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Abstract

We propose an axiomatization of the Choquet integral model for the

general case of a heterogeneous product set X = X1× · · · ×Xn. Pre-

vious characterizations of the Choquet integral have been given for

the particular cases X = Y n and X = Rn. However, this makes

the results inapplicable to problems in many fields of decision the-

ory, such as multicriteria decision analysis (MCDA), state-dependent

utility (SD-DUU), and social choice. For example, in multicriteria de-

cision analysis the elements of X are interpreted as alternatives, char-

acterized by criteria taking values from the sets Xi. Obviously, the

identicalness or even commensurateness of criteria cannot be assumed

a priori. Despite this theoretical gap, the Choquet integral model is

quite popular in the MCDA community and is widely used in applied

and theoretical works. In fact, the absence of a sufficiently general

axiomatic treatment of the Choquet integral has been recognized sev-

eral times in the decision-theoretic literature. In our work we aim to

provide missing results – we construct the axiomatization based on

a novel axiomatic system and study its uniqueness properties. Also,

we extend our construction to various particular cases of the Choquet

integral and analyse the constraints of the earlier characterizations.

Finally, we discuss in detail the implications of our results for the

applications of the Choquet integral as a model of decision making.
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Axiomatic analysis is important for decision models as it allows for a much deeper

understanding of their mechanics. Normally, such analysis pursues one of two

approaches: either introducing a novel model, which is based on a set of easily

acceptable premises (axioms), or performing an in-depth analysis of a well-known

model. The latter case aims to understand the model better, reveal its previously

unknown properties, and relate it to other models in the field.

This thesis is dedicated to axiomatic analysis of the Choquet integral. Al-

though it has been widely used since the late 1980s, its theoretical foundations

are significantly under-developed. Particularly in the area of multicriteria deci-

sion analysis, where the integral enjoys a lot of theoretical and applied interest, it

has been long recognized that the theoretical foundations of the model are weak,

and the proper decision-theoretic analysis is missing. Several attempts to fill this

void have been made in the last 15 years; however, none of them has solved this

problem completely. rewrite betterrewrite better

In this thesis we aim to achieve the following:

A general characterization of the Choquet integral. We will show that

earlier axiomatizations of the model catered only for a very special case, which

is not applicable in many decision problems, particularly the multicriteria ones.

This has been noted several times in the literature – however, no general result

has been developed to date.

A novel axiomatic system which generalizes earlier results. The ax-

iomatic systems developed in the previous characterizations are not suitable for

the general case that is treated here. Hence, a new set of premises is required. It is

interesting to relate these new conditions to the old ones, to see what constraints

are being lifted as a result of this generalization.

Analysis of the uniqueness properties. A matter of paramount importance

in any decision-theoretic analysis is the question of the model uniqueness. If two

instances of the same model (e.g. with two different sets of parameters) can

represent the same preference relation, are they related to each other and how?
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Again, we expect a significant departure from the earlier result due to the more

general case we are considering here.

Extensions of the main characterization result to the ordinal and car-

dinal special cases of the Choquet integral. The Choquet integral lists a

large number of decision models as its special cases. Among those are ordinal

models, such as MIN, MAX, or the order statistic (kth smallest element), and

the cardinal ones, such as the case when the preferences of the decision maker

are in some sense convex or concave. We will extend our results to each of these

special cases.

Analysis of the implications of our results for learning of the Choquet

integral models. As mentioned previously, the Choquet integral is widely used

in applied work. Naturally, one of the most important problems in this context

is the process of estimating its parameters, also called “model learning”. Here

the lack of proper theoretical underpinnings of the model frequently led to using

a flawed methodology. We discuss the problems of the current approaches and

reveal some new aspects implied by our results.

Discussion of our results. Finally, we discuss the implications our results

have for different areas of decision theory and potential connections with other

fields, such as psychology. We discuss an interesting concept of implied com-

mensurability, which allows us to construct meaningful correspondences between

seemingly incomparable quantities, and its interpretations in various decision

problems.
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Chapter 1

Non-additive models in decision

analysis
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1.1 Introduction

Decision theory is a field positioned between economics, psychology, and mathe-

matics. The purpose of decision theory is to introduce and analyse mathematical

models of human decision making used to perform forecasting, behavioral and

economical analysis, and, in recent years, automated decision making. Hence,

the models must be not only accurate, but also highly tractable. The field origi-

nated perhaps in economics via the works of Ramsey, De Finetti, von Neumann,

and Morgenstern; however, many results were introduced by psychologists, math-

ematicians, and philosophers such as Kahneman, Tversky, Suppes, Luce, Fish-

burn, and Krantz. Decision theory includes several sub-fields, such as decision

making under uncertainty (DUU), multi-criteria decision analysis (MCDA), and

intertemporal decision making.

There is a large number of models used and studied in decision theory, but

perhaps the most prominent is the class of the additive models. A well-known

example is the expected utility model used in DUU. Its origins are normally

attributed to Bernoulli, who proposed the idea to resolve the so-called St. Pe-

tersburg paradox. The idea gained prominence after being used in the book of

Von Neumann and Morgenstern (1944). They also proposed one of the earliest

“axiomatizations” of the expected utility model – that is, a set of conditions

characterizing the preferences of the decision maker, under which he would be

making decisions as if he was maximizing the expected value of some utility

function defined on the set of potential outcomes. The authorship of the earliest

axiomatization is still a subject of historical research, however the consensus at

the present moment attributes it to individually Nash and Marschak (Bleichrodt

et al., 2016). Another notable axiomatization of the expected utility is due to

Savage (1954), who was the first to provide an axiomatization in a purely “sub-

jective” context, i.e. without referring to any “objective” probabilities in the

frequentist sense (e.g. the probability of a horse winning a race as opposed to the

probability of getting 6 in a dice roll).

The key elements of the expected utility model in decision under uncertainty

are: the states of the world – situations which might occur in the future, however

the decision maker is not able to predict with certainty which particular one is

10



going to happen; the outcomes – consequences that the decision maker would

bear as result of his action and the actual state of the world, and finally the acts,

which are normally understood as mappings between the states of the world and

the outcomes – see Fishburn (1970) for alternative formulations.

Let Y be the set of outcomes, S the set of the states of the world (which we

hereafter assume to be finite), and the functions f : S → Y be “acts”. Then, the

axioms of the expected utility model guarantee the existence of a probability p on

the set of events (2S), and a utility function U : Y → R, such that f is weakly

preferred to g (we write f < g), if and only if∑
s∈S

p(s)U(f(s)) ≥
∑
s∈S

p(s)U(g(s)). (1.1)

Expected utility transgressed the boundaries of a “descriptive” model and

became an extremely influential “normative” paradigm in economics, remaining

in this position to the present day. Besides being simple and having a strong

intuitive appeal from the descriptive perspective, it also turned out that axioms

of the expected utility model have a very strong normative appeal, in other words

they seem to prescribe a model of the “rational” behaviour.

A close cousin of the expected utility model is the so-called additive value

model. This was introduced by Debreu (1959) and later axiomatized in a number

of papers, which culminated in a seminal book by Krantz et al. (1971). Additive

value model is different from the expected utility model in that it uses multiple

utility (value) functions. The other name of this is multi-attribute utility theory

(MAUT) (Keeney and Raiffa, 1976). As the name suggests, this model is mainly

used in multicriteria decision analysis. In this case, the preference relation is

defined on a set of multi-attribute alternatives X = X1 × . . . × Xn, and for all

x, y ∈ X, we have that x< y if and only if

n∑
i=1

Vi(xi) ≥
n∑
i=1

Vi(yi). (1.2)

The key assumption of classical additive models, whether the expected utility

one or the additive value function model, is the independence condition. Fishburn
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and Wakker (1995) and Moscati (2016) give an exciting and enjoyable look into

the origins of this condition. Savage (1954) called this axiom the “sure thing

principle”, whereas in the other literature it is normally called independence or

separability. We would be using the term independence from now on.

In MCDA context independence means that if two alternatives share the same

values on some coordinates, then the preference between the two should not be

affected by the levels of these common values. In decision under uncertainty

the condition is known as the sure-thing principle, for which Savage (1954) gives

the following informal example. A businessmen considers buying a property, and

comes to a conclusion that if a Democratic candidate wins the upcoming election,

buying would be preferable. However, if a Republican candidate wins, buying still

would be preferable. The sure-thing principle than says that he should buy even

without knowing which candidate will win.

Definition 1. Let < b a binary relation on X = X1 × · · · × Xn. We say <

satisfies independence, if for any xi, yi ∈ Xi, a−i, b−i ∈ X−i, we have

xia−i<xib−i ⇐⇒ yia−i< yib−i. (1.3)

The condition has a strong normative and descriptive appeal. However, it

turned out to be the most controversial assumption of the additive models, in-

cluding the expected utility model. In decision under uncertainty Ellsberg (1961)

and Allais (1953) used experimental data to show that this condition was sys-

tematically violated and yet the experiment subjects considered their behaviour

rational. This discovery led to the separation of the notions “uncertainty” and

“risk” in decision theory, with the former signifying a situation where the proba-

bilities with which each state occurs are unknown, whereas the latter the opposite

situation. Experimenters asked the subjects to choose between gambles involving

urns with a known proportion of coloured balls, and those where the proportions

were unknown. Participants showed strong violation of independence, always

steering away from the urns with an unknown composition. This phenomenon

came to be known as “uncertainty aversion”.

In multicriteria contexts, violations of independence do not require any com-

plicated experiments and were more or less accepted as given from the very be-

12



ginning – see Keeney and Raiffa (1976), and Fishburn and Wakker (1995). It

became clear that, both in DUU and MCDA, new models were required to deal

with the data which did not fit the additive model.

A new generation of decision models emerged in the 1980s. The most impor-

tant for our work is the class of “rank-dependent” utility models, and in particu-

lar the Choquet integral, which is the primary focus of this thesis. The Choquet

integral is nowadays widely used in decision analysis, in particular MCDA (Gra-

bisch and Labreuche, 2008), although its use is still somewhat restricted due to

both methodological problems and difficulties in practical implementation. Rank-

dependent models first appeared in the context of decisions under uncertainty.

As discussed above, the Ellsberg (1961) paradox has shown that people can vi-

olate Savage’s axioms and still consider their behaviour rational. First models

accounting for the so-called uncertainty aversion observed in this paradox ap-

peared in the works of Quiggin (1982) and others – see Wakker (1991b) for a

review. One particular generalization of the expected utility model (EU) char-

acterized by Schmeidler (1989) is the Choquet expected utility (CEU), where

the probability is replaced by a non-additive set function (called capacity) and

integration is performed using the Choquet integral.

Since Schmeidler’s paper, various versions of the same model have been char-

acterized in the literature (e.g. Gilboa, 1987; Wakker, 1991a). CEU has gained

some momentum in both theoretical and applied economic literature, being used

mainly for analysis of the problems involving Knightian uncertainty. At the same

time, rank-dependent models, in particular the Choquet integral, were adopted

in the multicriteria decision analysis. Here the integral gained large popularity

due to the tractability of non-additive measures in this context (see Grabisch

and Labreuche, 2008 for a review). The model allowed for various preferential

phenomena, such as criteria interaction, which were impossible to reflect in the

traditional additive models. Pioneering works in this area are Sugeno (1974);

Mori and Murofushi (1989); Murofushi (1992); Murofushi and Soneda (1993) and

Murofushi and Sugeno (1992). The toolbox for interpretation and application,

as well as the theoretical understanding of the Choquet integral in MCDA were

greatly expanded and popularized in the last 25 years due to the works of Michel

Grabisch, Christophe Labreuche, and others (see Grabisch and Labreuche, 2008,
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2005; Labreuche and Grabisch, 2003). The concept of a capacity or fuzzy mea-

sure became very popular in MCDA because of its tractability in this context.

Interaction between criteria is a common and widely recognized phenomenon, and

non-additivity of the capacity turned out to be a very nice facility for modelling

it. Popularity of the Choquet integral seems to be growing in the recent years.

It is also actively used in areas such as machine learning for classification and

ranking problems. However, the decision-theoretic foundations of the Choquet

integral in MCDA had a large gap, which this work aims to close. Particularly,

it quickly became obvious that the existing axiomatizations of the integral by

Schmeidler (1989) and others are not general enough to be used in the MCDA

context.

1.2 The Choquet integral

As discussed in the previous chapter, the Choquet integral is used to model

decision problems in a variety of fields. Below we provide a brief introduction

to its use in decision under uncertainty and MCDA. Let us start by giving the

definition of a capacity and the Choquet integral.

1.2.1 Definitions

Definition 2. Let N be a set (of states, criteria, etc) and 2N its power set.

Capacity (non-additive measure, fuzzy measure) is a set function ν : 2N → R+

such that

1. ν(∅) = 0;

2. A ⊆ B ⇒ ν(A) ≤ ν(B), ∀A,B ∈ 2N .

We also assume that capacities are normalized, i.e. ν(N) = 1.

Definition 3. The Choquet integral of a function f : N → R with respect to a

capacity ν is defined as

C(ν, f) =

∞∫
0

ν({i ∈ N : f(i) ≥ r})dr +

0∫
−∞

[ν({i ∈ N : f(i) ≥ r})− 1]dr. (1.4)
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If N = {1, 2, . . . , n} is finite, and all values (f1, . . . , fn) of f : N → R are

non-negative, the definition can be expressed as

C(ν, (f1, . . . , fn)) =
n∑
i=1

(f(i) − f(i−1))ν({j ∈ N : fj ≥ f(i)}), (1.5)

where f(1), . . . , f(n) is a permutation of f1, . . . , fn such that f(1) ≤ f(2) ≤ · · · ≤ f(n),

and f(0) = 0.

1.2.2 The Choquet integral for preference representation

Decision under uncertainty As discussed in the previous section, the Cho-

quet integral was initially introduced in the context of decision making under

uncertainty. As before, Y is the set of outcomes, and S is the set of the states

of the world, and acts are functions f : S → Y . We say that < on the set of all

acts can be represented by a Choquet integral, if there exists a capacity ν and a

utility function U : Y → R, such that

f < g ⇐⇒ C(ν, (U(f(s1)), . . . , U(f(sn))) ≥ C(ν, (U(g(s1)), . . . , U(g(sn))).

(1.6)

MCDA Multicriteria decision analysis (MCDA) is a sub-field of decision theory

which is focused around making choices between alternatives characterized by

several attributes. For example, consider the example in Table 1.1.

Top speed Appearance Miles per gallon Comfort Price

(A) BMW M3 225 Great 21 *** 56000
(B) VW Golf 180 Nice 27 ** 25000
(C) Volvo 200 Fair 27 *** 35000
(D) Toyota Prius 140 Ugly 40 * 20000

Table 1.1: A multicriteria decision problem

We also know that the decision maker prefers A to B, B to C, and C to D

(A�B�C �D). The decision space is a product set with the dimensions “Top

speed”, “Appearance”, “Miles per gallon”, “Comfort”, and “Price”. Some of the
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attributes levels are linguistic categories, some are ordinal evaluations, some are

numbers. It is important to note that generally the levels of different attributes

are not mutually comparable even if they are numerical. Indeed, it is hard to

compare “$25 000” with “Nice appearance” or with “27 mpg”.

Formally, the set of the alternatives is a product set X = X1×· · ·×Xn, where

sets Xi are the sets of attribute levels. We say that < on X = X1 × · · · ×Xn can

be represented by a Choquet integral if there exists a capacity ν and functions

fi : Xi → R, called value functions, such that

x< y ⇐⇒ C(ν, (f1(x1), . . . , fn(xn)) ≥ C(ν, (f1(y1), . . . , fn(yn)). (1.7)

Mathematically, the connection between MAUT and decision making under

uncertainty has been known for a long time. In the case when the number of states

is finite, states can be associated with criteria. Accordingly, acts correspond to

multicriteria alternatives. Finally, the sets of outcomes at each state can be

associated with the sets of criteria values. However, this last transition is not

trivial. It is commonly assumed that the set of outcomes is the same in each

state of the world (Savage, 1954; Schmeidler, 1989). In multicriteria decision

analysis the opposite is true, as has been shown above.

State-dependent utilities The problem can be seen from a different perspec-

tive. In decision making under uncertainty, the existing characterizations of the

Choquet integral assume that the set of outcomes is exactly the same in all states;

moreover, the outcomes in all states are ranked in the same way! This is clearly a

very strong assumption which is rarely met in practice. The problem was raised

as early as 1971, when Aumann writing to Savage gave an example where the

value of an outcome might strongly depend on the state that gets realized (Drèze,

1987). As noted by Karni (1985), the preference relation might display ordinal

state dependence, in which case the underlying state may affect the decision mak-

ers preferences by altering his ordinal ranking of the consequences; or cardinal

state dependence, by altering his risk attitudes; or both.

In this case, we are not able to use the same utility function in every state

any more, and the representation of preferences becomes very similar to the mul-
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ticriteria case. Formally, Y is the set of outcomes, and S is the set of the states

of the world, and acts are functions f : S → Y as previously. However, in the

case of the expected utility we now say that < maximizes the state-dependent

expected utility, if

∑
s∈S

p(s)U(s, f(s)) ≥
∑
s∈S

p(s)U(s, g(s)). (1.8)

We take a further look at the existing axiomatizations of the state-dependent

models in Section 4.4.3, at this point it is sufficient to note that they commonly

suppose existence of some mapping between elements in various states or a global

ordering between these elements. Thus effectively, state-dependence is reduced

to state-independence. If such mapping is not assumed, then contrary to the

state-independent expected utility, as in equation (1.1), the factorization into p

and U in equation (1.8) is not unique. We say that the probabilities and utilities

are confounded, in the sense that by simple algebraic transformations we can

obtain another representation with an arbitrary probability distribution (provided

the mass is non-null for all required elements). This mirrors the situation in

MCDA where the so-called “weighted average” model with arbitrary weights

can be obtained from the additive value (1.2) by simple change of variables.

It was shown that in order for the weighted average model to be meaningful, all

dimensions must be evaluated on the same scale (Bouyssou et al., 2000, Chapter

6.1), which is clearly usually not the case.

Returning to the Choquet integral, we say that < on the set of all acts can

be represented by a Choquet integral, if there exists a capacity ν and a state-

dependent utility function U : Y × S → R, such that

f < g ⇐⇒ C(ν, (U(s1, f(s1)), . . . , U(sn, f(sn))) ≥ C(ν, (U(s1, g(s1)), . . . , U(sn, g(sn))).

(1.9)

Again, mathematically state-dependent utility is very similar to multicriteria

models. This is so, because every dimension of the decision space now has its own

utility function. In the MCDA context, dimensions were associated with various

attributes whereas here they are outcomes corresponding to various possible states

of the world. Again, these dimensions do not have to be identical – we can even
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assume a separate set of outcomes Ys for each state s ∈ S – and even if they are,

the utility functions do not have to be identical, as in the state-independent case.

1.2.3 A unified modelling framework

Before proceeding further, it would be helpful to provide a unified framework

for the decision problems we will be considering. Currently, we are considering

three separate areas: decision under uncertainty with state-dependent and state-

independent utilities and MCDA.

In case of (state-independent) decision making under uncertainty, we have a

set of states of the world S, which we assume finite in this work, a set of outcomes

Y and the preference relation < is defined on the set of acts, i.e. functions

f : S → Y . In MCDA, the set of alternatives is a product set X = X1×· · ·×Xn,

where sets Xi are the sets of attribute levels. The preference relation < is on

X = X1 × · · · × Xn. Finally, in state-dependent DUU, we have < defined on

the set of all acts f : S → Y as before, but the evaluation of the outcome now

depends on the state as well. In other words, the utility function now depends

on the state U : Y × S → R.

The alternative way to state this is to say that the preference relation is defined

on a product set X. In the DUU case, X is a homogeneous product X = Y n

(note that functions are vectors in Y n, where |S|= n). In the MCDA case, we

have a heterogeneous product X = X1 × · · · × Xn from the start, and in the

state-dependent DUU case, we can say that X = Y1 × · · · × Yn, where Yi contain

“state–prize” elements. This is a more general setup, since outcomes can actually

be different in various states, and X is a heterogeneous product set again. This

naturally suggests that we use n utility functions Ui : Yi → R, instead of a single

U : S × Y → R.

To conclude, we consider problems where the preference relation < is defined

on a product set X = X1×· · ·×Xn, where the sets Xi can be identical (Xi = Y ),

as in the DUU and state-dependent DUU cases, or distinct (MCDA and state-

dependent DUU). If all dimensions are identical, we can have a single utility

function or n value (or utility) functions, whereas in the heterogeneous case we

have n value (or utility) functions, one for each dimension. We are looking to
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characterize the Choquet integral representation in this setting.

1.3 Problem statement and preview of the re-

sults

The main result of this thesis is an axiomatization of the Choquet integral. Our

results are significantly more general than previous ones and allow for a wider

range of applications. We also give extensions of our main characterization for

the various special cases of the Choquet integral, look at interpretations of our

results, and analyse the implications they have for learning of the model.

As we have seen in the previous section, the Choquet integral is effectively

a weighted sum; however, the weights actually depend on the ranking of the

aggregated elements – see equation (1.5). In decision under uncertainty, ranking

would involve comparing utilities of the outcomes attained at various states, which

is a perfectly correct operation, as soon as we accept state-independence (or the

possibility to compare the outcomes in different states).

However, in MCDA the ranking stage of rank-dependent models would

amount to much more challenging comparisons of the levels of different attributes,

e.g. comparing appearance to the level of fuel consumption, and maximal speed to

comfort. The traditional additive model (Debreu, 1959; Krantz et al., 1971) (see

Section 1.1) only implies meaningful comparability of intervals (i.e. differences) on

different dimensions, but not of the absolute levels. However, in rank-dependent

models such comparability seems to be a necessary condition. This constitutes

the main difficulty and novelty in the problem of axiomatic characterization of

the Choquet integral in MCDA.

Similarly, in state-dependent utility, ranking would involve comparing out-

comes in various states to each other. Some authors assume the possibility of

such comparison (Karni and Schmeidler, 2016, and references therein); however,

generally it is clear that such approach is not without flaw. In effect, it reduces

the model to the state-independent case again.
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1.3.1 Brief analysis of the previous results and their re-

strictions

Before going into the detailed analysis of the previous approaches in Section 1.4

and Appendix A, we will focus on a few key elements of the previous axiomati-

zations and the difficulties that arise when transferring these results to the more

general setting we are considering here.

First is the notion of a constant act, which is simply an element of X which

has the same level on every dimension, e.g. (α, . . . , α) where α ∈ Y . Constant

acts were traditionally used to construct a new relation on the set of outcomes1 Y ,

thus α< β iff (α, . . . , α)<(β, . . . , β), which is then used to introduce the central

notion of comonotonicity. The definition of comonotonicity can be slightly

different depending on the context. We give a general definition as follows.

Definition 4. Let A,B be two sets and f : A→ B and g : A→ B two functions.

Moreover, < is a weak order on B and � is its asymmetric part. We say that f

and g are comonotonic if for no a, b ∈ A we have f(a)� f(b) and g(b)� g(a).

An example of constant acts and comonotonic areas is shown in Figure 1.1.

Furthermore, the majority of the previous results are based on the comono-

tonic variant of the independence condition, i.e. they state that independence

holds on comonotonic subsets of X. In here we find it more instructive to look

at the comonotonic tradeoff consistency condition used in Wakker (1991a), see

Figure 1.2.

Roughly speaking, comonotonic tradeoff consistency states that if in one state,

the “interval” between outcomes α and β is the same as the “interval” between

outcomes γ and δ, then it must be true also for another state. The equality of

“intervals” is attested by the fact that changes from α to β and from γ to δ com-

pensate exactly the same change on another dimension (the magenta segment).

The condition holds when all involved points either belong to the same comono-

tonic subset (as defined by the ordering of the constant acts), or two pairs of

points belong to one comonotonic subset and two to another, as in Figure 1.2.

1Note that this need not be the “real”, i.e. the DM’s ordering of outcomes, although it
would later be shown to be. More on this in Section 4.4.3
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Figure 1.1: Comonotonic subsets and constant acts

Now, if we consider the general case X = X1 × · · · ×Xn which we use in this

thesis, the following notions become undefinable:

1. Constant acts, as we cannot have a vector in X with identical coordinates,

since the dimensions are different sets

2. Comonotonicity, as we are not able to compare elements from different

dimension sets a priori or derive such an order from constant acts

3. Using the same “outcomes”, i.e. levels on different dimensions, as in the

tradeoff consistency condition. Again, this is due to heterogeneity of the

decision space.

An illustration of the first two issues is given in Figure 1.3.

1.3.2 Brief introduction of the results

This thesis presents the most general axiomatization of the Choquet integral,

relaxing the homogeneity of the decision space. This result should help to fill

the theoretic gap in MCDA literature and also can be used in decision under
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Figure 1.2: Comonotonic tradeoff consistency

uncertainty with state-dependent utilities. Our axioms do not involve any ad-

ditional constructions or mapping functions, they are given strictly using the

preference relation itself. All axioms are testable in the normal sense – a single

counterexample is sufficient to refute the condition.

Formally, we propose a representation theorem for the Choquet integral model

in the MCDA context. Binary relation < is defined on a heterogeneous product

set X = X1×· · ·×Xn. In multicriteria decision analysis (MCDA), elements of the

set X are interpreted as alternatives, characterized by criteria taking values from

sets Xi. Previous axiomatizations of the Choquet integral model have been given

for the special cases of X = Y n and X = Rn. As shown above, the results are

not transferable to the general case, as they rely on a very specific construction

based on “constant acts” and “comonotonicity”, artefacts of the decision space

homogeneity.

Our approach is to decompose the conditions used in the earlier results, partic-

ularly comonotonic tradeoff consistency, into atomic components and generalize

each one so that they could be used in our setting. There are two main directions

of generalization:

Generalized comonotonicity. Comonotonicity can be viewed as a facility to

divide the decision space into subsets within which we can construct additive
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Figure 1.3: X = Y n vs X = X1 × . . .×Xn

representations. However, it is unnecessary restrictive, by prescribing the

certain shape and location of this subsets. It also requires the decision

space to be a homogeneous product set. We can part with some of those

restrictions by using a weakened scheme of decision space partitioning.

Generalized tradeoff consistency. The main complication with using the

tradeoff consistency condition is that it requires the same elements to be

present in different dimension sets. However, it is possible to decompose

this condition into two parts. First is “intra-coordinate” tradeoff consis-

tency, which Wakker (1991b) calls “generalized triple cancellation”, and

the second is “inter-coordinate” tradeoff consistency, a condition very sim-

ilar to the original axiom used in Krantz et al. (1971), on which, in turn,

the tradeoff consistency itself is based. None of them require any additional

assumptions about the structure of the decision space.

The more interesting of the two is certainly the generalized version of comono-

tonicity, as it gives way to a much wider range of geometric layouts of the decision

space. Previously, comonotonic regions have been dividing the set X into sym-

metric comonotonic cones, as in Figure 1.4, where cases (a) and (b) depict the
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comonotonic case, whereas (c) and (d) show more general partitions of the set

X.

Y

Y

(a) Homogeneous case – two dimensions

Y

Y

Y

(b) Homogeneous case – three dimensions

X1

X2

(c) Heterogeneous case – two dimensions

X1

X2

X3

(d) Heterogeneous case – three dimensions

Figure 1.4: Generalization of comonotonic partitioning

Chapters 2 and 3 of the thesis contain the axiomatization result, first in two

and later in n dimensions. There are significant differences between the two

which prompt a separated presentation. This is further discussed in Sections 2.1

and 3.1. We present and discuss the axioms and provide a detailed construction
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of the model. In Chapter 4 we extend our results to the special cases of the

Choquet integral. The most interesting ones are ordinal – MIN, MAX, OSk

(order statistic), and pAB – a lattice polynomial. Cardinal special cases include

convex and concave capacities. Finally, we discuss interesting interpretations of

our results in various fields of decision analysis.

Apart from the theoretical interest, the characterization also brings to light

some interesting problems related to the learning of the Choquet integral models.

The common approach in the applied literature currently is to assume the value

functions as given and commensurate and to fit the model as a parametric one,

using the capacity as the parameter. However, for a proper representation we

should also be fitting value functions, thus using a non-parametric representation

model (functions are completely non-restricted). Traditionally, the learning the-

ory states that non-uniqueness of the model which is chosen from some parametric

family comes from the imbalance between the model complexity and the num-

ber of learning data points. Naturally, complicated models overfit small datasets

which leads to problems with interpretation of the model. With the Choquet

integral, however we face a different problem, somewhat orthogonal to this. Now,

if data does not adhere to a certain structure we would not get a unique ca-

pacity from the learning process no matter how many data points we get. The

root cause of this problem is that the lack of required irregularities in the data

brings it closer to the additive case, i.e. the “weighted average” model, where the

weights, as mentioned previously, can be completely arbitrary. More details on

this is provided in Section 4.3.

1.4 Analysis of previous characterizations

This section provides an overview of the known results in the field, focusing on

their main shortcomings and useful ideas, upon which our own characterizations

are built. A more detailed analysis of the literature can be found in Appendix A.
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1.4.1 Decisions under uncertainty

Historically, decision making under uncertainty was the first area in which the

Choquet integral was used as a decision model. It remains the central sub-field

of decision theory, especially in economics. The first and the majority of later

axiomatizations of the Choquet integral were developed for decision making under

uncertainty. Following the pioneering works of Quiggin (1982) and Schmeidler

(1989), the model gained a lot of popularity in the community and is widely used

both in theoretical and applied works. It is therefore important to analyse the

existing results and show their weak spots and limitations.

The majority of the results rely heavily on the notions of a “constant act”,

“comonotonicity”, and some weakening of Savage’s sure-thing principle (indepen-

dence). There are also several frameworks: using lotteries or elements of some

set Y as outcomes, having an infinite or finite number of states, assuming the

existence of a “certainty equivalent” or not, making topological or algebraic as-

sumptions on the set of outcomes. This variation leads to a great variety of

techniques being used to demonstrate the results, however, the cornerstone of

the results remains constant, and can be summarized using just two words –

“comonotonic independence”.

One other characteristic feature of the DUU results is that they rely on a very

particular decision space, which is a homogeneous product set Y n. Moreover,

the elements of every dimension, i.e. the outcomes in every state, are ordered

in exactly the same way, both ordinally and cardinally. It turns out that this

state-independence is actually implied by homogeneity and a particular choice

of constant acts as the border between “additive” subsets. We return to this

question in Section 4.4.3.

Some publications attempted at state-dependence both in additive and rank-

dependent models. However, the results are not truly satisfactory when applied

to our case. Assuming a mapping between elements of different dimensions or

some universal order which encompasses elements from various sets is not easy

to justify, especially in the MCDA context, and what is more important, such an

order or mapping is not really observable in terms of preferences. We return to

this question in Section 4.4.3.
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1.4.2 MCDA

As discussed already, the Choquet integral found a lot of success in the MCDA

community. This is perhaps mostly due to the fact that the violation of indepen-

dence, manifested via interaction between criteria, is much more obvious in such

setting, so there is no need for complicated experiments (like that of the Ells-

berg paradox) to demonstrate it. In fact, as pointed out in Fishburn and Wakker

(1995), discussions of the representability in the additive model were taking place

as early as 1892.

