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Abstract

The ubiquitous nature of CCTV Surveillance cameras means substantial amounts of

data being generated. In case of an investigation, this data must be manually browsed

and analysed in search of relevant information for the case. As an example, it took

more than 450 detectives to examine the hundreds of thousands of hours of videos in

the investigation of the 2011 London Riots: one of the largest the London’s MET police

has ever seen. Anything that can help the security forces save resources in investigations

such as this, is valuable. Consequently, automatic analysis of surveillance scenes is a

growing research area.

One of the research fronts tackling this issue, is the semantic understanding of the scene.

In this, the output of computer vision algorithms is fed into Semantic Frameworks, which

combine all the information from different sources and try to reach a better knowledge of

the scene. However, representing and reasoning with imprecise and uncertain information

remains an outstanding issue in current implementations.

The Demspter-Shaffer (DS) Theory of Evidence has been proposed as a way to deal with

imprecise and uncertain information. In this thesis we use it for the main contributions.

In our first contribution, we propose the use of the DS theory and its Transferable Belief

Model (TBM) realisation as a way to combine Bayesian priors, using the subjectivist

view of the Bayes’ Theorem, where the probabilities are beliefs. We first compute the

a priori probabilities of all the pair of events in the model. Then a global potential is

created for each event using the TBM. This global potential will encode all the prior

knowledge for that particular concept. This has the benefit that when this potential is

included in a knowledge base because it has been learned, all the knowledge it entails

comes with it.
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We also propose a semantic web reasoner based on the TBM. This reasoner consists of an

ontology to model any domain knowledge using the TBM constructs of Potentials, Focal

Elements, and Configurations. The reasoner also consists of the implementations of the

TBM operations in a semantic web framework. The goal is that after the model has been

created, the TBM operations can be applied and the knowledge combined and queried.

These operations are computationally complex, so we also propose parallel heuristics to

the TBM operations. This allows us to apply this paradigm on problems of thousands

of records.

The final contribution, is the use of the TBM semantic framework with the method to

combine the prior knowledge to detect riots on CCTV footage from the 2011 London

riots. We use around a million and a half manually annotated frames with 6 different

concepts related to the riot detection task, train the system, and infer the presence of riots

in the test dataset. Tests show that the system yields a high recall, but a low precision,

meaning that there are a lot of false positives. We also show that the framework scales

well as more compute power becomes available.
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Chapter 1

Introduction

High crime rates lead to large volumes of police cases, each with its own set of evidence

and facts. Currently, this evidence must be browsed manually by agents or security

forces to find even minor connections that lead to possible solutions to the cases. This

leads to a potential risk of information overload on the operators, because of the large

amount of information available and because existing systems focus on presenting the

available information on graphical user interfaces (GUIs), but not actually helping the

user discover knowledge within the existing information. Smart Surveillance Systems

are a real alternative to assist the jobs of security forces. Systems that not only present

existing information but actually help the operator discover knowledge.

As an example, on August of 2011, England was swept by a wave of riots for four

days in some of its cities (including a few locations in London) causing an estimated

£200 million in damages [4]. In London alone, where at the time there was an estimated

8,000 CCTV cameras in and around the city [5], it took more than 450 detectives to

examine the evidence, including hundreds of thousands of hours of footage [6] [7] in the

resulting investigation. This concluded in about 5,000 perpetrators arrested, some 4,000

of those thanks to CCTV footage [8].

One of the main areas of research in the surveillance domain is the semantic under-
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standing of CCTV footage. Widespread use of multimedia capture devices such as

smart-phones also poses the challenge of indexing and understanding the content gen-

erated by these devices for potential use in police investigations. Recently, research

on standard-based semantically enriched knowledge models for surveillance and forensic

use is intensifying. They are seen as an alternative to ad-hoc systems that offer little

interoperability and do not adhere to any standard.

The Semantic Web, as defined by the W3C, “provides a common framework that

allows data to be shared and reused across application, enterprise, and community

boundaries” [9]. Using semantic web technologies for Smart Surveillance Systems offers

several advantages:

• The World Wide Web is large. It is comprised of millions upon millions of doc-

uments, hosted in an equally large network of computers. This means that any

development towards the semantic web must ensure operability in such a large

scale.

• Semantic Web still has an active research community tackling different issues,

including modelling, indexing, querying, and reasoning; key aspects for the surveil-

lance task.

• Standard compliance allows the easy exchange of information between different

data sources, expanding the available knowledge for the reasoning and knowledge

discovery task.

When dealing with information from the real world, one has to take into account the

‘ignorance’ inherent in the data-sources. But ignorance can take many forms. Already

in the literature there have been efforts to categorise all forms of ignorance [10]. For this

work we are going to use the taxonomy proposed by [11]. In summary, they define three

types of ignorance:

• Incompleteness: In this type of ignorance, not all the information is known, but
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you are certain that the information you possess is correct. The semantic web is

particularly strong in modelling this kind of ignorance. For example we might know

that person A has a parent B, and B has a brother C. Through rules and other

reasoning methods we can infer that A has an uncle C, even though that specific

piece of knowledge was not encoded in the knowledge base. This particular form

of ignorance can also be handled with non-monotonic logic (like default reasoning

[12], abductive reasoning [13] and backtracking).

• Imprecision: It is when data is available with an imprecise measurement, but you

know such imprecise value to be right. For example you might know that person A

likes rock music, but you are not certain of how much that person likes it (it could

be a casual interest or they could be fanatics). This is particularly interesting in

the field of Artificial Intelligence as classifiers and other types of algorithms return

a degree of confidence when applied to real world data. It is dealt with by using

fuzzy sets.

• Uncertainty: There are cases where the data might be wrong. Such is the case

of for example faulty sensors. A more relevant example for the forensic domain is

when a witness gives a bad testimony. Probability theory (see Figure 1.1) allows

you to represent this in the form of the probability that the information you have

is wrong.

Different forms of ignorance might manifest themselves in different domains. For

example, an unreliable witness might tell you that the perpetrator of a crime was a

young person. Evidence Theory and Possibility Theory have been proposed to reason

with imprecision and uncertainty [1].

As stated previously, the Semantic Web is well suited to handle incomplete data.

But the technical challenges of representing and reasoning with imprecise and uncertain

information still remain an outstanding issue.

Bayesian Theory is a common method for dealing with probability problems, but
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Fig. 1.1: Varieties of ignorance [1]

it has limitations when not all the a priori probabilities are known [1]. On the other

hand, one of the proposed approaches for reasoning with imprecise and uncertain data

is the Dempster-Shaffer Theory of evidence (D-S Theory). It was developed as a general

framework for dealing with mathematical belief and it does not require the computation

of a priori probabilities. It allows to combine evidence from multiple sources to arrive

to a degree of belief of the world being reasoned on. Particularly, the Transferable Belief

Model (TBM) is a realisation of the D-S Theory. It takes the concepts proposed by the

D-S Theory and gives them a more practical approach [11].

1.1 Requirements

There is a need for semantic systems that support security forces in their investigations,

particularly in the detection of riots. We aim to develop one such a system in this thesis.

This system should fulfil the following requirements:

• R1: This system should deal with imprecise and uncertain information, as it is a

key characteristic when dealing with real world information.

• R2: If this system is to be applied to surveillance and multimedia applications, it

should be scalable and able to deal with large quantities of data. In our case it
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means thousands of records

• R3: It should be interoperable and standards based, to be able to extract infor-

mation from different sources, which would make the knowledge discovery task

easier.

• R4: Finally, it should be effective in detecting riots from CCTV footage.

1.2 Research Objectives

• O1: To review the existing approaches on surveillance applications, and in par-

ticular how and if they handle imprecise and uncertain information and if they

use Semantic Web technologies to achieve their tasks. This is a general objective,

not directly tied with any of the requirements, but it will allow us to have a solid

background on which to frame the research presented here.

• O2: To design and implement a Semantic Web framework to deal with imprecise

and uncertain information to be used in the detection of riots in CCTV surveillance

footage. Dealing with imprecise and uncertain information will allow us to fulfil

R1, and the use of the Semantic Web Framework will allow us to fulfil R3.

• O3: To create a ground truth data set of CCTV recordings of riots to act as

evaluation data for the proposed task and to benefit the larger community. This

will allow us to ensure that R3 and R4 are met, as they depend on having data

to test the framework.

• O4: To evaluate the scalability of the proposed framework by testing it with

different sizes of inputs and configurations of systems. This will ensure that the

proposed framework can be applied with real multimedia data with large inputs.

This is directly related to R2, as this will allow us to ensure that the framework

does indeed scales well with large input sizes.
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• O5: To validate the framework using this ground truth of real riots recordings.

This will serve as the usefulness evaluation of the proposed framework and is tied

with R4 as we will be able to tell how effective is our framework on detecting riots.

With these objectives in mind, several questions can be asked regarding the research

presented here:

• RQ1: Have there been previous attempts at applying probabilistic reasoning to

the semantic web and if so, which approaches do they use?

• RQ2: Can traditional Bayesian a priori probabilities be combined using the Trans-

ferable Belief Model?

• RQ3: Can the Transferable Belief Model be ported to the semantic web?

• RQ4: Can the Transferable Belief Model be applied to large inputs and can it be

scaled in memory and execution time?

• RQ5: Can this new approach be applied to the task of riots detection? How

effective is it?

1.3 Contributions of the Thesis

The main contributions of this work are:

• Regarding RQ2, we devise method for successfully combining traditional Bayesian

probabilistic theory with the TBM. This allows us to combine a priori probabilities

in a given domain using the TBM to reach a common knowledge of the presence

of a given event based on its previous occurrence with other events.

• The design and development of a Semantic Web reasoner based on the Transferable

Belief Model (TBM). This reasoner consists of an ontology and methods to perform

the TBM operations on domain ontologies. This provides an answer to RQ3, as
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we successfully port the Transferable Belief Model to the semantic web.

• The design and development of a Semantic Web reasoner based on the Transferable

Belief Model (TBM). This reasoner consists of an ontology and methods to perform

the TBM operations on domain ontologies. This provides an answer to RQ3, as

we successfully port the Transferable Belief Model to the semantic web.

• We answer RQ5 with an evaluation of the proposed framework using the detection

of riots on CCTV footage to study its viability, and we conclude that the system

effectively detects riots but there is still room for improvement.

• For RQ4, we implement parallel heuristics for the Transferable Belief Model and

thus conclude that it can be scaled to work with large datasets.

• The creation of a freely available data set consisting of ground truth data for the

presence of riot and other related concepts on more than 1,500,000 frames from

CCTV recordings from the London riots of 2011.

1.4 Structure of the Thesis

The work presented in the thesis is organised as follows:

Chapter 2 presents relevant concepts for this work. It starts with a brief introduction

to the Semantic Web and previous efforts at applying it to surveillance applications. A

primer on The D-S theory and its TBM realisation is then presented, focusing on the

motivations for its creation, and the different concepts and operations that comprise it.

Finally, previous implementations of the TBM are presented.

Chapter 3 brings the first contribution of this work, in which we combine traditional

Bayesian probabilities with the TBM. The motivation being that although a priori prob-
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abilities are not needed for the TBM, if they are available, it would be desirable to be

able to use them together with the TBM. We present examples and a use case for riot

detection.

Chapter 4 presents the second contribution: a Semantic Web reasoner which uses the

TBM to reason using incomplete and/or imprecise data. First, the TBM ontology is

presented. Then, the implementation of the reasoner’s operation is discussed as well as

parallel heuristics for the implementations of the algorithms.

Chapter 5 evaluates and validates the contributions presented in this work in the

context of detecting riots on CCTV recordings. The framework is evaluated in its per-

formance and scalability, as well as in its ability to detect riots. Finally, the dataset

used, which was created for this task and is also the final contribution of this work, is

discussed.

Chapter 6 presents the conclusions, final remarks, and future work. This includes

possible optimisations and improvements using big data processing technologies.

The remaining sections provides details of publications, and references. Supplemen-

tary material is provided in the appendices, including an example Java application using

the TBM Framework and some detailed description of the data used for the ground truth

annotations for the experiments.
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Chapter 2

Background

2.1 Semantic Web

Initially, the World Wide Web was created by Tim Bernes-Lee as a way to organise

information for its easy retrieval by people interested in getting to it. It comprises

documents and resources interlinked via hypertext links. It has largely succeeded as

evidenced by the billions of users that access tens of billions of documents everyday.

Looking to expand on this, Tim Bernes-Lee proposed in [14] a web of data that can

be processed by machines. He called this extension The Semantic Web. This would

allow for websites to exchange information between them so the web would become a

big indexed and queryable database.

The Semantic Web is comprised of a series of standards which allow the representa-

tion and exchange of data between different websites. The main concept behind it the

representation of the knowledge as graphs, where the nodes are represented by collections

of triples. A triple is a statement in the form Subject-Predicate-Object which allows to

represent concepts and the relationship between them. The subject and the object would

be two nodes in the graph and the predicate the edge that connects them. For example,

in the statement “London is a city”, the subject is “London”, the predicate is “is a”,
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and the object is “city”. This simple statement would generate the graph presented in

Figure 2.1. We could have another tuple linking “London” with some other knowledge.

For example “Sadiq Khan is the mayor of London”, and thus we create a larger web

of information. Using triples, knowledge can be encoded in the knowledge framework.

Other important concepts and standards are:

Fig. 2.1: Example of a simple graph

• RDF/RDFs RDF (Resource Description Framework) is the foundation of the

Semantic Web. It is the most basic framework which links all the other languages

and specifications [15]. It is an abstract syntax that represents the most basic

relationships between concepts, effectively being the syntax on which all triples

are constructed. The elements on the subject-predicate-object triples may be IRIs,

blank nodes, or datatyped literals. IRIs are the standard form to identify a concept

or entity. Everything except literals (constant values) are represented by IRIs. In

the previous example of London, the statement would then be something like:

<http://example.org/London>

(subject)

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

(predicate)

<http://schema.org/City>.

(object)

Blank nodes (or B-nodes for short) are nodes that are not literals, but do not need

to be identified by an IRI.

RDFs (Resource Description Framework schema) builds on RDF and adds more

expressibility. Where RDF simply relates concepts between each other, RDFs adds
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additional constructs to express hierarchy between them, the most common one

being rdfs:Resource, which models a resource class. Reasoning is the act of

discovering new knowledge in the knowledge base. Since RDFs already provides a

simple hierarchy between concepts, it already provides some simple forms of reason-

ing. For example, type inheritance can be inferred through the rdfs:subClassOf

predicate: if in the knowledge base we have that Bob rdf:type Human and Human

rdfs:subClassOf Mammal then we can infer that Bob rdf:type Mammal.

• Ontology is, in Information Technology, the set of knowledge (in the form of

types, hierarchies, properties, entities, relationships) about a particular domain.

An ontology can be split in two parts. The first is the TBox (from Terminological

Box) which is the set of statements that encode the taxonomy of the ontology.

That is, the classes, properties that define the domain itself. The second is the

ABox (from Assertion Box) and it is the set of statements that define a particular

instance of the ontology. For example, in a biology ontology, the statement “Cats

are Animals” belongs to the TBox, whereas the statement “Garfield is a Cat”

belongs to the ABox, as it contains assertions about particular instances of the

concepts.

• OWL (Web Ontology Language) is a language to construct ontologies on the

semantic web. It also builds on RDF but adds additional constructs to describe

properties and classes, like cardinality, transitivity, and more. OWL 2 is the current

version, which is an extension to the original 2004 version of OWL published by

the W3C. OWL, being the most expressive of the languages, allows to perform

more complex reasoning tasks. For example, the owl:inverseOf rule indicates

that two properties are inverse of each other, so if we have in the knowledge base

that isParentOf owl:inverseOf hasParent, and we have that Bob isParentOf

Alice then we can infer that Alice hasParent Bob.

OWL 2 has different profiles with different levels of expressivity, which make the

reasoning more efficient in exchange of some loss of expressive power [16]. Depend-
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ing on the application, users can select the profile better suited to their require-

ments. The three profiles are: a) OWL 2 EL is well suited for applications

employing ontologies that define very large numbers of classes and/or properties.

