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Abstract

The work in this thesis aims to gain fundamental understanding of several im-

portant types of disordered systems, including liquids, supercritical fluids and

amorphous solids on the basis of extensive molecular dynamics simulations. I

begin with studying the diffusion in amorphous zirconolite, a potential waste

form to encapsulate highly radioactive nuclear waste. I find that amorphization

has a dramatic effect for diffusion. Interestingly and differently from previous

understanding, diffusion increases as a result of amorphization at constant

density. Another interesting insight is related to different response of diffusion

of different atomic species to structural disorder. I calculate activation energies

and diffusion pre-factors which can be used to predict long-term diffusion

properties in this system. This improves our understanding of how waste

forms operate and provides a quantitative tool to predict their performance. I

subsequently study the effects of phase coexistence and phase decomposition

in Y-stabilized zirconia, the system of interest in many industrial applications

including in encapsulating nuclear waste due to its exceptional resistance to

radiation damage. For the first time I show how the microstructure emerges

and evolves in this system and demonstrate its importance for self-diffusion

and other properties. This has not been observed before and is important for

better understanding of existing experiments and planning the new ones.

I subsequently address dynamical properties of subcritical liquids and su-

percritical fluids. I start with developing a new empirical potential for CO2

with improved performance. Using this and other potentials, I simulate the

properties of supercritical H2O, CO2 and CH4 and map their Frenkel lines

in the supercritical region of the phase diagram. I observe that the Frenkel

line for CO2 coincides with experimentally found maxima of solubility and
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explain this finding by noting that the Frenkel line corresponds to the optimal

combination of density and temperature where the density is maximal and the

diffusion is still in the fast gas-like regime. This can serve as a guide in future

applications of supercritical fluids and will result in their more efficient use in

dissolving and extracting applications.

I extend my study to collective modes in liquids. Here, my simulations provide

first direct evidence that a gap emerges and evolves in the reciprocal space in

transverse spectra of liquids. I show that the gap increases with temperature

and is inversely proportional to liquid relaxation time. Interestingly, the gap

emerges and evolves not only in subcritical liquids but also in supercritical

fluids as long as they are below the Frenkel line. Given the importance of

phonons in condensed matter physics and other areas of physics, I propose

that the discovery of the gap represents a paradigm change. There is an active

interest in the dynamics of liquids and supercritical fluids, and I therefore hope

that my results will quickly stimulate high-temperature and high-pressure

experiments aimed at detecting and studying the gap in several important

systems.
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Chapter 1

Introduction

1.1 Liquids and supercritical fluids: challenge of

structural and dynamical disorder

Traditionally, solid state physics was almost exclusively about ordered sys-

tems, crystals [1]. Crystallinity and periodicity give rise to several important

concepts and approaches which significantly simplify physical description:

the reciprocal space, plane waves describing collective modes and electronic

states, analysis of structure, symmetry changes and phase transitions and so

on. These concepts are used to construct theories of thermodynamic properties

in most system. Those properties include energy, heat capacity and entropy

as well as dynamical and transport properties. The absence of crystallinity

in amorphous systems such as glasses or crystals amorphized by radiation

damage has been viewed as a serious challenge for their understanding. These

challenges continue to stimulate the ongoing research into disordered systems.

To a large extent, these challenges have stimulated my work in this thesis.

Condensed matter as a term originated from adding liquids to solid state
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physics. As far as we can tell, one of the first proposals dates back to 1930s

when J. Frenkel proposed to develop liquid theory as a generalization of solid

state theory and unify the two states under the term “condensed bodies” [2].

Liquids bring about another challenge for theory: the dynamical disorder.

Particles in liquids jump between quasi-equilibrium positions [2] and so no

fixed reference state exist as in the case of solids, crystalline or amorphous.

For this reason, the community was compelled to treat liquids as general

disordered statistical systems with no simplifying assumptions as those used

in the solid state theory. Importantly, inter-particle interactions in liquids are

strong and are comparable to those in solids. This means that a perturbation

theory, widely used to treat weakly-interacting gases [3], can not directly

apply1. Because interactions are both strong and system-specific, Landau

and Lifshitz state in their textbook [6] that no general expression for liquid

thermodynamic properties such as energy can be obtained. Although great

strides have been achieved in our understanding of liquids [7–14], there are

still important questions remaining, including understanding and predicting

most basic liquid thermodynamic properties such as specific heat [15].

Notably, recent results from experiments and theory start to lift this pessimistic

view about liquids [16]: in many important respects, liquids are close to

solids. In particular, liquids are capable of supporting high-frequency solid-like

collective modes, and this ability can be used to construct their thermodynamic

theory. There are important differences in ways in which collective modes

operate in solids and liquids, and these differences continue to stimulate the

ongoing liquid research [17–26]. A large part of my thesis is dedicated to

studying how collective modes propagate in liquids. Of particular importance

here is my discovery of the emergence and evolution of the gap in the reciprocal
1one approach to apply perturbation theory on liquid is based on density function theory

approximation [4, 5]
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space in liquids and supercritical fluids.

The third theoretical motivation comes from the need to better understand

the properties of matter above the critical point. In the last couple of decades,

supercritical fluids started to be widely deployed in many important industrial

processes [27, 28] thanks to their high dissolving and extracting properties.

These properties are unique to supercritical fluids and originate from the

combination of high density and particle mobility. However, little is known

about the supercritical state of matter from theoretical standpoint, apart from a

common general assertion that no difference can be made between a liquid and

a gas above the critical point and that the supercritical state should probably be

viewed as a homogenous dense hot matter [27, 28]. More recently, there were

several attempts to develop a more specific picture of the supercritical matter,

and of them is the proposal of the Frenkel line separating two supercritical

states with liquid-like and gas-like properties [29–31]. The Frenkel line was

mapped on the phase diagram for a model Lennard-Jones system only, and this

stimulated my work to locate the line for several real important systems such

as H2O, CO2 and CH4. This work includes developing a reliable interatomic

potential that can be used to model high-temperature and high-pressure of

CO2 in the supercritical state.

1.2 Radiation damage effects

Another main motivation behind my work in this thesis stems from the need

to safely encapsulate nuclear waste, the important and pressing challenge

that modern society faces. A variety of radiation sources are created and

used in science and technology. This includes an important area of energy

generation in nuclear power stations, where kinetic energy of fission products
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is converted into heat and electricity. In this and other applications, the energy

of emitted particles often has a two-fold effect. On one hand, this energy

is converted into useful energy, by heating the material around the particle

tracks. On the other hand, this energy damages the material and degrades

its important properties, including mechanical, thermal, transport and so on,

to the point that a material might lose its functional purpose. A problem in

fission and future fusion reactors [32–34], this issue is particularly acute in

the process of safe immobilization of nuclear waste, and constitutes one of

the pressing issues that modern society faces [35, 36]. The issue is closely

related to public acceptance of nuclear industry and therefore to the future

of nuclear power. Regardless of the future of nuclear industry, the amount

of accumulated nuclear waste is very large and is steadily growing while no

acceptable solution of its safe storage exists.

Solid ceramic materials (“waste forms”) have been proposed to encapsulate

highly-radioactive nuclear waste [35–39], and this poses both technological and

scientific challenges. The main requirement for the immobilisation matrix, the

waste form, is to prevent the radioactive isotopes from leaking and polluting

the environment. This is perceived to be a very challenging requirement,

given the high radioactivity of the nuclear waste and the long radioactivity

time spans that extend from several thousand years for fission products to

several million years for actinides. As recently observed [39], nuclear waste

encapsulation involves “design problem the likes of which humanity had never

before attempted, because it involved a time scale that required predictions

of material and system behaviour tens and hundreds of thousands of years

into the future. Some perspective on the uniqueness of this temporal pro-

jection comes from the realisation that the most ancient monuments of past

engineering achievement, such as Stonehenge and the Pyramids, are barely
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five thousand years old.” With no direct testing possible over long periods of

time, the decision of using a particular waste form needs to be informed by

indirect simulated experiments as well as detailed theoretical understanding

of how irradiation affects the ability of the waste form to remain an effective

immobilisation barrier.

In this thesis, I study the diffusion in amorphous zirconolite CaZrTi2O7, the

material currently considered by the UK Nuclear Decommissioning Authority

as a potential waste form. The atomic diffusion plays the key role for immobi-

lizing highly radioactive atoms and recrystallisation. Therefore it is important

to understand the diffusion in the wast form after being completely damaged.

I also address the modelling of Yttrium-stabilised zirconia (ZrO2) and develop

an interatomic potential that can be used to model radiation damage effects

in this system. ZrO2 is very interesting due to its exceptional resistance to

amorphization by radiation damage [40, 41]. Understanding the structure

before damage is crucial for further radiation damage study.

As a result of several different motivations discussed above, my thesis consists

of two main areas: understanding the effects of radiation damage in amorphous

materials and understanding dynamics of liquids and supercritical fluids.

Although these two areas may seem different, they share some common

properties and applications. Both are disordered systems which are not well

understood as discussed below. In terms of applications, both systems of them

can be related to safe encapsulation of nuclear waste, because the supercritical

fluids have been proposed as an alternative to acids to extract and dissolve

radioactive waste coming from nuclear power stations [42, 43]. Studying these

two areas can be beneficial to two important process of dealing safely with

nuclear waste, namely that nuclear waste can be transported by supercritical

fluids, then immobilised by solid ceramic materials.
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1.3 Thesis outline

As mentioned above, this thesis includes two main areas of study. Chapters 3

and 4 are related to radiation damage effects. Chapters 5, 6 and 7 are related

to the dynamics of liquids. In Chapter 2, methods related to my simulations is

introduced. Firstly, I discuss the algorithms of integrate Newton’s equation,

ensembles and rigid bodies. Then I described how to calculate the interactions

of particles in molecular dynamics simulation such as Coulomb interactions

and short-range interactions.

In Chapter 3, the simulation results of atomic diffusion in solid zirconolite is

discussed. It focuses on how amorphization and density can affect the atomic

diffusion in the material.

In Chapter 4, I analyse the crystal structure of Yttria-stabilized zirconia,

Zr1−xYxO2−x/2 and discuss how Y doping changes zirconia structure. The

analysis is done in a wide range of Y (0–25 %). Then I discuss how the

emergent structure can affect O diffusion in Zr1−xYxO2−x/2.

In Chapter 5, I discuss the development of new CO2 interatomic potential and

test the vapour-liquid coexistence line for this model.

In Chapter 6, I discuss the Frenkel line and calculate the Frenkel line of CO2,

H2O and CH4 in the supercritical region on the phase diagram. Then I discuss

how the experimentally observed solubility maximum can be related to the

Frenkel line.

In Chapter 7, I analyse the dynamical properties of liquids and supercritical

fluids and study the collective modes in these systems. I calculate high-

frequency solid-like transverse modes and their temperature evolution in both
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subcritical liquids and supercritical fluids. I find that the gap emerges in the

reciprocal space and widens with temperature. On the basis of these results,

I establish a quantitative relationship between the gap and liquid relaxation

time.
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Chapter 2

Methods

The main method used in this thesis is classical molecular dynamics (MD)

simulations discussed in the next section. Due to fast development of com-

puting technology, we can now study what used to be very challenging. The

new developments include the ability to simulate large system sizes, parallel

simulations required to average the results as well as more comprehensive

detailed analysis. In this chapter, I discuss the MD method and algorithms

used.

2.1 Molecular dynamics simulation

The main advantage of MD is that it can directly study the dynamical prop-

erties of the system such as structure, structural transformations, system

thermodynamic properties as well as dynamical behaviour including collective

modes, diffusion coefficients and so on. Provided reliable interatomic poten-

tials are used, classical MD simulations can give reliable results that can be

directly compared to experimental results and theoretical predictions.

An MD simulation is based on the classical Newton’s equations, namely
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f orce = mass× acceleration. The choice of algorithms of integrating Newton’s

equation is crucial for the MD simulation. A simulation provides a full

trajectory of the system in the phase space, including particles coordinates and

momenta. The initial configuration and the interatomic potential are specified

from the outset. To calculate the new position of particles, the Taylor expansion

of the spatial coordinate can be used both forward and backward in time t:

r(t + ∆t) = r(t) +
∂r(t)

∂t
∆t +

1
2

∂2r(t)
∂t2 (∆t)2 + · · · (2.1)

= r(t) + v(t) +
f(t)
2m

(∆t)2 + · · · (2.2)

r(t− ∆t) = r(t)− ∂r(t)
∂t

∆t +
1
2

∂2r(t)
∂t2 (∆t)2 + · · · (2.3)

= r(t)− v(t) +
f(t)
2m

(∆t)2 + · · · (2.4)

(2.5)

where, the ∆t is timestep, v(t) is velocity, f (t) is the force and m is the mass.

The new position and velocity can be calculated by adding and subtracting the

above two equations:

r(t + ∆t) = 2r(t)− r(t− ∆t) +
f(t)
m

(∆t)2 + O(∆t)4 (2.6)

v(t) =
r(t + ∆t)− r(t− ∆t)

2∆t
+ O(∆t)3 (2.7)

This is known as Verlet algorithm.

It can be seen that the velocity is always less accurate than the position, and

that the calculation of velocity is always one step behind of position. As we

can see in Eq. (2.7), the velocity, at time t, is calculated based on the position

at time t + ∆t and t− ∆t. However, there is a way to calculate the velocity at

the same time and also improve the accuracy by introducing a half step:

v(t + ∆t/2) = v(t) +
1
2

∂2r(t)
∂t2 ∆t (2.8)
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substituting above equation into Eq. (2.1) and (2.2) gives:

r(t + ∆t) = r(t) + v(t + ∆t/2)∆t (2.9)

The velocity for the new timestep t + ∆t can be calculated as:

v(t + ∆t) = v(t + ∆t/2) +
1
2

∂2r(t + ∆t)
∂t2 ∆t (2.10)

Substituting Eq. (2.8) into above equation gives:

v(t + ∆t) = v(t) +
1
2

(
∂2r(t + ∆t)

∂t2 +
∂2r(t)

∂t2

)
∆t (2.11)

This method is called Velocity Verlet algorithm, which is the default integration

method in the MD package we use, DL_POLY [44].

The timestep is important for the accuracy of the result. One way to increase

the accuracy is to use smaller timestep, but this increases the computational

cost. Another way is to use large timestep by storing information about higher

order derivatives. Although higher-order algorithms tend to have very good

energy conservation for short times, the energy may drift for long times. Verlet

algorithm tends to have moderate energy conservation at short times and little

drift at longer times.

MD simulation can be a very powerful approach if we consider its limitation.

System size provides some constraints in the system. For instance, the wave

number of phonon is restricted by the periodic boundary conditions 2nπ/L,

where L is the system size and n is an integer. Furthermore, we expect the

system to be ergodic, but MD is a non-ergodic system. It means that simulating

longer time does not necessarily give better statistical results. Another thing

we need to worry about is the force field. The most common force field used

in MD simulation is empirical potential. The empirical potential can not

describe quantum effects, such as Jahn-Teller effect or vibrational motion with
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a frequency ν where hν > kBT.The potential is usually fitted based on the

known experimental results, which makes empirical potential an inappropriate

tool for structure predication of unknown phases of a material.

MD simulation used be able to be performed with the system size ∼ 105.

By using the UK’s largest supercomputer ARCHER and state-of-the-art MD

code DL_POLY, I am able to perform the MD simulation with the system size

∼ 106. Thus some large scale system, such as radiation damage events, can be

simulated, which used to be thought impossible [33, 34].