The popularity of the Choquet integral in MCDA started in the early 1990s

and is not showing any signs of abatement. Many interesting results have been

achieved in this area, related to interpretation and learning of the capacity (see

Grabisch and Labreuche, 2008; Grabisch et al., 2008), which we further touch

upon in Section 4.3. Due to the abundance of theoretical tools and its natural fit

to multicriteria problems, the integral quickly became very popular in practical

work as well. However, one thing that was missing on the theoretical side is

a proper conjoint axiomatization of the model. The problem was raised in the

literature a few times (e.g. Bouyssou et al., 2009) and this work aims to fill the

gap.

Although it was desirable to obtain axiomatization of the Choquet integral

in this context, the problem turned out to be not as straightforward as it might

seem. It was recognized early on that the fundamental complication and also a

fundamental difference from the characterizations used in DUU was the hetero-

geneity of the decision space. In the context of MCDA, the issue is often referred

to as the problem of “criteria incommensurability”. The ranking stage of the

Choquet integral, and also the notions of the “constant act” and “comonotonic-

ity” in the characterization, all require the dimensions to be level comparable. In

terms of state-dependent DUU, we should be able to say something like “outcome

x in state s is better than outcome y in state t”, which is not always possible.

In MCDA terms, it is even more apparent. For example, if the alternatives are

characterized by colour and shape, we should be able to make statements like

“black is better than a circle”.

With this problem in hand, almost all axiomatizations of the Choquet integral
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and the closely related Sugeno integral to date assumed criteria commensurate-

ness. Thus, the problem immediately reduced to the one solved in the DUU

context. Several authors in the MCDA community took a somewhat different

direction and created axiomatizations of the Choquet integral as an aggregation

function, i.e. a function from In to I, where I is some nontrivial real interval,

possibly unbounded, containing 0 (Grabisch et al., 2009). Thus, the individual

value functions of the dimensions are considered given and commensurate, and

the analysis is concentrated on the aggregation part of the integral. Many of

these results contain interesting conditions, which are quite different from those

used in DUU (see Appendix A.2). Apart from the obvious translation of the

“comonotonic monotonicity” results, a few new and interesting conditions were

introduced, such as “horizontal min-additivity”. From our perspective, it is no-

table that many conditions cease to depend on comonotonicity, but still depend

strongly on absolute commensurateness of the attributes. This does not allow us

to use them directly in conjoint-type axiomatization with heterogeneous sets. One

notable idea is “commensurability through interaction” introduced in Labreuche

(2012). We will return to it when dealing with the uniqueness part of our char-

acterization, see Section 3.9.

1.4.3 Characterizations of the Sugeno integral

The Sugeno integral was introduced by Sugeno (1974). It could be thought of

as an “ordinal” counterpart of the Choquet integral. If we replace summation

by maximum and multiplication my minimum in the expression of the Choquet

integral, then what we get is exactly the Sugeno integral.

Several characterizations have been given in the literature, which can be di-

vided into three main groups: DUU-type axiomatizations on Y n, axiomatization

of the integral as an “aggregation function”, and finally proper conjoint axioma-

tizations on X1 × · · · ×Xn.

Sugeno integral characterizations were the first ones where a step away

from comonotonicity and homogeneity was made for characterization of rank-

dependent models. The contrast between the conditions relying on comonotonic-

ity, and those that do not is startling (see Appendix, Section A.3). Although
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neither of the latter axioms can be directly used to characterize the Choquet in-

tegral, we see some of their spirit in our own results. One other notable fact is a

significant weakening of the uniqueness properties of the representation compared

to the homogeneous case. This question was analysed in detail in Bouyssou et al.

(2009).

1.4.4 Review summary

Despite the ostensible diversity of various conditions used to characterize the

Choquet integral and related models in the literature (see the Appendix for many

examples), the majority of them are based on a few fundamental notions:

1. Constant acts – subset of a homogeneous decision space containing points

with the same level on all dimensions;

2. Comonotonic sets – sets of points which have the coordinate levels ordered

in the same way;

3. Comonotonic independence or its modifications, such as comonotonic trade-

off consistency.

None of these can be used in the more general heterogeneous case X = X1 ×
· · · × Xn. Therefore, we require a new set of axioms which does not rely on

comonotonicity or constant acts. In MCDA decision problems both of these

notions would require assuming commensurateness between various dimensions,

such as colour and shape, or loudness and size. Such a correspondence cannot be

assumed a priori, nor is there a simple way to construct it using the preference

data. However, as the characterizations of the Sugeno integral show, a solution

can be found.

The fundamental question seems to be how to perform sensible comparisons

between elements of the different dimension sets. These could be levels of various

attributes or outcomes in various states. Classic additive models do not allow us

to give a satisfactory answer to this question, since it is impossible to infer any

correspondence between such levels purely from the preference data. However, as

we will see, in rank-dependent models the situation is dramatically different.
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In the following chapters we construct the axioms for a fully general conjoint

characterization of the Choquet integral. Our results to some extent amalgamate

the conditions used in the DUU context and those used to axiomatize the Sugeno

integral. We build upon the following ideas:

1. Tradeoff consistency conditions, including their versions from (Krantz et al.,

1971), and the methods of constructing additive representations on irregu-

larly shaped subsets, due to Wakker (1991b).

2. Commensurability through interaction idea due to Labreuche (2012), in our

uniqueness analysis.

3. The general “shape” of axioms used in the axiomatizations of the Sugeno

integral, especially those by Greco et al. (2004); Bouyssou et al. (2009).

1.5 Summary

In this thesis we present an axiomatization of the Choquet integral decision model.

In the introductory chapter we have analysed the limitations of the existing char-

acterizations and highlighted some interesting ideas found in the literature which

led to the development of our results. Our primary area of interest is multicriteria

decision analysis (MCDA), but the results obtained here also allow for a very nice

interpretation in the context of state-dependent utilities.

An informal presentation of our motivation and results was given in Section

1.3. In Section 1.4 we reviewed the key results in the context of decision making

under uncertainty, where the Choquet integral was originally introduced, MCDA,

where it enjoys a wide theoretical and practical popularity, and finally character-

ization results of the closely related Sugeno integral. We have outlined the main

approaches and analysed the axioms which have been proposed so far. The main

characteristic trait of the known results is the homogeneity of the decision space.

This naturally allows a whole range of operations which are not available in the

more general context, in particular comparing elements of different dimension sets

(levels of various attributes, outcomes in different states). This in turn leads to
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notions such as “constant act” and “comonotonicity”, which are the cornerstones

of all existing Choquet integral axiomatizations.

In the following chapter we provide a new characterization which does not

rely on these assumptions. To our best knowledge this is the most general result

achieved so far. The new axiomatic framework leads to exciting interpretations

in MCDA and state-dependent contexts. We also look at the implications of

our results for the learning of Choquet integral models, and finally extend our

characterization to a number of special cases of the model.
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Chapter 2

Axiomatization of the Choquet

integral – two-dimensional case
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2.1 Introduction

In this thesis we follow the same presentation path as in Krantz et al. (1971),

and give the results for the two-dimensional and n-dimensional cases separately.

The former case is simpler, requires fewer axioms, and has a more accessible

proof. We give the details of the differences in the introduction to the following

chapter (Section 3.1), but it is worth mentioning here that the n-dimensional case

introduces geometric and combinatoric complexity which is not present when

dealing only with two dimensions. This is yet another of many differences of

our results from the homogeneous case where the two-dimensional and the n-

dimensional cases are not significantly distinct.

Let X = X1 ×X2 be a (heterogeneous) product set and < a binary relation

defined on this set. In MCDA, elements of the setX are interpreted as alternatives

characterized by two criteria taking values from sets X1 and X2. In decision

making under uncertainty, the factors of the set X usually correspond to outcomes

in various states of the world, and an additional assumption X1 = X2 = Y is

being made. Thus in CEU, the set X is homogeneous, i.e. X = Y n.

As discussed in the previous chapter, earlier axiomatizations of the Choquet

integral have been given for this special case of X = Y n and its particular case

X = Rn. The crucial difference between our result and previous axiomatizations

is that the notions of “comonotonicity” and “constant act” are no longer available

in the heterogeneous case. Recall that two acts are called comonotonic in CEU if

their outcomes have the same ordering. A constant act is plainly an act having

the same outcome in every state of the world. Apparently, since criteria sets X1

and X2 in our model can be completely disjoint, neither of the notions can be

used any more due to the fact that there does not exist a meaningful built-in

order between elements of sets X1 and X2. New axioms and proof techniques

must be introduced to deal with this complication.

This chapter is organized as follows. Section 2.1.1 contains the definition of

the Choquet integral and looks at its properties. Section 2.2 contains the axioms

and their discussion. Section 2.3 gives the representation theorem. Section 4.4

discusses the main result and its economic interpretations. The proof of the

theorem is presented in Sections 3.12–2.12.
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2.1.1 The Choquet integral

Let N = {1, 2, . . . , n} be a set (of criteria) and 2N its power set.

Definition 5. Capacity (non-additive measure, fuzzy measure) is a set function

ν : 2N → R+ such that:

1. ν(∅) = 0;

2. A ⊆ B ⇒ ν(A) ≤ ν(B), ∀A,B ∈ 2N .

In this paper, it is also assumed that capacities are normalized, i.e. ν(N) = 1.

Definition 6. The Choquet integral of a function f : N → R with respect to a

capacity ν is defined as

C(ν, f) =

∞∫
0

ν({i ∈ N : f(i) ≥ r})dr +

0∫
−∞

[ν({i ∈ N : f(i) ≥ r})− 1]dr (2.1)

If N is finite, and all values (f1, . . . , fn) of f : N → R are non-negative, the

definition can be expressed as:

C(ν, (f1, . . . , fn)) =
n∑
i=1

(f(i) − f(i−1))ν({j ∈ N : fj ≥ f(i)}) (2.2)

where f(1), . . . , f(n) is a permutation of f1, . . . , fn such that f(1) ≤ f(2) ≤ · · · ≤ f(n),

and f(0) = 0.

On of the most useful tools for analysis of the capacity is the so-called Möbius

transform. It’s a linear transformation of the capacity which is given by:

m(A) =
∑
B⊂A

(−1)|A\B|ν(B). (2.3)

The Choquet integral can be written in a very convenient form using the

Möbius transform coefficients:

C(ν, f) =
∑
A∈N

m(A) min
i∈A

(fi). (2.4)
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2.1.2 The model

Let < be a binary relation on the set X = X1 ×X2. �,≺,4,∼, 6∼ are defined in

the usual way. We say that < can be represented by a Choquet integral, if there

exists a capacity ν and functions f1 : X1 → R and f2 : X2 → R, called value

functions, such that:

x< y ⇐⇒ C(ν, (f1(x1), f2(x2)) ≥ C(ν, (f1(y1), f2(y2)). (2.5)

As seen in the definition of the Choquet integral, its calculation involves com-

parison of the fi’s to each other. It is not immediately obvious how this operation

can have any meaning in the MAUT context. It is well-known that comparing

levels of value functions for various attributes is meaningless in the additive model

(Krantz et al., 1971) (recall that the origin of each value function can be changed

independently). In the homogeneous case X = Y n this problem is readily solved,

as we have a single set of outcomes Y (in the context of decision making under

uncertainty). The required order is either assumed as given (Wakker, 1991b) or

is readily derived from the ordering of constant acts (α, . . . , α) (Wakker, 1991a).

Since there is a single outcome set, we also have a single value (utility) function

U : Y → R, and thus comparing U(y1) to U(y2) is perfectly sensible, since U

represents the order on the set Y . None of these methods can be readily applied

in the heterogeneous case.

2.1.3 Properties of the Choquet integral

Given below are some important properties of the Choquet integral: remove this

section?

remove this

section?
1. Functions f : N → R and g : N → R are comonotonic if for no i, j ∈ N

we have f(i) > f(j) and g(i) < g(j). For all comonotonic f the Choquet

integral reduces to the Lebesgue integral with respect to the same additive

measure. In the finite case, the integral is accordingly reduced to a weighted

sum with the same weights for all comonotonic f .

2. Particular cases of the Choquet integral (e.g. (Grabisch and Labreuche,

2008)).

35



� If ν({1}) = ν({2}) = 1, then C(ν, (f1, f2)) = max(f1, f2).

� If ν({1}) = ν({2}) = 0, then C(ν, (f1, f2)) = min(f1, f2).

� If ν({1}) + ν({2}) = 1, then C(ν, (f1, f2)) = ν({1})f1 + ν({2})f2

Property 1 states that the set X can be separated into subsets corresponding

to particular orderings of the value functions. In the case of two criteria there are

only two such sets: {x ∈ X : f1(x1) ≥ f2(x2)} and {x ∈ X : f2(x2) ≥ f1(x1)}.
Since the integral on each of the sets is reduced to a weighted sum, i.e. an

additive representation, we should expect many of the axioms of the additive

conjoint model to be valid on this subsets.

2.2 Axioms

Definition 7. A relation < on X1×X2 satisfies triple cancellation, provided that

for every a, b, c, d ∈ X1 and p, q, r, s ∈ X2 , we have

ap4 bq

ar< bs

cp< dq

⇒ cr< ds. (2.6)

Definition 8. A relation < on X1×X2 is independent, iff for a, b ∈ X1, ap< bp

for some p ∈ X2 implies that aq< bq for every q ∈ X2; and, for p, q ∈ X2, ap< aq

for some a ∈ X1 implies that bp< bq for every b ∈ X1.

A1. Weak order < is a weak order.

A2. Weakest separability For any aipj, bipj ∈ X such that aipj � bipj, we

have aiqj < biqj for all qj ∈ Xj, for i, j ∈ {1, 2}.

The separability condition is weaker than the one normally used. The condition

first appeared in (Bliss, 1975), and in this form in (Mak, 1984), the name “weak

separability” is used in Bouyssou et al. (2006), however to avoid confusion we call

it “weakest separability” here. The condition only rules out a reversal of strict

preference. Note, that it implies that for any a, b ∈ X1 either ap< bp or bp< ap
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for all p ∈ X2 (symmetrically for the second coordinate). Apparently, transitivity

also holds: if ap< bp for all p ∈ X2 and bp< cp for all p ∈ X2, then ap< cp for

all p ∈ X2. This allows to introduce the following weak orders:

Definition 9. For all a, b ∈ X1 define <1 as a<1 b ⇐⇒ ap< bp for all p ∈ X2.

Define <2 in a analogous way.

Definition 10. We call a ∈ X1 minimal if b<1 a for all b ∈ X1, and maximal if

a<1 b for all b ∈ X1. Symmetric definitions hold for X2.

Definition 11. For any z ∈ X define SEz = {x:x ∈ X, x1 <1 z1 and z2 <2 x2},
and NWz = {x:x ∈ X, x2 <2 z2 and z1 <1 x1}.

The “rectangular”cones SEz and NWz play a significant role in the sequel.

A3. Cone additivity For any z ∈ X, triple cancellation holds either on SEz

or on NWz.

The axiom says that the set X can be covered by “rectangular” cones, such that

triple cancellation holds within each cone. We will call such cones “3C-cones”.

The axiom effectively divides X into subsets, defined as follows.

Definition 12. We say that

� z ∈ SE if at least one of the following conditions is true:

– Triple cancellation holds on SEz, z1 is not maximal and z2 is not

minimal

– z1 is maximal and for no x2, y2 ∈ X2 : z2 <2 x2 <2 y2 triple cancellation

holds on NWz1x2 but does not hold on NWz1y2

– z2 is minimal and for no x1, y1 ∈ X1 : y1 <1 x1 <1 z1 triple cancellation

holds on NWx1z2 but does not hold on NWy1z2

� z ∈ NW if at least one of the following conditions is true:

– Triple cancellation holds on NWz, z2 is not maximal and z1 is not

minimal
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– z2 is maximal and for no x1, y1 ∈ X1 : z1 <1 x1 <1 y1 triple cancellation

holds on SEx1z2 but does not hold on SEy1z2

– z1 is minimal and for no x2, y2 ∈ X2 : y2 <2 x2 <2 z2 triple cancellation

holds on SEz1x2 but does not hold on SEz1y2

Define also Θ = NW ∩ SE.

Presence of maximal and minimal points significantly complicates the defi-

nitions of SE and NW, since at such points some of the sets SEz and NWz

become degenerate and triple cancellation trivially holds. If sets X1 and X2 do

not contain minimal or maximal points, we can drop the corresponding condi-

tions in each definition and simply state that SE is the set of all z ∈ X such that

triple cancellation holds on SEz, whereas NW is the set of all z ∈ X such that

triple cancellation holds on NWz

Definition 13. We say that i ∈ N is essential on A ⊂ X if there exist xixj, yixj ∈
A, i, j ∈ N , such that xixj � yixj.

A4. Intra-coordinate tradeoff consistency For all a, b, c, d ∈ X1 and

p, q, r, s ∈ X2, we have

ap4 bq

ar< bs

cp< dq

⇒ cr< ds, (2.7)

provided that either:

a) ap, bq, ar, bs, cp, dq, cr, ds ∈ NW(SE), or;

b) ap, bq, ar, bs ∈ NW and i = 2 is essential on NW and cp, dq, cr, ds ∈
SE or vice versa, or;

c) ap, bq, cp, dq ∈ NW and i = 1 is essential on NW and cp, dq, cr, ds ∈
SE or vice versa.

Informally, the meaning of the axiom is that ordering between preference dif-

ferences (“intervals”) is preserved irrespective of the “measuring rods” used to
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measure them. However, contrary to the additive case this does not hold on all

X, but only when either points involved in all four relations lie in a single 3C-

cone, or points involved in two relations lie in one 3C-cone and those involved in

the other two in another.

A5. Inter-coordinate tradeoff consistency For all i ∈ N we have

aix−i4 biy−i

cix−i< diy−i

aiy
0
−i ∼ pjx

0
−j

biy
0
−i ∼ qjx

0
−j

ciy
1
−i ∼ rjx

1
−j

diy
1
−i ∼ sjx

1
−j

pje−j < qjf−j



⇒ rje−j < sjf−j (2.8)

for all aix−i, biy−i, cix−i, diy−i ∈ SE(NW) provided i is essential on

SE(NW), aiy
0
−i, biy

0
−i, ciy

1
−i, diy

1
−i ∈ SE(NW), pjx

0
−j, qjx

0
−j, rjx

1
−j, sjx

1
−j ∈

SE(NW) provided j is essential on SE(NW), pje−j, qjf−j, rje−j, sjf−j ∈
SE(NW).

The formal statement of A5 is rather complicated, but it simply means that

the ordering of the intervals is preserved across dimensions. Together with A4

the conditions are similar to Wakker’s tradeoff consistency condition (Wakker,

1991b). The axiom bears even stronger similarity to Axiom 5 (compatibility)

from section 8.2.6 of (Krantz et al., 1971). Roughly speaking, it says that if the

interval between ci and di is larger than that between ai and bi, then projecting

these intervals onto another dimension by means of the equivalence relations must

leave this order unchanged. We additionally require the comparison of intervals

and projection to be consistent – meaning that quadruples of points in each part

of the statement lie in the same 3C-cone. Another version of this axiom, which

is going to be used frequently in the proofs, is formulated in terms of standard

sequences in Lemma 7.

A6. Strong monotonicity. Let ap, bp, cp, dp ∈ SE(NW) and ap� bp. If for
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some q ∈ X2 also exist cq� dq, then cp� dp. Symmetric condition holds

for the second coordinate.

This axiom is similar to “strong monotonicity” in (Wakker, 1991b). We analyze

its necessity and the intuition behind it in section 3.13.

A7. Essentiality Both coordinates are essential on X.

A8. Restricted solvability If xiaj < y<xicj, then there exists b : xibj ∼ y, for

i, j ∈ {1, 2}.

A9. Archimedean axiom For every z ∈ NW(SE) every bounded standard

sequence contained in NWz(SEz) is finite, and if both subsets have only

one essential coordinate each, there exists a countable order-dense subset

of XSi .

We also make some non-necessary structural assumptions to simplify the

proofs. It seems plausible that all of these can be removed, e.g. by using “cuts”

and limits instead of points and values, however, this would inevitably make the

proof more technically challenging.

“Collapsed” equivalent points along dimensions. For no a, b ∈ X1 we

have ap ∼ bp for all p ∈ X2. Similarly, for no p, q ∈ X2 we have ap ∼ aq for

all a ∈ X1.

If such points exist, say ap ∼ bp for all p ∈ X2, then we can build the represen-

tation for a set X ′1 ×X2 where X ′1 = X1 \ a, and later extend it to X by setting

f1(a) = f1(b).

Density. Whenever x� y there exists z such that x� z� y. From this and

restricted solvability immediately follows that <i is order dense as well,

in other words, whenever aipj � bipj there exists c ∈ Xi such that

aipj � cipj � bipj, for i, j ∈ N .

”Closedness” of SE and NW. Whenever exist ap 6∈ NW and bp 6∈ SE, there

exist also cp ∈ Θ. Similarly, whenever exist ap 6∈ NW and aq 6∈ SE, there

exist also ar ∈ Θ.

40



This assumption says that sets SE and NW are “closed”. In the repre-

sentation this translates into existence of the inverse for all points where value

functions f1 and f2 are equal, provided there is a violation of independence.

2.2.1 Discussion of axioms

Roughly speaking, for two dimensional sets the Choquet integral can be char-

acterized by saying that X is divided into two subsets such that < on each of

them has an additive representation, while the intersection of these subsets (in

the representation) is the line {x : f1(x1) = f2(x2)}. In the previous charac-

terizations locating these subsets was straightforward, as they are nothing else

but the comonotonic subsets of X. In this paper we take a different approach.

Instead, we state that X can be separated into two subsets without imposing

any additional constraints on their location and then use additional axioms to

characterize the intersection of these subsets and to show that it is mapped to

the line {x : f1(x1) = f2(x2)}.
Previous characterizations were usually based on a single condition, such

as comonotonic independence Schmeidler (1989) or comonotonic tradeoff con-

sistency Wakker (1991a). It seems quite difficult to translate any of these to our

setting, because, as was discussed previously, the general heterogeneous case has

several important differences from the homogeneous one (e.g. absence of con-

stant acts and comonotonic subsets). However, it turns out that each of these

conditions can be decomposed into several more simple properties which we can

try to generalize. In fact, our axiom A3 can be viewed as a generalization of

comonotonicity, whereas A4 and A5 constitute a more general form of the trade-

off consistency condition.

A3 basically states that the set X can be divided into subsets, such that

within every such subset the preference relation can be represented by an additive

function. At every point z ∈ X it is possible to build two “rectangular cones”:

{x : x1 <1 z1 and z2 <2 x2}, and {x : x2 <2 z2 and z1 <1 x1}. The axiom states

that triple cancellation must then hold on at least one of these cones. An example

of such cones is given in Figure 2.1, dashed line shows the boundary between two

additive subsets of X. However, contrary to the homogeneous case, this border
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can be of a more general form. The axiom allows it to be a set of non-null

measure, and it could even be empty (however we rule that out with one of the

structural assumptions). If the set X was a metric one, we could also say that

contrary to the homogeneous case, the border does not have to be a straight line,

informally it could have any “quasiconcave” shape.

X2

X1

z

SEz

NWz

Figure 2.1: Axiom A3 - weakening of comonotonicity

Axioms A4 and A5 are very closely related to Wakker’s version, however

they are based not on comonotonicity but on A3. Also, Wakker’s version require

homogeneity, as it makes use of the same outcomes but on different dimensions

(states). The main idea of the axioms is to say that the additive representations

on SE and NW are interrelated, in particular trade-offs are consistent across

subsets both within the same dimension and for different ones. A4, similar to

the condition used in (Wakker, 1991a) states that triple cancellation holds across

cones, while A5, similar to (Krantz et al., 1971) (section 8.2), says that the

ordering of intervals on any dimension must be preserved when they are projected

onto another dimension by means of equivalence relations - see examples of both

conditions in Figures 2.2 and 2.3.

These axioms are complemented by a new condition called here monotonicity

(A6), which basically states, that if a variable is essential “somewhere” within

SE or NW, then it is essential “everywhere” on the same subset.

Weakest separability (A2) allows to order elements of the dimension sets,
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X2

X1

Figure 2.2: Intra-coordinate tradeoff
consistency

X2

X1

Figure 2.3: Inter-coordinate tradeoff
consistency

as was discussed already. Finally, the standard essentiality,“comonotonic”

Archimedean axiom and restricted solvability (A7,A8,A9) complete the list. <

is supposed to be a weak order (A1) and X is dense.

The most important axioms - A3,A4,A5,A6, are not only sufficient, but also

necessary, the details are given in Section 2.12. Necessity of some of the remaining

axioms is well-known Wakker (1991b); Bouyssou and Pirlot (2004).

2.3 Representation theorem

Theorem 1. Let < be a binary relation on X and let the structural assumptions

hold. Then, if axioms A1-A9 are satisfied, there exists a capacity ν and value

functions f1 : X1 → R, f2 : X2 → R, such that < can be represented by the

Choquet integral:

x< y ⇐⇒ C(ν, (f1(x1), f2(x2))) ≥ C(ν, (f1(y1), f2(y2))), (2.9)

for all x, y ∈ X.

Moreover, the representation has the following uniqueness properties:
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Theorem 2. Assume < on X has a representation as in equation (2.9) and

triple cancellation does not hold throughout X. ν is unique and for any functions

g1 : X1 → R, g2 : X2 → R such that (2.9) holds with fi substituted by gi, we have

the following relations between fi and gi.

� Both coordinates are essential on SE and NW.

fi(xi) = αgi(xi) + β, (2.10)

where α > 0. Moreover, ν({1}) ∈ (0, 1) and ν({2}) ∈ (0, 1) and ν({1}) +

ν({2}) 6= 1.

� One of coordinates is essential on SE or NW, and two are essential on the

other subset.

fi(xi) = αgi(xi) + β, (2.11)

where α > 0, for all xi such that for some aj ∈ Xj the point xiaj belongs to

the subset with two essential variables, and

fi(xi) = ψi(gi(xi)), (2.12)

where ψi are increasing functions such that f1(x1) = f2(x2) ⇐⇒ g1(x1) =

g2(x2), for all other xi. Moreover, either ν({2}) ∈ {0, 1} and ν({1}) ∈
(0, 1), or ν({2}) ∈ (0, 1) and ν({1}) ∈ {0, 1}.

� Both SE and NW have a single essential variable.

fi(xi) = ψi(gi(xi)), (2.13)

where ψi are increasing functions such that f1(x1) = f2(x2) ⇐⇒ g1(x1) =

g2(x2). Moreover, ν({1}) = ν({2}) = 0 or ν({1}) = ν({2}) = 1.

If triple cancellation holds throughout X, then < can be represented by an

additive model

x< y ⇐⇒ φ1(x1) + φ2(x2) ≥ φ1(y1) + φ2(y2). (2.14)
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If exist some other functions φ′1 and φ′2 which can be used in place of φ1 and φ2

in this representation, they are related as follows:

φ′i(xi) = αφi(xi) + βi. (2.15)

However, the additive expression φ1(x1) + φ2(x2) can also be rewritten in

the form (2.9). In particular, each value function can be factorized as φi(xi) =

αifi(xi), with the condition α1 + α2 = 1. This “weighted average” model

x< y ⇐⇒ αf1(x1) + (1− α)f2(x2) ≥ αf1(y1) + (1− α)f2(y2) (2.16)

is a Choquet integral with respect to an arbitrary additive capacity, provided

ν({1}) 6= 0 and ν({2}) 6= 0. The weights α and 1−α can be further factorized, so

that a non-additive capacity can also be used. For this the locations of functions

fi (i.e. the constants βi) must be chosen in a way that allows the rewriting

the integral in the Mobius transform form with a non-additive capacity gives an

equivalent additive form. For example, if we set the location of f1 and f2 so

that f1(x1) ≤ f2(x2) for all x ∈ X, we can rewrite the weighted average form as

follows:

αf1(x1) + (1−α)f2(x2) = (α−m12)f1(x1) + (1−α)f2(x2) +m12(f1(x1)∧ f2(x2)),

(2.17)

which is a Möbius transformation form of the Choquet integral. In this case, the

capacity ν does not have to be additive anymore.

2.3.1 Absence of independence implies commensurateness

As the uniqueness part of Theorem 1 states, unless < can be represented by an

additive functional on all of X, the representation implies commensurateness of

levels of utility functions defined on different factors of the product set. Indeed, we

have that if f1(x1) ≥ f2(x2) in one representation, then necessarily g1(x1) ≥ g2(x2)

in another one. This is a much stronger uniqueness result in comparison to the

traditional additive models. In Section 4.4 we discuss some economic implications

of this.
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2.4 Proof preview

The proof contains five main stages. First, we construct additive representations

on the sets SE and NW with extreme points removed. Next we show that value

functions on the same dimensions are proportional, so we can rewrite the additive

representations using the same value functions, but with different weights, for

both sets SE and NW. The third step is to show that we can rescale these

value functions so that for all points from Θ, i.e. for points which belong to the

border between SE and NW, levels from both dimensions get the same value.

Finally, we show that two additive representations can be unified in a single global

Choquet integral representation, including also the extreme points of X. The only

thing left after this is to analyse the uniqueness of the constructed model.

Construction of the additive representations within NW and SE is done in

Section 2.5, proportionality is shown in 2.6, equality of value functions for points

from Θ is proved in Section 2.7, extension to the extreme points is done in 2.8,

whereas construction of the Choquet integral is performed in 2.9 and 2.10. Finally,

Section 2.11 contains the analysis of the uniqueness properties.

2.5 Building additive value functions on NW

and SE

In this section we assume that SE(NW) has two essential coordinates.

2.5.1 Covering SE and NW with maximal SEz and NWz

In the sequel we could have covered areas SE and NW by sets SEz(NWz) for

all z ∈ SE(NW), but it is convenient to introduce the following lemma.

Lemma 1. For every x ∈ SE there exists z ∈ Θ such that SEx ⊂ SEz. Accord-

ingly, for every y ∈ NW there exists z ∈ Θ such that NWy ⊂ NWz.

Proof. Take x ∈ SE such that x 6∈ NW. If there exists y ∈ NWx such that

y 6∈ SE, then consider points x1y2 and y1x2. By A3 they are either in SE or

NW and by hence closedness assumption there must exist either ay2 ∈ Θ (and
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thus x ∈ SEay2
) or x1p ∈ Θ (and x ∈ SEx1p). If such y does not exist, X = Θ.

Other cases are symmetrical.

It follows from Lemma 1 that SE =
⋃
z∈Θ SEz, while NW =

⋃
z∈Θ NWz.

Comparing this to definitions of SE and NW we are able to define also the

following notions:

Definition 14. We write x ∈ SEext and say that x ∈ X is extreme in SE if

x ∈ Θ and [x2 is minimal or x1 is maximal]. We write x ∈ NWext and say that

x ∈ X is extreme in NW if x ∈ Θ and [x1 is minimal or x2 is maximal]. x ∈ X
is extreme if it is extreme in SE or in NW.

Note that contrary to the homogeneous case X = Y n, extreme points for SE

and NW can be asymmetric, i.e. if a point z is extreme in SE it is not necessarily

extreme in NW.

2.5.2 Representations within SEz

In the following we will build an additive representation on SE. The case of

NW is symmetric. We proceed by building representations on sets SEz for all

z ∈ Θ \ SEext (i.e. for all non-extreme points of Θ).

Essential coordinates. For now we assume that both coordinates are essential

on NW and SE.

