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Abstract 

Electromagnetic radiation from the radio waves used in nuclear magnetic resonance 

spectroscopy through to X-rays used in crystallography have provided a wealth of 

knowledge about the structure, function, and dynamics of protein molecules. Terahertz 

waves, the topic of this thesis, are lower in frequency than radiation from the infrared, 

not to the frequencies of individual bond vibrations, but to the frequency range where 

slower longer range protein librations (low frequency vibrations) are expected to 

occur. The role of low frequency protein dynamics remains controversial, with some 

arguing that these motions are crucial for enzyme and protein function. Terahertz 

spectroscopy may provide key evidence to contribute to this interdisciplinary debate. 

In this thesis, terahertz (THz) spectroscopy has been applied in studying a number of 

proteins experimentally. In the first results chapter, the effect of protein concentration 

and ionic strength in the 0.1-2.5 THz region was investigated using Terahertz time 

domain spectroscopy. The results confirm the presence of terahertz excess for a 

number of proteins, which results from the increased absorption of THz waves when 

protein is introduced into the system. THz spectroscopy was then used to detect the 

difference between a folded protein, myoglobin, and folding intermediates, including 

the molten globule form, apomyoglobin. The results collected using THz spectroscopy 

were unable to differentiate between the folded and molten globule states. A further 

study was susceptible to the formation of higher order protein complexes and explored 

structures formed using PduA*. These experiments were primarily biochemical in 

nature with showing that PduA* assembles into nanotubes of 20nm diameter in vitro. 

The final results chapter explores the sub-THz circular dichroism signal from a vector 

network analyser driven by quasi-optical circuits. Wherever possible, the THz 

experiments were benchmarked using established analytical techniques. 
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Aims and Objectives 

The aim of this work was to apply THz spectroscopy to the study of protein structure 

and function. The objectives were: 

(1) To build an experimental apparatus capable of measuring the THz signal from 

protein solutions; 

(2) To assess the THz absorption spectrum as a function of protein concentration 

and ionic strength; 

(3) To correlate the spectrum feature of the THz signal with protein conformation 

and explore the molten globule state in comparison to the fully folded state of 

myoglobin 

(4) To explore higher-order structures as exemplified by the PduA* assembly into 

nanotubes and measure their THz spectra; 

(5) To explore the THz circular dichroism signal. 

 

These objectives are discussed in detail in their respective results Chapters 3 through 

6.  Chapters 1 and 2 are introductory, and Chapter 7 brings the work to a brief 

conclusion. 

 

Detailed outline of the thesis:  

Chapter 1 gives an introduction to THz wave interacting with protein structure and 

dynamics, including conformation change of protein folding and solvent dynamics. A 

review is conducted of the work of others in this area.  
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Chapter 2 introduces both the theoretical background of biological methods and the 

detailed procedures applied. For THz measurements, current techniques employ 

terahertz time-domain spectroscopy (THz-TDS) and vector network analyser (VNA).  

 

Chapter 3 firstly investigates the concentration response of selected proteins measured 

on THz-TDS, and then further elucidates protein structure and stability in different 

ionic environments, measured in the sub-THz spectral domain as well as by circular 

dichroism (CD). 

 

Chapter 4 presents the hydration dynamics’ response of Apomyoglobin (ApoMb) to 

protein folding states, by combining THz-TDS spectroscopy with CD measurements. 

 

In Chapter 5, filamentous nanotube structures were produced from PduA* in vitro and 

probed using a VNA-driven quasi-optical circuit.  

 

Chapter 6 develops a 220-325 GHz band VNA-CD spectrometer based on the Quasi-

Optical bench to explore the correlated transmittance response of spectroscopic 

signatures with biomolecules in aqueous solution. 
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 Foundation of protein and its interaction with 

THz waves 

 

1.1 THz radiation 

1.1.1 The electromagnetic spectrum 

 Based on a nuclear magnetic resonance experiment, the frequency of a hydrogen 

nucleus lies in the radio frequency range 60-800 MHz (Figure 1.1) [1]. Further along 

the frequency range, infrared absorption spectroscopy provides information about 

bond stretching and bond vibration around 1500 cm-1 (45 THz). The visible range 

serves as a rich source of information about light absorbing biological entities such as 

haem, chlorophyll and other entities with conjugated double bonds (400-700 THz). 

Just beyond this is the ultra-violet range where the absorption of the aromatic side 

chains in proteins is used to determine protein concentration. At shorter wavelengths 

and higher energies, X-rays have been utilised to identify protein structures from 

crystals because the wavelength is similar to that of the carbon-carbon bond. The value 

of spectroscopic studies in the THz range, around 0.1-10 THz, has yet to be 

established. 

 

Figure 1.1 The electromagnetic spectrum showing THz frequencies are sandwiched 

between microwaves and visible light [1]. 
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1.1.2 THz waves 

Terahertz waves, which have a commonly used but not strict definition from 0.1-10 

THz (shown in Figure 1.1) are of interest in both fundamental research and industrial 

applications [2–4].  THz techniques have the capacity to serve as an effective 

instrument in the portrayal of vibrational modes [3]. These methods which are used 

for the detection of THz radiation can also be utilised in the investigation of physical 

phenomena, including excitations that involve low energy and carrier dynamics which 

exist in electronic materials. Other phenomena include combined torsional and 

vibrational methods in condensed-phase media, as well as vibrational and rotational 

changes that occur in molecules [5], [6].  

 

The measurement of the electric field amplitude can be conducted directly through 

THz spectroscopy. It is therefore possible, with the assistance of a Fourier transform, 

to directly and concurrently acquire the amplitude and phase of the signal that 

underwent analysis after measuring the sample [7], [8]. 

 

Various previous research studies, books and reviews have well explained, in great 

detail, the THz theory and devices as well as instrumentation [9], [10]. Among its 

numerous uses, the THz technology is utilised in fields such as nanomaterials [8], 

defence [11], [12], and industry [13], as well as semiconductors [14], communications 

[15], [16] and biomedicine [17]. Other fields include pharmaceutics [18], [19], 

imaging [20], and agro-products [21], as well as food [22].   
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1.2 Background of protein structure and dynamics 

1.2.1 Foundation of protein structure 

The four defined classifications of protein structure are primary, secondary, tertiary, 

and quaternary. The primary structure is composed of a linear sequence of the 20 

amino acid residues, which is unique in specific properties and can determine the 

folding and function of proteins. Based on the propensity of contact with polar solvent, 

such as water, the residues are classified by hydrophobic/hydrophilic, polar/non-polar 

and charged/non-charged. As a general rule, the interior of protein structures is most 

likely composed of hydrophobic amino acids, in order to avoid the contact with the 

hydrophilic environment in vivo. Polar and hydrophilic residues, which are attracted 

to the polarity of the solvent, are dominated at the protein surface. The protein’s 

backbone, which includes the alpha carbons and the peptide bond, is hydrophilic and 

is thus not favoured in the hydrophobic core. However, by forming secondary structure 

elements from the backbone, the hydrophilic NH and CO groups are prevented from 

exposure towards the hydrophobic surroundings. 

 

The two major secondary structure elements called α-helix and β-sheet, are stabilised 

by hydrogen bonding between residues that are non-adjacent in sequence. Amino acids 

such as methionine, alanine, leucine, glutamate and lysine prefer to adopt helical 

conformations; while amino acid residues containing large aromatic structures 

(tryptophan, tyrosine and phenylalanine) and Cb-branched amino acids (isoleucine, 

valine and threonine) have a tendency to adopt β-strand conformations. In α-helices, 

the hydrogens link to the C=O category of the amino acid are contributed by the NH 

group (Figure 1.2A). The polypeptide chains (either parallel or anti-parallel) generate 

β-sheets. The neighbouring residues of the side chains point alternately upwards and 
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downwards along the β-strand. The linking of hydrogen occurs between neighbouring 

β-strands to generate a β-sheet (Figure 1.2B). The elements of the secondary structure 

are frequently packed closely together to form a structural motif. The BMC shell 

proteins, which are comprised of β-α-β structural motifs (Figure 1.2C), will be 

addressed in chapter 5. 

 

Figure 1.2 Secondary structures.  (A) a-helix and (B) β-sheet in a stick and ball 

presentation. Black circle- carbon atom; Blue circle- nitrogen atom; White circle- 

hydrogen atom; Red circle- oxygen atom; Green circle- side chains. Hydrogen bonds 

are depicted as broken green lines; In B panel, neighbouring β-strands can be either 

in parallel (same direction) or anti-parallel (different direction). (C) Cartoon 

representation of a right-handed β-α-β motif. Figures are adopted from [23]. 

 

The tertiary structure of the protein is built on the base of the secondary structure 

elements with orientation in space, an example of Pdu subunit tertiary structure which 

consists of a conserved protein fold was shown in Figure 1.3A. The secondary and 

tertiary structure uniquely characterises each protein and each is important for its 

function. Despite the protein structures are complex and may vary from individuals, 

proteins always attempt to reach the maximum component packing density and thus 

ensure the resulting 3-dimentional structures are well-packed. This is subject to the 
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necessity that those amino acid residues having a favourable free energy in how they 

interact with water, and tending to stay close to the surface of the protein. 

 

After the formation of the resulting protein, protein requires motions at different time 

scales for their functions, and thus results the molecular dynamics. The quaternary 

structures shown in Figure 1.3B and C are examples of PduA and PduB subunits 

assemble into hexamer and three-fold symmetry. Some examples of functions 

requiring molecular dynamics are protein folding/unfolding, catalysis, membrane 

transportation, transcription, and protein-protein complex formation. Among these, 

studying the vital cellular process of protein folding/unfolding is important for the 

purpose of performing a particular biological function and leading to significant 

advances in our understanding of the fundamental insights into the protein behaviour. 

 

 

Figure 1.3 Examples of the tertiary and quaternary structure. Tertiary structure of 

Pdu subunit which consists of a conserved protein fold; (B) PduA subunits further 

assemble into a six-fold hexamer (PDB: 3NWG); (C) PduB subunits, which are 

comprised of two Pdu subunit, assemble into a trimer, with a three-fold symmetry 

(PDB: 4FAY). Figures are adopted from [24]. 
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1.2.2 Protein folding and denaturation 

Proteins have a tendency to fold to a certain conformation. Proteins in their native state 

(folded) are generally of a greater stability and are more favourable energetically 

(possess lower free energy) than their unfolded condition. This procedure by which 

proteins achieve their stable three-dimensional conformation is called protein folding. 

The necessity of protein conformation to physiological function has been studied 

extensively [25], [26]. Protein will lose its function in the denaturing process under 

certain conditions, such as adding denaturant agents (GdmCl and urea, for example), 

treating with high temperature or changes of the pH [27], [28]. The process known as 

denaturation is a disruption of the native state which leads to the unfolding of the 

proteins. An unfolded protein is non-functional owing to the lack of arrangement that 

the functional secondary structures turn into random coils. The unfolded protein tends 

to aggregate when it encounters lower levels of energy and greater stability. The 

aggregation of proteins can lead to a number of structural appearances with 

intermediates (oligomers) which range from unordered amorphous aggregates to 

highly ordered fibrils, e.g. amyloid fibrils, as shown in Figure 1.4 [29]. Although the 

amyloid fibrils vary in time, sequence and conditions, they are enriched in the cross-β 

structure [30]. The majority of the structural fluctuations of amyloid proteins are linked 

with protein misfolding diseases, for example, the Alzheimer’s disease [36].  

 

Far-reaching theoretical and experimental investigations have focused on the means 

by which a protein folds to different conformations, monitored by circular dichroism, 

tryptophan fluorescence, IR spectroscopy, X-ray diffraction, NMR spectroscopy, and 

mass spectrometry [31], [36]. However, obtaining basic knowledge of the molecular 

mechanism responsible for the folding of these flexible polypeptide chains is still one 
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of the biggest challenges of structural biology: the relationship between the 

polypeptide sequence and the folding behaviour of a protein is not entirely understood 

yet. The relationship between structure and function is essential to determining 

functional and structural domains, such as their relevance to the protein stability [32], 

[33]. The crucial nature of the amino acid sequence of a protein is justified by the 

theory of which all the information, needed for the folding of a protein, is based on 

this sequence [32], [33]. Thus, the knowledge gained through other studies will help 

to understand the complicated question of how the folding process occurs.  

 

 

Figure 1.4: Representation diagram of protein misfolding and aggregation [30]. In 

extreme circumstances of temperature change or pH, proteins experience 

conformational changes that cause unfolding and partial misfolding which is 

connected with the tendency to aggregate. Proteins can acquire a scope of various 

structural appearances during the aggregation process, and these are enriched in the 

cross-β structure and include intermediates which vary from unordered amorphous 

aggregates to ordered fibrils known as amyloid fibrils. 
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1.2.3 Protein hydration dynamics 

The dynamics of protein solvation are the motions of water in the proteins’ hydration 

shell in aqueous solution. Protein have evolved to perform functions mostly in aqueous 

environments. Water has been discovered playing a key role in protein structural 

organization, performing as a driving force that stimulates proteins to equilibrate their 

desired functional state rather than a mere passive solvent in biological settings. A 

water cluster was first measured by Pugliano and Saykally with Terahertz Laser 

Vibration-Rotation-Tunnelling (VRT) spectroscopy in 1992 [164], then the studies at 

Berkeley by Richard Saykally’s group produced much more extensive spectra of the 

dimer through hexamer clusters, which demonstrated the highest resolution water 

molecules structures using THz laser technique [165]. In recent years, researchers have 

defined the water in proteins into three categories, namely internal water, hydration 

water and bulk water. Internal water refers to the water molecules found in the interior 

of the protein; the bulk water, also called free water sometimes, is presented as the 

water that are far away from the dissolved protein; while the hydration water involves 

water molecules that interact with the surface of the proteins [31]. Many research 

focused on studying the aqueous protein molecules have highlighted the importance 

of protein-water interaction, especially the “hydration water” [32], [33]. As a fact that 

the hydration water is known as existing near a protein surface and relects the 

perturbation of protein conformations by interacting with the polar groups on the 

surface of the protein from hydrogen links, as well as surrounding solvent molecules 

[34].  

 

It has been found that the rate of breaking a hydrogen bond between any two water 

molecules within the hydration layer is averagely slower than that in the bulk water, 
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and this rate often differs by more than two orders of magnitude in the timescales. 

However, as the fact that the protein surface is such a complex and heterogeneous 

system to study, it is difficult to determine the lifetime of hydrogen bonds within the 

hydration layer around the protein with a single probing tool or method [35–39]. 

Although the protein surface extensively disrupts the hydrogen bond, water is still 

capable of creating chained hydrogen bond network/cluster with two dimensions 

around the protein [40], [41]. Because of its interaction with the hydrophilic and 

hydrophobic groups of the protein, this two-dimensional grid itself is controlled. 

Nonetheless, because of the complexity of the protein surface, the network will have 

varying rigidity in various surface’s regions. 

 

Both the backbone and the side chains, which constitute two different parts of the 

protein, are vital to the identification of the protein’s folded 3-dimensional structural 

topology [42], [43]. The backbone chain accounts for 60% of the polar atoms of the 

surface on average, which are composed of polar amide groups. In the case of the 

folded state, while an inflexible grid is created by the backbone atoms, the side chain 

will continue mobile in order to supply the structure with flexibility. As highlighted 

by research studies conducted recently,  the protein’s side chain being rigid plays a 

significant role in the dynamics of the hydration layer [37–39]. All the structures and 

dynamics related to the hydrogen links within the water molecule and between water 

and protein are affected by the extended hydrogen-linked grid that exists around the 

protein. The dynamical behaviour of the protein’s hydration layer is caused by all these 

interactions which are also behind the timescale of the side chain’s atom motion [40]. 

So far, there has been no quantitative investigation of these aspects, by using single 

experimental or theoretical tools [41]. However, it is possible to address certain 
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features related and simplify the complex dynamics with multitude of techniques and 

complementary methods [42], [43]. 