It is based on the EL+ + description logic (full existential qualification). On this

profile ontology consistency, class expression subsumption, and instance checking

can be decided in polynomial time. b) OWL 2 QL is better suited for applications

which have large quantities of instance data and for which query answering is the

most important form of reasoning. It is based on the DL-Lite family of descrip-

tion logics. An interesting feature of this profile is that assertions can be stored

in standard relational database systems which can be queried with standard SQL

queries without changes in the data. c) OWL 2 RL is aimed at applications that

require reasoning through rules.

• SWRL (Semantic Web Rule Language) although currently just a member sub-

mission (since 2004), has become an alternative for representing knowledge in the

form of rules in semantic databases. The rules take the form of Horn-like rules,

where there is an implication between an antecedent (the body of the rule) and

a consequent (the head of the rule). An example SWRL rule in human-readable

format, using the previous example of the uncle rule, would be: hasParent(?A,

?B), hasBrother(?B, ?C) → hasUncle(?A, ?C). In this example, the body is

comprised of the first two clauses (before the “→” symbol, which could be read as

“then”) and the head would be the last one. In this case only properties are being

used, but literals and built-in functions can also be used.

• SPARQL is a query language to extract information from RDF semantic data

sources. This language allows the traversal of the knowledge graph through query-

ing required and optional graph patterns along with their conjunctions and dis-

junctions. SPARQL allows this knowledge graph to be spread across diverse data

sources. We will explain the anatomy of a SPARQL query using the following

example SELECT query.
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PREFIX ex: <http://example.com/example#>

SELECT ?city ?mayor

WHERE {

?UK a ex:Country ;

ex:Name ‘‘United Kingdom’’ .

?UK ex:hasCity ?city .

?city ex:hasMayor ?mayor .

}

This query returns all the cities in the United Kingdom and their mayors. The first

line of the query binds the namespace of the given ontology IRI to the prefix ex:.

This helps us to compact the query, as otherwise we would have to write the entire

IRI for every concept in that ontology. It is possible to have multiple namespace

bindings on this section, or none at all.

The next line tells the query which variables to return. Variables in the query are

prefixed by a question mark “?” and can have any name but it has to be consistent

in the whole query. The second part of the query, the WHERE, is where the graph

pattern to match is specified. The “a” keyword is a shorthand for the rdf:type

predicate.

In this graph pattern, we are first matching a node in the knowledge graph which

has an rdf:type relationship with ex:Country and an ex:Name property with

value “United Kingdom”. We traverse the graph further by adding the nodes

which have an ex:hasCity with the previously matched node (in this case it is

likely to be only one) and then the nodes which have an ex:Mayor relationship

with the cities. Other ways of matching nodes is through the optional matches or
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value constraints (also known as filters).

Other types of SPARQL queries include the CONSTRUCT, ASK, and DESCRIBE.

• SPIN (SPARQL Inference Notation) is an alternative to SWRL using SPARQL.

It was submitted to W3C on 2011 by a group led by TopQuadrant [17]. The main

idea behind it is to use SPARQL’s CONSTRUCT queries to create the new inferred

tuples in the rules. Other types of queries are also supported for other features. A

way to define SPARQL functions is also defined, among other things.

• Jena is an open source framework for the Semantic Web written in Java. It pro-

vides support for storing and querying (through SPARQL) standards based seman-

tic repositories. It provides programmatic support to work with graphs written in

RDF and ontologies in OWL, among others.

2.2 Semantic Web Technologies for Surveillance Applica-

tions

Gomez-Romero et al. [13] developed a framework which applies logical reasoning to an

OWL model of a classical visual tracker’s output from surveillance videos and applies

abductive reasoning to automatically discover information. They define and successfully

apply a rule for detecting mirrored persons in the window of a shop in a surveillance

video. Again Using semantic technologies, a layered meta-data model for video surveil-

lance system is presented in [18]. In particular they use OWL to model the taxon-

omy, SWRL and SPARQL to define rules and queries, and the Pellet reasoning engine.

The use of MPEG-7 visual descriptors allows a high interoperability in the information

capture process. The framework is validated on very simple scenarios like detecting

persons or detecting duplicated objects in the tracking phase. Another framework for

visual analysis using semantic technologies is presented in [19]. Their main contributions

include the dynamic reconfiguration of the framework’s work-flow at runtime depending
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on several factors like domain of interest, user preferences, and system capabilities (i.e.

available visual analysis methods). In particular, the framework is validated on a surveil-

lance domain, defining the ontology on Protègè and available visual analysis methods

on OpenCV. At runtime, different processing capabilities are added or subtracted, and

user preferences (like priority for processing time, memory consumption or accuracy)

are also modified. The test cases are simple scenarios like abandoned object detection.

The system successfully reconfigures itself at runtime according to the different condi-

tions. As can be seen, the approaches presented here use non monotonic logic to handle

incompleteness, but imprecision and uncertainty are not taken into account.

In our previous work in [20], we use SWRL rules to detect high level events on

surveillance footage. We used mid level concepts and events extracted from computer

vision algorithms. We exploit the fact that usually events follow a logical sequence of

events. What we do then is encode that sequence of events in a SWRL rule and apply

the Pellet reasoner to extract new tuples. For example, when there is a robbery, the

sequence of events could be described as a person approaching another person, then

suddenly the first person starts running when they reach the second person, and finally

the second person running behind. We successfully apply this approach to detect four

kinds of events: Pick Pocketing, Beat and Run Away, Vandalism Against Walls, and

Vandalism Against Cars.

2.3 Introduction to the TBM

This section presents a primer on the Dempster-Shafer (D-S) Theory. We present first

the motivations behind the creation of this theory. We also introduce the Transferable

Belief Model, which is a realisation of the D-S Theory. We use an example to infer the

likeliest perpetrator of a crime to introduce the concepts.
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2.3.1 Bayesian Probability

Probability theory allows us to try and predict the outcome of random events. Consider

the experiment of throwing a fair dice. There are 6 possible outcomes (or events) to this

experiment, and because we are dealing with an honest dice, all of them are as likely as

the others. This means that each event has a possibility of 1/6. We are going to use the

same example to introduce some mathematical definitions and properties of probability:

• Ω is the set of all the possible outcomes of the experiment. It can be called the

sample space, the power set, or the frame of discernment. In our example, Ω =

{1, 2, 3, 4, 5, 6} which are all the possible values the dice can take when throwing

it.

• f(x) is a probability value assigned to x ∈ Ω. Each event has a probability assigned

to it.

• f(x) ∈ [0, 1] for all x ∈ Ω. This means the probabilities have to be a real number

between 0 and 1. In our example, the probabilities for all the events are 1/6 ≈ 0.16.

•
∑

x∈Ω f(x) = 1 all of the probabilities in the sample space have to add up to one.

In our case, all the 6 probabilities are 1/6 and 1/6× 6 = 1.

• if E is an event, P (E) is the probability of that event being the outcome of the

experiment and it is expressed as: P (E) =
∑

x∈E f(x). This means that the

probability of that event happening is the summ of all the outcomes where that

event is present. For example P ({2, 3}) = 2/6.

Bayesian probability is an interpretation of probability in which the concept of proba-

bility is interpreted as reasonable expectation of the event to measure, based on previous

occurrences of the experiment. There are two views of the Bayesian probability, the

objectivist view treats the probabilities as a state of knowledge of the world. The sub-

jectivist view sees the probabilities as an assessment of the personal belief of the state of
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the world. It is an extension of propositional logic where you reason with a probability

assigned to a hypothesis and test it.

Bayesian Probability bases itself in Bayes’ Theorem that relates the probability of one

event A with the probabilities of another event B. A popular example is the relationship

between cancer and age, so knowing a person’s age can more accurately help us assess

the probability of the person having cancer.

In particular, Bayes’ Theorem states that:

P (A|B) =
P (B|A)P (A)

P (B)

Where A and B are events, and:

• P (A) and P (B) are the independent probabilities of observing A and B.

• P (A|B) is the probability of observing A if we observe B. P (B|A) is the probability

of observing B given that we observe A.

2.3.2 The Demster-Shafer Theory

In this section we will introduce the motivations behind the initial ideas by Arthur

P. Dempster in [21] and further developments by Glenn Shafer in [22]. We will use the

unreliable sensor paradigm introduced in [23] but adapt it to the computer vision domain

to present the Dempster-Shaffer Theory and some general differences with the Bayesian

probability theory.

Imagine that we have a computer vision algorithm to detect persons on images.

Through testing, we know that this algorithm is accurate 80% of the time. The other 20%

the results are inaccurate due to different conditions like occlusion, lighting conditions,

etc. and the result is not related to the actual existence of persons in the scene.
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This leaves us with a frame of discernment of three sets:

Ω(Frame of Discernment)︷ ︸︸ ︷
State Output Accuracy Pers

NoPers

 ×

Pos

Neg

 ×

 Acc

NotAcc


Now suppose we run the algorithm on an image and we get a positive output indicat-

ing that there is a person. What is the probability that the result is correct? In classic

probability theory this means we want to know P (Pers) knowing Pos: P (Pers|Pos).

We know that:

• P (Acc) = 0.8 and P (NotAcc) = 0.2

• P (Pers|Pos,Acc) = P (NoPers|Neg,Acc) = 1 since when the algorithm is accu-

rate, the output will be the actual state of the scene

• P (Pers|Pos,NotAcc) = P (Pers) since when the result is accurate, we cannot

infer the actual state of the scene

• P (Pos|Acc) = P (Pers) because when the result is accurate, the output corre-

sponds to the state of the scene

If we apply the Bayes’ rule to our hypothesis, and try to solve, we get:

P (Pers|Pos) = P (Pers|Pos,Acc)P (Acc|Pos) + P (Pers|Pos,NotAcc)P (NotAcc, Pos)

= 1P (Pos|Acc)P (Acc)
P (Pos) + P (Pers)P (Pos|NotAcc)P (NotAcc)

P (Pos)

= 0.8P (Pers)+0.2P (Pers)P (Pos|NotAcc)
P (Pos)

= P (Pers)(0.8+0.2P (Pos|NotAcc))
P (Pos|Acc)P (Acc)+P (Pos|NotAcc)P (NotAcc)

= P (Pers)(0.8+0.2P (Pos|NotAcc))
0.8P (Pers)+0.2P (Pos|NotAcc)

Here we face a difficulty because in order to compute P (Pers|Pos) we need probabili-

ties of P (Pers) (The general probability there is a person in the scene) and P (Pos|NotAcc)
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(The probability that the result is positive when the output is not accurate). To solve

this, a Bayesian could try to measure these probabilities when possible, or simply assume

values for them. The quality of the conclusions will be linked to the quality of the

assumptions.

A third option would be to use the Upper and Lower Probability model (ULP), where

we assign superior (Πsup) and inferior (Πinf ) boundaries to the unknown values. In our

case, we know that they are probabilities. That means they can take values from 0 to 1.

This would give the following inferior and superior bounds to our hypothesis:

• Πinf (Pers|Pos) = infx∈[0,1]2P (Pers|Pos) = 0

• Πsup(Pers|Pos) = supx∈[0,1]2P (Pers|Pos) = 1

We can see that this is not a feasible approach because we are still in total ignorance

because of the solution space is composed of all the possible values.

Dempster proposed then to reason without Bayesians’ a prori probabilities in the

ULP model and instead work only with the known information.

In our computer vision algorithm example, we know the probability space on the

variable Accuracy. We can map these known values to compatible events in Ω. For

example, if we know that the output was accurate, this is not compatible with the event

(Pers, Pos,NotAcc). This gives us a multi-valued mapping (Γ) to Ω, represented in

Figure 2.2.

Intuitively, the lower probability of A ∈ Ω can be defined as the sum of probabilities

of all the events in the known probability space that completely support A (i.e. when the

subset is the same subset we are looking for) and the upper probability can be defined

as the sums of probabilities of subsets that completely support A plus the events that

partially support A.

We now run the algorithm and the output is positive, meaning that the algorithm
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Fig. 2.2: Dempster’s multi-valued mapping

thinks that there is a person present in the scene. We update our knowledge base

to remove those events that are incompatible with the new knowledge. The updated

mapping is presented in Figure 2.3.

Fig. 2.3: Updated mapping when the algorithm is run and the output is
positive

In our example, the lower probability that there is a person when the algorithm

output is positive is 0.8. We can say this because the only set that completely supports

(Pers, Pos) is (Pers, Pos,Acc) and has a probability of 0.8. The upper probability

would be 1, because apart from the set that completely supports it (the previous one)
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we have another one that supports another irrelevant set (so its support is not complete).

Dempster also proposed a way to combine information from different sources. This

method will be explained later and we will see it is one of the fundamental aspects of

the Dempster-Shaffer theory.

Glenn Shaffer, after assisting one of Arthur Demspter’s course on statistical inference

at Harvard, offered in [22] a reinterpretation of Dempster’s ideas. He introduced, among

other things, the belief functions. He shifted from the multi-valued mapping to mass

functions.

2.3.3 The Transferable Belief Model

The TBM is one of many proposed realisations of the Dempster-Shaffer theory. It was

introduced by Philippe Smets in [11]. It proposes some mathematical formalisms backed

up by Dempster-Shafer’s theory and belief masses and functions.

We will use a single variable example based on one presented in [1] to introduce one

by one the concepts of the TBM. In our version of the example, we capture CCTV

footage of one rioter (with his face covered) breaking into a store to loot it. There are

three suspects of this crime: Carl, Peter or Michael. This leads us to the first concept:

Frame of discernment (Ω) As discussed before, it is the finite set which holds all

the hypothesis of the task. In our example, Ω = {Carl, Peter,Michael}. In a closed

world context, the truth must be inside this frame of discernment. In an open world

context, the truth may be somewhere else. For this example, we will use the closed world

assumption, but it must be noted that OWL and related ontology languages usually use

the open world assumption, but reasoning can be performed on a closed world knowledge.

Suppose now that we are told by an old person that he thinks he saw Carl or Peter

do it, but he is not sure. This now leads us to the next two concepts: Mass function and
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focal elements.

Mass function The mass (m) is a quantifiable amount of support to a group of hypoth-

esis in Ω. This support is introduced by the Evidence. Assigning a mass m(A) to a subset

A of Ω, gives support to exactly that subset A. As in traditional probability theory, the

mass function for particular evidence must verify that
∑

A⊆Ωm(A) = 1. In our case, we

subjectively select the value of 0.8 to the confidence of the testimony of the old person.

This means that m(Carl, Peter) = 0.8. We need to include the fact that this person

might be wrong, but we should be careful not to assign the rest of the mass to Michael,

because the testimony does not support directly the fact that the perpetrator is Michael.

This means that m(Carl, Peter,Michael) = 0.2.

Focal elements are the subsets of Ω having non-null mass. The set of focal elements

is called Focal Set (FS). In our case, for this particular evidence we just learned, FS =

{{Carl, Peter} , {Carl, Peter,Michael}}.

In the CCTV footage, it is evident that the perpetrator has long hair, and we know

that only Peter and Michael have long hair. We must now combine the new information

with the current state of the knowledge base. For this we must introduce two new

concepts: Potential and Dempster’s Rule of Combination.