Theorem 3. For any z ∈ Θ \ SEext there exists an additive representation of <

on SEz:

x< y ⇔ V z
1 (x1) + V z

2 (x2) ≥ V z
1 (y1) + V z

2 (y2). (2.18)

Proof. SEz is a Cartesian product, < is a weak order on SEz, < satisfies triple

cancellation on SEz, < satisfies Archimedean axiom on SEz, both coordinates

are essential. It remains to show that < satisfies restricted solvability on SEz.

Assume that for some xa, y, xc ∈ SEz, we have xa< y<xc, hence exists

b ∈ X2 : xb ∼ y. We need to show that xb ∈ SEz. If xb ∼ xa or xb ∼ xc, then

the result is immediate. Hence, assume xa�xb�xc. By definition, x ∈ SEz, if
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x<1 z1, and z2 <2 b. For xb we need to check only the latter condition. It holds,

since xa�xb�xc, and by weak separability a<2 b.

Therefore all conditions for the existence of an additive representation are met

(Krantz et al., 1971).

2.5.3 Joining representations for different SEz (or NWz)

This section closely follows (Wakker, 1991b).

Theorem 4. There exists an additive interval scale V SE on
⋃

SEz, with z ∈
Θ \ SEext, which represents < on every SEz.

Proof. Choose the “reference” points - pick any r ∈ SE and any r0, r1 ∈ SEr such

that r1
1p< r0

1p for every p ∈ X2. Set V r
1 (r0

1) = 0, V r
2 (r0

2) = 0, V r
1 (r1

1) = 1. Now,

we align representations on the other sets SEz with the reference one. Assume

that for some z ∈ Θ we have already obtained an additive representation V z on

SEz. Observe that V z and V r are additive value functions for < on SEz ∩ SEr.

Morevover SEz ∩ SEr = SEq, where q1 = r1 if r1 <1 z1 and q1 = z1 if the

opposite is true. Similarly, q2 = r2 if az2 < ar2 for all a ∈ X1 and q2 = z2 in

the opposite case. Hence, uniqueness results from Krantz et al. (1971) can be

applied. In particular, this means that on SEz ∩ SEr we have V r
i = αV z

i + βi, so

the functions are defined up to a common unit and location.

We choose the unit and location of V z
1 so that V z

1 (x1) = V r
1 (x1) for all x ∈

SEz ∩ SEr. Next, we choose the location of V z
2 so that it coincides with V r

2 on

SEz ∩ SEr.

Finally, we show that V s
i (xi) = V t

i (xi) for any s, t ∈ Θ and x ∈ SEs ∩ SEt.

This immediately follows, since V s and V t coincide (with V r) on SEs∩SEt∩SEr.

This defines their unit and locations, hence they also coincide on SEs∩SEt. Now

define V SE as a function which coincides with V zi on the respective domains SEzi .

By the above argument, this function is well-defined.

Theorem 5. Representation V SE obtained in Theorem 4 is globally representing

on SE \ SEext =
⋃
z∈Θ\SEext

SEz.
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Proof. Let x< y. There can be two cases. First, assume that x2 <2 y2, but

y1 <1 x1 (or vice versa). In this case, x and y belong to the same SEz (e.g. SEx)

and therefore V SE is a valid representation.

Next, assume that xj <j yj for all i, j ∈ N . Assume, that x ∈ SEs, y ∈
SEt. Observe that x1y2 ∈ SEs ∩ SEt because by the made assumptions, x1y2 ∈
SEx, x1y2 ∈ SEy. By definition of <i we have x1x2 <x1y2 < y1y2, hence V1(x1) +

V2(x2) ≥ V1(x1) + V2(y2) ≥ V1(y1) + V2(y2), with first inequalities lying in SEs,

and second in SEt. The reverse implication is also true.

2.6 Aligning V SE and V NW

First we will show that it is not possible for the common domain of V SE
i and

V NW
i for some i to contain a single point.

2.6.1 Analysis of the common domain of V SE and V NW

Lemma 2. Let a0 <1 b0, and for some p ∈ X2 we have a0p, b0p ∈ Θ. Define

Xa0b0 = {x1 : x1 ∈ X1, b0 <1 x1 <1 a0}. Then, triple cancellation holds everywhere

on Xa0b0 ×X2.

b0 a0
p

f
x

y

w

z

q

a b dc

Figure 2.4: Lemma 2
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Proof. All points in the below proof are from Xa0b0 × X2. Let

ax4 by, aw< bz, cx< dy. We will show that together with the assumptions of

the Lemma, this implies cw< dz.

The case when all points belong to SE or NW, or two pairs belong to SE and

two to NW is covered by A4. Thus, assume wlog x<2 p, so that ax, cx ∈ NW

and the remaining points are in SE (Fig. 2.4). Assume also dp< cp and b<1 a.

Assume also ax� ap (hence by independence also cx� cp), bp� by (hence also

dp� dy), otherwise the result immediately follows by A4 (e.g. if ax ∼ ap, we can

replace ax by ap and cx by cp in the assumptions of the lemma, which brings all

points to SE).

1. ax4 by.

bp� by, hence ax≺ bp. ax� ap, hence bp� by< ax� ap, bp� ap, therefore,

by restricted solvability exists fp ∼ ax. Also, fp� ap, bp� fp.

2. cx< dy. There can be two cases:

a) If cx4 dp, then dp< cx� cp, hence exists gp ∼ cx.

b) cx� dp.

3. aw< bz.

Solve for q: aw ∼ fq. By the results in point 1 and independence we have

fw� aw< bz� fz, therefore by restricted solvability exists q : fq ∼ aw.

4. Cases correspond to those in point 2 above:

a) fp ∼ ax, gp ∼ cx, aw ∼ fq, hence by A4 cw ∼ gq

fp4 by, gp< dy, fq< bz, hence by A4 gq< dz and cw< dz.

b) ax≺ bp, cx� dp, aw< bz, hence by A4 cw< dz.

From this it follows that it is impossible that for some i the common domain

of V SE
i and V NW

i includes a single point. Let (wlog) i = 1 and a ∈ X1 be such a

point. Apparently ap ∈ Θ for all a ∈ X1. Then, from Lemma 2 it follows that

SE = NW = X.
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2.6.2 Aligning representations on SE and NW

There can be four cases, depending on the number of essential coordinates on

NW and SE:

1. Both areas have two essential coordinates;

2. One area has two essential coordinate, another has one essential coordinate;

3. Both areas have one essential coordinates;

4. An area does not have any essential coordinates.

We start with the case where both coordinates are essential on NW and SE.

2.6.2.1 Both coordinates are essential

Lemma 3. Choose r0
1 ∈ X1 and r1

1 ∈ X1 from the common domain of V SE
1

and V NW
1 such that r1

1 <1 r
0
1, and set V SE

1 (r0
1) = V NW

1 (r0
1) = 0 and V SE

1 (r1
1) =

V NW
1 (r1

1) = 1. Then, V SE
1 (x1) = V NW

1 (x1) on all x1 from their common domain.

Proof. This follows directly from A4. Assume, we want to show that V SE
1 (y1) =

V NW
1 (y1) for some y1 ∈ X1. Starting from r0

1 build any standard sequence on X1

in SE, say {α(i)
1 : α

(i)
1 y

s
1 ∼ α

(i+1)
1 ys2}. Then, all α

(i)
1 y

n
1 , α

(i)
1 y

n
2 which are in NW

also form a sequence in NW: if α
(i)
1 y

s
1 ∼ α

(i+1)
1 ys2, α

(i+1)
1 ys1 ∼ α

(i+2)
1 ys2 and α

(i)
1 y

n
1 ∼

α
(i+1)
1 yn2 , for some yn1 , y

n
2 ∈ X2, then by A4, necessarily α

(i+1)
1 yn1 ∼ α

(i+2)
1 yn2 .

Now let
1 =V SE

1 (r1
1) ≈ n[V SE

2 (ys2)− V SE
2 (ys1)]

V SE
1 (y1) ≈ m[V SE

2 (ys2)− V SE
2 (ys1)] ≈ m

n
.

(2.19)

Such n and m exist by the Archimedean axiom. By the argument above we get

1 =V NW
1 (r1

1) ≈ n[V NW
2 (yn2 )− V NW

2 (yn1 )]

V NW
1 (y1) ≈ m[V NW

2 (yn2 )− V NW
2 (yn1 )] ≈ m

n

(2.20)

By denserangedness, approximations become exact in the limit, so we obtain

V SE
1 (y1) = V NW

1 (y1) on all y1 ∈ X1 from their common domain.
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Lemma 4. Assume, V SE is an additive representation of < on SE \ SEext, and

V NW is a representation on NW \ NWext, with V SE
1 and V NW

1 scaled so that

they have a common zero and unit (as in Lemma 3). Then, V SE
2 = λV NW

2 on

the common domain.

Proof. By Lemma 3, V SE
1 = V NW

1 on the common domain. Assume V SE
2 (r2

2) =

λ, V NW
2 (r2

2) = 1. We will now show that V SE
2 (x2) = λV NW

2 (x2) for all x2 ∈ X2

from the common domain of these functions. Construct a standard sequence

within SEz, this time on X2. By A4, it is also a sequence in NW. We obtain

λ =V SE
2 (r2

2) ≈ n[V SE
1 (xs1)− V SE

1 (xs1)]

V SE
2 (x2) ≈ m[V SE

1 (xs1)− V SE
1 (xs1)] ≈ λm

n

(2.21)

By the argument above we get

1 =V NW
2 (r2

2) ≈ n[V NW
2 (xn1 )− V NW

2 (xn1 )]

V NW
2 (x2) ≈ m[V NW

1 (xn1 )− V NW
1 (xn1 )] ≈ m

n

(2.22)

From this in the limit we obtain V SE
2 (x2) = λV NW

2 (x2) on all x2 ∈ X2 from the

common domain of V SE
2 and V NW

2 .

At this point we can drop superscripts and say that we have representations

V1 + V2 on SE and V1 + λV2 on NW. Fix two non-extreme points in Θ : r0 and

r1, such that r1
1 <1 r

0
1 and r1

2 <2 r
0
2. If such points do not exist, then by Lemma

2 triple cancellation holds everywhere and < can be represented by an additive

function (i.e. λ = 1). Rescale V1 and V2 so that V1(r0
1) = 0, V2(r0

2) = 0, V1(r1
1) = 1.

Assume that after rescaling we get V1(r1
2) = k. Define φ2(x2) = V2(x2)/k, i.e.

φ2(r1
2) = 1. Define φ1(x1) = V1(x1). Thus we get representations φ1 + kφ2 on SE

and φ1 +λkφ2 on NW. Finally rescale in the following way: 1
1+k

φ1 + k
1+k

φ2 on SE

and 1
1+λk

φ1+ λk
1+λk

φ2 on NW. We have thus defined the following representations:

φSE(x) =
1

1 + k
φ1(x1) +

k

1 + k
φ2(x2)

φNW (x) =
1

1 + λk
φ1(x1) +

λk

1 + λk
φ2(x2).

(2.23)
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Note, that it follows that φSE(r1) = φNW (r1) = 1.

2.6.2.2 One area has a single essential coordinate

Assume SE has two essential coordinates and NW only has i = 1 essential.

After an additive representation V SE has been built on SE, and re-scaled as

in (2.23) we have values φ1 and φ2 for all points in SE, in particular those in

Θ. Let φNW (x) = φ1(x1) + 0φ2(x2) (in other words, set λ = 0 in (2.23)) for

those xi where φi are defined. By structural assumption, bi-independence and

additivity φNW represents < on those points for which it is defined. For example,

let ap, bp ∈ NW be such that ap� bp. Since both coordinates are essential on

SE by bi-independence we get also aq� bq for all q ∈ X2 such that aq, bq ∈ SE.

Additivity implies φ1(a) > φ1(b). For the remaining x1 ∈ X1, i.e. for x1 ∈ X1

such that there are no points in Θ first coordinate of which is x1, build a simple

ordinal representation. Structural assumptions trivially imply that values for all

x2 ∈ X2 have already been defined at this point. Other cases are similar.

2.6.2.3 Both areas have a single essential coordinate

An interesting result is that A3 is sufficient for characterization of cases where

both SE and NW have one essential coordinate. There are two cases in total:

1. i = 1 is essential on NW, i = 2 is essential on SE;

2. i = 2 is essential on NW, i = 1 is essential on SE.

We will need the following lemma.

Lemma 5. Let i = 1 be essential on NW and i = 2 be essential on SE or i = 2

be essential on NW and i = 1 be essential on SE. Then, either for all x ∈ SE

exists z ∈ Θ such that z ∼ x, or for all y ∈ NW exists z ∈ Θ such that z ∼ y.

Proof. We only consider one case, others being symmetrical. Assume i = 1 is

essential on SE and i = 2 is essential on NW. Assume also there exists x ∈ SE

such that x� z for all z ∈ Θ, in particular some maximal zmax. We will show

that this implies that there does not exist y ∈ NW such that y� z or z� y for

all z ∈ Θ.
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Assume such y exists. Take x1y2. By A3 it belongs either to SE or NW. If it

belongs to NW, by closedness assumption exists x1t ∈ Θ. We get x1t ∼ x� zmax

- a contradiction. If x1y2 ∈ SE, exists ay2 ∈ Θ. We have y ∼ ay2 which

contradicts both y� z and z� y for all z ∈ Θ.

Finally, we need to show that Θ does not have gaps. Assume there exists

y ∈ NW and z1, z2 ∈ Θ such that z1� y� z2 but there is no z ∈ Θ such that

z ∼ y. Since only i = 2 is essential on NW, we get z1
2 <2 y2 and hence z1

1y2 ∈ SE.

By closedness assumption exists x1 ∈ X1 such that x1y2 ∈ Θ. Since only i = 2

is essential we conclude x1y2 ∼ y, which is a contradiction. Therefore, for every

y ∈ NW there exists z ∈ Θ such that y ∼ z.

Defining value functions. Lemma 5 guarantees that for all points in SE or

all points in NW exists an equivalent point in Θ. Assume for example that Θ

is such that for all x ∈ SE exists z ∈ Θ. Assume also that i = 1 is essential

on SE and i = 2 is essential on NW. Now define value functions φ1 : X1 → R
and φ2 : X2 → R as follows. Choose φ1 to be any real-valued function such that

φ1(x1) > φ1(y2) iff x1 <1 y1. Now for all z from Θ set φ2(z2) = φ1(z1). Finally,

extend φ2 to the whole X2 by choosing any function such that φ2(x2) > φ2(y2)

iff x2 <2 y2. At this point functions have been defined for all x1 ∈ X1 and all

x2 ∈ X2.

2.6.2.4 Areas without essential coordinates

Lemma 6. If A1 - A9 and the structural assumption hold, there can not be

NWz(SEz) with no essential coordinates.

Proof. Assume for some z ∈ Θ the set NWz has no essential coordinates. By bi-

independence and the structural assumption it follows that there are no essential

coordinates on any NWz. This implies (by A7) that both coordinates are essen-

tial on SE. Take ap, bp ∈ NWz. Apparently, ap ∼ bp. By structural assumption

there must exist q ∈ X2 such that aq� bq. It can’t be that aq, bq ∈ NW, hence

aq, bq ∈ SE.

By closedness assumption there exist w, z ∈ X2 such that aw, bz ∈ Θ. Also,

since no coordinate is essential in NW we have aw ∼ bz. Since aq� bq it must
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be bz� bw, since otherwise (aw� bw< bz) it can’t be that aw ∼ bz.

By independence we have aw� bw. By definition of NW and SE we have

aw ∈ SE (since by weak separability a<1 b) and aw ∈ NW (since by weak

separability z<2w). Hence, by independence it must be az� aw (since az ∈ SE)

but we have az ∼ aw (since az ∈ NW). We have arrived at a contradiction.

2.7 Properties of the intersection of SE and NW

We would need a technical lemma first - in fact a restatement of the axiom A5.

Figure 2.3 in Section 2.2.1 gives an illustration of this condition.

Lemma 7. Axiom A5 implies the following condition. Let {g(i)
1 : g

(i)
1 y0 ∼

g
(i+1)
1 y1, g

(i)
1 ∈ X1, i ∈ N} and {h(i)

2 : x0h
(i)
2 ∼ x1h

(i+1)
2 , h

(i)
2 ∈ Xx, i ∈ N} be

two standard sequences, each entirely contained in NW or SE. Assume also,

that there exist z1, z2 ∈ X, p, q ∈ X2, a, b ∈ X1 such that g
(i)
1 p, g

(i)
1 q ∈ NW or

SE, and ah
(i)
2 , bh

(i)
2 ∈ NW or SE for all i, and g

(i)
1 p ∼ bh

(i)
2 and g

(i+1)
1 p ∼ bh

(i+1)
2 ,

then for all i ∈ N , g
(i)
1 p ∼ bh

(i)
2 .

Proof. The proof is very similar to the one from Krantz et al. (1971) (Lemma 5 in

section 8.3.1). Assume wlog that {g(i)
1 : g

(i)
1 y0 ∼ g

(i+1)
1 y1} is an increasing standard

sequence on X1, which is entirely in SE, whereas {h(i)
1 : x0h

(i)
1 ∼ x1h

(i+1)
1 } is an

increasing standard sequence on X2, and lies entirely in NW. Assume also for

some k it holds g
(k)
1 y0 ∼ x0h

(k)
2 , g

(k+1)
1 y0 ∼ x0h

(k+1)
2 . We need to show that

g
(i)
1 y0 ∼ x0h

(i)
2 for all i. We will show that g

(k+2)
1 y0 ∼ x0h

(k+2)
2 from which

everything holds by induction.

Assume x0h
(k+2)
2 � g(k+2)

1 y0. Since the sequences are increasing, by restricted

solvability exists g ∈ X2 such that g
(k+2)
1 y0 ∼ x0g. By A5, g

(k)
1 y0 ∼

g
(k+1)
1 y1, g

(k+1)
1 y0 ∼ g

(k+2)
1 y1, x0h

(k)
2 ∼ x1h

(k+1)
2 imply x0h

(k+1)
2 ∼ x1g. By def-

inition of {h(i)
2 }, x0h

(k+1)
2 ∼ x1h

(k+2)
2 . Thus, x1h

(k+2)
2 ∼ x1g and by indepen-

dence x0h
(k+2)
2 ∼ x0g, hence also g

(k+2)
1 y0 ∼ x0h

(k+2), a contradiction. The case

x0h
(k+2)
2 ≺ g(k+2)

1 y0 is symmetrical. Showing that g
(k−1)
1 y0 ∼ x0h

(k−1)
2 can be done

in a similar fashion.

The main result of this section is the following lemma.
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Lemma 8. For any non-extreme x ∈ X we have:

x ∈ Θ⇒ φ1(x1) = φ2(x2), (2.24)

unless < can be represented by an additive function (i.e λ = 1 in (2.23)).

For the case when both NW and SE have a single essential coordinate the

result holds by definition of φi, so for the remainder of this section we assume

that SE or NW has two essential coordinates.

r0

α
(1)
1

β
(1)
1

X2

X1

x

π1(x)

π2(x)
r1

π1(r1)

π2(r1)

Figure 2.5: Lemma 8

Proof. We start with a case where both coordinates are essential on SE and NW.

Assume also x< r0 (without loss of generality, other cases are symmetrical and

can be proved by the same technique). We are going to show that x ∈ Θ ⇒
φ1(x1) = φ2(x2) or λ = 1.

Assume for now that we can find the following solutions:

� Solve for π1(r1) : π1(r1)r0
2 ∼ r1.

� Solve for π2(r1) : r0
1π2(r1) ∼ r1.
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� Solve for π1(x) : π1(x)r0
2 ∼ x.

� Solve for π2(x) : r0
1π2(x) ∼ x.

Pick α
(1)
1 ∈ X1 such that r1

1 <1 α
(1)
1 , it exists by denserangedness. Solve for

β
(1)
2 : α

(1)
1 r0

2 ∼ r0
1β

(1)
2 , exists by restricted solvability.

Now build an increasing standard sequence α
(i)
1 : α

(0)
1 = r0

1 on X1 which lies

in SE and an increasing standard sequence β
(i)
2 : β

(0)
2 = r0

2 on X2 which lies in

NW (see Fig. 2.5). Since π1(r1)r0
2 ∼ r0

1π2(r1), by A5 (Lemma 7) we have for

some m:

α
(m−1)
1 r0

2 < π1(r1)r0
2 <α

(m)
1 r0

2 ⇐⇒ r0
1β

(m−1)
2 < r0

1π2(r1)< r0
1β

(m)
2 . (2.25)

From this (and since φ1(r0
1) = φ2(r0

2) = 0) it follows that φ1(π1(r1)) ≈
mφ1(α

(1)
1 ), φ2(π2(r1)) ≈ mφ2(β

(1)
2 ) and, since φSE(π1(r1)r0

2) = φSE(r1) =

φNW (r1) = φNW (r0
1π2(r1)), we obtain:

1

1 + k
mφ1(α

(1)
1 ) =

λk

1 + λk
mφ2(β

(1)
2 ). (2.26)

Similarly, π1(x)r0
2 ∼ r0

1π2(x), so by A5 (Lemma 7) we have

α
(n−1)
1 r0

2 < π1(x)r0
2 <α

(n)
1 r0

2 ⇐⇒ r0
1β

(n−1)
2 < r0

1π2(x)< r0
1β

(n)
2 . (2.27)

From this follows that φ1(π1(x)) ≈ nφ1(α
(1)
1 ), φ2(π2(x)) ≈ nφ2(β

(1)
2 ) and by

(2.26) it follows that φSE(π1(x)r0
2) = φNW (r0

1π2(x)). Hence

1

1 + k
φ1(x1) +

k

1 + k
φ2(x2) =

1

1 + λk
φ1(x1) +

λk

1 + λk
φ2(x2), (2.28)

and so φ1(x1) = φ2(x2) or λ = 1 (i.e. the structure is additive).

We need to revisit the case where solutions mentioned in the beginning do

not exist. Consider Figure 2.6. Assume this time that there does not exist

π1(r1) such that r1 ∼ π1(r1)r0
2. If we choose the step in the standard sequence

α
(i)
1 small enough so that there exist α

(k+1)
1 , α

(k+2)
1 such that α

(k+1)
1 r0

2 < r1
0r

0
2 and

α
(k+2)
2 r0

2 < r1
0r

0
2 (which we can do by non-maximality of r1 and denserangedness of

<), then we can “switch” from the standard sequence α
(i)
1 on X1 to the standard
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sequence γ
(i)
2 on X2 keeping the same increment in value between subsequent

members of the sequence. Indeed, γ
(k)
2 : r1

1γ
(k)
2 ∼ α

(k)
1 r0

2 and γ
(k+1)
2 : r1

1γ
(k+1)
2 ∼

α
(k+1)
1 r0

2 exist by monotonicity and restricted solvability, so does x1:x1γ
(k)
2 ∼

r1
1γ

(k+1)
2 ∼ α

(k+1)
1 r0

2 , and by A5 (Lemma 7) we get [r1
1γ

(k)
2 ∼ r0

1β
(k)
2 , r1

1γ
(k+1)
2 ∼

r0
1β

(k+1)
2 ] ⇒ γ

(i)
2 ∼ β

(i)
2 for all i. Note that γ

(i)
2 r1

2 are in SE for all i such that

r1 < γ
(i)
2 since r0 and r1 are in SE. By monotonicity and restricted solvability

there exists i such that x1r
1
2 <x1γ

(i+1)
2 < r1 <x1γ

(i)
2 . Finally, the increment in

value is the same between members of αi and γ
(i)
2 since αk ∼ γ

(k)
2 and αk+1 ∼

γ
(k+1)
2 . The result then follows as above.

X2

X1

r0

α
(1)
1

r1

γ
(k)
2

α
(k)
1

β
(k)
2

α
(k+1)
1

γ
(k+1)
2

x1

β
(k+1)
2

γ
(k+2)
2

α
(k+2)
1

β
(k+2)
2

r02

y0

γ
(k+3)
2

Figure 2.6: Lemma 8 - changing direction

Finally, we look at the case where only one coordinate is essential on either

NW or SE. First assume that i = 2 is essential on NW. We defined φNW (x) =

0φ1(x1)+φ2(x2). Definition implies φNW (r0) = 0, φNW (r1) = 1. Build a standard

sequence {α(i)
1 } on X1 from r0 to r1 (in case there exists a solution for r1 ∼

π1(r1)r0
2, otherwise use the approach detailed in the previous paragraph), setting

α
(0)
1 = r0

1. Take α
(1)
1 r0

2 and α
(2)
1 r0

2. By restricted solvability there must exist β
(1)
2

and β
(2)
2 , such that α

(1)
1 r0

2 ∼ r0
1β

(1)
2 and α

(2)
1 r0

2 ∼ r0
1β

(2)
2 . By closedness assumption

for β
(1)
2 , β

(2)
2 there must exist x1, x2 such that x1β

(1)
2 ∈ Θ, x2β

(2)
2 ∈ Θ. Also,
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since only i = 2 is essential, we get x1β
(1)
2 ∼ r0

1β
(1)
2 , x2β

(2)
2 ∼ r0

1β
(2)
2 . By weak

monotonicity and definition of SE, α
(2)
1 β

(1)
2 <α

(2)
1 r0

2 ∼ x2β
(2)
2 <x2β

(1)
2 , hence by

restricted solvability exists z1 : x2β
(2)
2 ∼ z1β

(1)
2 . By A5 then x2β

(1)
2 ∼ z1r

0
2. By

additivity x2β
(2)
2 ∼ z1β

(1)
2 and x2β

(1)
2 ∼ z1r

0
2 entail φ2(b2) − φ2(b1) = φ2(b1) −

φ2(r0
2). From this the result follows as in the proof above. If now i = 1 is

essential on NW repeat the proof as above this time starting the sequence from

r1 “towards” r0.

Lemma 9. The following statements hold or < has an additive representation:

1. If ap ∈ Θ then for no b ∈ X1 holds bp ∈ Θ and also for no q ∈ X2 holds

aq ∈ Θ.

2. x ∈ SE ⇒ φ1(x1) ≥ φ2(x2), y ∈ NW ⇒ φ2(y2) ≥ φ1(y1).

Proof. 1. Assume < does not have an additive representation, hence [x ∈
Θ]⇒ φ1 = φ2. We have ap ∈ Θ, hence φ1(a) = φ2(p). Now take bp, assume

b<2 a. Hence, φ1(b) > φ1(a) or otherwise i = 1 is inessential in both SE

and NW which contradicts assumptions. Thus, φ1(b) > φ1(a) and hence

bp can’t be in Θ.

2. Pick any bq ∈ SE. By Lemma 1 there exists ap ∈ Θ such that bq ∈ SEap,

hence b<1 a and p<2 q. By Lemma 8 φ1(a) = φ2(p). We also have φ1(b) ≥
φ1(a), φ2(p) ≥ φ2(q). The result follows. NW case is symmetric.

2.8 Extending value functions to extreme points

Value functions for the case when both SE and NW have a single essential

coordinate were fully defined in Section 2.6.2.3. Thus in what follows we will

consider cases where SE or NW have two essential coordinates.

As indicated in (Wakker, 1991b), value functions might be driven to infi-

nite values at the maximal/minimal points of rank-ordered subsets, neverthe-

less not implying existence of infinite standard sequences residing entirely within
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comonotonic cones. Put it another way, it might be not possible to “reach” a

maximal/minimal point with a sequence lying entirely in NW or SE. Yet an-

other way to say it is that for some maximal/minimal point z, the set NWz(SEz)

contains no standard sequences (see also (Wakker, 1991b) Remark 24).

The cornerstone of this section is Lemma 8. It plays the same role as pro-

portionality of value functions plays in (Wakker, 1991b), effectively guaranteeing

that both value functions φ1 and φ2 are limited if maximal/minimal elements

exist.

Lemma 10. Assume that SE has two essential coordinates. The following state-

ments hold:

� If there exist a maximal M1 ∈ X1, φ1 is bounded from above.

� If there exist a minimal m2 ∈ X2, φ2 is bounded from below.

Assume that NW has two essential coordinates. The following statements hold:

� If there exist a minimal M1 ∈ X1, φ1 is bounded from below.

� If there exist a maximal m2 ∈ X2, φ2 is bounded from above.

Proof. We shall only prove the first one. First, notice that there must exist p ∈ X2

such that M1p ∈ SE. Take x1 ∈ X1 and v2, w2 ∈ X2 such that v2 <2w2, and

x1v2 ∈ SE. If such points cannot be found, X has an additive representation

(all x ∈ NW), and the result follows. So we assume such points exist. By

definition of SEx1v2 it follows that M1w2, x1v2,M1v2 ∈ SE. Hence, we can evoke

the argument from Wakker (1991b) Lemma 20.

If M1w2 4x1v2 then we have an upper bound: V1(M1) ≤ V1(x1) + V2(v2) −
V2(w2). If M1w2�x1v2 then by monotonicity M1v2 <M1w2�x1v2 and hence

exists z1 ∈ X1 such that M1w2 ∼ z1v2, hence z1v2 < βw2 for all β ∈ X1.

Lemma 11. If x1x2 ∈ Θ and x1x2 is extreme, then

lim
z∈Θ,z2→x2

φ2(z2) = lim
z∈Θ,z1→x1

φ1(z1). (2.29)

Proof. For the case when SE or NW have two essential variables the result

follows from Lemma 8, otherwise it is by definition of φi (see Section 2.6.2.3).
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2.8.1 Extending value functions to extreme elements of Θ

The following lemma characterizes the cases when extreme elements of Θ are the

only representatives of maximal/minimal equivalence classes of SE(NW).

Lemma 12. Let i = 1 be essential on SE. If there exists z ∈ Θ such that z2 is

minimal, then x� z for all x ∈ SE. If i = 2 is essential on SE and there exists

z ∈ Θ such that z1 is maximal, then z�x for all x ∈ SE. Similarly, if i = 1 is

essential on NW and there exists z ∈ Θ such that z2 is maximal, then z�x for

all x ∈ NW. If i = 2 is essential on NW and there exists z ∈ Θ such that z1 is

minimal, then x� z for all x ∈ NW.

Proof. We provide the proof just for one of the cases. Let NW have two essential

variables. Assume z2 is maximal. Since z ∈ Θ, for all x ∈ NW holds z1 <1 x1 and

by maximality z2 <2 x2. Hence, by essentiality and A6, z�x for all x ∈ NW.

The case with the minimal z1 is symmetric.

The following results look at the uniqueness of definition of φi at the extreme

elements of Θ.

Lemma 13. If both coordinates are essential on SE and NW the values of φi

for extreme x ∈ Θ are uniquely defined. Moreover, φ1(x1) = φ2(x2).

Proof. Assume, for example x1x2 ∈ Θ and x1 is minimal. Then any z1x2 such

that z1 <1 x1, belongs to SE, and any equivalence relation within SE involving

z1x2 uniquely defines φ2(x2) (see (2.23)). Similarly, any x1z2 such that z2 <2 x2,

belongs to NW, and any equivalence relation within NW involving x1z2 uniquely

defines φ1(x1). By Lemma 11 these values are equal.

Lemma 14. If both coordinates are essential on SE but only one on NW (or

vice versa) the values of φi for extreme x ∈ Θ can be set as follows:

� If x1x2 ∈ Θ, NW has two essential coordinates and x2 is maximal, then

φ2(x2) is uniquely defined, φ1(x1) can be set to any value greater or equal

to φ2(x2).
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� If x1x2 ∈ Θ, NW has two essential coordinates and x1 is minimal, then

φ1(x1) is uniquely defined, φ2(x2) can be set to any value less or equal to

φ1(x1).