2.2 Thermodynamic ensembles

2.2.1 Microcanonical ensemble

Since the MD simulation obeys Newton’s equation, it automatically satisfies

energy conservation. A popular ensemble keeps the energy, volume and the

number of particle constant. This ensemble is called microcanonical (NVE)

ensemble. The Hamiltonian of this ensemble can be written as:

H = ∑
i

p2
i

2mi
+

1
2 ∑

i
Ep(ri) (2.12)

where pi is the momentum of atom i, mi is the mass, and Ep(ri) is the potential

energy of atom i at position ri. The factor 1
2 is due to the double counting.

Keeping constant volume and energy is not enough to cover all the situation,

because most experiments are performed under controlled temperature and

pressure. In this case, the constant pressure or temperature ensemble (NPT) is

used [45].
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2.2.2 Constant pressure or stress ensembles

To perform MD simulation at constant pressure or stress, the size and the

shape of the configuration need to be allowed to change during the simulation.

Ranmann and Parinello [46, 47] found a successful approach by introducing

new dynamical variables h into the Hamiltonian:

H =
1
2 ∑

i
mi ṡT

i · (hT · h) · ṡi +
1
2 ∑

i
E(si, h) +

1
2

M Tr(ḣT · ḣ) + PV (2.13)

where h is a square matrix constructed by three edge vectors of configuration

as a, b and c, and si is the column vector of fractional coordinates xi, yi and

zi. The position of atom i is: ri = h · si = xia + yib + zic. The symbol M is

the effective mass. The effective mass does not affect the size of fluctuations

of configuration, but their time scale. In this case the effective mass can be

related to a time constant, which is the formulation used in DL_POLY.

2.2.3 Constant temperature ensemble

One way to achieve constant temperature is to scale the velocities of atoms dur-

ing the simulation [45]. At the beginning of the MD simulation, the atoms are

assigned a set of velocities that corresponding to a given temperature. However

the configuration of the system may not correspond to an equilibrium state. In

this case the velocities need to be re-scaled periodically until the temperature

oscillates around a mean value. The simulation can be subsequently run in

the NVE ensemble and we can collect the data. However, the above re-scaling

method has no robust basis in statistical mechanics, and can be only used to

prepare a system. Nosè [48] proposed to introduce an artificial coordinates s

into the Hamiltonian:

H = ∑
i

p2
i

2mis2 +
1
2 ∑

i
E(ri) +

1
2

Qṡ2 + (3N + 1)kBT ln s (2.14)
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where N is the number of particles and Q is the effective mass. The variable

s can be viewed as effectively scaling time. As we can see, the temperature

fluctuates around a mean value, corresponding to a heat bath in contact with

the system.

2.2.4 Grand canonical ensemble (Gibbs ensemble)

The Gibbs ensemble is widely used to simulate liquid-vapour and liquid-liquid

coexisting phase. Different from the ensemble described above, the Gibbs

ensemble is used in Monte Carlo (MC) simulation by default, and there are

some recent developments of using the Gibbs ensemble in MD simulations

[49–51]. Temperature, pressure and chemical potential µ are the same for

two states in the coexisting phase. Thus, the ideal ensemble for simulating

the coexisting phase is µPT ensemble. However, µ, P and T are all intensive

properties, which leaves extensive property unbounded. At least one of the

extensive property must be fixed for a proper ensemble.

The Gibbs ensemble, proposed by Panagiotopoulos [52], is the combination of

the NVT, NPT and µPT ensemble. The schematic sketch of Gibbs ensemble

is shown in Fig. 2.1. The Gibbs ensemble contains two subsystems. The total

volume V = VA + VB is constant, the total number of particle N = NA + NB is

constant and the temperature is also constant, but the volume and particles

can exchange between two boxes. Each MC step involves three trial moves: (1)

displace a randomly selected particle; (2) change the volume of boxes while

maintaining the total volume constant; (3) move a randomly selected particle

from one box to another. When the whole system reaches to the equilibrium

state, the chemical potential µ and pressure P of two subsystems are equal to

each other.
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A B B
A

Figure 2.1: Schematic sketch of Gibbs ensemble. Two system can exchange
both particles and volume.

2.3 Rigid bodies

Rigid bodies are used to model a set of atoms whose local structure does not

change during the simulation. Since the frequency of intramolecular vibration

is usually much higher than inter-molecular frequency, it is necessary to use

much smaller timestep to capture the motion of atoms, which causes more

computational cost. Moreover, it can also cause some problems when there is

a massless charge site inside the molecule, such as TIP4P water potential. For

those reasons, using rigid bodies can both save computational cost and avoid

problems.

The motion of rigid bodies can be described as translation of the centre of mass

and rotation about the centre mass. The difficulty of describing the rotation

is that the operators do not commute with each other. The rotation can be

described by Euler angles. If the system is first rotated by an angle α around

the z axis, then rotated an angle β around the new y axis and finally rotated
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an angle γ about the new z axis, the rotation matrix is defined as:

R =


cos α cos γ− cos β sin α sin γ sin α cos γ + cos α cos β sin γ sin β sin γ

− cos α sin γ− sin α cos β cos γ − sin α sin γ− cos α cos β cos γ sin β cos γ

sin α sin β − cos α sin β cos β


(2.15)

However, there is a problem with using Euler angles. If β = 0 the first and

third rotation becomes identical:

R =


cos(α + γ) sin(α + γ) 0

− sin(α + γ) − cos(α + γ) 0

0 0 1

 (2.16)

As a result the system loses one degree of freedom. This would cause instability

in the MD simulation. The problem can be avoided by using four new variables

called quaternions. A quaternion is a four-dimensional unit vector defined as:

q0 = cos
α + γ

2
cos

β

2
q1 = cos

α− γ

2
sin

β

2
q2 = sin

α− γ

2
sin

β

2
q3 = sin

α + γ

2
cos

β

2

(2.17)

The rotation matrix can be written as:

R =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.18)

In DL_POLY, the rotation of rigid body is defined by this quaternion matrix.

2.4 Ewald sum

The problem of calculating the Coulomb interaction is that interactions are

long-ranged. The computational cost increases with the range of the interac-

tion, since more pairs of atoms need to be included in the calculation. Using
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truncation of distance for interaction would cause problems for energy conser-

vation when the interaction switches on and off at a pre-defined distance. If

simulating a periodic system, the interaction range would exceed the size of

the MD box. The Ewald’s sum is a method to calculate long-range interaction

in a periodic system. [45, 53]

The Ewald method divides the Coulomb interaction into short-range and

long-range contributions. The short-range contribution is calculated in real

space and the long-range contribution is calculated in reciprocal space. For

mathematical convenience, the quantity 1/r is presented as a definite integral

of a Gaussian function:

1
r
=

2√
π

∫ ∞

0
exp(−r2ρ2)dρ (2.19)

The Coulomb energy can be written as:

EC =
1
2 ∑

`
∑
i,j

QiQj

2π3/2ε0

∫ ∞

0
exp(−r2

ij(`)ρ
2)dρ (2.20)

where i and j are labels of atoms, rij is the distance between atoms i and j. Q

is the charge of that atom and l is the label of the periodic configuration. The

integral can be separate into two parts:

∫ ∞

0
exp(−r2ρ2)dρ =

∫ g

0
exp(−r2ρ2)dρ +

∫ ∞

g
exp(−r2ρ2)dρ (2.21)

=
∫ g

0
exp(−r2ρ2)dρ +

√
π

2
erfc(gr)

r
(2.22)

where g is the convergence parameter, and erfc(x) is called the complementary

error function defined as:

erfc(x) =
2√
π

∫ ∞

x
exp(−y2)dy (2.23)

The first term represents an atom j interacting with charge cloud located at

site j with the same charge as that atom. The second term becomes the point
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change surrounded by the opposite charge cloud, which falls to zero rapidly

with increasing r. Transforming the first term in the reciprocal space, we write:

2√
π

∑
`

exp(−r2
ij(`)ρ

2) =
2π

V ∑
G

ρ−3 exp(−G2/4ρ2) exp(iG · rij) (2.24)

where rij is the vector between atoms i and j, V is the volume of the box, and

G is a reciprocal lattice vector. The integral gives:∫ g

0
ρ−3 exp(−G2/4ρ2) exp(iG · rij)dρ =

2 exp(−G2/4g2)

G2 exp(iG · rij) (2.25)

The problem with the above equation is that the atom would interact with

itself when l = 0 and i = j. We can calculate this self-energy term from the

real-space summation as:

Eself = lim(r → 0)
1
2 ∑

i

Q2
i

4πε0

erfc(gr)− 1
r

(2.26)

= − 1
4πε0

∑
i

gQ2
i√

π
(2.27)

The total electrostatic energy equals the sum of Eq. (2.23), (2.25) and (2.27):

EC =
1
2 ∑

ij

QiQj

4πε0

4π

V ∑
G

exp(−G2/4g2)

G2 exp(iG · rij) (2.28)

+
1
2 ∑

ij

QiQj

4πε0
∑
`

erfc(grij(`))

rij(`)
− 1

4πε0
∑

i

gQ2
i√

π

2.5 Interatomic potentials

The short-ranged interaction is calculated using empirical potentials. In my

simulations, I used two types of potential: Lennard-Jones potential [54] and

Buckingham potential [55].

In the Lennard-Jones potential, the strong short-range repulsion models strong

repulsion due to Pauli exclusion when two atoms are come close to each other.

This can be represented as:

φr(rij) = A/r12
ij (2.29)
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where A is a parameter and rij is the distance between atoms i and j.

The long-ranged part of attractive interaction can be due to fluctuating in-

stantaneously induced dipoles. This is called dispersive interactions and can

modelled as:

φa(rij) = −B/r6
ij (2.30)

where B is a parameter. The sum of two above terms gives the Lennard-Jones

potential:

φ(rij) = A/r12
ij − B/r6

ij (2.31)

The Lennard-Jones is usually used to describe the interactions in simple solids

such as Ar and is commonly used to model liquids.

The Buckingham potential is similar to the Lennard-Jones, but the repulsive

part is replaced by the more accurate Born-Mayer term:

φrepulsive = A exp(−rij/ρ) (2.32)

where both A and ρ are adjustable parameters. The Buckingham potential is

written as:

φ(rij) = A exp(−rij/ρ)− C/r6
ij (2.33)

2.6 General Utility Lattice Programme (GULP)

GULP is able to calculate energies and minimise the energy through relaxing

the structure, physical properties such as elastic constants and lattice dynamics.

It is commonly used to fit the parameters in majority of model potential based

on experimental data and ab initio energies [56]. In the thesis, I used to GULP

to develop the model for Yttrium stabilised zirconia and CO2 and calculate

phonon dispersion for CO2.
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2.7 DL_POLY

DL_POLY is a general purpose MD simulation software using classical mechan-

ics. It can simulate both equilibrium and non-equilibrium system. Furthermore,

DL_POLY_4 parallelisation is based on domain decomposition method, which

makes DL_POLY a nearly perfect scalable. Those features make DL_POLY_4 a

great tool for studying radiation damage effect and other systems.

In this thesis, the general procedure of a MD simulation is described as below.

Firstly, the equilibration is simulated in NPT ensemble to ensure that the

system is at given temperature and pressure. The first stage of equilibration

is to speed up the process of reaching the equilibrium state by scaling the

velocities of atoms, then the simulation is performed in NPT ensemble without

scaling the velocities. After the measured properties no longer changes with

running longer time in NPT ensemble, the simulation is performed in NVE

simulation and collect data.
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Chapter 3

Solid-state diffusion in amorphous

zirconolite

In this chapter I discuss how structural disorder and amorphization affects

solid-state diffusion, and consider zirconolite (CaZrTi2O7) as a currently impor-

tant case study. It is currently considered by the UK Nuclear Decommissioning

Authority as a potential “waste form”, a material capable to safely immobilize

highly-radioactive nuclear waste. By performing extensive molecular dynam-

ics simulations, the effects of amorphization and density are disentangled. I

show that a profound increase of solid-state diffusion takes place as a result

of amorphization. The amorphization of a waste form is the result of struc-

tural decay of alpha-emitting radioactive ions, where most of the structural

damage comes from heavy recoils in alpha-decay. Importantly, this can take

place at the same density as in the crystal, representing an interesting general

insight regarding solid-state diffusion. I find that increasing the volume in

the amorphous system increases pre-factors of diffusion constants. I also find

that atomic species in zirconolite are affected differently by amorphization

and density change. My microscopic insights are relevant for understanding
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how solid-state diffusion changes due to disorder and for building predictive

models of operation of materials to be used to encapsulate nuclear waste.

3.1 Introduction

Waste form alteration, the main concern for the safe encapsulation of nuclear

waste, is a complex phenomenon involving diffusion, leaching and dissolution

[57, 58]. Understanding the effects of irradiation on waste form durability is

challenging because the process is complex and includes many mechanisms

at work [35, 36, 58]. Generally, waste form alteration as a result of irradiation

can include chemical changes at the surface, reactions with water and other

environmental agents, increase of solid-state diffusion of atoms in the bulk

due to radiation damage, increased defect mobility, defects interaction and so

on. The above processes can be system specific, yet have a common under-

lying mechanism, thermal diffusion. It is therefore important to understand

diffusion in waste forms and its changes due to radiation damage, because

the solid diffusion plays a key role on the recrystallization and the ability of

immobilising highly radioactive atoms in encapsulation materials.

An important effect of irradiation on the waste form is the remarkable increase

of diffusion as a result of radiation-induced amorphization [59, 60]. Seen in

easily amorphizable materials, this effect has been thought to be either absent

or reduced in materials resistant to amorphization by radiation damage [61].

However, even most resistant materials such as ZrO2 still show considerable

damage in the form of a large number of well-separated point defects [62].

An interesting possibility is having a waste form which is amorphized by

radiation damage yet still shows low levels of alteration and continues to

be an effective immobilization barrier. Zirconolite, CaZrTi2O7, is one of the
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phases in SYNROC mixture of different ceramics each tailored to immobilize

different ions present in the highly-radioactive nuclear waste [37, 38]. The

SYNROC is a synthetic rock to immobilize the liquid nuclear waste form

by compressing the SYNROC powder with nuclear waste using hot isostatic

pressing process. The SYNROC is currently the preferred waste form by the

UK National Decommissioning Authority for immobilization of actinides. In

more recent experiments [57, 63, 64], zirconolite has been rendered X-ray

amorphous by alpha-decay processes of Pu and, surprisingly and contrary to

other materials, did not reveal significant chemical and physical alterations,

witnessed by the absence of phase changes and microcracks even at fairly large

volume increases. Furthermore, zirconolite maintained strong elastic response

and overall chemical durability [57, 63, 65], in contrast to other materials

studied. At the same time, the aqueous durability of zirconolite is strongly

affected by radiation damage [65], with the evidence supporting diffusion-

controlled ion exchange as the main mechanism of alteration of radiation-

damaged zirconolite. These results call for further detailed investigation of

the mechanisms involved in the alteration of this waste form and diffusion

mechanism in particular.