 

 

1.3 Interactions between THz wave and protein dynamics 

Biological molecules interact with radiation of different frequencies with characteristic 

differences. Certain energies in the visible and ultraviolet region can cause electrons 

to be excited to higher energy orbitals. If the energy of a photon is sufficient, e.g. X-

rays [44], the molecule may be dissociated or ionized. Ionization is particularly 

harmful to organic molecules since it creates chemically active radicals, which can 

result in damage to other molecules [45]. The photon energy in the THz spectral 

domain is much lower than that of the visible or ultraviolet region and can only excite 

vibrations in molecules without causing ionization effects in biological systems [46]. 

Therefore, this low (MeV) energy level gives THz waves the advantage of non-

destructive inspection of fragile biological samples such as protein and DNA. 

 

In aqueous conditions, the rotational relaxation time of an average-sized protein is of 

the order of nanoseconds, faster than that of the dry state [67]. THz wave possesses a 

period of oscillation of 1 picosecond, which is three orders of magnitude faster than 

the typical relaxation time of a protein, therefore the alignment of its dipole moment 

lags the phase of the driving field and each individual dipole moment of a protein is 

effectively made stationary at THz frequencies [47]. Within the THz range of 

frequency, there exist a great number of molecular vibrations; such vibrations are 

inclusive of crystalline phonon vibrations, low-frequency bond vibrations, as well as 

molecular rotations [48]. THz waves have the ability to supply useful data with respect 
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to protein structure [49] because they experience interaction with organic molecules’ 

transitions, both rotational transitions and vibrational transitions. In the THz band, 

both amplitude and phase information can be retrieved from the direct measurements, 

therefore a variety of coefficients of absorption as well as refractive indexes are likely 

to be exhibited by differing molecules [50] or by the very same molecules within 

varying conformations.  

 

There are great potentials for THz spectroscopy to become an indispensable means of 

comprehending protein dynamics, as well as for the observation of conformational 

transformations through analysing vibrational modes that are localised and also 

dependent on the complete framework.  

 

 

1.4 Application of Terahertz on protein dynamics 

In the past 20 to 30 years, many types of research have been applied to the employment 

of THz spectroscopy to study protein over a broad frequency domain from GHz to 

THz [51–53]. These measurements were acquired using various THz techniques, 

including time-domain spectroscopy (THz-TDS) [54] and Fourier transform 

interferometry (FTIR) [45], [55] in the range up to a few THz, for covering the 

measurements in a broader frequency range; and spectroscopy employed by narrow-

band, but high-power laser, such as free electron laser and the tunable p-Ge lasers [56], 

to retrieve sufficient information in a more precise manner. All these approaches allow 

researchers to determine the complex absorption directly from the magnitude of the 

transmission and phase information. Compared to the well-established analytical 

techniques on the protein solution study, such as FIR spectroscopies, X-ray scattering 
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and NMR, THz and sub-THz spectroscopies is still in the early developing stage [57]. 

However, THz techniques are capable of delivering some specific pieces of unique 

experimental data for protein analysis from the picosecond to sub-nanosecond order, 

due to the sensitivity of THz waves to the intra-molecular vibrational modes of 

proteins.  

 

Many studies have attempted to address the protein-related THz response, which is 

mainly associated with protein conformation, hydration and ligand binding in solution. 

Markelz’s group was one of the earliest demonstrating that low-frequency vibrational 

modes of proteins are optically active in the terahertz frequency range [58–60] and has 

done a number of studies in this research field. They have applied pulsed terahertz 

spectroscopy and THz-TDS studying the 0.06-2 THz frequency range to identify 

biomolecular species, conformation states, and mutations in bacteriorhodopsin. In 

these studies, Biomolecules samples were prepared in either lyophilized powder by 

freeze-drying, or in hydrated form then pressed into pellets. However, it must be noted 

that lyophilisation changes protein structure and removes function in many cases [166].  

The use of pressed pellets can also be limited in THz measurements, for the 

measurement of THz dielectric response evolution with biological function, samples 

must be sufficiently hydrated and allow proteins perform in their comfortable state to 

monitor the THz response from the bulk of the sample, not only characterize the 

surface of pellets [54].  

 

THz studies have also been applied to large biomolecules such as DNA and RNA [173], 

some excellent THz measurements has been performed using FTIR spectrometer in a 

series studies by T. Globus and co-workers [167-169]. They investigated THz spectra 
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of single- and double- stranded DNA and RNA in both dry and liquid gel phase, 

samples were prepared in manners of films that sealed between thin polyethylene films 

of varies thickness from 50 to 300 μm. It was reported that the THz transmission 

between native (double-stranded) and denatured (single-stranded) forms of DNA 

varies and can be determined from four THz absorbance features [169]. It is again 

noted the extreme sensitivity of the spectra to sample preparation including thickness, 

rotational orientation and water contents in sample [169].  

 

1.4.1 Protein Hydration 

The role of water in protein dynamics has been studied by an increasing number of 

groups, due to the importance of water playing in the protein function. In the early 

experiments, many studies have been restricted to dehydrated samples because the THz 

spectra are mainly featureless due to the high hydrated solutes THz absorbance [61], 

[62]. The loss of feature is mainly caused by the high THz absorbance emanating from 

the rotational relaxation within bulk water under uncontrolled thickness [63]. 

However, most of these measurements results are not related to protein dynamics 

characterization, mainly due to the thickness is not precisely controlled in these 

experiments. Meanwhile, protein samples must be sufficiently hydrated in order to 

perform biological functions on the dielectric response [61].  

 

Xu et al., [64]measured the absorption spectrum of solvated BSA and lysozyme from 

0.3-3.72 THz and observed a linear THz absorption change by increasing protein 

concentration. Vinh et al., [65] studied the lysozyme in the sub-THz region, driven by 

a vector network analyser based spectroscopy covering 65 to 700 GHz. They 

discovered that the concentration changes and the dielectric-defined hydration shell of 
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lysozyme contained 165±15 water molecules. Latterly, the technique of merging 

molecular dynamics simulations with THz spectroscopy was used by Havenith’s group 

[66] in researching protein–hydration coupling. The researchers have mainly used a p-

Germanium laser with a narrow frequency range of 2.1-2.7 THz. By investigating the 

2.4 THz absorption of native and denatured ubiquitin and λ-repressor proteins [67], 

native conformations clearly exhibited a higher THz response for both proteins. This 

is attributed to the modified water dynamics in the hydration shell of the unfolded state 

and suggests the major contribution to absorption of THz radiation is the hydration 

level in the protein. Accordingly, Havenith and co-workers introduced the three-

component model (which consists of protein, bulk water and hydration water) into the 

protein solvation interaction study, and determined the size and absorption of the 

hydration shell [54], [64], [66], [171]. THz spectrometer was also used as a tool to 

probe the collective hydration dynamics of ions and proteins, especially the enzymatic 

hydrolysis, with the help of kinetic terahertz absorption (KITA) spectroscopy [172].  

 

Molecular dynamics (MD) simulations have often been used as an approach to 

accompany experimental studies on THz providing means for interactions between 

protein and water [68], [69]. Normal mode analysis (NMA) provides simulation 

methods on the low-frequency modes of larger molecules [46]. Appropriate MD 

simulations complemented experimental studies. It relates THz excess of proteins to 

an increased vibrational density of states of hydration-water over that of bulk water in 

the frequency domain above 55 cm-1 (1.65 THz) [49]. In a combined experimental and 

MD study of aqueous peptides, Ding et al., [49] used the vibrational density of states 

to assign and analyze contributions of different structural elements to the absorption 

spectrum.  
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Further researches from Havenith’s research group [66] were carried on kinetic studies 

on protein folding by mixing an unfolded protein with a denaturant-free buffer and 

monitored the THz absorption changes in real time, and further compared the recorded 

result with fluorescence method, circular dichroism (CD) spectra, small angle X-ray 

scattering (SAXS) and simulated by MD method, indicating THz can be used as a new 

approach in tracking protein folding process. For higher ordered tertiary structure of 

proteins like nanostructures and amyloid fibrils, relative work has not been 

systematically studied on THz domain except for Liu et. al., [70] using THz-TDS 

demonstrated a difference in absorbance between the native insulin and the insulin 

fibrils between 0.2-3.0 THz.  

 

1.4.2 Conformation Change 

THz-TDS was used to examine the denaturation of the PsbO protein [71] and two 

photosynthesis membrane proteins: CP43 and CP47 [72–74]. THz-TDS was proven to 

be useful for discriminating the different conformational states of proteins with similar 

structures and for monitoring the denaturation process of proteins. 

 

Regarding the denaturation aspect, the sensitivity of the THz radiation to the 

conformational state of photoactive yellow protein was observed by Castro-Camus et 

al., [50]. A clear increasing trend of THz absorption was observed in 0.25 -2 THz 

range when the native protein turned to unfold partly after being illuminated with blue 

light at 450 nm. Yoneyama et al., [75] measured BSA in its native and thermally 

denatured conformations in the terahertz frequency range. The researchers used a 

membrane device to hold the samples and found that the transmittance amplitude of a 
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thermally denatured BSA sample was notably higher than that of a BSA sample in the 

native conformation. Clear phase differences also existed. The results suggested that 

the membrane device is useful for observing protein conformational changes. 

Similarly, the thermal denaturation of solid BSA using terahertz dielectric 

spectroscopy was recently investigated by Li et al., [76]. 

 

Havenith’s group has conducted important research on protein interactions. Their 

research showed that terahertz was sensitive specifically to solvation water around 

proteins [56], [61]. When they investigated the thermal denaturation of human serum 

albumin and the associated solvation using terahertz spectroscopy in an aqueous buffer 

solution, a clear correlation was observed between structural changes and changes in 

the hydration dynamics for the human serum albumin (HSA) protein [77]. 

 

 

1.5 Challenges of THz technologies in protein studies 

The major hurdle facing terahertz applications in protein detection is the 

overwhelming attenuation of the terahertz radiation by water, which is an enormous 

obstacle. Terahertz technology is not suitable for moisture measurements of high-

moisture products with a thickness greater than 1 mm. The inability of terahertz 

technology to monitor biomolecular interactions in solution is a serious limitation.  

 

The THz signal are sensitive to many environment factors such as temperature and   

because of the sensitivity to a change in environment factors, the sensitivity of the 

terahertz system is still lacking. Therefore, improving the instrumental signal-to-noise 

ratio is one the challenges facing terahertz technology. Temperature and attached water 
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molecules are the main external parameters that influence the dynamics and thus the 

functionality of proteins; therefore, controlling these parameters is indispensable for 

attaining reproducible and reliable results [78]. 

 

 

1.6 Summary 

Terahertz spectroscopy provides a unique perspective in biological study in having the 

capacity to probe long-ranged dynamics of collective networks and displays fast 

dynamics, which average out in many static or scattering experiments [79]. Currently 

there are a noticeable number of THz studies on protein hydration dynamics, as THz 

dielectric response has contributions from vibrational and diffusive motions in the 

protein and adjacent solvent. Broadband absorption that increased with frequency was 

observed for lyophilized powder samples of BSA and collagen. Studies on 

conformation have applied on many proteins such as hen egg white lysozyme 

(HEWL), different conformations of bacteriorhodopsin (BR), two states of photoactive 

yellow protein (PYP) [21].  

Although the various applications of this technology in different fields show great 

potential, scientific and technological issues must still be addressed. Some difficulties 

should be resolved for protein detection applications. 
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 Methodology: Biological approaches and THz 

techniques 

 

2.1 Materials 

2.1.1 Proteins 

Six proteins are chosen for carrying on different experiments in this study: bovine 

serum albumin (BSA), lysozyme, cytochrome C (CYC), myoglobin (Mb) and 

apomyoglobin (ApoMb) proteins from equine skeletal muscle and the mutated 

hexametric shell protein PduA*, they were introduced in separate chapters. BSA, 

lysozyme, and Mb were purchased from Sigma Aldrich in the form of lyophilized 

powder with a purity of 95%-100%; all proteins are purified before use. ApoMb was 

obtained from the above purified Mb by a heme-group removal step using the 2-

butanone extraction method [80]. PduA* DNA was supplied by Dr. Allen Pang from 

QMUL and cloned into pET14b plasmid vector (Appendix 1).  

 

2.1.2 Buffers 

The spectroscopic techniques used in this study have some influence on the choice of 

buffer. The protein folding studies in Chapter 4 were typically performed in double-

distilled (18 MΩ·cm) water in the pH range pH 2 to 7 in 20mM buffer solutions, 

additional buffers for different pHs are: phosphate buffer (KH2PO4/ K2HPO4) for pH 

6 and 7; Citric acid/sodium citrate for pH 3-5, Hydrochloric Acid-Potassium 

Chloride Buffer (HCl/KCl) for pH 2, as listed in Table 2-1. Subsequently the pH of 

the buffer solutions were adjusted by adding a small amount of 0.1M hydrogen 
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chloride/ sodium hydroxide  (<2μL). The nanostructure studied in Chapter 6 was 

initially prepared in 50 mM Tris, 500 mM or 50 mM NaCl buffer solution at pH 8.5.  

 

Buffer solutions 

 

Desired pH range Proteins prepared 

Hydrochloric Acid-Potassium 

Chloride (HCl/KCl) 

1.0-2.2 ApoMb at pH 2 

Citric acid/sodium citrate 3.0-5.0 ApoMb at pH 3, 4, 5 

potassium phosphate buffer 

(KH2PO4/ K2HPO4) 

5.8-8.0 ApoMb at pH 6, 7; 

BSA/Lysozyme/Myoglobin 

at pH 7 

Tris-Hydrochloride (Tris-HCl) 8.0-10.2 PduA at pH 8.5 

Table 2-1 Buffers used in the thesis. 

 

2.1.3 Sample holder 

A Bruker liquid cell (A145), as represented in Figure 2.1, was utilized as a sample 

holder for the protein solutions. The cell consists of two poly-4-methyl pentene-1 

(TPX) plates and a 100 μm polytetrafluoroethylene (PTFE) spacer [174]. The liquid 

cell is not opened while refilling with liquid samples. For each filling, 50 μl of the 

solution was injected into the cell with a pipette. Before each measurement, it was 

firstly filled with distilled water or buffer and pumped out with a syringe, which was 

repeated twice. Then repeat the fill and empty procedure again with sample solution 

to equilibrate the cell before the final injection of the sample. This procedure will 

ensure the thickness of the samples is constant during the experiments. 
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Figure 2.1 The liquid sample holder from Bruker company was used in our THz 

measurements. (A) The picture of the cell; (B)The alignment of components of the cell. 

 

2.2 Biological approaches 

2.2.1 Gel filtration chromatography 

This method was performed for protein separation according to their size and shape. 

The gel filtration column consists of spherical and porous Sephadex beads, allowing 

for the larger proteins to move through the interstitial spaces and elute first while the 

smaller protein molecules are retained in the free space in the beads, as shown in 

Figure 2.2.  

 

In this work, gel filtration chromatography was used as the only protein purification 

step for BSA, lysozyme, and myoglobin, and the final purification step for 

apomyoglobin and PduA*. Before application to the gel filtration column, the protein 

solution was concentrated in a Vivaspin concentrator (Sartorius Stedim Biotech, 5K 

Da or 10K Da MW cut off) until a final volume of 500 μl to 1ml was reached. The 

concentrated sample was loaded into a 2 ml loop connected to a Superdex 75 10/300 
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gel filtration column (GE Healthcare), which was pre-equilibrated with desired final 

buffer. An automated AKTA FPLC was used to run the chromatography at a rate of 

0.5 ml/min with 1 column volume of buffer. The target was collected in 1 ml fraction 

and analysed by SDS-PAGE. Fraction samples containing the protein of interest were 

pooled and concentrated for use in further experiments. 

 

 

Figure 2.2 A schematic highlighting the separation process by gel filtration 

chromatography. When a protein sample is added (first column), the larger protein 

molecules move faster down the column while the smaller protein molecules are 

retained behind by the beads (second column) and finally the larger protein molecule 

is eluted first (column three). 

 

2.2.2 Protein analysis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

The purity of a protein sample was analysed using the sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) method [81]. SDS is an anionic 

detergent that denatures proteins by disrupting its non-covalent bonds, causing the 
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molecule to lose their native conformation [81]. By using this system, protein 

migration via gel electrophoresis was determined by molecular weight alone. 