� If x1x2 ∈ Θ, SE has two essential coordinates and x2 is minimal, then

φ2(x2) is uniquely defined, φ1(x1) can be set to any value less or equal to

φ2(x2).

� If x1x2 ∈ Θ, SE has two essential coordinates and x1 is maximal, then

φ1(x1) is uniquely defined, φ2(x2) can be set to any value greater or equal

to φ1(x1).

Proof. Consider the first case. φ2(x2) is defined uniquely as in the proof of Lemma

13. However, this is not possible for φ1(x1). This is because x is the only point in

NW having x1 as the first coordinate, and, by Lemma 12 there is no equivalence

relation within NW which involves x. If i = 1 is essential on SE then all points

from the equivalence class which includes x also have x1 as their first coordinate,

which does not allow to elicit φ1(x1). If only i = 2 is essential on SE, then the

representations of equivalences involving x1 do not include φ1(x1).

In the case where only one coordinate is essential on both SE and NW no

special treatment is required for the extreme elements of Θ.

Lemma 15. If x ∈ SEext then for any y ∈ NW such that x ∼ y, we have:

φNW (x) = φNW (y). (2.30)

If further, x1 is maximal, then φSE(x) > φSE(y) for all y ∈ SE. If x2 is minimal,

then φSE(x) < φSE(y) for all y ∈ SE.

If x ∈ NWext then for any y ∈ SE such that x ∼ y, we have:

φSE(x) = φSE(y). (2.31)

If further, x1 is minimal, then φNW (x) < φNW (y) for all y ∈ NW. If x2 is

maximal, then φNW (x) > φNW (y) for all y ∈ NW.
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Proof. In case when SE and NW have the same number of essential variables,

value functions at the extreme points are defined uniquely (Lemma 13 for case

when both variables are essential and by definition otherwise) and the second

parts of each statement follow immediately by Lemma 12. If only SE or NW

have two essential variables, the result follows by Lemma 14, Lemma 12, and

definition of φ.

Lemma 16. For any x ∈ X we have:

φ1(x1) = φ2(x2)⇒ x ∈ Θ. (2.32)

Proof. Assume φ1(x1) = φ2(x2) and x 6∈ NW. By Lemma 1 exists z ∈ Θ such

that x ∈ SEz. By structural assumption we have φ2(z2) ≥ φ2(x2) = φ1(x1) ≥
φ1(z1), with at least one inequality being strict (otherwise x = z).

If z is non-extreme then by Lemma 8 we have φ1(z1) = φ2(z2) - a contradiction.

If z is extreme, the only cases when φ2(z2) > φ1(z1) can hold is when either z2

is minimal or z1 is maximal. But it is easy to see that in this case the only

points for which it is not possible to find a non-extreme z, are the extreme points

themselves.

Lemma 17. For all x ∈ X such that φ1(x1) ≥ φ2(x2) we have x ∈ SE. If x ∈ X
is such that φ2(x2) ≥ φ1(x1) then x ∈ NW.

Proof. For non-extreme points this follows from Lemma 9 and Lemma 16. As-

sume φ1(x1) ≥ φ2(x2). If φ1(x1) = φ2(x2) then by Lemma 16 x ∈ Θ, so we are

done. Therefore, assume φ1(x1) > φ2(x2). If x ∈ NW, then by Lemma 9 it must

be φ2(x2) ≥ φ1(x1), a contradiction. Therefore, x ∈ SE. For extreme points the

result follows from Lemma 14.

Finally, we can formulate:

Theorem 6. The following statements hold:

� If both NW and SE have two essential variables, then for all x ∈ X:

x ∈ Θ ⇐⇒ φ1(x1) = φ2(x2), (2.33)

unless < can be represented by an additive function (i.e λ = 1 in (2.23)).
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� If only NW or only SE have two essential variables, the for all non-extreme

x ∈ X:

x ∈ Θ⇒ φ1(x1) = φ2(x2), (2.34)

while at extreme x ∈ X, φ1(x1) and φ2(x2) are related as in Lemma 14.

Finally, for all x ∈ X:

φ1(x1) = φ2(x2)⇒ x ∈ Θ, (2.35)

� If both NW and SE have only one essential variable, then for all x ∈ X:

x ∈ Θ ⇐⇒ φ1(x1) = φ2(x2). (2.36)

Proof. Follows from Lemmas 8, 16, 13, 14.

2.9 Constructing a global representation on X

For all x ∈ X let φx(x) be equal to φSE(x) if x ∈ SE or φNW (x) if x ∈ NW. For

points in Θ values of two latter functions coincide, so φx(x) is well-defined.

Lemma 18. Let φx(x) > φy(y). Then, x� y.

Proof. If x and y belong to SE or NW the conclusion is immediate, so we only

need to look at the remaining case. Assume x ∈ SE, y ∈ NW.

First we will show that it can’t hold that x� z, y� z or z�x, z� y for all

z ∈ Θ. Assume x� z, y� z for all z ∈ Θ. Let x1 <1 y1. If x1y2 ∈ SE, then exists

z1y2 ∈ Θ such that x1y2 < z1y2 < y1y2, a contradiction. If x1y2 ∈ NW, then exists

x1z2 ∈ Θ, such that x1y2 <x1z2 <x1x2, again a contradiction. Other cases are

symmetrical.

Hence, assume there exists z1 ∈ Θ, such that x< z1, y< z1 and z2 ∈ Θ such

that z2 <x or z2 < y. The only non-trivial case is z2�x� z1, z2� y� z1 (in other

cases one of the points z1 or z2 immediately leads to the conclusion). We have

φ(z2) > φ(x) > φ(y) > φ(z1), (2.37)

64



hence also φ1(z2
1) = 0.5φ(z2) > 0.5φ(x) > 0.5φ(y) > 0.5φ(z1) = φ1(z1

1). By

denserangedness of φ1 (see (Wakker, 1991b) equation (16)), we can find a point

c1 such that 0.5φ(x) > φ(c1) > 0.5φ(y). We have c1z
1
2 ∈ SE, c1z

2
2 ∈ NW,

hence there exists c2 such that c1c2 ∈ Θ. Since c1c2 is not extreme, we have

φ(c1c2) = 2φ1(c1), and hence φ(x) > φ(c) > φ(y). The first inequality is in SE,

while the second is in NW, hence we conclude that x� y.

Lemma 19. Let x� y. Then, φ(x) > φ(y).

Proof. By Lemma 18 we have x� y ⇒ φ(x) ≥ φ(y). Hence, we need to show that

φ(x) 6= φ(y). Assume, x ∈ SE, y ∈ NW. If SE or NW have only one essential

coordinate, then by structural assumptions exists z ∈ Θ, equivalent either to x

or y, from which the conclusion is immediate. Hence, assume both areas have

two essential coordinates.

x1 and x2 can’t be both minimal, because otherwise x� y cannot hold by

pointwise monotonicity, so assume x1 is not minimal. We will find a point z in

SE such that x� z< y. Take some z1 such that x1 <1 z1 and z1x2 ∈ SE (it can

be found by closedness and order density). If z1x2 < y, we have φ(x) > φ(z1x2) ≥
φ(y), otherwise by restricted solvability we can find w1 such that w1x2 ∼ y,

w1 ∈ SE, and hence φ(x) > φ(w1x2) = φ(y) (equality follows from Lemma 18).

The case when x2 is not maximal is identical.

Theorem 7. For any x, y ∈ X we have

x< y ⇐⇒ φ(x) ≥ φ(y). (2.38)

Proof. Immediate by Lemmas 18 and 19.

65



2.10 Constructing the capacity and the integral

Representations φSE and φNW uniquely define a capacity ν. For the case when

SE or NW has two essential coordinates, set (using (2.23)):

ν({1}) =
1

1 + k
(from φSE)

ν({2}) =
λ

1 + λk
(from φNW )

ν({1, 2}) = 1.

(2.39)

Thus, we obtain

C(ν, φ(x)) = φSE(x) =
1

1 + k
φ1(x1) +

k

1 + k
φ2(x2), for all x ∈ SE,

C(ν, φ(x)) = φNW (x) =
1

1 + λk
φ1(x1) +

λk

1 + λk
φ2(x2), for all x ∈ NW.

(2.40)

Assume now, that SE and NW has only one essential coordinate. If i = 1 is

essential on SE set ν(1) = 1, otherwise zero. If i = 2 is essential on NW set

ν(2) = 1, otherwise zero. As above, set ν({1, 2}) = 1 We obtain:

C(ν, φ(x)) = φ1(x1), if i = 1 is essential on the area containing x,

C(ν, φ(x)) = φ2(x2), if i = 2 is essential on the area containing x,

(2.41)

in particular C(ν, φ(x)) = max(φ1(x1), φ2(x2)) if i = 1 is essential on SE, i = 2

is essential on NW, C(ν, φ(x)) = min(φ1(x1), φ2(x2)) if i = 2 is essential on SE,

i = 1 is essential on NW.

2.11 Uniqueness

Uniqueness properties are similar to those obtained in the homogeneous case

X = Y n, but are modified to accommodate for the heterogeneous structure of

the set X in this paper. We have shown that axioms A1-A9 are sufficient for
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constructing the Choquet integral representation of <:

x< y ⇐⇒ C(ν, (f1(x1), f2(x2))) ≥ C(ν, (f1(y1), f2(y2))), (RepCh)

for all x, y ∈ X.

2.11.1 Non-additive case

Lemma 20. Assume that triple cancellation does not hold on all of X (in other

words NW 6= SE) Representation (2.9) has the following uniqueness properties:

1. If both coordinates are essential on NW and SE, then for any functions

g1 : X1 → R, g2 : X2 → R such that (2.9) holds with fi substituted by gi, we

have fi(xi) = αgi(xi) + β.

2. If both coordinates are essential on NW, but only one coordinate is essential

on SE, then for any functions g1 : X1 → R, g2 : X2 → R such that (2.9)

holds with fi substituted by gi, we have :

� fi(xi) = αgi(xi) + β, for all x such that f1(x1) < max f2(x2) and

f2(x2) > min f1(x1);

� fi(xi) = φi(gi(xi)), where φi is an increasing function, otherwise.

3. If both coordinates are essential on SE, but only one coordinate is essential

on NW, then for any functions g1 : X1 → R, g2 : X2 → R such that (2.9)

holds with fi substituted by gi, we have :

� fi(xi) = αgi(xi) + β, for all x such that f2(x2) < max f1(x1) and

f1(x1) > min f2(x2);

� fi(xi) = ψi(gi(xi)), where ψi is an increasing function, otherwise.

4. If one coordinate is essential on NW and another one on SE, then for any

functions g1 : X1 → R, g2 : X2 → R such that (2.9) holds with fi substituted

by gi, we have : fi(xi) = ψi(gi(xi)) where ψi are increasing functions such

that f1(x1) = f2(x2) ⇐⇒ g1(x1) = g2(x2).

Proof. 1. Direct by uniqueness properties of additive representations.
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2. Direct by uniqueness properties of additive representations, Lemma 13,

Theorem 7.

3. Assume NW has two essential coordinates. If there exists an element in

Θ such that x1 is minimal or x2 is maximal, then, by Lemma 10, there

exist respectively a minimal φ1(x1) and maximal φ2(x2). Points x such that

f1(x1) < max f2(x2) and f2(x2) > min f1(x1) are precisely the elements

for which there exist a ∈ X1 or p ∈ X2 such that either ax2 ∈ NW

or x1p ∈ NW. From this follows that uniqueness of φi for these points is

defined by the uniqueness properties of NW and definition of φi on SE, i.e.

fi(xi) = αgi(xi) + β. For the remaining points (including extreme elements

of Θ), uniqueness is derived from the uniqueness of ordinal representations.

4. The proof is identical to the one in the previous point.

5. Uniqueness properties are derived from the uniqueness of ordinal represen-

tations and definition of φi (Section 2.6.2.3).

Theorem 2 directly follows from Lemma 20.

2.11.2 Additive case

If triple cancellation holds throughout X, in other words if NW = SE = X, then

< has an additive value model representation - exist value functions f1 : X1 → R
and f2 : X2 → R, such that for any x, y ∈ X we have

x< y ⇐⇒ f1(x1) + f2(x2) ≥ f1(y1) + f2(y2). (2.42)

Uniqueness of this representation is well-known - a different pair of functions gi

satisfying (2.42) is related to fi as follows:

gi(xi) = αfi(xi) + βi. (2.43)

The representation (2.42) can be recast as a Choquet integral representation

(2.9). In order to do this, we can substitute f1 by αf ′1 and f2 by (1−α)f ′2, where
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α ∈ (0, 1). Apparently α can be chosen arbitrarily. Next, we can construct a

capacity that “embeds” the weights α and (1−α). If βi are chosen so that ranges

of f ′1 and f ′2 intersect, the capacity must be additive (so that the weights are equal

on both comonotonic cones f ′1 ≤ f ′2 and f ′2 ≤ f ′1), however if f ′1(x1) ≥ f ′2(x2) for

all x1x2 ∈ X, we can choose a non-additive capacity as well. It’s easy to see this

using the Möbius form of the integral. Assume f ′1 ≤ f ′2 for all points from X.

Then

m1f
′
1(x1)+m2f

′
2(x2)+m12f

′
1(x2)∧f ′2(x2) = (m1 +m12)f ′1(x1)+m2f

′
2(x2), (2.44)

and the mass (m1 +m12) can be arbitrarily distributed between m1 and m12.

2.12 Necessity of the axioms

A3. Necessity of A3 is immediate (in the representation one of the regions

NWz and SEz is necessarily contained in a comonotonic subset of R2).

A4. Let ap4 bq, ar< bs, cp< dq and assume cr≺ ds. Let also ap, bq, cp, dq ∈
NW, ar, bs, cr, ds ∈ SE and X1 to be symmetric in NW (the other cases are

symmetric). We obtain:

α1f1(a) + α2f2(p) ≤ α1f1(b) + α2f2(q)

α1f1(c) + α2f2(p) ≥ α1f1(d) + α2f2(q)

β1f1(a) + β2f2(r) ≥ β1f1(b) + β2f2(s)

β1f1(c) + β2f2(r) < β1f1(d) + β2f2(s)

(2.45)

From the first two inequalities and essentiality of i = 1 (α1 6= 0) follows f1(a) +

f1(d) ≤ f1(b) + f1(c). Last two inequalities imply f1(a) + f1(d) > f1(b) + f1(c), a

contradiction.

We also give the “necessity” proof of the condition in Lemma 7, since compar-

ing it with the necessity proof of A5 allows to elicit some interesting implications

of essentiality.
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Lemma 7 Let {g(i)
1 : g

(i)
1 y0 ∼ g

(i+1)
1 y1, g

(i)
1 ∈ X1, i ∈ N} and {h(i)

2 : x0h
(i)
2 ∼

x1h
(i+1)
2 , h

(i)
2 ∈ Xx, i ∈ N} be two standard sequences, the first entirely contained

in NW and the second in SE. Assume also, that there exist z1, z2 ∈ X, p, q ∈
X2, a, b ∈ X1 such that g

(i)
1 p, g

(i)
1 q ∈ NW, and ah

(i)
2 , bh

(i)
2 ∈ SE for all i, and

g
(i)
1 p ∼ bh

(i)
2 and g

(i+1)
1 p ∼ bh

(i+1)
2 . Finally, assume, g

(i+2)
1 p� bh(i+2)

2 . Other cases

are symmetric.

α1f1(g
(i)
1 ) + α2f2(y0) = α1f1(g

(i+1)
1 ) + α2f2(y1)

α1f1(g
(i)
1 ) + α2f2(y0) = α1f1(g

(i+1)
1 ) + α2f2(y1)

β1f1(x0) + β2f2(h
(i)
1 ) = β1f1(x1) + β2f2(h

(i+1)
1 )

β1f1(x0) + β2f2(h
(i+1)
1 ) = β1f1(x1) + β2f2f2(h

(i+2)
1 )

α1f1(g
(i)
1 ) + α2f2(p) = β1f1(b) + β2f2(h

(i)
1 )

α1f1(g
(i+1)
1 ) + α2f2(p) = β1f1(b) + β2f2(h

(i+1)
1 )

(2.46)

First two equations imply α1(f1(g
(i)
1 )−f1(g

(i+1)
1 )) = α1(f1(g

(i+1)
1 )−f1(g

(i+2)
1 )).

The following two imply β1(f2(h
(i)
1 ) − f2(h

(i+1)
1 )) = β1(f2(h

(i+1)
1 ) − f2(h

(i+2)
1 )).

Finally, the last two equations imply α1(f1(g
(i)
1 ) − f1(g

(i+1)
1 )) = β1(f2(h

(i)
1 ) −

f2(h
(i+1)
1 )). Apparently α1(f1(g

(i+1)
1 ) − f1(g

(i+2
1 )) < β1(f2(h

(i+1)
1 ) − f2(h

(i+2)
1 )) is

then a contradiction.

If we were to add an essentiality condition to Lemma 7, the statement can be

made stronger as shown below.

A5. Assume ap4 bq, cp< dq and ay0 ∼ x0π(a), by0 ∼ x0π(b), cy1 ∼
x1π(c), dy1 ∼ x1π(d), and also eπ(a)< gπ(b). Also, i = 1 is essential on the

set (NW or SE) which includes ap, bq, cp, dq, and i = 2 is essential on the set

(NW or SE), which includes x0π(a) and x0π(b). Finally, assume eπ(c)≺ gπ(d).
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We get

α1f1(a) + α2f2(p) ≤ α1f1(b) + α2f2(q)

α1f1(c) + α2f2(p) ≥ α1f1(d) + α2f2(q)

β1f1(e) + β2f2(π(a)) ≥ β1f1(g) + β2f2(π(b))

β1f1(e) + β2f2(π(b)) < β1f1(g) + β2f2(π(d))

γ1f1(a) + γ2f2(y0) = δ1f1(x0) + δ2f2(π(a))

γ1f1(b) + γ2f2(y0) = δ1f1(x0) + δ2f2(π(b))

γ1f1(c) + γ2f2(y1) = δ1f1(x1) + δ2f2(π(c))

γ1f1(d) + γ2f2(y1) = δ1f1(x1) + δ2f2(π(d))

(2.47)

First two inequalities and the essentiality of i = 1 (α1 6= 0) imply f1(a) −
f1(b) ≤ f1(c) − f1(d). Second pair of inequalities yields f2(π(c)) − f2(π(d)) <

f2(π(a))− f2(π(b)), while the final pair of equations leads to γ1(f1(c)− f1(d)) =

δ2(f2(π(c))− f2(π(d))). Combining these results and due to essentiality of i = 2

(hence δ2 6= 0) we get:

γ1(f1(a)−f1(b)) ≤ γ1(f1(c)−f1(d)) = δ2(f2(π(c))−f2(π(d))) < δ2(f2(π(a))−f2(π(b))),

(2.48)

which contradicts the third pair of inequalities above, which yield γ1(f1(a) −
f1(b)) = δ2(f2(π(a))− f2(π(b))).

A6. For the Choquet integral representation on a heterogeneous product set

X = X1 ×X2, strong monotonicity is actually a necessary condition because of

the following. Assume ap, bp, cp, dp ∈ SE and ap� bp, cp ∼ dp. Assume also

there exist cq, dq ∈ NW such that cq� dq. Then, provided the representation
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exists, we get

α1f1(a) + α2f2(p) > α1f1(b) + α2f2(p)

α1f1(c) + α2f2(p) = α1f1(d) + α2f2(p)

β1f1(c) + β2f2(q) > β1f1(d) + β2f2(q).

(2.49)

The first inequality entails α1 6= 0. From this and the following equality follows

f1(c) = f1(d), which contradicts with the last inequality. Thus cq� dq implies

cp� dp but only in the presence of ap� bp in the same “region” (SE or NW).

2.13 Summary

We have presented the axiomatization of the Choquet integral for two-dimensional

heterogeneous product sets. Our axiom system does not rely on the notions of

comonotonicity or constant acts which are not meaningful in the heterogeneous

setting. The novel condition is A3, which states, roughly speaking, that we should

be able to create an additive representation on at least one of the two cones SEz

and NWz built at any point z ∈ X. This axiom is in fact a generalized version

of comonotonic additivity, as is explained in the next chapter. The results we

have presented include ordinal, cardinal and mixed cases. We constructed the

representation and studied its uniqueness properties, which are somewhat weaker

than in the homogeneous case. These results prepare us for the n-dimensional

case presented in the following chapter.

72



Chapter 3

Axiomatization of the Choquet

integral – n-dimensional case

73



3.1 Introduction

This chapter contains a full n-dimensional characterization of the Choquet inte-

gral. There are several major differences from the two-dimensional case. First, we

will have to introduce an additional condition, acyclicity, which was not required

for two dimensions. Second, the proof flow will have to be changed significantly

due to a much larger number of possible “geometric” layouts of the set X (see

details in Section 3.7). In fact, the present case introduces one more dimension of

generality as compared to the previous results for the homogeneous sets. Not only

is the shape and location of the border between additive areas not certain, but

so too is the way that these borders intersect each other. The difference between

“comonotonicity” and our setup is presented in Figure 3.1. Homogeneous case is

typically symmetrical, with n! comonotonic cones, which intersect along the main

diagonal of the hypercube. In contrast, in our case the symmetry is gone, and in

n ≥ 3 dimensions, we also can have a much wider range of geometrical layouts.

Not necessarily all n! cones are present, even less so must all of them intersect

together. This introduces significant complications when constructing the global

representation and removes us further from the proof methods used in previous

works.

3.2 Axioms and definitions

Let < be a binary relation on the set X = X1×. . .×Xn. �,≺,4,∼, 6∼ are defined

in the usual way. In MCDA, elements of set X are interpreted as alternatives

characterized by criteria from the set N = {1, . . . , n}. Set Xi contains criteria

values for criterion i. We say that < can be represented by a Choquet integral, if

there exists a capacity ν and functions fi : Xi → R, called value functions, such

that:

x< y ⇐⇒ C(ν, (f1(x1), . . . , fn(xn)) ≥ C(ν, (f1(y1), . . . , fn(yn)). (3.1)

Definition 15. Given i, j ∈ N , a relation < on X1 × . . . × Xn satisfies ij-

triple cancellation (ij-3C), if for all ai, bi, ci, di ∈ Xi, pj, qj, rj, sj ∈ Xj, and all
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Y

Y

(a) Homogeneous case - 2 dimensions

Y

Y

Y

(b) Homogeneous case - 3 dimensions

X1

X2

(c) Heterogeneous case - 2 dimensions

X1

X2

X3

(d) Heterogeneous case - 3 dimensions

Figure 3.1: Generalization of comonotonic partitioning

z−ij ∈ X−ij holds:

aipjz−ij 4 biqjz−ij

airjz−ij < bisjz−ij

cipjz−ij < diqjz−ij

⇒ cirjz−ij < disjz−ij. (3.2)
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A1 - Weak order. < is a weak order.

A2 - Weakest separability. For all i, if aix−i� bix−i for some ai, bi ∈ Xi,x−i ∈
X−i, then aiy−i< biy−i for all y−i ∈ X−i.

Note, that from this follows, that for any ai, bi ∈ Xi either aix−i< bix−i or

bix−i< aix−i for all x−i ∈ X−i. This allows to introduce the following defini-

tion:

Definition 16. For all ai, bi ∈ Xi define <i as ai<i bi ⇐⇒ aix−i< bix−i for all

x−i ∈ X−i.

Definition 17. For any z ∈ X define SEz
ij = {xixjz−ij ∈ X:xi<i zi, zj <j xj},

and NWz
ij = {xixjz−ij ∈ X: zi<i xi, xj <j zj}.

A3 - Coordinate Ordering Completeness. For any z ∈ X, and all i, j ∈ N ,

ij-triple cancellation holds either on SEz
ij or on NWz

ij.

This new property would allow us to divide X into subsets without the need to use

the notion of comonotonicity. We can introduce the following binary relations:

Definition 18. We write:

1. iRz j if ij-triple cancellation holds on the set SEz
ij.

2. iSz j if [NOT jRz i].

3. iEz j if [iRz j AND jRz i].

Note that Rz is complete (which is why we have called axiom A3 “Coordinate

Ordering Completeness”) and Sz is partial.2 Since N is finite, there is only a finite

number of various partial orders Sz, so we can index them (Sa,Sb, . . .) and drop

the superscripts when not needed. Also, each of the partial orders Sk uniquely

defines the corresponding Rk - iRk j if [NOT j Sk i].

In contrast to the case with two variables, this property alone is not suf-

ficient to construct a representation. Comparing value functions for different

2If the relation is empty for all z, other axioms entail the existence of an additive represen-
tation on X.
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attributes suggests some sort of transitivity. For example, fi(xi) > fj(xj) and

fj(xj) > fk(xk) imply fi(xi) > fk(xk). The property we introduce is weaker - it

is acyclicity. There are two conditions required actually - cardinal acyclicity and

ordinal acyclicity. These axioms effectively define how the set X is partitioned.

A3-OA - Ordinal Acyclicity. For all z ∈ X, Sz is acyclic. In other words,

iSz j Sz . . .Sz k ⇒ iRz k. (3.3)

The cardinal acyclicity condition bears some similarity to the condition nec-

essary for existing of a potential game (Monderer and Shapley, 1996). We call it

cardinal acyclicity, as it prohibits an existence of “positive improvement cycles”.

The condition is a generalization of A5 from the two-dimensional case, so we just

give it as A5 below.

We also introduce the following notions:

Definition 19. Define SEij as a union of the following three sets:

� All z ∈ X such that iRz j, if zi is not maximal and zj is not minimal;

� All z ∈ X such that zi is maximal and for no xj, yj ∈ Xj : zj <j xj <j yj we

have jRxjz−j i and NOT jRyjz−j i;

� All z ∈ X such that zj is minimal and for no xi, yi ∈ Xi : yi<i xi<i zi we

have jRxiz−i i and NOT jRyiz−i i.

Define NWij as a union of the following three sets:

� All z ∈ X such that jRz i, if zj is not maximal and zi is not minimal;

� All z ∈ X such that zi is minimal and for no xj, yj ∈ Xj : yj <j xj <j zj we

have iRxjz−j j and NOT iRyjz−j j;

� All z ∈ X such that zj is maximal and for no xi, yi ∈ Xi : zi<i xi<i yi we

have iRxiz−i j and NOT iRyiz−i j.
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Presence of maximal and minimal points significantly complicates the defini-

tions of SEij and NWij, since at such points some of the sets SEz
ij and NWz

ij be-

come degenerate and condition 3C-ij trivially holds. If sets Xi and Xj do not con-

tain minimal or maximal points, we can drop the corresponding conditions in each

definition and simply state that SEij = {z : iRz j} and NWij = {z : jRz i}.
Partial orders Si define subsets of the set X as follows.

Definition 20. We write XSi =
⋂

(k,j):kRi j

SEkj

It is well known that the sufficient property for an additive representation to

exist on a Cartesian product is strong independence Krantz et al. (1971). In the

X = Y n case, the Choquet integral was previously axiomatized using comonotonic

strong independence (or comonotonic trade-off consistency Wakker (1991a)). In

this paper we will be using sets XSi to formulate a similar condition.

Definition 21. We say that i ∈ N is essential on A ⊂ X if there exist

xix−i, yix−i ∈ A, such that xix−i� yix−i.

A4 - Intra-coordinate trade-off consistency

aix−i4 biy−i

aiw−i< biz−i

cix−i< diy−i

⇒ ciw−i< diz−i, (3.4)

provided that either:

a) ExistsXSj such that aix−i, biy−i, aiw−i, biz−i, cix−i, diy−i, ciw−i, diz−i ∈
XSj

b) Exist XSj , XSk such that aix−i, biy−i, aiw−i, biz−i ∈ XSj , i is essential

on XSj , and cix−i, diy−i, ciw−i, diz−i ∈ XSk , or;

c) Exist XSj , XSk such that aix−i, biy−i, cix−i, diy−i ∈ XSj , i is essential

on XSj , and aiw−i, biz−i, ciw−i, diz−i ∈ XSk .

Informally, the meaning of the axiom is that ordering between preference

differences (“intervals”) is preserved irrespective of the “measuring rods” used
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to measure them. However, contrary to the additive case this does not hold on

all X, but only when either points involved in all four relations lie in the same

“3C-set” XSj , or points involved in two relations lie in one such set and those

involved in the other two in another.

A5 - Inter-coordinate trade-off consistency Let i, j, k, . . . ,m be a sequence

made of K coordinates and let

aie
0
−i ∼ bif

0
−i

aix
0
−i ∼ pjy

0
−j

bix
0
−i ∼ qjy

0
−j

pje
1
−j ∼ qjf

1
−j

rje
1
−j ∼ sjf

1
−j

rjx
1
−j ∼ gky

1
−k

sjx
1
−i ∼ hky

1
−k

gke
2
−k ∼ hkf

2
−k

. . .

tme
K
−m ∼ umf

K
−m

wme
K
−m ∼ zmf

K
−m

wmx
K
−m ∼ ciy

K
−i

zmx
K
−m ∼ diy

K
−i



⇒ cie
0
−i< dif

0
−i (3.5)

for all points in X provided all points containing ai, bi, ci, di reside in the

same XSv such that i is essential on XSv , all points containing pj, qj, rj, sj

reside in the same XSy such that j is essential on XSy , etc.

The formal statement of the A5 is rather complicated, but it simply means that

the ordering of the “intervals” is preserved across dimensions. This version is an

extension of the two-dimensional version and provides also the necessary “cardi-

nal acyclicity” property. Together with A4 the conditions are similar to Wakker’s
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trade-off consistency condition Wakker (1991b). The axiom bears even stronger

similarity to Axiom 5 (compatibility) from section 8.2.6 of Krantz et al. (1971).

Roughly speaking, it says that if the “interval” between ci and di is “larger” than

that between ai and bi, then “projecting” these intervals onto another dimension

by means of the equivalence relations must leave this order unchanged. We ad-

ditionally require the comparison of intervals and “projection” to be consistent -

meaning that each quadruple of points in each part of the statement belongs to

the same XSi . Another version of this axiom, which is used frequently in proofs,

can be formulated in terms of standard sequences (Lemma 39).

A6 - Strong monotonicity Let aix−i, bix−i, cix−i, dix−i ∈ XSi and aix−i� bix−i.
If for some y−i ∈ X−i we have ciy−i� diy−i, then cix−i� dix−i for all i ∈ N .

This axiom is similar to “strong monotonicity” in Wakker (1991b). We analyze

its necessity and the intuition behind it in section 3.13.

A7 - Essentiality All coordinates are essential on X.

A8 - Restricted solvability If aix−i< y< bix−i, then there exists c : cix−i ∼ y

for i ∈ N .

A9 - Archimedean axiom Every bounded standard sequence contained in

some XSi is finite, and in the case of only one essential coordinate, there

exists a countable order-dense subset of XSi .

Finally, we can introduce a notion of interacting coordinates.

Definition 22. Coordinates i and j are interacting if exists z ∈ X, such that

iSz j or j Sz i. We call a set A ⊂ N an interaction group if for each i, j ∈ A

we can build a chain of coordinates i, k, . . . , j, such that every two subsequent

coordinates in the chain are interacting.

Interaction groups play an important role in the uniqueness properties of the

representation. In what follows we will be considering only groups of maximal

possible size if not specified otherwise.
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3.2.1 Additional assumptions

The following additional assumptions are made. The reasoning behind each one

is explained below. As in the two-dimensional case we are strongly convinced

that the construction of the representation can be done without these, although

with some technical complications.