According to current understanding, the increase of diffusion due to radiation-

damaged system is due to the associated density decrease. Indeed, apart

from rare examples such as Si, radiation-induced structural changes and

amorphization are accompanied by density decrease. The effect of density on

the activation energy for diffusion U (the energy needed by an atom to jump

from its surrounding cage to the neighbouring quasi-equilibrium location) has

been well understood since the early work of Frenkel [2]. When interatomic

separations are at their equilibrium values in a solid, U is too high for the jump

event to take place during any feasible time. However, if the cage can increase
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its size (for example, due to thermal fluctuations) and open up a low-energy

local diffusion pathway, the jump can proceed much faster. If ∆r is the increase

of the cage size required for the jump to take place, U is equal to the work

required to expand the change elastically, and is

U = 8πGr∆r2 (3.1)

where G is shear modulus and r is the cage radius [2]. Note that the elastic

energy to expand the sphere of radius r by amount ∆r depends on shear

modulus G only because no compression takes place at any point. Instead,

the system expands by the amount equal to the increase of the sphere volume

[2], resulting in a pure shear deformation. Indeed, the strain components u

from an expanding sphere (noting that u →0 as r → ∞) are urr = −2b/r3,

uθθ = uφφ = b/r3 [66], giving pure shear uii = 0.

From a theoretical standpoint, density is considered to be the main factor

governing G and hence U [2]. Indeed, when density decreases as a result

of radiation-induced structural changes, the interatomic interaction strength

decreases, reducing G. Further, ∆r decreases due to the increase of the cage

volume. Therefore, if G is constant at constant density, Eq. (3.1) makes two

predictions. First, U reduces due to density decrease, the widely anticipated

result corroborated by more recent work on diffusion processes in glasses and

viscous liquids [67]. Second, U does not change at constant density.

In contrast to the density effect, the consequences of amorphization at constant

density for diffusion are not understood. Indeed, if a structural change (e.g.

amorphization or large accumulation of point defects and their clusters as

in ZrO2 [62]) takes place at constant density, the volume of the atomic cage

around the diffusing atom does not change on average. However, the wide

distribution of interatomic angles in the disordered structure leads to the
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Figure 3.1: Schematic picture showing equivalent interatomic distances and
local diffusion pathways in the crystalline structure (left). The disordered
structure with the same density as the parent crystal has a wide distribution
of interatomic distances and angles and gives rise to both faster (solid line)
and slower (dashed line) local diffusion pathways.

appearance of both faster and slower local diffusion pathways (see Fig. 3.1),

even if this structure is of the same density as the parent crystal, with the

net effect of increasing the diffusion. This is an agreement with experimental

results reporting the decrease of G as a result of amorphization at the same

density [68].

Hard to estimate theoretically, the combined effect of local fast and slow

diffusion pathways at the same density is important to understand from the

waste form perspective [58] as well as from the general point of view of

properties of disordered state. Indeed, since the early work [69], the extent

to which structural disorder affects system properties remains to be widely

debated. For example, recent work aimed at resolving the long-standing debate

about the origin of the Boson peak in the energy spectrum of glasses, and

has found that, contrary to earlier expectations, the difference of vibrational

spectra and other important properties between the amorphous system and its

parent crystal disappears once the densities of both systems are taken to be

the same [70]. Generally, recently accumulated evidence suggests that disorder
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leaves some important properties of the system surprisingly unaffected, but

modifies other properties substantially [71].

In this chapter, I address an important element of waste form alteration, the

change of thermal diffusion due to radiation damage in the waste form. I

use molecular dynamics (MD) simulations to study the change of diffusion of

different atomic species in zirconolite as a result of structural disorder. Impor-

tantly, MD simulations enable us to disentangle the effects of amorphization

and density increase on diffusion and discuss these effects separately. Such a

separation is very hard to achieve in experimental radiation-damaged samples.

I find that a profound increase of solid-state diffusion takes place as a result

of amorphization. Importantly, this can take place at the same density as in

the crystal, representing an interesting general insight regarding solid-state

diffusion. I find that increasing the volume in the amorphous system increases

pre-factors of diffusion constants. I also find that atomic species in zirconolite

are affected differently by amorphization and density change. My findings

are relevant for both understanding solid-state diffusion in the presence of

disorder and for building predictive models of operation of nuclear waste

forms.

3.2 Methods

There are several ways in which structural disorder can be introduced. Al-

though direct simulation of collision cascades gives detailed information about

the nature of the damage, producing completely disordered structures by

multiple cascade overlaps is not practical, especially for realistic high-energy

events and large system sizes [72]. In amorphous solid, atoms is not randomly

distributed in the system, which still maintain certain short range order, thus
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Figure 3.2: Structure of crystalline (left) and amorphous (right) zirconolite.
Ca is coloured in blue, Ti is coloured in purple, Zr is coloured in green, U
is coloured in grey and O is coloured in red.

I follow a procedure which is similar to the annealing process. I prepared

the amorphous structures by first melting the system at 5000 K, equilibrating

the high-temperature liquid for 100 ps and subsequently quenched the liquid

slowly to room temperature, 300 K. I note that amorphization by quenching

the liquid can be different from radiation-induced amorphization in several re-

spects [59, 60, 73, 74], however my main motivation is to address a fundamental

question of how diffusion is affected by topological disorder in general.

I use DL_POLY MD simulation package [44] and the system of 1056 atoms with

the recent interatomic potential fitted to zirconolite properties [75]. To achieve

the metastable amorphous state, I equilibrated all structures at 2000 K, then

decrease the temperature to 300 K with a rate 2 K/ps to make the equilibration

as slow as possible in MD simulations. The equilibration is simulated in

NPT ensemble and the diffusion is simulated in NVE ensemble. The timestep

is set as 0.001 ps. I have simulated and relaxed three different zirconolite

structures: crystalline, high-density amorphous with density equal to the

crystal and low-density amorphous zirconolite with 5% decreased density as
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Table 3.1: Buckingham parameters and the charge of O, Ca, Zr, Ti and U
in this study.

A (eV) ρ (Å) C (eV· Å) Charge (|e|)
O–O 22764 0.1490 32.8 -2
Ca–O 584.187 0.3460 0.0 2
Zr–O 1547.795 0.3470 0.0 4
Ti–O 1244.016 0.3510 0.0 4
U–O 1761.755 0.3564 0.0 4

in the experimental samples damaged by the radiation damage [36, 76]. 10% of

U atoms were introduced as a substitution for Zr atom, representing a typical

waste load in waste forms. The position of Zr atoms was chosen manually.

The structure of crystalline and amorphous zirconolite has shown in Fig. 3.2.

The interatomic potential for the U–O interaction was taken from Ref. [77].

The parameter of interaction potential in this study are listed in Table 3.1.

Experiments on alteration of damaged waste forms are conducted at high

temperature in order to observe alteration and diffusion during laboratory

time scale [57–60, 63, 64, 76]. Similarly, I performed several MD simulations at

temperature high enough to observe diffusion. Diffusion was observed as the

linear time dependence of the mean square displacement, 〈r2〉 = 6Dt, where

D is the diffusion coefficient. The coefficient 6 depend on the dimension of the

system.

3.3 Results

In Fig. 3.3, I show representative 〈r2〉 calculated for crystalline and amorphous

zirconolite. I note that at short time, 〈r2〉 crosses over from the oscillatory

to the diffusive regime, acquiring the linear time dependence characteristic

of diffusion (see Fig. 3.3–3.4). I perform subsequent analysis on the basis of

the linear 〈r2〉 ∝ t diffusive regime at long times. I limit the analysis to 5 ns
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Figure 3.3: Mean-squared displacement of O ions (averaged over all ions)
in crystalline and amorphous zirconolites of two different densities at 2000
K.

in time since at longer times at high temperature I observe the signatures of

recrystallisation, witnessed by the appearance of peaks in Zr–Zr and Ti–Ti

sublattices beyond the medium-range order.

In the following analysis, I will use two equations for the temperature de-

pendence of the diffusion coefficient D and hopping time τ, the average time

between two consecutive atomic jumps at one point in space [2]:

D = D0 exp
(
−U

T

)
(3.2)

τ = τD exp
(

U
T

)
(3.3)

where U is the activation barrier for the diffusion event, τD is the shortest (De-

bye) vibration period of about 0.1 ps, the pre-factor D0 is the high-temperature
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Figure 3.4: Mean-squared displacement of Zr, Ti, Ca and U ions (averaged
over all ions) in amorphous zirconolites of two different densities at 2000 K.

limit of the diffusion coefficient when τ → τD and kB = 1.

Apart from O ions, I observe no diffusion in the crystalline systems on the

time scale of my MD simulations. On the other hand, I observe the diffusion

of all ions in the amorphous systems at the same temperature (see Fig. 3.3–

3.4). Importantly, this includes the diffusion in amorphous structures of the

same density as the parent crystal. I therefore find that structural disorder at

the same density increases the diffusion constant profoundly, an unexpected

finding since the early work [2], it was density which was believed to govern

the activation energy barrier for diffusion [67]. This represents the first main

result of this study.

I next calculated main parameters of diffusion, U and D0, in amorphous

systems and their change due to different density. I calculate U by fitting

the data in Fig. 3.5 to Eq. (3.2) as ln D = ln D0 − U
T , and show the results
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Temperature (10000⨉K-1)

Temperature (10000⨉K-1)

Ca

Zr

Ti

U

O

Figure 3.5: ln(D) vs inverse temperature, 1
T for different atomic species.

The range of temperatures in the x-axis is 1400–2000 K for O and 1870–2000
K for cation. The dashed lines are fits of both sets of points to the straight
lines assuming that the slopes are the same within the errors present.
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Table 3.2: Activation energy U (eV) of atomic species in the crystalline
and amorphous zirconolite at two different densities. Pre-factors D0 (m2/s)
are denoted as D01 (amorphous system at larger crystalline density), D02
(amorphous system at smaller density) and Dcrystal (pre-factor of diffusion
of O ions in the crystal). The change of diffusion pre-factors is evaluated
using two methods discussed in the text: calculating D0 from direct fitting
to calculated D (a) and estimating the range of D0 at different temperature
(b). Subscripts 1 and 2 refer to amorphous systems at larger (crystalline)
and smaller density, respectively.

Ca Zr Ti U O
U (amorphous,
same density
as crystal)

2.80± 0.53 3.05± 0.73 3.79± 0.63 3.20± 0.86 1.61± 0.06

U(amorphous,
smaller
density)

2.80± 0.20 3.05± 0.71 3.79± 0.55 3.20± 0.54 1.61± 0.15

U (crystal) 1.61± 0.07
(a)
ln D02

D01
0.91± 0.09 0.66± 0.15 0.76± 0.13 1.01± 0.18 0.0± 0.2

ln D01
Dcrystal

1.04± 0.1

(b)
ln D02

D01
0.89− 0.92 0.62− 0.71 0.54− 1.00 0.79− 1.27

ln D01
Dcrystal

0.94− 1.11

in Table 3.2. Since I observe no appreciable differences of slope between

amorphous structures of different densities, the slopes were assumed to be

same within the errors of the fitting. The calculated values of U in amorphous

zirconolite represent our next quantitative result enabling future prediction

of how diffusion in the waste form will operate during long time scales, as

discussed below in more detail.

In Table 3.2, the scatter of errors is related to large fluctuations in the system at

very high temperature I simulated, and is larger for the less numerous U ions.

I therefore find that the considered moderate density decrease, corresponding

to the experimental swelling of radiation-damaged zirconolite [36, 76], does

not have a significant effect on U.
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Since I do not observe diffusion in the crystalline zirconolite apart from O ions,

I am unable to calculate U in the crystal and compare it to the amorphous

system. However, I can estimate the lower bound of U in the crystal, Ul , using

Eq. (3.3): Ul = Th ln τl
τD

, where τl is the longest simulation time and Th is the

highest temperature simulated in the crystal. Taking Tl = 2100 K and τl = 130

ns, I find Ul of about 3 eV. Ul is therefore of the same order of magnitude as

typical U in crystals (typical U in crystals can be larger by up to about a factor

of 2 for different ions).

A discernible trend in Fig. 3.5 is the increase of pre-factor D0 at smaller

density. I estimate this increase using two methods. First, I directly calculate

the increase of D0 by fitting the MD data to ln D = ln D0− U
T . This gives D02

D01
in

the range 2− 3 for different ions, where subscripts 1 and 2 refer to amorphous

systems at larger (crystalline) and smaller density, respectively (see Table 3.2).

Second, the range of D02
D01

can be estimated by subtracting ln D1 = ln D01 − U1
T

and ln D2 = ln D02 − U2
T . Using my earlier result that U are the same within

the error, I find ln D02
D01

= ln D2
D1

. Then, the range of ln D01
D02

is found by calculating

ln D2
D1

at low and high temperature in Fig. 3.5, giving D02
D01

in the range similar

to the first method, as follows from Table 3.2. I therefore find that the increase

of diffusion pre-factors with system’s volume is appreciable.

The results show an interesting heterogeneity of atomic species in terms of

diffusion. As mentioned above, O ions stand out from the rest of ionic species

in that their diffusion is seen in the crystalline zirconolite, because the nature

O ”vacancies” exist in CaZrTi2O7. CaZrTi2O7 is based on fluorite structure.

Because the formal charge of Ca is +2 and O is -2, some of O sites need to be

vacant for charge balance, which cause high diffusivity. Furthermore, O ions

do not show discernible decrease of U as a result of amorphization and density

decrease. However, I observe the increase of D0 as a result of amorphization
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by the factor of about 3. Contrary to other ions, however, this factor is not

sensitive to density decrease (see Fig. 3.5 and Table 3.2). Ca also shows much

higher diffusivity than other cation in amorphous zirconolite. The reason for

the difference is that the Ca-O bond is more ionic than other cation-O bond in

the system.

3.4 Discussion and summary

There are several important insights from this study. First, I find that structural

disorder and amorphization in particular, introduced to the system at the same

density as the parent crystal, can result in a profound increase of solid-state

diffusion. This is an interesting general insight in view that both earlier and

current theories emphasise density as the main factor controlling the diffusion

[2, 67]. This implies that the net effect of the appearance of slower and faster

local diffusion pathways in the disordered structure (see Fig. 3.1) is the increase

of diffusion.

According to this result, faster local diffusion pathways dominate over slower

ones in the same-density disordered structure. This is analogous to the well-

known case of introducing equal amounts of harder and softer inclusions in

an elastic matrix, with the result that the overall elastic response is mostly

governed by the softer phase (in a simple example, this is illustrated by the

inverse sum rule for bulk or shear moduli). The analogy is further relevant here

because lower-density faster diffusion pathways and higher-density slower

pathways can be approximately viewed as local regions that are softer and

harder, respectively (see Fig. 3.1). Then, the net effect is elastic softening of the

system and hence smaller G, in agreement with experimental results [68]. This

implies smaller U according to Eq. (3.1) and hence larger D according to Eq.
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(3.2), consistent with my findings.

I note here that contrary to the role of density which is well understood and

quantified, the effect of disorder at constant-density is not amenable to a simple

treatment or a model, but is important in a wider context of understanding the

essential differences between crystalline and amorphous systems. For example,

it has been long thought that amorphous systems are notably different in terms

of their vibrational spectra, yet recent evidence has found that this is not the

case if the amorphous system is at the same density [70]. This is consistent

with a wider picture emerging that many important thermodynamic properties

of the system are insensitive to disorder due to the similarity of their spectra

whereas other properties, namely the transport properties such as thermal

conductivity, are strongly affected [71].

Second, the increase of diffusion due to amorphization is important for the

operation of waste forms. For example, under the typical waste load zirconolite

will become amorphous from irradiation after about 1000 years. Being a very

small fraction of time of operation of the waste form (100,000-1,000,000 years),

this implies that solid-state diffusion will take place almost entirely in the

amorphous state. This will take place with the associated increased diffusion

constants that I have found in this work. Our results, and the calculated values

of U in particular, can therefore be used to predict the solid-state diffusion in

the waste form during the most important period of its operation.