 

The Mini-Protean 3 system from Bio-Rad is used for setting up and running 

polyacrylamide gel electrophoresis. Glass plates were cleaned with ethanol and 

allowed to dry before assembling into casting frame and casting stand. The 15% to 

20% resolving gels and a 5% stacking gel were made and used for all experiments. 

 

Protein samples were supplemented with loading buffer and incubated at 100 oC for 5 

minutes before loading. Samples were loaded with pre-stained Protein Marker, Broad 

Range (New England BioLabs) to estimate the molecular weight of protein bands. The 

electrophoresis was run at constant voltage (200 V) until protein bands migrate to the 

bottom. Gels were viewed after staining and de-staining.  

 

Protein concentration measurement 

This technique uses the ultraviolet (UV), 180 to 400 nm, and visible (Vis) spectrum, 

400 to 800 nm. It is a particularly useful approach to determine the concentration of 

proteins. Side-chains belonging to tryptophan (Trp), tyrosine (Tyr), phenylalanine 

(Phe) and a disulphide bond act as concentration monitors of proteins at 280 nm. Using 

the Beer-Lambert law (equation 2.1) which highlights the relationship between 

absorbance and concentration of protein: 

𝐴 =  𝜀. 𝑐. 𝑙     (2.1) 

where A is the absorbance, c is the molar concentration of protein; ε is the extinction 

coefficient of the side-chains and l is the path length in centimetres (cm). 
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 The Hitachi U-3010 UV-Visible spectrophotometer was first calibrated with buffer. 

A test scan was recorded ensuring that the buffer gave a zero reading. The protein 

solution, usually at a dilution factor of 50, was measured. As indicated in the Beer-

Lambert law, the extinction coefficient must be determined to calculate the protein 

concentration. This can be obtained by placing the amino acid sequence into 

PROTPARAM tool of the EXPASY proteomics server (http://www.expasy.ch), which 

calculates based on the tyrosine and tryptophan residues [82]. 

 

As the heme group interacts with the rest of the protein structure to create an 

absorbance peak at 409 nm, known as the Soret band [83], the change was used to 

determine the purity of apomyoglobin after heme group removal from myoglobin 

protein [chapter 4]. 

 

2.2.3 Circular Dichroism 

Circular dichroism (CD) is a spectroscopic technique used to gather information 

regarding the secondary structure of proteins in solution. As opposed to linearly 

polarised light, which oscillates only in a single plane, circularly polarised light has a 

continuously rotating plane of oscillation, forming a helix as it travels. This helix can 

turn either in a clockwise direction producing a right circularly polarised light or in an 

anti-clockwise direction to generate a left circularly polarised light [84]. A CD 

spectrophotometer measures the differential absorption of left and right circularly 

polarised light.  

 

The far-UV (185-250 nm) range is essential for measuring secondary structural 

changes of protein, while near UV (>250 nm) CD spectrum is used to acquire 

http://www.expasy.ch/
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information on the tertiary structure of the protein. Far-UV-CD uses the two electronic 

absorptions of the backbone amide group, the electronic dipole from the π-π* 

transition at 190 nm and the magnetic dipole from the weaker n-π* transition at 210 

nm. These transitions dominate the CD spectrum to produce a trace characteristic of 

the ψ (psi) and φ (phi) torsion angles, therefore, are characteristic of secondary 

structure of the polypeptide chain, in a result providing an estimate fraction of a 

molecule that has α-helical conformation, β-sheet conformation, and random coil, as 

summarized in Figure 2.3 [84]. Although CD cannot pinpoint where the detected 

secondary structure is within the molecule, it can be a valuable tool in assessing 

whether the protein sample is properly folded.  

 

Due to the versatile nature of far-UV-CD, it has been used in this thesis to measure 

changes in the secondary structure under different pH conditions. Considering the best 

signal to noise ratio spectrum, a 0.2 ml diluted protein sample with a concentration of 

about 0.1 mg/ml is placed in a quartz cuvette with a 1 mm path length and subsequently 

placed onto the Chirascan CD spectrophotometer (Applied Photophysics). 

Absorbance scans were carried out from 190 to 260 nm at 0.5 nm intervals at a set 

temperature of 20 °C. For each sample scan, three trials were taken and then averaged. 

An absorbance scan of the buffer was also taken and used as a baseline to deduct the 

absorbance scan of samples. Data acquired from CD were analysed using CDNN 

(Circular Dichroism analysis using Neural Networks) deconvolution software [84], 

which interprets CD spectra and employs a complex algorithm to provide predictions 

of proportions of each secondary structure characteristic present. 
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Figure 2.3 Reference CD spectra for various secondary structure conformations. The 

α-helix (black) has a characteristic defined with two negative bands of similar 

magnitude in the wavelength 208 and 222 nm. β-sheet (blue) has a CD spectra 

fingerprint of a negative band at 217 nm. Random coil (green) exhibits a negative 

band at about 195 nm. (The source is adapted from [84].) 

 

2.2.4 Transmission Electron Microscopy (TEM)  

Glow-discharged carbon-coated 300-mesh copper grids were prepared using the 

droplet method, where 10 μl aliquots of samples from the fibril growth assay were 

adsorbed for 1 min followed by 10 μl of 1% (w/v) of phosphotungstic acid (PTA) 

adjusted to the same pH with the proteins, to negatively stain the sample. Images were 

recorded on a JEOL JEM-1230 electron microscope operated at 80 kV. 
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2.3 Terahertz approaches 

2.3.1 THz-Time Domain Spectroscopy 

Compared to infrared spectroscopy, where these instruments are much more mature 

and commercially used in biological laboratories, THz spectroscopy is now in the 

progress of transitioning from its initial development by physicists and engineers to 

being a useful tool for biologists. Among a number of THz radiation sources and 

systems that are now available, THz-Time Domain Spectroscopy is more common to 

be used in bio-systems research. A schematic illustration of the setup of a THz-TDS 

is shown in Figure 2.4B [85].  

 

Our TDS system, which is shown in Figure 2.4A, has its THz pulses generated and 

detected using 100 fs light pulses from a mode-locked Ti: sapphire laser at a 

wavelength of 800 nm and a repetition rate of 80 MHz [51]. The beam splitter 

separates the laser into two beams: pump beam and probe beam; the pump beam 

propagates through the delay stage and lead the THz emitter to generate the THz pulse 

[86], the probe beam is used for probing [85]. The THz emission was collimated and 

focused by a pair of off-axis parabolic mirrors and the beam collected by another pair 

of off-axis parabolic mirrors. The THz pulse is single cycle oscillation of the electric 

field with duration of few ps which can be detected by ZnTe (Zinc Telluride) crystal. 

Gated coherent detection is used in the measurements, whereby an optical delay line 

adjusts the time delay between the THz-wave generation and detection arms. The 

empty system are mainly treated as reference and was propagated as a reference signal, 

and the THz wave propagation through the sample is recorded as sample signal. The 

signals are then recorded by the lock-in amplifier for further data processing. 
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Figure 2.4 The THz-TDS system used for measurements. (A) A picture was taken at 

QMUL THz lab; (B) A schematic diagram of a common THz time-domain system. The 

system employs a femtosecond pump laser and is based on THz pulse emission and 

detection by a photoconductive emitter and a THz detector antenna, adopted form.  
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2.3.2 Data processing 

Since the THz technique measures the field strength, it is possible to invert the 

complex Fresnel transmission coefficients and thus to obtain the index and absorption 

of the highly absorbing protein solution samples. In order to extract the spectral 

information of the sample, a reference measurement with the sample removed will be 

first done and Fourier transform will be applied to converting the time-domain spectra 

to frequency-domain spectra. The recorded data consists of a single trace in the time-

domain containing the reference pulse and the sample pulse as indicated in Figure 2.5 

(a) and the converted frequency-domain spectra was shown in (b)  [87].  

 

Figure 2.5 An example of the determination of the dielectric function from a reference 

and sample THz pulse [9]. (a) and (b) represent the time domain and frequency-

domain spectra, respectively. Blue line represents the reference signal while the red 

line is the sample signal. 

 

In the delay stage, a total of 𝑁 =  1024 data points was recorded using 10 μm delay 

stage steps which resulted in a 10240 μm trace. This single trace is separated into the 
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two signals 𝐸𝑟𝑒𝑓(𝑡) and 𝐸𝑠𝑎𝑚(𝑡) which consist of 𝑁′ = 𝑁/2 data points and which 

then are individually Fourier transformed to the frequency-domain.  

 

The sampling time axis and frequency axis are given by: 

𝑡𝑛 = 2 ∗
𝑠𝑐𝑎𝑛𝑁

𝑐
,  𝑓𝑛 = 𝑛 ∗

𝑐

2∗𝑠𝑐𝑎𝑛𝑁
                                                 (2.2) 

Where 𝑠𝑐𝑎𝑛𝑁 = 𝑛 ∗ 𝑠𝑡𝑒𝑝 , 𝑛 = 1, 2, 3, … , 1024. 

 

Fourier transforming 𝐸𝑟𝑒𝑓 (𝑡) and 𝐸𝑠𝑎𝑚(𝑡) results in 

𝐸𝑟𝑒𝑓 (𝜔)  =  𝐴𝑟𝑒𝑓 (𝜔) 𝑒𝑥𝑝[𝑖𝜑𝑟𝑒𝑓 (𝜔)]                (2.3) 

𝐸𝑠𝑎𝑚(𝜔)  =  𝐴𝑠𝑎𝑚(𝜔) 𝑒𝑥𝑝[𝑖𝜑𝑠𝑎𝑚(𝜔)]                (2.4) 

The Fourier transformations are performed as an FFT algorithm in data analysis 

software MATHCAD giving out values for the amplitudes 𝐴𝑟𝑒𝑓(𝜔) and 𝐴𝑠𝑎𝑚(𝜔) as 

well as for the phases 𝜑𝑟𝑒𝑓(𝜔) and 𝜑𝑠𝑎𝑚(𝜔) for each frequency value ω. 

 

The two material optical parameters refractive index n and extinction coefficient k, are 

formed in the complex refractive index of materials 𝑛̃ = 𝑛 − 𝑖𝑘 [88]. In this formula, 

the refractive index is a number describe how the THz radiation propagates through 

the samples. Extinction coefficient means the THz wave extinction value by the 

solvation, which related to the wavelength (or frequency). As the THz beam goes 

through the sample as well as two TPX plates, a transfer function (TF) for three layers 

have developed to only calculate the solution parameters: 

 

𝑇𝐹 = 𝑇𝑚 exp (−
𝑖2𝜋𝑓𝑚𝑑𝑤𝑛̃𝑤

𝑐
) exp (−

𝑖2𝜋𝑓𝑚𝑑𝑠𝑛̃𝑠

𝑐
)                     (2.5) 
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in this formula, 𝑛̃𝑤 is the complex refractive index of window material, 𝑛̃𝑠 is the 

refractive index of sample 𝑛̃ = 𝑛 − 𝑖𝑘 . 𝑇𝑚 is the combined Fresnel transmission 

coefficient, which is associated with the front and back boundary interfaces between 

sample and host medium to the sample. 

 

As sample is sandwiched by two TPX plates (Figure 2.6), the combined transmission 

coefficient can be transformed:  

𝑇𝑚 =
𝑇1

′𝑇2
′𝑇3

′𝑇4
′

𝑇1𝑇2𝑇3𝑇4
=

𝑇2
′𝑇3

′

𝑇2𝑇3
                                                       (2.6) 

 

The T values take the form as: 

𝑇1 =
2𝑛̃𝑤1

𝑛𝑎𝑖𝑟 + 𝑛𝑤1
, 𝑇2 =

2𝑛̃𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 + 𝑛𝑤1
, 𝑇3 =

2𝑛̃𝑤2

𝑛𝑎𝑖𝑟 + 𝑛𝑤2
, 𝑇4 =

2𝑛̃𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 + 𝑛𝑤2
          (2.7) 

𝑇1
′ =

2𝑛̃𝑤1

𝑛𝑎𝑖𝑟 + 𝑛𝑤1
, 𝑇2

′ =
2𝑛̃𝑆

𝑛𝑆 + 𝑛𝑤1
, 𝑇3

′ =
2𝑛̃𝑤2

𝑛𝑆 + 𝑛𝑤2
, 𝑇4

′ =
2𝑛̃𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 + 𝑛𝑤2
                (2.8) 

 

Thus the TF function can be further performed as: 

          𝑇𝐹 =
𝑇2

′𝑇3
′

𝑇2𝑇3
exp (−

𝑖2𝜋𝑓𝑚𝑑𝑤𝑛̃𝑤

𝑐
) exp (−

𝑖2𝜋𝑓𝑚𝑑𝑠𝑛̃𝑠

𝑐
)                                       

=
(𝑛̃𝑤 + 1)2𝑛̃𝑠

(𝑛̃𝑤 + 𝑛̃𝑠)2
exp (−

𝑖2𝜋𝑓𝑚𝑑𝑤𝑛̃𝑤

𝑐
)  𝑒𝑥𝑝 (−

𝑖2𝜋𝑓𝑚𝑑𝑠𝑛̃𝑠

𝑐
)            (2.9)   

 

By using formula𝑛̃ = 𝑛 − 𝑖𝑘 and equation (2.7, 2.8) the values of refractive index 𝑛 

and extinction coefficient 𝑘 can be calculated.  

Optimization of apodization functions for the time-domain signals obtained in 

terahertz (THz) transient spectrometry is also necessary, by enhancing the resolution 



Chapter 2 Methodology: Biological approaches and THz techniques 

47 
 

and frequency-depedent dynamic range of the THz spectra, as supported by 

measurements [143]. 

 

 

Figure 2.6 Schematic diagram of the sample in the THz-TDS system. THz beam 

propagates through empty cell (upper panel) or sample (lower panel) sandwiched by 

two TPX plates. The THz beam follows the direction T1 (air to the TPX plate), T2 

(TPX plate to sample), T3 (sample to TPX plate), and T4 (TPX plate to the air). This 

beam’s direction shows four Fresnel transmission coefficients exists [89]. 

 

2.3.3 Vector Network Analyzer coupled to quasi-optical bench 

While current THz-TDS system can cover the range from 0.2 to 3 THz with a dynamic 

range of around 80 dB, a vector network analyser-driven quasi-optical bench is 
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developed to be another useful tool that capable to monitor protein materials from 75 

to 325 GHz. The quasi-optical transmissometer used for our work is illustrated in 

Figure 2.7. It consists of a pair of corrugated horns (H1, H2) for transforming 

rectangular-wave-guide modes into linearly polarised free space Gaussian beam 

modes [52]. A pair of parabolic mirrors (F1) to couple the signal beam from H to 

linearly polarized quasi-collimated beam which passes through the sample (S), and 

two further parabolic mirrors (F2) couple the THz radiation to focus on the sample. 

The above setup is driven by a HP 8510C vector network analyser (VNA) in individual 

waveguide bands (75-110, 110-170, 220-325 GHz are currently available in QMUL 

lab). In measuring a transmittance, the amplitude and phase of the transmitted signal 

will be measured with and without the sample (shown in Figure 2.8) in the beam. The 

ratio of these complex amplitudes represents the insertion loss of the sample. 
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Figure 2.7 The VNA-QO measurement system. (A) The photo of QO measurement 

circuit at QMUL THz lab. (B) Schematic diagram of the QO-VNA measurement 

system. H1 and H2 denote the corrugated horns connecting with waveguide bands; 

F2 are two parabolic mirrors used to couple the THz radiation on the sample while 

F1 represent another pair of parabolic mirrors between H and F2.  
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The 220-325 GHz band was used in the measurements of this work, and the complex 

transmission coefficients S21 of the samples were collected using this system. The S21 

transmission amplitude is used as a measure of absorbance of the samples [175].  

 

 

Figure 2.8 Schematic diagram of the sample in VNA system. (A) The empty cell 

sandwiched by two TPX plates; (B) Sample with two TPX plates. S11 refers to the 

reflection response and S21 for the transmission response. 