“Collapsed” equivalent points along dimensions. For no i ∈ N and no

ai, bi ∈ Xi holds aix−i ∼ bix−i for all x−i ∈ X−i.

If this wasn’t true, we could have value functions assigning the same value to

several points in the same set Xi. To simplify things we exclude such case,

however, it can be easily reconstructed once the representation is built.

Density. We assume that for all i ∈ N , whenever aix−i� bix−i, there exists

ci ∈ Xi such that aix−i� cix−i� bix−i (X is order dense).

“Closedness”. For every i and j, if there exist xixjz−ij such that iSxixjz−ij j

and yixjz−ij such that j Syixjz−ij i, then exists zi ∈ Xi such that iEzixjz−ij j.

This assumption says that sets SEij and NWij are “closed”. In the repre-

sentation this translates into existence of the inverse for all points where value

functions fi and fj are equal, provided i and j are interacting. This is a technical

simplifying assumption and the proof can be done without it.

3.3 Representation theorem

As follows from the definition of the Choquet integral (Section 2.1.1), every point

x ∈ X uniquely corresponds to a set of weights pxi : pxi ≥ 0,
∑

i∈N p
x
i = 1. This

notation is used to simplify the statement of the following theorems.

Theorem 8. Let < be a binary relation on X and the structural assumptions

hold. Then, if axioms A1-A9 are satisfied, there exists a capacity ν and value

functions f1 : X1 → R, . . . , fn : Xn → R, such that < can be represented by the

Choquet integral:

x< y ⇐⇒ C(ν, (f1(x1), . . . , fn(xn))) ≥ C(ν, (f1(y1), . . . , fn(yn))), (3.6)
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for all x, y ∈ X.

Capacity and value functions have the following uniqueness properties.

Theorem 9. Let I = {A1, . . . , Ak} be a partition of N into interaction groups

Ai. Then, exist unique capacities νA1 , . . . , νAk
and value functions f1 : X1 →

R, . . . , fn : Xn → R, such that < can be represented by a sum of the Choquet

integrals:

x< y ⇐⇒
k∑
i=1

C(νAi
, fAi

(xAi
)) ≥

k∑
i=1

C(νAi
, fAi

(yAi
)), (3.7)

for all x, y ∈ X, where fAi
(xAi

) is a shortcut for (fi1(xi1), . . . , fit(xit)), where

{i1, . . . , it} = Ai, in other words a vector including value functions of coordinates

from the set Ai.

It is easier to characterize the uniqueness properties of the representation (3.7),

as in the case of the model (3.6) value functions in each interaction group can be

re-scaled independently, which is “compensated” by re-scaling the corresponding

capacity elements and re-normalizing (see example below). On contrary, the

representation (3.7) gives us a very clean uniqueness results due to the fact that

all capacities νAi
are normalized. Note that contrary to the representation (3.6),

capacities νAk
are unique.

To simplify the uniqueness statement, we separate two cases - the fully car-

dinal one, where each XSi has at least two essential coordinates, and the fully

ordinal one, where only one coordinate is essential on each XSi . These kind of

assumptions are customary in the literature (e.g. Wakker (1991b) assumes all

variables to be essential). Add analysis

of the general

case

Add analysis

of the general

case
Theorem 10. Let each XSa has at least two essential coordinates (cardinal case).

Let g1 : X1 → R, . . . , gn : Xn → R be such that (3.7) holds with fi substituted by

gi. Let i ∈ Am. Then,

gi(xi) = αfi(xi) + βAm . (3.8)

Theorem 11. Let each XSa has only one essential coordinate (ordinal case). Let

g1 : X1 → R, . . . , gn : Xn → R be such that (3.7) holds with fi substituted by gi.
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Then, ν in representation (3.6) is unique, all variables are in the same interaction

group, and

gi(xi) = ψifi(xi), (3.9)

where ψi is an increasing function, and for all i, j ∈ N we have fi(xi) ≥
fj(xj) ⇐⇒ gi(xi) ≥ gj(xj).

The extreme cases of the representation (3.7) are the case where all dimensions

are in the same interaction group, in which case we get the representation (3.6)

with a unique capacity, and the case where all interaction groups are singletons,

i.e. there is no interaction, and we get an additive value model (capacities νAi

are defined on {∅, i}).
The uniqueness properties of the original representation (3.6) are much

weaker. As shown above, it is strongly conditional on the absence of additiv-

ity throughout X. This is so because we can change the origins of the value

functions in each interaction group independent of those in other interaction

groups. This allows to “move” the representation of X between various comono-

tonic cones, hence allowing for the use of different capacities. Some examples of

non-uniqueness are given in Section 3.9.

.

3.4 Proof preview

The proof contains five main stages. First, we construct additive representations

on the sets XSi with extreme points removed. Next, we show that value functions

on the same dimensions are proportional across different XSi , so we can rewrite

the additive representations using the same value functions, but with different

weights, for all XSi . The third step is to show that we can rescale the value

functions so that for all points z, where iEz j, levels from both dimensions i and

j get the same value. Finally, we show that the additive representations can

be unified in a single global Choquet integral representation, including also the

extreme points of X. The only thing left after this is to analyse the uniqueness

of the constructed model.

Construction of the additive representations within XSi is done in Section
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3.5, proportionality is shown in 3.6, equality of value functions for points where

iE j, construction of the global representation, and construction of the Choquet

integral are presented in Section 3.7. Extension to the extreme points is done

in 3.8. Finally, Section 3.9 contains the analysis of the uniqueness properties.

Additional technical results are presented in Sections 3.12 - 3.14.

3.5 Additive representations on XSa

We start by removing maximal and minimal elements from the sets Xi. The

representation will be extended to these points in Section 3.8.

Similar to (Wakker, 1991b) we will be covering the setsXSa with “rectangular”

subsets. Given a point z ∈ XSa we construct a “rectangular” set Xz(Sa) in the

following way:

� If j is minimal in Sa, then X
z(Sa)
j = xj ∈ Xj : zj <j xj.

� If j is maximal in Sa, then X
z(Sa)
j = xj ∈ Xj : xj <j zj.

� If j is neither maximal not minimal, then X
z(Sa)
j = [xj ∈ Xj :

xj <j zj, xjz−j ∈ XSa ].

� If for no k we have j Sa k or k Sa j, then X
z(Sa)
j = Xj.

3.5.1 Constructing additive representation on Xz(Sa)

We assume that XSa has at least two essential coordinates. By Lemma 42, all sets

Xz(Sa) therefore have at least two essential coordinates. Moreover, the essential

coordinates are the same across all sets.

Theorem 12. For any z ∈ XSa there exists an additive representation of < on

Xz(Sa):

x< y ⇔
n∑
i=1

V z
i (xi) ≥

n∑
i=1

V z
i (yi), (3.10)

for all x, y ∈ Xz(Sa).
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Proof. Xz(Sa) is a Cartesian product, < is a weak order on Xz(Sa), < satisfies gen-

eralized triple cancellation on Xz(Sa), < satisfies Archimedean axiom on Xz(Sa), at

least two coordinates are essential. It remains to show that < satisfies restricted

solvability on Xz(Sa).

Assume that for some xiz−i, w, yiz−i ∈ Xz(Sa), we have xiz−i<w< yiz−i,

hence exists zi ∈ Xi : ziz−i ∼ w. We need to show that ziz−i ∈ XSa . If w ∼ xiz−i

or w ∼ yiz−i, then the conclusion is immediate (since either point belongs to

Xz(Sa)). Hence, assume xiz−i� ziz−i� yiz−i. This means that xi<i zi<i yi. Since

zi is “sandwiched” between xi and yi we conclude that for any j ∈ N \ i, iSxiz−i j

and iSyiz−i j imply also iSziz−i j, and symmetrically j Sxiz−i i and j Syiz−i i imply

j Sziz−i i. Hence, it is also in XSa .

Therefore all conditions for the existence of an additive representation are met

(Wakker, 1991a).

3.5.2 Joint representation V Sa on XSa

This section is based on (Wakker, 1991b) with some modifications.

Theorem 13. There exists an additive interval scale V Sa(z) =
∑n

i=1 V
Sa
i (zi) on

XSa, which represents < on every Xz(Sa) with z ∈ XSa.

Proof. Choose the reference set - pick any r ∈ XSa such that X
r(Sa)
i contains more

than one point for any XSa-essential i. Choose a “zero” point - any r0 ∈ Xr(Sa),

and a “unit mark” - a point r1
kr

0
−k ∈ Xr(Sa), such that:

� k is essential on XSa ,

� r1
k<k r

0
k.

Set V r
i (r0

i ) = 0 for all i ∈ N and V r
k (r1

k) = 1. This uniquely defines unit and

locations of all V r
i , i ∈ N .

In the following we assume that sets X
z(Sa)
i , X

z(Sa)
k each contain at least two

points, otherwise, alignment is trivial.

Assume X
r(Sa)
i ∩Xz(Sa)

i = ∅ and X
r(Sa)
k ∩Xz(Sa)

k = ∅ (variations are all covered

by the below procedure). We will construct two auxiliary points z′ and r′ such

that X
z′(Sa)
i ⊂ X

z(Sa)
i , X

z′(Sa)
i ⊂ X

r(Sa)
i , X

r′(Sa)
k ⊂ X

z(Sa)
k , X

r′(Sa)
k ⊂ X

r(Sa)
k . It
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would allow us to align first V r and V r′ , then V r′ and V z′ , and finally V z′ and V z.

See Figure 3.2 for an example: green rectangle is for z: X
z(Sa)
i ×Xz(Sa)

k , yellow is

for z′, red is for r′, and blue is for r.

Xk

Xi

Xz(Sa) Xz′(Sa)

Xr(Sa)

Xr′(Sa)

Figure 3.2: Aliging representations V z and V r

Construct the point z′ by taking coordinate-wise maxima of r and z for co-

ordinates j such that jRa i, not including i itself, and coordinate-wise minima

of r and z for coordinates j, such that iRa j and i itself. In the short notation

the first point is z′ := max(rj, zj)j:jRa i min(rj, zj)j=i,j:iRa j. The second point r′

is constructed by taking coordinate-wise maxima of r and z for coordinates j

such that jRa k, not including k itself, and coordinate-wise minima of r and z

for coordinates j, such that kRa j and k itself. In the short notation the second

point looks like r′ := max(rj, zj)j:jRa k min(rj, zj)j=k,j:kRa j.

Note that both points are in XSa since relations jRa l remain intact for all

pairs j, l. Note also, that X
z′(Sa)
i contains both X

z(Sa)
i and X

r(Sa)
i , and X

r′(Sa)
k

contains both X
z(Sa)
k and X

r(Sa)
k .

Now we have that sets (X
z(Sa)
i ×Xz(Sa)

k )∩(X
z′(Sa)
i ×Xz′(Sa)

k ), (X
z′(Sa)
i ×Xz′(Sa)

k )∩
(X

r′(Sa)
i ×Xr′(Sa)

k ), (X
r′(Sa)
i ×Xr′(Sa)

k )∩(X
r(Sa)
i ×Xr(Sa)

k ) are all non-empty, and each

dimension contains more than two points. Relation <i,k on these sets satisfies

Archimedean axiom, restricted solvability, and A4. Hence we can apply standard

uniqueness properties of additive representations. We first align V r′

k with V r
k and

V r′
i with V r

i , then V z′

k with V r′

k and V z′
i with V r′

i , and finally V z
k with V z′

k and
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V z
i with V z′

i by changing the common unit and locations of corresponding value

functions.

Having aligned like this V z
i and V z

k with V r
i and V r

k for all z ∈ XSa we can

perform the same alignment operation for all remaining essential coordinates j,

using pairs V z
j and V z

k . At this stage, functions V z
k are already aligned, hence

have a correct unit and location. As above, uniqueness properties of additive

representations of relation <j.k imply that the unit of functions V z
j is already

aligned with that of V r
j and only location change has to be performed. This can

also be done as above.

Once such alignment has been performed for all essential coordinates, we can

verify that this is done consistently throughout XSa . In particular, for any s and t

from XSa we must be able to show that for any essential j ∈ N , we have V s
j = V t

j

on X
s(Sa)
j ∩ X t(Sa)

j . To show this a following argument can be used. During

the initial alignment of V s
j and V t

j , auxiliary points t′ and s′ were used, such

that X
s′(Sa)
j includes X

s(Sa)
j and X

r(Sa)
j , and X

t′(Sa)
j includes X

t(Sa)
j and X

r(Sa)
j .

Hence, functions V s′
j and V t′

j coincide with V r
j on X

r(Sa)
j . To show that they

coincide on all common domain, including X
s(Sa)
j ∩X t(Sa)

j , we just need to follow

the same procedure as before and construct a point that contains X
s′(Xa)
k and

X
t′(Xa)
k for some essential k. Then a uniqueness argument can be evoked once

again, and since V s′
j and V t′

j coincide on X
r(Sa)
j , they would necessarily coincide

also on the remaining common domain, which includes X
s(Sa)
j ∩X t(Sa)

j . Finally,

since V s
j = V s′

j on X
s(Sa)
j , and V t

j = V t′
j on on X

t(Sa)
j , we get that V s

j = V t
j on

X
s(Sa)
j ∩X t(Sa)

j .

At this point we can drop the superscripts and define functions V Sa
i which

coincide with V
z(Sa)
i for all z ∈ XSa on the corresponding domains. By the above

argument, these functions are well-defined.

3.5.3 V Sa is globally representing on XSa

Lemma 21. For all XSa-essential i ∈ N , V Sa
i represents <i on XSa

i .

Proof. Let αi, βi ∈ XSa
i be such that αi<i βi. Similarly to the construction of r′

and z′ in the proof of theorem 13, we can show that always exists xi such that
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αix−i, βix−i ∈ XSa . The conclusion follows.

Theorem 14. Representation V Sa obtained in Theorem 13 is globally represent-

ing on XSa.

Proof. We need to show that x< y ⇐⇒ V Sa(x) ≥ V Sa(y).

� If exists z such that x, y ∈ Xz(Sa) then the result is immediate.

� If the above is not true, we will show that exists x′ ∼ x such that V Sa(x) =

V Sa(x′) and x′i<i yi for all i.

The procedure is identical to Wakker (1991a) with some minor modifications.

1. Find i such that yi�i xi and xk<k yk for all k such that k Sa i. We have

yix−i ∈ XSa (since for all k ∈ N such that k Sa i we have xk< yk, hence

kRyiy−i i implies kRyix−i i, whereas for all t ∈ N such that iSa t we have

iRxix−i t, hence iRyix−i t).

2. Similarly, find j such that xj �j yj and yk<k xk for all k such that j Sa k.

By similar reasoning, yjx−j ∈ XSa .

3. We are increasing xi and decreasing xj and thus move in the direction of y.

4. Note, that x−ijyiyj ∈ XSa .

5. If x−ijyiyj <x, then by restricted solvability (x−ijyiyj <x<x−ijxiyj) ex-

ists x′ := x−ijx
′
iyj ∼ x, where yi<i x

′
i<i xi. If x�x−ijyiyj, then by re-

stricted solvability (x−ijyixj <x�x−ijyiyj) exists x′ := x−ijyix
′
j ∼ x, and

xj <j x
′
j <J yj.

6. In both cases, the resulting point x′ is in XSa , moreover x′, x ∈ Xz(Sa) where

z := xijxiyj, hence x′ has the same V Sa-value as x, but one more coordinate

becomes identical to that of y.

7. After repeating the procedure unless x′i<i yi (at most n times), we get the

result by Lemma 21.
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8. Moreover, if x ∼ y, we at the end of the procedure we would necessarily

arrive to y itself (by strong monotonicity as in Lemma 42, and a structural

assumption). Hence we get x� y ⇒ V Sa(x) > V Sa(y) and x ∼ y ⇒
V Sa(x) = V Sa(y), which implies that x< y ⇐⇒ V Sa(x) ≥ V Sa(y)

3.6 Aligning cardinal representations for differ-

ent XSa

There can be several cases depending on what variables are essential on various

sets XSi . We start with the case where exist XSa and XSb having at least two

essential variables each.

3.6.1 Exist at least two sets XSi with at least two essential

coordinates

Theorem 15. Assume that at least two coordinates are essential on XSa and

XSb. For any i ∈ N that is essential on both areas, it holds V Sa
i (zi) = λabi V

Sb
i (zi)

for all zi from the common domain of V Sa
i (zi) and V Sb

i (zi), if a common location

is chosen for both functions.

Proof. If the common domain of V Sa
i (zi) and V Sb

i (zi) is empty or contains just

one point, the result is trivial. Assume that i, j are essential on XSa and i, l are

essential on XSb . First, we will establish that a standard sequence on coordinate

i in XSa is also a standard sequence in XSb (provided all points of the sequence

lie within a common domain of V Sa
i (zi) and V Sb

i (zi)). This follows from A4.

Build any standard sequence XSa
i , say {αki : αki vjx−ij ∼ αk+1

i wjx−ij}. Then,

{αki : αki tlx−il ∼ αk+1
i ulx−il} is a standard sequence in Sb, i.e. if exist tl, ul ∈ Xl

such that αki tlx−il ∼ αk+1
i ulx−il for some k, then by A4:

αki vjx−ij ∼ αk+1
i wjx−ij

αki tlx−il ∼ αk+1
i ulx−il

αk+1
i vjx−ij ∼ αk+2

i wjx−ij

⇒ αk+1
i tlx−il ∼ αk+2

i ulx−il (3.11)
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Pick two points r0
i and r1

i in the common domain and set V Sa
i (r0

i ) = V Sb
i (r0

i ) =

0. Assume we now have V Sa
i (r1

i ) = va and V Sb
i (r1

i ) = vb. We need to show that

for any point zi from the common domain of V Sa
i and V Sb

i we have V Sa
i (zi) =

λabi V
Sa
i (zi), where λabi = vb

va
.

Build standard sequences from r0
i to r1

i , and from r0
i to zi. We have

V Sa
i (r1

i )− V Sa
i (r0

i ) ≈ n[V Sa
j (vj)− V Sa

j (wj)]

V Sa
i (zi)− V Sa

i (r0
i ) ≈ m[V Sa

j (vj)− V Sa
j (wj)].

(3.12)

V Sa
i (r0

i ) = 0, hence

V Sa
i (zi) ≈

mV Sa
i (r1

i )

n
. (3.13)

Such n and m exist by the Archimedean axiom. By the argument above we get

V Sb
i (r1

i )− V
Sb
i (r0

i ) ≈ n[V Sb
j (tl)− V Sb

j (ul)]

V Sb
i (zi)− V Sb

i (r0
i ) ≈ m[V Sb

j (tl)− V Sb
j (ul)].

(3.14)

Similarly,

V Sb
i (zi) ≈

mV Sb
i (r1

i )

n
. (3.15)

By density, we can pick an arbitrary small step of the standard sequences, so the

ratio m
n

converges to a limit. Thus, finally

V Sa
i (zi) =

V Sa
i (r1

i )

V Sb
i (r1

i )
V Sb
i (zi) =

va
vb
V Sb
i (zi) = λabi V

Sb
i (zi). (3.16)

We proceed by picking common locations for all value functions. Since r0

belongs to all XSa , we can set V a
i (r0

i ) = 0. At this point we can drop superscripts

and say that we have representations

λai Vi + . . .+ λanVn (3.17)

on each XSa , defining also λai := 0 for variables i that are inessential on the set

XSa .
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3.7 Constructing global representation on X

At this stage we need to show that the representations on individual XSi can be

re-aligned to assign the same value to equivalence classes of < in all XSi . We

start by showing that values of the equivalence classes in subsets XSa , XSb that

are defined by switching the S-order of two coordinates i, j, are identical.

3.7.1 Aligning the value functions

Pick some XSa which has at least two essential interacting variables i, j, i.e. iSa j

and assume moreover that for no k we have iSa k Sa j. Choose two points r0 and

r1 from XSa such that iEr0 j and iEr1 j, moreover, r1
k<k r

0
k for all k ∈ N . why do these

exist?

why do these

exist?Set Vi(r
0
i ) = Vj(r

0
j ) = 0 and Vi(r

1
i ) = 1. We now have Vj(r

1
j ) = kj, define

φj :=
Vj
kj

, and φi := Vi
ki

(ki = 1). Additive representations on various XSa now

have the form λa1V1(x1) + . . .+ λai kiφi(xi) + λajkjφj(xj) + . . .+ λanVn(xn).

Now also, define φm for m 6= i, j by letting φm := kmVm, where km is such

that Vm(r1
m) − Vm(r0

m) = km. Hence, we get φm(r1
m)j − φm(r0

m) = 1 for all m,

including i and j.

The representation now is

φa(x) = λa1k1φ1(x1) + . . .+ λai kiφi(xi) + λajkjφj(xj) + . . .+ λanknφn(xn). (3.18)

Finally, re-normalize it once again, by dividing by the sum of coefficients:

φa(x) =
λa1k1∑n
i=1 λ

a
i ki

φ1(x1) + . . .+
λankn∑n
i=1 λ

a
i ki

φn(xn) (3.19)

Define αam := λamkm∑n
i=1 λ

a
i ki

, and get the representation:

φa(x) = αa1φ1(x1) + . . .+ αanφn(xn). (3.20)

With this in hand we can introduce the following lemma:

Lemma 22. Let Sa and Sb be identical apart from i, j ∈ N such that iSa j and

j Sb i. Then, αam = αbm for all m 6= i, j.
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Proof. First, note that

φa(r1)− φa(r0) =
n∑
i=1

αai (φ(r1
i )− φ(r0

i )) =
n∑
i=1

αai = 1 (3.21)

and similarly, φb(r1)−φb(r0) = 1. We can build equispaced sequences (see Section

3.11) from r0 to r1 in accordance with the orders Ra and Rb, e.g. if m is minimal

in Ra and Rb, we first go from r0 to r1
mr

0
−m, etc. The sequences can be constructed

so that one resides entirely in XSa and another in XSb . By A5, they will have the

same number of steps. By the above argument, global value increment per step

would be identical in both cases as well. Finally, we can follow these sequences

from r0 or r1 to r0
Ar

1
−A, again, in accordance with orderings Ra and Rb. Again,

by A5 the number of steps in both sequences would be the same, hence also the

utility increment. We get for all A which either do not contain the “switched”

pair i, j or contain both i and j:

φa(r1
Ar

0
−A)− φa(r0) = φb(r1

Ar
0
−A)− φb(r0)∑

i∈A

αai (φi(r
1
i )− φi(r0

i )) =
∑
i∈A

αbi(φi(r
1
i )− φi(r0

i ))∑
i∈A

αai =
∑
i∈A

αbi .

(3.22)

The result follows.

Corollary 1. Let Sa and Sb be identical apart from i, j ∈ N such that iSa j and

j Sb i. Then αai + αaj = αbi + αbj, and φa(r0) = φb(r0) and φa(r1) = φb(r1) (where

r0 and r1 is defined as above).

Note that we can change the location of any φm,m 6= i, j independently, and

also change it’s scale, by redefining φ′m = k′mφm and then re-normalizing, inde-

pendently and without violation of anything proved above. Indeed, for example

φa(r0) = φb(r0) and change the location of φm by letting φ′m := φm + γm. By the

uniqueness properties of the additive representations, this should lead to a valid

additive representations of XSa and XSb . Moreover, apparently, αam = αbm still

holds, and also φa(r0) + αamγm = φb(r0) + αbmγm is true.

If now we want to change the scale of φm by letting φ′m = k′mφm, we need to
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re-normalize the representations φa and φb by diving by αa1 + . . .+k′mα
a
m+ . . .+αan

and αb1 + . . .+k′mα
b
m+ . . .+αbn respectively. Since αam = αbm, these sums are equal,

so therefore everything above remains valid, including the equality of coefficients.

3.7.2 Equivalence classes have the same value

To simplify the construction in the main theorem of this section, we introduce

the following lemma.

Lemma 23. For every XSa and every z ∈ XSa, such that r0� z, we can find z′,

such that z′ ∼ z, z′ ∈ XSa, and r0
i <i zi. Likewise, for every y ∈ XSa, such that

y� r0, we can find y′, such that y′ ∼ y, y′ ∈ XSa, and yi<i r
0
i .

Proof. We can use the same procedure as was used in the proof of Theorem

14. For the case y� r0 the procedure is exactly the same, while for r0� z it is

symmetric, as we are moving z this time, and not r0.

Notice that as a result of the rescaling made in Section 3.7.1, points r0 and

r1 have the same values (0 and 1) in XSa and XSb (since φi = φj, α
a
k = αbk for all

k 6= i, j and αai + αaj = αbi + αbj).

Theorem 16. For any x ∈ XSa , y ∈ XSb we have x< y iff φa(x)<φb(y).

Proof. First take x ∼ y, such that x ∈ XSa , and y ∈ XSb . If x ∼ y ∼ r0 or

x ∼ y ∼ r1, the conclusion is immediate, so assume otherwise. Let x� r0. Using

Lemma 23 we construct x′ ∈ XSa and y′ ∈ XSb , such that x ∼ y ∼ x′ ∼ y′ and

x′i<i r
0
i , while y′i<i r

0
i .

Next, build equispaced sequences from r0 to r1 in XSa and XSb , such that

first steps of each sequence are equivalent (see details in Section 3.11). By A5

the number of steps in both sequences is equal.

Finally, build sequences from r0 to x′ and y′ (coordinate-wise dominance sim-

plifies construction of the sequences). The number of steps again must be equal,

hence the ratios between the number of steps it takes to reach r1 and x′, and

between the number of steps it takes to reach r1 and y′ are equal, and hence

taking the limit, we get φa(x) = φa(x′) = φb(y′) = φb(y).
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The same approach applies for x� y. By A5 the number of steps in the

equispaced sequence from r0 to x must be greater, than in the sequence from r0

to y. Hence also φa(x) > φb(x).

We now have x ∼ y ⇒ φa(x) = φb(y) and x� y ⇒ φa(x) > φb(y). This

implies that x< y ⇐⇒ φa(x) ≥ φb(y).

3.7.3 Connecting all XSi

We have shown that equivalence classes have the same values in two areas XSa

and XSb , where Sa an Sb are equivalent apart from one pair i, j. We need to

employ the same technique to align the remaining areas XSi with each other and

with XSa and XSb .

As shown above, every value function φm apart from i, j can be re-scaled and

shifted (i.e. its origin changed) independently of each other and without affecting

the equality of the value functions between XSa and XSb . Assume now, that exist

another variable k, such that j Sa k and for no m we have j SamSa k. Let Sc be

equal to Sb apart from the order of variables j and k as before. We can repeat

the construction exactly as in two previous sections and show that equivalence

classes take the same values on XSc and XSb (hence also XSa). Note that we

can temporarily adjust φi which was aligned with φj previously for construction

purposes and then bring it back to the original position.

Due to the assumption that all subsets have at least two essential variables,

two reference points on each coordinate set the location and the scaling factor ki

of each value function φi. We cannot have “breaks in cardinality”, in the sense

that for no i there can exist xi such that for no y−i, the point xiy−i belongs to

XSa where i is essential. This follows from the structural assumption, otherwise

by density we would be able to find another zi with the same property and

xiy−i ∼ ziy−i for all y−i. It is easy to show that various areas provide a sufficient

overlap of XSa
i , as we did in Section 3.6. review laterreview later

Thus we can move from one subset to another, moving also along a connected

component of an interaction graph. When functions for all dimensions within

the connected component are aligned, we can repeat the process for another

component. One situation that is not covered is when a cycle is present in the
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connected component. We have aligned the value function for the first coordinate

in the cycle with the second, then second with the third, etc. However, when

we reach the last value function, we still need to align it with the first, but we

cannot change the location and scaling factor of the first value function any more.

However, due to the acyclicity axioms (A3-OA and A5), we can conclude that

all value functions are now aligned, and hence the equivalence classes obtain the

same value in all XSa

commented

out cases with

a single vari-

able on some

XSa

commented

out cases with

a single vari-

able on some

XSa

Lemma 24. Given Sa and Sb, such that exists A ⊂ N , for which we have iRa j

iff iRb j for all i ∈ A, j ∈ N \ A, the following is true∑
i∈A

αai =
∑
i∈A

αbi . (3.23)

Proof. Consider r1
Ar

0
−A, which belongs both to XSa and XSb . By Theorem 16 we

have φa(r1
Ar

0
−A) = φb(r1

Ar
0
−A), hence

∑
i∈A α

a
i φ(r1

i ) =
∑

i∈A α
b
iφ(r1

i ), from which

the conclusion follows as φi(r
1
i ) = 1 for all i ∈ N .

3.7.4 Constructing the Choquet integral

Now we can proceed with construction of a unique capacity ν : 2N → R from

coefficients αai which exist on various XSa . As shown in Wakker (1989), the

condition of Lemma 24 is a necessary requirement for this. Capacity ν also has

a unique Möbius transform m : 2N → R (see definition in Section 2.1.2).

We can now construct a representation very similar to the Choquet integral.

In order to so, let us define the following function first: Φ∧(x,A) := φi(xi) for i

such that jRx i for all j ∈ A \ i, in case when this is true for several i, any can

be chosen. We can now construct a global value function (cf. Section 2.1.2):

φ(x) :=
∑
A∈N

m(A)Φ∧(x,A). (3.24)

It is easy to see that for each x ∈ X and every XSi , such that x ∈ XSi , we have

φa(x) = φ(x). Now we can show that φi(xi) = φj(xj) whenever iEx j, providing

i, j interact.
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Lemma 25. For any non-extreme x ∈ X it holds:

iEx j ⇒ φi(xi) = φj(xj), (3.25)

unless i and j do not interact.

Proof. Assume x ∈ XSa , x ∈ XSb such that k Sa l whenever k Sb l for all k, l ∈ N
apart from i, j, for which we have iSa j and j Sb i. By Theorem 16, φa(x) = φb(x)

and by Lemma 24, it is trivial to show that αak = αbk for all k 6= i, j, and αai +αaj =

αbi + αbj.

We have αai φi(xi) + αajφj(xj) = αbiφi(xi) + αbjφj(xj) (other sum components

cancel out). Dividing by αai + αaj = αbi + αbj, we get a convex combination of

φi(xi) and φj(xj) on both sides. From this follows that either φi(xi) = φj(xj) or

αai = αbi and αaj = αbj.

Assume the latter. Repeating this operation for all possible combinations of

XSk and XSl would lead us to the conclusion that m(B) = 0 for all B ⊃ {i, j},
as weights αki , α

l
i, α

k
j , α

l
j do not change when we move from XSk to XSl , and,

accordingly, from φk to φl. The conclusion results from equation (3.24).

Finally, we can show that this implies that i and j do not interact. This

means that ij-triple cancellation -

aipjz−ij 4 biqjz−ij

airjz−ij < bisjz−ij

cipjz−ij < diqjz−ij

⇒ cirjz−ij < disjz−ij, (3.26)

holds for all ai, bi, ci, di ∈ Xi, pj, qj, rj, sj ∈ Xj, and all z−ij ∈ X−ij. To show this,

use equation (3.24) to write the values for all involved points, grouping the sum

components as follows. For example, for aipjz−ij:

φ(aipjz−ij) =
∑
A⊃i
A 6⊃j

m(A)Φ∧(aipjz−ij, A) +
∑
A⊃j
A 6⊃i

m(A)Φ∧(aipjz−ij, A)+

+
∑
A 6⊃i,j

m(A)Φ∧(aipjz−ij, A) +
∑
A⊃i,j

m(A)Φ∧(aipjz−ij, A).

