Adjusted 0 1

17 GS1 1-Year Treasury Constant Maturity Rate Not Seasonally Adjusted 0 1

18 GS10 10-Year Treasury Constant Maturity Rate Not Seasonally Adjusted 0 1

19 GS5 5-Year Treasury Constant Maturity Rate Not Seasonally Adjusted 0 1

20 HOUST Housing Starts: Total: New Privately Owned Housing Units Started Seasonally Adjusted Annual Rate 1 0

21 HOUSTMW Housing Starts in Midwest Census Region Seasonally Adjusted Annual Rate 1 0

22 HOUSTNE Housing Starts in Northeast Census Region Seasonally Adjusted Annual Rate 1 0

23 HOUSTS Housing Starts in South Census Region Seasonally Adjusted Annual Rate 1 0

24 HOUSTW Housing Starts in West Census Region Seasonally Adjusted Annual Rate 1 0

25 INDPRO Industrial Production Index Seasonally Adjusted 1 1

26 IPBUSEQ Industrial Production: Business Equipment Seasonally Adjusted 1 1

27 IPCONGD Industrial Production: Consumer Goods Seasonally Adjusted 1 1

28 IPDCONGD Industrial Production: Durable Consumer Goods Seasonally Adjusted 1 1

29 IPDMAT Industrial Production: Durable Materials Seasonally Adjusted 1 1

30 IPFINAL Industrial Production: Final Products (Market Group) Seasonally Adjusted 1 1

31 IPMAT Industrial Production: Materials Seasonally Adjusted 1 1

32 IPNCONGD Industrial Production: Nondurable Consumer Goods Seasonally Adjusted 1 1

33 IPNMAT Industrial Production: nondurable Materials Seasonally Adjusted 1 1

34 LOANS Loans and Leases in Bank Credit, All Commercial Banks Seasonally Adjusted 1 1

35 M1SL M1 Money Stock Seasonally Adjusted 1 1

36 M2SL M2 Money Stock Seasonally Adjusted 1 1

37 MANEMP All Employees: Manufacturing Seasonally Adjusted 1 0

38 NAPM ISM Manufacturing: PMI Composite Index Seasonally Adjusted 0 0

39 NAPMEI Seasonally Adjusted 0 0

40 NAPMII [] Not Seasonally Adjusted 0 0

41 NAPMNOI ISM Manufacturing: New Orders Index Seasonally Adjusted 0 0

42 NAPMPI [] Seasonally Adjusted 0 0

43 NAPMSDI [] Seasonally Adjusted 0 0

44 NDMANEMP All Employees: Nondurable goods Seasonally Adjusted 1 0

45 OILPRICE [] Not Seasonally Adjusted 1 1

46 PAYEMS All Employees: Total nonfarm Seasonally Adjusted 1 1

47 PCEPI Personal Consumption Expenditures: Chain-type Price Index Seasonally Adjusted 1 1

48 PERMIT New Private Housing Units Authorized by Building Permits Seasonally Adjusted Annual Rate 1 0

49 PERMITMW New Private Housing Units Authorized by Building Permits in the Seasonally Adjusted Annual Rate 1 0

50 PERMITNE New Private Housing Units Authorized by Building Permits in the Seasonally Adjusted Annual Rate 1 0

51 PERMITS New Private Housing Units Authorized by Building Permits in the South Seasonally Adjusted Annual Rate 1 0

52 PERMITW New Private Housing Units Authorized by Building Permits in the West Seasonally Adjusted Annual Rate 1 0

53 PI Personal Income Seasonally Adjusted Annual Rate 1 1

54 PPIACO Producer Price Index: All Commodities Not Seasonally Adjusted 1 1

55 PPICRM Producer Price Index: Crude Materials for Further Processing Seasonally Adjusted 1 1

56 PPIFCG Producer Price Index: Finished Consumer Goods Seasonally Adjusted 1 1

57 PPIFGS Producer Price Index: Finished Goods Seasonally Adjusted 1 1

58 PPIITM Producer Price Index: Intermediate Materials: Supplies & Components Seasonally Adjusted 1 1

59 SandP S&P 500 Stock Price Index 1 1

60 SRVPRD All Employees: Service-Providing Industries Seasonally Adjusted 1 1

61 TB3MS 3-Month Treasury Bill: Secondary Market Rate Not Seasonally Adjusted 0 1

62 TB6MS 6-Month Treasury Bill: Secondary Market Rate Not Seasonally Adjusted 0 1

63 UEMP15OV Number of Civilians Unemployed for 15 Weeks & Over Seasonally Adjusted 1 0

64 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks Seasonally Adjusted 1 0

65 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over Seasonally Adjusted 1 0

66 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks Seasonally Adjusted 1 0

67 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks Seasonally Adjusted 1 0

68 UEMPMEAN Average (Mean) Duration of Unemployment Seasonally Adjusted 1 0

69 UNRATE Civilian Unemployment Rate Seasonally Adjusted 0 0

70 USCONS All Employees: Construction Seasonally Adjusted 1 1

71 USFIRE All Employees: Financial Activities Seasonally Adjusted 1 1

72 USGOOD All Employees: Goods-Producing Industries Seasonally Adjusted 1 0

73 USGOVT All Employees: Government Seasonally Adjusted 1 1

74 USMINE All Employees: Mining and logging Seasonally Adjusted 1 0

75 USPRIV All Employees: Total Private Industries Seasonally Adjusted 1 1

76 USTPU All Employees: Trade, Transportation & Utilities Seasonally Adjusted 1 1

77 USTRADE All Employees: Retail Trade Seasonally Adjusted 1 1

78 USWTRADE All Employees: Wholesale Trade Seasonally Adjusted 1 1

Table 2.2: Data description
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λ H

0.5
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1
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0.9

1

M3 Optimized at each t Optimized at each t

M4 Fixed at pre-sample optimal level Optimized at each t
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0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

M8 Optimized at each t Optimized at each t

M9 Fixed at pre-sample optimal level Optimized at each t

Lmse

M6 Optimized at each t

M7 Fixed at pre-sample optimal level

Lfit

M1 Optimized at each t

M2 Fixed at pre-sample optimal level

Table 2.3: Specifications for the TVP-VARs
Specifications for the TVP-VARs. The Lfit criterion is computed as Lfit(λ,H) =∣∣∣∑n1

i=1
rssin(λ,H)
var(yt,i)

−
∑n1

i
rssin1

var(yt,i)

∣∣∣ where n1 is a number of reference variables, rssn1 is the residual
sum of squares obtained with an n1 variate VAR, and rssn1(λ,H) is the residual sum of squares
obtained with the TVP-VAR. The Lmse criterion is computed as Lmse(λ,H) =

∑n1

i=1
mseih(λ,H)
var(yt,i)

,
where mseh is the mean square prediction error h steps ahead obtained with the TVP-VAR.
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H

1 6 12 24 1 6 12 24 1 6 12 24

0.5 1.17 1.10 1.03 0.92 1.07 0.85 0.84 0.94 1.40 1.33 1.13 0.90

0.6 1.12 1.01 1.02 0.99 1.02 0.90 0.93 0.96 1.28 1.25 1.12 0.90

0.7 1.03 0.97 0.99 1.03 0.97 0.97 0.99 0.98 0.96 0.93 0.95 0.96

0.8 1.01 0.98 0.99 0.97 0.99 0.97 0.96 0.95 0.97 0.94 0.95 0.95

0.9 1.02 0.98 0.98 0.96 1.00 0.96 0.95 0.94 0.98 0.96 0.97 0.96

1 1.02 0.98 0.98 0.95 1.00 0.96 0.95 0.93 0.98 0.97 0.98 0.96

0.5 1.03 1.04 1.08 1.33 0.95 0.97 1.03 1.27 0.97 0.94 0.98 0.98

0.6 1.00 0.97 1.03 1.13 0.93 1.02 1.07 1.12 0.97 0.94 0.98 1.04

0.7 1.00 0.98 1.01 1.05 0.95 0.99 1.01 0.99 0.97 0.95 0.98 1.01

0.8 1.01 0.99 0.99 0.99 0.97 0.98 0.97 0.96 0.97 0.96 0.97 0.98

0.9 1.02 0.99 0.98 0.96 0.98 0.97 0.95 0.94 0.98 0.97 0.98 0.98

1 1.02 0.99 0.98 0.95 0.98 0.96 0.95 0.94 0.98 0.98 0.99 0.98

M3 Optimized OPT 1.02 0.99 1.01 1.02 0.99 1.01 1.00 0.95 0.96 0.93 0.94 0.92

M4 Fixed OPT 1.01 0.98 1.01 1.03 0.96 1.01 1.01 0.96 0.98 0.97 1.00 1.02

0.5 1.06 1.09 1.10 1.62 1.01 0.98 0.98 1.49 1.16 1.09 1.07 1.06

0.6 1.08 1.00 0.89 0.84 0.99 0.96 0.90 0.98 1.12 1.05 0.98 0.93

0.7 1.12 1.03 0.95 0.88 1.01 0.91 0.87 0.89 1.16 1.10 0.99 0.88

0.8 1.15 1.06 0.98 0.88 1.01 0.88 0.84 0.85 1.18 1.13 1.00 0.84

0.9 1.14 1.07 0.98 0.88 1.02 0.87 0.84 0.86 1.18 1.15 1.03 0.88

1 1.14 1.05 0.98 0.88 1.02 0.87 0.84 0.86 1.19 1.16 1.04 0.90

0.5 1.01 1.08 1.26 2.13 0.93 1.02 1.16 2.03 0.99 0.97 1.02 1.15

0.6 1.01 0.97 1.02 1.11 0.93 1.00 1.05 1.11 0.97 0.93 0.96 1.01

0.7 1.01 0.97 0.97 0.99 0.95 0.97 0.97 0.96 0.96 0.93 0.94 0.92

0.8 1.03 0.98 0.96 0.93 0.98 0.94 0.93 0.92 0.98 0.95 0.94 0.89

0.9 1.03 0.98 0.96 0.92 1.00 0.94 0.92 0.91 1.00 0.98 0.97 0.92

1 1.04 0.98 0.95 0.92 1.00 0.93 0.92 0.91 1.00 0.99 0.98 0.92

M8 Optimized OPT 1.10 1.10 1.11 1.61 1.01 0.97 0.93 1.42 1.15 1.06 1.00 1.02

M9 Fixed OPT 0.99 1.04 1.16 2.08 0.95 1.00 1.02 1.99 0.99 0.92 0.95 1.10

Fixed

Optimized

Fixed

Optimized

Selection

method

M1

M2

M6

M7

λ

EmploymentFed Funds Rates

Forecast horizon Forecast horizonForecast horizon

CPI

Lfit

Lmse

Table 2.4: RMSE, TVP-VAR versus BVAR with 20 variables
Root Mean Square Forecast Errors: TVP-VARs versus constant coefficients BVAR (20 variables).
The tables show the RMSE obtained by models with time varying parameters described in Table
2.3 relative to those obtained with the benchmark large BVAR with constant parameters. Values
below 1 (shaded in grey in the table) imply that the model outperforms the benchmark. Values
underlined indicate the cases in which the Diebold Mariano test rejects the null hypothesis of equal
forecast accuracy at the 10% confidence level. The RMSE are computed on 499 out-of-sample
forecast errors, from January 1970 to July 2013.
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Figure 2.1: Optimal λ - 20 variables TVP-VAR
Optimal λ

- 20 variables TVP-VAR. The figure shows the evolution of the value of λ optimized using the
Lfit criterion in the TVP-VAR with 20 variables. Shaded areas indicate NBER-dated recessions.

1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2.2: Optimal λ - 78 variables TVP-VAR
Optimal λ - 78 variables TVP-VAR. The figure shows the evolution of the value of λ optimized
using the Lfit criterion in the TVP-VAR with 78 variables. Shaded areas indicate NBER-dated
recessions.
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Figure 2.3: RMSE, TVP-VAR versus BVAR, 20 variables
Root Mean Square Forecast Errors: combined TVP-VARs versus constant coefficients BVAR
(20 variables VARs). The bar plots show the RMSE obtained by equal weights forecast
combination of models with time varying parameters relative to that obtained with the
BVAR with constant coefficients. Values below 1 imply that the TVP model outperforms
the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano
test does not reject the null hypothesis of equal forecast accuracy, those in red denote the
cases for which forecast accuracy is significantly different at the 10% confidence level.
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Figure 2.4: CSSED, TVP-VAR versus BVAR, 20 variables
Cumulative sum of squared forecast error differentials: combined TVP-VARs versus constant
coefficients BVAR (20 variables VARs). The figure shows the Cumulative Sum of Squared Forecast
Errors Differentials between the equal weights forecast combination of models with time varying
parameters and the BVAR with constant coefficients. Positive and increasing values indicate that
the TVP model outperforms the benchmark, while negative and decreasing values suggest the
opposite. Shaded areas indicated NBER-dated recessions.
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Figure 2.5: RMSE, TVP-VAR with 20 variables versus BVAR with 78 variables
Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78 variables
constant coefficients BVAR. The bar plots show the RMSE obtained by equal weights forecast
combination of 20 variables VARs with time varying parameters relative to that obtained with
a 78 variables BVAR with constant coefficients. Values below 1 imply that the TVP model
outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-
Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote
the cases for which forecast accuracy is significantly different at the 10% confidence level.

72 75 78 81 84 87 90 93 96 99 02 05 08 11

-4

-3

-2

-1

0

1

2

3

3 steps ahead

CPI
Fed Funds Rates
Employment

72 75 78 81 84 87 90 93 96 99 02 05 08 11

-2

-1

0

1

2

3

4

12 steps ahead

72 75 78 81 84 87 90 93 96 99 02 05 08 11

0

1

2

3

4

18 steps ahead

72 75 78 81 84 87 90 93 96 99 02 05 08 11

0

1

2

3

4

5

24 steps ahead

Figure 2.6: CSSED, TVP-VAR with 20 variables versus BVAR with 78 variables
Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus 78
variables constant coefficients BVAR. The figure shows the Cumulative Sum of Squared Forecast
Errors Differentials between the equal weights forecast combination of 20 variables VARs with time
varying parameters and a 78 variables BVAR with constant coefficients. Positive and increasing
values indicate that the TVP model outperforms the benchmark, while negative and decreasing
values suggest the opposite. Shaded areas indicated NBER-dated recessions.



Forecast Horizon
1 3 6 12 18 24

R
el

at
iv

e 
R

M
S

E

0.25

0.5 

0.75

1   

1.2 
CPI

Forecast Horizon
1 3 6 12 18 24

R
el

at
iv

e 
R

M
S

E
0.25

0.5 

0.75

1   

1.2 
Fed Funds Rates

Forecast Horizon
1 3 6 12 18 24

R
el

at
iv

e 
R

M
S

E

0.25

0.5 

0.75

1   

1.2 
Employment

Figure 2.7: RMSE, TVP-VAR with 20 variables versus TVP-VAR with 78 variables
Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78 variables
combined TVP-VARs. The bar plots show the RMSE obtained by equal weights forecast
combination of 20 variables VARs with time varying parameters relative to that obtained
by equal weights forecast combination of 78 variables VARs with time varying parameters.
Values below 1 imply that the TVP model with 20 variables outperforms the benchmark.
Bars in grey indicate the forecast horizons for which a Diebold-Mariano test does not
reject the null hypothesis of equal forecast accuracy, those in red denote the cases
for which forecast accuracy is significantly different at the 10% confidence level.
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Figure 2.8: CSSED, TVP-VAR with 20 variables versus TVP-VAR with 78 variables
Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus
78 variables combined TVP-VARs. The figure shows the Cumulative Sum of Squared Forecast
Errors Differentials between the equal weights forecast combination of 20 variables VARs with
time varying parameters and equal weights forecast combination of 78 variables VARs with time
varying parameters. Positive and increasing values indicate that the TVP model with 20 variables
outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded
areas indicated NBER-dated recessions.
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Figure 2.9: RMSE, TVP-VAR with 20 variables versus TVP-VAR with 20 variables
and GLS correction
Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 20 variables
combined TVP-VARs with a GLS correction. The bar plots show the RMSE obtained
by equal weights forecast combination of 20 variables VARs with time varying parameters
relative to that obtained by equal weights forecast combination of 20 variables VARs with
time varying parameters and the GLS correction described in Section 2.5. Values below
1 imply that the TVP model with 20 variables without GLS correction outperforms the
benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test
does not reject the null hypothesis of equal forecast accuracy, those in red denote the
cases for which forecast accuracy is significantly different at the 10% confidence level.
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Figure 2.10: CSSED, TVP-VAR with 20 variables versus TVP-VAR with 20
variables and GLS correction
Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus
20 variables combined TVP-VARs with a GLS correction. The figure shows the Cumulative Sum
of Squared Forecast Errors Differentials between the equal weights forecast combination of 20
variables VARs with time varying parameters and equal weights forecast combination of 78 variables
VARs with time varying parameters and the GLS correction described in Section 2.5. Positive
and increasing values indicate that the TVP model with 20 variables without GLS correction
outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded
areas indicated NBER-dated recessions.
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Figure 2.11: RMSE, TVP-VAR with 7 variables versus TVP-VAR with 7 variables
and GLS correction
Root Mean Square Forecast Errors: 7 variables combined TVP-VARs versus 7 variables
combined TVP-VARs with a GLS correction. The bar plots show the RMSE obtained
by equal weights forecast combination of 7 variables VARs with time varying parameters
relative to that obtained by equal weights forecast combination of 7 variables VARs with
time varying parameters and the GLS correction described in Section 2.5. Values below
1 imply that the TVP model with 7 variables without GLS correction outperforms the
benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test
does not reject the null hypothesis of equal forecast accuracy, those in red denote the
cases for which forecast accuracy is significantly different at the 10% confidence level.
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Figure 2.12: CSSED, TVP-VAR with 7 variables versus TVP-VAR with 7 variables
and GLS correction
Cumulative sum of squared forecast error differentials: 7 variables combined TVP-VARs versus 7
variables combined TVP-VARs with a GLS correction. The figure shows the Cumulative Sum of
Squared Forecast Errors Differentials between the equal weights forecast combination of 7 variables
VARs with time varying parameters and equal weights forecast combination of 7 variables VARs
with time varying parameters and the GLS correction described in Section 2.5. Positive and
increasing values indicate that the TVP model with 7 variables without GLS correction outperforms
the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated
NBER-dated recessions.
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Figure 2.13: Forecast accuracy, nonparametric and parametric estimators