Potential is the formal way of defining the evidence available to the system. It is

the mass function induced by particular evidence. In our case, we have two potentials

produced by the two testimonies we have right now.

p1 = {{Carl, Peter} [0.8], {Carl, Peter,Michael} [0.2]}

p2 = {{Peter,Michael} [0.9], {Carl} [0.1]}
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Dempster’s Rule of Combination currently we have two potentials p1 and p2, each

with its own mass functions mp1 and mp2. The goal is to get a single, combined potential

p1⊕2 with a joint mass function mp1 ⊕mp2. Dempster’s Rule of Combination relies on

the intuition that the product m1(X) ∗m2(Y ) supports X ∩ Y . This means that:

m1,2(A) = (m1 ⊕m2)(A) =
∑

B∩C=A 6=�
m1(B) ∗m2(C)

For the current state of our knowledge base, we get the following generated Focal Ele-

ments:

FEp1⊕p2 = {{Peter} , {Carl} , {Peter,Michael}}

and the following masses:

m({Peter}) = 0.8 ∗ 0.9 = 0.72

m({Carl}) = 0.8 ∗ 0.1 + 0.2 ∗ 0.1 = 0.1

m({Peter,Michael}) = 0.2 ∗ 0.9 = 0.18

for a combined potential of:

p1⊕2 = {{Peter} [0.72], {Carl} [0.1], {Peter,Michael} [0.18]}

A situation arises when we introduce new evidence that contradicts the currently avail-

able potentials. Let us now assume that from a different CCTV source, we see Carl near

the scene of the crime. The newly introduced potential (with the subjectively selected

values of 0.8 and 0.2 to the confidence of the information) is:
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p3 = {{Carl} [0.8], {Peter,Michael} [0.2]}

If we try to combine this potential into the knowledge base we will notice that

{Peter} ∩ {Carl} = � and {Carl} ∩ {Peter,Michael} = �. This means we have a

conflict. This is evident when we combine the new potential and get empty focal ele-

ments and this happens because one potential is strictly supporting a set of hypothesis,

and the other one supports a completely disjoint set of hypothesis. In TBM, we can

quantify this contradiction (known as the conflict k) as the sum of the product of the

masses of the conflicting focal elements:

k1,2 =
∑

B∩C=�
m1(B) ∗m2(C)

In our case:

k = 0.72 ∗ 0.8 + 0.1 ∗ 0.2 + 0.18 ∗ 0.8 = 0.74

Under the open world assumption, a conflict means that the truth lies outside the

current frame of discernment and we currently do not posses the knowledge needed to

make sense of it. In that case, the conflicting mass would go to � (m(�) = k). In a

closed world assumption, to keep the mass functions adding up to 1, the produced mass

function must be normalised with the conflicting mass. This means that the combination

becomes:

m1,2(A) = (m1 ⊕m2)(A) =
1

1− k1,2

∑
B∩C=A 6=�

m1(B) ∗m2(C)

In our closed world example, this means that:
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FEp1⊕p2⊕p3 = {{Peter} , {Carl} , {Peter,Michael}}

m({Peter}) =
0.72 ∗ 0.2

1− 0.74
≈ 0.55

m({Carl}) =
0.1 ∗ 0.8

1− 0.74
≈ 0.3

m({Peter,Michael}) =
0.2 ∗ 0.18

1− 0.74
≈ 0.14

p1⊕2⊕3 = {{Peter} [0.55], {Carl} [0.3], {Peter,Michael} [0.14]}

The goal of the task is to find the perpetrator of the crime. We will now introduce

some functions that will allow us to quantify our knowledge of the system according to

the available evidence.

Belief is the justified amount of support given to any subset of Ω. Any mass that

includes a given subset, supports that subset. This is Shafer’s interpretation of the lower

probability. Mathematically:

bel(A) =
∑

B|B⊆A

m(B)

For this exercise we are interested in knowing our belief, according to the evidence,

that each of the elements in the frame of discernment is the perpetrator:

bel({Carl}) = 0.3

bel({Peter}) = 0.55
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bel({Michael}) = 0

Plausibility is the total amount of support given to A at least partially. More specif-

ically, is the support not given strictly to A. This is Shafer’s interpretation of the upper

probability.

pls(A) = 1− bel(A) =
∑

B|B∩A 6=�

m(B)

In our example:

pls({Carl}) = 0.3

pls({Peter}) = 0.55 + 0.14 = 0.69

pls({Michael}) = 0.14

It can be seen intuitively that bel(A) ≤ pls(A).

Ignorance is the difference between pls(A) and bel(A). It is the support that is only

given partially to A. Intuitively we can see that these are masses allocated not exclusively

to A, which means that we do not have enough information to discriminate between the

support to A and all the other members of the focal elements where A is present.

ign(A) = pls(A)− bel(A)

Doubt is the degree of support that will never be assigned to A.

dou(A) = 1− pls(A) = bel(A)

So far, what has been done is simply asserting beliefs. But the goal of all of this is
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to make a decision. Smets makes the distinction of two steps in the TBM:

• Credal level (from the Latin Credo “To Believe”) is where beliefs are assessed,

updated, and combined.

• Pignistic level (from the Latin Pignus “Bet”) is where decisions must be made

based on the beliefs.

Once the knowledge base is updated with all the available information, all the poten-

tials are combined, and all the beliefs are updated, we must select from Ω the best

hypothesis or group of hypothesis. There is no standard rule for this, and usually rules

are created for specific problems, commonly involving the belief and plausibility func-

tions mentioned before. For example, selecting the maximum of belief or plausibility, or

a combination of both. More advanced rules are available but will not be discussed here.

In our example, we can see that the perpetrator is most likely Peter, as is not only

the hypothesis with the highest amount of support (highest belief), it is also the most

plausible.

One of the strengths of the TBM is its ability to combine knowledge from many

heterogeneous sources of information, with knowledge on different variables.

When the problem’s domain lays in multiple variables, there are certain steps that

must be taken in order to perform the reasoning, for example if the evidence you get only

pertains to some variables and not all. Or if you want to measure the belief only in some

of the variables. This is very useful because it allows us to assess only the interesting

parts of the problem, and we can introduce new knowledge to the system even if this

knowledge works with variables that we do not presently include. In our example of the

looting rioter, we might also be interested for example in the weapon he used to break

in (if there is no footage available), or in his accomplice. We are able to reason on all

the variables by separate or in any combination of them.

The combination of two potentials from different domains can be performed thanks
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to two operations: Extension and Marginalisation.

Extension is the operation of introducing new variables in a potential. In mathemat-

ical terms, if we have a potential φ on a domain D, its extension on D2 ⊃ D consists of

applying a cylindrical extension of the focal elements of φ. For example let us suppose

• we have Ω with two variables X and Y with instances {x1, x2} and {y1, y2} respec-

tively

• we have potential φ defined on D = X with masses m ({x1}) = 0.2, m ({x2}) = 0.8

• the extension of φ on D2 = X,Y , noted φ↑D2 is:

– m ({(x1, y1)} ∪ {(x1, y2)}) = 0.2

– m ({(x2, y1)} ∪ {(x2, y2)}) = 0.8

Marginalisation is the operation of removing variables from potentials. Mathemat-

ically, if we have potential φ on domain D and we want to marginalise it on D2 ⊂ D,

we must project its focal elements on D2 and regrouping any identical resulting focal

elements.

For example, using the same frame of discernment Ω from the previous example

• we want to marginalise φ which is defined on D = X,Y and has masses:

– m ({(x1, y1)}) = 0.1

– m ({(x1, y2)}) = 0.1

– m ({(x2, y1)}) = 0.8

• the marginalisation of φ on D2 = X, noted φ↓D2 is defined as:

– m ({x1}) = 0.1 + 0.1 = 0.2
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– m ({x2}) = 0.8

Combination of multi-variable potentials is achieved by extending the two poten-

tials by the combined domains and applying the standard combination. Mathematically,

if we have potentials φ1 and φ2 with domains D1 and D2 respectively, the operation we

must perform is φ12 = φ↑D1∪D2
1 ⊕ φ↑D1∪D2

2 The resulting potential φ12 will be defined

in the domain D1 ∪ D2. But it can be restricted to another domain D3 by simply

marginalising it on D3. This operation is called fusion.

2.4 Previous Implementations of the TBM

Previous implementations of the TBM could be split in two categories. One is comprised

of general-purpose frameworks which do not target a particular application. In the other

group we have ad-hoc frameworks that solve particular problems.

Starting with the general approaches is one of the early modern attempts of imple-

menting the TBM, presented by Haenni & Lehmann [24] in 2001. They first discuss

theoretically different possibilities for implementing the DS belief functions. In particu-

lar, the encoding of the mass functions and implementations of the TBM operations, for

which they also propose new efficient algorithms. Their solution is based on the binary

representation of the focal sets, and as programming language used MCL 4.3 (Macintosh

Common Lisp), and all their tests were performed on a 400-MHz Power Mac G3 with

768 MByte of RAM.

The experiments consisted in the marginalisation of the combination of two belief

potentials. In total, 24 implementation variants are tested, split into three categories:

classical methods (the two potentials are combined, and then marginalised in the new

domain); Stepwise marginalisation (similar to the previous one, but the marginalisation

is performed on a step-by-step procedure); and using the fusion operation, proposed by
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them as a more efficient alternative. The test bed consisted of two random potentials

with 632 binary variables and 1101 initial belief potentials. As conclusions, they confirm

the computational complexity of the TBM, but manage to reduce the execution time

of the most expensive operation in the framework. They reach three implementations

alternatives which yield better results than previous approaches.

Burrus & Lesage [1] describe in their technical report an implementation of the TBM

made in C++ called eVidenZ. Their implementation is largely based on the one by

Haenni & Lehmann [24]. They also propose a new method for building the knowledge

system once and assigning the mass values later. They called this method “Delayed

Mass Valuation”. They illustrate the new method with a hypothetical medical diagnosis

application which uses the TBM. The patient is diagnosed with a series of questions

about the symptoms:

• “Do you have headache?”

• “Do you have fever?”

• ...(any other question that might help with the diagnosis)...

Each patient would give the answers relevant to his case, but this means that every

time a new patient is interrogated, the knowledge base has to be rebuilt. They propose

to build the knowledge base once, and belief masses are provided by different contexts

(i.e. each patient is a new context).

They do manage to achieve better time performance, thanks to a combination of

factors that include the choice of programming language, the use of newer hardware,

and efficient implementation of the algorithms.

Their tests consisted on measuring the computation time and memory consumption

of the combination of two randomly generated potentials. To test how different char-

acteristics of the potentials affect the performance of the framework, they performed

different tests varying different parameters of the focal elements. Namely:
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• Number of variables

– 2 to 12 variables

– 2 realisations per variable

– 1000 focal elements per potential

– 100 configurations per focal element

• Number of realisations per variable

– 2 variables

– 500 to 4000 realisations per variable

– 100 focal elements per potential

– 100 configurations per focal element

• Number of focal elements per potential

– 2 variables

– 500 realisations per variable

– 100 to 700 focal elements per potential

– 100 configurations per focal element

• Number of configurations per focal element

– 2 variables

– 1000 realisations per variable

– 200 focal elements per potential

– 100 to 250 configurations per focal element
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One drawback of their approach is that they also use bit representation of the focal

elements, the storage requirements grow exponentially with each variable. But they

claim it might not be critical as problems usually do not involve that many variables

[24]. Empirical tests on the Delayed Mass Valuation approach show its infeasibility, but

they identify a few aspects where it can be improved. More recently but on the same

research lab, their work was later ported to Java with the evidence4j framework [25].

There is no evaluation published as of yet on this framework.

Moving to the more specific frameworks, Klein et al [26] and Munoz-Salinas et al [27]

use the TBM together with Particle filters similarly for computer vision problems. They

both take “evidence” from different “sensors” (in this case the sensors being computer

vision algorithms and the evidence their output) and combine it using the TBM to arrive

to a knowledge which takes into account all the evidence. They adjust the reliability of

the sensors depending on several factors, for example, the opinions on occluded objects

are less reliable than ones that are fully visible. Both approaches achieve good results,

but are otherwise not very specific on implementation details. First, Klein et al [26]

use it to detect the cars that are in front with footage taken from a moving car. Their

evidence comes from:

• Colour distribution for the shadow beneath the car

• Colour co-occurrence matrix based method for the car’s colour-texture information

• Symmetric cards drawn from an image of contours are used for the car’s shape

• A computer vision tracking algorithm is used for the speed

Their frame of discernment (Ω) is comprised of three variables. For the proceeding

car that is being tracked, the frame is split into subwindows. And for each subwindow,

the hypothesis are:

ω1: Contains a car
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ω2: Contains background

ω3: Contains another car

A Potential which contains beliefs on subsets of Ω is created from the output of each

algorithm, and then all the Potentials are combined to create a “global” potential which

contains the knowledge of all the sources of evidence.

Then Munoz-Salinas et al [27] have a similar approach to track people in a multi-

camera setting. For the “evidence”, they start with multiple calibrated cameras that

share a common reference system. A person tracking algorithm is employed on each of

the frames to extract the presence of persons in a given shot. Each tracker also has shape

information and a colour model for each of the objects being tracked. The variables for

their domain is the presence or absence of the person being tracked in the scene. The

belief masses are calculated from the output of the algorithm and weather a particular

instance can be trusted or not due to unfavourable conditions (i.e. occlusion of the

person). The knowledge of all the cameras is then combined using Dempster’s Rule of

Combination.

2.5 Uncertainty and Imprecision in the Semantic Web

There are already some efforts for encoding probabilistic information in the Semantic

Web using OWL and/or RDF. These efforts usually handle some other form of uncer-

tainty or offer a general way to encode any probabilistic information in the Semantic Web.

In [28] for example, an approach is proposed for modelling and reasoning with Bayesian

networks for the task of ontology mapping. [29] also focuses on Bayesian Networks,

but not just for ontologies mapping. It proposes a vocabulary to model Multi-Entity

Bayesian Networks. The actual task of reasoning is left for specific tools. In [30] both a

model and a probabilistic reasoning engine using Markov Logic is proposed. The W3C

has also started evaluating the standardisation of probabilistic ontologies, as can be seen
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in the efforts expressed in the W3C Incubator Group on Uncertainty Reasoning for the

World Wide Web [9] [31]. Additional proof of the growing popularity of this field can be

seen in the yearly International Workshop on Uncertainty Reasoning for the Semantic

Web (URSW), currently on its 12th edition [32]. A review of some of these efforts and

some others can be seen in [33].

In the forensic and surveillance domain, Han et al. attempted first to use subjective

logic to handle uncertainty and subjective logic to handle incompleteness using Semantic

Web technologies. In [34] several forensic questions are tried to answer like ‘who is the

suspect of the event?’ and ‘who is the most probable witness of the suspect of the

event?’. Data is modelled in OWL and in this first approach, it is annotated manually.

This framework is then successfully tested on the detection of simple events like two

people speaking.

Han et al. further explore the feasibility of subjective logic for surveillance and foren-

sic scenarios in [12] and default reasoning is considered for dealing with incompleteness.

Here, appropriate operators for dealing with surveillance data using subjective logic

and default reasoning (but not specific to Semantic Web technologies) are introduced.

Successful examples are presented for identity inference and theft inference, with and

without contextual cues. Details about the implementation, if any, are not reported.

This approach is extended in [35] for estimating whether one person could serve as

a witness of another person in a public area scene. To deal with the uncertainty, a

reputational subjective opinion function for the spatial-temporal relations is developed.

In addition, the acquired opinions are accumulated over time using subjective operators.

A preliminary test case is performed on an airport surveillance, manually annotated, one

minute video. Logic Programming with the CLIPS rule engine [36] is used. Large scale

and more complex scenarios tests are still missing.

Others have attempted to include ignorance handling (particularly Imprecision and

Uncertainty) extensions to web semantic languages (albeit not specific to surveillance or
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forensic scenarios). In [37], Ceolin et al. proposed three extensions and applications of

subjective logic in the Semantic Web, namely: the use of semantic similarity measures for

weighing subjective opinions, a way for accounting for partial observations, and the new

concept of ‘open world opinion’, i.e. subjective opinions based on Dirichlet Processes,

which extend multinomial opinions.

Subjective Logic is also proposed in [38] as a way to handle uncertainty on the

Semanatic Web. They call their approach Subjective DL-Lite (SDL-Lite), and it is

an extension of DL-Lite with Subjective Logic. On their approach, they extend every

assertion with an opinion. This can later be used to query and reason on the knowledge

base. [39] is an application of Subjective Logic on Description Logics. In this case,

they use it to merge knowledge from different datasources taking into account their

trustworthiness. They do this in fours simple steps: a) information is merged in the

database, b) conflicts are detected, c) compute the trustworthiness of each assertion

based on its datasource, and finally d) facts with the lower trustworthiness are removed

from the knowledge base to remove the conflicts. Evaluation on real life scenarios and

evaluation is left for future work.