Third, I have found specifically that the combined effect of amorphization and

volume increase can affect both the activation energy and diffusion pre-factors,

but that different ionic species can be differently affected. For example, the

diffusion of most numerous and mobile O ions is not affected by amorphization

to the same extent as in other ionic species.
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3.5 Conclusions

In summary, by using MD simulations I have disentangled the effects of

amorphization and density on solid-state diffusion, and showed that contrary

to existing theories, a profound increase of diffusion takes place as a result of

amorphization at the same density. I have found that increasing the volume

in the amorphous system increases the pre-factors of diffusion constants. I

have also found that atomic species in zirconolite are affected differently by

amorphization and density change. Our microscopic insights are relevant

for understanding how solid-state diffusion changes due to disorder and

for constructing predictive physics-based models aimed at predicting the

performance of waste forms over long time scales.
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Chapter 4

Microstructure and Oxygen

Diffusion in Yttrium-stabilised

Cubic Zirconia

In this chapter I discuss, characterise and quantify the microstructure of

Zr1−xYxO2−x/2. By combining the DL_POLY code and the ARCHER super-

computer mentioned in the previous section, the system size could be extended

up to 4,116,000 atoms in my MD simulation. For the fist time microstructure

transformation of Y-doped ZrO2 is able to be captured by simulation due to

the very large sample size. I observe that microstructures transform during

monoclinic to cubic transition in Y-doped Zirconia. During the transition, the

system contains microstructures with two coexisting phases. Although I do

not observe a metastable tetragonal phase in my simulations, there is a clear

phase transition around 10% of Y. Furthermore, I find that changes of the

the microstructure can have a big impact on O diffusion. Thus it is essential

to include microstructure effect when analysing O diffusion in Y-stabilised

zirconia.

45



4.1 Introduction

Zirconia (ZrO2) is an important industrial material. Owing to high oxygen

ion conductivity, it finds many applications, for example in oxygen sensors,

solid-oxide fuel cells and catalytic sensors. These applications are for the

cubic phase of ZrO2, which can be made by doping the structure with high

concentrations of Yttrium. Since the formal charge of Y is +3 and Zr is +4, to

preserve charge balance oxygen is removed when Zr is replaced by Y, allowing

high oxygen diffusion [78–80].

There have been a lot of studies focused on the phase stability of Y-doped

ZrO2 [78, 79, 81–84]. At room temperature, the crystal structure of pure ZrO2

is monoclinic. The structure transforms to the phase of tetragonal symmetry at

1170 °C and the phase of cubic symmetry at 2370 °C. However, ZrO2 also forms

a stable cubic phase by doping with a high concentration of divalent or trivalent

cations and a metastable tetragonal phase with a low concentration of divalent

or trivalent cations at room temperature. The metastable tetragonal structure

slowly transforms to the stable monoclinic structure at low temperature (∼ 400

K). Chevalier et al. [78] collected a wide range of data for both the metastable

and stable phase diagram of Y-doped ZrO2. In the metastable phase diagram,

there is a metastable tetragonal phase existing for concentrations of Y between

8–18% at room temperature. In the stable phase diagram, ZrO2 forms cubic

phase when the concentration of Y reaches 20% at room temperature.

Experimentally, both Kim et. al [84] and García-Martín et. al [83] observed

the domains of different phases coexisting in ZrO2 with 3.2% and 8% of Y2O3

by transmission electron microscopy. However, the challenge of experimental

study on these microstructures is that Y could be unevenly distributed in the

material due to low cation diffusion, so cubic structures tend to form in high
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Y-concentrated region [79]. Since microstructure also plays an important role in

the diffusion, it is essential to study how microstructure emerges and evolves

in detail.

There are a small number of simulation studies focusing on the microstructure

during the phase transformation. Most of these were based on rather small

system size, which means it would be impossible to include the emerging

microstructure [85–87]. The studies included microstructure created artificial

grain by Voronoi tessellation method[88]. It is important to study the changes

of microstructure of Y-doped ZrO2 formed “naturally” using MD simulations

with very large sample size.

There are numerous diffusion studies on Y-stabilised ZrO2, since most of its

applications are based on the diffusion property. Most experimental studies

show that the activation energy of O exhibits an almost linear correlation with

concentration of Y [89–94]. Interestingly, the activation energy of O diffusion

also changes with temperature [91, 92, 95]. The reason for this phenomenon

is still unclear. In comparison, the results of simulation studies show a more

complicated and unclear trend with concentration of Y [89, 90, 96, 97], but

these studies can not include the microstructure effect on oxygen diffusion.

In this study, I aim to develop a model that can simulate the microstructure

transformation during the monoclinic–cubic transition of Y-stablised ZrO2. I

performed extensive MD simulations for ZrO2 in a wide range of concentration

of Y. The system size was extended up to 360 Å of the supercell size. Then I

quantify the emergent microstructures and observe a phase transition around

10% of Y. Finally, I explain how those microstructure change can affect O

diffusion.
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4.2 Methods

4.2.1 ZrO2 potential

In collaboration with my supervisor Prof. Martin Dove, we developed a new

model for ZrO2 based on Buckingham potential which is shown in Table 4.1.

The parameter was fitted using GULP [56]. The potential is fitted based on

the properties of monoclinic, cubic and tetragonal phase of ZrO2, crystalline

Y2O3 and cubic Zr0.786Y0.214O1.893. We fitted the parameters in the model

interatomic potential against the energies from DFT calculation [98], crystal

structure and elastic constant from experiment data [99] using GULP for

developing empirical potentials.

The comparison of elastic constants between this model, other models and

experimental result are listed in Table 4.2. It can be seen that our model

gives better result for Y-stabilised cubic phase, and Schelling’s model gives

better result for the tetragonal phase. Although, similarly to other ZrO2

studies based on empirical potentials, our model suffers the problem that

the structure of ZrO2 prefers to form the orthorhombic phase which is more

symmetrical than monoclinic phase, my model provides the correct order of

energetic characteristics and reasonable elastic constants. In this study, I use

the orthorhombic phase to discuss the main effects of microstructure and its

evolution.

4.2.2 Details of molecular dynamics simulations

Cubic pure ZrO2 was chosen as initial structure. To obtain the right com-

position of the Y-doped ZrO2, randomly chosen Zr atoms are replaced by

Y, then randomly-selected O are removed from system to ensure the charge

balance. These work was done by the data2config which is written by my
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Table 4.1: Fitted Buckingham parameters and the charge of O, Zr and Y
for ZrO2. This potential is obtained based on fitting to the properties of
monoclinic, cubic and tetragonal phase of ZrO2, crystalline Y2O3 and cubic
Zr0.786Y0.214O1.893. The properties include structures and elastic constants
from experimental data [99], and energies from DFT calculation [98].

A (eV) ρ (Å) C (eV· Å) Charge (|e|)
O–O 1071 0.3623 175 -1.2
Zr–O 7375 0.2265 0.0 2.4
Y–O 181110 0.1726 0.0 1.8

Table 4.2: Comparison of elastic constants (GPa) for ZrO2 by using our
model, Schelling’s model [87] and experiment result [99].

Our
model

Schelling
model

Experiment

C11(cubic) 391 664 402
C12(cubic) 69 104 95
C44(cubic) 68 98 56
C11(tetragonal) 276 523 451
C12(tetragonal) 159 270 240
C44(tetragonal) 9 58 39

supervisor Martin Dove. Then MD simulation is performed using DL_POLY

[44] to simulate the structure and O diffusion for Y-stabilised ZrO2 with 0–25%

of Yttrium with the system size that consist 96,000–4,116,000 atoms with cell

size 100–360 Å. Similarly to the previous chapter, I equilibrated all structures

at 2000 K, then decrease the temperature to 300 K with a rate 2 K/ps to make

the equilibration as slow as possible in MD simulations. The equilibration

is performed in NST ensemble which allow the both volume and shape of

the simulation box change during the simulation. The oxygen diffusion is

performed in NVE ensemble for 100 ps. The timestep is set as 0.001 ps. I

ran the simulation on up to 1500 cores for 20 hours on the ARCHER national

supercomputer.
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Figure 4.1: Cation and its coordination cation for cubic (left) and or-
thorhombic phase(right).

ZrO2 Zr  Y  O0.8  0.2     0.19

triangle quadrilater

the vertex is the 
central atom

Figure 4.2: Cation-cation distance and angle distribution of dodecahedrons
for cubic (left) and orthorhombic phase(right). The angle distribution is
divided in three scenarios: (a) the vertex is denoted by the central atom; (b)
angles form the triangle of the dodecahedra; (c) angles form the quadrilater
of the dodecahedra.
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4.2.3 Cation coordination

To separate different phases in the system, I assign each cation to a correspond-

ing phase by analysing its coordination. I search the nearest cations for the

selected cation. The selected cation and its coordinations form a dodecahedron.

The dodecahedrons are shown in Fig. 4.1, featuring different shape for cubic

and orthorhombic phase, respectively. The angle and distance distribution

of those dodecahedrons determine which phase the selected cation is in. I

wrote a code to analyse the angle and distance distribution of dodecahedrons

using Fortran 90. Fig. 4.2 shows the angle and distance distribution calculated

from pure ZrO2 and Zr0.8Y0.2O1.9, respectively. These are used as a baseline

for separating the two phases shown in Fig. 4.1. During the analysis of dodec-

ahedrons, the code calculates distances and angles for each dodecahedrons

and then checks if the distribution fits the distribution of each peak in the

baseline. In the situation that the peak of angle distribution is not well defined

in the orthorhombic structure, the distribution is divided in three scenarios:

(a) the vertex is denoted by the central atom; (b) angles form the triangle of

the dodecahedra; (c) angles form the quadrilateral of the dodecahedra.

4.3 Results and discussion

4.3.1 Microstructure transforming in Y-stabilised Cubic Zirconia

Phase transition of ZrO2 caused by doping with Y

Fig. 4.3 shows that microstructures transform in domains with increasing

concentration of Y. The system without Y forms the orthorhombic phase

with different orientations, but I can still observe a small amount of cubic

phase existing in the grain boundary between orthorhombic grains. When the

concentration of Y reaches 20%, the system transforms to the cubic structure.
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Between 0–20%, both cubic and orthorhombic phases coexist in the system,

and the concentration of the cubic phase increases with the concentration of Y.

Similar microstructure was also observed in experimental studies [83].

It is necessary to simulate these microstructures in a very large system, because

the simulated structure, in the periodic system, can be affected by the shape

of the supercell. This effect reduce with the supercell increase. In Fig. 4.4, at

low concentration of Y, most of the crystalline structure aligns to a specific

orientation in the ZrO2 system consisting of 864,000 cations with the cell size

around 310 Å, but that phenomenon does not appear in the Zr1−xYxO2−x/2

system consisting of 1,372,000 cations with the cell size of about 360 Å. This

indicates that the simulation can still be affected by the constraint provided by

the supercell size up to 360 Å.

Since Y is randomly distributed in the system, I can study the relationship

between the formation of the cubic phase and the local concentration of Y

atoms. In Fig. 4.5, I plot the proportion of Y in the cubic cluster. As can be

seen in Fig. 4.5, before the structure completely transforms to the cubic phase,

the concentration of Y in the cubic domain is around 25% higher than the

concentration Y in the system. This confirms that the cubic phase domains

prefer to form in high-Y concentration region.

To quantify this transform, I calculated the concentration of cations in the

cubic phase with 4 different system sizes shown in Fig. 4.6. It seems that there

is a large fluctuation in the system consisting of Zr1−xYxO2−x/2 with 32,000

cations and a cell size around 105 Å, but the result becomes more consistent in

the larger system size. For the concentration of Y between 0–9%, there is only

a small amount of cubic structures growing inside the grain boundary. After

around 10% of Y, there is a rapid increase of cubic phase. The cubic phase
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0%                   5%    8%

9%                  10%    11%

12%                 15%    20%

Figure 4.3: Microstructure of the cubic phase (green) coexisting with the
orthorhombic phase at different concentrations of Y in the formula with
1,372,000 cations and cell size around 360 Å. I only show cations in the
structure. The cubic phase is seen to grow in the system with increasing
concentration of Y.
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Figure 4.4: Microstructure of the cubic phase (green) and orthorhombic
phase for ZrO2 with 864,000 cations and the cell size around 310 Å. The
orthorhombic phase align along a specific direction if the system size is too
small.

reaches saturation after 18% of Y. Those results indicate that there may be a

phase transition at around 10% of Y.

The change of volume also confirms the phase transition around 10% of Y. In

Fig. 4.7, I converted the volume to the linear size as V
1
3 . It can seen that the

volume increases slightly with the concentration of Y before 10% of Y due to

the fact that the ion size of Y is larger than Zr, and then the volume starts to

decrease rapidly with Y concentration. After 20%, the volume starts to increase

again. The volume of ZrO2 without Y and with 20% of Y correspond to the

volume of orthorhombic and cubic phase of ZrO2, respectively.

The only phase transition known in the literature is the tetragonal-monoclinic
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Figure 4.5: Concentration of Y in the cubic domain divided by concentration
of Y in the system for different system size.

transition at around 8% of Y on the metastable phase diagram. There might be

some connection between this metastable transition and the transition in my

simulations.

Grain size changing during the transition

To quantify the grain size, I calculated the correlation function for the cubic

phase. I assume that the cation of the cubic phase corresponds to 1 and cation

of orthorhombic phase corresponds to 0. Then, the correlation function can

be calculated as g(r) = 〈S(0) · S(r)〉. If atoms at position r is cubic phase, S(r)

equals to 1, and if atoms at position r is orthorhombic phase, S(r) equals to 0.

It can be seen from Fig. 4.8 that the correlation function decays from 1 to the
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Figure 4.6: Concentration of the cubic phase for different system size vs
concentration of Y. Concentration of the cubic phase increase with the
concentration of Y.

concentration of cubic phase. The correlation function is fitted by:

g(r) = (1− c) exp(−r/ξ) + c (4.1)

where c is the concentration of cubic phase, and ξ is the correlation length.

To calibrate the relationship between the correlation length and the grain size,

I construct artificial cubic boxes with fixed size in the system as shown in

Fig. 4.9. I then calculated the correlation function of the artificial boxes to get

the correlation length. Since I already knew the cubic size, the relationship

between the correlation length and cubic size is plotted in Fig. 4.10. The grain

size shown is calculated by scaling the correlation length using the relationship

between the size and ξ in Fig. 4.11.
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Figure 4.7: Cell size (V 1
3 ) for different system size vs concentration of Y. A

phase transition occur at around 10% of Y.

Figure 4.8: Correlation function of the cubic phase of the ZrO2 with 0% –
20% of Y.
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Figure 4.9: Examples of artificial system contain cubic boxes with same
size.

Fig. 4.11 shows the grain size of the microstructures. It can be seen that

the fluctuation is clearer for the Zr1−xYxO2−x/2 with 32,000 cations. It is

also seen that at low concentration of Y, the microstructure is affected by the

simulation size more. This is probably caused by the orthorhombic phase

aligning along the same direction at smaller system size shown in Fig. 4.4.