Note to Figure 2.13. The bar plots show the ratio between the RMSE attained by, respectively, the
nonparametric and the parametric model. Values below 1 imply that the nonparametric model outperforms
the parametric one. Bars in grey indicate that the Diebold-Mariano test does not reject the null hypothesis
of equal forecast accuracy, while those in red denote the cases for which forecast accuracy is significantly
different at the 10% confidence level.
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Market group Acronym Weight
Industrial Production Index INDPRO 100
Industrial Production: Business Equipment IPBUSEQ 9.18
Industrial Production: Consumer Goods IPCONGD 27.2
Industrial Production: Durable Consumer Goods IPDCONGD 5.59
Industrial Production: Nondurable Consumer Goods IPNCONGD 21.62
Industrial Production: Final Products (Market Group) IPFINAL 16.58
Industrial Production: Materials IPMAT 47.03
Industrial Production: Durable Materials IPDMAT 17.34
Industrial Production: Nondurable Materials IPNMAT 11.44

Table 2.5: Industrial production indexes by market group

Note to Table 2.5. The shares of market groups refer to 2011 Value added in nominal terms.
Nondurable consumer goods includes Consumer Energy products, which account for 5.7% of
total IP. We have excluded from the analysis Industrial Production of Energy Materials, which
is part of the Materials (IPMAT) group and accounts for 18.3% of overall output. Source
http://www.federalreserve.gov/releases/g17/g17tab1.txt
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Figure 2.14: Response of Industrial production (overall index) to a 1% shock to the
real price of oil
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Figure 2.15: Response of Industrial production (sectors) to a 1% shock to the real
price of oil
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Figure 2.16: Contribution of selected sectors to the response of overall Industrial
production (12 months out) to a 1% shock to the real price of oil
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Appendix

2.A Proof of Theorem 1

Starting from (2.18), we have:

Θ̂t = (S−1
w X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)ΘC (2.35)

= (S−1
w X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)Θt + S−1

w

√
λR
′
urt (2.36)

where we have used the fact that

ΘC = (R
′
R)−1(R

′
r) (2.37)

= (R
′
R)−1

(
R
′
(
RΘt +

1√
λ
urt

))
(2.38)

= Θt + (R
′
R)−1R

′ 1√
λ
urt (2.39)

Taking probability limits, recalling that p lim Θ̂t,GKY = Θt, and that Sw =

(X ′w,tXw,t + λR
′
R) we have that:

p lim (S−1
w X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)Θt + S−1

w R
′
λurt = Θt + ΘB

t

To determine the normalising factor in (2.19), let us go back to the representation
in (2.14) and let us take differences from the true parameter matrix Θt and from
the bias term ΘB

t . We obtain:

Θ̂t −Θt −ΘB
t =

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
jy
∗
j

)
−Θt −ΘB

t

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
j(x
∗′
j Θj + u∗j)

)
−Θt −ΘB

t

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
jx
∗′
j Θj

)
+
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+

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
ju
∗
j

)
−Θt −ΘB

t

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1 T∑
j=1

wj,tx
∗
jx
∗′
j (Θj −Θt) +

+

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
ju
∗
j −

T∑
j=1

wj,tx
∗
jx
∗′
j ΘB

t

)
. (2.40)

Now, if the bandwidth is o(T 1/2), then the

term
(∑T

j=1 wj,tx
∗
jx
∗′
j

)−1∑T
j=1wj,tx

∗
jx
∗′
j (Θj − Θt) is asymptotically negligible and

we can focus on the element in (2.40).
First let us simplify the notation and let us write:

1. X∗′w,tX
∗
w,t︸ ︷︷ ︸

k×k

≡
∑T

j=1wjt x∗j︸︷︷︸
k×(k+1)

x∗
′

j︸︷︷︸
(k+1)×k︸ ︷︷ ︸

k×k

2. X∗′ww,t︸ ︷︷ ︸
k×T (k+1)

U∗︸︷︷︸
T (k+1)×n︸ ︷︷ ︸

k×n

≡
∑T

j=1 wj,t x∗j︸︷︷︸
k×(k+1)

u∗j︸︷︷︸
(k+1)×n︸ ︷︷ ︸

k×n

, where the T (k + 1) × n matrix U∗

is obtained by stacking over t the matrices u∗t︸︷︷︸
(k+1)×n

3. Λ
′︸︷︷︸

k×k

≡ (X∗′w,tX
∗
w,t︸ ︷︷ ︸

k×k

)S−1
w︸︷︷︸
k×k

λ R
′︸︷︷︸

k×k

, which implies that (X∗′w,tX
∗
w,t)Θ

B
t =

(X∗′w,tX
∗
w,t)S

−1
w λR

′
urt = Λ

′
urt

Now, let us multiply the transpose of
(

Θ̂′t −Θ′t −Θ′Bt

)
by
√
H, and let us focus

on (2.40):

√
H
(

Θ̂′t −Θ′t −Θ′Bt

)
=

(
1√
H

(
U
′∗X∗ww,t − u

′r
t Λ
))( 1

H
X∗′w,tX

∗
w,t

)−1

.

Taking vec of both sides yields:

√
Hvec

(
Θ̂′t −Θ′t −Θ′Bt

)
=
(
H
(
X∗′w,tX

∗
w,t

)−1 ⊗ In
)
vec

(
1√
H

(
U
′∗X∗ww,t − u

′r
t Λ
))

.

(2.41)
The normalizing term that appears in Theorem 1 is the second moment of this
expression. While it is easy to see how Γ∗−1

ww,t is obtained, to derive Γ∗∗ww,t, we
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need to analyze the asymptotic variance of the second term of (2.41), that is
1√
H
vec
(
U
′∗X∗ww,t − u

′r
t Λ
)
. First, notice that:

1√
H
vec
(
U
′∗X∗ww,t − u

′r
t Λ
)

=
1√
H

(
X ′∗ww,t ⊗ In

)︸ ︷︷ ︸
kn×nT (k+1)

vec
(
U
′∗
)

︸ ︷︷ ︸
nT (k+1)×1

− 1√
H

(
Λ
′ ⊗ In

)
︸ ︷︷ ︸

kn×kn

urt︸︷︷︸
kn×1

(2.42)
where we have used the fact that urt = vec(u

′r
t ).

There are four elements to be considered, namely two variances and two
covariances. Defining again avar the asymptotic variance and acov the asymptotic
covariance, we have the following results.

Term 1:

1

H

(
X ′∗ww,t ⊗ In

)
avar

(
vec
(
U
′∗
)) (

X∗ww,t ⊗ In
)

=
1

H

(
X ′∗ww,t ⊗ In

) (
IT (k+1) ⊗ Σn

) (
X∗ww,t ⊗ In

)
=

1

H

(
X ′∗ww,tX

∗
ww,t ⊗ Σn

)
= Γ∗ww,t ⊗ Σn

Term 2:

1

H
(Λ′ ⊗ In) avar(urt ) (Λ⊗ In) =

1

H
(Λ′ ⊗ In) (Ik ⊗ Σn) (Λ⊗ In) =

1

H
(Λ′Λ⊗ Σn)

Term 3:

1

H

(
X ′∗ww,t ⊗ In

)
acov

vec(U ′∗)︸ ︷︷ ︸
nT (k+1)×1

, (urt︸︷︷︸)′
1×kn

 (Λ⊗ In)

To analyse this, notice that:

vec(U
′∗) =



u1

ur1

u2

ur2

...

ut

urt

...


This means that the relevant matrix will contain zeros everywhere but in

correspondence of the vector urt appearing in vec(U ′∗), where it will equal Ik ⊗ Σn.
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Compactly, this can be written as:

acov
(
vec(U

′∗), (vec(urt ))
′
)

︸ ︷︷ ︸
nT (k+1)×kn

=

 0[(t−1)(k+1)+1]×k

Ik

0(T−t)(k+1)×k

⊗ Σn ≡ Ξ︸︷︷︸
T (k+1)×k

⊗ Σn.

Plugging in this term, we have

1

H

(
X ′∗ww,t ⊗ In

)
cov

vec(U ′∗)︸ ︷︷ ︸
nT (k+1)×1

, (urt )
′︸︷︷︸

1×kn

 (Λ⊗ In) =
1

H

(
X ′∗ww,t ⊗ In

)
(Ξ⊗ Σn) (Λ⊗ In)

=
1

H

X ′∗ww,tΞΛ︸ ︷︷ ︸
k×k

⊗ Σn


Term 4: is simply the transpose of Term 3.
Collecting terms we have that the main normalising term is:

Γ∗∗ww,t ⊗ Σn =
(
Γ∗ww,t ⊗ Σn

)
+

1

H

[
(Λ′Λ⊗ Σn)−

(
X ′∗ww,tΞΛ⊗ Σn

)
−
(
Λ′ΞX∗ww,t ⊗ Σn

)]
=

1

H

[
(HΓ∗ww,t + Λ′Λ−X ′∗ww,tΞΛ− Λ′ΞX∗ww,t)⊗ Σn

]
From this the proof follows.

2.B Proof of Theorem 2

Replacing in (2.20) yj and r with the processes implied by the model (2.9)-(2.10)
we have:

β̂t − βt =

[
T∑
j=1

wj,t(In ⊗ xjx′j) + λR′R

]−1 [ T∑
j=1

wj,t(In ⊗ xjx′j + λR′R)(βj − βt − βBt )

]
+

[
In ⊗

T∑
j=1

wj,txjx
′
j + λR′R

]−1 [ T∑
j=1

wj,t(In ⊗ xj)uj +
√
λR′urt )

]

where, again, the term that multiplies (βj − βt) is negligible assuming that the
bandwidth is op(T 1/2). The analysis of the estimation bias and the convergence to
normality follows trivially as in Theorem 1, so we do not repeat it here.
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2.C Proof of Theorem 3

Let us rewrite the constrained estimator as a linear combination of the unconstrained
one and of the constraints. If we define E = In ⊗

∑T
j=1 wj,txjx

′
j, F = λR′R,and

G =
∑T

j=1 wj,tvec(xjy
′
j) =

∑T
j=1wj,t(In⊗ xj)y′j, then the unconstrained estimator is

β̂t,GKY = E−1G. We can therefore write (2.20) as:

β̂t = [E + F ]−1
[
Eβ̂t,GKY + λR′r

]
Defining C = avar(β̂t,GKY |βT ) we have that for any vector q and w = E [E + F ]−1 q

q′
(
avar(β̂t,GKY |βT )− avar(β̂t|βT

)
q = q′(C − [E + F ]−1ECE [E + F ]−1)q

= w′(E−1 [E + F ]C [E + F ]E−1 − C)w

= w′(
[
I + E−1F

]
C
[
I + FE−1

]
− C)w

= w′(
[
C + E−1FC

] [
I + FE−1

]
− C)w

= w′(C + E−1FC + CFE−1 + E−1FCFE−1 − C)w

= w′(E−1FC + CFE−1 + E−1FCFE−1)w ≥ 0,

which proves the result.28

Next, we turn to a comparison of the (conditional) Mean Squared Error of the
constrained and unconstrained non-parametric estimators. We see that the ranking is
not clear-cut, unless a certain condition is satisfied.

Following Alkhamisi and Shukur (2008), let us analyse the canonical29 version of model
(2.13). Let Λ and Ψ be the eigenvalues/eigenvectors of X∗′w,tX∗w,t, i.e. X∗′w,tX∗w,t = ΨΛΨ′

and ΨΨ′ = Ik. Defining ỹt =
√
wt,tyt, x̃t =

√
wt,txt, ũt =

√
wt,tut, the weighted regression

model (in matrix form) is:

ỹt
′

1×n
= x̃t

′

1×k
Θt
k×n

+ ũt
′

1×n
,

√
λr

k×n
=
√
λR
k×k

Θt
k×n

+ ur
k×n

.

Using ΨΨ′ = Ik we can write z̃t′ = x̃t
′Ψ and Ξt = Ψ′Θt, and re-state the model in canonical

28This can also be seen intuitively by noticing that avar
(
β̂t|βT

)
has a lower bound at 0,

attained when λ → ∞, and an upper bound at avar(β̂t,GKY |βT ), corresponding to λ = 0.

Furthermore [E + F ]
−1
E falls monotonically as λ increases. It follows that avar

(
β̂t|βT

)
≤

avar(β̂t,GKY |βT ) for every positive value of λ.
29In the canonical form the regressors are orthogonalised, as clarified below.
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form as:

ỹt
′

1×n
= z̃t

′

1×k
Ξt
k×n

+ ũt
′

1×n
,

√
λr

k×n
=
√
λR
k×k

Θt
k×n

+ ur
k×n

.

The unconstrained estimator of Ξt is then:

Ξut = (Z∗′w,tZ
∗
w,t)
−1(Z∗′w,tY

∗
w,t)

=
(
Ψ′X∗′w,tX

∗
w,tΨ

)−1
(Z∗′w,tY

∗
w,t)

= Λ−1(Z∗′w,tY
∗
w,t),

We can derive the conditional Mean Square Error of the unconstrained estimator as:

MSE(Ξut |Ξt) = V u =

(
1

H
Λ

)−1( 1

H
Z∗′w,tWH,tZ

∗′
ww,t

)(
1

H
Λ

)−1

⊗Σn = V
u ⊗Σn. (2.43)

The constrained estimator is

Ξct = (Λ + λR
′
R)−1(Z∗′w,tY

∗
w,t + λR

′
r),

The conditional Mean Square Error of the constrained estimator is:

MSE(Ξct |Ξt) = V c =

(
1

H
Λ + Φ

)−1( 1

H
Z∗′w,tWH,tZ

∗′
ww,t + Φ

)(
1

H
Λ + Φ

)−1

⊗Σn = V
c⊗Σn,

(2.44)
where Φ = λ

HR
′
R. To study the conditions under which V u−V c is a positive semidefinite

matrix, let us consider equivalently the quadratic form:30

β′ (Λ + Φ) [V
u − V c

] (Λ + Φ)β =

= β′ (Λ + Φ) Λ−1Z∗′w,tWH,tZ
∗′
ww,t︸ ︷︷ ︸

≡A

Λ−1 (Λ + Φ)β − β′Z∗′w,tWH,tZ
∗′
ww,t︸ ︷︷ ︸

≡A

+ Φβ

= β′
[(
I + ΦΛ−1

)
A
(
I + Λ−1Φ

)
− (A+ Φ)

]
β

= β′
[
A+AΛ−1Φ + ΦΛ−1A+ ΦΛ−1AΛ−1Φ−A− Φ

]
β

= β′
[
AΛ−1Φ + ΦΛ−1A+ ΦΛ−1AΛ−1Φ− Φ

]
β.

Hence, if the quantity
[
AΛ−1Φ + ΦΛ−1A+ ΦΛ−1AΛ−1Φ− Φ

]
is positive semidefinite it

follows that V u−V c is indeed a semidefinite positive matrix suggesting such a relationship
for the mean square errors of the respective estimators. Notice that the required condition
is related to the amount of collinearity among the regressors. Specifically, a high degree
of collinearity in the time series collected in the matrix X∗w,t will push some eigenvalues of

30To simplify the notation, in what follows we have set H = 1. This assumption is immaterial,
since this term can be factored out.
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X∗′w,tX
∗
w,t close to 0, therefore making Λ−1 tend to ∞.