Fuzzy logic is a popular approach for dealing with imprecise information on the

semantic web. [40] proposes fuzzy ontologies using OWL 2 annotation properties along

with constructs particular to fuzzy logic, which would allow to handle imprecise data

on a regular semantic framework. Stoilos et al. also propose in [41] theoretical fuzzy

extensions for OWL. Their approach is later complemented in [42], [43], [44], [45], [46],

and [47]. Their approach is called f-OWL. They present the abstract syntax and seman-

tics for it. They also propose some extensions to f-OWL to handle for example fuzzy

one-of relationships and XML serialisation. a fuzzy Tableaux is also introduced. To

query a knowledge based under this very same paradigm, fuzzy extensions for SPARQL

are proposed first in [48] and later extended in [49]. They propose the use of specially

formatted comments in regular SPARQL queries to specify thresholds and other fuzzy

values in the query. This allows them to maintain backwards compatibility with the
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existing standard. We will show the anatomy of a fuzzy SPARQL query with an exam-

ple used in this document. For example, this is a query for a casting agency that is

looking at a particular type of model:

#TQ#

SELECT ?x WHERE {

?x rdf:type Model . #TH# 1.0

?x rdf:type Tall . #TH# 0.7

?x rdf:type Light . #TH# 0.8

}

This query returns models that are tall and slim. In this query, the top TQ is a prefix

used to indicate the type of query. In this case, it is a Threshold Query, but another

option is GFCQ:SEM=XXXXX to declare a general fuzzy query, with fuzzy threshold semantic

functions, where “XXXXX” is the semantic function. The TH on each line in the where

indicate the actual threshold on each statement, but in a general fuzzy query, DG can

be used to specify the degree. Their implementation is based on the ONTOSEARCH2

system, but with extensions to support the fuzzy queries. Optimisations for scalability

are also presents, with the evaluation showing positive results.

The same team also proposes fuzzy extensions for RuleML [50] and SWRL [51] (which

uses RuleML XML syntax). In their work, an example of an f-SWRL rule to represent

that “one is Thin if one is Tall (with importance factor 0.7) and Light (with importance

factor 0.8)” could be as follows:

Tall(?p)*0.7 Light(?p)*0.8 → Thin(?p)

2.6 Applications of the TBM in Semantic Web

Existing applications of the TBM in Semantic Web fall largely in the specific or ad-hoc

frameworks. Nikolov et al proposes in [52] a theoretical framework for solving the prob-
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lem of ontology matching using the DS theory. Their motivation for such a framework is

that automatic information extraction from textual information in the web is not 100%

reliable. This might produce inconsistent information on the knowledge base if you con-

sider the different methods of extraction and the different sources of information. To

produce a valid knowledge base, this heterogeneous (and possibly contradictory) infor-

mation must be combined in a reliable way. Their approach consist of four steps, starting

from an inconsistent ontology:

1. Inconsistency Detection A subontology of all the axioms contributing to an

inconsistency is selected.

2. Construction of Belief Network The subontology of the previous step is trans-

lated into a belief network.

3. Assigning Mass Distributions Mass distribution functions are assigned to nodes.

4. Belief propagation Uncertainty is propagated through the network and confi-

dence degrees of ABox statements are updated.

They illustrate and theoretically validate the framework with a hypothetical finance

application. However, apart from stating that the inconsistent axioms are extracted

using the Pellet reasoner, there are no details on the implementation.

Rizzo et al have been using the TBM in several of their works together with the

Semantic Web. In [53] and [54] they try to infer approximate assertions in the ABox

using the TBM. They infer three types of relations: class membership, data-type fillers,

and relationships between individuals. Their approach consists of first selecting the most

likely candidates using the Nearest Neighbour algorithm. Then using a combination rule

derived from Dempster’s rule of combination, the evidence provided by the nearest neigh-

bours is fused together to create new knowledge in the knowledge base. An interesting

feature of their approach is that whenever there is conflict after the combination of the

evidence, they do not normalise the mass of the resulting Focal Elements, instead they
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assign that mass to a special conflict node. This allows to check the consistency of the

ontology. They test their approach in several publicly available ontologies with positive

results. Later in [55], they try to achieve a similar goal, but combining terminological

decision trees with the Dempster-Shaffer Theory, getting again similarly good results.

The work done by Bellenger et al in [2] is probably the most similar to the TBM

reasoner presented in this document, but with some fundamental differences. They first

propose an ontology which models the Dempster-Shaffer Theory in OWL2. The ontology

is presented in Figure 2.4

Fig. 2.4: DS-Ontology [2]

For their approach, domain ontologies use the concepts from the DS-Ontology in

a given way to express uncertainty. The main difference with the approach presented

in this document is that the Potentials are not created directly. Instead, the ontology

and the reasoner are designed in such a way that the hypothesis are modelled as a

previous step to a process which converts them into the actual potentials using a semantic

similarity measure. The hypothesis are converted into sub-hypothesis which consist

of intersections of all the available hypothesis, and the combination is applied to the
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generated hypothesis. This is better explained with an example. Imagine a domain

where the task is to identify a far away object, and you have two sources of information:

a human and a radar. The ontology for this domain is presented in Figure 2.5.

Fig. 2.5: Example object tracking ontology [2]

The radar detects a far away object, and since it is only good at differentiating

between land and air objects, it assigns the following beliefs: m({:landVehicle}) = 0.6;

m({:aircraft}) = 0.1; m({:landVehicle, :aircraft}) = 0.3. The human assigns

the following subjective belief masses: m({:car}) = 0.2; m({:fireTruck}) = 0.4;

m({:landVehicle}) = 0.4. The hypothesis are then encoded in the ontology as pre-

sented in Figure 2.6.

Concepts with any sort of intersection are decomposed and their intersecting parts

are instead used. The generated hypothesis are as such:

• :aircraft = {H1}. :aircraft does not intersect with other concepts in the

ontology, so it is not decomposed.

• :car = {H2, H3}. :car intersects with :firetruck (since they are both land

vehicles) but has a part that does not intersect.
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Fig. 2.6: Encoded domain using the DS-Ontology [2]

• :firetruck = {H3, H4}. :firetruck intersects with :car (as before) but has a

part that does not intersect.

• :landVehicle = {H2, H3, H4, H5}. :landVehicle intersects with both :car and

:firetruck but has a part that does not intersect.

The original Potentials the turn into:

• Radar: m({H2, H3, H4, H5}) = 0.6; m({H1}) = 0.1; m({H1, H2, H3, H4, H5}) =

0.3.

• Human: m({H2, H3}) = 0.2; m({H3, H4}) = 0.4; m({H2, H3, H4, H5}) = 0.4.

It is on these potentials that the combination is applied. On this approach, there are

no details on the implementation or an evaluation of the framework.

Finally, Sensoy et al propose in [56] the use of the Dempster-Shaffer Theory to cal-

culate the trustworthiness of different sources of information. Using the DS framework

offers them the possibility to detect conflicts and measure the trustworthiness of uncer-

tain data sources. This trust can be updated when new information becomes available.
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They propose some methods to remove the conflict from the knowledge base:

• Naive Deleting (ND): All conflicting opinions are deleted.

• Trust-based Deleting (TDL): When two opinions are in conflict, the one with

the lowest trustworthiness is deleted. This creates the issue that a lot of information

is discarded.

• Trust-based Discounting (TDC): If two opinions are in conflict, they are

discounted in proportion to the trustworthiness of their sources. This approach

neglects the amount of evidence used to calculate trust in sources

• Evidence-based discounting (EDC): A heuristic is developed based on previous

evidence to estimate the best discounting factor.

Their results show promising results for the EDC, as the system behaves as expected,

discounting successfully conflicting information in highly untrusty scenarios.

2.7 Concluding Summary

We have presented in this chapter, the concepts and previous work which forms the

foundation of this research. We see that the research of semantically enriched surveillance

frameworks and probabilistic reasoning on the semantic web are active fields of research.

However, we also see the need of a Transferable Belief Model framework for the Semantic

Web, as the previous approaches presented on this chapter do not always fulfil the

requirements presented in Chapter 1, as most of them focus on a particular aspect of the

problem, but not all of it. As a concluding summary, we now present in Table 2-A the

previous approaches and if they fulfil the requirements.

We can see that the main issue is that scalability is not considered in any of the

approaches. On the following Chapters, we will address these issues by introducing a

Semantic TBM Framework which we apply to the detection of riots.
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Chapter 3

Combining a priori probabilities

with the TBM

In this chapter, one of the contributions of the thesis will be presented, namely the use

of traditional Bayesian a priori probabilities with the TBM. As discussed previously,

traditional Bayesian probability requires the a priori probability distribution taking into

account the available information, and when new information becomes available, update

the probability distribution using Bayes’ formula. On the other hand, the TBM does

not require a priori probabilities to be computed.

This chapter deals directly with Requirement R1, as we propose a new method of

combining a priori probabilities with the TBM. We also deal indirectly with R4 as we

use the example of riot detection to showcase our approach. RQ2 is also answered, as

we prove that you can successfully combine a priori probabilities with the TBM. Our

approach works by encoding de prior knowledge of the world using TBM potentials. This

potentials have to be carefully constructed so they can encode correctly our knowledge

about the world. Once the potentials are constructed, they can be combined and queried.

This also allows us to combine different a priori probabilities even if they are calculated

on different variables (different domains). In the next sections we will explore this
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approach in more detail.

3.1 Motivation

In Bayes’ subjectivist view of Probability, it is possible to measure the frequency of

non-random events and reach a degree of belief that a certain event happens given that

we know that some other related event happened. For example, in surveillance, if the

presence of rioting is related to the presence of crowds, using Bayes’ Theorem, the actual

presence of crowds in a scene (the prior knowledge) can be used to assess the probability

that there is also riots in the scene. This means that there are concepts that entail other

concepts. Bayes’ theorem states that given two events A and B, the probability P (A|B)

of observing A given that B is observed is:

P (A|B) =
P (B|A)P (A)

P (B)

Where:

• P (A) and P (B) are the probabilities of observing A and B independently and,

• P (B|A) is the probability of observing B given that we observe A

There are, however, composite concepts in which it is the presence of multiple other

concepts that entails them. Take for example the high level concept “Vandalism”, defined

as the act of deliberate damage of property. If a certain scene contains window glasses

breaking, we might not learn much else from the scene. Or we might neither if we learn

by separate of the presence of fire or people with the faces covered. But if we have a

scene where windows are breaking and we have the presence of fire and people covering

their faces all happening at the same time, it is highly likely that there is in fact an act

of vandalism occurring.
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In this case, if we compute only the a priori probabilities of the presence of window

glasses breaking and vandalism we might not learn much about the scene, and if we

compute the a priori probabilities of all the combined concepts, we would have to do

it for all the possible combinations of concepts, as for example the presence of window

glasses breaking might entail also other concepts.

In the traditional Bayesian world, we would have to compute the a priori proba-

bilities of “Glass Breaking” and “Vandalism”, but we would also have to compute the

probabilities of “Glass Breaking”, “Fire” and “Vandalism”, and the same for all the pos-

sible combinations of concepts. This requires going back to the “world” and measuring

them, but this might be too complex or might not be available at all.

Imagine we have a CCTV scene being monitored by different kinds of sensors and

computer vision trackers and detectors. In a particular instance of time, the “Glass

Breaking” detector, tells us that a window has been broken. We not only include this

new knowledge in the system, but we also include the knowledge of whatever concepts

it entails. For example, in this example, let us assume that “Glass Breaking” entails

“Vandalism” with a probability of 10% (meaning that 10% of the previous cases of a glass

breaking was due to “Vandalism”), but it also entails “Earth Quake” with a probability

of 3%, “Explosion” with a probability of 10%, and “Accident” with a probability of 50%.

But then the Fire Detector also triggers an alarm that there is a fire. And the presence

of Fire entails ”Vandalism” with a 30% probability, “Accident” with a 50% probability,

and “Explosion” with a probability of 10%. Please note that these are made up values

to illustrate the approach with an example. In a real application, these values would be

calculated by examining the data.

At this point, we can intuitively say that there is an “Accident”, as it is the most likely

concept both “Glass Breaking” and “Fire” entail. There are also combined probabilities

for the other concepts, but with smaller values.

Calculating this using the Bayes’ Rule is not an easy task. And as we saw on Chap-

45



ter 2, it might even lead to inconclusive results. In this particular example, if we want to

compute the probability of there being an “Accident” given that there’s “Glass Braking”

and “Fire”, we start by listing our current knowledge of the world, which are the a priori

hypothetical probabilities presented before:

• P (V and|GlassBr) = 0.1

• P (Quake|GlassBr) = 0.03

• P (Expl|GlassBr) = 0.1

• P (Acc|GlassBr) = 0.5

• P (V and|Fire) = 0.3

• P (Acc|Fire) = 0.5

• P (Expl|Fire) = 0.1

In this particular scene we learn the presence of “Glass breaking” and “Fire”, and

we want to know what is the likelihood of there being an accident too:

P (Acc|GlassBr, F ire)

If we apply Bayes’ Rule:

P (Acc|GlassBr, F ire) =
P (GlassBr, F ire|Acc)P (Acc)

P (GlassBr, F ire)

Here we find that we need other a priori probabilities to be able to compute this. We

must go back and learn the probability that there is “Glass Breaking” and “Fire” given

that there is “Accident” (P (GlassBr, F ire|Acc)), and the independent probabilities of

“Accident” (P (Acc)) as well as the combined probabilities of “Glass Breaking” and

“Fire”(P (GlassBr, F ire)). And this is a system with only 3 variables.

Things get more difficult as we include more variables. Let us assume for example
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that we calculate the missing probabilities we need to calculate P (Acc|GlassBr, F ire).

But then at a later stage we learn of the presence of another event, “Screams” which

hypothetically entails “Accident” with a probability of 60%. We now want to learn

the probability of there being an accident, given that we have glass breaking, fire, and

screams:

P (Acc|GlassBr, F ire, Screams)

Applying Bayes’ Rule, we get:

P (Acc|GlassBr, F ire, Screams) =
P (GlassBr, F ire, Screams|Acc)P (Acc)

P (GlassBr, F ire, Screams)

The a priori probabilities we calculated before are not useful here, and we need to calcu-

late new ones, namely P (GlassBr, F ire, Screams|Acc) and P (GlassBr, F ire, Screams).

What if we want to learn of the probability of there being an accident and explosion given

that we have these three events? We can see the infeasibility of this approach as for every

variable in our system and for every combination, we must calculate a large amount of

probabilities. Again, we could use lower and upper probabilities, but this would leave us

in a similar state of ignorance as we saw in Chapter 2.

In the Riot Detection Task, where we want to infer the presence of Riots given the

presence of the other concepts, we would have to calculate the a priori probabilities

of there being a riot given that there are different combinations of the other concepts.

Additionally, these probabilities would only be useful for detecting riots, and if we want

to train the model for other of the events, we would have to learn some more probabilities.

We propose to combine with the TBM the a priori probabilities a concept entails

with any other learned a priori probabilities of other concepts to gain a better under-

standing of the scene. This would allow us to not only combine the known a priori

probabilities, but also the probabilities can be in different domains (as in, dealing with

different variables – For example one sensor dealing with crowds and gunshots, and

other sensor dealing with crows and vandalism) and we would still be able to combine
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them. We would also be able to query the system for the presence of any combination

of events. All of this calculating only the a priori probabilities of the different events.

Our approach consists of modelling the a priori probabilities as Belief Potentials which

we can then combine using the Dempster’s Rule of Combination. In the next sections

we will explain our approach.

3.2 Proposed Approach

As we saw previously, belief in the TBM is modelled with Potentials. Each Potential

has a collection of Focal Elements which support specific Configurations with a given

Belief Mass. We propose to use the Potentials to model the knowledge of each a priori

probability, which can then be later combined to create a single potential with all the

combined a priori probabilities.