 

The structure of a 3-layer system (TPX plate – sample –TPX plate) can be represented 

in a corresponding 3-term product ABCD matrix. The transmittance matrix of the 

assembly is given by: 

𝐴(𝜀, 𝑑) = [
𝐴 𝐵
𝐶 𝐷

] = [
𝐴𝑇𝑃𝑋 𝐵𝑇𝑃𝑋

𝐶𝑇𝑃𝑋 𝐷𝑇𝑃𝑋
] [

𝐴𝑆 𝐵𝑆

𝐶𝑆 𝐷𝑆
] [

𝐴𝑇𝑃𝑋 𝐵𝑇𝑃𝑋

𝐶𝑇𝑃𝑋 𝐷𝑇𝑃𝑋
]         (2.10) 

𝑑 is the material thicknesses; 𝜀, is the materials’ dielectric properties; the subscript 

‘TPX’ stands for the front and back TPX plates of the sample cell and ‘s’ for the 

sample.  

 

By applying wave propagation equations of A, B, C, and D for each layer according 

to the three layers method from [90], the parameters of reflection (S11) and 

transmittance (S21) can be obtained: 
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R = [
𝐴 + 𝐵 − 𝐶 − 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
]                                                 (2.11) 

T = [
2

𝐴 + 𝐵 + 𝐶 + 𝐷
]                                                (2.12) 

 

 

2.4 Summary 

This chapter presents the general overview of both biological approaches and THz 

measurement techniques used in the project. Different protocols on protein production 

were applied to individual proteins, the steps of protein purification are discussed in 

the respective relevant chapters. The biological approaches are started with protein 

purification; purified proteins were subsequently used for various experiments, 

including circular dichroism, transmission electron microscopy and THz 

measurements. In THz techniques section, both Terahertz time-domain spectroscopy 

and the Vector Network Analyser Deployed with Quasi-Optical measurement system 

are described. 
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 Sub-Terahertz studies of protein in Ionic 

Environments 

 

3.1 Background 

THz and sub-THz spectroscopy have been applied to the study of solvation dynamics 

of various bio-molecules ranging from amino acids to complex DNA and lipid layers 

[5]. THz radiation senses the collective dynamics of molecules and hydrogen-bond 

networks that are directly related to the properties of a biomolecule, such as 

conformation state, hydration shell radius and surface hydrophobicity. [66]. 

 

Naturally-solvated proteins exist in aqueous environments rich in salt ions, sugars and 

other biomolecules. In many THz studies, dilute salt buffers are used to stabilize the 

pH of a solution and protein structure [91], [92]. For instance, Bye et al., have shown 

using differential scanning calorimetry (DSC), that a NaCl solution actively stabilizes 

the lysozyme structure above 550 mM [93]. Other studies have already addressed the 

THz response of varies solvated ions [94]. However, only limited THz studies are 

available under the influence and stabilizing the effect of various salt buffers on protein 

stability in solution. THz spectroscopy of bio-solutions is still in its early stages of 

development and acceptance compared to the established techniques of fluorescence 

spectroscopy, circular dichroism, calorimetry. However, growing availability of THz 

sources supported by high-performance molecular dynamics simulations is building a 

foundation for THz methods and analysis. 
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In this chapter, a well-designed vector network analyser (VNA) -driven quasi-optical 

bench is developed to monitor the protein samples from 220 to 325 GHz range. The 

sub-THz measurement is first verified by monitoring the unfolding process of BSA 

protein under the influence of strong chaotrope GdmCl, with the aim to investigate the 

potential of sub-THz spectroscopy to address the salt-protein interaction. By 

comparing with FTIR and THz-TDS, VNA is able to supply a greater sensitivity in 

dynamic range with low signal-to-noise ratio.   

 

3.2 Materials and methods 

3.2.1 Materials 

Three proteins and two salts were chosen for this study: hen egg white lysozyme (PDB: 

2LYZ, Mw: 14.3 kDa), myoglobin from equine skeletal muscle (PDB: 1MBN, Mw: 

16.7 kDa) and bovine serum albumin (BSA, PDB: 4F5S, Mw: 66.5 kDa); Sodium 

chloride (NaCl) and guanidinium chloride (GdmCl). All proteins were purchased from 

Sigma Aldrich in the form of lyophilized powder. The purity for lysozyme and BSA 

is ≥ 98%, for myoglobin 95-100%, essentially salt-free. Proteins are purified with gel 

chromatography (HiLoad 26/60 Superdex75, GE Healthcare) using FPLC (Fast 

Protein Liquid Chromatography) with 10mM potassium phosphate buffer at pH 6.5.  

The purity was checked by SDS-PAGE before use. All the proteins were prepared in 

a 20 mM potassium phosphate buffer (pH 7). 

 

3.2.2 Far-UV circular dichroism (CD) 

Circular dichroism (CD) was used to collect the secondary structure changes of 

proteins, in a quartz cuvette with a 1 mm path length and subsequently placed onto the 

Chirascan CD spectrophotometer (Applied Photophysics). Absorbance scans were 
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carried out from 190 to 260 nm at 0.5 nm intervals at a set temperature of 20 °C. For 

each sample scan, three runs were taken and then averaged. An absorbance scan of the 

buffer was also taken and used as a baseline to deduct the absorbance scan of samples. 

 

3.2.3 Vector network analyser at 220 to 325 GHz 

A quasi-optical transmissometer [95] driven by an HP N5244A Vector network 

analyser (VNA) was used to collect the experimental results. The Agilent VNA (with 

spanning DC up to 1 THz) is capable of offering a greater dynamic range and signal-

to-noise ratio of up to 100 dB. Frequency-multiplier heads coupled to corrugated horns 

up-convert the frequency to 0.22-0.325 THz. This band of frequency corresponds to a 

wave period of the order of 1 picosecond. Such a time-scale is attributed to fast 

relaxation processes of hydration dynamics. The VNA signal power is of the order of 

1 mW and is continuous wave radiation. Sub-THz absorption is calculated as the 

inverse of the transmission coefficient S21 integrated over the whole waveguide band.  

 

For measurements, a Bruker liquid cell (A145) with TPX windows was utilized as a 

holder for the solutions. The thickness of the solutions was set to 100 μm by a 

polytetrafluoroethylene (PTFE) spacer. Since water is a strong absorber of sub-THz 

radiation, such thin samples allow measurable radiation through in the desired 

operating band while still being thick enough to provide sufficient beam-material 

interaction. For refilling, the cell is removed from the beamline, flushed with distilled 

water and filled with the next solution. This procedure is done to avoid any thickness 

deviation which is known to be a major source of uncertainty in absorption 

measurements [96]. The solutions are initially kept in an ice box, then allowed 30 

minutes to equilibration with room temperature before each measurement. Combined 
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measurement error comprises kinematic uncertainty and instrumental noise and 

together constitutes ±0.2 % and is invariant for each reading. 

 

3.3 Results and Discussion 

3.3.1 Guanidinium Chloride in protein denaturation process 

Guanidinium (C(NH2)3
+, Gdm+) salts have been widely employed for the denaturation 

or unfolding of protein molecules in aqueous solutions; its process can be reversible 

in some cases with careful control of conditions [97]. The denaturing effect to protein 

on GdmCl has been experimentally studied in Neutron scattering [98] and dielectric 

spectroscopy [99], concluding that due to the low charge density of Gdm+, there is no 

sign of strongly bound solvation shell around the Gdm+ ions. MD simulation results 

have predicted a significant ordering of hydration layer around Gdm+ which means the 

unfolding changes of protein are also led by the water structure alteration [100]. One 

of the recent THz studies, Nirnay Samanta et al., [101] has employed THz time domain 

spectroscopy (TDS) to compare the collective hydrogen bond dynamics in GdmCl and 

NaCl salts in 0.3-2.0 THz range, and the denaturing effect of GdmCl on HSA (Human 

serum albumin) protein. 

 

Far-UV Circular Dichroism spectra 

Far-UV CD spectra (wavelength 190-250 nm) of BSA and Apomyoglobin protein with 

GdmCl was collected and used to investigate the structure information of the proteins. 

As chloride ions absorb strongly below 195 nm, thus the CD signal of proteins in the 

presence of the GdmCl was plotted at 222 nm (as depicted in Figure 3.1), which is 

particularly sensitive towards the secondary structure of proteins. It appears from 

Figure 3.1 that a drastic change is observed in the case of GdmCl for both BSA and 
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apomyoglobin proteins especially beyond a concentration of 2 M indicating the onset 

of unfolding of proteins. GdmCl decreases the content of alpha-helix dramatically with 

a concomitant increase in the random coil conformation. 

 

Figure 3.1 Denaturation CD curves of 1 mg/ml BSA and Apomyoglobin protein with 

GdmCl concentration up to 6 M. 

  

VNA sub-THz measurement 

Figure 3.2 shows the relative changes in THz absorption of BSA, lysozyme and 

myoglobin protein solution at six concentrations of guanidinium chloride (GdmCl). 

Relative absorption of pure GdmCl is also provided as a reference. GdmCl is a strong 

chaotrope and is commonly used as a protein denaturant [102]. The dominating 

mechanism of unfolding is destabilization of protein structure via interaction of 

charged salt particles with charged and polar sites on the protein surface. Protein 

solution exhibits a clear decrease in THz transmission, especially Above 1.5-2 M of 

GdmCl, consistent with THz-TDS study of HSA/GdmCl solution [101]. This 

concentration marks a transition point where rapid protein unfolding begins. As BSA 
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molecules unfold and lose their tertiary structure, more hydrophobic residues from the 

protein core get exposed to the solvent. This process is accompanied by an increase in 

Gibbs free energy. It is known that hydrophilic and polar molecules possess higher 

THz absorptivity compared to hydrophobic [103]. Therefore, a protein solution 

attenuates THz radiation less than GdmCl salt solution as protein molecules undergo 

denaturing and become more hydrophobic. The critical concentration of GdmCl 

determined here by THz spectroscopy is consistent with other techniques such as 

fluorescence spectroscopy [104] and circular dichroism [102]. For instance, enzymatic 

activity determined by colorimetric methods reveals that glucose oxidase (a dimeric 

enzyme) starts unfolding at 2 M concentration of GdmCl and 4 M it is completely 

unfolded [102]. In the same study, other experimental methods as fluorescence 

spectroscopy, circular dichroism, and size-exclusion chromatography confirm these 

unfolding trends. This is in agreement with data presented here. The inflexion point of 

the curve for GdmCl solution can also elucidate specific information regarding the size 

of the dynamic hydration shell [51]. 
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Figure 3.2 The normalized absorbance of 1 mg/ml BSA, lysozyme and myoglobin in 

GdmCl concentration range (0-6 M), measured in 220-325 GHz range. 

 

3.3.2 Protein in NaCl ion environment 

In order to understand the mechanism behind protein stabilisation and solubility, it is 

important to understand the role salts play. In the early theories, the best known 

experimentally studies that discussed the ability of ions to influence the protein 

solubility is by Hofmeister in 1888 [105], [106]. As a general trend, anions and cations 

can be sorted by their ability to solubilise and destabilise (structure breaker) and 

precipitate and stabilise proteins (structure maker). It was originally believed that the 

trend ions play was due to the ability of ions making or breaking water structure around 

proteins. However, current studies suggest a longer range interaction exist between 

ions and hydration layer of protein using dielectric relaxation spectroscopy [107], 
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neutron scattering [108] and molecular dynamic simulation [109]. This leaves the 

question of what drive salts to act in protein dynamics unanswered and suggests that 

salt-protein interactions are more complex than previous thought.  

 

Motivated by sub-THz measurement is sensitive to detect absorption change of 

denaturation in GdmCl solutions, BSA protein was selected to study the THz response 

in a neutral salt sodium chloride at up to 1 M salt concentration range. The purpose is 

to investigate the anion stabilization of BSA protein within sub-THz range. 

 

Thermal melts as a measure of protein stability 

For most proteins, secondary structure is lost upon unfolding and the far-UV CD 

spectra of a folded and unfolded protein are thus distinct.  The structural stability of 

the proteins is presented as the temperature where the protein is unfolding at its 

maximum rate (the Tm value) [110]. The melting temperature is defined as the 

temperature when the native and denatured states are equally populated at equilibrium. 

Therefore, it is commonplace to use the variation of melting temperature (Tm) as a 

faithful measure of stability [110].  

 

BSA protein solution was prepared at 1 mg/ml in different sodium chloride conditions: 

50 mM, 100 mM, 150 mM, 200 mM, 500 mM. Protein in 20 mM potassium phosphate 

buffer was used as a reference. CD spectra were recorded every 2.5 °C from 25 to 90 

°C. The molar ellipticity at 222 nm, θ222, as a function of temperature is shown in 

Figure 3.3. It's not surprising that the melting curves trends are quite similar among 

different NaCl salt concentration, as Na+ and Cl- ions are not strongly interacted with 

protein or hydration water and will not cause many alterations in protein stability. 
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However, the melting temperature is getting slightly higher with increasing NaCl salt 

concentrations up to 500 mM. As greater protein stability will be indicated by 

higher melting temperatures (Tm values), the protein becomes more stable with 

increasing NaCl salt concentration from 50 to 500 mM. The reason could be that in 

low protein concentrations protein structure requires achieving its maximum 

stabilization with the help of surrounding bindings. The binding of sodium chloride 

which is stronger than hydrated will help to stabilize the conformation of protein, and 

the presence of sodium chloride bound to the surface of protein would also alter the 

hydration layer around the protein and the strength associated with the structure. 
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Figure 3.3 (A) Normalized absorbance of BSA protein in different concentrated NaCl 

solutions (0-500 mM) with 20 mM sodium phosphate buffer performed by CD thermal 

melts method; (B) The melting temperatures (Tm values) for different NaCl 

concentrations. The overall pH of each solution was maintained at pH 7. The 

temperature range was recorded from 25 to 90 °C. 

 

 

Protein concentration change in 220-325 GHz sub-THz domain 

Figure 3.4 shows the relative (with respect to buffer) absorption of BSA proteins in 

different NaCl salt conditions (0 to 500 mM), compared at different protein 

concentrations (0 to 100 mg/ml). The spectra start to show a linear decreasing change 
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after 5 to 10 mg/ml BSA concentration, and a nonlinear trend in absorption is 

immediately clear at low concentrations.  
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Figure 3.4 Normalized absorbance of different concentration BSA protein at 0, 50, 

100, 150, 200 and 500 mM of NaCl. The protein in different concentration of NaCl 

solutions are compared as a function of BSA concentration. Errors were estimated as 

a combination of instrument noise and the uncertainty of positioning of the liquid cell 

in the beam-line. Error bars are invariant at each point in this plot and are equal to 

±0.001. 

 

The THz defect (i.e. the smaller electro-magnetic absorption of the solution compared 

to bulk water) [77], was the expected scenario since protein molecules in the dry-state 

are known to be less absorbing than water. However, all three protein solutions exhibit 
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higher absorption as compared to a two-component. Protein in buffer (without NaCl) 

is seen to have the largest additional absorption with respect to the rest spectra, 

followed by 50 mM NaCl and 100 mM NaCl. The proteins studied exhibit an initial 

rise in absorption (THz excess) at low concentrations. The maximum absorbance of 

solutions occurs at 5 mg/ml and 10 mg/ml BSA concentration, which agrees with the 

previous study on THz excess in protein and fit the hydration shell size.  

 

THz measurement of BSA protein with NaCl concentration change 

Figure 3.5 shows the collected experimental results for NaCl buffer and different BSA 

protein solutions at 5 to 100 mg/ml concentrations. It illustrates how the absorption of 

the solution changes with increasing concentration of NaCl. As expected, for NaCl 

buffer, the absorption rises monotonically until 200 mM, since charged Na+ and Cl- 

ions are more responsive to THz radiation than water molecules, and then saturates. 

For protein solutions, however, the trend is more complex. Besides 5 mg/ml BSA 

solutions, most of the spectra exhibit a well-pronounced minimum in THz response at 

a salt concentration of 100 mM. This feature is interpreted as stabilization of the 

protein structure by Na+ and Cl- ions at this particular concentration. Initially, when 

the NaCl concentration is increased, ions start to occupy protein binding sites, thereby 

inhibiting its flexibility. This reduction in action is expressed as a retarded response to 

THz probe-radiation. However, it is also noted that the normalized absorbance in 

Figure 3.5 spans within 3% overall, the small variations in absorbance spectra for BSA 

concentration 25, 50 and 100 mg/ml, could not be clearly attributed to determine the 

difference between samples.  
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Figure 3.5 Normalized absorbance of BSA proteins, different concentration of BSA 

solution are compared as a function of NaCl concentration at 0, 50, 100, 150, 200 and 

500 mM of NaCl. Error bars are invariant at each point in this plot and are equal to 

±0.001. 