2.D Monte Carlo exercise

In the Monte Carlo exercise the coefficients Λt are obtained through the following
algorithm.

1. First, simulate n2 + n coefficients according to the chosen DGP, where n is the size
of the VAR.

2. The coefficients are then bounded by the largest one, so as to be lower or equal to 1
in absolute value.

3. At each t the first n2 coefficients are orthogonalised through the Grahm-Shmidt
procedure and used to form an n× n orthonormal matrix. Call this matrix Pt.

4. The last n coefficients are used to form a diagonal matrix of eigenvalues Lt. At each
point in time the elements of Lt (call them lt) are transformed using the following
function

l̃t = 0.5(1 + θL + eps) + 0.5(1− θL − eps) arctan(lt)/ arctan(1)− eps

where lt are the input eigenvalues (that by construction lie between -1 and 1), θL
is the desired lower bound and eps is a small constant that ensures that the upper
bound is 1−eps, that is strictly below 1. The resulting function is relatively smooth,
as it can be seen in Figure 2.D.1 where l̃t is plotted against the possible values of lt
(on the x axis there are 201 equally spaced points between -1 and 1) and θL = 0.85.

5. Construct Λt = PtL̃tP
′
t

Figure 2.D.1: Constrained simulated coefficients
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2.E Dynamic model selection

The estimation method of the parametric model suggested by Koop and Korobilis depends
on a number of constants, the so called forgetting factor, θ, the prior tightness for the
initial conditions λ and the constant κ. To select θ and λ we follow their dynamic model
selection (DMS) algorithm. First the forgetting factor θ is made time-varying as follows:

θt = θmin + (1− θmin)Lft (2.45)

where ft = −NINT (ε̂′t−1ε̂t−1), NINT is the rounding to the nearest integer function,
ε̂t−1 are the one step ahead forecast errors, θ = 0.96, L = 1.1 (values calibrated to obtain
a forgetting factor between 0.96 and 1). As for the prior tightness we use a grid of J values.
Each point in this grid defines a new model. Weights for each model j (defined πt/t−1,j)
are obtained by Koop and Korobilis as a function of the predictive density at time t − 1

through the following recursions:

πt/t−1,j =
παt−1/t−1,j∑J
l=1 π

α
t−1/t−1,l

(2.46)

πt/t,j =
πt/t−1,jpj(yt|yt−1)∑J
l=1 πt/t−1,lpl(yt|yt−1)

(2.47)

where pj(yt|yt−1) is the predictive likelihood. Since this is a function of the prediction
errors and of the prediction errors variance, which are part of the output of the Kalman
filter, the model weights can be computed at no cost along with the model parameters
estimation. Note that here a new forgetting factor appears, α, which discounts past
predictive likelihoods and is set to 0.99. The constant κ is set to 0.96 throughout the
exercise. At each point in time, forecast are obtained on the basis of the model with the
highest weight πt/t−1,j .
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Chapter 3

The time varying effect of oil price
shocks on euro-area exports

3.1 Introduction

The evolving relationship between the price of oil and the macroeconomy has been
at the center of a lively debate in the empirical literature. A number of studies have
indeed documented a decline in the importance of energy price shocks for economic
activity, arguing that this relationship has changed around the mid-Eighties, see
Hooker (1999), Blanchard and Gali (2007) and Edelstein and Kilian (2009).

According to some of these papers, changes in the structure of the economies and
in the conduct of monetary policy have progressively insulated advanced economies
from the negative effects of exogenous energy price increases. Blanchard and Gali
(2007), for instance, point to more effective monetary policy, to a fall in the share of
oil in both production and consumption and to lower real wage rigidities as plausible
causes for this structural break. Blanchard and Riggi (2013) formally explore the
quantitative relevance of each of these explanations through an estimated DSGE
model, and find support for the role of vanishing wage indexation and improved
monetary policy credibility. Other studies argue that the change in the relationship
between oil prices and the macroeconomy reflects an evolution in the composition
of the shocks underlying oil price fluctuations. According to this literature the role
of exogenous flow supply shocks to crude oil, whose effect on economic activity
is unambiguously depressive, has only a marginal role in determining oil price
fluctuations. In contrast, shocks to the demand for oil associated with global activity
booms have been responsible for most increases in the real price of oil from the mid-
Seventies onwards (Kilian, 2009). This alone could explain why oil price increases
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are not necessarily associated with recessions. For example, part of the literature
argues that the surge in the real price of oil observed in the 2000s can be mainly
related to the rapid growth in emerging economies.

A natural corollary of this latter view is that, for oil importing countries, the
external channel could be as relevant as the domestic one in understanding the
effects of oil price shocks on macroeconomic activity. As booming economies lift
the real price of oil they also stimulate trade and exports, which, in turn, could
more than offset the adverse impact of higher energy prices on domestic demand
components. Moreover, this mechanism is likely to have been reinforced by the
remarkable increase in trade integration favoured by globalization. Considering, for
instance, the euro area economy taken as a whole, which is the focus of the present
study, between 1970 and 2010 the rate of growth of real exports has significantly
outpaced that of GDP, see Figure 1. As a consequence the share of exports on
GDP as well as the relevance of foreign demand fluctuations for domestic growth
have constantly increased over time and foreign demand has become more and more
important for domestic growth.

Interestingly, however, while the reaction of domestic demand to energy price
shocks has been extensively studied, the relationship between trade and oil price
fluctuations has been largely overlooked in the literature.1 Our paper contributes
to filling this gap. We start our investigation by looking at simple correlations
between euro-area exports and the real price of oil. This preliminary analysis reveals
a change in the co-movement between the two variables. In particular, while in
the Seventies the correlation between euro-area exports and the real price of oil
was basically nil, since the mid-Eighties it has become positive and significantly
different from zero. This change might simply reflect an increase in the relative
importance of expansionary global shocks (which stimulate both oil demand and
global trade) in accounting for oil price variability in more recent periods. This
hypothesis is supported, for instance, by findings in Kilian (2009) and Baumeister
and Peersman (2013). A complementary explanation, which constitutes the focus
of our paper, is that, conditional on each shock, the relationship between the price
of oil and euro-area exports has varied over time owing to some structural changes
that have influenced the joint dynamics of the two macroeconomic variables. We
investigate the plausible structural sources of such a change using both a theoretical
model and a Bayesian time-varying parameter structural vector autoregression with
stochastic volatility (TVP-VAR). The theoretical framework is used to model the
interplay between the oil market and exports and pick out the robust features of the

1One exception is Kilian, Rebucci, and Spatafora (2009), whose focus, however, is on the the
impact on the external balance of oil price shocks.
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impact responses of a number of endogenous variables to two structural shocks. The
former is a flow oil supply shock, capturing the effect of an unexpected disruption
in the production of oil. The latter is a foreign (from the euro area point of view)
productivity shock that drives up the demand for oil. Simulations of the theoretical
model provide us with useful restrictions on the signs of the reaction of the variables
of interest to these shocks. In the spirit of Kilian and Murphy (2014) we combine
these restrictions with plausible bounds on the price elasticity of oil supply and on
the price elasticity of oil demand to identify these two shocks in the TVP-VAR,
and analyze empirically how their effects on euro area exports has evolved over
time. The structural analysis conducted on the basis of the TVP-VAR reveals
that, conditional on each shock, the co-movement between the real price of oil price
and euro area exports has indeed varied over time. In particular, conditional on
negative oil supply shocks the association between the real price of oil and exports
has become less negative, while, following a foreign productivity shock, a stronger
positive co-movement has emerged.

We finally try to rationalize these changes using our theoretical model. We
focus on a number of channels. First, a stronger trade relationship with emerging
countries, whose growth has recently driven oil price increases. Second, a fall in
the quantitative importance of oil in the world economy. Third, an increase in
competitive pressures in the product market. Model simulations suggest that, in
combination, these factors could potentially account for the changes documented by
our empirical analysis.

The rest of the paper is organized as follows. Section 2 presents the basic stylized
facts that motivate our analysis. Section 3 lays out the theoretical model and
presents its predictions on the response of some endogenous variables to oil supply
and demand shocks. Section 4 describes the empirical evidence obtained from the
VAR with time varying coefficients and stochastic volatility. Section 5 uses the
theoretical model in order to assess the potential for the three hypotheses listed
above to explain our empirical findings. Section 6 concludes.

3.2 Motivation

We start our investigation by looking at raw correlations between real exports and
the real price of oil. Real exports are chain linked export volumes, as measured in
the euro area quarterly national accounts. The real price of oil is obtained by first
converting in euros the U.S. dollar price of crude Brent, then deflating the resulting
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nominal price (denominated in euros) by the euro-area consumption deflator.2 We
use data between the second quarter of 1970 and the fourth quarter of 2013 and take
log changes of both variables. Table 1 shows the correlation coefficients between
these variables in two selected sub-samples. The former runs between 1970 to 1984,
the latter between 1985 and 2013. The choice of the cutoff date (1984) is motivated
by the findings in Hooker (1999), Blanchard and Gali (2007) and Edelstein and
Kilian (2009) who identify a break in the relationship between the real price of
oil and economic activity around the mid-Eighties, both for the U.S. and for the
largest euro-area economies.3 In the first sub-sample no clear co-movement emerges
between real exports and the real price of oil, as the correlation coefficient stands at
0.12 and it is not significantly different from zero. In the second part of the sample,
instead, a strong positive correlation (0.44) emerges. To further investigate changes
in the relationship between these two variables, we run a regression of the rate of
growth of real exports on the rate of growth of the real price of oil, allowing for the
coefficient of the latter to change at a given point in time. First, we use a dummy
variable that equals 0 between 1970 and 1984 and 1 thereafter, and interact it with
the real price of oil. The results of this exercise are reported in the first two columns
of Table 2. Between 1970 and 1984 the regression coefficient of the real price of oil
is estimated at 0.07, and is not significantly different from zero. Its interaction with
the shift dummy, on the other hand, displays a coefficient of 0.16, and is significantly
different from zero at the 10 percent confidence level, indicating a stronger positive
association between export and oil price growth after 1984. Columns 3 and 4 report
the results of a similar exercise conducted using a dummy indicator that takes a
value of 1 after 1989. The outcome is broadly similar, with the regression coefficient
turning from 0.10 before 1989 to 0.24 after that year. Again, the interaction of the
shift dummy and the real price of oil results in a coefficient that is significantly
different from zero at conventional confidence levels.

In summary this preliminary exploration of the data indicates that a significant
change in the reduced form relationship between the real price of oil and euro-area
exports has occurred around the second half of the Eighties. In the next section we
turn to a structural theoretical model that will provide us with some guidance for a
deeper structural analysis of this issue.

2For the years prior to the Monetary Union an estimate of the exchange rate between the euro
and the U.S. dollar, as well as of the consumption deflator and of real exports, is provided by the
ECB Area Wide Model.

3We do not rely on formal break tests to date the change in the regression coefficients since these
tests have been shown to have very low power in detecting time variation when the parameters of
the true data generating process behave as a random walk Benati (2007).
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3.3 The theoretical model

Our model is a variant of Clarida, Gali, and Gertler (2002), extended to consider
the role of oil price dynamics in the spirit of Campolmi (2008) and Lipinska and
Millard (2012). In our economy there are two oil importing countries, home (H)
and foreign (F ). They differ in size and share identical preferences, technology
and market structure, though shocks may be imperfectly correlated. H has a mass
of households n, whereas F has a mass (1− n). In each country, production takes
place in two stages. There is a continuum of intermediate goods firms each producing
a differentiated input. These firms are monopolistic competitors and set nominal
prices in a staggered fashion. Final goods producers are perfectly competitive. They
combine intermediate inputs into final output, which they sell to households. The
number of final goods firms within each country equals the number of households,
whereas the number of intermediate goods firms is normalized at unity in each
country4. Oil is used by the intermediate firms in the two countries, H and
F , as an input in production together with employment. Within each economy
households consume a domestically produced good and a good imported from the
other country. In both countries households have access to a complete set of Arrow-
Debreu securities which can be traded both domestically and internationally. An oil
exporting country sells its endowment of oil and spends the associate revenues on
consumption of goods from both H and F . Oil price is determined in equilibrium.

We make two assumptions about the oil market. First, oil is non-storable. This
is clearly an ad-hoc hypothesis - as oil is in fact a storable commodity - made on the
ground of simplicity. A recent relevant contribution by Unalmis, Unalmis, and Unsal
(2012) incorporates speculative oil storage into a general equilibrium framework,
giving rise to a dynamic link among oil inventories, storers’ expectations of oil price
and the spot price. This set up allows to study the impact of a storage demand
shock, which decreases the availability of oil in place, therefore increasing the oil
price. Through the lens of our model, this disturbance would be interpreted as an
oil supply shock.

The second simplifying assumption is the exogeneity of oil supply. This
assumption has some grounding in the empirical literature, where there is wide
agreement that the price elasticity of oil supply is indeed close to zero (Hamilton,
2009). This is because changing oil production is highly costly and, given the
uncertainty about the state of the crude oil market, oil producers do not revise the

4As shown by Clarida, Gali, and Gertler (2002) this assumption ensures that final goods
producers face the same technology.
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production level in response to high-frequency changes in demand Kilian (2009).5

This assumption is maintained by a large part of the theoretical literature, see
Campolmi (2008) Lipinska and Millard (2012) and Unalmis, Unalmis, and Unsal
(2012). Some recent work, however, has shown that a mildly positively sloped short-
run supply curve is indeed consistent with historical evidence Kilian and Murphy
(2012). To take into account these recent developments, in the empirical section we
relax this assumption and allow for a mildly upward sloping supply curve, using the
elasticity bounds estimated by Kilian and Murphy (2012).

Given our objectives, we focus on two sources of cyclical fluctuations driving up
oil prices: an oil supply shrinkage and an increase in foreign productivity. The latter
is meant to capture the dynamic effects of an oil demand increase fostered by faster
foreign growth.

3.3.1 Preferences

The representative household i in country H maximizes:

E0

∞∑
t=0

βt

{
(Ct(i)− hCt−1)1−σ

1− σ
− Nt(i)

1+φ

1 + φ

}
(3.1)

where β is the discount factor, Nt denotes the household’s i hours of labor and
Ct ≡ ΘCγ

F,tC
1−γ
H,t is a composite index of consumption of home and foreign goods,

with Θ ≡ γ−γ (1− γ)−(1−γ). CF,t is an index of consumption of imported goods
produced by F , CH,t is an index of consumption of domestic goods and γ ≡ (1− n)χ

denotes the weight of imported goods in the consumption basket of households
located in country H. The latter depends on the relative size of F and on χ, which
is the degree of trade openness of H.

Households are concerned with "catching up with the Joneses": there is a certain
degree of external habit persistence h ∈ [0, 1); Ct−1 is the aggregate consumption
level in period t− 1. The period budget constraint is given by

PH,tCH,t + PF,tCF,t +QB
t Bt = Bt−1 +WH,tNt + Πt

where PH,t is the domestic price index, PF,t is a price index for foreign goods (in
domestic currency), WH,t is the nominal wage, Πt are profits, QB

t is the price
of a one-period nominally riskless bond, paying one unit of domestic currency
and Bt denotes the quantity of that asset purchased in period t. The optimal

5Note, however, that our assumption is stronger than in Kilian (2009), who only imposes a one
month vertical oil supply curve.
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allocation of expenditures between imported and domestically produced goods
implies PH,tCH,t = (1− γ)PtCt and PF,tCF,t = γPtCt, where Pt = P 1−γ

H,t P
γ
F,t is the

consumer price index. In an analogous manner, the composite index of consumption
in the foreign economy is C∗t ≡ Θ∗

(
C∗F,t

)1−γ∗ (
C∗H,t

)γ∗ , where γ∗ ≡ nχ∗ and χ∗ is
the degree of trade openness in F .6 The optimal allocation of expenditures implies
P ∗H,tC

∗
H,t = γ∗P ∗t C

∗
t and P ∗F,tC

∗
F,t = (1− γ∗)P ∗t C∗t , where P ∗F,t denotes the price of

foreign goods denominated in the producer’s currency, P ∗H,t denotes the price of
domestic goods denominated in the foreign currency and P ∗t is the consumer price
index in F denominated in foreign currency P ∗t = P ∗γ

∗

H,t P
∗(1−γ∗)
F,t .

The law of one price implies that PF,t = EtP
∗
F,t, where Et is the nominal exchange

rate. The real exchange rate Rt is defined by Rt ≡ EtP ∗t
Pt

.

3.3.2 Risk sharing

Under complete markets, the efficiency conditions for bonds’ holdings by residents
in F reads:

QB
t = βEt

P ∗t Et
P ∗t+1Et+1

(
C∗t − hC∗t−1

)σ(
C∗t+1 − hC∗t

)σ (3.2)

Equating (3.2) with the Euler equations for both the home and foreign economies
and log-linearizing around the steady state yields the familiar expression for the
wedge between domestic and foreign interest rates:

it − i∗t = Et
[
πt+1 − π∗t+1

]
− rt + rt+1 (3.3)

where we have denoted with r the proportional deviation from steady state of the
real exchange rate and with π and π∗ the CPI inflation rate in H and F, respectively.