The challenge is then to model the a priori knowledge in a way which can be reasoned

and combined using the TBM, i.e. as Belief Mass Potentials. Our approach can be split

in two parts: in the first part, the a priori knowledge is computed (only for pairs of

concepts), modelled as Focal Elements and the Potentials constructed and combined;

in the second part, we get the incomplete/imprecise knowledge from the world and try

to infer its state given the precomputed Potentials. The explanation of the two stages

will be carried out using the riot detection task, which is another of the contributions

of this work. The dataset consists of real CCTV footage from the 2011 London riots.

The footage was annotated for the presence of six different concepts related to the riot

detection, namely fire, crowd, vandalism, running, people with face covered, and riot.

More information on the dataset and the experimental set up can be found on Chapter 5.
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Fig. 3.1: Probabilities matrix for the Riot Detection problem

3.2.1 Training

First we must train the system to create a model of the world which will be applied to a

given instance. The training involves learning from a particular dataset, the probabilities

of the events and the computation of the global potentials for each event.

We will first explain the process and then illustrate with an example. In this phase,

the a priori probabilities are first calculated from a training set. On the Riot Detection

task, and with the training data used, we get the probabilities matrix presented in

Figure 3.1. In this matrix, the columns represent the entailed concepts and the rows the

concept that entails.

From this, we can see that some concepts are related. For example, the presence of

riot entails always the presence of a crowd. And running is not entailed strongly by other

concepts. Riot in particular is highly entailed by most other concepts given that this

particular dataset is specifically designed for this task. Figure 3.2 presents a particularly

eventful frame with riot. This frame has crowds, people with the face covered, vandalism,

and of course, riot. There are parts in this sequence where people also run.

After the probabilities have been computed, we construct potentials for each pair of

concepts and combine them successively for each concept to reach a global combined

potential. Each Potential’s Domain will include only the variables involved, as the TBM

allows us to combine Potentials from different Domains. The potential must be con-
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Fig. 3.2: Example of a frame with riot

structed in a special way to encode correctly the knowledge.

3.2.1.1 Designing of Global Potential

One of the most important aspects of this approach is the design of the global potential

for each event. A wrong global potential means that the knowledge will not be correctly

encoded and thus lead to misleading or wrong results.

A correct global potential will encode correctly the knowledge of each pair of events.

Let us start with the pair of concepts “face covered” and “fire”. According to Table 3.1,

“face covered” entails the concept of “fire” with a probability of 0.243126. This means

that if in a certain frame we learn of the presence of “face covered”, there is a 0.243126

probability of there also being “fire”. To put in TBM’s terms, and if we follow Bayes’

subjectivist view, this means that our belief that there is “face covered” is 1 (as it is the

concept we are certain of) and our belief that there is “fire” is 0.243126.
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From this we can see that:

• All of the focal elements must fully and exclusively support the entailing concept,

“face covered”. This means that its negation will not be present in any of the focal

elements of the potential.

• The support or belief for the entailed concept must be equal to the probability. In

our case, it means that one of the focal elements must support exclusively (on this

variable) “fire” with a belief of 0.243126.

• The beliefs of all the focal elements still must add up to 1, so the remaining support

(0.756874) must be given to the remaining focal element(s).

Having this in mind, we have a partial potential for this concept:

{{face covered, fire}}[0.243126] {{face covered, ?}, ?}[0.756874]

This global potential already satisfies the requirements, as the belief of “face covered”

is 1 and the belief of “fire” is 0.243126. Now the issue remains of what to give the rest

of the belief support in the second or more focal elements. We know that this support

cannot be given to the negation of “face covered”, and the support that was going to be

given only to “fire” has already been taken care of. We only have the option left of the

negation of “fire”.

If we go back to the interpretation of the data, the remaining is not supporting

directly the negation of “fire”, it is simply information that we do not have available

to distinguish between the concept and the negation. This means that the plausibility

(or upper probability) of “fire” is still 1. This leaves us with the conclusion that the

remaining support must me given to “fire” and its negation. Leaving us with the following

global potential:

{{face covered, fire}}[0.243126]

{{face covered, fire}, {face covered, no fire}}[0.756874]
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We can also reach the same global potential if we model the problem as the combina-

tion of two single-variable potentials on different domains. As we said before, our belief

that there is “face covered” is 1 (as it is the concept we are certain of) and our belief

that there is “fire” is 0.243126. We could then construct this knowledge as two separate

potentials on the two different variables:

Potential for Face Covered:

{{{face covered}}[1]}

Potential for Fire:

{{{fire}}[0.243126], {{fire}{no fire}}[0.756874]}

Now if we apply the fusion operation on this two Potentials (the combination of the

extension of the two potentials on the combined domains), we get:

Extended Potential for Face Covered:

{{face covered, fire}{face covered, no fire}}[1]}

Extended Potential for Fire:

{{fire, face covered}{fire, no face covered}}[0.243126]

{Ω}[0.756874]

If we combine this two potentials which are now in the same domain, we get the exact

same global potential as before:

{{face covered, fire}}[0.243126]

{{face covered, fire}, {face covered, no fire}}[0.756874]

To summarise, each initial Potential has two Focal Elements: one with a single Con-

figuration with the two concepts (the entailing and the entailed) and a mass equal to the

a priori probability of the two concepts, and the other with two Configurations: one is
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the two Concepts and the other is the entailing concept and the negation of the entailed

concept with the complement of the probability as the mass. With this we get lower and

upper probabilities that are consistent with the knowledge, as in the beliefs of the two

concepts appearing together is the a priori probability, but the plausibility is 1.

Effectively we can see that if we learned that there is people with the face covered in

the scene, the belief of the system that there is also a fire is 0.243126 (as in the traditional

probabilistic world) and the plausibility is 1. The belief that there is no fire is 0, but the

plausibility is 0.756874. The belief and plausibility of “face covered” is 1, meaning that

we are certain that there is “face covered” as it is what we have just learned.

We create now the second initial Potential for the pair of concepts “face covered” and

“riot”:

{{face covered, riot}}[0.708875]

{{face covered, riot}, {face covered, no riot}}[0.291125]

3.2.1.2 Combining the Potentials for Each Concept Pair

We combine the two initial Potentials and get the following global Potential for the

concept “face covered”:

{{face covered, fire, riot}}[0.17234594325]

{{face covered, fire, riot},{face covered, fire, no riot}}[0.07078005675]

{{face covered, fire, riot},{face covered, no fire, riot}}[0.53652905675]

{{face covered, fire, riot},{face covered, no fire, riot},{face covered,

fire, no riot},{face covered, no fire, no riot}}[0.22034494325]

The Potential is still valid, as we can see that all the masses add up to 1. More

importantly, it still encodes correctly our knowledge of the world, as if in a particular
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scene we learn only that there is people with the face covered, we can automatically

infer the entailment of the other two concepts we have trained so far. If we query this

Potential, we can see that the original beliefs and plausibilities have not changed. But

we can now query for example the belief that there is fire and riot, which in this case

is 0.17234594325, as only the first Focal Element supports fully the two Concepts; the

plausibility of the presence of the two concepts is still 1. Again, the belief that there is

people with the face covered is 1 as it is the concept we know for sure is present in the

scene.

We repeat this process for each pair of concepts for the concept we are training (i.e.

“face covered” and “running”, “face covered“ and “crowd”, etc) combining the initial

potentials with the concept’s global Potential. In the end, this global Potential will carry

all the knowledge the concept “face covered” entails. We repeat this process for all the

concepts and end up with a collection of global Potentials, one for each concept.

There are two situations that must be addressed. The first one, when the probability

is equal to zero, and the way to handle it depends on each domain and if we are using

Open World or Closed World assumption. Under the Closed World assumption, this

means that the concept does not support the other concept, in which case the Potential

for this pair of concepts is just the entailing concept with the negation of the entailed

concept and a mass of 1. Under the Open World assumption, it means that we just

don’t know about the entailment of this two concepts, in which case we simply don’t

add this combination of concepts to the global potential (i.e. the initial Potential for that

concept is not combined with the global Potential). The second one is in the case when

the probability is 1, meaning that the presence of a concept fully entails the presence of

another concept, in that case the second Focal Element is not added and the first one

gets the full belief (1).

54



3.2.2 Feeding the Knowledge Base

Once the global Potentials for the concepts have been computed, knowledge can be

acquired from the world we are working with. For the Riot Detection task, and for the

sake of brevity, imagine we have trained the model with only three concepts: “crowd”,

“running”, and “riot”. In this example, the global Potentials for “crowd” and “running”

are:

crowd:

{{crowd, running, riot}}[0.043877075796]

{{crowd, running, riot},{crowd, running, no riot}}[0.002310924204]

{{crowd, running, riot},{crowd, no running, riot}}[0.906089924204]

{{crowd, running, riot},{crowd, no running, riot},

{crowd, running, no riot},{crowd, no running, no riot}}[0.047722075796]

running:

{{running, crowd, riot}}[0.204163000336]

{{running, crowd, riot},{running, crowd, no riot}}[0.247680999664]

{{running, crowd, riot},{running, no crowd, riot}}[0.247680999664]

{{running, crowd, riot},{running, no crowd, riot},

{running, crowd, no riot},{running, no crowd, no riot}}[0.300475000336]

Suppose that we learn a particular scene has “crowd” and “running” in it. We first

create a Potential for that frame with a copy of the “crowd” concept global Potential.

This will include in the knowledge base not just the concept from the detector, but the
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associated probabilities that come with it. If another detector indicates that the same

frame has “running” in it, we combine the Potential for this concept with the frame’s

previous global Potential, creating a new global Potential for the frame with all the

knowledge that we have about that frame. This includes the belief that there is riot in

the scene given these two concepts, even though we have not learned about riot from

any sensor in this frame. The resulting Potential for that frame would be:

{{running, crowd, riot}}[0.972574110852]

{{running, crowd, riot},{running, crowd, no riot}}[0.027425889148]

Please note that since we already learned that running and crowd are present, all the

Focal Elements containing the negation of those concepts are no longer present in the

model. In this model, the Belief that there is riot is 0.972574110852 (because one of the

concepts strongly supports this hypothesis) and the Plausibility is 1.

3.2.3 Unreliable Sensors

This can be easily adapted to the case when we have unreliable sensors by normalising

the mass of the two Focal Element by the confidence score given by the detector and

adding a third Focal Element for the entire frame of discernment (Ω) with a mass equal

to the complement of of the confidence score. In other words, the configurations of this

third Focal Element are a Cartesian product of the two concepts and their negations

and assigning to it the remaining mass of the Potential. This allows us to represent the

case when the sensor is wrong and we can not tell the actual state of the world. i.e. the

Potential for the previous example of “face covered” and “fire” would be:

{{face covered, fire}}[0.243126]

{{face covered, fire}, {face covered, no fire}}[0.756874]

{Ω}[0]
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And then when we are populating the knowledge base and a detector tells us that a

frame has a person with their face covered with a certainty of 80%, the global Potential

for the frame becomes:

{{face covered, fire}}[0.1945008]

{{face covered, fire}, {face covered, no fire}}[0.6054992]

{Ω}[0.2]

Indeed we can see that if we query this Potential it represents precisely our knowledge

about the model, as the belief that there is a person with the face covered is 0.8, but the

plausibility is 1. The belief that there is a fire is now 0.1945008 and the plausibility is

still 1.

3.3 Concluding Summary

In this Chapter, we have presented our approach to combine a priori probabilities using

Dempster’s Rule of Combination. This requires first that the priors be modelled as Belief

Potentials. In the first part of the Chapter, we have shown the limitations of traditional

Bayes’ Rule and why our approach is useful.

This approach has some other applications which we do not intend of exploring on

this work, but are left for future works. For example since a knowledge based modelled

under this approach includes knowledge of all the concepts for which the model has been

trained, it works not just for concepts for which there is no detector yet, but also for

those for which there might be a detector too. This is desirable in the case when one

of the detectors fails, we can still infer a degree of belief of the missing concept given

that we know the presence of other concepts that entail such concept. For example if

we had a gunshot detector and a firearm detector, and in a given frame we learn that a

gunshot was heard, and there was a firearm too but the firearm detector was offline at
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that moment, we still have a certain belief that there was a firearm in the scene.

The application that we do explore on this work is that high level events for which

there is no detectors yet, can be inferred from the presence of other concepts that entail

such high level concept. In particular, we use this approach together with the Semantic

Reasoner presented in Chapter 4 to detect riots given that we know the presence of other

concepts in the scene. Chapter 5 presents the results of this task.
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Chapter 4

TBM for the Semantic Web

From the previous chapter we can see that the proposed approach for combining a priori

probabilities with the TBM can lead to Potentials with large graphs. For example, a

single global Potential for a Domain trained with 6 Variables, can be composed of a few

dozens Focal Elements, each Focal Element with multiple Configurations and each with

multiple Elements. It is crucial then to develop a TBM reasoner that is scalable and

efficient. Coupled with the fact that we will be using it with Multimedia data (which

tends to be large), it becomes apparent that the system must be as efficient as possible.

The next contributions of this work are directly related to the following requirements

presented in Chapter 1:

• R1 as we are using the TBM to deal with imprecise and uncertain information.

This also answers successfully RQ3.

• R2 because we are including parallel heuristics to make the reasoning process

scalable with large datasets. Here we also answer RQ4, as these heuristics are

sufficient to work with thousands of triples in the knowledge base.

• R3 as we are using Jena’s open source framework to create an RDF and OWL

compliant ontology and reasoner which can connect to any standar RDF or OWL

59



repository.

We first present the Ontology for the TBM. To introduce its concepts, we will be

using the two player game of Cluedo introduced in [1] where we are tasked to find the

murderer, the weapon, and the room where the murder happened. We define our world in

a simple ontology with three classes: Murderer (with instances “Colonel Mustard”, “Miss

Scarlett”, and “Mrs. Peacock”), Room (with instances “Dining Room” and “Kitchen”),

and Weapon (with instances “Dagger” and “Candle Stick”). A simplified version of the

triples in the ontology in N3/turtle format is as follows:

@prefix : <http://example.org/CLUE.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:Murderer rdf:type owl:Class .

:Room rdf:type owl:Class .

:Weapon rdf:type owl:Class .

:ColMustard rdf:type :Murderer .

:MissScarlett rdf:type :Murderer .

:MrsPeacock rdf:type :Murderer .

:DiningRoom rdf:type :Room .

:Kitchen rdf:type :Room .

:CandleStick rdf:type :Weapon .

:Dagger rdf:type :Weapon .

The first player has a strong subjective belief of 80% (Belief Mass) that the murderer

is “Colonel Mustard” and the murder happened in the “Kitchen”. He is not sure about

the weapon. The second player believes also with a subjective 80% that the murderer is

“Colonel Mustard” but the weapon is “Candlestick” and he is not sure about the room.
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4.1 TBM Ontology for the Semantic Web

The ontology is a common vocabulary to represent reasoning problems in a standard

way. For this, we identify the important and relevant concepts for the reasoning task

and encode them in an OWL ontology.

The name space of both the concepts and the operations of the reasoner is http:

//mmv.eecs.qmul.ac.uk/TBM.owl#. In the remaining parts of this document, we will

use the prefix TBM for the URIs in this namespace. The ontology is available online at:

http://www.eecs.qmul.ac.uk/~chps3/TBM.owl

4.1.1 Classes

Following is an introduction to the classes of the TBM ontology. We explain briefly each

concept and present an example of assertions in the knowledge base using the example

in the domain.

• TBM:VarDomain is a set of OWL:Class individuals over which the reasoning task

is defined. In our game of Clue example, the domain is {:Murderer, :Room,

:Weapon}, but the domain of the first player is {:Murderer, :Room} and the

domain of the second player is {:Murderer, :Weapon}.

• TBM:Configuration is a collection of instances from the domain (one for each vari-

able). It represents a piece of information in the knowledge base. {:ColMustard,

:Kitchen} is an example of a configuration.