(3.27)

Notice, that due to the above argument, we have
∑

A⊃i,jm(A)Φ∧(aipjz−ij, A) =
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0. Also notice that
∑

A⊃j
A 6⊃i

m(A)Φ∧(aipjz−ij, A) does not depend on ai, and∑
A 6⊃i,jm(A)Φ∧(aipjz−ij, A) does not depend on ai or pj.

Assume, towards a contradiction, that disjz−ij � cirjz−ij. Writing values for

all points, and summing the first and the third, and the second and the fourth

inequalities gives:∑
A⊃i
A 6⊃j

m(A)[Φ∧(aipjz−ij, A) + Φ∧(dipjz−ij, A)] ≤
∑
A⊃i
A 6⊃j

m(A)[Φ∧(bipjz−ij, A) + Φ∧(cipjz−ij, A)]

∑
A⊃i
A 6⊃j

m(A)[Φ∧(aipjz−ij, A) + Φ∧(dipjz−ij, A)] >
∑
A⊃i
A 6⊃j

m(A)[Φ∧(bipjz−ij, A) + Φ∧(cipjz−ij, A)],

(3.28)

which is a contradiction. Hence, ij-triple cancellation holds for all ai, bi, ci, di ∈
Xi, pj, qj, rj, sj ∈ Xj, and all z−ij ∈ X−ij, and thus i and j do not interact.

Lemma 26. If for some z ∈ X we have iSz j, then φi(zi) > φj(zj).

Proof. It is easy to verify that (due to the “Closedness” assumption), there exists

xijz−ij, such that iExijz−ij j and zi<i xi, whereas xj <j zj. Since φi represents

<i, by Lemma 25, and the fact that <i is asymmetric (due to the structural

assumption), we have φi(zi) > φi(xi) = φj(xj) > φj(zj).

Now we have that [iEx j] ⇒ [φi(xi) = φj(xj)] for interacting i, j, and

[iSx j]⇒ [φi(xi) > φj(xj)], hence we conclude that [iRx j] ⇐⇒ [φi(xi)<φj(xj)]

for all interacting i, j, which allows us to finally rewrite (3.24) as the Choquet

integral:

φ(x) =
∑
A⊂N

m(A) min
i∈A

φi(xi). (3.29)

To summarize the results of this section we state the following lemma:

Lemma 27. Let X ′i := X \ { maximal and minimal elements of X}. Let X ′ :=

X ′1× . . .×X ′n. Assume that all sets X
′Sa, defined as previously, have at least two

essential variables. Then exists a capacity ν and value functions φi : Xi → R,

such that for every x, y ∈ X ′ we have

x< y ⇐⇒ φ(x) ≥ φ(y), (3.30)
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where φ(x) is the Choquet integral of (φ1(x1), . . . , φn(xn)) with respect to the ca-

pacity ν.

3.7.5 Case with a single essential variable on every XSa

For this case we only need A3 to construct the representation. Since < is a weak

order and each XSi has a countable order-dense subset, there exists a function

F : X ⇒ R, such that x< y ⇐⇒ F (x) ≥ F (y). To perform the construction of

the value functions we need the following lemma.

Lemma 28. Let aiw−i ∈ XSa and aix−i ∈ XSb. Let also i be the only essential

coordinate on XSa and XSb. Then, aiw−i ∼ aix−i.

Proof. The idea of the proof is to “trace a path” from XSa to XSb by constructing

a sequence of points and subsets XSj . We will keep ai unchanged, but will move

the remaining coordinates, in order to show that any two subsequent points in

the sequence belong to the same subset, moreover i will be the only essential

coordinate on all XSj , so all points in the sequence will be equivalent.

Step 1. Assume there exist some k such that iSa k but k Sb i. If such points

do not exist, move to Step 3. By closedness assumption, we can find yk between

xk and wk, such that iE k at aiykw−ik and aiykx−ik. Symmetrically we can find

such points for the reverse case.

Step 2. We can construct aiyAw−iA and aiyAx−iA, where subset A includes all

variables k from Step 1, however, generally, such points would not be in the

same XSj as the initial points (i.e. not in XSa and XSb). Nevertheless we can

easily construct intermediate points which would help to establish the equivalence

between aiyAw−iA and aiw−i on the one hand, and aiyAx−iA and aix−i on the

other.

First, note that by A3, i stays the only essential variable if XSa , where i is

essential, and XSj which is constructed by performing a swap (S-wise) of a pair

of coordinates, that does not change their relative position with i.

Hence, we can prove the equivalence of aiyAw−iA and aiw−i algorithmically.

For example, take the largest (S-wise) k ∈ A, such that iSa k. Consider aiykw−ik.

If this point belongs to some XSa′ but not to XSa , then exist at least one wj,
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such that j Sa k but k Sa′ j. By closedness assumption, exists y′k such that j E k at

aiy
′
kw−ik. Starting with the smallest (S-wise) such j, we can construct a sequence

of points, such that any two subsequent points belong to the same XSj , moreover

by the above arggument i remains the only essential variable on all XSj . Hence,

all points in the sequence are equivalent. Hence, aiykw−ik ∼ aiw−i.

Having repeated this process for all k ∈ A, we can conclude aiyAw−iA ∼ aiw−i

and aiyAx−iA ∼ aix−i.

Step 3. At this stage all remaining coordinates from −iA are S-ordered in the

same way relatively to i in both points. It remains to build a sequence from

aiyAw−iA to aiyAw−iA. This can be done by substituting w−iA by x−iA point by

point and following the same construction principle as in Step 2. We conclude

that aiyAw−iA ∼ aiyAx−iA, and hence aiw−i ∼ aix−i.

Using this lemma, we can now define value functions φi(xi) = F (x) by picking

x ∈ XSa where i is the essential coordinate. Lemma shows that the functions are

well-defined. It remains to construct a capacity. We can do so, by letting αai = 1

for essential i and αaj = 0 for the remaining coordinates. It is easy to show a

result similar to Lemma 24 (see Step 2 in the proof of Lemma 28). This implies

that there exist a capacity ν, and the preference relation can be represented by

a Choquet integral with respect to this capacity and value functions, defined as

above.

Lemma 29. Let the conditions of Theorem 8 hold and let there be only one

essential variable on each XSa. Then, all variables are in the same interaction

group.

Proof. Assume there are two interaction groups - A and B. By A7 all variables

are essential, hence exists a set XSa such that some i ∈ A is essential on XSa .

Assume that Sb is obtained by switching the (S) order of one pair of variables in

Sa, without changing the ordering in other pairs. As shown previously (see proof

of Lemma 28), if such switch does not involve i, it will still remain the essential

variable one XSb . If the switch involves i and some other variable j, then either

i or j, but not both, are essential on XSb . Since variables from A do not interact
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with variables from B, a switch involving a variable from A and a variable from

B can never occur, hence on all subsets XSi we can only have essential variables

from A, which contradicts A7.

Lemma 30. Let the conditions of Theorem 8 hold and let there be only one

essential variable on each XSa. Then, the capacity ν in the representation (3.6)

is unique.

Proof. Follows from Lemma 29 and by construction. Further we will show that

this capacity only takes values 0 and 1 (see Lemma 46).

3.8 Extending the representation to the ex-

treme points of X

3.8.1 Definition value functions at maximal and minimal

points of Xi

need a better

proof

need a better

proofIn contrast to the homogeneous case in (Wakker, 1991b) we cannot show with

a single statement that all value functions are bounded on Xi. Instead, we need

to look at which functions are bounded on XSa
i .

Consider a maximal point Mi. There must exist z−i such that Miz−i ∈ XSa

and i is essential on XSa . By assumption, there exists at least one other variable

j essential on XSa . There can be two cases:

� For some j we can find two points vj <j wj such that for some y−ij we have

Mivjy−ij,Miwjy−ijinX
Sa . Then, as in Lemma 20 in (Wakker, 1991b), we

can build a bound tivjyij <Miwjy−ij, and so φi is bounded.

� Otherwise, we are not able to change any of the zj’s. This implies that such

zj’s are actually maximal and moreover all of them are such that NOTiSa j.

In this case we should be able to adjust Mi itself slightly (as above) and

show that φj are bounded. Finally, by a chain of E relations and Lemma

25, we have limzi→Mi
φi(zi) = limzj→Mj

φi(zj), and hence φi is bounded from

above.
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We can now define φ(Mi) := limzi→Mi
φi(zi), and φ(mi) := limzi→mi

φi(zi) for

all i ∈ N . Assigning values to minimal elements of Xi can be done in a similar

manner. Finally we can prove the final theorem.

3.8.2 Global representation on the whole X

Theorem 17. For any x, y ∈ X, we have x< y ⇐⇒ φ(x)<φ(y).

Proof. We proceed as in Wakker (1991b) (Lemma 21) with some modifications.

For points that do not contain any maximal or minimal coordinates, this has

been already proved (Section 3.7). Thus, assume that x or y contain maximal or

minimal coordinates. Let x� y, and let x ∈ XSa , y ∈ XSb . Find Sa-minimal j

such that xj is maximal. We can also assume that for all k, such that j Sa k, we

have j Sx k. If this is not the case, then x belongs to several XSi (by definition

of these sets), and there must be one where this condition holds. By Lemma 40

we can find x′j : xj <j x
′
j such that x′jx−j ∈ XSa and still x′jx−j � y. Proceeding

like this we get x′ which does not contain any maximal coordinates, and x′� y.

We now need to show that φ(x′) > φ(y). Similarly, we can replace minimal

coordinates of y, and so it is now required to show that φ(x′) > φ(y′). So we can

assume that x has no maximal and y has no minimal coordinates. x must have

a non-minimal XSa-essential coordinate, find a Sa-maximal one i. Again, we can

assume that for all k, such that j Sa k, we have j Sx k. ;By Lemma 40 we can

decrease it slightly and find x′i : xi�x′i and x′ix−i ∈ XSa and still x′ := x′ix−i� y.

So we need to show now only that φ(x′) ≥ φ(y). If we replace all minimal

coordinates of x′ by non-minimal ones and all maximal coordinates of y by non-

maximal ones, then by monotonicity the preference between them is not affected,

and by Lemma 27, we have φ(x′) > φ(y). Thus any small increase of minimal

and small decrease of maximal values leads to a strict inequality. By definition

of φi at extreme elements of Xi, we have that φ(x′) is the infimum of all such

φ-values, and φ(y) is the supremum. Hence, φ(x′)<φ(y). x� y ⇒ φ(x) > φ(y)

also implies φ(x) ≥ φ(y)⇒ x< y.

Now let φ(x) > φ(y). x cannot have all it’s essential coordinates minimal, so

find Sa-maximal j, such that xj is not minimal. By denserangedness of φj, we

can find a non-minimal x′j : xj �j x′j and still φ(x′jx−j) > φ(y). By the above

101



argument, we have x′jx−j < y, and by strict monotonicity we have x� y.

3.9 Uniqueness

We have shown, that the preference relation < can have the following represen-

tation:

x< y ⇐⇒ C(ν, (f1(x1), . . . , fn(xn))) ≥ C(ν, (f1(y1), . . . , fn(yn))). (RepCh-n)

In this section we analyse the uniqueness of the value functions and the capacity.

It would be convenient to use the Möbius transformation form of the Choquet

integral.

C(ν, x) =
∑
A⊂N

m(A) min
i∈A

φi(xi), (RepCh-Mob)

where m is the Möbius transform of the capacity ν.

Uniqueness properties are based on two fundamental results, namely Lemma

25, which states that for interacting i and j iRz j implies that φi(zi) ≥ φj(zj),

and the uniqueness properties of the additive representations.

In contrast to the traditional additive value model, the Choquet integral rep-

resentation includes not only the value functions but also the scaling factors, or

the “weights”, which form the capacity ν. As we will see below, it is not always

possible to uniquely disentangle value functions from the weights. In particu-

lar, the possibility to do so is strongly conditional on the absence of separability

between two variables (in other words, on whether ij-triple cancellation holds

on all Xij or not). We will show that the decomposition is unique for the vari-

ables within an interaction group, but across groups such property does not hold.

In fact, the extreme case when all variables are pairwise separable is just the

(weighted) additive value model, where the weights and the value functions are

completely confounded. Indeed, if we have a representation of the form

F (x) = w1f1(x1) + . . .+ wnfn(xn), (3.31)

we can change the weights wi arbitrarily, by multiplying fi by some factor ti and
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making a change of variables wifi = w′if
′
i , where w′i = wi

ti
and f ′i = tifi.

The following Lemma shows that the capacity is getting “separated” along

the lines of interaction groups of N .

Lemma 31. Let A1, A2, ... be the interaction groups of N . Then, for any B :

B ∩ Ai 6= ∅, B ∩ Aj 6= ∅, we have m(B) = 0. Also, if for two sets A1 and A2 we

have m(B) = 0 for all B : B ∩ A1 6= ∅, B ∩ A2 6= ∅, then coordinates from A1 do

not interact with coordinates from A2.

Proof. Let i ∈ A1 and j ∈ A2. We need to show that for any B : i, j ∈ B, we

have m(B) = 0, and vice versa, if m(B) = 0 for every such B, then i and j do

not interact. Assume that for some such B we have m(B) 6= 0. Then, we can find

xijz−ij ∈ XSa , yijz−ij ∈ XSb , such that αak = αbk for all k 6= i, j, and αai 6= αbi , α
a
j 6=

αbj. This implies that ij-trade-off consistency does not hold on all Xij, hence the

variables interact. To show the reverse, note that we have αai = αbi , α
a
j = αbj for

all possible points in X, which implies ij-trade-off consistency on all Xij.

When defining functions φi in Section 3.7, we choose the origin and scal-

ing factor independently for every interaction group A ∈ N . In the expression

(RepCh-Mob) for all i from some interaction group Ak we can redefine value func-

tions by setting f ′i(zi) = 1
tk
fi(zi). Accordingly, all Möbius transform coefficients

containing variables from Ak must be multiplied by tk. As the above Lemma

shows, this transformation will not impact any of the summands including value

functions of coordinates outside Ak. Thus, the newly formed expression remains

a valid representation. We can also define m′(B) = tkm(B) for B ⊂ Ak and

m′(B) = m(B) for all other B. Apparently, m′(B) is not a capacity (unless

tk = 1), as
∑

B⊂N m
′(B) 6= 1. However, we can re-normalize the representa-

tion by dividing everything by
∑

B⊂N m
′(B). It is easy to see that the resulting

expression is once again a Choquet integral.

To avoid this ambiguity in stating the uniqueness results, it is convenient to

introduce the following lemma.

Lemma 32. Let A1, . . . , Ak be the interaction groups of N , and let < have the
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representation (3.6). Then the following is also a representation of <:

x< y ⇐⇒
k∑
i=1

C(νAi
, fAi

(xAi
)) ≥

k∑
i=1

C(νAi
, fAi

(yAi
)), (Add-Ch)

, where νAi
are capacities defined on the sets of all subsets of Ai. Moreover, the

capacities Ai are unique.

Proof. The lemma follows from the above argument. We only need to pick values

ti in a way that
∑

B⊂Ai
tim(B) = 1 for each interaction group Ai. The uniqueness

comes from the fact that within the interaction group we are not able to re-scale

the value functions individually (see further Lemma 33).

Finally, we can state the uniqueness theorem for the representation (3.7). We

prefer this representation, as the capacities νAi
are unique, contrary to the general

Choquet integral representation (3.6), where we can change the capacity almost

arbitrarily (see the argument above).

Lemma 33. Let A1, . . . , Ak be the interaction groups of N . Let g1 : X1 →
R, . . . , gn : Xn → R be such that (3.7) holds with fi substituted by gi. Let i ∈ Am.

Then,

� In case every XSi has at least two essential variables (cardinal case),

fi(xi) = αgi(xi) + βAm . (3.32)

� In case every XSi has only one essential variable (ordinal case),

fi(xi) = ψi(gi(xi)), (3.33)

where ψi is an increasing function, and for all Am and i, j ∈ Am, we addi-

tionally have

fi(xi) ≥ fj(xj) ⇐⇒ gi(xi) ≥ gj(xj). (3.34)

Proof. Follows from uniqueness properties of additive and ordinal representations

and Lemma 25.
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Appendix to Chapter 3

The following sections contain technical and auxiliary results.

3.10 Necessity of axioms

Lemma 34. A3 is necessary.

Proof. At any point z ∈ X and for every i, j, we must have either fi(zi) ≥ gi(zi)

or gi(zi) ≥ fi(zi). From this everything follows trivially (write the condition using

Mobius representation of the integral).

Lemma 35. A6 is necessary.

Proof. Assume aix−i, bix−i, cix−i, dix−i ∈ XSa and aix−i� bix−i, cix−i ∼
dix−i, ciy−i� diy−i. There can be three cases:

1. ciy−i, diy−i ∈ XSb . We have additive representations on XSa and XSb , so

αifi(ai) +
∑
j∈N\i

αjfj(xj) > αifi(bi) +
∑
j∈N\i

αjfj(xj)

αifi(ci) +
∑
j∈N\i

αjfj(xj) = αifi(di) +
∑
j∈N\i

αjfj(xj)

βifi(ci) +
∑
j∈N\i

βjfj(yj) > βifi(di) +
∑
j∈N\i

βjfj(yj).

(3.35)

The first inequality entails αi 6= 0. From this and the following equality follows

fi(ci) = fi(di), which contradicts with the last inequality. Thus ciy−i� diy−i
implies cix−i� dix−i but only in the presence of aix−i� bix−i in the same XSa

(the case when ciy−i and diy−i are not both in the same XSb can be reduced to

this one. This is also the reason behind the name we gave to this condition -

“weak bi-independence”.

2. ciy−i, diy−i ∈ XSa . In this case we get αifi(ci) > αifi(di) and αifi(ci) =

αifi(di), a contradiction.

105



3. ciy−i ∈ XSa , diy−i ∈ XSb . As above αi 6= 0, so it follows that fi(ai) = fi(bi).

But then we must have diy−i ∈ XSa (value functions are all equal to those for

ciy−i), and hence the conclusion follows as in the previous case.

3.11 Equispaced sequences

A usual standard sequence goes along a single dimension as defined above. In

this paper we often require to move along several dimensions, one at a time,

maintaining the increment between steps constant in some sense. In order to

achieve this we will introduce the concept of equispaced sequences 3. Figure 3.3

illustrates the process.

Xj

Xi

r0

α1
i

r1

γkj

αk
i αk+1

i

γk+1
j

γk+2
j

Figure 3.3: Equispaced sequences in two dimensions

Assume that r0, r1 are such that iRr0 j and iRr1 j. We would like to build a

sequence from r0 to r1 staying in the area where iR j. We can choose the size

of the sequence step arbitrarily. However, the problem is that r1 does not have

an equivalent point with the second coordinate equal to r0
j , so we cannot build a

3See also (Bouyssou and Marchant, 2010) for a similar idea
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“normal” standard sequence to achieve that. Our aim is to maintain the sequence

within set where iR j. We also assume that Xi and Xj do not have maximal or

minimal elements (or they have been removed).

By density and the absence of maximal and minimal elements, we can find

αki , α
k+1
i such that αk+1

i <i r
1
i <i α

k
i . We need to change the direction of the se-

quence from the dimension i to the dimension j at r1
i . We construct a point

equivalent to aki and a point equivalent to ak+1
i such that their i’s coordinate is r1

i

( points γkj and γk+1
j ). Since we can choose the step of the sequence arbitrarily,

by density and absence of maximal elements, we can move on and construct a

standard sequence on the coordinate j using these two points.

Remarkably the spacing between subsequent members of the equispaced se-

quence α1, . . . , αk−1, γk, γk+1, . . . stays in a certain sense the same, no matter

along which dimension we are moving. Once an additive interval scale is con-

structed, the vague notion of the equal spacing will convert into a clear constant

difference of values for subsequent members of the sequence.

Extension of A5 to equispaced sequences Construction of equispaced se-

quences allows us to extend the statement of A5, and more precisely that of

Lemma 39 to equispaced sequences.

Lemma 36. If gk and hk are two equispaced sequences entirely lying in XSa and

XSb correspondingly, and for some i we have gi ∼ hi and gi+1 ∼ hi+1, then for

all j such that exist gj and hj we have gj ∼ hj.

Proof. Without loss of generality assume that gi := gikg−k and gi+1 := gi+1
k g−k,

while hi := hilh−l and hi+1 := hi+1
l h−l, i.e. in both cases the points are from

subsequences on the same dimensions. Assume further, that hi+2 := hi+2
l h−l and

gi+2 := gi+2
m g′−m, i.e. there is a change of dimension in the sequence gk. We will

show that this entails that the following steps of the equispaced sequence gk will

be equivalent to the corresponding steps of the sequence hk as long as both keep

going along dimensions m and l correspondingly. If either of them changes its

direction the technique can be applied again. We have by construction (see Figure

3.3) gi+2
k g−k ∼ gi+2

m g′−m and gi+3
k g−k ∼ gi+3

m g′−m. Therefore, gi+2
m g′−m ∼ hi+2

l h−l

and gi+3
m g′−m ∼ hi+3

l h−l. The statement follows by Lemma 39 (A5).
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3.12 Technical lemmas

Lemma 37. If < satisfies triple cancellation then it is independent.

Proof. aip−i4 aip−i, aiq−i< aiq−i, aip−i< bip−i ⇒ aiq−i< biq−i.

Lemma 38. X =
⋃
XSi.

Proof. Immediate by A3.

Definition 23. For any set I of consecutive integers, a set {gki : gki ∈ Xi, k ∈ I}
is a standard sequence on coordinate i if exist z−ij, y

0
j , y

1
j such that y0

j 6∼j y1
j and

for all i, i+1 ∈ I we have gki y
1
j z−ij ∼ gk+1

i y0
j z−ij. Further, we say that {gki : k ∈ I}

is contained in XSa if z−ij, y
0
j , y

1
j can be chosen in such a way, that all resulting

points are in XSa.

Lemma 39. Axiom A5 implies the following condition. Let {gki : k ∈ I} and

{hkj : k ∈ I} be two standard sequences, each contained in some XSa. Assume

also, that for some m ∈ I, gmi y
0
l z−il ∼ hmj w

0
nx−jn and gm+1

i y0
l z−il ∼ hm+1

j w0
nx−jn.

Then, for all k ∈ I, gki y
0
l z−il ∼ hkjw

0
nx−jn.

Proof. The proof is very similar to the one from (Krantz et al., 1971) (Lemma

5 in section 8.3.1). Assume wlog that {gki : k ∈ I, gki y
1
l z−il ∼ gk+1

i y0
l z−il}

is an increasing standard sequence on i, which is contained in XSa , whereas

{hkj : hkjw
1
nx−jn ∼ hk+1w0

nx−jn} is an increasing standard sequence on j, and

lies entirely in XSb . We will show that gm+2
i y0

l z−il ∼ hm+2
j w0

nx−jn from which

everything follows by induction.

Assume hm+2
j w0

nx−jn� gm+2
i y0

l z−il. Then, by restricted solvability exists ĥj ∈
Xj such that ĥjw

0
nx−jn ∼ gm+2

i y0
l z−il. By A5,

gmi y
1
l z−il ∼ gm+1

i y0
l z−il

gm+1
i y1

l z−il ∼ gm+2
i y0

l z−il

gmi y
0
l z−il ∼ hmj w

0
nx−jn

gm+1
i y0

l z−il ∼ hm+1
j w0

nx−jn

gm+1
i y0

l z−il ∼ hm+1
j w0

nx−jn

gm+2
i y0

l z−il ∼ ĥjw
0
nx−jn

hmj w
1
nx−jn ∼ hm+1

j w0
nx−jn



⇒ hm+1
j w1

nx−jn ∼ ĥjw
0
nx−jn. (3.36)
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By definition of {hkj}, we have hm+1
j w1

nx−jn ∼ hm+2
j w0

nx−jn. Thus,

hm+2
j w0

nx−jn ∼ ĥjw
0
nx−jn, hence also gm+2

i y0
l z−il ∼ hm+2

j w0
nx−jn, a contradiction.

The other cases are symmetrical.

Lemma 40. Let there be x, y, i such that x� y, x ∈ XSa, iSx k for all k : iSa k,

and xi is non-minimal if i is minimal in Sa. Then exists zi, such that zi<i xi,

iSzix−i k for all k : iSa k, and zix−i� y. Similarly, let there be x, y, i such that

y�x, x ∈ XSa, k Sx i for all k : k Sa i, and xi is non-maximal if i is maximal in

Sa. Then exists zi, such that xi<i zi, k Szix−i i for all k : k Sa i, and y� zix−i.

Proof. By restricted solvability and monotonicity. See Wakker (1991b) Lemma

11.

3.13 Essentiality and monotonicity

The essentiality of coordinates within various XSi is critical. The central mech-

anism to guarantee consistency in the number of essential coordinates within

various XSi is the strong monotonicity axiom A6, which is closely related to

“comonotonic strong monotonicity” of Wakker (1989).

In the Choquet integral representation problem for a heterogeneous product

set X = X1 × . . .×Xn, strong monotonicity is actually a necessary condition. It

is directly implied by A6 and the structural assumption.

Lemma 41. Pointwise monotonicity. If for all i ∈ N it holds xi<i yi , then

x< y.

Proof. x< y1x−1 < y12x−12 < . . .< y.

Lemma 42. If i is essential on XSa, then ai<i bi iff aix−i� bix−i for all

aix−i, bix−i ∈ XSa.

Proof. If ai<i bi then by the structural assumption exists aiz−i� biz−i. The result

follows by (A6).

Conceptually, Lemma 42 implies that if a coordinate i is essential on some

subset of XSa , then it is also essential on the whole XSa . This allows us to make

statements like “coordinate i is essential on XSa”.
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3.14 Shape of {zij : iEz j}

Shape of the boundary between subsets of Xij where iR j and jR i is an inter-

esting and important question. Axiom A3 only guarantees that this boundary is

in a certain sense “quasiconvex”, i.e. an increase along i cannot be matched by

a decrease along j. Strengthening this statement requires invoking other axioms.

We only consider the cardinal case in this section.

In section 3.7 we have shown, that in the representation value functions for sets

Xi and Xj are equal for points z where iEz j. Theorem 18 provides a qualitative

version of this statement. The assumption we must make is that i and j are

essential on XSa and XSb , such that Sa and Sb differ only with respect to order

of i and j. In the below proof, we assume that i, j are Sa and Sb-maximal, but

this can be easily changed, by starting from some r1
Ar

0
−A instead of r0.

Theorem 18. Let r0 : iEr1 j, r1 : iEr1 j and aki and bkj are two standard sequences

such that a0
i r

0
−i ∼ r0

i r
0
−i and b0

jr
0
−j ∼ r0

j r
0
−j and r1

i r
0
−i ∼ ami r

0
−i whereas r1

j r
0
−j ∼

bmj r
0
−j. Assume r2 is such that iEr2 j and r2

i r
0
−i ∼ ani r

0
−i. Then r2

j r
0
−j ∼ bnj r

0
−j.

Proof. Build two equispaced sequences from r0 to r1
ijr

0
−ij:

� ek starting from r0
i via r1

i r
0
−i, and

� wk starting from r0
j via r1

j r
0
−j,

such that e1
i r

0
−i ∼ w1

j r
0
−j. By Lemma 39 (A5) it follows then that all corre-

sponding steps of two sequences are equivalent, in other words, ek ∼ wk for all k.

Consequently, there is the same number of steps both sequences make between

r0 and r1
ijr

0
−ij, say K.

For some s < K we have r1
i r

0
−i lying between es and es+1, i.e. es+1� r1

i r
0
−i< es.

Similarly, for some t < K we have wt+1� r1
j r

0
−j <wt. We can write:

[r0, r1
i r

0
−i] ≈ naki ≈ sek, (3.37)

which means: r1
i r

0
i lies between ani r

0
−i and an+1

i r0
−i and also between es and es+1.
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Similarly,

[r0, r1
j r

0
−j] ≈ nbkj ≈ twk

[r1
i r

0
−i, r

1
ijr

0
−ij] ≈ nbkj ≈ (K − s)ek

[r1
j r

0
−j, r

1
ijr

0
−ij] ≈ naki ≈ (K − t)wk.

(3.38)

Two last statements are possible because by density we can can get arbitrarily

close to points r1
j r

0
−j and r1

i r
0
−i by choosing finer sequences ek and wk.

For point r2
ijr

0
−ij we have:

[r0, r2
i r

0
−i] ≈ maki ≈

m

n
sek

[r2
j r

0
−j, r

2
ijr

0
−ij] ≈ maki ≈

m

n
(K − t)wk.

(3.39)

Assume that the number of steps on two other segments is different:

[r0, r2
j r

0
−j] ≈ lbkj ≈

l

n
twk

[r2
i r

0
−i, r

2
ijr

0
−ij] ≈ lbkj ≈

l

n
(K − s)ek.

(3.40)

Summing up parts for both paths to r2
ijr

0
−ij we get ms+l(K−s)

n
ek for SEij and

m(K−t)+lt
n

wk for NWij. By Lemma 39 (A5) the number of steps must be identical,

so:
ms+ l(K − s)

n
=
m(K − t) + lt

n
, (3.41)

or

m(s+ t−K) = l(s+ t−K). (3.42)

There are two possible solutions:

� m = l, and

� t = K − s, which means that trade-offs are consistent throughout X, hence

i and j do not interact, a contradiction.

The result follows.

Corollary 2. If aipj : iEaipjz−ij j and bipj : iEbipjz−ij j, then xiyj : iExiyjz−ij j

for all xi ∈ Xi, yj ∈ Yj.
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Corollary 3. If aipj : iEaipjz−ij j, then

� for any bi, such that bi<i ai we have iSbipjz−ij j,

� for any bi, such that ai<i bi we have j Sbipjz−ij i,

� for any qj, such that qj <j pj we have j Saiqjz−ij i,

� for any qj, such that pj <j qj we have iSaiqjz−ij j.

or i, j do not interact.

removed alter-

native ordinal

case treatment

removed alter-

native ordinal

case treatment
3.15 Summary

In this chapter we have presented an axiomatization of the Choquet integral

which is the most general of the available so far. Compared to the results in the

previous chapter we have made a significant addition to our axiom system – the

acyclicity conditions. Overall, various possible geometric layouts of the decision

space make our results more general compared to the two-dimensional heteroge-

neous and n-dimensional homogeneous cases. The most remarkable implications

of our characterization are due to the uniqueness properties of the model. In the

absence of homogeneity, the correspondence between elements of various dimen-

sion sets is unique and meaningful only in the presence of interaction, i.e. in the

absence of separability between the dimensions. In general, the Choquet integral

is decomposed into a sum of the Choquet integrals, one per interaction group.

The extreme cases are the additive value model, where all interaction groups are

of size one, and the single interaction group, which is what we also get in the

homogeneous-comonotonic case. Notably, the uniqueness properties of a purely

ordinal model are stronger as we always get a single interaction group including

all variables. In the following chapter we will revisit the homogeneous model and

show that comonotonic independence is not a necessary condition for the exis-

tence of a Choquet integral representation on such sets. In fact, comonotonicity

implies state-independence which is not always a desirable property.