3.3.3 Firms

Final goods producers are perfectly competitive. Each of them produces output by
using a continuum of intermediate goods as input, according to the CES technology

Yt =

(
1∫
0

Yt(f)
ε−1
ε df

) ε
ε−1

where Yt denotes aggregate output and Yt(f) is the input

produced by intermediate goods firm f . Both variables are expressed in per capita
terms. Profit maximization, taking the price of the final good PH,t as given, implies

6The absence of home bias would require that the weight of domestically produced goods in
home consumption basket (1− γ) is equal to the weight of imported goods in foreign consumption
basket (γ∗); home bias in consumption would require that (1− γ) = 1− (1− n)χ > γ∗ = nχ∗.
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the set of demand equations Yt(f) =
(
PH,t(f)

PH,t

)−ε
Yt and the domestic price index

PH,t =

 1∫
0

PH,t (f)1−ε df


1

1−ε

.

Intermediate goods firms are monopolistic competitors, produce a differentiated
intermediate good and set nominal prices in a staggered fashion. Each of them
produces with the following technology:

Yt(f) = Nt(f)αnMH,t (f)αm (3.4)

where MH,t (f) is oil used by firm f and Nt(f) is labor input used by firm f (both
normalized by population size). Firms take the price of both inputs as given.
Accordingly, cost minimization implies MH

t (f)

Nt(f)
= αm

αn

WH,t

Pm,t
, where Pm,t is the nominal

price of oil. Firm’s f ’s nominal marginal cost is given by Ψt(f) =
WH,t

αn(Yt(f)/Nt(f))
=

Pm,t
αm(Yt(f)/MHt(f))

. We assume that each period only a fraction of intermediate goods
firms (1− θ), selected randomly, reset prices. The remaining firms keep their prices
unchanged.

Intermediate goods firms in country F produce with the following technology:

Y ∗t (f) = A∗tN
∗
t (f)αnMF,t (f)αm (3.5)

where A∗t is a productivity factor common across firms. We assume a first order
autoregressive process A∗t =

(
A∗t−1

)ρA euat , where uat is an i.i.d. shock to foreign
technology level.

3.3.4 Oil market

As in Lipinska and Millard (2012), oil is costless to transport and is non storable.
Oil producer does not have access to world capital markets and simply uses the
revenues from its production of oil to purchase final goods produced by H and F .
The representative consumer in the oil producing country maximizes the following
utility:

maxEt
∞∑
r=0

βrCO
t+r

Aggregate consumption CO
t ≡ Γ

(
CO
F,t

)$O (CO
H,t

)1−$O is a composite consumption
index of goods produced by H and F , where Γ ≡ $−$OO (1−$O)−(1−$O) , $O is
the share of F -produced goods in the consumer’s basket, CO

H,t is the consumption
of the H-produced goods and CO

F,t is the consumption of F -produced goods. The
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consumer’s budget constraint is given by Pm,tM s
t = CO

H,tPH,t + CO
F,tPF,t, where M s

t

is oil endowment as defined below. Oil demand of the world economy is:

Md
t = n

∫ 1

0

MH,t (i) di+ (1− n)

∫ 1

0

MF,t (i) di =
αm
αn

(
n
WHt

Pm,t
Nt + (1− n)

W ∗
Ft

P ∗m,t
N∗t

)
(3.6)

The oil endowment M s
t is assumed to follow a first order autoregressive process

M s
t =

(
M s

t−1

)ρm
eu

m
t , where umt is an i.i.d. shock to oil supply. Equilibrium in the

oil market requires:

Pm,t =
αm
αn

(
nWHtNt + (1− n)WFtN

∗
t

M s
t

)
(3.7)

3.3.5 Aggregate resource constraint

We can write the aggregate resource constraint in home and foreign country as
follows:

nYt = nCH,t + (1− n)C∗H,t + CO
H,t (3.8)

(1− n)Y ∗t = (1− n)C∗F,t + nCF,t + CO
F,t (3.9)

3.3.6 Monetary policy

We assume that the central bank of the home economy follows an interest rate rule:

It =
[
(πt)

φπ (Yt)
φx
]

(3.10)

where It ≡ 1 + it is the nominal interest rate. A symmetric rule is assumed for
F .

Steady state relations and optimality conditions are shown in Appendix A.

3.3.7 Model consistent impact sign restrictions

We use our theoretical frame to pick out the robust features of the responses of
some endogenous variables to the two random disturbances in the model. We follow
Canova and Paustian (2011), Dedola and Neri (2007) and Lippi and Nobili (2012)
and carry out a Monte Carlo simulation on the relevant parameters of our theoretical
model, assuming that they are uniformly and independently distributed over wide
ranges. In particular, we draw 10000 vectors of the structural parameters from the
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uniform densities reported in Table 2, for each draw we save the responses to an oil
supply shock and to a foreign productivity shock and compute the median, the 5th
and 95th percentiles of the resulting distribution of impulse responses.

Table 2 reports the ranges of the uniform distributions for the parameters of
the model that are simulated and the values imposed on the remaining calibrated
parameters. Concerning the former group, the ranges of the uniform densities are
sufficiently wide so as to cover all the reasonable values that these parameters can
take. The degree of price stickiness is drawn over the interval that includes both
a flexible prices’ scenario (when θ = 0.1 firms adjust their prices each quarter)
and an almost completely rigid prices’ scenario (when θ = 0.95 firms adjust their
prices once every twenty quarters). The parameter capturing the degree of habits
is drawn from the range over which it is theoretically defined h ∈ [0, 1). The ranges
for the degree of trade openness in H and F include, at one extreme, the possibility
that the country is completely closed to foreign trade (when χ and χ∗ = 0) and,
at the other extreme, a high degree of trade openness (when χ and χ∗ = 1) and
the possibility of no home bias in consumption. The share of foreign goods in the
oil exporter country’s consumers’ basket is drawn from a uniform density over the
support between $O = 0 (implying that oil exporters consume only H−produced
goods) and $O = 1 (implying that oil exporters consume only F−produced goods).
The ranges from which the coefficients of the Taylor rule and the inverse of Frisch
elasticity are drawn encompass most calibrated and also estimated values used in
the literature: φπ ∈ [1.1, 5], φx ∈ [0, 1] and φ ∈ [0.1, 2]. The elasticity of substitution
among differentiated goods ε is drawn over the interval between 3 (implying a desired
markup of 50%) and 11 (implying a desired markup of 10%). The range for the
share of oil in production αm is [0.01, 0.04]. The latter encompass the plausible
values according to our computations based on OECD input output tables.7 As for
the serial correlation of the shock processes, we consider the same support used in
Lippi and Nobili (2012), namely any value between and including 0.5 and 0.999,
thus allowing also for near-random walks.

The remaining four parameters are calibrated. We set the discount factor in line
with standard calibrations of DSGE models (β = 0.998). By calibrating n = 0.5

we assume that F and H have the same size. We set the risk aversion σ = 0.1,
consistently with long lasting effects of shocks. In line with standard practice, we
calibrate the elasticity of output with respect to labor input αn to a value of 2/3.

The results of the model simulations are shown in Figures 2 and 3 , where we
report the impulse responses of the four variables that we will use in the empirical

7For further details see Section 5.2.
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analysis: the real price of oil, real exports of the home country, foreign output and
global oil production to the two structural shocks. A feature common to these
responses is that they can revert to steady state more or less slowly, given rather
uninformative densities over the persistence of shocks ρm and ρa.

Figure 2 shows the effects of an oil supply shock, normalized to yield a 10 percent
reduction in oil production on impact. The results fit well the conventional wisdom
about the implications of an oil supply shortfall: the real price of oil increases and
foreign GDP declines persistently. The response of exports of the home country
H is mostly negative, although, for some combination of the model parameters, a
positive response can not be ruled out. Figure 3 illustrates the impulse responses
to a positive productivity innovation in the foreign country, F . The real price of oil
goes up, as the demand for oil increases, and exports rise benefiting from the foreign
expansion. Our theoretical model is silent on the implications of this shock on oil
production, because, as discussed above, it makes the assumption of a vertical oil
supply curve.

In the next section, these qualitative indications will provide a starting point
for disentangling empirically two structural sources of fluctuations in oil prices: oil
supply shocks and oil demand increases driven by foreign productivity shocks.

3.4 Empirical evidence

We jointly model four variables: the real price of oil, real exports, foreign GPD,
and the global production of crude oil. The definition of real exports and of the
real price of oil has been provided in Section 2. To construct a measure of foreign
GDP we aggregate GDP volumes (at the price levels and PPP of 2000) from all
available countries, excluding euro area economies. Further details are provided in
Appendix B. Finally, global oil production is measured by the world production of
crude oil (quarterly average of barrels per day). All variables are in log-changes.
When information is available at the monthly frequency (like for the nominal price
of oil and for oil production), it is aggregated at the quarterly frequency by taking
quarterly averages. Foreign GDP is constructed from annual data and interpolated
at the quarterly frequency using the Chow-Lin methodology. The sample period
runs from the second quarter of 1970 to the fourth quarter of 2013. In Appendix B
we provide further details on data sources and transformations.
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3.4.1 The model

We specify the following VAR(p) model:

yt = B0,t +B1,tyt−1 +B2,tyt−2 + ...+Bp,tyt−p + ut, ut ∼ N(0,Σt)

We stack the VAR coefficients in the vector θt = vec([B0,t, B1,t, B2,t, ..., Bp,t]
′)

and assume that they evolve according to the law of motion p(θt/θt−1, Q) =

I(θt)f(θt/θt−1,Q), where the indicator function I(θt) rejects unstable draws and the
function f (·) is a multivariate Gaussian distribution such that, conditional on past
information, θt is normally distributed with mean θt−1 and variance Q. Based on
these assumptions the VAR has the following state space representation:

yt
n×1

= (In ⊗ xt) θt + ut, ut ∼ N(0,Σt) (3.11)

θt = θt−1 + εt, εt ∼ N(0, Q)

where the row vector xt = [1, y′t−1, y
′
t−2, . . . , y

′
t−p] collects the intercept and the lags

of the endogenous variables. In line with the literature we set p = 2. The VAR’s
reduced form innovations in (3.11) follow a multivariate Gaussian with zero mean
and time varying covariance matrix Σt. The matrix Σt is further partitioned as
Σt = A−1

t HtA
−1′
t , where At is lower triangular matrix with ones on the mail diagonal,

and Ht is a diagonal matrix, that is:

At =


1 0 0 0

α21,t 1 0 0

α31,t α32,t 1 0

α41,t α42,t α43,t 1

 , Ht =


h1,t 0 0 0

0 h2,t 0 0

0 0 h3,t 0

0 0 0 h4,t


Collecting the n(n − 1)/2 time varying elements of At in the vector at and the n
time varying elements of Ht in the vector ht, we further assume that:

at = at−1 + ηt, ηt ∼ N(0,Ωa)

log(ht) = log(ht−1) + et, et ∼ N(0,Ωh)

The structure of the covariance matrices Ωa and Ωh is the following:
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Ωa =

 S1 01×2 01×3

02×1 S2 02×3

03×1 03×2 S3

 , Ωh =


σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4


where S1 = cov(η1

t ), S2 = cov(η2
t , η

3
t ) and S3 = cov(η4

t , η
5
t , η

6
t ). This implies that the

non-zero non-unit elements of At are independently distributed across rows, while
being correlated within rows. Block independence is assumed for the random errors,
so that their joint distribution is:

εt

εt

ηt

et

 ∼ N(0, V ), V =


I4 0 0 0

0 Q 0 0

0 0 Ωa 0

0 0 0 Ωh


where εt = A−1

t H
1/2
t ut. The model is estimated with Bayesian methods, through a

Gibbs sampling algorithm. The exact steps of the algorithm are described in details
in a number of papers, see for example Benati and Mumtaz (2007), pages 9 to 12,
and therefore will not be repeated here. Further details on the application of the
method to our specific case are provided in Appendix B.

3.4.2 Identification of the structural shocks

Orthogonal structural shocks εt are recovered from the reduced form residuals ut
through the following relationship:

ut = A0,tεt, εt ∼ N(0, In) (3.12)

so that Σt = A0,tA
′
0,t. Consistently with the theoretical model laid out in Section

3, we identify two structural shocks, namely a disturbance to the supply of oil and
a foreign (from the euro area point of view) productivity shock. To disentangle
these two shocks we follow Baumeister and Peersman (2013) but complement their
approach with insights from Kilian and Murphy (2012). In more details, we employ
a mix of restrictions on the signs of the first two columns of the structural impact
matrix A0,t as well as on the relative magnitude of some of its elements, so as to
ensure that the slopes of the oil demand and of the oil supply curve have the correct
sign and fall within plausible values. Furthermore, we add to these two sets of
restrictions a constraint on the dynamic response of the real price of oil conditional
on a supply shock. The procedure to identify the structural shocks is based on the
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algorithm proposed by Rubio-Ramirez, Waggoner, and Zha (2010), modified to take
into account the additional constraints.

Sign restrictions on impact

The theoretical model provides us with a set of robust restrictions on the sign of
the response of the variables included in our VAR to both a negative shock to the
supply of oil and to a positive foreign productivity shock.

Following an unexpected disruption in oil supply the real price of oil increases,
while oil production and foreign output decrease on impact. The response of euro
area exports is very likely to be negative, yet given some uncertainty in the sign of
the response produced by the DSGE model we prefer no to impose any sign on the
impact response of this variable.

In response to a foreign productivity shock, which stimulates both the demand
for oil and for euro area goods, the real price of oil, euro area exports and foreign
output unambiguously increase. Regarding oil production, our theoretical model
would imply a zero response on impact, consistently with assumptions in Kilian
(2009). Kilian and Murphy (2012) challenge the hypothesis of a vertical short-
term supply curve and allow for a positively sloped supply schedule, but impose
a tight upper bound on the impact price elasticity of oil supply. In our empirical
investigation we follow their indications and constrain the response of oil supply to
be non-negative on impact, an assumption consistent both with a vertical (like in
the theoretical model) and with a positively sloped supply curve in the short term.
A summary of the identifying impact sign restrictions is reported in Table 3.

Even when they are derived from a theoretical model, impact sign restrictions
have been shown to be too weak to provide reasonable estimates of the effects of oil
demand and oil supply shocks. Kilian and Murphy (2012) and Kilian and Murphy
(2014) suggest to further narrow down the set of admissible structural models by
imposing both dynamic sign restrictions and elasticity bounds. In the remaining
sub-sections we explain the additional identifying restrictions that we impose to
reduce the set of admissible structural impact matrices A0,t.

Dynamic sign restrictions

Following Kilian and Murphy (2014) we restrict the response of the real price of
oil to an oil supply shock to be positive for at least five quarters (starting in the
impact period) after the initial shock. This restriction rules out the possibility that
an unanticipated oil supply disruption has a very short lived effect on the price of
oil and that, following an increase on impact, the price of oil actually falls within a
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year from the shock.

Elasticity bounds

We further reduce the set of admissible structural impact matrices A0,t through
restrictions on the price elasticity of oil supply and of oil demand.

Starting from the oil supply curve, an estimate of the impact price elasticity
can be obtained from the ratio of the response of oil production relative to the
response of the real price of oil to an oil demand shock, which in our theoretical
model corresponds to an unexpected change in foreign TFP.Kilian and Murphy
(2014) argue that a plausible upper bound to such elasticity (which is required to
be non-negative) stands at 0.025. This estimate corresponds to the ratio of the
percentage increase in oil supply and the percentage increase in the real price of oil
observed in August 1990, when the First Gulf War burst out. Since the spike in the
price of oil recorded in this particular occasion can be seen as truly exogenous, the
corresponding change in the production of oil traces the price elasticity of supply. In
their study Kilian and Murphy find that their findings are robust to higher values
of this bound, up to 0.1. In our analysis we pick the higher end of the [0.025-
0.1] range considered by these authors for two reasons. First, we use quarterly,
rather than monthly data and it is therefore reasonable to assume that, at this
lower frequency, producers have more opportunity to change supply in response
to demand disturbances. Second, and more importantly, we measure oil prices in
euros. Since an increase in the nominal price of oil in U.S. dollars is historically
accompanied by a depreciation of the U.S. dollar8, the sensitiveness to structural
shocks of the nominal price of oil is likely to be lower when the latter is measured
in euros, therefore requiring an upward adjustment of the oil supply elasticity. The
magnitude of such adjustment (by a factor of 4, from 0.025 to 0.1 ) is consistent with
the fact that the standard deviation of the percentage change in the U.S. dollars
nominal price of oil is around four times as high as the one computed on the nominal
price of oil in euros (22.5 as opposed to 4.5). Given the ordering of the variables (real
price of oil, exports, foreign GDP and oil production) and of the shocks (oil supply
shock first, oil demand shock second), the oil supply elasticity bound, together
with the sign restriction described above, implies the following constraint on the
admissible structural matrix A0,t: 0 ≤ A

(4,2)
0,t /A

(1,2)
0,t ≤ 0.1.