• TBM:FocalElement are subsets of the Frame of Discernment (Ω) with non-null

belief masses. In other words a collection of configurations on which the poten-

tial has some degree of belief that one of the hypothesis is the solution. In our

example, one of the focal elements of player one has a single configuration and

is {{:ColMustard, :Kitchen}}. The other focal element would be the entire
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frame of discernment (a Cartesian product of all the instances of the variables in

the domain - one configuration for each possible combination) with the remaining

belief mass (in this case 0.2 — belief masses are expressed as floating point num-

bers and must add up to one). As explained before the practice of adding a belief

mass to the entire frame of discernment is done to express ignorance, it means the

information available does not allow you to differentiate between all the possible

hypothesis.

• TBM:Potential is a known fact about the task in the frame of discernment. It is

a collection of Focal Elements that represent said knowledge. It can be the result

of an observation, a measurement, or any other way to acquire knowledge. In our

example, we have two sources of information corresponding to each player. The

first player’s potential consists of his two focal elements and their respective belief

masses. i.e. {{:Murderer, :Weapon}} with a Belief Mass of 0.8, and {Ω} with a

Belief Mass of 0.2.

4.1.2 Object Properties

We now present the object properties of the ontology. They are the relationships between

the different concepts in the TBM ontology and with the concepts of the problem’s

domain.

• TBM:hasVarDomain the domain of this property are TBM:Potential and TBM:-

FocalElement. The Range is TBM:VarDomain. It allows to specify the domain of

a Potential or a Focal Element.

• TBM:hasVariable has domain TBM:VarDomain and range any RDF resource of type

OWL:Class. It encodes which variables belong to a given domain.

• TBM:hasFocalElement with domain TBM:Potential and range TBM:FocalElement.

Allows to link a potential with all its Focal Elements.
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• TBM:hasConfiguration has a domain of TBM:FocalElement and range TBM:Confi-

guration. It links the Focal Elements with its Configurations.

• TBM:hasElement domain is TBM:Configuration and range is any OWL:NamedIndi-

vidual of a type specified in the TBM:VarDomain. It encodes the actual individuals

that belong to a configuration.

4.1.3 Data Properties

There is only one Data Property in the ontology.

• TBM:hasMass has a domain of TBM:FocalElement and a range of xsd:double. It

represents the belief that a given Focal Element holds the answer. All of the masses

of the Focal Elements of a Potential must add up to 1.

The knowledge of the domain must then be encoded in OWL triples and using the

TBM ontology. A simplification of the graph for the potential of player one can be seen

in Figure1.1.

Some of the simplifications for space and clarity were: the types of some of the nodes,

the domain node of the Potential and the Focal Elements, and the representation of the

frame of discernment (Ω), which in reality should be several configurations, one for each

possible combination of the instances of the variables in the domain. The focal elements

and configurations are modelled as B-nodes as it is not necessary to name them. Player

two’s potential has a similar graph but the domain is different.

Under this paradigm, a problem domain would define its own concepts and use poten-

tials from the TBM ontology to represent a specific piece of knowledge. For example

for a multimedia surveillance ontology, the variable would be the classes of events and

objects. The visual analysis would feed the knowledge base with the levels of confidence

of the detection task (i.e. a given blob is a person with a confidence of 70%).
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Fig. 4.1: TBM graph of the knowledge from player one

4.2 TBM Reasoner for the Semantic Web

Our second contribution consists of the actual engine to perform the reasoning using

the TBM. It consists of implementations for the semantic web of the different opera-

tions and functions defined in the TBM applied to ontologies and using the ontology

defined previously. The mathematical definitions of these operations were presented in

Section 2.3.

As seen in [57], implementations of the algorithms depend largely on the data struc-

tures used to represent the potentials. The most computationally efficient (but not

memory efficient) implementation being the bitset [24].

The main idea behind representing the focal elements as bitsets is that all the possible

configurations have a specific bit in a globally ordered bitset. If for example we had a

domain with two variables {A,B}, and A had instances {A′, A′′}, and B had instances
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{B′, B′′, B′′′}. Then the ordering of the bitset could be:

{{A′, B′}, {A′, B′′}, {A′, B′′′}, {A′′, B′}, {A′′, B′′}, {A′′, B′′′}}

So if you wanted to represent for example a focal element with the configurations

{{A′, B′′}, {A′, B′′′}, {A′′, B′′′}}, the bitset would be 011001.

The main advantage of this approach is that the operations can be very efficiently

implemented using logical bitwise operations. For example the combination of two focal

elements can be performed with a bitwise “and”. However, The focal elements are always

the same size regardless of the number of configurations present in it, and this size grows

exponentially with each new instance.

Other previous proposals include List Representation, Disjunctive or Conjunctive

Normal Form. We propose a novel way to use graphs to represent the focal elements and

potentials. As such, we had to devise new algorithms for the TBM operations and the

graph representation of potentials. We now proceed to present our contribution.

The current implementation of the reasoner is achieved in Java using the Jena

Reasoner API [58] for ontologies. The source code is hosted on Github at https:

//github.com/CesarPantoja/TBM. We will continue with the example from the pre-

vious section to introduce the different operations in the reasoner.

4.2.1 Extension

The Extension operation takes a reference to a Focal Element which is in a given domain,

and a target domain. It returns a new Focal Element which takes all the configurations

in the given Focal Element and adds instances of the variables not present in the original

Domain. The pseudo-code of this method is presented in Algorithm 1. It works by first

cloning the input Focal Element and setting its Domain to the input Domain on lines

1 to 3. If there are no differences between the input Domain and the Focal Element
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Domain’s variables, the clone is returned. Otherwise for each different variable, on line

6, the result Focal Element’s Configurations are replaced with the Cartesian product of

the Configurations with the instances of the new Variable.

Algorithm 1 extension(fe, d)

Require: {fe rdf:type TBM:FocalElement}
Require: {d rdf:type TBM:Domain}
Require: fe.domain ⊆ d
1: diff ← d − fe.domain
2: result ← clone fe
3: result.domain ← d
4: if diff <> � then
5: for var ∈ diff do
6: result.configs ← result.configs ×{x|x rdf:type var}
7: end for
8: end if
9: return result

When the two Domains are not different, this method is of time complexity O(m×n)

where n is the number variables in the Domain and m is the number of Configurations.

This is because the clone operation still has to go through all the elements and create

new relations with the new Configurations. If the two Domains are different, the time

complexity is O(n × m) where n is the number of different instances in the different

variables and o is the number of Elements in all Configurations of the Focal Element.

4.2.2 Combination

The next operation is Dempster’s Rule of Combination, which is the most complex oper-

ation of the reasoner. It’s input are two potentials and it returns a combined potential

which represents the combined belief. The combination can happen between potentials

in different domains, as we also apply the fusion operation (extend the two potentials

with the combined domain). In our example, we want to combine the knowledge of

the first player which is in the domain {:Murderer, :Room} with the knowledge of the

second player in the domain {:Murderer, :Weapon}. The combination will produce a

new Potential which includes the knowledge from both potentials. The idea is to take
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Fig. 4.2: Combination of the knowledge of the two players

the two Potentials’ graphs and create a new one as seen on Figure 4.2.

We must clarify again here that we are working under the close world assumption,

which is why on the case of a conflict, the other masses are normalised with the conflict

so the potential’s masses add up to 1 again. Algorithm 2 presents the pseudo-code for

this operation.

In this implementation, on lines 1 to 11, we first extend all the Focal Elements in the

two Potentials to have the same variables (fusion operation), effectively placing them in

the same Domain. Then, both collections of extended Focal Elements are explored with

two nested loops (lines 13 and 14). In the inner loop, a new Focal Element is created in

line 15 and the Configurations of the Focal Elements are compared (lines 17 to 23). If the

two Configurations have the same elements, they are added to the result Focal Element

(Which is done in line 20). Since we are working under the closed world assumption, if

none of the Configurations are equal, the combined Mass is added to the conflict (line

25), otherwise it is set on the result Focal Element and added to the result Potential
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Algorithm 2 combine(p1, p2)

Require: {p1, p2 rdf:type TBM:Potential}
1: result ← new Potential
2: comb domain ← p1.domain ∪ p2.domain
3: result.domain ← comb domain
4: ext fe1 ← {}
5: for fe ∈ p1.f elements do
6: ext fe1 ← ext fe1 ∪ extend(fe, comb domain)
7: end for
8: ext fe2 ← {}
9: for fe ∈ p2.f elements do

10: ext fe2 ← ext fe2 ∪ extend(fe, comb domain)
11: end for
12: conflict ← 0
13: for fe1 ∈ ext fe1 do
14: for fe2 ∈ ext fe2 do
15: res fe ← new TBM:FocalElement

16: res fe.domain = comb domain
17: for c1 ∈ fe1.configs do
18: for c2 ∈ fe2.configs do
19: if c1 = c2 then
20: res fe.configs ← res fe.configs ∪ c1
21: end if
22: end for
23: end for
24: if res fe.configs = � then
25: conflict ← conflict+(fe1.mass ∗ fe2.mass)
26: else
27: res fe.mass ← fe1.mass ∗ fe2.mass
28: result.f elements ← result.f elements ∪ res fe
29: end if
30: end for
31: end for
32: if conflict> 0 then
33: for fe ∈ result.f elements do
34: fe.mass ← fe.mass

1−conflict
35: end for
36: end if
37: return result

(lines 27 and 28). At the end, if there is a conflict, all of the Masses are normalised to

add up to 1 again on lines 32 to 36.

Time complexity for this operation is O(n ×m), where n and m are the total num-
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ber of configurations in the extended Focal Elements of both potentials. In our case,

the combination of the two Potentials results in a Potential with four Focal Elements:

{{:ColMustard, :Kitchen, :CandleStick}} with a Belief Mass of 0.64, {{:ColMustard,

:Kitchen, :Dagger}{:ColMustard, :Kitchen, :CandleStick}} with a Belief Mass

of 0.16, {{:ColMustard, :DiningRoom, :CandleStick}{:ColMustard, :Kitchen, -

:CandleStick}} with a Belief Mass of 0.16, and {Ω} with a Belief Mass of 0.04.

4.2.3 Belief

We can at any point in time interrogate a Potential to assess our knowledge. The Belief

Functions allow us to do just that. The first such function is Belief, which we can

know intuitively to be the amount of support that a subset of Ω holds the truth. The

pseudo-code for this function is presented in Algorithm 3

Algorithm 3 belief(p, query fe)

Require: {p rdf:type TBM:Potential}
Require: {query fe rdf:type TBM:FocalElement}
Require: query fe.domain ⊆ p.domain
1: belief ← 0
2: for fe ∈ p.f elements do
3: if fe.configs = query fe.configs then
4: belief ← belief + fe.mass
5: end if
6: end for
7: return belief

This algorithm works simply by comparing the input Focal Element with the Poten-

tial’s Focal Elements. The input Focal Element’s Domain must be a subset or equal to

the Potential’s Domain. If any of the Focal Elements have the same elements (not includ-

ing instances of variables not in the input’s Domain), the mass is added to the overall

Belief which is returned at the end. The time complexity of this algorithm is O(n) where

n is the number of total configurations in the Potential. In our example, we might be

interested in knowing the belief that {:ColMustard, :Kitchen, :CandleStick} is the

solution to our problem. In this case, there is only one Focal Element which supports
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this hypothesis and has a Belief of 0.64, value which is returned by this operation.

4.2.4 Plausibility

This is the amount of support to a given hypothesis, including the Belief of Focal Ele-

ments which support it at least partially. Algorithm 4 presents the pseudo-code for this

operation.

Algorithm 4 plausibility(p, query fe)

Require: {p rdf:type TBM:Potential}
Require: {query fe rdf:type TBM:FocalElement}
Ensure: query fe.domain ⊆ p.domain
1: pls ← 0
2: for fe ∈ p.f elements do
3: for conf ∈ fe.configs do
4: for conf query ∈ query fe.configs do
5: if conf query ⊆ conf then
6: pls ← pls + fe.mass
7: end if
8: end for
9: end for

10: end for
11: return pls

In this algorithm, all the Configurations are compared, and if any of the query Con-

figuration is a subset of one of the Potential’s Configuration, the mass of its Focal

Element is added to the variable pls, which is returned at the end. The time complexity

of this algorithm is also O(n) where n is the total number of Configurations. Going

back to our example, the plausibility that the hypothesis {:ColMustard, :Kitchen,

:CandleStick} is the solution, is equal to 1. This is because all of the Focal Elements

support it at least partially.

4.2.5 Doubt and Ignorance

The remaining two functions are defined in terms of the previous two. Doubt is the

belief which will never be assigned to the hypothesis. It is defined as the complement
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of the plausibility, or subtracting the plausibility from 1. Ignorance is belief which is

not assigned exclusively to a hypothesis, in which case we can not distinguish which

from the other hypothesis is the correct one. It is the difference between the plausibility

and the belief. In our example, the Doubt and Ignorance of {:ColMustard, :Kitchen,

:CandleStick} are 0 and 0.36 respectively.

Another of our contributions is the implementations of the TBM belief functions

(belief, plausibility, ignorance, and doubt) into Jena’s SPARQL engine. This means

that there are two ways to access the belief operations: programmatically through the

Java API or as functions in SPARQL. In the Riot Detection task, imagine we have a

knowledge base for CCTV knowledge, and we want to retrieve all the shots where the

belief that there is a riot is greater than 80%. An example of a very simple SPARQL

query to achieve this could be:

PREFIX : <http://example.org/CCTV#>

PREFIX TBM: <http://mmv.eecs.qmul.ac.uk/TBM.owl#>

SELECT ?shot

WHERE {

?shot a :Shot .

FILTER(TBM:bel(?shot, :Riot) > 0.8)

}

Empirically we can see that the most complex operation is the Combination, and

that one of the main factors affecting the complexity is the number of Focal Elements,

because for each one of them, there is minimum one Configuration with one Element,

and calculations have to be performed for each one of them. Our performance evaluation

objectively confirms this.
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4.2.6 Design and Architecture

The implementation of the reasoner follows closely that of the rest of Jena. In Jena, a

graph is called a model. There are different kinds of models, but in Jena they are all

represented by the Model interface. Jena, and subsequently our reasoner, follows mainly

two design patterns:

• Models are created using the Factory pattern [59] through the classes ModelFactory

in Jena and TBMModelFactory in the TBM reasoner. In the Factory pattern,

objects of different classes are created using some Factory methods without having

to know beforehand the type of the object you want to create. The responsibil-

ity of the Factory classes mentioned before is to create different kinds of mod-

els. For example Jena’s ModelFactory, creates memory or TDB backed models,

with or without inference, RDFs or OWL, and more. TBMModelFactory creates

a TBMModel, but this could be extended to create TBM reasoners with different

capabilities in the future.

• Most of the other data model classes follow the Bridge design pattern [59]. Under

this pattern, the Class itself is the abstraction and what it does is the implemen-

tation. The abstraction and the implementation are then decoupled, generally by

interfaces or abstract classes and implementations of those interfaces. This allows

greater flexibility when there are multiple implementations of the same abstrac-

tion and/or when the implementation varies frequently. For example, in Jena,

all models are represented by the Model interface, and different kinds of models

implement this interface. This means that the abstraction of “model” is decoupled

from the actual implementation, allowing us in our case to create a type of model

for the TBM. Although in the TBM reasoner there is only one implementation for

the classes, we remained within this design pattern to maintain consistency with

Jena’s architecture and to allow easy extensibility in the future. In the TBM rea-

soner, TBMModel is an interface (which extends from Jena’s Model interface), and
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Fig. 4.3: Jena’s Reasoner Model Architecture [3]

the actual implementation of the model is done in the class TBMModellImpl. The

same applies for the other classes like TBMPotential, TBMVarDomain, and son on.

Another characteristic of Jena’s architecture is the nesting of models. This means

that models can be based on models and can serve as bases for other models. For

reasoners this means that the model they create appears to contain the inferred tuples

along with the tuples asserted in the base model, and it can be queried in the same way

as any other model. Figure 4.3 presents how this is achieved in a particular model.

For the TBM reasoner, this means that it can use any other type of model as a base,

and the reasoning would be performed on all the tuples (including the inferred ones).

And it can also serve as a base for any other kind of model and the reasoning of the

other model would be performed including the TBM inferred tuples. This allows us to

for example use the TBM reasoner on a model where new class assertions have been

inferred through OWL, or use an RDFs reasoner on a model where TBM tuples have
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been inferred.