When the concentration of Y is above 15%, the grain sizes are in agreement

with each other provided the system size is above 256,000 cations. For the

Zr1−xYxO2−x/2 system with 1,372,000 cations, the grain size does not change

for low concentration of Y until the phase transition occurs. After the phase

transition, the grain size starts to increase again, although this trend is different
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Figure 4.10: Cubic edge length vs correlation parameter ¸. The plot shows
linear relationship between cubic edge length vs correlation parameter.

Figure 4.11: Grain size vs concentration of Y for systems with different
size.
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in the smaller system: the grain size in the smaller system increases at the

beginning, then becomes flat and increases again after the phase transition.

This is likely caused by the specific orientation of the orthorhombic phase

shown in Fig. 4.4.

4.3.2 Oxygen vacancy distribution

The diffuse scattering study has confirmed that the oxygen vacancy pairs

forms along [1 1 1] fluorite direction in Y-stabilised ZrO2 [82]. Oxygen vacancy

distribution can effect the pathway of oxygen diffusion. Before the oxygen

diffusion study, it is important to check if our model can reproduce the oxygen

vacancies distribution correctly. I locate the oxygen vacancy using the criterion

defined in Ref [100]. Each four closest cations form a tetrahedron structure. If

there is no oxygen in the tetrahedron, the centre of the tetrahedra is defined as

the position of a vacancy. In my simulations, there are oxygen atoms with large

displacement located just outside of tetrahedra. These tetrahedra also define

an oxygen vacancy in the middle, which can create a incorrect oxygen-vacancy

pair. The oxygen-vacancy partial distribution function is plotted in Fig. 4.12.

The peak near 1 Å is due to the incorrect oxygen-vacancy pair mentioned

above. Thus, I introduce an artificial cutoff between the oxygen vacancy and

oxygen atom pair as 1.5 Å.

The vacancy vacancy partial distribution of Zr1.8Y0.2O1.9 at room temperature

is compared with that distribution from initial random distribution in Fig. 4.13.

In Fig. 4.13, the positions of first three peaks are same as the peak positions of

O-O partial pair distribution in Zr0.8Y0.2O1.9, which those peaks correspond

to cation-centered oxygen pairs along [1 0 0], [1 1 0] and [1 1 1]direction. It

shows that the cation-centered oxygen vacancy pairs prefers to form along [1 1

1] direction . This result is in agreement with the diffuse scattering experiment
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Figure 4.12: Partial distribution for Zr0.8Y0.2O1.9 between oxygen atoms
and oxygen vacancies at room temperature. The first peak is caused by
incorrectly identified O vacancy.

result, which shows vacancy pairs forms along [1 1 1] fluorite direction in ZrO2

with high concentration of Y [82]. In our simulation, 89 % of cation-centered

oxygen vacancy pair is along [1 1 1] fluorite direction, 10 % is along [1 1 0] and

less than 1 % of oxygen vacancy is along [1 0 0 ] at room temperature.

4.3.3 Oxygen Diffusion in Y-stabilised Cubic Zirconia

As mentioned above, the microstructure is less affected by the simulation size

at high concentration of Y. Therefore, my diffusion study is mainly performed

on Zr1−xYxO2−x/2 with 256,000 cations and a cellsize around 200 Å.

In Fig. 4.14, the diffusion coefficient of O calculated from the mean squared

displacement, same methods as chapter 3, is plotted against the concentration

of Y in temperature range between 1000 K and 1500 K. It shows that the maxi-

mum of oxygen diffusion coefficient occurs around 18% of Y. The maximum

position of the concentration of Y is in good agreement with the experiment

61



1 2 3 4 5 6 7
Distance, r (Å)

0

5

10

15

20

25
g va

c-
va

c(r)

[1 0 0]

[1 1 0]

[1 1 1]

Figure 4.13: Partial distribution for Zr0.8Y0.2O1.9 between oxygen vacancies
and oxygen vacancies at room temperature. The red solid line is the
distribution at room temperature and the blue dashed line is the random
distribution of O vacancy.

result which is between 18–20% [89, 101]. We also noticed that the maximum

position increases with decreasing temperature in our model. Although this

result is different from the shift of maximum position from other studies [94,

101], the data is not extensive in those studies. It is necessary to perform more

extensive experimental studies on diffusion maximum position.

In Fig. 4.15, the diffusion coefficient is plotted as ln D vs 1/T, and the slope

corresponds to the activation energy. The top of the graph shows that the slope

is very steep at low concentration of Y and then decreases with concentration.

The changes of slope become very small above 20% of Y concentration.

The diffusion coefficient in the system with low concentration of Y is shown in

Fig. 4.15 where the temperature range is extended to 2000 K. I observe that the
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Figure 4.14: Diffusion coefficient of O vs concentration of Y for different
temperature. The diffusion maximum occurs between 17% to 19% of Y.

slope changes with temperature. At higher temperature the slope decreases

to its similar range at high concentration of Y. These results suggest that the

activation energy of O diffusion only changes for different temperature range

if the system is mixed with cubic and orthorhombic phase.

To establish how microstructures affect the activation energy of O diffusion, I

examined the structures of a system that has not fully transformed to cubic

phase at room temperature. The structures are selected at two temperature

point, which correspond to before and after the change of the activation energy

in Fig. 4.15. Fig. 4.16 shows the structure of ZrO2 with 16% of Y at 1000 K and

1800 K, respectively. I observe that all the structure transforms to cubic when

the temperature goes up to 1800 K. It suggests that temperature increase results

in more domains transforming to the cubic phase. Since the structure also

contributes to the O diffusion, the slope becomes steeper at lower temperature
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Figure 4.15: ln D vs 1/T for different concentration of Y. The slope changes
with temperature.
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Figure 4.16: Structure for ZrO2 with 16% of Y (Zr is coloured in green and
Y is coloured in grey). The structure on the left is at 1000 K and on the
right is at 1800 K. The structure transforms to the cubic phase entirely
when temperature increase to 1800 K.

Figure 4.17: Activation energy of O diffusion vs concentration of Y for
different system sizes. The activation energy of black open square is
calculated in the system only contained cubic structure.
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if there are orthorhombic domains in the system. These finding can explain

the changes of activation energy observed in experiment studies [91, 92, 95].

There are 3 factors that could affect oxygen diffusion coefficient: concentra-

tion of oxygen vacancy, concentration of Y and structural change. ZrO2 can

transform to cubic structure at high temperature even without Y. The diffusion

coefficient for cubic Zr1−xYxO2−x/2 can still be measured at lower concen-

tration of Y at high enough temperature. Thus I can separate the effect of

microstructure on the diffusion coefficient.

To summarise, the microstructures can be removed from the system by in-

creasing temperature. I can control whether or not microstructure exists in the

system by tuning the temperature. Hence, I can measure quantities that are

not supposed to change with temperature such as the activation energy with

or without microstructure.

Fig. 4.17 shows the activation energy of oxygen diffusion for Zr1−xYxO2−x/2

with 32,000, 256,000 and 864,000 cations. The black open square was calcu-

lated in the Zr1−xYxO2−x/2 with a single domain containing cubic structure

shown in the right of Fig. 4.16. The rest were calculated in the systems with

microstructure in the temperature range of 1500–2000 K. As can be seen from

the black open square, where microstructure does not exist in the system, the

activation energy shows almost linear increase with the concentration of Y.

This is similar to the result of other simulations in the cubic phase [96, 102].

However if the microstructure exists, the activation energy starts from around

0.8 eV and decreases with the concentration of Y until the structure transforms

completely to the cubic phase. The overestimated activation energy is due

to the fact that the microstructure transforms with increasing temperature.

To be more specific, when the temperature increases, the orthorhombic mi-
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crostructure transforms to the cubic structure, which also enhances the O

diffusion. Since the proportion of the orthorhombic microstructure decreases

with increasing concentration of Y, the effect of microstructure decreases with

increasing the concentration of Y. Hence, the activation energy starts at a higher

value which then decreases to the same range as the activation energy in the

cubic Zr1−xYxO2−x/2.

In summary, the microstructure plays a very important role in the diffusion

process in the Y-stabilised ZrO2. Its impact on activation energy is more

significant than that the concentration of Y. This may be the reason why many

diffusion simulations give a complicated and often unclear picture of what

governs the activation energy [89, 90].

4.4 Conclusions

I have quantified and characterised the microstructure of Zr1−xYxO2−x/2 by

simulation for the first time. To achieve the microstructure without constrain-

ing the cell, it is essential to perform simulations of very large systems. I

observe that the system is composed by an interesting microstructure of cubic

and orthorhombic coexisting phases. The microstructure transformation is

quantified in the cubic-orthorhombic phase coexisting system. Although I do

not observe the metastable tetragonal phase, there is a clear phase transition

around 10% of Y. Both the concentration of the cubic phase and grain size

show a rapid increase around 10% of Y.

In addition, I have also performed diffusion simulation in the Y-doped ZrO2

with microstructure and have found that microstructure plays important role in

the diffusion of O in the Y-doped ZrO2. If the microstructure effect is excluded,

an almost linear increase of the activation energy with increasing concentration

67



of Y follows.
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Chapter 5

Developing a new CO2 potential

In this chapter, I discuss my work in assisting the development of a new

CO2 potential that can better predict the dynamical properties of CO2. Gibbs

ensemble Monte Carlo (GEMC) simulations are performed to test the vapour-

liquid coexisting line for our model. I subsequently tune the parameters of the

potential to get better agreement with phonon dispersion curves.

5.1 Introduction

CO2 is one of the most common moleculars in the world. There are some

widely used empirical potentials in the literature such as EPM2 model [103]

and TraPPE model [104]. They usually can reproduce good agreement of some

of the fluid properties such as the vapour-liquid coexisting line, diffusion

coefficient and density. Since our research is focused on dynamical properties

of CO2, I calculate phonon dispersion curves of crystalline CO2, shown in Fig.

5.1, using the TraPPE model. As compared to the EPM2 model, this gives

equally accurate for the phase diagram of CO2 and better agreement for the

mixture containing CO2. However, it does not show good agreement with

experiment phonon dispersion curves. Therefore, we would like to develop a
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Table 5.1: Fitted Buckingham parameters and charge of C and O for CO2.

A (eV) ρ (Å) C (eV· Å) Charge (|e|)
C–O 1978.66 0.2637 12.61
O–O 2109.85 0.2659 22.28 -0.30403
C–C 1122.96 0.2778 0.0 0.60806

CO2 potential based on ab initio simulations which can give a better agreement

with both dynamical properties such as phonon dispersion curves and the

energy surface.

5.2 Methods

The interaction between CO2 molecules is described by the Buckingham poten-

tial. This potential was initially developed by my colleague Dr Min Gao and

our PhD supervisor Prof. Martin Dove.The atomic charges were calculated us-

ing density function theory (DFT) method using NWchem [105, 106], combined

with Distributed Multipole Analysis (DMA) method [107] using CamCASP

[108]. DMA is a method that assigns multipole moments to specified site in a

molecule. To provide more information about the energy surface, the forma-

tion energy of a large number different configurations of CO2 is calculated by

second order Møller-Plesset perturbation theory. Then the formation energies

are used to fit the parameters of Buckingham potential using GULP [56].

To calculate the liquid-vapour coexisting curve the GCMC simulation was

performed using the towhee code [110]. The system contain 500 CO2 rigid

molecules. I equilibrate the system using 1× 104 MC cycles and collect the

result for the following 4× 104 MC cycles. Each cycle involves trail move for

every molecular, change of volume and swap molecule between sub-box. The

parameters are manually tuned and then fitted against the formation energies

by GULP until we find a set of parameters is a good agreement with the
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Figure 5.1: The dispersion curve of crystalline CO2. The red circle are the
experiment results and the blue asterisks are simulation results. The blue
circle at the left and right were calculated from the TraPPE potential and
our model, respectively.

experimental data of the coexisting line. The parameters of this potential are

listed in Table 5.1.

The critical point cannot be directly calculated by the GCMC simulation be-

cause the formation energy of the liquid-vapour interface becomes smaller

when the system is closer to the critical point. Thus, the liquid-vapour coexis-

tence cannot be observed for the system just below the critical point [111]. To

estimate the critical temperature, the critical density and temperature is fitted

by the law of rectilinear diameters [45]. The rectilinear diameters states that

there is a linear relationship between the average of density of gas and liquid

and the temperature [112]:

ρl + ρg

2
= ρc + A(T − Tc) (5.1)

where ρl and ρg are the density of liquid and gas phase respectively, ρc is

the critical density, Tc is the critical temperature and A is a parameter. The
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Figure 5.2: Vapour-liquid coexistence curve for CO2. The blue curve and
the asterisk are the coexistence line and critical point of the experimental
data from the National Institute of Standards and Technology (NIST) [109].
The red circle and the plus sign are from my simulations.

relationship of the temperature and density difference follows the scaling law:

ρl − ρg = B(T − Tc)
β (5.2)

where B is a parameter and β is the critical exponent which is approximately

equal to 0.32 for a 3D system. This β = 0.32 is used in this fitting.

5.3 Results and discussion

The liquid-vapour coexistence densities are plotted in Fig. 5.2 and the vapour

pressure as a function of temperature is plotted in Fig. 5.3. These plots show

good agreement with the experimental results. The estimated critical point of
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Figure 5.3: Clausius-Clapeyron plot of the saturated vapour pressure of
CO2 VS the inverse temperature. The blue line is the experiment data
[109] and the black crosses are from my simulation.

our model is: Tc=308.39 K, Pc= 70.32 bar and ρc=465.95 kg/m3. This agrees

very well with the experiment data from NIST [109]: Tc=304.13 K, Pc= 73.77

bar and ρc=467.0 kg/m3.

In Fig 5.2, I show the calculated phonon dispersion curves using GULP for both

TraPPE model and our model and compare the simulation and experimental

results. As can be seen, the dispersion curve from our model match the

frequency spectrum of the measurement, but the TraPPE model gives a poor

agreement with the experiment results. This result shows our model can

reproduce much better crystal property.
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5.4 Conclusions

In this chapter, I derived the parameters of CO2 empirical potential using the

ab initio method. This model results in a good agreement with the experiment

results of vapour-liquid coexistence and the phonon dispersion curves. This

gives us the confidence to study the dynamical properties of this system. This

potential will be used to calculate the Frenkel line in CO2 in the next section.

It is also my hope that the new potential will be useful to the community

interested in the properties of CO2.
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Chapter 6

Frenkel line and solubility

maximum in supercritical fluids

A new dynamical line, the Frenkel line, has recently been proposed to separate

the supercritical state into two states: rigid liquid and non-rigid gas-like fluid.

The location of the Frenkel line on the phase diagram is unknown for real

fluids. Here, I map the Frenkel line for three important systems: carbon

dioxide (CO2), water (H2O) and methane (CH4). This provides an important

demarcation on the phase diagram of these systems, the demarcation that

separates two distinct physical states with liquid-like and gas-like properties.

I find that the Frenkel line can have similar trend as the melting line above

the critical pressure. Moreover, I discuss the relationship between the unex-

plained solubility maxima and Frenkel line, and propose that the Frenkel line

corresponds to the optimal conditions for solubility.
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6.1 Introduction

Recently, there has been an increase of using supercritical fluids in extraction

and purification applications, including in food, nuclear waste, petrochemi-

cal and pharmaceutical industries [27, 28, 42, 43]. Supercritical fluids attract

significant attention due to their extremely good dissolving power and “tun-

able" properties. The solubility of supercritical fluids depends on density and

diffusivity. Supercritical fluids combine the best of both worlds: high density

of liquids and large diffusion constants of gases. Moreover, both of those

properties can be tuned over a wide range pressure and temperature above

the critical point, optimizing their dissolving ability.