 

The evolution of relative absorption is similar from 200 to 500 mM for all three 

solutions considered. This implies that above 200 mM the additional ions remain 

mainly in the buffer and do not actively interact with protein molecules as most of the 

binding sites on the protein surface are already occupied. 

 

Interestingly, the investigation of the thermal stability of BSA by CD is not able to 

reproduce this feature at 100 mM of NaCl. CD melting curve shows a continuous 

increase in melting temperature (Tm) of BSA up to 500 mM of NaCl, indicating that 

thermal stability also rises. 

 

The CD experiments agree with the findings obtained by the same technique for the 

glucose oxidase enzyme [14]. The Tm of this enzyme constantly grows up 2 M of NaCl 
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while starting to plateau after 0.5 M. Such differences between THz and CD results 

might be triggered by distinct physical quantities sensed, as CD measures changes in 

heat capacity, while THz radiation probes collective long-range dipole reorientation 

dynamics. 

 

3.4 Summary 

This study provides additional evidence that sub-THz spectroscopy is sensitive to 

molecular conformation changes, illustrated by the unfolding of BSA protein in 

GdmCl solution. The results also show that sub-THz spectroscopy can be 

meaningfully applied to identify the buffer concentration that ensures the most stable 

protein conformation. This is crucial for the study of protein stability, enabling a 

prolonged storage of protein solutions; and provides insights into protein-salt 

interaction. 
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 TDS-Terahertz Investigation of Myoglobin in 

Native and Molten Globule-like States 

 

4.1 Introduction 

During the last 20 years, increasing attention has been focussed on the dynamic aspects 

of protein structure and function. The dynamic properties of proteins are clearly 

essential for protein folding. Commonly, proteins fold from irregular unfolded 

conformations to biologically active folded structures in a hierarchical manner. 

Secondary structure is stabilised by hydrogen bonds between the amide and carbonyl 

groups of amino acid residues that are close in sequence  [111], [112]. Then the tertiary 

structure is stabilised by both hydrogen bonds and hydrophobic interactions among 

main-chain and side-chains of more distant segments of the chain [113], [114]. For 

water-soluble proteins, hydrophobic interactions among non-polar side chains favour 

the collapse of hydrogen-bonded secondary structure elements into a compact 

conformation. Frequently, the mechanism of folding is a single two-step process with 

the stable native and the unfolded states; however, along the folding pathway of some 

proteins, the intermediate states in the protein-folding process will also be formed.  

These states have been the focus of close experimental scrutiny because their structure 

and behaviour may reveal many intimate details of the protein-folding process.  

 

The protein used in this work, Apomyoglobin (ApoMb), is produced from myoglobin 

by removal of the heme group. Myoglobin (Mb) is a water-soluble globular protein of 

approximately 17 kDa molecular mass and 153 residues and consists of eight distinct 

helices named from A-H, without other secondary structure or disulphide bonds.  After 
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the removal of the heme group, ApoMb still retains similar properties to myoglobin, 

such as the solubility in water, helical content and some of its structural characteristic.  

However, ApoMb possesses more flexibility and is less compact than myoglobin 

[115].  

 

Figure 4.1 Schematic illustration of Apomyoglobin (ApoMb) folding [6]. 

 

 

The folding process of ApoMb undergoes a minimal 3-state-model which includes the 

molten globule intermediate state.  Folding has been extensively studied in both kinetic 

and equilibrium experiments [116–121] and has used in computational modelling 

since the 1990s [122], [123].  There is evidence that during low pH-induced unfolding, 

ApoMb forms an equilibrium acidic intermediate (also called the I intermediate) at pH 

4.2 with properties of both the folded state (pH 7) and the unfolded state (pH 2) [124–

126].  This intermediate was first characterised by Uzawa et al. [124] using continuous 

flow, time-resolved circular dichroism, and SAXS (Small-Angle X-ray Scattering).  

The results suggested that the intermediate state has a radius of gyration (Rg) close to 

23 Å and its helical content is around 33 %. These authors proposed that the helices 

present in the I-state are helices A, G and H, whereas the remainder of the molecule is 

disordered, as shown in Figure 4.1.  
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Recent advances in Terahertz (THz) technology have made the application of THz 

waves ranging from 0.1-10 THz (3.3-333 cm-1) attractive in the fields of chemical and 

biomolecular studies.  THz waves are particularly sensitive to water absorption which 

makes it possible to investigate water/biomolecules dynamics [51]; additionally, the 

sensitive amplitude and nonlinear vibrations of proteins detected in the THz frequency 

range are considered to be associated with protein function and protein-folding [54].  

In particular, THz time-domain spectroscopy (TDS) is capable of obtaining the 

refractive index in addition to the absorption coefficient.  

 

In this chapter, I determine the THz refractive index and absorption using THz-TDS 

spectroscopy of ApoMyoglobin in different states, benchmarked against traditional 

Ultraviolet–visible (UV)-circular dichroism measurements of the helical content of the 

protein. 

 

4.2 Materials and methods 

4.2.1 Materials  

1 kilogram of 2-butanone and 1 gram of salt-free Mb from equine skeletal muscle was 

purchased from Sigma-Aldrich. The Mb was first purified by gel chromatography 

(HiLoad 26/60 Superdex75, GE Healthcare) using FPLC (Fast Protein Liquid 

Chromatography) with 10mM potassium phosphate buffer at pH 6.5 as eluent.  The 

purity was checked by SDS-PAGE. Fraction samples containing the protein of interest 

were dialysed extensively against de-ionised water at 4 °C, and concentrated to 20 

mg/ml. ApoMb was obtained from the above purified Mb by a heme group removal 

step using 2-butanone extraction method [127]. The resulting apoprotein was 

extensively dialysed against distilled water at 4 °C and concentrated to 20mg/ml, 
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which is the same concentration as the purified Mb protein sample. Both concentration 

of Mb and ApoMb were determined using the Beer-Lambert Law (as stated in Chapter 

2.2) by measuring the absorption of the protein solution at a wavelength of 280nm. 

The Hitachi U-3010 UV-Visible spectrophotometer was applied at 20 °C using a molar 

extinction coefficient, at E409 of 160,000 M-1cm-1.  ApoMb was monitored by 

absorbance at 280 nm, using molar extinction coefficient E280 at 13,700 M-1cm-1. 

Because the interaction of the heme in myoglobin will result in the Soret band, a strong 

absorbance peak will form in the visible spectrum at 409 nm. Hence, the measurement 

of absorbance at 409 nm occurs owing to the exposure of heme to the aqueous polar 

solvent. In our experiment, there was no absorbance in the 409 nm soret region 

showing the contamination of heme in the ApoMb solution, indicating the heme group 

in Mb protein was successfully extracted.  

 

The different concentration solutions (ranging from 1.25 mg/ml to 15 mg/ml) were 

prepared from the 20 mg/ml Mb and ApoMb protein stocks by diluting with distilled 

water.  Different pH condition solutions were obtained by adding a small amount of 

0.1M hydrochloric acid (pH 5 to pH 2) or 0.1M sodium hydroxide (for pH 7); pH 6 

was in its native protein solution. Reference buffers for each pH condition were 

prepared with the same amount of hydrogen chloride/ sodium hydroxide in distilled 

water. 

 

4.2.2 Far-UV circular dichroism (CD) 

The CD measurements were made with a Chirascan CD spectrophotometer (Applied 

Photophysics) with a 1 mm path length cuvette; absorbance scans were carried out 

from 190 to 250 nm at 0.5 nm intervals at a set temperature of 25 °C.  Concentrations 
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were 100 μg/ml for all CD protein samples, and three trials were taken for each sample 

scan and then averaged. An absorbance scan of distilled water was also taken and used 

as a baseline to deduct the absorbance scan of samples.  Data acquired from CD were 

analysed using de-convolution software, which interprets CD spectra and employs a 

complex algorithm to provide predictions of proportions of each secondary structure 

characteristic present. 

 

4.2.3 Terahertz Time Domain Spectroscopy (THz- TDS) 

The THz-TDS system used had its THz pulses generated and detected using 100 fs 

light pulses from a mode-locked Ti: sapphire laser at a wavelength of 800 nm and a 

repetition rate of 80 MHz [2]. The measurement was made at a controlled temperature 

25±0.1 °C with a nitrogen purge that reduced the relative humidity (≤0.3 %) caused 

by water vapour.  A Bruker liquid cell (A145) was utilised as the sample holder for the 

protein solutions.  The cell consisted of two poly-4-methyl pentene-1 (TPX) plates and 

a 100 μm polytetrafluoroethylene (PTFE) spacer.  50 μl of solutions were injected into 

the cell with a pipette before each measurement, and a wash and the pump empty 

procedure (as mentioned in Chapter 2) was applied to each measurement to ensure the 

thickness of the samples was constant during the experiments. 

 

4.3 Estimation of apomyoglobin secondary structure from CD 

spectra 

Figure 4.2 shows the CD spectra of acid-induced (pH 2 to 7) ApoMb recorded at 

wavelength 190-260 nm; 222 nm was used to monitor the unfolding process. In Figure 

4.2A, spectra at pH 6 and 7 exhibit a typical spectrum for alpha-helical proteins, which 

is characterised by two negative peaks at around 222 and 208 nm respectively, with a 
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positive peak around 190 nm. The pH 5 spectra shows smaller negative bands of 

similar magnitude at 222 and 208 nm, and a lower positive band at 192 nm, which still 

suggests the presence of a considerable amount of alpha-helical residual secondary 

structure, but with a decrease in alpha-helical content.  pH 2 and 3 spectra have a 

negative band of great magnitude at around 200 nm and exhibit no characteristic peak 

at around 220 nm, as expected for a largely unfolded conformation. The CD signal at 

222 nm, which is proportional to the alpha-helical protein content, was plotted in 

Figure 4.2B. It is retrieved from Figure 4.2A as a function of pH decrease to indicate 

the absorption changes due to unfolding.  Overall the plot demonstrates an increase of CD 

signal with decreasing pH, firstly the CD signal was slightly increased from pH 7 to 6; the 

molecular transition reflecting a disorganization of secondary structure occurred when pH is 

below 6 and was followed by a clear increase trend of CD signal from pH 5 to 3, indicating 

gradually unfolding of apoMb under these pH conditions. Then a complete loss of secondary 

structure happened under pH 2, showing that apoMb adopted a complete unfolded state. 

 

Figure 4.2 The unfolding transition of 0.1mg/ml ApoMb under acidic denaturation. 

(A) CD spectra of ApoMb as a function of acidic conditions (pH 2 to pH 7) in 190 nm 

to 260 nm wavelength range; (B) Acid-induced unfolding transitions curves 

(monitored at 222 nm), to indicate the absorption changes due to pH decrease.  
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Additionally, CD spectra were deconvoluted using software CDNN [84] to estimate 

their alpha-helical contents under different conditions.  Table 4-1 presents the 

calculated ApoMb secondary structure composition at different pH values, which 

agrees with the spectra observed, and correlates with the known unfolding trend of 

ApoMb alpha-helical structure, although the percentage of helical content differs 

slightly from previous measurements of sperm whale apoMb secondary structure 

composition [83].  The percentage of α-helical contents was calculated using data in 

the ranges of 190-260 nm, 195-260 nm and 200-260 nm separately.  

 

 

Table 4-1 The pH dependence of α-helical content of ApoMyoglobin using the de-

convolution software CDNN [22]. 

 

The CD spectra in Figure 4.3, made using the same conditions of the native states of 

Mb and ApoMb, show spectral differences in the wavelength range 200 nm to 220 nm.  

The spectra of ApoMb decreases less than Mb at negative band 208nm, which suggests 

ApoMb contains less alpha-helical content than Mb. Although the ApoMb has 

approximately the same conformation as Mb, removal of the heme group could cause 

a change in the F-helix, which is stabilised by contacts with the heme [2]. 
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Figure 4.3 CD absorption spectra of Mb and ApoMb at pH 7 under the same condition 

(0.1mg/ml in 20mM potassium phosphate buffer at 25°C). The change was observed 

between 200 nm and 220 nm range, and the maximum shift is at 208 nm. 

 

4.4 THz spectra of pH-dependent ApoMb 

THz absorption and refractive index spectra for ApoMb were measured at six pH 

values and two concentrations (Figure 4.4).  Absorption spectra are shown in panels A 

and C, and the refractive index is shown in panels B and D, for 10 mg/ml and 20 mg/ml 

ApoMb.  Corresponding baselines were measured using buffer only. 

 

According to figure 4.4, the spectra show approximately linear increase in absorption 

in 0-1.2 THz and 1.5-2.2 THz range with increasing THz frequency, the refractive 

index spectra is generally a decrease trend in the frequency range from 0.2 to 2.2 THz. 

Both spectra trend of the THz absorption and refractive index show quite similar 
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comparing the figures of two concentrations (A and C, B and D), which suggests it is 

not sensitive enough to be able to detect the concentration-dependent difference in this 

THz spectra result. The result may because that the strength of the signals in VNA is 

relatively weak and water interactions in the hydration layer surface could limit the 

detection of variation in different concentration conditions. The background noise is 

averagely less than 1 % in these measurements.  

 

The blue line in figure 4.4 represents spectra of buffer and the red line for protein. 

Comparing the protein sample with buffer reveals no distinctive feature or trend that 

can be assigned to the presence of protein, except in pH 6 the refractive index spectra 

of buffer is slight higher than that of the protein. However, it is not convenced the THz 

spectra are sensitive to detect refractive index variation in this pH conditions.  
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Figure 4.4 THz transmission spectra of 6 acidic ApoMb solutions (pH 2 to pH 7) 

compared with its relative buffers in frequency range 0.2-2.2 THz. The blue line is for 

buffer and the red line for protein. (A) and (B) show THz absorption coefficient and 

refractive index for 10 mg/ml protein concentration conditions respectively; (C) and 

(D) for 20 mg/ml.  

 

The THz fractive index spectra of both proteins and buffers from Figure 4.4B and 4.4D 

have been reploted in figure 4.5 as a function of pH. Figure 4.5A presents the refractive 

index spectra of ApoMb protein with 10mg/ml concentration sample measured in a 

range of pH from 2 to 7, while figure 4.5B shows the spectra with 20mg/ml protein 

sample. The spectra of corresponding controls which are buffers balanced at the same 
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pH as the samples are presented in Figure 4.5C and 4.5D. 

 

The similarity of the spectral changes for Figure 4.5B and the control Figure 4.5D 

suggests that the change in refractive index is due to the quantity of acid added to the 

solution rather than to some protein-solvent interaction underlining the significance of 

water in determining the THz signal. 

 

Figure 4.5 THz refractive index spectra of pH-dependent ApoMb protein as a function 

of pH measured in the 0.2-2.2 THz frequency range, with two concentrations 10 mg/ml 

(A) and 20 mg/ml (B).  Panels C and D are the corresponding controls.  
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When the two protein measurements (20 mg/ml and 10 mg/ml) are compared (Figure 

4.6), no significant difference in absorption can be discerned, but there is a difference 

in the refractive index of the two samples at lower pH values.  The difference can be 

clearly seen at pH 2 and decreases as pH increases to pH 7 where the difference is no 

longer visible (Figure 4.6D).  A similar effect can be seen using buffer only.  It should 

be remembered that the buffer was prepared by adding the quantity of HCl necessary 

to pH the protein/buffer solution.  The major effect again appears to be due to the 

quantity of HCl added, and the effect in turn has on the amplitude and phase of the 

THz signal.  At pH 6, there could be a protein-solvent effect as the corresponding 

panels in Figure 4.6D and 4.6B are not identical. 
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Figure 4.6 THz transmission spectra of two ApoMb concentration, 20 mg/ml (red line) 

and 10 mg/ml (blue line), under different pH conditions from pH 2 to pH 7 in 0.2-2.2 

THz frequency range. (A) and (B) shows THz absorption coefficient and refractive 

index for buffer; (C) and (D) for ApoMb. 
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4.5 THz spectra of concentration dependent Mb and ApoMb 

Measurement of the refractive index of Mb and ApoMb at different concentrations and 

pH 6 suggests a difference in the amplitude and phase response of these two proteins.   