Next, we turn to the price elasticity of demand (which can be inferred by the
ratio of the impact response of oil production to an oil supply shock relative to the

8In our dataset, between the second quarter of 1970 and the fourth quarter of 2013, we observe
an unconditional correlation of -0.4 between the price of oil in U.S. dollars and the dollar/euro
exchange rate.
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impact response of the real price of oil). When imposing a price elasticity of supply
of 0.1, Kilian and Murphy (2014) find an impact oil demand elasticity between -0.24
and -0.76 with 64 percent confidence.9 A similar range of values is reported by
Baumeister and Peersman (2013). Using a VAR with time varying parameters, they
estimate the oil demand elasticity to have declined in absolute value from -0.6 to -0.1
in the past four decades. Taking into account this evidence we rule out structural
impact matrices A0,t that yield an impact elasticity of demand more negative than -
0.8. Taking also into account the impact sign restrictions discussed above, we require
the elements of A0,t to satisfy these set of inequalities 0 ≥ A

(4,1)
0,t /A

(1,1)
0,t ≥ −0.8 for

A0,t to be in the set of admissible structural models.

The algorithm

To summarize, the identification procedure consists of the following steps.

1. Obtain a draw of the reduced form parameters θ̃t and Σ̃t from the posterior
distribution.

2. Let Σ̃t = PtDtP
′
t be the eigenvalue-eigenvector decomposition of the covariance

matrix at time.

3. Draw an (n × n) independent standard normal matrix X and compute the
QR decomposition X = QR where QQ′ = I and R is a diagonal matrix with
positive elements on the main diagonal.

4. Generate a candidate structural impact matrix A0,t = PtD
1
2
t Q
′ and compute

the impulse response functions based on A0,t. If the impulse responses satisfy
the restrictions described above, record A0,t and the corresponding impulse
response functions, otherwise discard them.

We apply the above algorithm until we retain 500 admissible A0,t at each time t.

Summarizing the dynamic effects of structural shocks

When there is more than one structural admissible model, like in our case,
summarizing the dynamic effects of structural shocks poses a conceptual challenge.
Fry and Pagan (2011), in fact, point out that the conventional choice of reporting

9See Table II in Kilian and Murphy (2014). The model analyzed in Kilian and Murphy (2014)
includes oil inventories. This allows them to distinguish the price elasticity of oil in production
from the price elasticity of oil in use, where the latter is by construction lower (in absolute value)
due to adjustments in inventories following a supply shock. We do not make such a distinction,
implicitely equating production and consumption.
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the vector of median posterior responses is fundamentally flawed. It is indeed
very likely that, at different horizons, the median responses will be generated by
different structural models, making it impossible to give the results a structural
interpretation. Their suggested solution is to focus on the structural impact matrix
A0,t that generates Impulse Response Functions (IRFs) that show minimum distance
with respect to the median posterior response. This ensures that the vector of
responses is generated by a single structural model that can be seen, in some sense,
as the most representative one. However, Inoue and Kilian (2013) criticize this
proposal by noticing that the median vector is not a well defined measure of central
tendency, so that, even if the strategy proposed by Fry and Pagan (2011) were to
result in a perfect match between the IRFs of a single structural model and the
median posterior response, there would be no compelling reason to focus on such a
model. A practical way to address this shortcoming is to search for a model that
minimizes that distance from the mean - rather than from the median - response, see
Inoue and Kilian (2013) for a discussion. This choice has some theoretical appeal
given that a quadratic loss function would be minimized at the posterior mean
and that the mean is a well defined statistical concept in the case of vectors. We
therefore follow this route and represent results from our structural VAR based on
the admissible model that minimizes (at each point in time, given the time-varying
nature of the model parameters) the distance from the mean response.10

3.4.3 Estimation Results

We start by investigating whether and how the response of euro-area exports to
unexpected falls in the production of crude oil and to foreign TFP shocks has
changed over time.

In Figure 4 we display the IRFs of exports to the two identified structural shocks.
The top panel of this plot shows that, despite the fact that no sign restriction
was placed on the impact effect on exports, the response of exports to a shock
to the supply of oil is consistently negative throughout the sample. However, an
upward tendency can be detected in the profile of the IRFs, so that the effect of
the oil supply shock results more negative in the 70s than in the following decades,
indicating that euro-area economic activity has been progressively more insulated
from the recessionary impact of oil supply disruptions also thanks to a less negative
response of foreign sales. In the top panel of Figure 5 we report the same information

10A shortcoming of relying on the posterior mean is that there is no way to construct credible
sets around the central tendency. The neatest solution would be to use the method by Inoue and
Kilian (2013) that minimizes the distance from the posterior mode. This, however, poses important
technical challenges, especially for a partially identified VAR model like the one we employ here.
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but average the IRFs over four separate sub-samples, roughly corresponding to the
four decades under investigation.11 The smoother profile of the time varying IRFs
magnifies the difference between the 70s and the following decades.

We next turn to the dynamic effect of a structural shock to foreign TFP, shown
in the bottom panel of Figures 4. Again, we detect notable time variation in the
response of export (constrained to be positive on impact) to an unexpected increase
in external demand. The sensitiveness of euro area exports to such a shock has
increased smoothly over time, stabilizing around historically high levels after 2000.
This gradual increase is all the more evident from the bottom panel of Figure 5.

After having documented an attenuation in the negative effects of oil supply
shocks on euro-area exports and an amplification of the positive impact of foreign
demand shocks, we now turn to examine changes in the co-movement between
exports and the real price of oil conditional on the two identified shocks. Following
den den Haan and Sumner (2004) we investigate the issue by looking at the
conditional covariance between the variables of interest, which can be computed
as the product of the response functions at each horizon k, cumulated over the
previous horizons.12

The estimated conditional covariances between euro-area exports and the real
price of oil are shown in Figures 6 for the single quarters, and in 7 for the four
decades in our sample. The top panels of these Figures show that, conditional on
an oil supply shock, the co-movement between exports and the real price of oil has
become markedly less negative over time, especially when the 70s are compared
to the following decades. Conditional on a foreign TFP shock, which causes an
unexpected increase on oil demand, the covariance between export volumes and the
real price of oil has become more positive over time, with a peak at the end the
Nineties, early 2000s. Although this tendency has partially reversed in recent years,
the covariance is substantially higher at the end of the sample than in the 70s, early
80s.

Summing up, based on a VAR with time varying parameters and stochastic
volatilities we have provided evidence of structural change in the transmission of
identified oil supply and oil demand shocks to the joint dynamics of euro-area exports
and of the real price of oil. In recent decades oil price increases due to an oil supply
disruption have been coupled with a more muted fall of export volumes, while a
stronger association between oil price and export increases has emerged conditional

11Since our sample extends to 2013 the fourth sub-sample has 12 observations more than the
first three. Excluding these observations does not change the results.

12See Kilian (2008) for an application of this methodology to the co-movement of consumer
prices and output conditional on exogenous oil supply shocks.
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on an unexpected surge in global output. These variations in conditional second
moments point to the existence of at least some structural changes that have affected
the joint dynamics of euro area exports and the real price of oil over last decades.

3.5 Interpreting structural changes

In this section we use the theoretical model developed in Section 3 to shed light on
the plausible mechanisms behind the structural changes uncovered by our empirical
analysis. The three plausible explanations, not mutually exclusive, on which we
focus are the consolidation of the trade relationship with emerging economies, the
decrease in the share of oil in production and lower markups.13

3.5.1 Trade relationship with emerging countries

The stronger is the trade relationship between euro area and emerging countries, the
larger will be the positive response of euro area exports to faster growth in emerging
economies. A first gauge of the importance of this channel can be gained by looking
at the evolution of the shares of exports towards Asian economies in the four largest
euro area countries.

Figure 8 shows that export shares towards Asia have indeed notably increased
since the end of the 1980s. This increase is glaring in Germany, and, to a lesser
extent, in France, where the share of exports directed to Asian emerging countries
has more than tripled over the last two decades, reaching around 10 and 8 percent,
respectively, compared to about 6 in Italy and 4 in Spain. The privileged trade
relationship with emerging economies might have played an important role in the
macroeconomic performance of Germany during the 2000s, when Asia (and more in
particular China) progressively became a major sales market for German goods.

Figures 9 and 10, panels A, illustrate the changes in the responses of exports
in H to the two different sources of fluctuations in oil prices, when χ∗ becomes

13We also explored a fourth channel: a new advantageous flood of petrodollars towards the
euro-area. A surge in oil prices leads to a redistribution of income from oil consuming to oil
producing countries and the use that the latter make of their revenues can considerably affect
global imbalances and, thus, the overall impact of rising oil prices on oil importing economies.
Quantifying how the oil-revenues are spent is somewhat problematic. Still, Higgins, Klitgaard,
and Lerman (2006) report suggestive evidence that the geography of petrodollar recycling has
changed: oil exporters are importing more goods from the euro-area today than they were 25 years
ago and fewer goods from the US. We have studied the changes in the responses of exports when
(1−$O) , i.e. the parameter capturing the preference of the oil producing economy for goods
produced by H, becomes higher. The implications conditional on foreign productivity shocks are
negligible. Considering the responses to an oil supply shock, to have a significant change in the
response of exports the fraction of petrodollars recycled back home to purchase H- produced goods
should have increased from zero to 100%.
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higher. In the model χ∗ is the deep parameter capturing the preference in F for
goods produced by H.14

When higher oil prices are driven by faster growth in F , the positive conditional
correlation between the real price of oil and exports inH can be amplified by a tighter
trade relationship with F (Figure 10, panel A). However, this structural change is
conducive to larger negative response of exports to oil supply shocks (Figures 9 panel
A), an implication of the model that contrasts starkly with the evidence shown in
Figure 5.

The rationale is as follows. Oil supply shocks are recessionary for both H

and F and thus lead in both countries to a contraction in demand, that involves
both consumption of domestic goods and well as consumption of imported goods.
Oil supply shocks are instead expansionary for the oil producing economy, that
accordingly increases its consumption of both H− and F− produced goods. From
the point of view of H, its exports towards F fall while its exports towards the oil
producing economy rise. When the share of H-produced goods in the consumption
basket of F goes up (i.e. when χ∗ rises), all other things held constant, the ratio
of exports in H towards F over total exports increases and, at the same time, the
ratio of exports in H towards the oil producing country over total exports falls. This
explains why, when χ∗ rises, the contractionary effects of the oil supply shock on
exports in H become larger.

3.5.2 Lower oil shares

Edelstein and Kilian (2009) document that the overall share of energy expenditures
in US consumer spending fell steadily throughout the 1980s and 1990s, reaching a
low at the beginning of 2000s; Kilian and Vigfusson (2013) focus on the share of
crude oil in U.S. GDP showing that the latter peaked in 1980/81, reached a trough
in the late 1980s and began to rebound only after 2003, although it never reached
the levels of 1980s. Consistently, Blanchard and Galì (2010) provide evidence that
the share of oil in both US production and consumption is smaller today than it was
in the 1970s.

The decline in the quantitative importance of oil appears to be present in a large
number of countries. By using input-output tables from the OECD database, we
find that the shares of oil in production have markedly decreased in the euro area

14Parameters’ calibration behind the responses shown in Figures 9 and 10 is consistent with the
one used to get sign restrictions in Section 3.7: those parameters that are kept fixed in Section 3.7
are calibrated at the same values as indicated in Table 3; for those parameters that are Monte-Carlo
simulated in Section 3.7 we choose a value inside the ranges given in Table 3.
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as well (Figure 11).15

While Blanchard and Gali (2007) conjecture that this decline can account
for a part of the decrease in the US macroeconomic volatility conditional on oil
shocks, Edelstein and Kilian (2009) show that fluctuations in the share of energy
in consumption cannot explain the declining importance of energy price shocks. In
order to highlight the implications of lower oil shares, we simulate our model under
different values of αm. Figure 9, panel B illustrates that such a structural change
reduces the negative impact of an oil supply disruption on exports. The reason
is that it mitigates the recessionary effects of oil supply shocks on oil importing
economies trading with each other.

By contrast, the reduction of oil shares in the world economy has a negligible
impact on the response of exports to foreign productivity shocks (Figure 10; panel
B). Indeed, in this case the bulk of the exports’ movements in H depends on the
cyclical expansion in F , which is almost unaffected by the change in the shares of
oil.

3.5.3 Lower markups

There is widespread agreement that the global integration of the real and financial
markets, the new ICT technologies and the process of European integration led to a
strong and sharp increase in competitive pressures for the euro-area economies. The
latter can be captured in our theoretical model by an increase in the elasticity of
substitution among differentiated goods ε, that implies lower desired markups ( ε

ε−1
)

in oil importing economies.
Figure 9 panel C shows that an increas in competitive pressure indeed reduces

the impact of a negative oil supply shock on the exports of the oil importing
countries. This happens because lower desired markups make the Phillips curves
flatter, thus dampening the inflationary effect of oil price increases and consequently
their recessionary effect. Milder recessions imply that the contraction of exports in
these countries, that trade with each other, turns out to be smaller.

As displayed by Figure 10 panel C, the positive response of exports to faster
foreign growth is amplified with lower desired markups, although the quantitative
impact of this structural change is almost negligible.

15Figure 11 does not display the strong co-movement between the oil shares and the oil price
detected by Kilian and Vigfusson (2013) because of the low frequency nature of the time series we
have constructed. Notice, however, that the pattern is very similar to that shown for the U.S. by
Kilian and Vigfusson (2013): in France and Italy - for which we have data prior to 1980- the share
of oil peaked in 1980/81, in all the major euro area countries it reached a trough at the beginning
of 1990s, and began to rebound systematically thereafter, although remaining well below the level
of 1980s.
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3.6 Conclusions

This paper provides novel evidence on how the relationship between fluctuations of
the real price of oil and exports in the euro area has changed over the last 40 years.
The conjecture that motivates our analysis is that the milder recessionary impact of
oil price shocks, amply documented in the literature, might partly stem from changes
in the way euro-area foreign sales respond to the structural shocks that drive the
real price of oil. Our analysis is based on the interaction between a theoretical model
and a structural VAR with time-varying coefficients and stochastic volatility. The
theoretical model allows us to derive a set of restrictions on the signs of the impact
response of the real price of oil, real exports, foreign (from the euro-area point of
view) output and global oil production to two structural shocks: an unexpected fall
in the supply of oil and a shock to foreign total factor productivity that also raises
the demand for oil. By complementing these restrictions with plausible bounds on
the price elasticity of oil supply and of oil demand, we identify these two shocks
through our structural VAR, and study how their effect on euro area exports and on
the co-movement between exports and the real price of oil has changed over time.