Carbon dioxide, water and methane are three most commonly used supercrit-

ical fluids. In particular, H2O and CO2, are both abundant, non flammable

and non toxic. They are also “non-polar” and “polar” solvent, respectively, so

they can dissolve “polar” and “non-polar” solutes, respectively. The critical

temperature (Tc) of CO2 is 304 K, which is near room temperature, and the

critical pressure (Pc) is 74 bar, which is also accessible. Additionally, CO2 can

be used with co-solvents to modify it into a "polar" solvent.

The solubility of a variety of solutes have been measured in supercritical CO2

near Tc as a function of pressure [27]. Interestingly, the experiments show

intriguing solubility maxima above the critical temperature: the solubility

first substantially increases with pressure, followed by its decrease at higher

pressure (the pressure range up to 1 GPa)[113–120]. This effect is not currently

understood theoretically. Understanding it would lead to more efficiently use

of supercritical fluids. More generally, it is often acknowledged that wider

deployment of supercritical fluids and optimising their use would benefit from

a theoretical guidance [27, 28].
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Until recently, the supercritical state was believed to be physically homoge-

neous, which means that moving along any path on a pressure and tempera-

ture above the critical point does not involve marked or distinct changes. The

Frenkel line has recently been proposed, which separates two dynamically dis-

tinct states: the gas-like regime where particle only have diffusive motion and

the liquid-like regime where particle combine both solid-like quasi-harmonic

vibrational motion and gas-like diffusive motion [30, 31, 121]. This transition

take place when liquid relaxation time τ approaches Debye vibration period,

τD. Debye vibration period is the inverse of Debye frequency. In Debye model,

the Debye frequency is defined as the approximation of highest vibrational

frequency in solid. The liquid relaxation time is defined in the usual way

as the average time between two consecutive diffusion events (molecular re-

arrangements between two quasi-equilibrium positions) in the liquid at one

point in space [2]. When τ ≈ τD, the system loses the ability to support shear

modes at all available frequencies, up to Debye frequency, and retains gas-like

diffusive dynamics only. The Frenkel line starts from 0.7–0.8 Tc at Pc and

extends to arbitrarily high pressure and temperature on the phase diagram

[29]. There are many ways to locate the Frenkel line on the phase diagram,

yet the velocity autocorrelation function (VACF) provides a convenient and

mathematically meaningful criterion. It is well known that the VACF is a

monotonically decaying function in the gas state, whereas it shows damped

oscillations in the liquid and solid state. The VACF is defined as:

Z(t) =< v(0) · v(t) > (6.1)

On the basis of monotonic decay of VACF in gases, it has been proposed

that the disappearance of oscillations and minima of the VACF, when varying

temperature of pressure, corresponds to the point of pressure and temperature

crossing the Frenkel line (FL) [29]. The disappearance of oscillations and
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minima is result from the cage effect, namely the tagged atom is reflected

neighbouring atoms [122]. Comparing with the Widom line [123] and Frenkel

line, the Widom line serves as a continuation of liquid-vapour line beyond

critical point and the Frenkel line separates the liquid-like rigid-fluids from

supercritical fluids.

The Frenkel line has another independent thermodynamic definition. As dis-

cussed in the next chapter in more detail, liquids support solid-like transverse

modes above the frequency 1
τ , i.e. at frequency at which the liquid is static

and solid-like. As τ decreases with temperature, it starts to approaching the

shortest (Debye) vibration period τD, at which point a particle spends about

the same time oscillating and jumping. In other words, the loss of oscillatory

behavior of particles corresponds to τ → τD, and when this happens all trans-

verse disappear because they can propagate only above the frequency 1
τ . At

higher temperature, only the longitudinal mode remains [124] (the longitudinal

mode, related to density fluctuations, propagates in any elastic medium). The

disappearance of transverse modes implies a well-defined value of specific

heat cv = 2kBT. Indeed, the remaining longitudinal mode contributes kBT

to the energy and the kinetic energy component of two transverse modes

contributes kBT/2 to the energy each (the potential energy component of the

two transverse modes disappears).

Importantly, the two independent criteria of the Frenkel line, the first one

based on VAF and the second one based on cv, coincide [29]. The coincidence

serves as a self-consistency check in terms of physical effects. The coincidence

enabled the authors to refer to the dynamical transition as the line, although

I note that some physical properties such as viscosity and diffusion may not

change at the line directly but close to it because they are path-dependent [16].

Indeed, viscosity and diffusion undergo qualitative changes in the supercritical
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region but these changes may happen at different temperature and pressure

depending on the path (e.g. along the isochore, isobar and so on).

In this chapter, I map the Frenkel line on the phase diagram for CO2, H2O

and CH4 using the VACF criterion and MD simulations. I study the location

of the FL on the phase diagram, particularly addressing the slope of the line

in relation to the melting line. I subsequently compare the Frenkel line with

the solubility maximum from experiments [113–115, 117] and discuss why the

Frenkel line can be related to the solubility maxima.

6.2 Methods

I use DL_POLY MD simulation package [44] and simulate 4576 CO2 molecules,

3375 H2O molecules and 3375 CH4 molecules using constant-pressure-temperature

ensemble. The intermolecular potential for CO2 is my rigid-body potential

described in the previous section. There is a large number of H2O model

due to its importance. TIP4P/2005 rigid non-polarizable model shows overall

good performance for many properties [125, 126] among all the rigid non-

polarizable models and acceptable computational cost. Thus in the chapter,

the intermolecular potential of H2O is TIP4P/2005 [127]. The intermolecular

potential of CH4 is taken from Ref. [128]. This potential also shows good

accuracy in the supercritical state. I used a cut-off as 12 Å for potential. The

simulation followed same protocol as described in methods section. I first

equilibrate the system during 10 ps by scaling the velocities, then switche off

the scaling during subsequent 40 ps under NPT ensemble. I collect and analyse

the result during following 50 ps under NVE ensemble. That protocol gives

convergent of VACF. In the range of my simulations, the difference between

MD and experimental density from the NIST data base [109], is less than 5%.
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The pressure range extends to several GPa and includes the pressure used in

industrial applications.

6.3 Results and Discussion

In the previous work [29], it was proposed that the disappearance of VACF

minima corresponds to pressure and temperature of the Frenkel line. In Fig.

6.1, I show representative VACFs for CO2, H2O and CH4 at 900 bar. I can

clearly see that as the temperature increases, the minimum becomes more

shallow and finally disappears, which corresponds to the loss of oscillatory

component of molecular motion and gives (P,T) for the Frenkel line.

In Fig. 6.2, I map the Frenkel line for CO2, H2O and CH4 using the VACF

criterion of the disappearance of the minimum. I also show the melting line

[129–132] on the phase diagram. I can see the the Frenkel line for all three fluids

starts from 0.7∼ 0.8 Tc at Pc, similarly to the previous result for Lennard-Jones

fluids [29].

It has been predicted in Ref.[29] that the Frenkel line starts slightly below the

critical point and at high pressure is parallel to the melting line in the log-log

plot [133]. The parallelism follows from the scaling argument: starting from

high GPa pressures, the intermolecular interaction is reduced to its repulsive

part only, whereas the cohesive attracting part no longer affects interactions (at

low pressure, the parallelism between the two lines holds only approximately

because the interactions are not well approximated by simple repulsive laws,

see below). In a sufficiently wide pressure range, the repulsive part can be

well approximated by several empirical interatomic potentials such as the

Buckingham-type functions or Lennard-Jones potentials with inverse power-

law leading terms at short distances U ∝ 1
rn . For the inverse power law, a
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Figure 6.1: VACFs for CO2 (a), H2O (b) and CH4 (c) calculated at 900 bar
showing the disappearance of the minima at the Frenkel line.
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well-known scaling of pressure and temperature exists: the system properties

depend only on the combination of TPγ , where γ is uniquely related to

n. Consequently, TPγ = constant on all (P, T) lines where the dynamics of

particles changes qualitatively, as it does on both the melting line and the

Frenkel line. This implies that the Frenkel and melting lines are parallel to

each other in the double-logarithmic plot.

Although my simulation did not extend to high enough pressure to meet the

condition above, I still can see that the Frenkel line has a similar trend as the

melting line: for CO2, the slopes of the Frenkel line and the melting line both

starts to increase around 1,000 bar. For H2O, both lines are flat below 1,000

bar, but their slopes start increasing at higher pressure. I also observe a similar

increase in slope for methane simultaneously around 1,200 bar.

To discuss the relationship between the solubility and the dynamic property of

supercritical fluid, I show experimental isothermal solubility maxima of differ-

ent solutes in CO2 [113–119], on the phase diagram (Fig. 6.2(a)). Importantly, I

observe the points of solubility maxima are close to the Frenkel line. The solu-

bility of maxima of several solutes, such as β-carotene, 1,4-bis-(n-alkylamino)-

9,10-anthraquinone and 1,4-bis-(hexadecylamino)-9,10-anthraquinone coincide

with the Frenkel line.

I now explain the proximity of the solubility maxima and Frenkle line as

follows. Let us fix a temperature above the critical point to the left of the

Frenkel line and increase the pressure (moving horizontally to the right in

Fig. 6.2). Pressure has two competing effects on diffusion. On one hand, it

increases density and hence the contact area and cleaning (dissolving) efficiency.

On the other hand, the density increase results in decreasing the diffusion

constant and hence reduces the solubility. Indeed, below the Frenkel line
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Figure 6.2: (P,T) phase diagram of Frenkel line of CO2, H2O and CH4. The
solubility maximum of different solutes in supercritical CO2 are shown in
graph (a). The open circle are the solubility of β-carotene [117]; the squares
are 1,4-bis-(octadecylamino)-9,10-anthraquinone [113]; triangles are 1,4-bis-
(n-alkylamino)-9,10-anthraquinone [114]; the diamonds are biphenyl [115];
the pentagon are adamantane [118]; the cross are 1,4-bis-(hexadecylamino)-
9,10-anthraquinone [119]
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where the molecular dynamics acquires the oscillatory component, molecular

rearrangements become markedly less frequent, in contrast to the gas-like

dynamics above the line where the oscillatory component of motion is absent.

At the Frenkel line, the supercritical fluid has maximal density possible at

which the diffusion is still in the fast gas-like regime and not in the slow

liquid-like regime. Therefore, the proposal is that the optimal combination of

these two properties at the Frenkel line gives the observed solubility maxima.

The data for solubility maxima for H2O and CH4 are not available. From

the Fig. 6.2 (b) and (c), I see the reason why it is difficult to perform these

experiments. In the case of water, the pressure at the Frenkel line corresponding

to Tc is about 9,000 bar, or approximately 40Pc of H2O (220.64 bar). Although

the pressure of CH4 corresponding to Tc at the Frenkel line is not too high

(∼600 bar), the pressure increases to ∼4,000 bar at room temperature. In

both cases, these pressure are much higher than Pc, and performing solubility

experiments at these pressures is challenging. On the other hand, the pressure

corresponding to Tc at the Frenkel line for CO2 is lower and about 1, 000 bar.

Based on the above results, I propose that the Frenkel line can serve as a

predictive tool to locate the solubility maxima on the phase diagram. This

provides a useful guide for future experiments.

I note that the increase of pressure along the Frenkel line results in several

other interesting and potentially important effects such as the increase of fluid

density and diffusion constant as well as the appearance of the viscosity mini-

mum [29–31, 121]. In addition, surface tension tends to zero around and above

the critical point so that that the problem of wetting is avoided. Accordingly,

these conditions may favour other important properties of supercritical fluids:

for example, the speed of chemical reactions may have a maximum close
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to the Frenkel line. In this and other cases, supercritical technology could

further benefit from theoretical guidance and receive an impetus for using the

supercritical fluids in the hitherto unknown range of 1-10 kbars.

6.4 Conclusions

In summary, I mapped the Frenkel line for three important system: CO2, H2O

and CH4. This provides an important demarcation on the phase diagram of

these systems, the demarcation that separates two distinct physical states with

liquid-like and gas-like properties. I proposed that the Frenkel line can serve

as a important guide to estimate the location of solubility maxima so that the

cleaning and dissolving abilities of the supercritical fluids are optimized.
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Chapter 7

Emergence and evolution of k-gap

in spectra of liquid and

supercritical states

Fundamental understanding of strongly-interacting systems necessarily in-

volves collective modes, but their nature and evolution is not generally un-

derstood in dynamically disordered and strongly-interacting systems such

as liquids and supercritical fluids. I report the results of extensive molecular

dynamics simulations and provide direct evidence that liquids develop a gap

in solid-like transverse spectrum in the reciprocal space, with no propagating

modes between zero and a threshold value. In addition to the liquid state, this

result importantly applies to the supercritical state of matter. I show that the

emerging gap increases with the inverse of liquid relaxation time and discuss

how the gap affects properties of liquid and supercritical states.
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7.1 Introduction

Dynamical and thermodynamic properties of an interacting system are gov-

erned by collective excitations, or phonon modes. Collective modes have been

studied in depth and are well-understood in solids and gases. This is not

the case for the liquid state where the combination of strong interactions and

dynamical disorder has been thought to preclude the development of a general

theory [66] including understanding the nature of collective modes.

Collective modes in solids include one longitudinal and two transverse acous-

tic modes. In gases, the collective mode is one longitudinal long-wavelength

sound wave considered in the hydrodynamic approximation. In liquids, collec-

tive modes are well-understood in the hydrodynamic approximation ωτ < 1

[134], where ω is frequency and τ is liquid relaxation time, the average time

between diffusive particle jumps at one point in space in the liquid [2]. Impor-

tantly, there is a different regime of wave propagation: ωτ > 1 where waves

propagate in the constant-structure environment, i.e. in the solid-like regime.

Experiments have reported both indirect and direct evidence for the existence

of solid-like waves in liquids and have ascertained that they are essentially

different from the hydrodynamic modes [18–20, 22–26, 135–139] including

those discussed in generalized hydrodynamics [7, 10].

As mentioned in the previous chapter, the first proposal regarding solid-like

waves in liquids was due to Frenkel [2] who proposed that at times smaller than

τ, particles do not jump and hence the system behaves like a solid. Therefore,

for frequencies larger than

ωF =
1
τ

(7.1)
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the liquid supports two transverse acoustic modes as does the solid (glass or

crystal). The longitudinal acoustic mode is unmodified (except for different

dissipation laws in regimes ωτ > 1 and ωτ < 1 [2]): density fluctuations exist

in any interacting medium, and in liquids they have been shown to propagate

with wavelengths extending to the twice of the shortest interatomic separation

[19, 20, 23–26].

The proposal that liquids are able to support solid-like transverse modes

with frequencies extending to the highest frequency implies that liquids are

similar to solids in terms of collective excitations. Therefore, main liquid

properties such as energy and heat capacity can be described using the same

first-principles approach based on collective modes as in solids, an assertion

that was considered as unusual in the past when no evidence for propagating

solid-like modes in liquids existed. Importantly, high-frequency modes are

particularly relevant for liquid thermodynamics because, similarly to solids,

they make the largest contribution to system’s energy and other properties

whereas the contribution of hydrodynamic modes is negligible [16].

The transverse modes were initially observed in viscous liquids, such as

liquid boron trioxide and glycerol, using Brillouin scattering [136, 137]. The

propagation of high-frequency transverse modes was later studied in low-

viscosity liquids on the basis of positive dispersion [19, 20, 138, 139]. More

recently, transverse modes were directly measured in the form of distinct

dispersion branches and verified on the basis of computer modeling [22–26,

139]. However, this has been done at constant temperature (constant τ) only.