The source code is hosted on Github in a public repository at https://github.com

/CesarPantoja/TBM and can be freely cloned or downloaded.

4.3 Parallel Heuristics for the Semantic TBM Reasoning

Engine

One of the main drawbacks of the TBM is its complexity [24] because of the great number

of operations that have to be performed, but it is dependant on the data structure

used. The most computationally efficient method for representing the Focal Elements

are the bit sets [24]. But great computational performance is achieved in exchange of

a great memory footprint. For example, it would take 2N bits to store a single Focal

Element in a domain of N binary (with two instances) variables, no matter the number

of Configurations in the given Focal Element.

In our Riot Detection Task, we have 6 binary Variables, one for each concept. This

means that a focal element would take 26 = 64 bits (8 bytes). If we take into account

that the initial Potential for a frame has two Focal Elements, and that the number

of Focal Elements grows exponentially every time we combine the Potential of a new

concept, after combining 5 Potentials we have that a single Potential could be as much

as 8 × 25 = 256 MB. And furthermore, if we take into account that a single CCTV

shot can have potentially thousands of frames, we quickly realise the impracticality of

modelling our problem as binary sets. A second drawback to this approach is the lack

of interoperability with any other system.

Modelling the problem in a Semantic Repository allows us to use Jena’s indexing

capabilities. The key is the URL of the relevant Resource and the repository takes

care of the indexing for fast access of the tuples. But this then leads to an explosion

in the number of computations that must be performed, admittedly the computations
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themselves are simple and they can be performed independently, which is why we propose

a parallel implementation of the Combination operation of the TBM. We use a fork-join

model with a work-stealing pool to ensure maximum utilisation of the CPU. In basic

terms, a work stealing pool consists of a thread queue for each processor in the system.

Each thread can itself spawn new threads which are queued in the processor’s queue.

When one of the processors finishes with its queue, it can “steal” work from the other

processors’ queues [60].

The goal is to parallelise as many operations as possible, and this is achieved in

two stages. The first stage is the combination of the Focal Elements. In this stage,

all the Focal Elements must be compared, for each possible combination of pair Focal

Elements, a new thread is created. Suppose we have potential P ′ with focal elements

{F1′, F2′, F3′, ..., Fn′} and potential P ′′ with Focal Elements {F1′′, F2′′, F3′′, ..., Fn′′},

then the threads would fork as combining the following focal elements:

{F1′, F1′′}, {F1′, F2′′}, {F1′, F3′′}, ..., {Fn′, F (n− 1)′′}, {Fn′, Fn′′}

The second part is the combination of the Configurations inside each Focal Element

combination thread. For example, if we had Focal Element F ′ with Configurations

{C1′, C2′, C3′, ..., Cn′}, Focal Element F ′′ with Configurations {C1′′, C2′′, C3′′, ..., Cn′′},

then there would be one thread for each pair like so:

{C1′, C1′′}, {C1′, C2′′}, {C1′, C3′′}, ..., {Cn′, C(n− 1)′′}, {Cn′, Cn′′}

To the best of our knowledge, it is the first time that parallel heuristics have been

proposed for the combination operation of the TBM. The parallelisation of the combi-

nation operation leads to another set of things to consider, such as data synchronisation

issues and other aspects inherent to parallel computing. For this reason, in all the stages,

appropriate locks are used to ensure the synchronous access to the Conflict variable and
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the data-store from all the threads. We also try to minimise the access to disk in the case

of a TDB-backed data stores by caching and performing the operations in memory rather

than going to disk every time a Resource is needed. This also ensures the transactional

integrity of the data base. In the end, the generated tuples are flushed to disk.

To understand the proposed parallelisation method, let us break down the Combina-

tion operation in its logical blocks:

4.3.1 Initialisation

The first part is trivial and does not need parallelisation. This part creates the result

Potential (which will be returned by the Combination operation) and extends in memory

the focal elements of the two Potentials being combined. Also the Conflict variable is

initialised. In Algorithm 5, it corresponds to lines 1 to 12.

4.3.2 Combination of Focal Elements

Here we use the term “Combination” in its algebraic meaning, as the Focal Elements

of both Potentials have to be combined in order for its Configurations to be compared.

This can be seen in the nested loops in lines 13 and 14 of Algorithm 5. This is the first

part were the execution is forked. A new thread is added to the execution queue and

the two Focal Elements being combined passed as parameters.

4.3.3 Combination of Configurations

This corresponds to the execution of each Focal Element thread and can be seen in

Algorithm 6. First a new Focal Element is created. Then, all the Configurations in both

Focal Elements are combined (in its algebraic meaning, as in each possible combination

of its configurations gets combined) and this thread, on a new work-stealing queue, forks

again, one thread per pair of Configurations. After all the threads have been queued, the
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Algorithm 5 combine(p1, p2)

Require: {p1, p2 rdf:type TBM:Potential}
1: result ← new TBM:Potential

2: comb domain ← p1.domain ∪ p2.domain
3: result.domain ← comb domain
4: ext fe1 ← {}
5: for fe ∈ p1.f elements do
6: ext fe1 ← ext fe1 ∪ extend(fe, comb domain)
7: end for
8: ext fe2 ← {}
9: for fe ∈ p2.f elements do

10: ext fe2 ← ext fe2 ∪ extend(fe, comb domain)
11: end for
12: conflict ← 0
13: for fe1 ∈ ext fe1 do
14: for fe2 ∈ ext fe2 do
15: launch thread(combineFElements(fe1, fe2, comb domain, conflict, result))
16: end for
17: end for
18: wait for all threads to finish
19: if conflict> 0 then
20: for fe ∈ result.f elements do
21: fe.mass ← fe.mass

1−conflict
22: end for
23: end if
24: return result

forking thread joins with the forked thread, meaning that it awaits for all the subthreads

launched by this thread to complete. After successfully joining, a check is performed to

see if the result Focal Element has no configurations. If this is the case, it means that

there is a Conflict and the conflicting mass is accumulated. However if it is not empty,

the resulting Focal Element is added to the result Potential and its mass is updated.

4.3.4 Comparison of Elements in the Configurations

This is the last execution level. It corresponds to the execution of the thread of each

Configurations pair. This is were the data is accessed and the actual comparisons are

performed so no further forking is performed. Pseudo-code for this thread can be seen in

Algorithm 7. In this algorithm, the comparison is quite expensive as the elements of the
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Algorithm 6 combineFElements(fe1, fe2, comb domain, conflict, comb potential)

Require: {fe1, fe2 rdf:type TBM:FocalElement}
Require: {comb domain rdf:type TBM:Domain}
1: res fe ← new TBM:FocalElement

2: res fe.domain = comb domain
3: for c1 ∈ fe1.configs do
4: for c2 ∈ fe2.configs do
5: launch thread(combineConfigs(c1, c2))
6: end for
7: end for
8: wait for all threads to finish
9: if res fe.configs = � then

10: conflict ← conflict+(fe1.mass ∗ fe2.mass)
11: else
12: res fe.mass ← fe1.mass ∗ fe2.mass
13: comb potential.f elements ← comb potential.f elements ∪ res fe
14: end if

Algorithm 7 combineConfigs(c1, c2, comb fe)

Require: {c1, c2 rdf:type TBM:Configuration}
1: if c1 = c2 then
2: comb fe.configs ← comb fe.configs ∪ c1
3: end if

two configurations are compared until one difference is found. If there are no differences,

all the configurations are compared. If the configurations are the same, a clone of the

configuration is created and added to the result Focal Element and the thread terminates.

This cloning operation is also expensive as it involves iterating through all the Elements,

creating a copy and appending it to the resulting Focal Element.

4.3.5 Finalisation

The main thread then joins with the Focal Elements threads. If there was a conflict,

normalise the masses of the Focal Elements with the conflict so they add up to 1. The

Focal Elements are then committed to disk and the result Potential returned.
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4.3.6 Concluding Summary

We have presented the design and development of a Semantic Web framework which

uses the TBM to model and reason with imprecise and uncertain information. This

framework consists first of an Ontology with the main concepts present in the TBM and

the TBM operations. Each Domain encodes the knowledge using the TBM Ontology,

asserting and combining the different beliefs, and then uses the operations to assess the

combined knowledge of the system.

In the next chapter we will test this framework in the riot detection task. Different a

priori probabilities of different concepts will be combined to reach a common knowledge

of the domain.

Using bit-set representation of the potentials is infeasible for the size of problem

we are dealing with. In this regard, we have also proposed a new way to represent

Potentials and some parallel heuristics for the TBM to make use of multi-core systems

popular today. As we will see in the next chapter the implementation is promising as it

scales well as you add more resources, but further improvement is needed.
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Chapter 5

Framework Evaluation

We validated the proposed framework in two ways. First in its performance, as it is

clear that with the kind of problems we are dealing, we can easily achieve Potentials

with thousands of Focal Elements and Configurations. The second validation was its

usefulness in detecting riots given the known presence of other events that entail such

concept. We present the results of the validations next.

5.1 Performance Evaluation

The performance tests we carried out are based on the test bed presented in [1]. The tests

are aimed at measuring the execution time and memory consumption of the Combination

operation, with different configurations of Frame of Discernment and randomly generated

Potentials of different characteristics. Namely:

• Number of Variables

– 2 to 12 variables

– 2 realisations per variable
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– 500 focal elements per potential

– 100 configurations per focal element

• Number of instances per Variable

– 2 variables

– 500 to 1000 realisations per variable

– 100 focal elements per potential

– 100 configurations per focal element

• Number of Focal Elements per Potential

– 2 variables

– 500 realisations per variable

– 100 to 463 focal elements per potential

– 100 configurations per focal element

• Number of Configurations per Focal Element

– 2 variables

– 500 realisations per variable

– 200 focal elements per potential

– 100 to 250 configurations per focal element

Memory was not considered in the tests as it is tightly tied to the Jena framework. In

our tests, we used a Memory-backed repository, so it is expected that memory usage will

be high in exchange of fast access to the triples. Jena also allows the use of other forms of

persistence, each with different benefits and drawbacks. There are extensive evaluations
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of Jena’s capabilities with different configurations. Exhaustive tests and comparison of

Jena’s performance can be seen in [61] [62] [63] and [64].

Only the performance of the combination operation was considered, as it is the most

complex operation of the reasoner by a large margin. For this reason, we also did not test

the SPARQL operations, as it only includes the belief functions and not the combination

operation.

To test the scalability of the system, three tests were performed for each variation.

Each with different number of CPU cores enabled, on identical machines: server PCs

with 2 × 6 Core Intel Xeon E5645 (Westmere) processors, and Scientific Linux. The

three test were with 6, 8, and the last one the full 12 cores enabled.

Next we show the results of the performance evaluation.

In Figure 5.1 we see the results of varying the number of variables in the combination

operation. We see it actually has a higher execution time when there are fewer variables.

When there are more variables, execution times are reduced until they reach a more or

less stable execution time and adding more variables does not change this much. This

is due to the fact that, in this particular test the potentials are generated randomly.

This causes that when there are less variables, the Elements in the Configurations are

more likely to be equal. This in turn triggers the clone operation which is one of the

more resource intensive operations. When two Configurations do not overlap, this step

is skipped.

Figure 5.2 shows the impact of increasing the number of instances per variable. We

can see that although increasing the number of cores does reduce the execution time,

increasing the number of instances has no impact on it. This is due to the fact that

the number of instances a variable has, does not affect in any way the size of the graph

generated for each potential. Let us illustrate this with the two extreme cases in this

test: 2 Variables, 100 Focal Elements, 100 Configurations per Focal Element, but one

has 500 Instances per Variable and the other has 1000. In the two cases, a graph will be
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Fig. 5.1: Number of variables

Fig. 5.2: Number of instances

generated with the exact same characteristics: Potentials with 100 Focal Elements, each

Focal Element with 100 Configurations, and each Configuration with 2 Elements (one

for each Variable). The difference will be that there are more options for selecting the 2

Elements in the Configurations, but this has no impact when traversing the Graph for

the Combination Operation.
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Fig. 5.3: Number of focal elements

Figure 5.3 presents the execution times when the number of Focal Elements is increased.

We see that indeed it leads to an increased execution time. This is because this has a

direct impact on the size of the graph generated for each Potential, and as we saw in

Chapter 4, this is the biggest factor for the execution time.

Increasing the number of Configurations also leads to an increased execution time,

as seen in Figure 5.4. As with the Focal Elements, the number of Configurations have a

direct impact on the size of the graph of the Potential.

5.2 Usefulness Validation

To test the usefulness of the proposed approaches in detecting riots in CCTV scenes, we

carried out experiments in an actual CCTV dataset with the presence of riots. The tests

consisted of using the approach proposed in Chapter 3 with the Framework proposed in

Chapter 4. We will now describe in detail the dataset used as well as the setup used for

the experiments.
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Fig. 5.4: Number of configurations

5.2.1 Riot Detection Dataset

To the best of our knowledge, there is no dataset in the literature for the task of Riot

detection. For this reason, we created our own Riot detection dataset. The dataset

consists of 148 videos collected by the London MET police after the London Riots in

2011 as evidence for the proceeding police and legal cases. The dataset consists of a

total of 1,562,516 frames, taken from different CCTV cameras in public areas around

the London borough of Hackney. The videos where manually annotated for the presence

of different concepts in each frame. The ground truth annotation was performed using

the ViperGT annotation tool [65]. Six concepts in total where annotated:

• Running: Whenever there was someone running in the scene.

• Face Covered: This included people with the face covered with the intention

of concealing their identity with what might include scarves, bandannas, hooded

sweatshirts, and similar.

• Crowd: For the purposes of this task, a crowd is defined as a group of 5 or more

people.
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• Fire: Presence of fire in the scene.

• Vandalism: This is defined as the deliberate destruction or damage of public or

private property.

• Riot: A riot could be defined as a crowd committing acts of vandalism.

Only if the concept is present in the frame, at least partially, it is annotated as being

present. For example, if the camera is recording a riot but it zooms in to a small group

of people within the riot, then the riot concept is no longer present as there is no longer

a crowd in the scene.

An example of a frame from the dataset can be seen in Figure 5.5. Faces have

been blurred to protect the privacy of the people involved. On this frame we can see an

example of a frame that would be positive for “Vandalism”, “Face Covered”, and “Riot”.

More information on the annotations can be found in Appendix B.

The videos where acquired through the MET Police as part of the ongoing collab-

oration in the LASIE project [66] with the MMV Lab at QMUL. Appropriate data

protection measures have been implemented and the videos have only been used for

academic purposes.

This also constitutes our final contribution, as we are making the ground truth anno-

tations for this dataset publicly available. It is available to download at http://ww

w.eecs.qmul.ac.uk/~chps3/riotDetectionDataset.zip. Due to privacy and ethical

reasons, only the ground truth annotations can be share at this point.

5.2.2 Experimental Setup

To be able to use the TBM Reasoner for the Semantic Web, we must first create (or

pick an existing) ontology of the domain we are working with. In our case, we created a

CCTV ontology with the relevant concepts. A graphical representation of the ontology
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Fig. 5.5: Example of “Vandalism” and “Face Covered” from the dataset

can be seen in figure 5.6.

The ontology URI is http://mmv.eecs.qmul.ac.uk/ontologies/riotDetection.

It is available to download at http://www.eecs.qmul.ac.uk/~chps3/riotDetection.

owl. The concepts present in the ontology are (were riot: is the prefix for the names-

pace):

• riot:MediaItem This concept represents a single CCTV video.

• riot:Frame This is a single frame of a CCTV video.

• riot:Concept These are the different concepts present in our domain. Each of

the subclasess have two instances, one to indicate the presence of the concept and

one to indicate the absence of it. For example, the concept riot:Running has the

instances riot:running and riot:no running.

• TBM:Potential This is a reference to the concept in the TBM ontology.
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Fig. 5.6: Riot Detection Ontology

The properties in the ontology are:

• riot:hasFrameNumber This is the only Data Property. Its domain is riot:Frame,

and its range is xsd:unsignedLong. This represents the frame number of a given

Frame.