Our estimates indicate that the co-movement between euro-area exports and
the real price of oil has become less negative conditional on oil supply shocks, and
more positive conditional on oil demand shocks, pointing to the existence of some
structural change influencing the joint dynamics of these two variables. Through
the lens of our theoretical model, we qualitatively explore the role of a number
of factors in accounting for such changes: larger export shares towards emerging
countries, stronger competitive pressure in the product market and a reduction in
the quantitative importance of oil in production. We show that a stronger trade
relationship with emerging countries can potentially explain the increase in the
positive correlation between euro area exports and the real price of oil conditional on
foreign productivity shocks. However, such a structural change, taken in isolation,
would lead to an even larger drop in exports following an oil supply shock, in contrast
with our evidence. Instead, the more muted effect of an adverse oil supply shock
can be accounted for by higher competitive pressure in the product market and by a
decrease in the share of oil in production. We conclude that, in combination, these
three factors could make a good job in explaining our evidence on the variations in
the joint response of exports and energy prices to identified shocks. Our analysis
bears important policy implications, as it adds an international dimension to the
assessment of the impact of oil price fluctuations on the macroeconomy, often
confined to the domestic demand channel. For example, our results indicate that
the stimulus for the euro-area economy stemming from the fall in the price of oil
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observed since the summer of 2014 is likely to be mild. On the one hand, insofar as
this decrease reflects weakening global trade, it will be associated with lower foreign
demand. Moreover, for a given shock to global output, the loss of foreign sales is
likely to be more marked than in previous decades. On the other hand, to the extent
that falling energy prices reflect also an increase in the supply of oil, the positive
effect exerted on GDP through higher exports is likely to be negligible. Finally, our
findings raise an interesting question on whether the fluctuations in the price of oil
that we have observed since 2003 have played an important role in widening cross-
country imbalances within the Monetary Union, an issue that we leave for future
research.
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Figure 3.1: Real GDP and real exports in the euro area (1970q1=100)
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1970-1984 1985-2013
ρ 0.12 0.44

p-val 0.33 0.00

Table 3.1: Table 1: Correlation between the growth rate of euro-area real exports and the
growth rate of the real price of oil in the indicated sub-samples

1 2 3 4
Coefficient p-val Coefficient p-val

intercept 5.49 0.00 5.23 0.00

∆ oil price 0.07 0.37 0.10 0.07

D1984 -0.78 0.52
∆ oil price × D1984 0.16 0.07

D1989 -0.67 0.56
∆ oil price × D1989 0.15 0.05

Table 3.2: Regression analysis. The dependent variable is the rate of growth of real exports,
as defined in Section 2. The price of oil is the real price of crude oil, as defined in Section
2. D1984 is a dummy variable that equals 0 between the second quarter of 1970 and the
fourth quarter of 1984, 1 otherwise. D1989 is a dummy variable that equals 0 between the
second quarter of 1970 and the fourth quarter of 1989, 1 otherwise. The sample goes from
the second quarter of 1970 to the fourth quarter of 2013 (175 observations).
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simulated parameters range of values
θ Price stickiness [0.1, 0.95]
χ Degree of trade openness in H [0.0, 1.0]
χ∗ Degree of trade openness in F [0.0, 1.0]
$O Share of F -goods in the oil exporter country’ consumers basket [0.0, 1.0]
h Habit [0.0, 0.999]
φπ Taylor coefficient on inflation [1.1, 5.0]
φx Taylor coefficient on the output gap [0.0, 1.0]
ε Elasticity of substitution among differentiated goods [3, 11]
φ Inverse of the Frisch elasticity [0.1, 2.0]
αm Oil’s share in production [0.01, 0.04]
ρm Persistence of oil supply shock [0.5, 0.999]
ρa Persistence of foreign productivity shock [0.5, 0.999]

calibrated parameters
β Intertemporal discount factor 0.998
σ Risk aversion 0.1
αn Labor’s share in production 2/3
n Mass of households in H 0.5

Table 3.3: Ranges over which the indicated parameters are drawn in the Monte Carlo
simulation of the theoretical model.
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Figure 3.2: Theoretical IRFs to an oil supply shock. The Figure reports the median, the
5th, and 95th percentiles of the IRFs distribution.
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Figure 3.3: Theoretical IRFs to a foreign TFP shock. The Figure reports the median, the
5th, and 95th percentiles of the IRFs distribution.
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Structural shocks
VAR variables oil supply foreign TFP
real price of oil + +
real export +
foreign output - +
oil supply - +

Table 3.4: Impact sign restrictions on the IRFs of the endogenous variables. A + (or−)
indicates that the impulse response of the variable of interest is restricted to be positive
(negative) on impact. A blank entry indicates that no restriction is imposed on the
response.
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Figure 3.4: Cumulative Impulse Response Functions (IRFs) of export volumes. In each
quarter the IRF is selected as the one that is closest to the mean IRF among those derived
from the admissible structural models given the identifying restrictions. IRF to an oil
supply shock are normalised to yield a 1% impact increase in oil prices. IRF to a foreign
output shock are normalised to yield a 1% impact increase in foreign output.
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Figure 3.5: Cumulative Impulse Response Functions (IRFs) of export volumes in different
decades. Each line shows the the time varying IRFs averaged over the quarters in the
indicated decade. In each quarter the IRF is selected as the one that is closest to the
mean IRF among those derived from the admissible structural models given the identifying
restrictions. IRF to an oil supply shock are normalised to yield a 1% impact increase in
oil prices. IRF to a foreign output shock are normalised to yield a 1% impact increase in
foreign output.
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Figure 3.6: Covariances of the real price of oil and of export volumes conditional on
structural shocks. Conditional covariances are obtained as the product of the cumulative
IRFs of the price of oil and of exports to each structural shock, following den Haan and
Sumners (2004).
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Figure 3.7: Covariances of the real price of oil and of export volumes conditional on
structural shocks in different decades. Each line shows the the time varying conditional
covariance averaged over the quarters in the indicated decade. Conditional covariances are
obtained as the product of the cumulative IRFs of the price of oil and of exports to each
structural shock, following den Haan and Sumners (2004).
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Figure 3.8: Export shares towards Asian Emerging Countries. The share of exports
is computed as the ratio of exports (in current values) by destination country over
total exports. Asian Emerging Countries are China, South Korea,Hong Kong, Malaysia,
Singapore, Taiwan, Thailand.
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Figure 3.9: Theoretical IRFs to an oil supply shock. IRFs are obtained by simulating the
theoretical model under a 10 per cent reduction in oil supply for different calibrated values
of χ∗(panel a), αm (panel b) and ε (panel c). The remaining parameters are calibrated
consistently with the Monte Carlo simulation performed in Section 3.7.
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Figure 3.10: Theoretical IRFs of exports to an oil demand shock. IRFs are obtained by
simulating the theoretical model under foreign productivity shock, normalized to increase
foreign GDP by 1 percent, for different calibrated values of χ∗(panel a), αm (panel b) and
ε (panel c). The remaining parameters are calibrated consistently with the Monte Carlo
simulation performed in Section 3.7.
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Figure 3.11: Oil shares dynamics in the euro-area. We compute oil shares by using input-
output tables from the OECD database, following the methodology discussed in Blanchard
and Galì (2010). The latter are available for the following years: France 1972, 1977, 1980,
1985, 1990 1995, 2000, 2005; Germany 1978, 1986,
1988, 1990, 1995, 2000, 2005; Italy 1975, 1980, 1985, 1995, 2000, 2005; Spain 1980, 1995,
2000, 2005. For each country and for each year, we proceed as follows. We split the
industries into two large categories: the oil producing and the non-oil producing category.
Depending on the country, the former is made up of one or more sectors. As an example,
say that the oil producing category is made up of two sectors, A and B, and call C the rest
of the economy, which is made up of the rest of the industries. The sum of output and
imports of sector A (B) can be split between a certain amount xA (xB) for domestic final
uses, and a certain amount yA (yB) for intermediates, of which zA (zB) goes to A and/or
B and yA − zA (yB − zB) goes to the non-oil category C. Say that the country’s value
added is v and the value added by A (B) is vA (vB). Then the shares of oil in production
αm can be computed as follows: αm = (yA−zA)+(yB−zB)

v−(vA+vB)+(yA−zA)+(yB−zB)
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Appendix

3.A First order conditions

The optimality conditions implied by the maximization of (3.1) subject to the budget
constraint are the stochastic Euler equation:

1 =
β

QB
t

Et
{

Pt
Pt+1

(Ct − hCt−1)σ

(Ct+1 − hCt)σ
}

(3.13)

and the intratemporal optimality condition:

WH,t

Pt
= Nφ

t (Ct − hCt−1) (3.14)

The optimal price-setting strategy for the typical firm resetting its price in period
t is:

Et

{
∞∑
k=0

θkQt,t+kYt+k/t

(
P̃H,t −

ε

ε− 1
Ψt+k/t

)}
= 0 (3.15)

where Qt,t+k is the stochastic discount factor for nominal payoffs, P̃H,t denotes the
price newly set at time t, Y t+k/t and Ψt+k/t are the level of output and the (nominal)
marginal cost in period in period t + k for a firm that last set its price in period t
and ε

ε−1
measures the desired markup.

In the oil producing country, the optimal allocation of expenditures between F
and H-produced goods implies:

CO
H,t = (1−$O)CO

t

PO
t

PH,t
(3.16)

CO
F,t = $OC

O
t

PO
t

PF,t
(3.17)

where PO
t denotes the aggregate price level in the oil-producing economy PO

t =

P 1−$O
H,t P$O

F,t .

Steady state relations
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From cost minimization we can write:

MH

MF
=

NWH

N∗WF

(3.18)

Equation (3.14) implies that WH = Nφ [C − hC]P and WF = N∗φ [C∗ − hC∗]P ∗E.
Note that

P ∗E = (P ∗HE)γ
∗

(P ∗FE)(1−γ∗) = (PH)γ
∗

(PF )(1−γ∗) (3.19)

Accordingly we can write:

WH

WF

=
Nφ

N∗φ
C

C∗
P 1−γ−γ∗
H

P 1−γ∗−γ
F

=
Nφ

N∗φ
C

C∗
S−(1−γ∗−γ) (3.20)

where S ≡ PF
PH

is the terms of trade between the domestic economy and F , i.e. the
relative price of foreign goods. Combining (3.18) and (3.20) we get:

MH

MF
=

N1+φ

N∗1+φ

C

C∗
S−(1−γ∗−γ) (3.21)

We define Γ ≡ C
Y

and Γ∗ ≡ C∗

Y ∗
. Accordingly

C

C∗
=

ΓY

Γ∗Y ∗
=

ΓNαnMαm
H

Γ∗N∗αnMαm
F

(3.22)

Taken into account that MHt = αm
M
p
t

Yt
Pm,t

PH,t and MF = αm
M
∗p
t

Y ∗t
Pm,t

PF,t, we get:

Y

Y ∗S
=
MH

MF
(3.23)

Combining (3.23) with (3.21) and (3.22) yields:

N1+φ

N∗1+φ

Γ

Γ∗
S(γ∗+γ) = 1 (3.24)

We conclude that the steady state terms of trade can be written as:

S =

[
Γ∗

Γ

(
N∗

N

)1+φ
] 1
γ∗+γ

(3.25)

Combining (3.21) with (3.22) we can write:(
MH

MF

)1−αm

=

(
N

N∗

)1+φ+αn

S−(1−γ∗−γ) Γ

Γ∗
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which implies, using (3.25):

MH

MF
=

(
N

N∗

) 1+φ+αn
(1−αm)

+(1+φ)
(1−γ∗−γ)

(γ∗+γ)(1−αm)
(

Γ

Γ∗

) 1
(γ∗+γ)(1−αm)

(3.26)

To recover CH
Y

and C∗F
Y ∗
, we consider PH,tCH,t = (1− γ)PtCt and P ∗F,tC

∗
F,t =

(1− γ∗)P ∗t C∗t in steady state and get:

CH
Y

= Γ (1− γ)Sγ (3.27)

C∗F,t
Y ∗

= Γ∗ (1− γ∗)S−γ∗ (3.28)

Note also that considering P ∗H,tC∗H,t = γ∗P ∗t C
∗
t in steady state together with (3.23),

one obtains:

C∗H
Y

=
MF

MH
γ∗S(−γ∗)Γ∗

and similarly
CF
Y ∗

=
MH

MF
γΓSγ (3.29)

Finally, in order to recover COH
Y
, let consider (3.16) together with the consumer’s

budget constraint:

CO
H

Y
= (1−$O)

PmM
s

Y PH

Taking into account (3.7) we can write:

CO
H

Y
= (1−$O)

(
nMHPm
Y PH

+
(1− n)MFPm

Y PH

)
(3.30)

By combining (3.30) with MH = αm
PH
Pm

ε−1
ε
Y we get:

CO
H

Y
= (1−$O)

[
n
ε− 1

ε
αm + (1− n)S

Y ∗

Y

ε− 1

ε
αm

]
(3.31)

that can be combined with (3.23) to get:

CO
H

Y
= (1−$O)

ε− 1

ε
αm

[
n+ (1− n)

MF

MH

]
(3.32)

Similarly, in order to recover COF
Y ∗

, let consider (3.17) together with the consumer’s
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budget constraint:

CO
F

Y ∗
= $O

PmM
s

Y ∗PF
(3.33)

Taking into account (3.7) and MH = αm
PH
Pm

ε−1
ε
Y we can write:

CO
F

Y ∗
= $O

(
n
Y

Y ∗S

ε− 1

ε
αm + (1− n)

ε− 1

ε
αm

)
(3.34)

Finally, considering (3.23) one obtains:

CO
F

Y ∗
= $O

(
n
MH

MF

ε− 1

ε
αm + (1− n)

ε− 1

ε
αm

)
(3.35)
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3.B Data and prior distributions

• Oil supply for the years 1973-2013 is world crude oil production (thousand
barrels per day) reported in the April 2015 Monthly Energy Review by the
U.S. Energy Information Administration. For the years 1970-1972 we use
annual data from the December 2010 International Petroleum Monthly (also
published by the Energy Information Administration) and convert it to the
quarterly frequency using a quadratic spline.

• Euro area exports are chain linked volumes from the ECB Area Wide Model
(AWM) database.

• The real price of oil is obtained by first converting in euros the price of crude
Brent, then deflating the resulting nominal price (denominated in euros) by
the euro area GDP deflator. The nominal price of oil in U.S. dollar (Brent
quality), the euro/U.S. dollar exchange rate and the GDP deflator are all
obtained from the ECB-AWM database.

• Foreign GDP is constructed following the methodology described in the
Appendix in Hahn and Mestre (2011). Annual and quarterly GDP data are
taken from the Economic Outlook, OECD database (GDP volumes at the price
levels and PPP of 2000). Starting from the sum of annual GDP, the quarterly
series is obtained by interpolating with the Chow Lin methodology. Data
are available for the following countries: Australia, Austria, Brazil, Canada,
China, Czech Republic, Chile, Denmark, Estonia, Finland, UK, Hungary,
India, Iceland, Japan, Korea, Mexico, Norway, New Zealand, Poland, the
Slovak Republic, Sweden, Turkey, and the United States.

The prior distributions for the initial values of the states (θ0, a0 and λ0) of the
VAR are postulated to be all normal, and independent both from one another, and
from the distribution of the hyperparameters. The calibration of the mean and of
the variance of the prior distribution of θ0 follows the standard approach of using
the output of the estimate of a time-invariant VAR over a training period. Since our
data sample is relatively short, rather than discarding data we use the period 1970-
1985, a strategy suggested for example, by Canova and Ciccarelli (2009). The rest
of the procedure to set up the priors follows step by step Benati and Mumtaz (2007),
pages 9 to 11. The simulation algorithm used to obtain the posterior distribution
of the parameters is also taken from Benati and Mumtaz (2007), pages 11 and 12.
In the Monte Carlo Markov Chain procedure we use 10.000 replications and discard
the first 5.000.

139



Chapter 4

Failing to forecast low inflation and
Phillips curve instability: a euro-area
perspective

The ECB never expects inflation to deviate from the target of just
under 2 per cent. Yet each month inflation undershoots, and the ECB is
apparently taken by surprise.

Münchau W., 20141

4.1 Introduction

Debate over the Phillips curve has gained momentum since the 2008 financial crisis.
In the course of the recession that followed that crisis, a puzzle had emerged, in that
inflation in advanced countries had not fallen as much as a traditional Phillips curve,
as discussed by Williams (2010) and Ball and Mazumder (2011). The decline of euro
area inflation between 2013 and 2014 is pointing in the opposite direction. Following
the sovereign debt crisis, the euro area fell into a severe recession, which generated
sizeable output losses in the countries more directly involved, in particular Greece,
Spain, Portugal, Italy and Ireland. The recession was followed by a sharp fall in
consumer price inflation, with core (net of food and energy) inflation dropping in the
euro area to historically low levels in mid-2014. Two features stand out in this rapid
inflation decline. First, it is broad based across countries, although relatively more
intense those that have been hit the hardest by the sovereign debt crisis. Second, it
was not anticipated by professional forecasters. This is particularly surprising if we

1Münchau, W (2014), Draghi is running out of legal ways to fix the euro, Financial Times, 17
August.
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consider that the fall in economic activity that most of the euro area countries have
experienced after 2011 has generated significant gaps between actual and potential
output in these economies.

Two plausible explanations, not mutually exclusive, can be put forward. One is
that forecasters underestimated the output gap over this horizon. This hypothesis
relates to the usual difficulty of separating trends from cycles in real time, a
task made even more difficult by the severity of the shock to GDP. The issue of
quantifying structural and cyclical factors behind economic activity is crucial for the
conduct of monetary policy and it is at the center of the policy debate, as testified
by the 2014 Jackson Hole speech by ECB President Draghi.2 A second possibility
is that forecasters conditioned on an accurate measure of the output gap (where by
accurate we mean the output gap that would have been available to them ex-post)
but the response of inflation was stronger than estimated with data up to 2012. This
second hypothesis, which has so far found less echo in the debate, is the focus of our
paper. Drawing from the econometric literature, which has long identified structural
breaks as the main cause of forecast failure, we investigate through structural break
tests and time varying parameter models whether the recent deep and long lasting
fall in economic activity has been accompanied by an increased sensitivity of euro
area inflation to cyclical conditions, measured by the coefficient of the output gap
in a backward looking Phillips curve.