The crucial open question is related to the evolution of propagating transverse

modes in liquids: does the range of transverse modes dynamically change with

τ and how? Answering it directly is essential for fundamental understanding

of collective modes in liquids and for liquid theory in general.
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Traditionally, Eq. (7.1) has been the basis for the transformation of liquid trans-

verse modes [67]. It predicts that at a frequency above ωF, the liquid response

is solid-like. It further predicts that liquid collective modes transform: smaller

τ at higher temperature results in shrinking the frequency range of transverse

modes and their eventual disappearance when τ becomes comparable to the

shortest time in the system comparable to Debye vibration period.

To describe the ability of liquid to operate in both hydrodynamic and solid-like

elastic regimes, Frenkel modified the Navier-Stokes equation as follow:

∇2v =
1
η

(
ρ

dv
dt

+∇p
)

(7.2)

where v is velocity, p is pressure, η is shear viscosity, ρ is density and the total

derivative is d
dt =

∂
∂t + v∇.

Accounting for both long-time viscosity and short-time elasticity is equivalent

to making the substitution 1
η →

1
η + 1

G
d
dt . Using the Maxwell relationship

η = Gτ this gives:

1
η
→ 1

η

(
1 + τ

d
dt

)
(7.3)

Using (7.3) in Eq. (7.2) gives

∇2v =
1
η
(1 + τ

d
dt

)(ρ
dv
dt

+∇p) (7.4)

An approximate solution of Eq. (7.4) has been proposed in ref. [16].

Considering the absence of external forces, p = 0 and the slowly-flowing fluid

so that d
dt =

∂
∂t . Then, Eq. (7.4) reads
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η
∂2v
∂x2 = ρτ

∂2v
∂t2 + ρ

∂v
∂t

(7.5)

where v can be y or z velocity components perpendicular to x.

In contrast to the Navier-Stokes equation, Eq. (7.5) contains the second time

derivative of v and therefore allows for propagating waves. Indeed, Eq. (7.5)

without the last term represents the wave equation for shear waves with

velocity cs =
√

η
τρ =

√
G
ρ . Using η = Gτ = ρc2

s τ, Eq. (7.5) can be re-written as

c2
s

∂2v
∂x2 =

∂2v
∂t2 +

1
τ

∂v
∂t

(7.6)

Looking for the solution of (7.6) as v = v0 exp (i(kx−Ωt)) gives the quadratic

equation for Ω:

Ω2 + Ω
i
τ
− c2

s k2 = 0 (7.7)

Equation (7.7) has imaginary roots if csk < 1
2τ . If csk > 1

2τ , Eq. (7.7) gives

Ω = − i
2τ ±

√
c2

s k2 − 1
4τ2 . This gives

v ∝ exp
(
− t

2τ

)
exp(iωt)

ω =

√
c2

s k2 − 1
4τ2

(7.8)

where k is the absolute value of wavevector and τ is the relaxation time. Eq.

(7.8) describes propagating shear waves.

Interestingly, Eq. (7.8) predicts that liquid transverse acoustic modes develop a

gap of k points from 0 to kgap:

90



kgap =
1
cτ

(7.9)

The τ, in this equation, is understood to be the full period of particles’ jump

motion equal to twice Frenkel’s τ. Eqs. (7.8)-(7.9) further predict that the k-gap

increases with temperature because τ decreases.

Importantly, it can be predicted that the k-gap also emerges in the supercritical

state of matter. It has been proposed earlier that solid-like transverse modes

should propagate above the critical point provided the system is below the

Frenkel line (FL) [16, 29–31]. I therefore predict that supercritical fluids below

the FL should also develop the same gap (7.9) in the transverse spectrum.

The main aim of this chapter is to obtain direct evidence for the gap discussed

above. I perform extensive molecular dynamics simulations in different types

of liquids and supercritical fluids, including noble and molecular. I find that

a gap develops in solid-like transverse acoustic spectrum in reciprocal space

which increases with the inverse of liquid relaxation time. These specific

results call for new high-temperature and pressure experiments.

7.2 Methods

7.2.1 Details of molecular dynamics simulations

I aimed to study the propagation of solid-like transverse waves in liquids with

different structure and bonding types, and have simulated noble liquid Ar with

Lennard-Jones potential as well as molecular CO2 with the empirical potential

I derived and described in chapter 5. I have used the DL_POLY molecular

dynamics (MD) program [44] and systems with 125,000 and 117,912 particles

for Ar and CO2, respectively with periodic boundary conditions. I equilibrated
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the system during 15 ps in NPT ensemble and ensured the equilibration at

given (P,T) during the subsequent 10 ps run. I collect the results during the

following 200 ps for Ar, and 80 ps for CO2 in NVE ensemble. The pressure

was fixed at 40 bar for subcritical liquid Ar, 10 kbar for supercritical Ar and 9

kbar for supercritical CO2. The temperature was extended well above critical

for the last two systems. Relaxation time τ was calculated as the time during

which the intermediate scattering function reduces by a factor of e [140]. The

intermediate scattering function is described in the below.

7.2.2 Intermediate scattering function

The intermediate scattering, which is the Fourier transform of the van Hove

function, describes density fluctuations in the system. The van Hove Function

is a time dependent radial distribution function [141]. The density in the

system can be defined as:

ρ(r, t) =
N

∑
i=1

δ(r− ri(t)) (7.10)

where ri is the coordinates of the particle i and N is the total number of

particles. The Fourier transform of the density function reads:

ρ(Q, t) =
1

2π

N

∑
i=1

∫
drexp(iQ · r)δ(r− ri(t))

=
1

2π

N

∑
i=1

exp[iQ · ri(t)]

(7.11)

where Q is wavevector. The intermediate scattering can be calculated as the

density correlation function:

F(Q, t) =
1
N
〈ρ(−Q, 0)ρ(Q, t)〉

=
1
N
〈

N

∑
i=1

N

∑
j=1

exp[iQ · (rj(0)− ri(t))]〉
(7.12)
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The self-part of intermediate scattering function is also called incoherent

intermediate scattering function:

Fs(Q, t) =
1
N
〈

N

∑
i=1

exp[iQ · (ri(0)− ri(t))]〉 (7.13)

The incoherent intermediate scattering function does not contain the informa-

tion about structure, but the dynamic property of a single particle. In liquids,

this function will follow the power law:

Fs(Q, t) = exp(− t
τ
) (7.14)

where τ is the relaxation time. Thus, I can evaluate liquid relaxation time τ as

the time during which the intermediate scattering function decays by a factor

e [140].

7.2.3 Current-current correlation function

I calculate the propagating transverse modes using transverse current correla-

tion functions [10]. Taking the derivative of Eq. 7.11, we can write:

dρ(k, t)
dt

= ik ·
N

∑
i=1

vi(t)exp[ik · ri(t)] (7.15)

The current function is defined as:

j(k, t) =
N

∑
i=1

vi(t)exp[ik · ri(t)] (7.16)

In Eq. 7.15, the function only includes the case where wavevectors k parallel

to the current. The full current can be written as:

j(k, t) = jL(k, t) + jT(k, T)

= k · j(k, t) + k× j(k, t)
(7.17)

where jL(k, t) is the longitudinal current and jT(k, T) is the transverse current.
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The current-current correlation is calculated as:

CL(k, t) = 〈jL(k, 0)jL(−k, t)〉 CT(k, t) = 〈jT(k, 0)jT(−k, t)〉 (7.18)

where k is absolute value of the wave vector. The spectra of the longitudinal

and transverse current can be calculated by the Fourier transform:

CL(k, ω) =
1

2π

∫
CL(k, t) exp(−iωt)dt = ω2S(Q, ω)

CT(k, ω) =
1

2π

∫
CT(k, t) exp(−iωt)dt

(7.19)

S(Q, ω) is the Fourier transform of intermediate scattering function F(Q, t).

These function gives us the information about collective modes in liquid. The

maxima of CL(k, ω) and CT(k, ω) gives us the peak mode frequencies, en-

abling us to construct dispersion curves for longitudinal modes and transverse

modes. Although the transverse modes cannot be directly measured in liq-

uids experimentally1 , the MD simulation enables to calculate the transverse

current-current correlation function directly.

A smoothing function is often used for the analysis of CT in order to reduce

the noise [25, 26]. To get better quantitative and model-free results, I choose

not to use the smoothing function. Instead, I repeat my MD simulations 20

times using different starting velocities and average the results. This produces

CT with reduced noise which does not appreciably change when the number

of simulations is increased. When oscillations of CT(k, ω) are clearly visible,

the Fourier transforms are taken to calculate CT(k, ω). I show examples of

CT(k, ω) for two different peak position of frequencies spectrum and two

different wavevector in Fig. 7.1 and Fig. 7.2 respectively.
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Figure 7.1: CT(k, ω) of supercritical Ar at 200 K, 250 K and 350 K for two
phonon modes with peak frequencies of about 0.5 THz (top) and 2 THz
(bottom). To study the effect of temperature on peak frequency, CT(k, ω)
at higher temperature are shown at larger k because ω decreases with
temperature (see Fig. 7.4).
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Figure 7.2: CT(k, ω) of supercritical Ar at 200 K, 300 K and 400 K for two
phonon modes with fixed wavevector.

96



7.3 Results and Discussion

I observe that the intensity of CT(k, ω) peaks decreases and broadens with

temperature for all mode frequencies, but lower-frequency peaks decay much

faster as compared to higher-frequency ones. In examples in Fig. 7.1, both 0.5

THz and 2 THz transverse modes show a clear peak at 200 K but whereas the

peak of the 0.5 THz mode almost disappears at 350 K, the 2 THz mode peak

remains pronounced. This is consistent with the experimental results showing

that low-frequency transverse phonons are not experimentally detected [23,

24]. In the Fig. 7.2, the CT(k, ω) shows monotonically decay at 400 K and

k = 0.1920, which suggest this transverse mode has disappeared.

The main observation is related to the evolution of dispersion curves. I plot

intensity maps CT(k, ω) in Figure 7.3 and observe that a gap develops in k

space and the range of transverse modes progressively shrinks.

A maximum of CT(k, ω) at frequency ω is related to a propagating mode at

that frequency and gives a point (k, ω) on the dispersion curve [10]. I plot

dispersion curves in Figure 7.4 and observe a detailed evolution of the gap. It

can be seen that although the the value of wavevector changes with increasing

temperature at fixed frequency, the relative wavevector k− kgap varies little.

At the highest temperature simulated, CT(k, ω) becomes not easily discernible

from the noise.

I observe that the gap kgap develops in all systems simulated. Importantly,

the simulated systems where I detect transverse modes extended into the

supercritical state: our maximal temperature and pressure correspond to

(205.6Pc, 6.3Tc) for Ar and (122.0Pc, 2.0Tc) for CO2. Using the previously
1transverse modes are detected in the longitudinal scattering function due to the projection

of transverse waves along longitudinal direction [22–25]
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Figure 7.3: Intensity maps of CT(k, ω) for supercritical Ar at 250 K (top),
350 K (middle) and 450 K (bottom) and supercritical CO2 at 300 K (top),
400 K (middle) and 500 K (bottom). The maximal intensity corresponds
to the middle points of dark red areas and reduces away from them.
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calculated FL for Ar [29] and CO2, I find that propagating solid-like transverse

modes reported in Figure 7.3 correspond to supercritical Ar and CO2 below

the FL. My data therefore give direct evidence for propagating transverse

modes in supercritical fluids below the FL. This is an important finding on its

own because it has remained unclear whether the supercritical state is able to

support solid-like transverse modes at all. Indeed, it has been proposed that

the supercritical state supports transverse modes below the Frenkel line (FL),

but there was no direct confirmation of this proposal.

I note that reduced peak intensity of CT(k, ω) at very high temperature, to-

gether with the persisting noise, can obfuscate the criterion of a propagating

mode because a difference between a peak in CT(k, ω) at low temperature

and a broad shoulder (hidden peak) at high temperature becomes less pro-

nounced. However, one can also consider the oscillatory behavior of CT(k, t)

as an indicator of a propagating mode. In Figure 7.5, I plot CT(k, t) in the high

temperature range 900-1000 K for k close to the Brillouin pseudo-boundary.

Despite no maxima of CT(k, ω) in that temperature range, I observe the minima

and oscillatory behavior at 900 and 950 K but not at 1000 K. In agreement

with this, the temperature of the Frenkel line demarcating propagating and

non-propagating transverse modes is about 1000 K [29].

I can now directly verify the predictions for the gap kgap = 1
cτ in (7.9). First,

in Fig. 7.6 I observe a nearly linear relationship between kgap and 1
τ for both

subcritical liquids and supercritical fluids. More computationally consuming

CO2 with smaller cell size involves smaller resolution of k and larger noise,

showing a linear trend nevertheless. The increase of slope of kgap vs 1
τ at large

1
τ at high temperature is expected because c decreases with temperature (1

c

increases). Second, I calculate c for each system from the dispersion curves

in the linear regime at small k in Figure 7.4 and find them to be in acceptable
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Figure 7.5: CT(k, t) of supercritical Ar near the first Brillouin pseudo-zone
boundary showing the crossover from the oscillatory to monotonic behavior.

12-27 % agreement with c extracted from the linear regime in Figure 7.6 for

the three systems studied.

I note that Eq. (7.8) predicts no gap in the frequency spectrum, in seeming

contradiction to the commonly used Eq. (7.1): transverse frequency starts

from 0 and reaches
√

c2k2
gap − 1

τ2 , where kgap is the maximal value of k. It

is interesting to discuss why the gap develops in k-space rather than in the

frequency domain. Eq. (7.8) follows from the solution of the Navier-Stokes

equation extended by Frenkel to include the solid-like elastic response of

liquids at time shorter than τ [16]. A qualitatively similar result can be also

inferred from generalized hydrodynamics where the hydrodynamic transverse

current correlation function is generalized to include large k and ω [7]. The
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Figure 7.6: The width of k-gap vs 1
τ for subcritical liquid Ar in the range

85-115 K, supercritical Ar in the range 200-500 K and supercritical CO2 in
the range 300-600 K.

approach assumes that the shear viscosity function K, the memory function

for transverse current correlation function, exponentially decays with time τ,

giving a resonant frequency in the transverse current correlation function. If I

now identify K at short times with c2, the resonant frequency becomes similar

to (7.8). A gap in k-space could also be inferred from the generalized collective

mode approach [142] provided one appropriately identifies some of the model

parameters with τ, although the approach does not describe the dynamics

with large k in the non-hydrodynamic regime.

Using (7.9), I write the condition k > kgap as
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λ < 2πdel

del = cτ (7.20)

where del is liquid elasticity length, the propagation length of a shear wave

in liquids, or length over which a liquid can support shear stress [143]. The

microscopic meaning of del follows from noting that particles in liquids jump

with a period of τ and hence start significantly disrupting the wave continuity

at distances equal to, or larger than cτ, setting the longest wavelength of

propagating waves. Therefore, the condition k > kgap inherent in Eq. (7.8) is

consistent with the condition that allowed wavelengths should be smaller than

the wave propagation length.