112



Chapter 4

Extensions and discussion
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4.1 Introduction

This chapter contains extensions of our results to the particular interesting special

cases of the Choquet integral, analysis of some aspects of the Choquet integral

model learning, and a discussion of the applications of our results in decision

theory. The Choquet integral is a powerful aggregation operator which lists many

well-known models as its special cases. In this chapter we look at these special

cases and provide their axiomatic analysis. In cases where an axiomatization has

been previously given in the literature, we connect the existing results with the

framework that we have developed.

Next we turn to the question of learning, which is especially important for the

practical applications of the model. So far, learning of the Choquet integral has

been mostly confined to the learning of the capacity. Such an approach requires

making a powerful assumption that all dimensions (e.g. criteria) are evaluated

on the same scale, which is rarely justified in practice. Too often categorical data

is given arbitrary numerical labels (e.g. AHP), and numerical data is considered

cardinally and ordinally commensurate, sometimes after a simple normalization.

Such approaches clearly lack scientific rigour, and yet they are commonly seen

in all kinds of applications. We discuss the pros and cons of making such an

assumption and look at the consequences which our uniqueness results have for

the learning problems.

Finally, we revisit some of the applications we discussed in the Introduction.

Apart from MCDA, which is the main area of interest for our results, we also

discuss how the model can be interpreted in the social choice context. We look

in detail at the state-dependent utility, and show how comonotonicity, central

to the previous axiomatizations, actually implies state-independency in the Cho-

quet integral model. We also discuss the conditions required to have a meaningful

state-dependent utility representation and show the novelty of our results com-

pared to the previous methods of building state-dependent models.
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4.2 Extensions

4.2.1 Ordinal models

Notable ordinal special cases of the Choquet integral are:

� Min/Max

� Order statistic (k-smallest element) OSk

� Lattice polynomial pAB.

Moreover, Min/Max are special cases of OSk (k = 1 and k = n correspondingly),

and OSk is a special case of the lattice polynomial model, as becomes evident

from the following definitions.

Definition 24. < can be represented by MIN, if exist value functions φi : Xi → R
such that for all x, y ∈ X we have

x< y ⇐⇒
∧
i∈N

φi(xi) ≥
∧
i∈N

φi(yi), (4.1)

where
∧

means minimum.

Definition 25. < can be represented by MAX, if exist value functions φi : Xi →
R such that for all x, y ∈ X we have

x< y ⇐⇒
∨
i∈N

φi(xi) ≥
∨
i∈N

φi(yi), (4.2)

where
∨

means maximum.

Definition 26. < can be represented by an order statistic OSk, if exist value

functions φi : Xi → R such that for all x, y ∈ X we have

x< y ⇐⇒ φ(k)(x(k)) ≥ φ(k)(y(k)), (4.3)

where φ(k)(z(k)) stands for kth smallest element of (φ1(z1), . . . , φn(zn)).

An order statistic can be written in a CNF and DNF-like4 forms (e.g. Ovchin-

4Conjunctive normal form and disjunctive normal form.
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nikov, 1996):

OSk =
∧
K⊂N
|K|=k

∨
i∈K

φi(xi) =
∨
K⊂N

|K|=n−k+1

∧
i∈K

φi(xi). (4.4)

Obviously, MIN and MAX are particular cases of OSk with k = 1 and k = n

correspondingly.

Definition 27. < can be represented by a lattice polynomial pAB, if exist value

functions φi : Xi → R such that for all x, y ∈ X we have

x< y ⇐⇒ pAB(φ1(x1), . . . , φn(xn)) ≥ pAB(φ1(y1), . . . , φn(yn)), (4.5)

where pAB(φ1(z1), . . . , φn(zn)) is an expression which includes elements of

(φ1(z1), . . . , φn(zn)) and symbols ∨ and ∧.

We can write any lattice polynomial in DNF and CNF as well:

pAB(φ1(z1), . . . , φn(zn)) =
∧
K⊂A

∨
i∈K

φi(xi) =
∨
M⊂B

∧
i∈M

φi(xi), , (4.6)

where A ⊂ 2N and B ⊂ 2N are some collection of subsets of N . Obviously, order

statistic, hence MIN and MAX are special cases of an order polynomial.

The following result states that all aforementioned models are special cases of

the Choquet integral.

Theorem 19 (Murofushi and Sugeno, 1993). The Choquet integral with respect

to a capacity ν is a lattice polynomial function if and only if ν is a 0–1 capacity

(i.e. only takes values 0 or 1). Moreover, any lattice polynomial function on R
is a Choquet integral with respect to a 0–1 capacity.

4.2.2 Previous characterizations of the ordinal models

Some known characterizations of the models presented in the previous section

are due to Bouyssou et al. (2002), see also Sounderpandian (1991) and Segal and

Sobel (2002).

Theorem 20 (Bouyssou et al., 2002). < can be represented by MAX if < is a

weak order and the following equivalent conditions hold:
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1. For all i ∈ N, xi, yi ∈ Xi, a−i, b−i ∈ X−i and w ∈ X, we have

[xia−i<w]⇒ [yia−i<w OR xib−i<w] (4.7)

2. For all x, y ∈ X, i ∈ N :

[xiy−i<x] OR [yix−i<x] (4.8)

3. For all i ∈ N, yi ∈ Xi, z−i ∈ X−i, x ∈ X:

[yix−i�x]⇒ [yiz−i�x]. (4.9)

Theorem 21 (Bouyssou et al., 2002). < can be represented by MIN if < is a

weak order and the following equivalent conditions hold:

1. For all i ∈ N, xi, yi ∈ Xi, a−i, b−i ∈ X−i and w ∈ X, we have

[w<xia−i]⇒ [w< yia−i OR w<xib−i] (4.10)

2. For all x, y ∈ X, i ∈ N :

[x<xiy−i] OR [x< yix−i] (4.11)

3. For all i ∈ N, yi ∈ Xi, z−i ∈ X−i, x ∈ X:

[x� yix−i]⇒ [x� yiz−i]. (4.12)

Theorem 22 (Bouyssou et al., 2002). < can be represented by OSn−1 if < is a

weak order and the following equivalent conditions hold:

1. For all i, j ∈ N(i 6= j), xi, yi ∈ Xi, xj, yj ∈ Xj, a−i ∈ X−i, b−j ∈ X−j, c−ij ∈
X−ij and w ∈ X, we have

[xia−i<w AND xjb−j <w]⇒ [yia−i<w OR yjb−j <w OR xijc−ij <w]

(4.13)
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2. For all x, y ∈ X, i, j ∈ N(i 6= j):

[xiy−i<x AND xjy−j <x] OR [yijx−ij <x] (4.14)

3. For all x, y ∈ X, all i, j ∈ N(i 6= j), and all z−ij ∈ X−ij:

[yix−i�x AND yjxj �x]⇒ [yijz−ij �x]. (4.15)

4.2.3 Unified characterization of the ordinal models: pAB

and subcases

Since MIN and MAX are special cases of OSk, which in turn is a special case of the

lattice polynomial models pAB, it is desirable to build a unified characterization

for all of them. In this section we provide some steps towards such result.

Theorem 23. < can be represented by a lattice polynomial pAB if < is a weak

order, satisfies A2, and for any w, x ∈ X exist K ∈ A,M ∈ B with K ∩M 6= ∅,
such that for any a−K ∈ X−K and b−M ∈ X−M we have:{

w<x⇒ w< a−KxK , K ∈ A,

x<w ⇒ b−MxM <w,M ∈ B.
(4.16)

Note that, because sets A and B are finite, the axiom can also be re-written

similar to the conditions in the previous section, i.e. using “OR” statements.

However, we feel this form is more compact. Particular cases of the above axiom

include OSk and MIN/MAX. proof neededkproof neededk

Lemma 43. < can be represented by OSk if < is a weak order, satisfies A2, and

for any w, x ∈ X there exist K : K ⊂ N, |K|= k and M : M ⊂ N, |M |= n−k+1

with K ∩M 6= ∅, such that for any a−K ∈ X−K and b−M ∈ X−M we have{
w<x⇒ w< a−KxK ,

x<w ⇒ b−MxM <w.
(4.17)

Lemma 44. < can be represented by MIN if < is a weak order and for any
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w, x ∈ X exists i ∈ N , such that for any a−i ∈ X−i we have{
w<x⇒ w< a−ixi,

x<w ⇒ x<w.
(4.18)

Lemma 45. < can be represented by MAX if < is a weak order and for any

w, x ∈ X exists i ∈ N , such that for any b−i ∈ X−i we have{
w<x⇒ w<x,

x<w ⇒ b−ixi<w.
(4.19)

The second condition in two last lemmas is trivial and is given only to empha-

size the similarity of the axiom to the one used above. Note also, that the first

conditions in MIN/MAX characterizations are identical to those given in Section

4.2.2.

Although the condition in two last lemmas is sufficient for characterization

of MIN and MAX, in general, variations of (4.16) are not powerful enough to

characterize pAB and OSk. One reason for this is that in the MIN/MAX case the

axioms imply our A2 (the axiom that is called AC1 in Bouyssou et al. (2009))

– in other words they imply existence of weak orders on individual dimensions.

This does not seem to be the case for the pAB and OSk conditions that we gave.

Hence, we had to add A2 to the first two results.

4.2.4 Characterization of the ordinal models in our frame-

work

In Section 3.7.5 we gave details of the construction of the Choquet integral for

cases when every subset XSi has only one essential variable. We now provide

more details on this result.

Lemma 46. Let the conditions of Theorem 8 hold and let there be only one

essential variable on each XSa. Then, ν is a 0–1 capacity.

Proof. This immediately follows by construction (see Section 3.7.5). As at every

x ∈ X we have C(ν, x) = fi(xi), where i is the variable essential on XSi 3 x,
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by the definition of the Choquet integral and monotonicity of ν it follows that ν

only takes values 0 and 1.

Lemma 47. Let the conditions of Theorem 8 hold and let there be only one

essential variable on each XSa.

� < can be represented by pAB;

� If the essential variable on every XSi is the R-minimal one, then < can be

represented by MIN;

� If the essential variable on every XSi is the R-maximal one, then < can be

represented by MAX;

� If the essential variable on every XSi is the R-k-minimal one, then < can

be represented by OS − k.

Proof. The first statement follows from Theorem 19. Other follow by construction

and from the uniqueness properties of the representation (3.6) in the ordinal case

(see Theorem 10). If S ordering is incomplete, then only one R ordering can

exists which does not contradict A3,A7 and the condition that only one variable

is essential on every XSa . This follows from the uniqueness of the capacity and

the uniqueness properties of the value functions.

4.2.5 Cardinal models

The particular cases of the Choquet integral in the case of cardinal value func-

tions are related to the convexity of the capacity. We give a characterization

of the convex capacity (the concave case is easily obtainable by reversing the

preference). Note that in the two-dimensional case, the class of the Choquet

integrals with respect to convex capacities coincides with the class of Gilboa–

Schmeidler maximin models. In the general case of n dimensions, every Choquet

integral with respect to a convex capacity is a Gilboa–Schmeidler model – the

integral is a minimum of integrals with respect to probability distributions from

the capacity’s core (Gilboa and Schmeidler, 1994) – but not other way round.

To our knowledge, this is the first result which characterizes convexity of a

capacity using only the primitives of < and works in ordinal or mixed as well as
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purely cardinal cases, i.e. it is suitable for situations when standard sequences

are not available.

Theorem 24. Let conditions A1–A9 and structural assumptions hold. Then,

we have

A10 – Convexity For all i, j ∈ N and for all ai, bi, ci, di ∈ Xi, pj, qj, rj, sj ∈
Xj, and all z−ij ∈ X−ij we have

aipjz−ij ∼ biqjz−ij

airjz−ij ∼ bisjz−ij

cipjz−ij ∼ diqjz−ij

di<i ci

rj <j sj


⇒ cirjz−ij < disjz−ij, (4.20)

provided jR i at aipjz−ij, biqjz−ij, airjz−ij,∼ bisjz−ij, cipjz−ij, diqjz−ij and

iR j at cirjz−ij and disjz−ij,

if and only if ν is a convex capacity.

Proof. Since conditions A1–A9 and structural assumptions hold, there exists a

Choquet integral representation of <. We can use it to prove the statement of

the theorem. A capacity is convex if for all i, j ∈ N,A ⊂ N, i 6= j we have

(Chateauneuf and Jaffray, 1989):∑
i,j∈B⊂A

m(B) ≥ 0. (4.21)

First, let cirjz−ij ≺ disjz−ij. We can write the conditions above using the

Möbius form of the Choquet integral. All subsets of N can be separated into four

groups:

� A : A 3 i, A 63 j

� A : A 3 j, A 63 i

� A : A 3 i, A 3 j
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� A : A 63 i, A 63 j.

Hence, the value function for each of the points in the axiom can be written as

follows. For example, for aipjz−ij (note that we have merged A : A 3 i, A 63 j
and A : A 3 i, A 3 j groups by virtue of jR i at aipjz−ij):∑
A3i

m(A) min
k∈A−ij

[fi(ai), fk(zk)]+
∑
A3j
A 63i

m(A) min
k∈A−ij

[fi(pj), fk(zk)]+
∑
A3i,j

m(A) min
k∈A−ij

[fk(zk)].

(4.22)

Writing down all four conditions like this and after some trivial algebraic trans-

formations which we omit in the name of readability (sum first two conditions,

add to the sum of the last two conditions and simplify), we get

(4.23)

∑
A 3i,j

m(A)

(
min
k∈A−ij

[fi(di), fk(zk)]− min
k∈A−ij

[fi(ci), fk(zk)]

)
+
∑
A 3i,j

m(A)

(
min
k∈A−ij

[fj(rj), fk(zk)]− min
k∈A−ij

[fj(sj), fk(zk)]

)
< 0.

We will show that both summands of the above expression are non-negative.

Consider ∑
A3i,j

m(A)

(
min
k∈A−ij

[fi(di), fk(zk)]− min
k∈A−ij

[fi(ci), fk(zk)]

)
. (4.24)

The difference fi(di), fk(zk)]−mink∈A−ij[fi(ci), fk(zk) is

� always non-negative, as di<i ci

� maximal, when A = {i, j}

� non-increasing as A grows larger.

Note that, by convexity, m({i, j}) ≥ 0. Hence,

m({i, j})
(

min
k∈∅

[fi(di), fk(zk)]−min
k∈∅

[fi(ci), fk(zk)]

)
= m({i, j}) (fi(di)− fi(ci)) ≥ 0.

(4.25)
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Next, find a maximal fk1(zk1), k
1 ∈ N \ i, j. Note that in the above expression

we will only have one element mink∈A−ij[fi(di), fk(zk)]−mink∈A−ij[fi(ci), fk(zk)]

where k1 is not redundant (since it’s maximal). We get

m({i, j}) (fi(di)− fi(ci)) +m({i, j, k1}) (min[fi(di), fk1(zk1)]−min[fi(ci), fk1(zk1)])

≥ [m({i, j}) +m({i, j, k1})] (min[fi(di), fk1(zk1)]−min[fi(ci), fk1(zk1)]) ≥ 0.

(4.26)

The first inequality is since m({i, j}) ≥ 0 and the second is since m({i, j}) +

m({i, j, k1}) ≥ 0, by convexity criterion. Now pick the second largest

fk2(zk2), k
2 ∈ N \ i, j, k1. Using the same arguments we get

m({i, j}) (fi(di)−fi(ci))+m({i, j, k1}) (min[fi(di), fk1(zk1)]−min[fi(ci), fk1(zk1)])

+m({i, j, k2}) (min[fi(di), fk2(zk2)]−min[fi(ci), fk2(zk2)])

+m({i, j, k1, k2}) (min[fi(di), fk2(zk2)]−min[fi(ci), fk2(zk2)]) ≥ [m({i, j})
+m({i, j, k1}) +m({i, j, k2}) +m({i, j, k1, k2})] (min[fi(di), fk2(zk2)]

−min[fi(ci), fk2(zk2)])
≥ 0.

(4.27)

Continuing like this we can add more and more elements and eventually conclude

that ∑
A3i,j

m(A)

(
min
k∈A−ij

[fi(di), fk(zk)]− min
k∈A−ij

[fi(ci), fk(zk)]

)
≥ 0. (4.28)

Similarly,

∑
A3i,j

m(A)

(
min
k∈A−ij

[fj(rj), fk(zk)]− min
k∈A−ij

[fj(sj), fk(zk)]

)
≥ 0. (4.29)

Hence we have shown that the axiom necessarily holds if the capacity is convex.

To show the inverse, assume that the axiom holds on X. Writing down conditions

of the axiom and simplifying as before, we get that everywhere on X we should
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have

(4.30)

∑
A 3i,j

m(A)

(
min
k∈A−ij

[fi(di), fk(zk)] + min
k∈A−ij

[fj(rj), fk(zk)]

)
≥
∑
A3i,j

m(A)

(
min
k∈A−ij

[fi(ci), fk(zk)]− min
k∈A−ij

[fj(sj), fk(zk)]

)
.

Assume i, j interact. If this is not the case, the convexity criterion is trivially

satisfied for i, j as all m(A) in the expression above are 0 (see Lemma 31). Assume

also all variables are in the same interaction group. If this is not the case, m(A)

for A containing variables not in the same interaction group as i, j are again 0,

and can be discarded.

With this assumption made, we can now pick points, such that fi(·) and fj(·)
are the smallest value functions. Hence, the above expression reduces to

[fi(di) + fj(rj)]
∑
A3i,j

m(A) ≥ [fi(ci) + fj(sj)]
∑
A3i,j

m(A). (4.31)

Since [fi(di) + fj(rj)] ≥ [fi(ci) + fj(sj)], we conclude that
∑

i,j∈A⊂N m(A) ≥ 0.

Now pick points such that only fk1(zk1) is less than fi(·) and fj(·). We get

(4.32)

[fi(di) + fj(rj)]
∑
A3i,j
A 63k1

m(A) + 2fk1(zk1)
∑

A 3i,j,k1
m(A)

≥ [fi(ci) + fj(sj)]
∑
A3i,j
A 63k1

m(A) + 2fk1(zk1)
∑

A3i,j,k1
m(A),

or

[fi(di) + fj(rj)]
∑
A3i,j
A 63k1

m(A) ≥ [fi(ci) + fj(sj)]
∑
A3i,j
A 63k1

m(A). (4.33)

From this we conclude that
∑

i,j∈A⊂N\k1 m(A) ≥ 0.

Continuing like this we can check all necessary sums for the convexity condi-

tion and for all pairs i, j. So, we have shown that the capacity is convex provided

the axiom holds.

124



4.3 Learning the Choquet integral

Learning the model means deriving model parameters from data. This step is

essential in any practical application, and it is normally performed towards at

least one of two goals: analysis of the data, by means of interpreting model

parameters, or prediction – in other words, “training” the model on some dataset

to use it with some other data.

It is well known that the quality of fit of a model depends on the model

complexity and the available data. Learning a very complex model using only

a few data points would not achieve satisfactory results, just as using a very

simple model might conceal some important properties of a large and complicated

dataset.

An important aspect of the learning process is its computational viability.

Indeed, from the practical perspective, using a simpler but faster model which is

capable of delivering approximate answers in real-time fashion, might be prefer-

able to employing a more precise but also more expensive model which takes

hours or days to be built.

In this section we look at various aspects of the Choquet integral learning

and emphasize the consequences which our axiomatization results have for this

process. We start by an overview of the current learning techniques and then

look at difficulties which arise when learning the Choquet integral model in the

full generality. maybe We

also suggest

new learning

techniques

using our

axiomatic

construction

methods.

maybe We

also suggest

new learning

techniques

using our

axiomatic

construction

methods.

To learn the Choquet integral we need to derive two parts of the model from

data:

� value functions fi : Xi → R, and

� capacity ν.

The following sections provide details on each of these components.

4.3.1 Learning the capacity

The majority of the theoretical and applied literature so far has concentrated

on learning (“identification”) of the capacity only. In this approach, the value
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functions are assumed as given. Normally, for numerical coordinates fi(xi) =

xi are taken (probably after some rescaling). For categorical data, sometimes

arbitrary numerical labels are used (see e.g. AHP), although the theoretical

problems of this approach are quite apparent.

A good review of the existing methods of capacity construction can be found

in Grabisch et al. (2008). In the majority of cases, the learning process is based

on minimization of some loss function (MSE, MAE, or similar), or on finding the

extremum of some meaningful expression, such as variance or entropy.

Typically, data is used to formulate constraints on the space of possible pa-

rameters (i.e. capacities). For example, if x< y, then ν must be such that

C(ν, f(x)) ≥ C(ν, f(y)) (remember the value functions are considered known).

Since the integral is a linear function of the capacity, we get linear constraints.

Eventually the polyhedron of all possible capacities is defined by the following

data:

Learning set. Pairwise preferences between elements of the “learning set” X.

Criteria importance. The most intuitive way to describe a multicriteria model

qualitatively is, perhaps, to define the relative weights of its components.

The process is semantically similar to that for additive models; however,

due to non-additivity we can not rely only on values for singletons any

more, but must also take into account all other subsets of N .

Criteria interaction. A more complicated type of knowledge about criteria is

the character of their combined influence. In particular, criteria can com-

plement each other, which is also known under the name of positive synergy,

or else be redundant (resp. negative synergy).

Veto and favour criteria. Sometimes the model also includes criteria of an

immense importance, so that the alternatives having low valuations on them

will also inevitably receive low overall judgements. This kind of criterion is

usually called “veto” in the literature. The opposite situation is having a

criterion (or criteria) such that a high value on them automatically justifies

a high overall valuation. Such elements are called “favour”.
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Complexity controls. Often it is deemed that interactions in groups larger

than k can be ignored to improve the computational properties of the model.

The mechanism which allows us to achieve this is called k-additivity. Most

frequently, 2-additive capacities are used.

The following indices were originally applied for behavioral analysis of non-

additive measures. However, they also allow us to formulate and solve the inverse

problem of capacity identification (see Marichal and Roubens, 2000 and references

therein).

Definition 28 (Shapley, 1953). The Shapley value is an additive measure φν :

2N → [0, 1] defined as

φν(i) =
∑
T⊂N\i

(|N |−|T |−1)! |T |!
|N |!

[ν(T ∪ i)− ν(T )]. (4.34)

It can also be expressed via the Möbius transform coefficients:

φm(i) =
∑
T⊂N\i

1

|T |+1
m(T ∪ i). (4.35)

The semantic interpretation given to the Shapley value of a criterion i ∈ N in

the literature is the relative importance of the said criterion in the decision prob-

lem. More formally, it amounts to the average marginal input of that criterion

to all subsets of N . Being a probability measure, the Shapley value sums up to

1 over all i ∈ N . Table 4.1 demonstrates how the Shapley value can be used in

capacity identification problems (δSH is some small value – the indifference coef-

ficient). Intuition about the relative importance of a criterion can be expressed

Table 4.1: Criteria importance modelling

The criterion i is more important than j φν(i)− φν(j) > δSH

Criteria i and j are equally important −δSH > φν(i)− φν(j) 6 δSH

as φν(i) = k or φν(i) ∈ [kl, ku], although, just like in the additive case, doing so

is not strictly sensible.
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The measure of criteria interaction character and strength was introduced

by Murofushi and Soneda (1993) for pairs of elements and later generalized by

Grabisch (1997b).

Definition 29. The interaction index of a subset T ⊂ N is defined as

Iν(T ) =

|N |−|T |∑
k=0

ξ
|T |
k

∑
K⊂Z\T,|K|=k

∑
L⊂T

(−1)|T |−|L|ν(L ∪K), (4.36)

where

ξpk =
(|N |−k − p)! k!

(|N |−p+ 1)!
. (4.37)

For practical problems we are particularly interested in the index expression

for pairs {i, j}:

Iν(ij) =
∑

T⊂N\ij

ξ2
|T | [ν(T ∪ ij)− ν(T ∪ i)− ν(T ∪ j) + ν(T )] , (4.38)

or, when expressed with the Möbius transform coefficients:

Im(ij) =
∑

T⊂N\ij

1

|T |+1
m(T ∪ ij). (4.39)

The interaction index for singletons coincides with the Shapley value. The

index can be interpreted as the degree of interaction between elements in the set T .

Its values lie in the interval [−1; 1], with 1 corresponding to the maximal positive

interaction (complementarity), and −1, accordingly, to the maximal negative

interaction (redundancy). Table 4.2 summarizes index usage in identification

problems.

To model “veto” and “favour” criteria we can proceed in the following way

(Grabisch, 1997a). If some criterion i is a “veto” one, then

ν(A) = 0 ∀A + i. (4.40)

Else, if some criterion i is a “favour” one, then

ν(A) = 1 ∀A ⊇ i. (4.41)
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Table 4.2: Modelling criteria interactions

Criteria i and j complement each other 0 6 Iν(i, j) 6 1

Criteria i and j complement
each other stronger than k and l Iν(i, j)− Iν(k, l) > δI

Criteria i and j interact
in a way similar to k and l −δI > Iν(i, j)− Iν(k, l) 6 δI

Finally, if the problem allows us to employ a learning set, the DM might be

asked to express his preferences with regard to its elements. In an identification

problem this corresponds to linear constraints (since the integral is linear in ν)

outlined in Table 4.3.

Table 4.3: Preferences over learning set objects

The alternative z1 is preferred to z2 C(ν, f(z1))− C(ν, f(z2)) > δLS

The DM is indifferent between z1 and z2 −δLS > C(ν, f(z1))− C(ν, f(z2)) 6 δLS

Having the available information expressed as a set of linear constraints we

obtain the set U. Summing up the results of the previous section, U can be

written down as shown in equation (4.42).

Notably, all constraints are linear, and thus the set U is a polyhedron in R2n

+ .

Its dimension can be reduced to 2n − 2 if we exclude the ∅ and N coordinates,

which have fixed values. It can be reduced even further by using k-additive ca-

pacities which, however, is not always possible. By solving the feasibility problem

min
ν

1

s.t. ν ∈ U,
(4.43)

we can check if there exists at least one capacity compliant with the given data.

If such capacity cannot be found, the following problem can be solved:

min
ν

L(U)

s.t. ν is a capacity,
(4.44)
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U :

Information from the DM

φν(i)− φν(j) > δSH , i, j ∈ 1, . . . , n

. . .

− δSH > φν(i)− φν(j) 6 δSH , i, j ∈ 1, . . . , n

. . .

Iν(i, j)− Iν(k, l) > δI , i, j ∈ 1, . . . , n

. . .

− δI > Iν(i, j)− Iν(k, l) 6 δI , i, j ∈ 1, . . . , n

. . .

C(ν, f(zi))− C(ν, f(zj)) > δLS, i, j ∈ 1, . . . , n

. . .

− δLS > C(ν, f(zi))− C(ν, f(zj)) 6 δLS, i, j ∈ 1, . . . , n

. . .

ν(A) = 1, ∀A ⊃ favour criteria

ν(A) = 0, ∀A 6⊃ veto criteria

Technical constraints

ν(∅) = 0

ν(N) = 1

ν(B) ≥ ν(A) ∀B ⊂ A ⊂ N

Additional constraints

k − additivity. Not always applicable.

(4.42)

Figure 4.1: Encoding the information as constraints on the set of capacities

where L(U) is some loss function of the data (e.g. the number of preference

reversals). The loss function, whether an error-based one or some other as men-

tioned above, is typically a convex function, so the optimization problem is quite

efficient. If the model is built for forecasting purposes, regularization techniques

can also be used (Tehrani and Huellermeier, 2013; Tehrani et al., 2012; Tehrani,

Cheng, Dembczyński and Hüllermeier, 2011; Tehrani, Cheng and Hüllermeier,

2011). Additionally, identification problems can have more than one solution,
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which induces the problem discussed below.

4.3.2 Learning the value functions

Learning the value functions on the other hand is a different matter. Let us

consider first how the process is performed in the additive value function model.

Recall that the model has the following form:

x< y ⇐⇒
n∑
i=1

fi(xi) ≥
n∑
i=1

fi(yi). (4.45)

The data in such a learning problem is typically given as pairwise preferences

for some points from the set X. The resulting problem is then an LP, because

additive value functions are linear with respect to each fi that we are aiming

to learn. A well-known family of learning methods related to learning of the

additive value models are called the “UTA methods” (Siskos et al., 2005). The

value functions are assumed to be linear interpolations of the learning points (i.e.

they are piecewise linear), but sometimes polynomial or spline-based versions are

used (Sobrie et al., 2016). Still, the process remains computationally efficient.

Note that the value functions learned in this manner do not provide any “qual-

itative” information about the data to the analyst. They can be used for fore-

casting purposes, but due to the restrictions of the additive model, no statements

about the “importance” of criteria or similar notions can be made. In contrast,

learning value functions and the capacity in the Choquet integral is valuable even

if the value functions are learned in a non-parametric manner. Indeed, it is the

capacity that is capable of showing the qualitative relations between criteria of

the multidimensional problem, as is to some extent attested by the majority of

the existing practical applications. However, this process has two complications:

the computational complexity and the confounding of the capacity and the value

functions.

As mentioned above, the vast majority of the theoretical and practical con-

tributions to the literature assume the existence of value functions, or what is

the same, of a common scale on which all attributes of the problem are being

measured. This is clearly a very strong assumption, but it also leads to a sig-
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nificant simplification of the learning process. Indeed, in this case we only need

to learn the capacity, which is generally a convex minimization problem. In con-

trast, when learning both the capacity and the value functions, we must solve a

difficult non-convex optimization problem. Only a few papers have attempted to

tackle this issue (Angilella et al., 2004; Goujon and Labreuche, 2013; Angilella

et al., 2015), all of them offering some heuristic methods and small-scale ex-

amples. This is not surprising. Indeed, consider the data point x< y for some

x, y ∈ X. In the Choquet integral model, it is represented by the following expres-

sion: C(ν, f(x)) ≥ C(ν, f(y)). Since the integral is a sum of products of elements

of ν and f(x), the constraint is not linear in contrast to the case where only ca-

pacity is considered unknown. Moreover, it is generally non-convex. Hence, the

process of construction of the capacity and the value functions involves solving a

non-convex optimization problem, which is known to be computationally hard.

4.3.3 Confounding of the capacity and the value functions

The second issue in the Choquet integral learning problems is the non-uniqueness

of the resulting capacity. Even in cases where only capacity is being learned, the

exponential number of the coefficients (2n − 2, excluding ν(∅) and ν(N)) means

that the task of model learning quickly becomes very difficult as the number of

dimensions of the model increases. Typically a learning dataset which is not

sufficiently large does not allow the capacity to be learned in a precise way.

This is a very well-known problem in general learning theory (Hüllermeier and

Tehrani, 2012) and it can be addressed by a number of methods. Among these

we can mention the general regularization approaches (Tehrani and Huellermeier,

2013; Tehrani et al., 2012; Tehrani, Cheng, Dembczyński and Hüllermeier, 2011;

Tehrani, Cheng and Hüllermeier, 2011), but also some specialized methods which

can be applied when the model is used in particular applications, such as sorting

(Angilella et al., 2015, 2010). Additionally, a number of methods were developed

for robust decision making with the Choquet integral. Thus, in Timonin (2013)

we proposed an algorithm for regret-minimizing optimization when the capacities

are only known to belong to a certain set, whereas Benabbou et al. (2015, 2014)

looked at the problem of the robust capacity construction using interactive data.
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Axiomatization introduced in this work adds another level of complexity to

the uniqueness problem. Indeed, the uniqueness results state that meaningful and

unique decomposition of the capacity and the value functions is only possible when

the model exhibits sufficient levels of non-separability. In particular, pairwise

violation of ij-triple cancellation should be present to a sufficient extent to obtain

a unique capacity (in particular, all variables should be in the same interaction

group, see Section 3.9). Thus, even an indefinite amount of data, not containing

a sufficiently rich structure of preferences, would lead to a strongly non-unique

capacity. In fact, it is easy to show that the capacity in such cases can be taken

almost arbitrarily. Consider the extreme example, when there is no pairwise

interaction in the model. In this case, we have n interaction groups of size 1 or, in

other words, an additive value model. In the expression w1f1(x1)+ · · ·+wnfn(xn)

we can arbitrarily change the “weights” wi by compensating their increase or

decrease by a proportional change in fi. The whole model can then be rescaled

so that the weights sum up to 1. It is trivial that these modifications do not

affect the validity of the representations.