We find that the sensitivity of inflation to business cycle conditions has indeed
increased from 2013 onwards. This is consistent both with the muted response of
consumer price to the global recession in 2008-20093 and with the sudden decrease
in inflation that followed (albeit with some delay) the sovereign debt crisis. An
analysis of the sub-aggregates of the consumer price index shows that this feature
holds for both goods and services, i.e. tradable and non tradable products.4

Our findings are in line with the evidence put forward in a number of papers that
investigate the inflation-unemployment relationship in the U.S. .Stock and Watson
(1989), for instance, find that unemployment is more useful for predicting inflation
in recessions than in booms, a feature also highlighted in Olivei and Barnes (2004).
Stella and Stock (2012), using a multivariate unobserved component model that
implies a time varying Phillips curve, find that since 2008 the slope of the curve has
become steeper.

We provide two alternative explanations for our findings. The first is that the
2See http://www.ecb.europa.eu/press/key/date/2014/html/sp140822.en.html.
3For Italy, for example, estimates based on a DSGE model find that the Phillips curve was

relatively flat up to 2012, see Riggi and Santoro (2015).
4For simplicity of exposition in the paper we will simply call goods the non-energy industrial

goods subcomponent of the consumer price index.
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crisis could have induced some changes in the structure of the economy that could
have favoured a stronger responsiveness of prices to the output gap. We show that
in a new Keynesian Phillips curve a rise in inflation cyclicality stems either from
lower nominal rigidities, i.e., a higher frequency of price adjustment, or from weaker
strategic complementarities in price setting, which could result from a significant
fall in the number of firms in the economy. This latter channel arises in the model
because an exogenous decrease in the number of firms implies lower elasticity of
demand and higher desired markups. A second explanation is that even the ex-post
output gap measures are underestimating the amount of slack in the economy. This,
in turn, would be picked up as a change in the model parameters due to an omitted
variable bias. We derive an estimate of the output gap that is consistent both with
the observed fall in inflation and with the lower correlation between inflation and the
output gap estimated before 2013. This counterfactual output gap is significantly
wider, by around one third, than the one currently estimated by international
Institutions. A third factor potentially at work is a downward adjustment of inflation
expectations, which could be feeding back to actual inflation. The importance of this
mechanism cannot be assessed within the theoretical model (given the hypothesis of
rational expectations) and, in the absence of a reliable measure of expectations, it is
also hard to gauge empirically, although a robustness check (in which we control for
inflation forecasts elicited from professional forecasters) leaves unaltered our baseline
results.

The paper is structured as follows. Section 4.2 motivates the paper by discussing
how forecasters overestimated inflation in 2013 and 2014. Section 4.3 presents the
empirical analysis. Section 4.4 discusses alternative interpretations of the evidence.
Section 4.5 concludes. Appendix A provides additional material.

4.2 The inflation surprise

The pronounced slowdown in euro area inflation in 2013 and 2014 was not correctly
predicted by forecasters. Figure 4.1 shows actual inflation between 2001 and 2013,
together with 4 steps ahead inflation forecast errors computed (as the difference
between actual and expected inflation) on the basis of the Consensus Economics
survey.5 In the figure we also present the price of oil (in euros). Three features
stand out:

• Between 2001 and 2008, when consumer price inflation overshot the ECB
5We use the quarterly survey of professional forecasters conducted by Consensus Economics in

March, June, September and December, which provides forecasts for the next seven quarters for a
number of macro variables.
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target and fluctuated slightly above 2.0%, professional forecasters were
systematically surprised on the upside. There are two plausible explanations
for this outcome. First, at the end of the Nineties, many euro area countries
had pursued disinflationary policies (mainly by restraining wage growth) in
order to comply with the Maastricht criteria. However, after joining the
Monetary Union, these policies were relaxed, thus fostering inflation rates
(Busetti, Forni, Harvey, and Venditti, 2007). Second, between 2003 and 2008,
oil (and other commodity) prices were subject to a sequence of positive shocks,
with brent prices more than doubling from 30 to 70 euros per barrel, providing
continuous upward pressure on euro area inflation.
• After the unexpected collapse of oil prices that followed the financial crisis,

inflation fell sharply and forecast errors turned negative for the whole of 2009.
This was the first spell of negative errors observed since 2001. As oil prices
returned to pre-crisis levels starting in 2010, forecast errors once again turned
positive.
• In 2013 and 2014, following the sovereign debt crisis, inflation slowed

down gradually and a second spell of negative forecast errors was recorded.
Comparing the two episodes of negative inflation surprises (the one in 2009
and the one in 2013-2014) two differences can be observed. First, the most
recent one is more persistent, as no sign of reversion in forecast errors has yet
emerged. Second, it has occurred in the context of stable oil prices. These
features suggest that professional forecasters failed to predict low inflation in
the euro area because they were mostly surprised by the slackening of core
(net of food and energy) inflation, i.e. the inflation component that is more
related to cyclical conditions. This intuition is further reinforced by looking
at oil price futures collected in February 2012, also presented in Figure 4.1,
which show that the relative stability of oil prices in the next two years was
largely expected by the markets, so that no negative surprise stemmed from
oil commodity prices.6

As forecast failure in the econometric literature is frequently associated with
structural breaks, we investigate whether the recent negative, persistent, inflation
surprise is associated with a change in the elasticity of core inflation to the output
gap in a backward looking Phillips curve, of the type commonly used to for
forecasting (Stock and Watson, 2008). The next section turns to an empirical
investigation of this hypothesis.

6Oil price futures in euros are obtained under the assumption of constant euro/US dollar
exchange rate from the first quarter of 2012 onwards.
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4.3 Empirical evidence

Our empirical analysis is based on the following backward looking Phillips curve:

πt = µ+
k∑
j=1

βjπt−1 + γyt−1 + Γ′zt + ηt (4.1)

where πt indicates (quarter on quarter, seasonally adjusted and annualized)
consumer price inflation, yt is a measure of economic slack and zt is a vector of
other explanatory variables. In our application we set k = 2 as two lags are more
than enough to capture the persistence of the inflation process.

We consider six different measures of inflation. The first three are the core
Harmonized Index Consumer prices (HICP) net of food and energy (Core) and its
two sub-components, goods and services. The other three are the corresponding
indicators net of the impact of indirect taxation (defined CoreX, GoodX and
ServicesX in the rest of the paper), which are computed by Eurostat under the
assumption that indirect tax increases are passed through fully and immediately to
final consumer prices. The importance of such indicator has risen in recent years,
owing to the sequence of indirect taxation hikes with which a number of countries
have tried to reduce fiscal deficits and restore market confidence.7 They are therefore
relevant for our study since the actual inflation rate could have been kept temporarily
high by indirect tax increases.

We interact these inflation measures with output gaps computed by the European
Commission (EC), the Organisation for Economic Co-operation and Development
(OECD) and the International Monetary Fund (IMF). These output gaps are shown
in Figure 4.2. In our analysis we consider data from 1999 to the third quarter of
2014. We choose to discard data prior to the inception of the euro motivated by the
findings in Benati (2008), according to which the inflation targeting pursued by the
ECB has significantly changed the statistical properties of the inflation process, so
that any findings obtained using data before 1999 are unlikely to shed any light on
current inflation developments.

4.3.1 End of sample instability tests

The first analysis we conduct is based on structural break tests. Since we are
interested in parameters instability at the end of the sample, conventional break
tests like those of Andrews, Lee, and Ploberger (1996) are not well suited to our

7Notice that if VAT increases are not passed through to final prices these indicators provide a
lower bound of the actual inflation rate net of tax increases.
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purpose, due to the fact that the number of observations in the period of potential
change is low compared to the sample size. Also the extension to the end-of sample
case by Andrews (2003) only has power when the change-point is known. Busetti
(2012) addresses these issues and introduces a number of new tests designed to have
high power at the end of the sample when the location of the break is not known
a priori. The improvement in power is obtained by either limiting the possibility
of a change-point to the last part of the sample or by giving increasing weight to
the likelihood that a break will occur as the end of the sample is approached. In
our application we will focus on two versions of the Locally Most Powerful (LMP)
test proposed by Busetti (2012). These tests are designed to have power against the
alternative of random walk type variation in the model parameters, a widely used
assumption in models with time varying coefficients (Cogley and Sargent, 2005).

Given a linear regression like the one in equation (4.1), involving T observations
and k regressors collected in a vector xt, the LMP statistics has the following form:

Lπ = σ̂2(T − πT )−2

T∑
t=πT+1

S ′tV
−1St

where σ̂2 = û′tût/(T − k), ût are the regression residuals, St =
∑T

j=t ûjxj, V =

T−1
∑T

t=1 xtx
′
t, and π is the last fraction of the sample where the break is supposed

to have occurred. The two tests that we use are functions of this statistics and are
computed as:

Sup− L = Sup(Lπ)
πεΠ

Exp− L = log

∫
πεΠ

exp(L(π))πdπ

We apply these two tests for π = 0.10 and 0.25 (i.e. the last 10 and 25% of
the sample),the fractions for which critical values have been tabulated by Busetti
(2012). Overall, we consider the 18 different specifications that can be obtained by
interacting the six measures of inflation with the three output gaps that we have
selected. The results of the analysis are shown in Table 4.1. The table is organized
in two vertical panels corresponding to the baseline specification (in which we do
not add any control variable zt) and to an alternative specification in which we add
as a control variable the percentage change of non-energy import prices8, to control
for the effect of the exchange rate on consumer prices. In each cell we report 1 if
the null hypothesis of coefficients stability is rejected at the 10% confidence level, 0

8This is estimated as the residual of a regression of the percentage change of the import deflator
to the percentage change of oil prices in euros.
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otherwise. The results can be summarized as follows:

1. When using the aggregate core index (Core) no evidence of instability emerges.
On the contrary, when the underlying core inflation components are considered
separately (Goods and Services), both the exp-L and the sup-L tests detect a
break in the model parameters in the last portion of the sample, a result that
holds regardless of the measure of output gap considered and whether or not
import prices are included in the regression.

2. When we clean the price indices of the upward pressure of recent indirect tax
increases, evidence of instability emerges also for the aggregate core inflation
index (CoreX) and it is confirmed for the prices of services (ServicesX). Again
this result is spread across different measures of output gap and it is not
affected by the inclusion of import prices. In this case, however, evidence of a
break is not picked up by the tests for the prices of goods (GoodsX).

3. Overall, a significant fraction of the stability tests (66%) suggests that some
instability in the inflation-output nexus has indeed emerged in recent years.
The figure is quite high especially if one considers the difficulty that break tests
have in detecting parameter shifts that are slow and gradual, as evidenced by
?.

4.3.2 Time varying parameter models

To further investigate the hypothesis of parameter instability we now relax the
assumption of constant parameters and specify a time varying coefficient model:

πt = µt +
k∑
j=1

βj,tπt−1 + γtyt−1 + Γ′tzt + ηt (4.2)

Parameter estimates will produce a path for the coefficients, therefore allowing
us to gauge the direction of the change signalled by the break tests.

Given the large number of models under analysis we use a non-parametric
estimator, which is computationally much less cumbersome than the Bayesian
methods customarily used in the context of models with time varying parameters.
The nonparametric approach has long been used in econometrics in the case of
deterministic structural change. It has been recently extended to the case of
stochastic time variation by Giraitis, Kapetanios, and Yates (2014). The idea of
this estimator is that, in the presence of structural change, older data should be
discounted in favour of more recent information. This is achieved by weighting
observations with decaying weights when computing sample correlations. Collecting
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the right hand variables of equation (4.2) in the column vector Xt, the dependent
variable in Yt and the time varying parameters in the vector ρt, the estimator has
the form:

ρt =

[
T∑
j=1

ωj,tXjX
′
j

]−1 [ T∑
j=1

ωj,tXjYj

]
The sample moments are therefore discounted by the function ωj,t:

ωj,t = cK

(
t− j
H

)
(4.3)

where c is an integration constant and K
(
t−j
H

)
is the kernel function determining

the weight of each observation j in the estimation at time t. This weight depends on
the distance to t normalized by the bandwidth H. Giraitis, Kapetanios, and Price
(2013) show that the estimator has desirable frequentist properties and suggest the
optimal bandwidth value H =

√
T . We follow their suggestion and estimate the

parameters ρt using a Gaussian kernel and set H =
√
T . Although, asymptotically,

the estimator is Normally distributed, we derive confidence bands via bootstrap
simulations, given the low number of observations in our sample.9

The estimated evolution of the output gap coefficient (γt) is shown in Figure 4.3,
which is organized in four panels. The left hand panels show estimates obtained
using, respectively, core inflation (top) and core inflation net of indirect taxation
(bottom) and a baseline specification with no additional control variables. The right
hand panels display analogous estimates obtained controlling for import prices. In
each plot we report the 15th, 50th and 85th percentiles of the empirical distribution
of the estimated γt, together with the estimate obtained with a constant coefficient
model and data up to 2012q4.10

In all cases, the median estimate of γt shows an increasing tendency from the end
of 2012, to a value of around 0.25/0.30. This is almost three times as large as the
estimate obtained from a fixed coefficient model. Notice that this latter estimate
is also well below the 15th percentile of the empirical distribution of γt from 2013
onwards. To assess which component of inflation is driving these results, we inspect
the estimated gap coefficients for goods and services separately, as shown in Figures
4.4 and 4.5. Results on the subcomponents are overall in line with those of the

9When computing confidence bands we also allow for changes in the variance of the errors ηt.
At each point in time of the bootstrap simulation we therefore draw the errors from a Normal
distribution with mean zero and variance σ2

t . We estimate also σ2
t with nonparametric methods as

suggested by Giraitis, Kapetanios, and Yates (2012): σ2
t = 1/T

∑T
j=1 ωj,tu

2
j .

10Since we have three different measures of the output gap, we account for output gap uncertainty
by pooling bootstrap estimates from specifications with different output gaps and compute the
percentiles on the empirical distribution of the estimated coefficients.
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aggregate as the responsiveness of both goods and services prices to the business
cycle has increased markedly in recent years. When controlling for import prices, in
particular, a significant discontinuity appears in 2013-2014.

To explore a possible role for inflation expectations we augment the baseline
specification with a forward looking inflation measure, i.e., expected inflation 6
quarters ahead, as surveyed by Consensus Economics. The results are presented in
Figure 4.6 for the core index, and in Figures 4.7 and Figure 4.8 for goods and services.
The inclusion of inflation forecasts results in an increase in estimation uncertainty
(relatively more pronounced for the prices of goods) but does not remove the upward
trend of the median estimates at the end of the sample.

Finally, a break in the inflation/output gap relationship could also involve
other parameters of equation 4.2, like the intercept and the dynamics, also with
detrimental effects on forecast accuracy (Hendry and Mizon, 2014). We therefore
explore whether the persistence of the inflation process, measured by the sum of
the autoregressive coefficients, β1 + β2, or the long run mean, µt/(1 − β1 − β2),
have changed in recent years.11 The analysis reveals that the long-run mean of
core inflation has remained steady around its historical average (1.5%, Figure 4.9).
Also the sum of the autoregressive coefficients, has stayed rather stable around zero
since 2006, confirming the the results obtained by Benati (2008) who finds that the
serial correlation of inflation is typically zero in monetary areas with a well defined
nominal anchor, like the medium-term ECB inflation target.

4.4 Interpretation of the evidence

Having documented an increase in the sensitivity of inflation to the output gap
we discuss possible interpretations of such evidence along two lines. First, we go
through the theoretical pricing model by Sbordone (2007) and explore which changes
in the structure of the economy would lead to an increase in the slope of the Phillips
curve. An alternative explanation is that the nonlinearity in the parameters of the
empirical model is simply indicating an underestimation of the actual output gap.
On this respect we provide an estimate of the gap that would result in a stable
Phillips curve.
We start from a discussion of the Phillips curve implied by the model by Sbordone
(2007):12

πt = βEtπt+1 + ζŝt (4.4)
11Notice that our long-run mean estimate, obtained in the baseline specification with no control

variables, implies a zero long-run forecast for the output gap, yt.
12Model’s details are provided in the Appendix.
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where πt denotes inflation, β is the discount factor, ŝt denotes real unit labor cost
(where a hat indicates the log- deviation from the steady state) and ζ is a convolution
of deep parameters capturing the sensitivity of price changes to variations in real
unit labor costs, which, in this class of models, are related to the output gap by
an approximate log-linear relationship. Notice that the above equation is purely
forward looking, while the model used in the empirical analysis has a backward
looking nature. This is not a major issue, since our aim is not taking equation (4.4)
to the data, but using it to organize a discussion on the possible sources of increased
inflation cyclicality.

As shown in the Appendix, the slope coefficient can be defined as:

ζ ≡ (1− αβ) (1− α)

α

1

1 + θ(N) [εµ(N) + sy(N)]
(4.5)

where β is the discount factor, α is the degree of price stickiness ( 1
1−α is the average

price duration), N is the number of firms, sy(N) denotes the elasticity of marginal
costs to the firm’s own output, θ(N) is the steady state elasticity of the firm’s own
output demand to its relative price and εµ(N) is the elasticity of the markup function
to the firm’s market share evaluated at steady state.