In addition to providing direct evidence for the nature of transverse modes and

their evolution in liquids and supercritical fluids, these results are important for

understanding liquid thermodynamics. The k-gap in the transverse spectrum

implies that the energy of transverse modes can be calculated as

Et =
V

(2π)3

kD∫
kgap

E(k)4πk2dk (7.21)

where V is volume, kD is Debye wave vector and kgap is given by (7.9). Taking

E(k) = kBT in the classical case and integrating gives

Et = 2NkBT

(
1−

(
ωF

ωD

)3
)

(7.22)

where N is the number of particles, 2N =
Vk3

D
6π2 is the number of transverse

modes in the solid and ωD = ckD is Debye frequency.
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I observe that a result identical to (7.22) can be obtained if I calculate the energy

of transverse modes propagating above the frequency ωF as Eq. (7.1) predicts,

i.e. if we consider a gap in the frequency spectrum from 0 to ωF. Indeed, this

energy can be written as
ωD∫
ωF

g(ω)Tdω, where g(ω) = 6N
ω3

D
ω2 is Debye density

of states of transverse modes. This gives Et = 2NkBT
(

1−
(

ωF
ωD

)3
)

, the same

as (7.22). As ωF increases with temperature, the number of transverse modes

decrease, resulting in the decrease of specific heat in agreement with the exper-

imental results for many liquids and supercritical fluids in a wide temperature

range [16]. I therefore find that from the point of view of thermodynamics, the

transverse modes can be considered to have a frequency gap between 0 and

ωF, in agreement with the original assumption in (7.1).

7.4 Conclusions

In summary, I showed that how collective modes change in liquids: they

transform with temperature and develop a k-gap in solid-like transverse spec-

trum which increases with the inverse of relaxation time. This applies to the

supercritical state below the Frenkel line as well as to subcritical liquids. These

specific results will guide future high-temperature and pressure experiments

in liquid and supercritical states.
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Chapter 8

Conclusions

In this thesis I reported the results of molecular dynamics simulations in two

important classes of disordered materials, amorphous solids and liquids. I

started by studying the diffusion in amorphous zirconolite, a potential waste

form to encapsulate highly radioactive nuclear waste. I found that amorphiza-

tion has a dramatic effect for diffusion. Interestingly and differently from

previous understanding, diffusion increases as a result of amorphization at

constant density. Another interesting insight was related to different response

of diffusion of different atomic species to structural disorder. I calculated both

activation energies and diffusion pre-factors. These numbers can be used to

predict long-term diffusion properties in this system, and I hope they can be

useful to the industry for the application based on solid diffusion. I also hope

that my work stimulates future experiments where diffusion is measured so

that the results can be compared. This will improve our understanding of how

waste forms operate and provide the community with a recipe to predict their

performance.

I subsequently studied the effects of phase coexistence and phase decom-

position in Y-stabilized zirconia, the system of interest in many industrial
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applications. For the first time I observed how the microstructure emerges

and evolves in this system. An important part of this study was using very

large system sizes which enabled microstructure formation. I showed that the

microstructure importantly affects O diffusion. This has not been known before

and I hope it will stimulate future experiments aimed at better understanding

of zirconia performance in several important applications. Another future

activity can involve simulating collision cascades in the zirconia system with

different crystalline domains. This has not been done before despite a large

number of MD simulations of radiation damage which were all done in mono-

crystalline systems. I hope that these studies will uncover new interesting

effects and will assist in our understanding of how zirconia behaves under

irradiation.

I developed a new empirical potential for CO2 with improved properties. This

involved fitting to crystal properties, including structure and lattice dynamics,

ab initio energies, and also tuned to the phase diagram. This model is designed

for simulating both crystal and fluid. There is a large community of MD

modelers interested in this system, and hope they will benefit from using the

new potential. I have used this potential in mapping the Frenkel line in the

supercritical state and in calculating the gap emerging in the dispersion curve

in the reciprocal space in CO2 liquid.

The remaining part of my thesis was related to the study of dynamical prop-

erties of both subcritical liquids and supercritical fluids. First, I mapped the

Frenkel line for three important systems: H2O, CO2 and CH4. This has not

been previously achieved and will inform the community regarding the area

of the supercritical phase diagram where one expects to find the crossover

between the liquid-like and gas-like behavior. Knowing this area is important

because it has been proposed that several important supercritical properties
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change around the Frenkel line. In addition, I observed that the Frenkel line

coincides with experimentally found maxima of solubility in supercritical

fluids. These maxima were not previously explained. My explanation involved

noting that the Frenkel line corresponds to the optimal combination of density

and temperature where the density is maximal and the diffusion is still in the

fast gas-like regime. My finding can serve as a guide in future applications

of supercritical fluids and will result in their more efficient use: staying close

to the Frenkel line implies maximal solubility and can also imply reducing

temperature or pressure and therefore reducing operating costs.

Finally, I provided the first direct evidence that a gap emerges and evolves in

the reciprocal space in transverse spectra of liquids. I ascertained that the gap

increases with temperature and is inversely proportional to liquid relaxation

time. Interestingly, the gap emerges and evolves not only in subcritical liquids

but also in supercritical fluids as long as they are below the Frenkel line. Given

the importance of phonons in condensed matter physics and other areas of

physics, I propose that the discovery of the gap represents a paradigm change.

There is an active interest in the dynamics of liquids and supercritical fluids,

and I therefore hope that my results will quickly stimulate high-temperature

and high-pressure experiments aimed at detecting and studying the gap in

several important systems.
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Wells, T. L. Windus, “NWChem for materials science”, Computational

Materials Science 2003, 28, 209–221.

[106] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,

H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, et al.,

“NWChem: a comprehensive and scalable open-source solution for large

scale molecular simulations”, Computer Physics Communications 2010,

181, 1477–1489.

[107] A. Stone, M. Alderton, “Distributed multipole analysis”, Molecular

Physics 1985, 56, 1047–1064.

[108] A. Misquitta, A. Stone, “CamCASP: a program for studying intermolec-

ular interactions and for the calculation of molecular properties in

distributed form”, University of Cambridge 2007.

[109] http://webbook.nist.gov/chemistry/fluid.

120

http://webbook.nist.gov/chemistry/fluid


[110] M. G. Martin, “MCCCS Towhee: a tool for Monte Carlo molecular

simulation”, Molecular Simulation 2013, 39, 1212–1222.

[111] B. Smit, P. D. Smedt, D. Frenkel, “Computer simulations in the Gibbs

ensemble”, Molecular Physics 1989, 68, 931–950.

[112] J. A. Zollweg, G. W. Mulholland, “On the Law of the Rectilinear Diame-

ter”, The Journal of Chemical Physics 1972, 57, 1021–1025.

[113] U. Haarhaus, P. Swidersky, G. Schneider, “High-pressure investiga-

tions on the solubility of dispersion dyestuffs in supercritical gases by

VIS/NIR-spectroscopy. Part I — 1,4-Bis-(octadecylamino)-9,10-anthraquinone

and disperse orange in CO2 and N2O Up to 180 MPa”, Journal of Super-

critical Fluids 1995, 8, 100–106.

[114] P. Swidersky, D. Tuma, G. Schneider, “High-pressure investigations

on the solubility of anthraquinone dyestuffs in supercritical gases by

VIS-spectroscopy. Part II—1,4-Bis-(n-alkylamino)-9,10-anthraquinones

and disperse Red 11 in CO2, N2O, and CHF3 up to 180 MPa”, Journal of

Supercritical Fluids 1996, 9, 12–18.

[115] M. Mchugh, M. Paulaitis, “Solid solubilities of naphthalene and biphenyl

in supercritical carbon dioxide”, Journal of Chemical and Engineering Data

1980, 25, 326–329.

[116] D. Tuma, G. Schneider, “High-pressure solubility of disperse dyes in

near-and supercritical fluids: measurements up to 100MPa by a static

method”, Journal of Supercritical Fluids 1998, 13, 37–42.

[117] D. Tuma, G. Schneider, “Determination of the solubilities of dyestuffs

in near-and supercritical fluids by a static method up to 180 MPa”, Fluid

Phase Equilibria 1999, 158, 743–757.

121



[118] T. Kraska, K. Leonhard, D. Tuma, G. Schneider, “Correlation of the

solubility of low-volatile organic compounds in near-and supercritical

fluids. Part I: applications to adamantane and β-carotene”, Journal of

Supercritical Fluids 2002, 23, 209–224.

[119] T. Kraska, D. Tuma, “High-pressure phase equilibria in binary and

ternary mixtures with one near- or supercritical and one high-molecular

component. New insights for application and theory”, Journal of Materi-

als Science 2006, 41, 1547–1556.

[120] U. K. Deiters, I. Swaid, “Calculation of Fluid-Fluid and Solid-Fluid

Phase Equilibria in Binary Mixtures at High Pressures”, Berichte der

Bunsengesellschaft für physikalische Chemie 1984, 88, 791–796.

[121] V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko,

“Universal crossover of liquid dynamics in supercritical region”, JETP

Letters 2012, 95, 164–169.

[122] A. Fiege, T. Aspelmeier, A. Zippelius, “Long-Time Tails and Cage Effect

in Driven Granular Fluids”, Physical Review Letters 2009, 102, 098001.

[123] L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino,

H. E. Stanley, “Relation between the Widom line and the dynamic

crossover in systems with a liquid–liquid phase transition”, Proceedings

of the National Academy of Sciences of the United States of America 2005,

102, 16558–16562.

[124] D. Bolmatov, V. V. Brazhkin, K. Trachenko, “Thermodynamic behavior

of supercritical matter”, Nature Communications 2013, 4.

[125] J. Zielkiewicz, “Structural properties of water: Comparison of the SPC,

SPCE, TIP4P, and TIP5P models of water”, The Journal of Chemical Physics

2005, 123, 104501.

122



[126] C. Vega, J. L. F. Abascal, “Simulating water with rigid non-polarizable

models: a general perspective”, Physical Chemistry Chemical Physics 2011,

13, 19663–19688.

[127] J. Abascal, C. Vega, “A general purpose model for the condensed phases

of water: TIP4P/2005”, Journal of Chemical Physics 2005, 123.

[128] I. Skarmoutsos, L. Kampanakis, J. Samios, “Investigation of the vapor-

liquid equilibrium and supercritical phase of pure methane via com-

puter simulations”, Journal of Molecular Liquids 2005, 117, 33–41.

[129] R. Span, W. Wagner, “A new equation of state for carbon dioxide

covering the fluid region from the triple-point temperature to 1100 K at

pressures up to 800 MPa”, Journal of Physical and Chemical Reference Data

1996, 25, 1509–1596.

[130] V. M. Giordano, F. Datchi, A. Dewaele, “Melting curve and fluid equa-

tion of state of carbon dioxide at high pressure and high temperature”,

Journal of Chemical Physics 2006, 125.

[131] L. Spanu, D. Donadio, D. Hohl, G. Galli, “Theoretical investigation of

methane under pressure”, Journal of Chemical Physics 2009, 130.

[132] E. H. Abramson, “Melting curves of argon and methane”, High Pressure

Research 2011, 31, 549–554.

[133] K. Trachenko, V. Brazhkin, D. Bolmatov, “Dynamic transition of super-

critical hydrogen: Defining the boundary between interior and atmo-

sphere in gas giants”, Physical Review E 2014, 89, 032126.

[134] L. Landau, E. Lifshitz, Fluid Mechanics. 1987, Butterworth-Heinemann,

1987.

123



[135] T. Scopigno, G. Ruocco, F. Sette, “Microscopic dynamics in liquid metals:

The experimental point of view”, Reviews of Modern Physics 2005, 77,

881–933.

[136] M. Grimsditch, R. Bhadra, L. M. Torell, “Shear waves through the

glass-liquid transformation”, Physical Review Letters 1989, 62, 2616–2619.

[137] F. Scarponi, L. Comez, D. Fioretto, L. Palmieri, “Brillouin light scattering

from transverse and longitudinal acoustic waves in glycerol”, Physical

Review B 2004, 70, 054203.

[138] E. Pontecorvo, M. Krisch, A. Cunsolo, G. Monaco, A. Mermet, R. Ver-

beni, F. Sette, G. Ruocco, “High-frequency longitudinal and transverse

dynamics in water”, Physical Review E 2005, 71, 011501.

[139] A. Cunsolo, C. Kodituwakku, F. Bencivenga, M. Frontzek, B. Leu, A.

Said, “Transverse dynamics of water across the melting point: A parallel

neutron and x-ray inelastic scattering study”, Physical Review B 2012, 85,

174305.

[140] W. Kob, H. C. Andersen, “Testing mode-coupling theory for a su-

percooled binary Lennard-Jones mixture. II. Intermediate scattering

function and dynamic susceptibility”, Physical Review E 1995, 52, 4134.

[141] L. Van Hove, “Correlations in Space and Time and Born Approximation

Scattering in Systems of Interacting Particles”, Physical Review 1954, 95,

249–262.

[142] T. Bryk, “Non-hydrodynamic collective modes in liquid metals and

alloys”, The European Physical Journal Special Topics 2011, 196, 65–83.

[143] K. Trachenko, V. Brazhkin, “Understanding the problem of glass tran-

sition on the basis of elastic waves in a liquid”, Journal of Physics:

Condensed Matter 2009, 21, 425104.

124



Appendix

List of Publication

1. C. Yang, E. Zarkadoula, M. T. Dove, I. T. Todorov, T. Geisler, V. V. Brazhkin,

K. Trachenko, ”Solid-state diffusion in amorphous zirconolite”, Journal of

Applied Physics, 116 (18), 184901, 2014

2. C. Yang, V. V. Brazhkin, M. T. Dove, K. Trachenko, ”Frenkel line and

solubility maximum in supercritical fluids”, Physical Review E, 91 (1),

12112, 2015

3. C. Yang, V. V. Brazhkin, M. T. Dove, K. Trachenko, ”Emergence and evo-

lution of k-gap in spectra of liquid and supercritical states” (submitted)

4. C. Yang, K. Trachenko, S. Hull, M. T. Dove, ”Microstructure and oxygen

diffusion in yttrium-stabilised cubic zirconia” (in preparation)

125


	Introduction
	Liquids and supercritical fluids: challenge of structural and dynamical disorder
	Radiation damage effects
	Thesis outline

	Methods
	Molecular dynamics simulation
	Thermodynamic ensembles
	Microcanonical ensemble
	Constant pressure or stress ensembles
	Constant temperature ensemble
	Grand canonical ensemble (Gibbs ensemble)

	Rigid bodies
	Ewald sum
	Interatomic potentials
	General Utility Lattice Programme (GULP)
	DL_POLY

	Solid-state diffusion in amorphous zirconolite
	Introduction
	Methods
	Results
	Discussion and summary
	Conclusions

	Microstructure and Oxygen Diffusion in Yttrium-stabilised Cubic Zirconia
	Introduction
	Methods
	ZrO2 potential
	Details of molecular dynamics simulations
	Cation coordination

	Results and discussion
	Microstructure transforming in Y-stabilised Cubic Zirconia
	Oxygen vacancy distribution
	Oxygen Diffusion in Y-stabilised Cubic Zirconia

	Conclusions

	Developing a new CO2 potential
	Introduction
	Methods
	Results and discussion
	Conclusions

	Frenkel line and solubility maximum in supercritical fluids
	Introduction
	Methods
	Results and Discussion
	Conclusions

	Emergence and evolution of k-gap in spectra of liquid and supercritical states
	Introduction
	Methods
	Details of molecular dynamics simulations
	Intermediate scattering function
	Current-current correlation function

	Results and Discussion
	Conclusions

	Conclusions
	Bibliography