 

 

Figure 4.7 THz refractive index spectra of solvated protein Mb (A) and ApoMb (B) 

under concentration variations from 1.25 mg/ml to 20 mg/ml. The spectrum of water 

is presented as a black line. All measurements were at pH 6.  

 

There is no clear evidence that the refractive index varies as a function of protein 

concentration. However, when the spectra of proteins are compared to water, as 

presented in Figure 4.7, it can be clearly seen that ApoMb is consistent with the water 

spectra while the refractive index of Mb is lower than that measured for water in all 

concentrations.  As the difference between Mb and ApoMb is the removal of the heme 

group in ApoMb, this could be attributed to the presence of the heme.  As the THz 

signal is dominated by the behaviour of water molecules, it is likely that this is not a 
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direct consequence of the presence or absence of heme, but rather an effect of the 

removal of the heme on the flexibility and dynamics of the protein.  The presence or 

absence of the heme can apparently be detected at protein concentrations of 1.25 

mg/ml.  

 

 

4.6 Summary 

I was expecting to able to probe the molten globule state and unfolded states of 

apomyoglobin using THz time-domain spectroscopy. These states were successfully 

detected using UV-circular dichroism spectroscopy as described above. 

 

THz absorption and refractive index spectra were measured successfully for a range 

of solutions for ApoMb (different pH values and different concentrations), but it was 

not possible to detect a difference in the response of the solutions with protein from 

those without protein.  The importance of the quantity of added HCl on the THz 

response of the water was the dominant feature revealed in these initial studies.  There 

is an indication of protein involvement in the response (pH 6.0), but the evidence is 

not overwhelming. 

 

In the last experiment, which involved comparison of the refractive index of Mb and 

ApoMb, a difference was detected.  The refractive index of Mb was different from that 

of water and that of ApoMb, which was essentially the same as water. This 

measurement offers some hope for the future that differences can be measured using 

these techniques – differences that may provide information on the dynamics of Mb 

compared to ApoMb. 
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 In vitro production of bacterial micro-

compartment nanotubes 

 

5.1 Introduction 

Compartmentalisation derives its significance from the fact that it enables biochemical 

pathways to be segregated; also, in synthetic biology, compartmentalisation may serve 

as an important tool that could be used to generate defined microenvironments for the 

production of particular products [128]. Bacterial microcompartments (BMCs) are 

produced when bacteria are grown on a particular substrate; they exist in a large 

number of bacteria [129–131].  These polyhedral cellular assemblies were first found 

in cyanobacteria and chemotrophic bacteria by Transmission Electron Microscopy 

(TEM) [132]. To date, four types of bacterial microcompartments have been 

extensively characterised and well-established functionality studied, including 

carboxysome, ethanol utilisation (Etu), ethanolamine utilisation (Eut), and 1,2-

propanediol utilisation (Pdu) bacterial microcompartments [128]. A common feature 

of the BMCs is the proteinaceous shell which encapsulates functionally related 

enzymes, substrates, toxic and labile intermediates [133–137]. 

 

These shell-proteins can be easily recognized by their conserved protein fold known 

as the bacterial microcompartment (BMC) domain [138], which constitutes the major 

part of the shell protein subunit. A subunit may involve one or two domains; the 

majority of shell-proteins consist of a single BMC domain (Pfam 00936) in each 

subunit and self-assemble into a hexamer, while some shell proteins have a tandem 
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repeat of the Pfam 00936 and lead to the formation of pseudo-hexameric trimers [23], 

[139], [140].  

 

The propanediol utilisation (Pdu) microcompartment shell is built from thousands of 

hexagonally shaped protein oligomers made from seven different types of protein 

subunits: PduA, PduB, PduJ, PduK, PduN, PduT, and PduU [128], [141], [142]. In 

previous studies, it was found that not all of these seven pdu genes encoding shell-

proteins are necessary for the formation of heterologous microcompartments in 

Escherichia coli [143], among these, PduA, PduB, PduJ, PduK and PduN are the 

minimum shell components to form a non-aberrant empty Pdu microcompartment 

[143]. Among these major shell components, PduA is reported to play a crucial role in 

coordinating with other shell-proteins as indicated by the protein-protein binding 

studies, allowing the newly synthesised shell-protein to interact with other 

subsequently translated shell components [143]. Moreover, by deleting PduA from a 

construct harbouring the minimum number of genes for the formation of empty BMCs, 

elongated filamentous structures will form, and the construct no longer resembles 

bacterial microcompartments [143]. This suggests that PduA could potentially act as a 

scaffold for the assembly of the microcompartment [128]. Interestingly, PduA is found 

to be able to form filamentous structures when overproduced in vivo under observation 

by transmission electron microscopy (Figure 5.1).  A soluble and more stable construct 

from PduA, the PduA*,  obtained with a mutated C-terminal residue and extra C-

terminal 23 residues [23], shows a greater density of production of tube-like structures 

within the E. coli cell and brings us a clearer and greater visual impact in micrographs 

[144]. 
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The crystal structure of PduA from Salmonella enterica, (PDB: 3NGK) [145], revealed 

that the PduA subunits pack closely together to form a biologically authentic hexamer. 

Of the ~20,400 Å2 total surface area of the isolated PduA subunit, ~9600 Å2 is buried 

in the hexamer. The native PduA hexamers in the crystal have 6-fold rotational 

symmetry (Figure 5.2) and tile within the crystal lattice (space group P622) with 

adjacent hexamers separated by 67.2 Å (the a axis of the cell). This interaction is 

repeated to form a sheet of molecules [128]. 

 

Figure 5.1 Transmission electron microscopy of native PduA (panels, a and b) and 

hexamer-hexamer interaction mutants (c and d) produced in E. coli cells. Images on 

the left show transverse sections, and images on the right show longitudinal sections 

through the cell (adapted from [24]). The scale bar for panels a and c is 100 nm; panel 

b and d 500 nm. 
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Figure 5.2 Crystal structure of native PduA (Protein Data Bank accession code 

3NGK). Figure is adapted from [24]. Six PduA subunits form a hexamer with a six-

fold rotational symmetry, and adjacent hexamers tile a surface. A surface 

representation of two such PduA hexamers, one with cyan carbon atoms and one with 

green, one hexamer-hexamer interface is represented [24]. 

 

In this Chapter, it is shown that PduA* hexamers can self-assemble in vitro into protein 

nanotubes.  The PduA* nanotubes produced were investigated using the VNA and 

quasi-optical bench THz system, to explore the potential of using THz probe radiation 

to study nanostructures. 

 

5.2 Protein production 

5.2.1 Generation of PduA* protein and PduA K26D mutants 

The cloning of PduA* into pET3a (PduA* is a more soluble form of Citrobacter 

freundii PduA with 23 additional C-terminal residues; sequences are shown in 

Appendix 1.  The correct sequence of the constructs was verified by DNA sequencing 
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(Eurofins). PduA* K26D was sub-cloned into pET14b to facilitate PduA* K26D 

overproduction as a fusion protein with an N-terminal His6 tag in E. coli.  The cloning 

and expression procedures was contributed from the work of Dr. Allan Pang. The 

construct was supplied from the QMUL lab before being transformed into BL21 cells 

for protein expression. 

 

E. coli BL21(DE3) pLysS cells containing chloramphenicol were transformed with 

PduA* and the PduA K26D mutant constructs, the starter cultures were prepared by 

inoculating bacterial glycerol stock (mix equal amounts of bacterial culture and 

80% glycerol) to 10 ml Luria Bertani (LB) media containing ampicillin with final 

concentration at 100 μg/ml. Cells were allowed to grow at 37 ̊C overnight. 1L LB 

media supplemented with ampicillin was inoculated with the starter culture and shaken 

at 37 ̊C until an OD600 of 0.6-0.8 is reached. IPTG (isopropyl β-D-thiogalactoside) 

with final concentration at 400 μM was added to induce protein production. The 

bacterial culture was left shaking overnight at 16 ̊C. 

 

The bacterial cultures were harvested via centrifugation (Avanti J-30I, Beckman 

Coulter) with rotor speed of 8,000 rpm (G force at 15,900 x g) for 20 minutes. 

Collected cell pellets were re-suspended in lysis buffer (50 mM Tris-HCl, 50 mM NaCl 

at pH 8.5, 10 mM imidazole) then lysed using a sonicator at 20 watts for 20 seconds 

with a resting time of 1 minute between repetitions of this procedure. This procedure 

was performed for 6-8 times. It is important that cell lysis procedure is kept on ice to 

prevent overheating as a result of sonication of bacterial cells. Following lysis, the cell 

debris was sedimented by centrifugation (Avanti J-30I, Beckman Coulter) at 18,000 
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rpm rotor speed (G force at 47,900 x g) for 30 minutes. The supernatant containing the 

protein of interest was collected for purification.  

 

A histidine tag attached to the proteins was used for purification by immobilised metal 

affinity chromatography (IMAC). An PD-10 column was filled with 5ml Chelating 

Sepharose Fast Flow resins. IMAC method is designed for purifying native and 

recombinant protein and peptide that have an affinity to metal ions, therefore will 

selectively retain proteins with exposed histidine. The resins were washed with 

deionised water to remove ethanol, then subsequently charged with 100 mM nickel 

sulfate. Charged resins were acclimatised to the binding buffer before use. After 

loading the supernatant onto the column containing charged resins, an increasing 

concentration of imidazole (50 mM, 100 mM, 200 mM, 400 mM) was applied to 

remove non-specific binding. The samples were collected in 400 mM imidazole 

elution buffer. The proteins were more than 90 % pure, as determined by 

polyacrylamide gel electrophoresis (Figure 5.3). Proteins eluted out from the 

immobilised metal affinity chromatography consist of a high NaCl and imidazole 

concentration; thus, buffer exchange is carried out via a desalting column (HiPrep 

26/10) to remove high imidazole and salt. PduA* and PduA K26D was further 

purified, and equilibrated with 50 mM Tris-HCl, pH 8.5, 50 mM NaCl. 
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Figure 5.3 SDS-PAGE (15% gel) results from protein purification obtained with 

400mM imidazole elution by IMAC. The flow-through contains proteins without 

binding, leading to enrichment of PduA* protein in the 400 imidazole gel lane. The 

thick band of PduA* was found at around the size of 12 kDa that corresponds to the 

subunit size of PduA*(11.9 kDa).  
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5.2.2 Generation of PduA* nanostructures in vitro 

With the help of TEM micrographs, initially, very few tubes-like structures were 

captured forming on the TEM grids.  The PduA* protein was purified via nickel 

affinity purification, and accommodates in 50 mM Tris, 500 mM NaCl, 400 mM 

imidazole buffer solution. A clear appearance of tubes started to be observed after 

buffer exchanged to low salt condition then concentrating to a higher concentration. 

Here glow-discharged carbon-coated 300-mesh copper grids were prepared using the 

droplet method, where 10 μl aliquots of PduA solution samples were adsorbed for 1 

minute followed by 10 μl of 1 % (w/v) of phosphotungstic acid (PTA) adjusted to the 

same pH with the proteins, to negatively stain the sample. PTA stain was observed 

within the lumen of the nanotubes, suggesting that these structures were nanotubes. 

The outer diameter of the extracted tubes was 25.95 ± 50 nm (n = 50), and an inner 

diameter of around 25 nm which has an approximate value (n = 50). These values 

suggest the nanotube walls are possibly composed of a single layer of hexamers. Tube 

lengths varied, ranging from a few hundred nanometers to tens of microns. Extracted 

tubes were observed either as bundles (Figure 5.4A), individually (Figure 5.4B), or in 

layers and disassembled forms (Figure 5.4C). As a comparison, the mutant protein 

PduA-K26D was captured not forming tube-like structures, which is in agreement with 

previous TEM observation within E. coli cell. 
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Figure 5.4 Negatively stained TEM micrographs PduA nanotubes. (A) shows 

nanotubes formed in a bundle; (B) depicts individual nanotubes, which were observed 

less frequently than nanotube layers and bundles; and (C) shows nanotubes in layers 

in varied forms, over a wide scale.  

 

5.2.3 Concentration effect on nanotube formation 

It was realized that the protein concentration itself and the salt condition might present 

two distinct key factors influencing nanotube formation.  The impact of concentration 

was firstly evaluated by a simple concentration and dilution method.  Negative stains 

of preparations of PduA* samples in concentrations ranging from 0.1 to 7.2 mg/ml 

revealed a progressive accumulation of assembled nanotubes as PduA* concentration 

increased, as shown in Figure 5.5 A-D.  
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Figure 5.5 Progression of PduA* nanotube formation as visualized by representative 

TEM micrographs. The four images A-D shows protein solutions prepared on grids in 

concentrations of 1 mg/ml, 3 mg/ml, 5 mg/ml and 7.2 mg/ml, respectively. The 

progression shows PduA* nanotubes assembled with an increase of concentration.   E 

presents the existence of nanotubes under diluted solution (0.1mg/ml) from D 

(7.2mg/ml). 

 

Additionally, a 0.1 mg/ml nanotube sample in Tris-HCl buffer (50 mM Tris, 50 mM 

NaCl, pH 8.5) was concentrated to 7.2 mg/ml with the same buffer, resulting in 

nanotube formation. By diluting the sample back to 0.1 mg/ml, the resulted nanotube 

was still visible (Figure 5.5E), suggesting that the nanotubes produced are soluble and 

stable once the tube has formed.  

 

 



Chapter 5 In vitro production of bacterial micro-compartment nanotubes 

91 
 

5.2.4 The effect of ionic strength on nanotube formation 

Purified nanotube integrity was also examined as a function of ionic strength by 

changing the NaCl salt concentrations and imidazole conditions, for which the 

nanotubes displayed various degrees of order, (see Figure 5.6).  All these samples were 

collected from the same PduA sample solution with nanotubes already formed (0.1 

mg/ml concentration, 50 mM Tris-HCl buffer, pH 8.5), and were only treated 

differently with varying concentrations of salt and imidazole. In summary, stable 

nanotubes assembled stable in low salt in either low or high imidazole condition, rather 

than high salt conditions. This suggests the increase in ionic strength of NaCl salt may 

cause disassembly of PduA* tubes. Collectively, this accords with recently reported 

observations made for isolated BMC shells in response to buffer conditions [146], 

[147]. 
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Figure 5.6 TEM micrographs of PduA nanotubes under different NaCl salt and 

imidazole conditions, showing the effects of ion strength on PduA* assembly into 

nanotubes. (A) Nanotubes in 50 mM Tris-HCl, 50 mM NaCl, 50 mM imidazole, pH 8.5 

(low salt, low imidazole), nanotubes exhibited bundling, and individual tubes were 

stable, mainly long length; (B) Nanotubes in 50 mM Tris-HCl, 50 mM NaCl, 400 mM 

imidazole, pH 8.5 (low salt, high imidazole), nanotubes are characterised as short and 

chopped;  (C) Nanotubes in 50 mM Tris-HCl, 500 mM NaCl, 400 mM imidazole (high 

salt and high imidazole condition), the nanotubes are mostly formed in longer twisted 

bundles; (D) Nanotubes in 50 mM Tris-HCl, 500 mM NaCl, 50 mM imidazole (high 

salt and low imidazole), nanotubes were almost entirely disassembled and barely to 

be found.  
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5.2.5 Determining the position of hexa-histidine tag in the nanotubes 

When the hexamers tile the surface, for instance, the surface of a cylinder to form a 

nanotube, there is likely to be a single or preferred orientation of the hexamer. The 

consistency of the diameter of the tube suggests the orientation is consistent, but which 

side faces out?  The His-tag is on one side of the hexamer, so if it can be convincingly 

located to the inside or outside, this will determine the orientation of the hexamer.  

Chelating Sepharose Fast Flow resins, charged with nickel sulphate, were used to bind 

to the hexahistidine tag. 