On the basis of (4.5) we can thus disentangle the different channels through
which a steepening of the Phillips curve could have occurred:

1. Lower nominal rigidities. More frequent prices changes (i.e., lower α) induce
a steeper Phillips curve.

2. Lower elasticity of marginal cost to the firm’s own output. To understand
this mechanism suppose there is a positive shock to real marginal costs ŝt.
This induces an increase in prices and a loss in demand. The latter, in turn,
produces a fall in marginal costs (due to decreasing returns to scale) that
will partially offset the initial shock and, therefore, reduce the need to adjust
prices. It follows that a lower elasticity of marginal costs to output (sy(N))
requires a relatively larger price adjustment.

3. Lower steady state elasticity of the firm’s own output demand to its relative
price. The mechanism is akin to the one described in the previous point.
For a lower steady state elasticity of demand (θ(N)), the loss in demand
resulting from the initial adjustment to a shock to ŝt is milder, hence inducing
a relatively larger price adjustment.

4. Lower elasticity of the markup function evaluated at steady state. When
the elasticity of substitution between differentiated goods is decreasing in
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the relative quantity consumed of the variety, firms face a price elasticity
of demand that is increasing in their good’s relative price. This makes the
desired markup increasing in the firm’s relative market share (decreasing in
firms’ relative price). If the elasticity of the markup function evaluated at
steady state (εµ(N)) decreases, the Phillips curve steepens. Indeed, when the
elasticity of demand is increasing in the relative price, firms are reluctant to
change their price as they would face a more elastic demand curve than firms
whose relative price declines as a result of price fixity.

This model therefore suggests two possible explanations for an increase in ζ. One
explanation is lower nominal rigidities, i.e., a higher frequency of price adjustment
(smaller α), which could have been favoured, for instance, by structural reforms
in stressed countries. Empirical evidence on recent changes in the frequency of
price adjustment in the euro area is, however, scarce and characterized by mixed
results. Moreover, it only covers data prior to 2013. For example, for Italy, Fabiani
and Porqueddu (2013) show that in the period between 2006 and 2012 the average
duration of consumer prices in Italy has indeed declined to five months, from eight
months between 1996 and 2001, indicating that increased sensitivity of prices to
cyclical conditions might be partly accounted for by lower nominal rigidities. On
the other hand, Berardi, Gautier, and Le Bihan (2013) find that during the Great
Recession, the patterns of price adjustment in France were only slightly modified: the
frequency, average size and dispersion of price decreases increased only marginally.13

Ongoing research at the Eurosystem level through a new wave of the Wage Dynamics
Network14 will provide better data and more evidence on this issue.

The second explanation rests on the three remaining channels, known in the
literature as strategic complementarities. As shown in the Appendix they vary with
the number of firms; hence so does the slope of the Phillips curve. When the number
of firms decreases, the steady state elasticity of demand θ goes down (in line with the
general intuition that the larger the number of goods that are traded in the market,
the more likely it is that demand declines in response to a small increase in prices);
this tends to increase inflation cyclicality. By contrast, the elasticity of the mark-up
function εµ and the elasticity of the marginal cost to firm’s own output sy go up
and this tends to result in lower inflation cyclicality. If the first effect dominates the

13By using the CPI research database collected by the Bureau of Labor Statistics, Vavra (2013)
explores the business cycle properties of the distribution of price changes in the US and find that
while price change dispersion (i.e. the second moment of the price change distribution) is strongly
counter-cyclical, the rise in the frequency of adjustment during recessions is modest. Dixon, Luintel,
and Tian (2014) find similar results for the UK.

14See https://www.ecb.europa.eu/home/html/researcher_wdn.en.html.

150

https://www.ecb.europa.eu/home/html/researcher_wdn.en.html


TVP-PHILLIPS CURVE

other two, inflation cyclicality will increase as N falls. To sum up:

ζ ≡ (1− αβ) (1− α)

α

1

1 + θ(N
+

)

[
εµ(N
−

) + sy(N−
)

] (4.6)

The combination of these effects shapes the relationship between the slope of the
Phillips curve and the number of firms, as shown in Figures 4.10 and 4.11 under two
different calibrations for the parameters controlling the elasticity and the curvature
of the demand function taken from the literature (see the Appendix for details). It
turns out that under these calibrations the relationship between inflation cyclicality
and the number of firms is almost everywhere negative.

A formal test of the hypothesis linking consumer prices and the number of firms in
the economy is difficult because of poor data quality regarding business demography
in the euro area. Keeping these caveats in mind, some preliminary analysis on
available data indicates that, in the case of Italy and Spain, the sovereign debt crisis
induced a significant reduction in the number of firms. This suggests that the fact
that strategic complementarities played a role in the steepening of the Phillips curve
cannot be ruled out.

An alternative interpretation of the increase in γt hinges on the fact that the
output gap is a latent variable, whose measurement is rather problematic especially
during a deep recession such as the one that has hit the euro area since 2011.
Measurement errors in the output gap estimates might have contributed to the
finding of a Phillips curve steepening in the more recent quarters. A question
that arises is how wide the gap should be in order to explain the observed fall in
inflation in the context of a stable Phillips curve. To provide an answer we construct
alternative output gaps assuming that, starting from 2011Q3, cyclical developments
have been more adverse than assessed by current estimated, and re-estimate our
baseline specification until we obtain a stable estimate of γt . Results are shown in
Figure 4.12. Red lines are the output gap estimated by the EC (upper panel) and the
corresponding estimated profile of γt (lower panel).15 Blue dashed lines illustrate the
counterfactual output gaps and the corresponding estimates of γt . What emerges is
that, if the finding of the increased inflation cyclicality was entirely attributable to
an underestimation of the amount of spare capacity in the economy, the actual euro
area output gap would be around -4%, 1.5 percentage points wider than currently
measured.

15Results obtained on the basis of the OECD and IMF gaps are very similar.
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4.5 Conclusions

The bout of disinflation between 2013 and 2014 has been broad based across the
euro area and more intense in those countries that have been hit the hardest by
the sovereign debt crisis. Despite the persistent economic weakness, professional
forecasters largely failed to predict the decline in inflation: those surveyed by
Consensus Forecast systematically over predicted average inflation for 2013 and
2014. In this paper we explore, from an empirical point of view, whether this over-
prediction can be partly attributed to a structural break of inflation cyclicality.
Time varying estimates of the elasticity of inflation to the output gap reveal that in
2013 and 2014 there has been a significant increase in the sensitivity of inflation to
the business cycle.

A steepening of the Phillips curve might have resulted from changes in the
structure of the economy. In this respect either lower nominal rigidities, due
perhaps to structural reforms in stressed countries, or a decrease in strategic
complementarities in price setting, related to the fall in the number of firms in
the economy as a consequence of the two recent recessions, could have led to a
higher elasticity of consumer prices to the output gap. An alternative explanation
is that the structure of the economy has not really changed but the gap between
actual and potential output is wider than currently measured. We show that a
downward adjustment of the output gap by about one third could in fact rationalize
the observed fall in inflation. Only more data, especially at the firm level, on wage
and price setting after the Sovereign debt crisis will help to sort the issues.
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Figure 4.1: Inflation, forecast errors and oil prices

 

Note to Figure 4.1. The forecast errors are computed on the basis of the quarterly survey of professional
forecasters conducted by Consensus Economics in March, June, September and December, which provides
forecasts over the next seven quarters.

Figure 4.2: Output gaps
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Note to Figure 4.2. EC data are from the 2014 Spring forecasts. OECD data are from the 2014 Interim
Autumn Economic Assessment. IMF data are from the 2014 October World Economic Outlook. Annual
data are interpolated at the quarterly frequency through a quadratic polynomial.
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Table 4.1: End of sample instability tests, rejections at the 10% confidence level

Baseline Controlling for import prices

Test Π Gap-EC Gap-OECD GAP-IMF Gap-EC Gap-OECD GAP-IMF
Core Core

exp-L 75 0 0 0 0 0 0
exp-L 90 0 0 0 0 0 0
sup-L 75 0 0 0 0 0 0
sup-L 90 0 0 0 0 0 0

Goods Goods
exp-L 75 1 1 1 1 1 1
exp-L 90 1 1 1 1 1 1
sup-L 75 1 1 1 1 0 1
sup-L 90 1 1 1 1 1 1

Services Services
exp-L 75 1 1 1 1 1 1
exp-L 90 1 1 1 1 1 1
sup-L 75 1 1 1 1 1 1
sup-L 90 1 1 1 1 1 1

CoreX CoreX
exp-L 75 1 1 1 1 1 1
exp-L 90 1 1 1 1 1 1
sup-L 75 1 1 1 1 1 1
sup-L 90 1 1 1 1 1 1

GoodsX GoodsX
exp-L 75 0 0 0 0 0 0
exp-L 90 0 0 0 0 0 0
sup-L 75 0 0 0 0 0 0
sup-L 90 0 0 0 0 0 0

ServicesX ServicesX
exp-L 75 1 1 1 1 1 1
exp-L 90 1 1 1 1 1 1
sup-L 75 1 1 1 1 1 1
sup-L 90 1 1 1 1 1 1

Note to table 4.1. In each cell we report 1 if the test statistics is higher than the 10% critical values
tabulated in Busetti (2012), 0 otherwise.
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Figure 4.3: Slope of the Phillips curve: core inflation
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Figure 4.4: Slope of the Phillips curve: goods prices
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Figure 4.5: Slope of the Phillips curve: services prices
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Figure 4.6: Slope of the Phillips curve: core inflation, controlling for expectations
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Figure 4.7: Slope of the Phillips curve: services prices, controlling for expectations
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Figure 4.8: Slope of the Phillips curve: goods prices, controlling for expectations
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Figure 4.9: Long run mean and persistence
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Figure 4.10: Slope of the Phillips curve and number of firms (η = −2, γ = 1.14)
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Figure 4.11: Slope of the Phillips curve and number of firms (η = −3, γ = 1.07)
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Figure 4.12: Counterfactual output gaps
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Appendix

4.A The theoretical model

We consider the theoretical framework developed by Sbordone (2007), that extends
the Kimball’s model in an environment where the number of firms is variable.
Households’ utility is defined over an aggregate Ct of differentiated goods ct(i),
implicitly defined as ∫

Ω

ψ

(
ct(i)

Ct

)
di = 1 (4.7)

where ψ (·) is an increasing strictly concave function and Ω is the set of all
potential goods produced. Note that the standard CES preferences are nested
within this specification and the Kimball aggregator reduces to the Dixit-Stiglitz

when ψ
(
ct(i)
Ct

)
=
(
ct(i)
Ct

) θ−1
θ for some θ > 1.

Each firm produces a differentiated good. We assume that the set of firms is
[0, N ] and, thus, ct(i) = 0 ∀i > N. The household must decide how to allocate its
consumption expenditures among the different goods: min{ct(i)}

∫ N
0
pt(i)ct (i) di s.t.∫ N

0
ψ
(
ct(i)
Ct

)
di = 1. From the FOC to this problem one obtains the demand for each

good i:

ct(i) = Ctψ
′−1 (pt(i)ΛtCt) ∀i ∈ [0, N ]

where Λt is the Lagrangian multiplier for constraint (4.7), that is implicitly
defined by

∫ N
0
ψ (ψ′−1 (pt(i)ΛtCt)) di = 1

The aggregate price index is the cost of a unit of the composite good: Pt ≡
1
Ct

∫ N
0
pt(i)ct(i)di.

We assume that firm i produces with the following technology:

yt(i) = ht(i)
1−a − Φ (4.8)
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where Φ is a fixed cost. Accordingly firm’s i real marginal cost st(i) is:

st (yt(i); Γt) =
1

1− a
Wt

Pt
(yt(i) + Φ)

a
1−a (4.9)

where Γt indicates aggregate variables that enter into the determination of firms’
marginal costs, Wt, is nominal wage and Pt is the aggregate price.

Following the formalism proposed in Calvo (1983), each firm may reset its price
only with probability (1− α) in any given period, independently of the time elapsed
since the last adjustment ( 1

1−α is the expected average duration of prices). A firm
re-optimizing in period t will choose the price pt(i) by maximizing the expected
string of profits over the life of the set price.

Et

{
∞∑
j=0

αjQt,t+j

[
pt(i)Yt+jψ

′−1

(
pt(i)

P̃t+j

)
− C

(
Yt+jψ

′−1

(
pt(i)

P̃t+j

)
; Γt+j

)]}
(4.10)

where C (·) is the firm’s cost function and P̃t ≡ 1
ΛtPt

. Combining the first order
condition associated with the problem above with the aggregate price dynamics
yields the following Phillips curve:

πt = βEtπt+1 + ζŝt (4.11)

where πt denotes inflation, β is the discount factor, ŝt denotes real unit labor cost
(where a hat indicates the log- deviation from the steady state) and ζ is a convolution
of deep parameters. Our goal is to evaluate how the number of producing firms N
affects the slope coefficient ζ. Let define x = ψ′−1

(
1
N

)
the relative share in the

symmetric steady state, i.e. a steady state with symmetric prices (pt(i) = pt∀i).
Then, we can define the steady state elasticity of demand:

θ = − ψ′(x)

xψ′′(x)
(4.12)

and the elasticity of the mark-up function evaluated at steady state:

εµ =
xµ′(x)

µ(x)

where µ ≡ θ
θ−1

is the steady state desired markup. The slope coefficient can be
defined as:

ζ ≡ (1− αβ) (1− α)

α

1

1 + θ(N) [εµ(N) + sy(N)]
(4.13)

162



TVP-PHILLIPS CURVE

where sy(N) = a
1−a

[
xY

xY+Φ

]
denotes the elasticity of the marginal cost to firm’s

own output (Y is steady state aggregate output). We now turn to examine how the
number of firms N affects these channels. To this aim we need to choose a functional
form for ψ(x). As in Sbordone (2007) we assume the one proposed by Dotsey and
King (2005).

ψ(x) =
1

(1 + η) γ
[(1 + η)x− η]γ − 1

(1 + η) γ
(−η)γ (4.14)

In this case the steady state relative share x is:

x ≡ ψ−1(
1

N
) =

1

1 + η

{(
(1 + η) γ

N
+ (−η)γ

) 1
γ

+ η

}
(4.15)

The latter is clearly decreasing in N . The steady state mark-up µ is:

µ =
η − (1 + η)ψ−1( 1

N
)

η − γ (1 + η)ψ−1( 1
N

)

In order to see the dependence of the slope on N, we need to study how θ(N),

εµ(N) and sy(N) vary with N . The steady state elasticity θ is:

θ =
η − (1 + η)ψ−1( 1

N
)

(γ − 1) (1 + η)ψ−1( 1
N

)
(4.16)

which is decreasing in the steady state relative share x and, thus, increasing in
N . This is in line with the general intuition that more goods are traded in a market
more likely it is for the demand to decrease more in response to a small increase
in prices. The elasticity of mark-up εµ, that determines how much the steady state
mark-up varies for small variation in N , is

εµ =
η (γ − 1) (1 + η)ψ−1( 1

N
)[

η − (1 + η)ψ−1( 1
N

)
] [
η − γ (1 + η)ψ−1( 1

N
)
] (4.17)

It can be demonstrated that this elasticity is a decreasing function ofN .16 Finally
the elasticity of the marginal cost to firm’s own output is:

sy(N) =
a

1− a

[
xY

xY + Φ

]
(4.18)

It can be demonstrated that, assuming a fairly standard log-utility u(C, h) =

logC − 1
1+ν

h1+ν , the steady state aggregate output is the solution to xY + Φ =

16Indeed ∂logµ
∂ logN = −εµ ∂ log x

∂ logN and logµ is a convex function of logx. Indeed because µ (x) is an
increasing function of x, it is not possible for logµ to be a concave function of logx as this would
require logµ to be negative for positive and small enough x. If logµ must be convex at least for
small values of x, it is convenient to assume that it is globally convex function of logx.
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[
1−a

µxY N1+υ

] 1−a
ν+a and sy(N) is decreasing in N . To sum up:

ζ ≡ (1− αβ) (1− α)

α

1

1 + θ(N
+

)

[
εµ(N
−

) + sy(N−
)

] (4.19)

To evaluate the quantitative impact of changes in the number of firms on inflation
cyclicality, the function ψ(x) needs to be parameterized, i.e. one has to choose
particular values for the parameters γ and η. While the literature does not provide
much guidance for what are the most plausible values for these two parameters,
we follow Sbordone (2007) and Levin, Lopez-Salido, and Yun (2007) by choosing a
combination of them that guarantees a plausible value for the mark-up in steady
state µ, where the relative share x is equal to 1. Figures 10 and 11 in the main
text show the relationship between the slope of the Phillips curve and the number
of firms under two different combinations of γ and η, both consistent with a steady
state markup of 16%: η = −2 and γ = 1.14 and η = −3 and γ = 1.07.
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