Non-uniqueness of the capacity is not necessarily a problem for prediction

applications; however, qualitative conclusions, commonly made based on capacity

indices, become meaningless. For example, consider the paper of Li et al. (2012).

Here, data from hotel evaluations on the tripadvisor website is analysed with

the Choquet integral. Each hotel is reviewed based on several criteria, such

as price, location, etc. In addition, every hotel gets an overall mark, which

allows the authors to construct the relation between general attractiveness of the

hotel and its particular features or their combinations. Reviewers are categorized

into several social groups (“American businessmen”, “European families”, etc).

The paper shows which attributes and combinations of attributes are important

for every group by finding capacities that provide the best fit of the 2-additive

Choquet integral to the corresponding dataset. Shapley values and interaction

indices of these capacities provide the required information.

From our perspective, the important point is that the evaluations are assumed

to be on the same scale. Every criterion is given from one to five stars, and so is

the global evaluation. Of course it seems not completely unreasonable to suggest

that various incommensurable notions such as “5 minutes from the train station”
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and “very clean” are somehow mapped onto a global “satisfaction” scale in the

mind of the reviewer, indeed there are many examples of such “cross-modality”

mappings in the psychological literature (see Section 4.4.2). However, there is no

real evidence supporting this claim, and we can also assume that stars on each

dimension signify just the ranking within the dimension itself and not across

dimensions as the authors conjecture. The other consequence of such assumption

is that the scale is equispaced, in the sense that the (cardinal) difference between

one and two stars is the same as between two and three and between four and

five. Apparently, this does not have to be true and often is not.

The possibility to fit not only the capacity but also the value functions resolves

these methodological issues. Apparently, it should also improve the quality of the

fit. However, in cases when we assume a common scale, the lack of interaction

between certain criteria is not an issue – we still obtain a unique capacity (see

also axiomatizations in Wakker, 1989 and Schmeidler, 1989) and corresponding

indices, which would show a lack of interaction. In contrast, without the com-

mensurability assumption, having even two interaction groups would mean that

we are not able to talk about “criteria importance” globally, but only within these

groups. The problem here is not with the tools used for capacity interpretation,

in this case the Shapley value, but rather comes from the limitations of the model

per se. Unfortunately, it is not easy to see how this problem can be resolved, as it

is in fact the same issue as the impossibility of meaningfully using the notion of

“criteria weights” in the additive model (Bouyssou et al., 2000) (Chapter 6). It

is notable, however, that the value of the interaction index would remain zero for

any two elements from different interaction groups, no matter how we transform

the capacity!5

4.4 Interpretations and discussion

Motivation for this thesis came primarily from MCDA applications. However,

our results can be also applied in several other subfields of decision theory. In

this section we discuss two of them – the state-dependent utility and the social

5See Lemma 31 and the definition of the interaction index given earlier in this chapter.
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choice problems.

4.4.1 Multicriteria decision analysis

MCDA provides perhaps the most natural context for our results. Indeed, in the

multicriteria context the heterogeneity of the decision space dimensions is natural

and the insufficiency of the previous results is apparent and has been discussed in

the literature multiple times (e.g. Bouyssou et al., 2009). We have covered many

aspects of the Choquet integral usage in MCDA in the previous chapters. An

introduction and an example of a multicriteria model are given in Section 1.2.2,

while questions of the model learning and interpretation are discussed in Section

4.3, together with an example of a practical application.

From the theoretical perspective, in the multicriteria context our results imply

that the decision maker constructs a mapping between the elements of the crite-

ria sets (their subsets to be precise). Some authors interpret this by saying that

criteria elements sharing the same utility values present the same level of “satis-

faction” for the decision maker (Grabisch and Labreuche, 2008). Technically, such

statements are meaningful, in the sense that permissible scale transformations do

not render them ambiguous or incorrect, unless the representation is additive.

However, the substance of the statements such as “x1 on criterion 1 is at least

as good as x2 on criterion 2” (which would correspond to f1(x1) ≥ f2(x2)) is

not easy to grasp. Apart from the satisfaction interpretation, perhaps one could

think about workers performing various tasks within a single project. From the

perspective of a project manager, achievements of various workers, serving as cri-

teria in this example, can be level-comparable despite being physically different,

if the project has global milestones (i.e. scale) which are mapped to certain per-

sonal milestones for every involved person. The novelty of our characterization

is that this scale is not given a priori. Instead, we only observe preferences of

the project manager and infer all corresponding mappings from them. It is also

worth mentioning that value functions for any interacting pair can be seen to

form a so-called Guttman scale (or a biorder) (Guttman, 1944; Doignon et al.,

1984).
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4.4.2 Psychology

An interesting connection is that in psychology there exists a body of results

on the so-called cross-modality matching. A large number of studies have been

conducted in this area since 1950s, with experiments related to loudness, colour,

size, tone, pain, money, etc. (Stevens and Marks, 1980, 1965; Stevens, 1959;

Galanter and Pliner, 1974; Krantz, 1972). Kahneman (2011) gives the following

example: “A girl learned to read when she was four. How tall is a man who

is as tall as Julie was precocious?” Normally, kids start reading at around 5 or

6, so perhaps the girl is somewhat more precocious than average, although not

by too much. Therefore, we could say that the man is somewhat higher than

the average 180 cm, perhaps his height is 190 or similar. Apparently our ability

to answer this question is based on the existence of some information about the

distribution of the age when children start reading, and the distribution of height.

The information can come in a number of forms: either just a mean value (“on

average kids start reading at 5”, “an average man is 180 cm high”), or two absolute

reference levels on both dimensions – “children start reading between 3 and 6”,

“men heights are in the range of 165–205 cm”. Finally, we can have complete

information about both distributions and pick a match based on that. It is this

information that allows us to “map” four years to something like 190 cm. We can

perhaps consider the probability of a certain value as the universal scale shared

by two distinct elements: “75% of children start reading after 4”, “75% of men

are lower than 190 cm”, etc. However, as discussed above, such information is not

always available, and there might be other mechanisms by which such mappings

are performed.

4.4.3 State-dependent utility

We will show how the traditional comonotonic-based axiomatization implies

state-independence and how our approach can be used to construct a truly state-

dependent model without making additional assumptions about correspondence

between outcomes in different states.

The state-dependent utility concept, as introduced in Chapter 1 and further in

Appendix A, is evoked when the nature of the state itself is of significance and it
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is not assumed that outcomes in different states have the same meaning or value

to the decision maker. A popular example is healthcare, where various outcomes

can have major effects on the personal value of the insurance premium (Karni,

1985). One way to model this is to use different value functions for every state;

moreover, we could also consider the notion of state–prize (Karni, 1985; Karni

and Schmeidler, 2016), which actually takes the state-dependent model directly

to the heterogeneous product set case (dimensions are sets of “state–prizes”).

So far the axiomatizations of the state-dependent utility models have been

based on the existence of some correspondence between the outcomes in differ-

ent states (Karni and Schmeidler, 2016; Karni, 1993, 1985; Fishburn, 1973). In

essence, this is not different from assuming the homogeneous product set again,

albeit with some technical differences (e.g. the decision space might only be a

subset of the full product). Although, in principle, the existence of a preference

relation on the set of state–prizes is not unrealistic, it is not clear whether this

data is observable (contrary to the preferences on acts which are supposed to

be always observable). Without such a relation the additive value model (think

SD-EU) does not allow us to disentangle probabilities and utilities at all (see

discussion in the previous section and earlier). The other question is whether

this gives any real methodological advantage compared to using a union of state–

prizes on every dimension and proceeding as normal. A detailed discussion of

this question is given in Karni and Schmeidler (2016) and references therein, and

we do not pursue it further here. Finally, we would like to mention that the

problem of state-dependence in rank-dependent models is not well developed –

the only paper known to the author being Chew and Wakker (1996), where the

authors comment on the meaninglessness of state-dependency in the normal CEU

framework, again due to the confounding issues: “with preferences over acts as

the only empirical primitive, the factorization ν(A)uA(·) becomes meaningless.

Only the product W (x,A) = ν(A)uA(x) can be derived from preferences”.

However, the general axiomatization of the Choquet integral presented in this

thesis, is the first (to the author’s best knowledge) result where state-dependence

can be derived exclusively from the preferences over acts. This constitutes a sig-

nificant difference with all earlier results. As a side result, it is easy to show

that comonotonicity-based conditions actually imply state-independence of pref-

137



erences.

Lemma 48. Let X = Y n. Let conditions of the Theorem 8 hold. If for all x ∈ X
we have iEx j whenever xi = xj, the representation is state-independent.

Proof. Saying that iE j whenever xi = xj in our framework amounts to say-

ing that additive representations exist on the comonotonic subsets of X. The

construction implies that fi(xi) = fj(xj) whenever xi = xj. This holds for all

i, j ∈ X, hence we can use a single utility function U : Y → R for all dimensions.

This constitutes state-independency.

Hence, parting with the assumption that the borders between additive re-

gions actually coincide with the borders between comonotonic sets, allows us to

introduce state-dependency into the model and to do so solely by observing the

preferences between acts. The resulting state-dependent utility functions could

be used to derive the relation on the set of state–prizes which is assumed as given

in earlier works. Note that, as previously, the meaningfulness of this relation is

conditional on the violation of pairwise separability in the model, as explained in

Section 3.9. In other words, the relation might not exist between prizes of certain

state pairs.

4.4.4 Social choice

If we think of the set N as of a society with n agents, then X is the set of all

possible welfare distributions. Moreover, contrary to the classical scenario, agents

could be receiving completely different goods, for example X1 might correspond

to healthcare options, whereas X2 to various educational possibilities. In this case

it is not a trivial task to build a correspondence between different options across

agents. Our result basically states that provided the preferences of the social

planner abide by the axioms given in Section 3.2, the decisions are made as if the

social planner has associated cardinal utilities with the outcomes of each agent

which are unit and level comparable (cardinal fully comparable or CFC in terms

of Roberts (1980)). Such approach is not conventional in social choice problems,

where the global (social) ordering is usually not considered as given (there are,

however some papers taking this route, e.g. Ben-Porath et al., 1997). Instead,
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the conditions are normally given on individual utility functions and the “aggre-

gating” functional that is used to derive the global ordering. However, one of the

important questions in social choice literature is that of the interpersonal utility

comparability and whether it is justifiable to assume it or not (e.g. Harsanyi,

1980). Our results show that if the global ordering of alternatives made by the

society (or the social planner) satisfy certain conditions, it is in principle possible

to have individual preferences represented by utility functions that are not only

unit but also level comparable with each other.

4.5 Summary

We have presented extensions of our characterization for the ordinal and cardinal

special cases of the Choquet integral. The ordinal models are the well-known

MIN/MAX and the order statistic, and also their generalization – the lattice

polynomial. We have shown how these can be characterized in our framework

and also related our results to the previously known axiomatizations. On the

cardinal side of things, we have shown how it is possible to characterize the

Choquet integral with respect to a convex capacity. The axiom is similar to the

tradeoff consistency condition and is the first characterization of convex models

which can deal with both cardinal and ordinal cases (or a mixture of the two).

Next, we discussed various aspects of the Choquet integral learning. Tra-

ditionally, the learning of the integral was confined to capacity learning only.

However, this approach suffers from serious methodological difficulties. Namely,

it requires a very strong assumption that all criteria are measured on the same

scale. We looked at how various preferential information could be used in the

capacity identification problem and analysed why the process of capacity identi-

fication is relatively computationally effective. In contrast, learning the capacity

and the value functions together seems to be computationally very hard. There

have been only a few attempts at solving it in the literature, all of them offering

only some heuristic methods. Finally, we look at the problem of confounding of

the value functions and the capacity. Our characterization results state that a

unique decoupling of the capacity and the value functions is possible only when

the dimensions of the decision space exhibit sufficient pairwise interaction. This
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has a profound impact on the learning properties of the Choquet integral, since

it guarantees that it is impossible to obtain a unique capacity if the variables

are not interacting enough, no matter how much data we have. This means that

the usage of the well-known indices such as the Shapley index is limited. An

alternative option is to use the “sum of Choquet” representation (3.7), whereby

the indices become meaningful within each interaction group.

Finally, we have looked at various interpretations of our results and their

applications in decision theory. We started with MCDA, which was the main in-

spiration for our research. Our axiomatization is a long-missing result in this area

and we hope that it will help promote further theoretical research of the Choquet

integral in MCDA. The characterization leads to construction of a unique map-

ping between elements of various criteria sets (dimensions of the decision space).

This has interesting connections to the question of cross-modality mapping, which

has been extensively studied in psychology since the 1950s. Finally, we discussed

two other areas where our results can be applied – the social choice theory and

the state-dependent DUU. The latter is especially interesting, as our characteri-

zation is the first to construct a meaningful state-dependent model based solely

on the preferences among acts. Previous works introduced additional preference

relations into the model, in particular the relation on the set of “state–prizes”.

Conceptually, this amounts to saying that elements of various dimensions are

commensurate which does not always have to be the case. Observability of this

preference relation is also not apparent. Our results do not require any additional

constructs apart from the preference between acts themselves. Yet, we are able to

construct a unique mapping between the outcomes in different states (provided

the data exhibits sufficient interaction).

140



Conclusion
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Axiomatic analysis is important for decision models as it allows for a much deeper

understanding of their mechanics. Sometimes developing an axiomatic system for

a well-known model also helps to elicit its previously unknown properties. In this

thesis we have presented a characterization of the Choquet integral for the general

case of a heterogeneous decision space. Although the Choquet integral has been

widely used since the late 1980s, its theoretical foundations were developed well

only in decision under uncertainty. Transferring these results to multicriteria

decision analysis proved to be a difficult task, which was quite frustrating, as the

integral is widely known and used in theoretical and applied MCDA works. Our

results aim to fill this gap.

The key results of this thesis are as follows.

Characterization of the Choquet integral for the general case of het-

erogeneous products sets. Whereas early characterizations only allowed for

a very special case of a homogeneous decision space X = Y n, we here considered

a fully general X = X1 × · · · × Xn. This has allowed us not only to deal with

cases where the dimensions of the model are inherently different, such as different

attributes in MCDA models (e.g. colour, price, speed, etc), but also to work very

well in the state-dependent utility and social choice settings.

A novel axiomatic system which generalizes earlier results based on

comonotonicity. Our axioms are not based on the notion of a constant act or

comonotonicity which are not-definable in the heterogeneous setting. Although

seemingly quite different from the previous conditions, our axioms actually gener-

alize them. In the homogeneous setting this allows us to deviate from comonotonic

additivity and hence from state-independence (more on this below). Our system

also parts with the symmetry of the older characterizations, allowing for a much

wider range of decision spaces.

Analysis of the model uniqueness properties which turned out to be

weaker than previously thought. The increased generality discussed above

caused the uniqueness properties of the model to weaken considerably. We showed

how uniqueness “strength” became conditional on the amount of interaction (i.e.
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on the lack of separability). Our results allow for a full spectrum of models, from

the case with a single unique capacity, to the case of an additive value model,

which can be represented by a Choquet integral with respect to an (almost)

arbitrary capacity.

Extensions of the main characterization result to the ordinal and cardi-

nal special cases of the Choquet integral. We have considered MIN/MAX,

order statistic, lattice polynomial, and the case of a convex capacity which in the

two-dimensional case is equivalent to the Gilboa–Schmeidler maximin model.

Analysis of the implications of our results for learning of the Choquet

integral models. Traditionally, learning of the Choquet integral meant learn-

ing of the capacity only, whereas the value functions were assumed to be given.

This requires making a strong assumption of dimension commensurability which

is not always desirable (especially in MCDA). There were only a few attempts

to learn the capacity and the value functions simultaneously. We discussed the

difficulties these approaches faced and also the problems caused by the weaker

uniqueness properties of the model. In certain cases, when the data does not

exhibit enough interaction between dimensions we cannot expect to get a unique

capacity no matter how much data we have access to.

Discussion of our results in relation to psychology, social choice, and

state-dependent utility theory. One interesting aspect of our characteriza-

tion is that it allows us to construct a unique mapping between elements of various

dimension sets. In the context of state-dependent utility theory this is the state–

prize relation, for the first time obtained based solely on the basis of preferences

between acts. We also showed that previous Choquet integral characterizations

actually implied state-independence. In the MCDA context, this mapping sig-

nifies the commensurability of various seemingly incomparable criteria, such as

colour and loudness or money. This has interesting connections to psychology

where experiments related to the so-called “cross-modality” matching were per-

formed starting from the 1950s. This provides an interesting interpretation of

our results in the multicriteria context.
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A.1 Decisions under uncertainty

Schmeidler (1989) was the first to provide an axiomatization of the Choquet inte-

gral in the context of the decision making under uncertainty. The axiomatization

is done in the so-called “Anscombe–Aumann” framework, where the set of out-

comes Y is composed of lotteries with known probabilities over some set. The

model also includes the set of states of the world S, and acts are defined as a

convex subset L of measurable functions from Y to S, which includes constant

functions. The main condition in this axiomatization is comonotonic indepen-

dence, which is defined as follows.

Comonotonic independence For all pairwise-comonotonic acts f, g and h in

L and all α ∈ (0, 1): f � g implies αf + (1− α)h�αg + (1− α)h.

Comonotonicity is defined with respect to an ordering of outcomes which is

obtained from ordering of constant acts. Usage of this axiom obviously requires

the set of outcomes to be a homogeneous Cartesian product, so that the notion

of a constant act can be used. One other restriction of this axiomatization is that

it implies state-independence (more on this in Section 4.4.3).

While Schmeidler’s axiomatization is a comonotonic weakening of Anscombe–

Aumann’s work, several authors proposed a similar extension in Savage’s frame-

work (i.e. without using lotteries). The first one was Gilboa (1987), but here

we provide a condition from Chew and Wakker (1996). Their main axiom is a

comonotonic version of the sure-thing principle. Let S be the set of acts as pre-

viously, and Y is a set of outcomes (now it is not assumed that outcomes are

lotteries). Acts again are functions from S to Y . The notation xAf means that

the act obtains value x on A and f on S \ A.

Comonotonic Sure-Thing Principle For all comonotonic xAf, xAg, yAf, yAg

we have xAf <xAg ⇐⇒ yAf < yAg.

Another notable axiomatization of the Choquet integral for decisions under

uncertainty is due to Wakker (1991a, 1989). In these works the set of states S is

finite, and the decision space is accordingly a Cartesian product X = Y n. Wakker
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(1989) gives the result in the topological framework, whereas in Wakker (1991a)

the framework is algebraic. The key condition in both cases is “non-revelation of

comonotonic-contradictory tradeoffs”, which is defined as follows:

Non-revelation of comonotonic-contradictory tradeoffs For all α, β, γ, δ ∈
Y and x−i, y−i ∈ X−i and v−j, w−j ∈ X−j, such that x−iα, y−iβ, x−iγ, y−iδ

are contained in a comonotonic set on which state i is essential, and also

v−jα,w−jβ, v−jγ, w−jδ are comonotonic, we have

x−iα4 y−iβ

x−iγ< y−iδ

v−jα<w−jβ

⇒ v−jγ<w−jδ.

Y (j)

Y (i)α β γ δ

α

β

γ

δ

Figure A.1: Non-revelation of comonotonic-contradictory tradeoffs (with equiva-
lences)

The papers rely on another result by Wakker (1991b), which shows how addi-

tive representations can be constructed on rank-additive sets. The approach was

later generalized in Köbberling and Wakker (2003). These results suffer from the

same restrictions:

1. the construction requires comonotonicity, hence homogeneity of the decision

space X = Y n;
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2. the construction implies that outcomes in all states have the same utility

(state-independence).

An excellent review of other axiomatizations of the Choquet integral in deci-

sion making under uncertainty can be found in Köbberling and Wakker (2003).

Here we briefly mention some of the conditions that are used in these works. The

main properties remain unchanged: characterizations rely on comonotonicity, ho-

mogeneity of the decision space, and imply state-independence.

Multiple conditions, such as the act-independence of Chew and Karni (1994),

are based on the existence if a so-called certainty-equivalent.

Comonotonic act-independence For any n-partition Π, B ∈ Ω, and x, x′, y ∈
Xn such that xi, x

′
i< yi for all i (or yi<xi, x

′
i for all i),

fΠ(x)< fΠ(x′)⇒ fΠ(mB(x1, y1), . . . ,mB(xn, yn))< fΠ(mB(x′1, y1), . . . ,mB(x′n, yn)).

Visually it is clear that the condition is quite similar to comonotonic indepen-

dence. Here too, x and x′ are “mixed” with a common component y.

One other group of results includes axiomatizations related to state-dependent

utility with the Choquet integral. They are of particular importance in our

context, as mathematically the setting of a state-dependent model is quite close

to the general case that is presented in this thesis. There are not too many works

on state-dependency applied to the Choquet integral. The concept proved to be

a complicated problem even in the additive setting (Karni, 1985). If we take

a look at a state-dependent additive functional, it can be seen that it reduces

to the additive value model, and hence from the preference over acts alone it is

impossible to define the probability in the unique form. In other words, “beliefs

and outcomes are confounded” (Karni, 1993; Chew and Wakker, 1996). In case

of just two states:

x< y ⇐⇒ p1u1(x1) + p2u2(x2) ≥ p1u1(y1) + p2u2(y2).

A simple change of variables allows us to rewrite this in the additive value form:

x< y ⇐⇒ v1(x1) + v2(x2) ≥ v1(y1) + v2(y2).

148



Yet another change of variables gives a state-dependent form again, but with

different probabilities:

x< y ⇐⇒ p′1u
′
1(x1) + p′2u

′
2(x2) ≥ p′1u

′
1(y1) + p′2u

′
2(y2).

Chew and Wakker (1996) axiomatize the so-called cumulative utility (CU)

functional, which they suggest can be viewed as “event-dependent” utility, a “nat-

ural rank-dependent analogue of state-dependent utility”. The condition they

use is the comonotonic sure-thing principle which was discussed above. How-

ever, they note that the in the case of the Choquet integral the factorization

W (x,A) = ν(A)uA(x) (where ν is a capacity) is meaningless, as only the product

can be derived from the preferences. This is essentially the same problem as in

the additive value model example given above.

Two techniques proposed in the literature are to assume an existence of an

additional preference relation on the “state–prize” space (Karni, 1985; Karni and

Schmeidler, 2016), and also to construct a mapping between outcomes in various

states (Karni, 1993). In contrast, our characterization allows for a meaningful,

i.e. unique, factorization of the state-dependent utility functions into utilities and

capacities. More details on this are given in the corresponding chapters.

A.2 MCDA

The earliest characterization in MCDA, very similar to Schmeidler’s result but

with a much simpler proof due to the atoms of the model, can be found in

De Campos and Bolanos (1992). Let I = [0, 1] and F : In → I. Then there

exists a unique normalized capacity µ such that F = Cµ if and only if F fulfils

the following properties:

1. comonotonic additivity, i.e. F (x+ x′) = F (x) + F (x′),

2. nondecreasing monotonicity,

3. F (1[n]) = 1, F (0) = 0.

Moreover, µ is defined by µ(A) := F (1A).
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Marichal (2002) proposed a characterization based on four properties. Let

I ⊂ R, I 3 0. A parametric function Fµ is a Choquet integral if:

1. Fµ is linear expression of µ, i.e. exist 2n functions fA : In → I, such that

Fµ =
∑

A⊂N µ(A)fA.

2. Fµ is non-decreasing.

3. Fµ is interval scale invariant, i.e. Fµ(rx1+s, . . . , rxn+s) = rFµ(x1, . . . , xn)+

s.

4. Fµ is an extension of µ: Fµ(1A) = µ(A) for all A ⊂ N .

Couceiro and Marichal (2011) showed that the Choquet integral can be char-

acterized by any of the three conditions below:

Comonotonic additivity A function f : In → R is comonotonically additive if,

for every comonotonic x, x′ ∈ In such that x+x′ ∈ In , we have f(x+x′) =

f(x) + f(x′).

Given x ∈ In and c ∈ I, let [x]c = x− x ∧ c and [x]c = x− x ∨ c.

Horizontal min-additivity We say that a function f : In → R is horizontally

min-additive if, for every x ∈ In and every c ∈ I such that [x]c ∈ In , we

have f(x) = f(x ∧ c) + f([x]c).

Horizontal max-additivity We say that a function f : In → R is horizontally

max-additive if, for every x ∈ In and every c ∈ I such that [x]c ∈ In , we

have f(x) = f(x ∨ c) + f([x]c).

Labreuche and Grabisch (2003) provide a constructive approach to building

value functions and constructing the capacity based on the information from

the decision maker. The paper builds on the axiomatization of Marichal (2002),

weakening one of the conditions. However, it also supposes the existence of two

absolute reference levels on each attribute which are supposed to be commensu-

rate. Mathematically, the approach is based on the MACBETH method (Bana

E Costa and Vansnick, 1994), which the authors extend to the Choquet integral.
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Note, that the idea of two absolute reference levels on each attribute is connected

to cross-modality matching, discussed in Section 4.4.2.

Finally, a very interesting approach to axiomatizing the Choquet integral

was proposed by Labreuche (2012). The author operates in the general MCDA

framework, so no assumption about commensurability of the dimensions is made.

However, the axioms that are given are not conditions on the preference relation

itself, but rather on the “global value” function F , and value functions fi. The

main axiom can be explained as follows. Assume that we have values on all

dimensions apart from one fixed. Then, we start changing the value of this

dimension and look at how this affects the partial derivative of F with respect to

some other dimension. It turns out that this derivative can take either one value

for all possible levels of the criterion that we change, or it can take one value

below a certain level and another value above it.

The axiom is called “Commensurability through Interaction” and it is insight-

ful in many aspects, even though it is not a “proper” condition on the preference

relation. It tells us that eventual commensurability of different dimensions is the

consequence of the lack of independence, moreover the point where the violation

of independence happens (i.e. the partial derivative of the global utility changes)

can and should be used as an anchor to construct the mapping between levels

of two different dimensions. Notably, this condition does not require anything

resembling comonotonicity.

A.3 Characterizations of the Sugeno integral

The earliest paper on the subject is probably De Campos and Bolanos (1992),

which used the following conditions. Let I = [0, 1] and F : In → I.

1. Comonotonic maxitivity – F (x ∨ x′) = max(F (x), F (x′)).

2. F (1N) = 1.

3. ∧-homogeneity – for any α ∈ (0, 1], we have F (α ∧ x) = α ∧ F (x).

The conditions are quite different from the conditions used in the characteriza-

tions of the Choquet integral. However, they still use the notion of comonotonic-
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ity. Generally speaking, the integral is max- and min-decomposable for comono-

tonic acts, that is, for all comonotonic f, g we have S(f ∧ g) = min(S(f), S(g))

and S(f ∨ g) = max(S(f), S(g)).

The second characterization is due to Marichal (2000). It also relies on three

properties:

� nondecreasingness

� ∧-homogeneity

� ∨-homogeneity.

In Dubois et al. (1998) the integral was characterized in the DUU context,

using the framework of Savage. Two main conditions in the characterization are

RCD – Restrictive Conjunctive Dominance Let f and g be any two acts

and y be a constant act. Then, [g� f ] AND [y� f ]⇒ [g ∧ y� f ].

RDD – Restrictive Disjunctive Dominance Restricted max-dominance: Let

f and g be any two acts and y be a constant act. Then,

[f � g] AND [f � y]⇒ [f � g ∨ y].

The conditions are quite different from the ones used in the characterizations

given above and those of the Choquet integral. However, they still use the notion

of a “constant act”.

Conjoint axiomatization of the Sugeno integral is the first result which gives

an axiomatization of a rank-dependent model with heterogeneous decision space.

To date we are only aware of three papers which have achieved this. We look

at the results in detail, as they are helpful in establishing the correspondence

between DUU-type axiomatics and the ones of MCDA-type.

The first characterization of the discrete Sugeno integral, given in Greco et al.

(2004) and extended and proved in Bouyssou et al. (2009) relies on the following

condition. < is strongly 2-graded if for all i ∈ N :

xia−i<w

yib−i< t

w< t

⇒

zia−i<w

or

xib−i< t.
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The interpretation of the condition is as follows. Consider, for example, the

special case of w = t. Suppose also that NOT [xib−i< t]. We have yib−i< t and

NOT [xib−i< t], which suggests that the level xi is worse than yi with respect to

t. So we have that xia−i< t implies that also zia−i< t for all zi. What this means

is that once we have established that a level yi is better than some other level xi

with respect to an alternative t, we should not be able to find any element in Xi

that is worse than xi, therefore xia−i< t implies that for any possible zi ∈ Xi we

would still have zia−i< t. Informally, we can say that each t ∈ X partitions each

set Xi into “satisfactory” and “unsatisfactory” levels. The condition then says

that these partitions are related for different w and t from X.

In Bouyssou et al. (2009) the axiom is further decomposed into two separate

conditions (assuming < is a weak order):

A2 – weakest separability

[aix−i� bix−i]⇒ [aiy−i< biy−i]

2-graded For all i ∈ N

(xi, a−i) < w

(yi, a−i) < w

(yi, b−i) < t

w < t


⇒


(zi, a−i < w)

or

(xi, b−i < t).

Condition A2 (the same A2 that we have in our proofs) basically allows us

to construct a weak order <i on each dimension Xi. Informally, this means that

the decision maker is able to rank levels within each attribute, or, in the state-

dependent DUU context, outcomes for every state. The interpretation of the

“2-graded” condition is similar to that of “strongly 2-graded” given above.

A very recent result is another characterization of the Sugeno integral (Cou-

ceiro et al., 2015). In this setup, attribute sets Xi are assumed to be finite chains.

Elements 1i and 0i denote the maximal and minimal elements of these chains cor-

respondingly. The authors give a single condition which characterizes the Sugeno
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integral in such setting. For each k ∈ N we have (condition PMD):

[akx−k� 0kx−k] AND [1ky−k� aky−k]⇒ [aky−k< akx−k].

This is a very nice and elegant characterization which is based on the fact

that the Sugeno integral S(x) is pseudo-median decomposable, which means that

for each k ∈ N we can construct a utility function φk : Xk → R such that

S(x) = med(S(0kx−k), φk(xk), S(1kx−k)). Indeed, consider alternatives akx−k

and aky−k. Then akx−k� 0kx−k means that “downgrading” attribute k makes the

corresponding alternative 0kx−k strictly worse. In the same manner 1ky−k� aky−k
means that “upgrading” attribute k makes 1ky−k strictly better than aky−k.

Pseudo-median decomposability implies that since downgrading attribute k made

the alternative strictly worse, its overall value was not higher than that of ak. Sim-

ilarly, in the second case, the overall value was not lower than value of ak. From

this the conclusion follows.
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