 

100 μl Chelating Sepharose Fast Flow resins were firstly charged with 1 ml nickel 

sulphate, washed with deionized water and acclimatized to the binding buffer. 0.5 ml 

of 0.1 mg/ml PduA* solution containing nanotubes was loaded and incubated for 15 

mins at 4 °C. The beads were further washed twice with washing buffer (50Mm Tris-

HCl, pH 8.5) which containing 10 mM imidazole (both washing buffers were kept for 

examination), and finally eluted with 100 μl elution buffer (50mM Tris, 500mM NaCl, 

pH 8.5) containing 400 mM imidazole.  As a comparison, the eluted sample was tested 

with both high salt (500 mM NaCl) and low salt (50 mM NaCl) in the sample buffer 

(50 mM Tris-HCl, pH 8.5).  

 

With the assumption that, if the hexamer-histidine in PduA* nanotubes are externally 

presented, we would expect that the imidazole side chain of the hexahistidine tag in 

the PduA* protein to bind with the nickel-charged resins and the nanotubes will be 

eluted only in the final highest concentration imidazole. In contrast, if the histidine-
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tags in PduA* nanotubes are internal, nanotubes will be washed away easily and left 

in the washing elution buffers.  

 

BioRad assay [148] was used to examine whether the PduA* exists in the buffers. It is 

a protein determination method that involves the binding of protein-dye for quickly 

checking the global protein concentrations). The dye will perform as protonated red 

cationic form under acidic conditions (red colour), and convert to a stable anionic form 

(blue colour) when binding with proteins [33], [149].  The blue protein-dye form can 

be detected at 595 nm in the assay using a spectrophotometer or microplate reader. In 

our experiment, the red colour, which is the cationic form was shown in the 50 mM 

and 100 mM imidazole solutions, suggested there were no proteins binding to the two 

washes. In 400 mM imidazole elution buffer, the blue protein-dye form was observed, 

suggesting that proteins were washed off and existed at the 400 mM imidazole elution 

buffer, as shown in Figure 5.7. A further check applied the eluted samples with 400 

mM imidazole in low/high salt conditions as TEM grids, and tubes was found in 400 

mM imidazole buffer conditions, while short and chopped tubes are formed in low salt 

condition, low and coiled tubes in higher salt condition. Both results provide evidence 

that the hexahistidine tag is external, in agreement with the proposed model of the 

nanotube making use of the wedge-shape of PduA hexamers. 
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Figure 5.7 Apply BioRad protein assay to determine the existence of PduA* nanotubes. 

From left to right: the first wash buffer with 50 mM imidazole (wash 1), the second 

wash buffer with 100 mM imidazole (wash 2), the final elute buffer containing 400 mM 

imidazole (elute 3). The red colour was shown in the first two washes, and blue colour 

in the elute wash indicating the existence of protein. 

 

 

5.3 Sub-THz frequency Measurement on PduA* nanotubes 

A transceiver pair of W-band (220-325 GHz) corrugated horns was used for 

measurements of the complex transmission coefficients S21 of the samples located 

within a quasi-optical (QO) circuit driven by a vector network analyser (VNA). The 

setup and configuration of this system are described in detail in chapter 2. The S21 

transmission amplitude was used as a measure of absorbance of the samples.  

 

Theoretical Debye Model and ABCD matrix for 3-layer sample measurement 

Water molecules have dipole moments, and the electromagnetic response of a dipole 

is best described with a Debye relaxation model [18]. Liquid water is a weak hydrogen-
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bonded network of molecules, which is easily energised by electromagnetic fields. 

Previous experiments on water established two Debye relaxation modes in the THz 

frequency domain [14], [19]. As the vibrational excitations of water exist in the THz 

frequency domain, we would, therefore, expect that the parameters of the double 

Debye model will change as the dynamics are altered by the surrounding hydration of 

protein molecules in solution.  

 

The structure of a 3-layer system (TPX plate-sample-TPX plate) can be represented in 

a corresponding 3-term product ABCD matrix. The transmittance matrix of the 

assembly is given by: 

𝐴(𝜀, 𝑑) = [
𝐴 𝐵
𝐶 𝐷

] = [
𝐴𝑇𝑃𝑋 𝐵𝑇𝑃𝑋

𝐶𝑇𝑃𝑋 𝐷𝑇𝑃𝑋
] [

𝐴𝑆 𝐵𝑆

𝐶𝑆 𝐷𝑆
] [

𝐴𝑇𝑃𝑋 𝐵𝑇𝑃𝑋

𝐶𝑇𝑃𝑋 𝐷𝑇𝑃𝑋
] (5.1) 

𝑑 is the material thicknesses; 𝜀, is the materials’ dielectric properties; the subscript  

‘TPX’ stands for the front and back TPX plates of the sample cell and ‘s’ for the 

sample.  

 

By applying wave propagation equations of A, B, C, and D for each layer according 

to the three layers method from [19], the parameters of transmittance (S21) can be 

obtained: 

                                                                                                (5.2) 

     

Based on the Debye model, the theoretical permittivity characterising the dielectric 

response of a sample is obtained from the transmission coefficient. Both the real and 

imaginary parts of the permittivity are plotted in Figure 5.8. 
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It is observed that the dielectric permittivity decreases from 220-325 GHz. This trend 

is similar to that of water (dashed lines) for both real and imaginary parts. Further, the 

trend agrees with the previously published dielectric constants for pure water for the 

frequency band 0.1-1 THz, as shown in Figure 5.9 [150]. It is therefore assumed that 

the dielectric response shown is due to relaxation mechanisms, i.e. dipole polarization 

of the protein-bounded water rather than bulk water. As both the real and imaginary 

parts of the permittivity are experiencing an increasing change with increasing 

concentrations of PduA* nanotubes, it is assumed that by adding more PduA* 

nanotubes to the water, the intra-PduA* motions are detectable by significant 

differences in permittivity, especially in the in-phase real part of the permittivity. 

 

Figure 5.10 presents the measured amplitude and phase, coupled with the theoretical 

transmittance data. The amplitude spectra, which related to the absorption of the 

sample, is noted to decrease with increasing changes in concentration. This is due to 

the overall sample solution volume being occupied by the solvation shell surrounding 

the nanotube formed PduA* proteins, bulk water and non-bulk-like buffer. Adding 

more proteins therefore results in replacing strongly absorbing solvation shell water 

by more weakly absorbing protein. 
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Figure 5.8 Permittivity plots of PduA* nanotubes at four concentrations (1 mg/ml, 3 

mg/ml, 5 mg/ml, 7.2 mg/ml) with respect to their reference buffer and water. 

(A)Magnitude; (B) Real part permittivity; (C) Imaginary part permittivity. By adding 

more PduA* nanotubes to the water, the intra-PduA* motions are detectable by 

significant differences in permittivity, especially in the in-phase real part of the 

permittivity. 
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Figure 5.9 Re-plot of the temperature-dependant dielectric constants of pure water at 

frequency range 0.1-1 THz. The source is adopted from [150]. A is for the real part of 

the permittivity; B is for the imaginary part. The blue trace is at 0°C, red at 10 °C, 

cyan at 20 °C, and green is at 30 °C. 
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Figure 5.10 Transmittance spectra of four concentrations of PduA nanotubes and the 

reference buffer at 220-325 GHz. (A) Amplitudes; (B) phases; (C) Unwrapped phase, 

with zoom in spectra in frequency range 250-250.5 GHz and 300-300.5 GHz displayed 

in two inset figures. 



Chapter 5 In vitro production of bacterial micro-compartment nanotubes 

101 
 

 

5.4 Summary 

In this chapter, in vitro production of nanotubes assembled from purified PduA* 

hexamer has been described.  This is the first time PduA* nanotubes have been 

assembled in vitro. Previous reports are of in vivo assembly and purification from 

bacterial cells.  Formation of these nanotubes requires the removal of salt and the 

concentration of the protein.  The in vitro assembly reveals that this is a self-assembly 

process, independent of any cellular processes or molecules. 

 

The current model of these nanotubes is one where the hexamers tile the surface of a 

cylinder.  The question is, which side is of the hexamer external and which internal?  

Initial studies suggested the His-tag is external, consistent with the original model of 

the nanotubes proposed in Figure 5.11 by Pang et al. [24].   

 

After successfully producing the above nanotubes, sub-THz measurements were 

carried out to check if coherent THz radiation can probe differences between different 

concentrations of PduA* nanostructures. The PduA* samples with different 

concentrations have been measured in the sub-terahertz spectral domain of 220-325 

GHz. The measurements determined that their permittivity can sensitively detect the 

concentration changes. Furthermore, transmittance amplitude data, indicates that it is 

possible to use the dielectric response as a measure to characterize intra-molecule 

motion of the nanotube. 
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Figure 5.11 A model of the native PduA derived nanotubes seen for native (and V51A 

mutant) PduA. [adapted from [24]]. (A) A hexagonal sheet can be rolled into a tube in 

one of two ways, either ‘A’ can be connected to ’A’, or ‘B’ to ‘B’.  (B) In this model of 

diameter 20 nm, the sheet is rolled so that A and A are brought together and there are 

12 hexamers per ring of the protein nanotube.  The histidine tag in each hexamer is 

external. 
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 Quasi-optical Terahertz Circular Dichroism 

spectroscopy: system and methods 

 

6.1 Introduction 

According to Zhang et al., [151], frameworks without a mirror symmetry plane, having 

a ubiquitous property and covering a range including crystals, polymers and molecules, 

are referred to as chirality. Life’s building blocks, for example DNA, and almost all 

biomolecules are chiral, and for this reason, this is of major significance in the fields 

of medical and biological science. Woody [152] describes circular dichroism as the 

result of chiral molecules and polarised light interacting with each other. It is stated 

that almost every biological molecule is chiral [153]. As many as 19 out of the 20 

familiar amino acids which generate proteins, are, for example, chiral themselves; and 

so are a large number of other biologically significant molecules, and also the higher 

protein structures, DNA and RNA [154]. The chemistry of biological molecules, which 

is immensely chiral, is particularly suitable for examination using circular dichroism, 

and the principal application of this method is research into biological molecules. 

Contained in the understanding of the greater order structures of chiral 

macromolecules, for example DNA and proteins, is a substantial subset regarding the 

utilisation of circular dichroism within biochemistry [153]. This is because the CD 

spectrum of a DNA molecule or of a protein does not represent the total of each 

separate base or residue in the CD spectra, but it is, however, considerably affected by 

the macromolecule structure itself, which is three-dimensional. The particular circular 

dichroism signature, which is possessed by every structure, is able to be utilised as a 
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means of discovering structural elements, and also as a method of following the 

transitions within the chiral macromolecular structure [153]. 

 

The ellipticity shown by the optically active peptide bonds within proteins is subject 

to change on the basis of the molecule’s local conformation. It is possible to examine 

the secondary constructions of proteins by utilising far-UV (190-250 nm) area of light. 

Random coil conformations together with ordered α-helices, β-sheets, β-turn, possess 

distinguishing spectra. The foundation for the analysis of the secondary structure of 

proteins is formed by these unique spectra concerning CD, the fact that it is possible 

to establish only the relative fractions of residues within each conformation, and is not 

possible to establish the precise location of each structural feature within the molecule 

is a matter that ought to be noted. It is essential to change the information to a 

standardised value which is not dependent on molecular length, when CD information 

for sizeable biomolecules is delineated. This is accomplished by dividing the molar 

ellipticity by the number of monomer units or the number of residues within the 

molecule [152].  

 

The CD can also be used to address conformational transitions within molecules. It is 

possible to utilise CD to establish the level of similarity between a mutant protein and 

a wild-type protein or to demonstrate the range of denaturation with a changed 

chemical environment or a temperature change. Additionally, data concerning changes 

in structure on ligand binding can be supplied by CD. It is essential to establish the 

native conformation spectrum if any of this data is to be understood [152], [155]. 
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It is possible to utilise near-UV spectroscopy in order to ascertain certain data 

concerning the proteins’ tertiary structure. The cause of absorptions which are in the 

range of 200 nm to 300 nm is the orientation of the dipole and also the bordering 

environment of the tryptophan, aromatic amino acids, tyrosine, phenylalanine, and 

also the residues of cystine which has the ability to generate disulphide bonds. Also, 

structural data concerning prosthetic groups within proteins can be supplied by the 

utilisation of near-UV methods [153]. 

 

Using visible CD spectroscopy, proteins which contain metal can be studied. The d-d 

changes to metals within chiral environments is excited by visible CD light. CD light 

cannot be absorbed by free ions in a solution. Therefore it is possible to establish the 

pH dependence on the stoichiometry and also on the metal binding [156].  

 

IR light is utilised by vibrational CD (VCD) as a means of establishing 3D frameworks 

of carbohydrates, nucleic acids, and short peptides. Use has been made of VCD to 

indicate the number and shape of in A-, B-, and Z-DNA.  VCD, which promises to be 

an extremely strong tool, remains a comparatively modern method. It is necessary to 

use substantial ab initio computations and also large concentrations in order to solve 

the spectra. These need to be conducted within water, but the molecule is likely to be 

forced into a conformation which is not native [157].  

There is a good understanding of circular dichroism which is well established within 

the frequency scope of violet, visible, near- and mid-infrared and is an indispensable 

part of present-day biophysics involving many exceptionally good turnkey tools which 

are obtainable on the commercial market. Nevertheless, there have been few 

documented measurements of terahertz circular dichroism. 
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In additionally, the results of theoretical research show consistency with the major 

significance of the collective dynamics of the inter-domain within the biopolymer 

framework and function. The research additionally implies that many collective modes 

of THz are present [46], [58], [158–160]. As charged macromolecules, the absorption 

of proteins should be coupled with circular dichroism feature since the collective 

vibrational modes of a folded, chiral biomolecule would fundamentally behave 

differential absorption between left and right handed circularly polarized radiation in 

THz region. It would be expected that an estimation of the THz CD’s size and the 

connection between the structure and the signatures could be attained by the 

biomaterials’ mechanical properties and the distribution of charge. 

 

The combination of a VNA and QO bench was an approach to studying the aqueous 

proteins with linearly polarised absorbance, which has been introduced in the previous 

chapters. In this chapter, we used it for the circularly polarized measurements because 

the special capability of the VNA to make precise and stable phase measurements 

allows us to transform directly measured complex co-polar and cross-polar 

transmittances respectively, into complex circular-polarization transmittances. 

Therefore, a sub-Terahertz circular dichroism spectrometer is developed and built 

based our VNA+QO system at 220-325 GHz sub-THz range (VNA-CD), to explore 

the potential significant absorption feature between VNA-CD and our aqueous protein 

samples.  
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6.2 Materials and methods 

6.2.1 Materials 

For examining the relationship between the biopolymers’ (protein) structural change 

and THz-CD absorbance, four proteins are selected as a simple physical representation 

that captures the essential features of biological macromolecules: BSA, myoglobin, 

Apomyogobin (ApoMb) and Cytochrome C (CyC). They were initially prepared in 20 

mM phosphate buffer solution. Myoglobin and ApoMb are globins and similar in 

helical structure. Cytochrome C is a four-helix bundle topology. These proteins are all 

rich in alpha helical structure so their similarity or difference in THz-CD spectral 

change could relate to the detection of a secondary structure alpha helix.  

 

All chemicals, BSA, myoglobin and Cytochrome C are purchased from Sigma Aldrich 

in the form of lyophilized powder and were purified with gel chromatography (HiLoad 

26/60 Superdex75, GE Healthcare) using FPLC (Fast Protein Liquid Chromatography); 

ApoMb was obtained from myoglobin with the removal of the heme group using the 

2-butanone extraction method, as mentioned in chapter 2 and chapter 4.  The same 

Bruker liquid cell with two TPX plates and a 100 μm (PTFE) spacer was used as the 

liquid sample holder. 

 

6.2.2 Spectrometer configuration for sub-Terahertz VNA-CD 

The VNA [161] in use has a 10 MHz to 43.5 GHz operating frequency domain; special 

millimetre-wave frequency extension heads cover the waveguide bands of 220-325 

GHz. Rectangular waveguide outputs of the extension-heads are terminated with high-

gain corrugated horns. As shown in Figure 6.1, with an ellipsoidal mirror (F1) to direct 

the radiation from the transmitting horn, the ellipsoidal reflector (F2) receives the 
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signal beam diverging from the VNA head-unit (H1) and transforms it into a linearly 

polarised quasi-collimated beam which passes through the kinematically-located 

sample (S). The transmit beam is propagated to a similar ellipsoidal reflector (F2) and 

a further ellipsoidal mirror (F1), efficiently couples the beam into the receiving horn 

of the VNA head-unit (H2).  

 
Figure 6.1 A schematic diagram of the quasi-optical transmissometer driven by a 

Vector network analyser. H1 and H2 denote the corrugated horns connecting with 

waveguide bands; F1 and F2 are a confocal pair of mirrors used to couple the THz 

radiation on the sample (F1 focal length is 250 mm; F2 focal length is 83 mm); S is 

the sample under test.  

 

In the earlier work [95], the circularly polarised method was developed using the VNA 

driving a QO circuit to measure a set of hexaferrite ceramics plates in order to 

characterise the magneto-optical performance. The methodology and system design 

are proven and stable. This analyser is adapted; to customise the spectrometer to realise 

THz CD by modulating the incident circular polarizations between left (ALCP) and 

M2 
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right (ARCP), and measuring the differential absorption of these two circular senses 

of polarization in the conventional sense: 

                          ΔA =  ALCP ‐  ARCP     (6.1) 

ARCP and ALCP will be denoted as t±(ω,d) (‘+’ = ALCP and ‘-‘, ARCP), relating the 

transmittance (t) to probe frequency ω and the sample thickness d. The complex 

circular-polarization transmittances, t+(ω,d) and t-(ω,d) therefore can be calculated and 

transformed by directly measuring the co-polar and cross-polar linear transmittances, 

using [95]: 

𝑡±(𝜔, 𝑑) =  𝑡𝑐𝑜(𝜔, 𝑑) ∓ 𝑖×𝑡𝑐𝑟(𝜔, 𝑑)                                    (6.2) 

 

6.2.2.1 Method-1 VNA-CD configuration 

Initially, the VNA-CD configuration was set up for measuring co-polar and cross-polar 

linear transmittances, as shown in Figure 6.2. The configuration is similar to the case 

of linear transmittance shown in Figure 6.1, only that the planar horizontal and 

vertically-aligned wire-grid polarizers (G1 and G2) (arrays of freestanding fine wires 

to reflect polarisation parallel to the wires and transmit polarisation perpendicular to 

the wires), are included in the quasi-optical circuit so that circularly polarised light can 

be generated based on the component linear-polarisation transmittances. The measured 

co- and cross-polar linear transmittances are superposed to form circularly polarised 

transmittances. 
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Figure 6.2 Schematic diagram of the Quasi-Optical VNA transmissometer for the 

method-1 configuration. H denotes a corrugated feed-horn; F, an ellipsoidal reflector; 

S a sample under test; C a quasi-optical directional coupler and G is a wire-grid 

polarizer. 

 

The VNA head units (H1 and H2) and wire-grids (G1 and G2) are required to be 

adjusted accordingly in the measurement procedure in order to get co-polar and cross-

polar transmittances separately. The measurement steps are described in Appendix 2 

in details. 

 

For material measurements in the millimetre-wave and sub-millimetre wave bands, 

amplitude and phase variations are very sensitive to mechanical disturbances such as 

cable movement or lateral displacements (equating to phase-shifts). Based on the 

previous configuration, the wire-grid at the output arm has to be changed by 90˚ and 

the receiver horn has to be rotated similarly to make the cross-polar measurements 

simultaneously. Additionally, as the cross-polar transmittance is comparably weak, 

and may be heavily affected by the system, the resultant calculation will be dominated 

by the co-polar transmittance component. 
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Therefore, we have improved the stability of the system by bringing in the advanced 

configuration of method-2.  

 

Method-2 VNA-CD configuration 

The optimised quasi-optical (QO) measurement configuration is shown in Figure 6.4. 

Compared to method-1, the method-2 enhances the following:  

 

- A ferrite planar element is incorporated ahead of the sample cell, and an air gap is 

left between the ferrite piece and the three-layer sample. The application of a 

magnetically hard, thin, planar ferrite has been reported in the literature to enhance CD 

by preferentially emphasising the weaker cross-polar component [162]. The inherent 

optical properties of gyrotropic ferrite materials mean that they support circularly 

polarized propagating waves rather than linearly polarized waves.  Therefore, as 

presented in Figure 6.3B, the circularly polarised signal was generated prior to passing 

through the sample. 

 

- By introducing an independent 45° wire grid (shown in Figure 6.5) into the new 

measurement configuration removes the need to rotate the receive horn for cross-polar 

transmittance measurements, enabling removal of a systematic error traced to cable 

movement arising during the measurement circuit re-configuration between co- and 

cross-polar measurements.  
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Figure 6.3 Schematic diagram of the sample used in method-1 (A) and method-2 (B). 

(A) The three-layer sample in method-1 is formed by the sample being sandwiched 

between two TPX plates. (B) The sandwiched-sample in method-2 is preceded by a 

ferrite plate. A linearly polarised wave propagating through the ferrite suffers rotation. 

In post-processing in constructing circular polarising transmittance, the effect of the 

presence of the ferrite is to enhance the cross-polar signal beam amplitude. The air-

gap is used to give enough space for this transform happen before it passes into the 

three-layer sample.  

 

 

 

Figure 6.4 Schematic diagram of the QO transmissometer in method-2. H again 

denotes a corrugated feed-horn; F, an ellipsoidal reflector; S the liquid sample with 

leading ferrite plate sticking G, a vertical wire-grid polarizer and; G_45°, a 45° wire 

grid.  
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Figure 6.5 The 45° wire grid used in the VNA-CD measurement. (A) Photograph of 

the 45° wire grid; (B) the working principle of a 45° wire grid; the decomposed 

component parallel with 45° wire grid is reflected, and the component perpendicular 

is transmitted. 

 

Instead of the directly measured co- and cross-polar transmittance obtained in method-

1, we recorded three measurements for each sample in method-2; 𝑇𝐶𝑂 , 𝑇1,45° and 𝑇2,45°, 

which refer to the co-polar transmittance, the 45° ‘+’ transmittance and the 45° ‘-’ 

transmittance, respectively. The measurement procedures are explained in detailed 

steps in Appedix 2.  

 

With the known co-polar transmittance (𝑇𝐶𝑂), the cross-polar transmittance (𝑇𝐶𝑅) can 

be obtained using the measured 𝑇1,45°  and 𝑇2,45°  data. 𝜃1  is the changed polarized 

angle when the wave propagates through the ferrite. As 𝜃1  is unknown, however, 

θ2 can be determined by the measurements  𝑇1,45°  and 𝑇2,45°.  The relationship 

between θ1 and θ2 is 𝜃1 = π/4 ± 𝜃2, as shown in Figure 6.6.  
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Figure 6.6 Picture showing the principle for calculating cross-polar transmittance by 

using the measured co-polar transmittance T_CO and two 45° direction 

transmittances T_(1,45°), T_(2,45°). 

 

The complex circular-polarization transmittances, t+(ω,d) and t-(ω,d), which are 

marked as 𝑇𝑃  and 𝑇𝑛  in the following expression, was then calculated following 

equation 6.2 as a measure of the spectra from VNA. 

 

Using the above two configurations for a VNA-CD spectrometer, their performance 

was firstly verified by calculating the difference between two repeated cross-polar 

transmittance spectra of the same distilled water solution at 220-325 GHz, employing 

measured data in method-1 and calculated data in method-2 (Figure 6.7). The two 

repeated measurements used in the plot are individually recorded with an interval of 

30 minutes for both method-1 and 2. The liquid sample cell was repositioned, and the 

system was normalized with the background before each measurement to include any 

system and sample-handling error. It is clear to see that the differential cross-polar 

transmission in method-2 is much lower than that of method-1, indicating the 

uncertainty level of method-2 is significantly improved comparing with method-1. The 

transformed co- and cross-polar in method-2 is plotted in Figure 6.8. The trend is in 
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good agreement with the previous results from Yang et al., measuring the transmission 

of hexaferrite materials only at 75-110 GHz [162]. 

 

Additionally, by checking the repeatability of the measurements using method-2, the 

VNA system error alone is of the order of 10-3. A data set is the average of 30 repeated 

measurements for the same sample with continuous tracking over a 30-minute period. 

Recognising that the VNA is a high-spectral-resolution system with high signal-to-

noise performance, and the fact that the total recording time for the data used in 

producing the measurements was within a few minutes, we would expect method-2 to 

be sensitive to changes in a protein sample.  

 

 

Figure 6.7 The difference between two repeated cross-polar transmittances of water 

for both method-1 and method-2, as a measure of the uncertainty. The modulus of the 

amplitude was plotted, red dots for method-1 and blue dots for method-2.  



Chapter 6 Quasi-optical Terahertz Circular Dichroism spectroscopy: system and methods 

116 
 

 

Figure 6.8 Measured complex circular-polarization transmittances of the system 

background (empty cell with ferrite) from 220 to 325 GHz. (A) The amplitude and (B) 

the phase. The dash line 𝑇+  refers to the left-handed circular polarization 

transmittance and solid line 𝑇−  for the right-handed (or clockwise sence when looking 

in the direction of the wave-vector). 

 

6.3 The VNA-CD measurements 

Using method-2, the transmission of left/right circularly polarization (𝑇+, 𝑇−) and their 

difference ( ∆T ) were measured with three proteins (myoglobin, apomyoglobin, 
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Cycrome c) under various conditions. They were prepared in the same buffer, with 

identical concentrations at 2 mg/ml and 20 mg/ml. The individual proteins were firstly 

compared in two concentrations, taking BSA as an example in Figure 6.8. The three 

proteins at the same concentration and buffer conditions are compared in Figure 6.9. 

For detecting denaturation change in protein by VNA-CD, apomygolobin was treated 

with acidic environment and GdmCl solution, prepared at pH 2, pH 4 and pH 6, and 

in GdmCl concentrations at 2, 4 and 6 M, shown in Figures 6.10 and 6.11 respectively.  

By comparing 𝑇+, 𝑇−and ∆T, the protein spectra differences (∆T) on VNA-CD were 

hard to distinguish for both changes in protein concentrations and denatured 

conformation (Figure 6.8-6.11C), and the small variations in either 𝑇+ 𝑜𝑟  𝑇− could not 

be clearly attributed to variation in protein conformation, as shown in Figure 6.8-6.11 

panels A and B. The reason appears mainly to be because chiral activity in the THz 

frequency domain is significantly weak compare with the strong conformational 

rigidity of proteins in the infrared. A channel spectrum is supposed existing in both 

left/right circularly polarization (𝑇+, 𝑇− ) spectra, due to the fact that the complex 

circular polarization transmittance is integrated by co-polar and cross-polar linear 

transmittance and would potentially contain informative spectra and coupled with 

circular dichroism features in the mixed electric field vectors. However, although the 

VNA-CD experimental methodology has been carefully designed to suppress 

systematic error and the CD signal de-biased against the co-polar component by the 

introduction of the ferrite, the THz spectral response at W-band could still be largely 
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affected by the strong water absorption loss. 

 

Figure 6.9 The circularly polarized transmittances of BSA protein comparing two 

concentrations: 2 and 10 mg/ml. (A) Left handed circular polarization; (B) Right 

handed circular polarization; (C) The differential between left and right, after 

subtracting the relevant buffer. 
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Figure 6.10 The circularly polarized transmittances are comparing BSA, ApoMb and 

Cytochrome c  proteins at the same concentration (2 mg/ml) and buffer conditions (20 

mM phosphate pH 6.5). (A) Left handed circular polarization; (B) Right handed 

circular polarization; (C) the differential between left and right, after subtracting the 

relevant buffer. 
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Figure 6.11 The circular polarized transmittances comparing ApoMb at 20 mg/ml 

under different pH conditions (pH 2, pH 4, pH 7). (A) Left handed circular polarization; 

(B) Right handed circular polarization; (C) the differential between left and right, after 

subtracting the relevant buffer. 
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Figure 6.12 The circularly polarized transmittances are comparing ApoMb at 20 

mg/ml by treated with different GdmCl conditions (2 M, 4 M and 6 M). (A) Left handed 

circular polarization; (B) Right handed circular polarization; (C) the differential 

between left and right, after subtracting the relevant buffer. 
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6.4 Summary 

Terahertz circular dichroism provides a potential means for detecting group vibrational 

action of biomolecules that are theorised to be responsible for protein function. The 

analysis suggest that water interactions in the hydration layer surface may be 

mutinginter-molecular action, since the strength of the signals is relatively weak and 

VNA-CD was limited to just one particular waveguide band. Further work will probe 

for VNA-CD activity from 0.325-1.1 THz via VNA+QOs.  

 

Table 6.3 provides a list of errors in repeatability for CD VNA studies under 10 

specified frequencies from the 220 to 325 GHz range. Each error in repeatability was 

averaged from 5 repeated measurements. By comparing the theoretical limits and 

practical data, it suggests that at the current level of uncertainty in experimental results, 

there is no discernible dependence in differential transmission on long-range 

energetics in protein conformational variation. This may indicate that the current 

instrument is either not sensitive enough or that activity lies in other THz sub-bands.  
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Frequency 

(GHz) 

Error from VNA 

System 

Error from sample 

 Tco (10-3) Tcr (10-3) Tco (10-3)
 Tcr (10-3) 

230 4.31 1.89 1.51 3.95 

250 4.41 0.81 2.75 0.64 

270 1.11 2.48 4.27 2.76 

390 

310 

2.50 

4.66 

5.77 

9.33 

7.44 

5.73 

1.56 

10.93 

Table 6-1 A list of errors in repeatability for CD VNA studies under 5 specified 

frequencies (230, 250, 270, 290 and 310 GHz) from the 220 to 325 GHz range. The 

uncertainty for CD VNA system are mainly from systematic error (which is due to 

environment change in background, cable movement and re-position of the sample) 

and signal loss from hydrated sample.  Errors were averaged from five repeated CD 

VNA measurement for both co-polar (Tco) and cross-polar (Tcr) transmittances. The 

theoretical value of error should not excess 1×10-3. 

 

However, the instrument affords coherent sensing of complex amplitude with high 

spectral resolution and repeatability. Incorporation of a ferrite element has served to 

enhance the sensitivity of the methodology further. In the light of these preliminary 

VNA-CD results, the newly trialled VNA-CD instrument is reasonably anticipated to 

yield unambiguous analysis with a stronger source and better control of bulk water 

effects. 
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Applications (IMWS-Bio), 2014 IEEE MTT-S International Microwave Workshop 

Series on, 2014, pp. 1–3. 
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Appendix 1 

 

The PduA and PduA* DNA sequence (Panel A) and protein sequences (Panel B) from 

Citrobacter freundii using ClustalW2 [163]: 
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Appendix 2 

 

The measurement procedures for the VNA-CD method-1:  

(1) For co-polar transmittances, the VNA head-units H1 and H2 are both set to 

transmit/receive vertical polarization, and the wire-grids G1 are set to vertical. 

The component of an incident beam having vertical polarization is passed, and 

any orthogonally polarised component is reflected and dumped (onto Radar 

Absorbing Material, constituting a ‘power-dump’).  

(2) For measurement of cross-polar transmittances, the setting of wire-grid G2 is 

changed to reflect horizontal polarization and the VNA head-unit H2 is rotated 

90° to receive horizontal polarization.  

 

The measurement procedures for the VNA-CD method-2:  

(1) Set up the co-polar measurement configuration as shown in Figure 6.5 without 

positioning the sample S and without the 45°wire grid in the position G. The 

spectrum thus acquired serves as the background or reference measurement. 

Locate and align the sample with ferrite in position S and make the co-polar 

measurement 𝑇𝐶𝑂.  

(2) Put the G1 wire grid in position G and re-set for a new background. Keep the 

45°wire grid G1 in position G, with the sample with ferrite into position S and 

record the measured transmittance 𝑇1,45°.  

Put the G2 wire grid in position G (rotate the 45°wire grid 180° at the same position) 

and re-set the new background. Keep the 45°wire grid G2 in position G, with the 

sample with ferrite into position S and record the measured transmittance 𝑇2,45°.   
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