• riot:hasFrame The domain is riot:MediaItem and the range riot:Frame. This

links the CCTV videos and its Frames.

• riot:hasGlobalPotential The domain is riot:Frame or riot:Concept and the

range is TBM:Potential. This concept links the Concepts (for the training phase)

or the Frames (for the reasoning phase) with their respective global potentials, as

explained in Chapter 3.

Following the approach presented in Chapter 3, we randomly selected roughly 30% of

the annotations (474,035) to train the model. Although this 30/70 split was arbitrary, it
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Fig. 5.7: Example resulting Riot graph

was done based on previous experiments with Machine Learning. The training consists

of first calculating the probabilities of each pair of concepts. Then, for each concept, the

global potential is calculated by increasingly combining every other concept.

Once the global potentials for each concept have been computed, the actual popu-

lation of the Knowledge Base takes place. For the remaining 70% of frames, for each

concept present in the frame, the global potential of that concept is combined with the

global potential of that frame, starting with the potential for total ignorance (Ω). At

the end of this step, we end up with a graph similar to the one presented in 5.7. When

populating the Knowledge Base, the concept of Riot is left out, expecting its value to

be populated from the probabilities of the other concepts. We then compare the belief

of Riot with the actual presence of Riot from the GT.

5.2.3 Performance Metrics

At the end of the process, we have a belief from 0 to 1 that the given frame has Riot,

given the presence (or absence) of the other concepts. To evaluate the effectiveness of
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our approach, we convert this problem to a classification problem, where beliefs above a

certain threshold are considered as belonging to the riot class, and vice versa.

For this, we use the precision/recall metric. Precision is the ratio of true positives

in the result. A precision of 1.0 would mean that all of the classified elements are true

positives, but there could be other misclassified documents.

On the other hand, recall is the ratio of false negatives in the classified items. A

recall of 1.0 means that all of the relevant elements where correctly classified, but other

non-relevant documents could have also been retrieved.

There is often an inverse relation between these two measures, when you increase

one at the cost of reducing the other. In our evaluation, we could increase the precision

by increasing the threshold (thus classifying less elements as riot), but this leads to a

reduced recall by leaving some correct elements out.

By contrast, recall could be increased by reducing the threshold, including more

elements in the classification, but this would include also other non-relevant elements

(reducing precision).

This measures are commonly used together to measure the overall performance of an

information retrieval or classification approach, where either values for one measure are

compared for a fixed level at the other measure (e.g. precision at a recall level of 0.75).

For our experiments, we raised the value of the threshold by 0.1 each time, starting form

0.40.

However, the value of this approach resides more in the ability to give a value of the

belief or confidence that a given frame has riot. The evaluation will consider this as well.

Note that given the large nature of the data being used, it is evident that it can not

fit on the memory of a single computer. Because of this, we used a TDB backed storage,

which would limit the size of the data only to the size of the computer’s disk. We also

limited the processing to every 12 frames (every half a second in a standard 24fps video,
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Fig. 5.8: Precision-Recall

or every second in a 12fps video).

5.2.4 Results

Figure 5.8 presents the results of the evaluation. As a starting point, we can see that

even at low threshold levels, the recall is very good. This means that a majority of the

frames that are classified in the ground truth as containing Riots, are correctly identified.

However we can also see that the precision is not very good. This means that the

approach produces a lot of false positives. This is most likely due to the high presence

of other concepts that highly entail the presence or Riot in the frame. And because

the strength of this approach is the construction of a belief given the presence of other

concepts, there will always be a certain belief of the presence of the concepts. Another

possibility is that since we are using the closed world assumption, all of the masses get

normalised in case of a conflict. This means that it is possible that some of the belief

masses are not that high, but since they get normalised, their value gets increased so the

mass of the potential adds up to 1 again.
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Fig. 5.9: Belief of Riot in a segment with concepts which entail Riot

Fig. 5.10: Frame of a segment with concepts which entail Riot

For this, let us look into more detail how the framework behaves when there are

concepts which highly entail the presence of Riot, and when there are not.
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Fig. 5.11: Belief of Riot in a segment without concepts which entail Riot

Figure 5.9 presents the belief of Riot, against the actual annotated value from the

ground truth in a video segment which has the presence of crowd, running, and people

with the face covered. Concepts which highly entail the presence of Riot as seen in the

probability matrix presented in Chapter 3. A screen shot of the video can be seen on

Figure 5.10. Figure 5.11 on the other hand, presents the belief of Riot against the actual

value from the ground truth in a segment without the presence of concepts which highly

entail the presence of Riots. A screen shot of the video can be seen on Figure 5.12.

On these charts we can see two things: the first one is that in effect when there are

no concepts that highly entail the Riot concept, there is some belief in the system about

the presence of Riot, but it is not as high as when there are other concepts that highly

entail Riot. The second thing is that there are certain spikes in the belief that there is

riot when more concepts that highly entail it come into the scene. This results allow us

to say that this is a valid approach worth exploring further.
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Fig. 5.12: Frame of a segment without concepts which entail Riot

5.3 Concluding Summary

On this Chapter, we have evaluated the proposed framework in two ways: its ability

to work with large datasets and the correctness of the results it produces. Both tests

produce promising results, but show that there is still room for improvement.

On the performance evaluation we can see that the system does not change its runtime

significantly when some parameters are varied, but it does run at very high times with

very large inputs for others. However, it is also clear that it scales very well with more

resources. This last part is very promising as computers become more powerful but it also

opens the door to try and apply other parallel approaches to the problem. Apache Spark,

Map-Reduce, and General Processing Graphical Processing Unit (GPGPU) computing

are good candidates for this, as all of them distribute the processing over many compute

units.

A data set consisting of more that 1.5 million frames with annotations for 6 concepts
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related to riot detection was developed for the Theoretical Validation. This data set is an

important contribution to the community and we looking forward on how the research

community will use it .

The Theoretical validation shows that the combination of the proposed approaches

is able to detect accurately the presence of riots, however at the cost of a lot of false

positives. Future work on this aspect should be focused on lowering the false positive

count, or using the belief mass produced by the framework in a more meaningful way.

For example, although a frame might not contain riot directly, a high belief of riot might

point to a high risk of there being a riot temporally or spatially near.
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Chapter 6

Conclusions

We have developed and implemented a framework to infer the presence of Riots in

CCTV recordings. For this we implemented a TBM semantic reasoner. This has the

advantages of being large-scale ready, benefiting from an active research community, and

interoperability with other semantic web data sources.

Our framework deals with imprecise and uncertain information using the TBM. We

apply this Framework to the main task of this work, which is to infer the presence of

Riot in CCTV recordings. Next, the contributions are listed in the order of the Chapters

they were introduced.

In Chapter 2, we presented a review of different domains, all relevant for this research.

Namely: The Semantic Web and its surveillance applications, previous attempts at rep-

resenting and reasoning on the Semantic Web with imprecise and uncertain information,

the Transferable Belief Model and its previous implementations. This served as solid

base on which to lay the following chapters, which presented the main body of research.

Chapter 3 proposes a method for combining traditional Bayesian a priory probabili-

ties with the TBM. This allows us to take advantage of not only the case when a priori

probabilities are available, but also when information is coming from multiple hetero-
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geneous and potentially unreliable sensors. It is done in two stages, the first one is the

training where the probabilities are computed and the global Potentials for each concept

constructed. Once this has been done, we can apply this knowledge to available data.

This could be from live sensors or historical data. Every time we learn a concept that

is present in the data, we include the knowledge of the presence not only of that con-

cept but also all the concepts it entails with its respective probabilities. We illustrated

our contribution with the riot detection case, where a priori probabilities for multiple

concepts are available. These probabilities are combined using the TBM and then the

model queried about the knowledge of the presence of riots in a given instant.

Three of the contributions of this this thesis are presented in Chapter 4, namely the

TBM Ontology, the TBM Reasoner, and the parallel heuristics of the TBM operations.

They form the bulk of the TBM Semantic Web framework presented in this thesis. The

Framework is developed in Java and used the Jena API for Ontologies. The operations of

the framework can be accessed through the Java API or through SPARQL queries. This

framework allows us to represent and reason with imprecise and uncertain information

on the semantic web. The parallel heuristics are crucial to this, as they allow the system

to be scalable (use more computing power as it becomes available) and to work on inputs

of thousands of records.

Chapter 5, presents the evaluation of the Framework together with the last con-

tribution, which is the ground truth annotations of actual CCTV recordings from the

2011 London riots. The annotations consists of 1,562,516 frames on 148 videos and can

be downloaded freely from http://www.eecs.qmul.ac.uk/~chps3/riotDetection.ow

l. The evaluation consisted in a performance and scalability test, to test the feasibility

of applying the framework on large datasets, as well as a usefulness validation of the

approach presented in Chapter 3 using the proposed framework applied to the task of

Riot detection. The evaluation shows two things: first, that the TBM reasoner for the

semantic web works. Second, that the proposed approach is able to detect Riots in

CCTV recordings.
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Our performance tests confirm the high computational cost of the combination oper-

ation when indexed collections are used to represent the Focal Elements, and that the

number of Focal Elements and Configurations have the biggest impact on the computa-

tion time.

Our approach does have some long computation times. For example, for 460 Focal

Elements on a 12 cores machine, the combination took about 900 seconds or 15 minutes.

Although regular problems are not expected to be that big [24] multimedia problems

such as the ones proposed here will, which is why we are looking to further optimise our

approach.

Our results also show that the TBM, and in particular our approach, is scalable. We

see in our results that for equivalent sets of inputs, more cores resulted in less execution

time. For example on the Number of Configurations test, there was an improvement of

around half of the execution time when going from 8 cores to 12.

Comparison to other implementations of the TBM is not feasible, as complexity is

highly dependant on the data structures used in each implementation. As stated before,

bitset representation of the Focal Elements provides a much reduced computation time,

at the expense of a much increased memory usage. Additionally, other implementations

in the literature, like in [1] and [24] use different technologies (for example C++ and

Lisp instead of Java).

Finally, on the usefulness validation, our tests show that the system is good at detect-

ing frames with riot, but at the cost of a lot of false positives. This could be explained

by the fact that this dataset is particularly tailored for riots and that the output of

the system is not a class, but a score of the belief of the concept in the frame. This

means that even for frames that do not have riots, there will always be even a small

belief that there is riots on the scene. Another possible explanation is that since we are

working under the Closed World assumption, in the case of conflict when combining two

potentials, the masses are normalised to add up to 1 again, which increases the beliefs.
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One immediate improvement to the current system would be the reduction of the

false positives rate. As seen in the evaluation, precision was very low. Future efforts

have to be put to try to minimise the precision, trying not to affect the recall.

We would also like to combine different forms of reasoning with the TBM reasoning.

This could lead to interesting applications where for example an OWL reasoner provides

a model with inferred tuples to a TBM model with class inference. Or the opposite, a

TBM model providing a model for an OWL model to perform inference on. This could

also be a potential method of reducing the false positive rate.

Implementation of the regrouping operation is also a possible area of improvement.

After two potentials have been combined, it is possible for two or more generated Focal

Elements to have the same Configurations. In such cases, the masses can be added which

would allow to keep just one Focal Element. In our current implementation, the Focal

Elements are not regrouped. Although this does not change the value of the masses, it

would be ideal to implement the Regrouping Operation, which would reduce the space

requirements of the Framework, in exchange of added computational complexity.

Another possible improvement is that in our current approach, whenever there is

conflicting masses, the mass of the remaining Focal Elements is normalised so they add

up to 1 again. This is because we follow the closed world assumption where the truth

must always be within the system. However, the Semantic Web works under the Open

World paradigm, where if an assertion is not present in the system, it does not mean that

it does not exists, simply that it is not known yet. Given that the TBM already has a

mechanism to detecting the conflict in a system, it would be desirable to use that conflict

in a meaningful way. It could be used for example to detect anomalies in a system. In

our approach it could happen that two concepts that in the training data where never

together, but are detected as occurring at the same time later. One interesting approach

would be something similar to what has been done in [53], where the conflicting mass is

assigned to a special focal element. However a mechanism would have to be defined to

update the system when new information that removes the conflict becomes available.
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Due to the nature of number representation in binary systems such as digital com-

puters, rounding errors are inevitable when dealing with real numbers. Our approach

introduces some very small rounding errors in the calculation of the masses which do not

affect greatly the end result. However, it would be desirable to get rid of the rounding

errors altogether. Solutions for this could be proposed in the future.

Finally the combination operation, and in particular its performance, can be further

optimised. Several alternatives are being explored:

Map-Reduce : It is a programming model for massively parallel systems which can

consist of multiple compute nodes. The core principles are the map operation, and the

reduce operation. The map operation splits the data into different chunks by a defined

key, the reduce operation performs some computation on the split data. As an initial idea

to apply the combination operation using map-reduce, the map operation would split the

different pair of Configurations possible from the two Potentials being combined. The

reduce operation would then perform the actual intersection of the two Configurations.

Apache Spark : It is a framework which provides APIs for cluster computing. Spark

can be seen as a superset of map-reduce where not just those two operations are sup-

ported, and data is only written to disk when is absolutely necessary. This allows to

have jobs with much more stages and sharing the same data on memory (when possible).

A bespoke algorithm for the Combination operation would be developed with Apache

Spark as the back-end.

General Processing Graphical Processing Unit (GPGPU) Computing : With

the advent of powerful graphics cards, came the possibility of programming them to per-

form not just graphics tasks, but also general purpose computing. The Combination

operation has certain characteristics that make it ideal for implementation in GPUs: the

loops share a lot of data, and it is the same operation applied over and over again (fulfill-
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ing the SIMT paradigm of GPGPU computing). The actual operation inside the loops

could be seen as an intersection between the Configurations of the Focal Elements and in

fact, [67] already proposes an intersection algorithm for GPUs. Under this paradigm, all

of the combinations of Focal Elements would be uploaded to the GPU’s memory, each

block would deal with the combination of different Focal Elements, and the threads in a

block would perform the actual intersection of the elements in configurations.
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Université de Fribourg, 2001.

[58] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson,

“Jena: Implementing the semantic web recommendations,” in Proceedings of the

13th International World Wide Web Conference on Alternate Track Papers &Amp;

Posters, ser. WWW Alt. ’04. New York, NY, USA: ACM, 2004, pp. 74–83.

[Online]. Available: http://doi.acm.org/10.1145/1013367.1013381

109

http://dx.doi.org/10.1007/978-3-540-89765-1_9
http://doi.acm.org/10.1145/1988688.1988741
http://dx.doi.org/10.1007/978-3-642-35975-0_15
http://dx.doi.org/10.1007/978-3-642-35975-0_15
http://dx.doi.org/10.1007/978-3-319-08795-5_5
http://doi.acm.org/10.1145/1013367.1013381


[59] R. Johnson, E. Gamma, J. Vlissides, and R. Helm, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995. [Online]. Available:

https://books.google.co.uk/books?id=iyIvGGp2550C

[60] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by

work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep. 1999. [Online].

Available: http://doi.acm.org/10.1145/324133.324234

[61] R. Lee, “Scalability report on triple store applications,” Massachusetts institute of

technology, 2004.

[62] K. Rohloff, M. Dean, I. Emmons, D. Ryder, and J. Sumner, “An evaluation of triple-

store technologies for large data stores,” in On the Move to Meaningful Internet

Systems 2007: OTM 2007 Workshops. Springer, 2007, pp. 1105–1114.

[63] B. Liu and B. Hu, “An evaluation of rdf storage systems for large data applications,”

in Semantics, Knowledge and Grid, 2005. SKG’05. First International Conference

on. IEEE, 2005, pp. 59–59.

[64] E. Minack, W. Siberski, and W. Nejdl, “Benchmarking fulltext search performance

of rdf stores,” in The Semantic Web: Research and Applications. Springer, 2009,

pp. 81–95.

[65] “Vipergt website,” http://viper-toolkit.sourceforge.net/, Jan. 2014.

[66] “Lasie project website,” http://www.lasie-project.eu/, Oct. 2016.

[67] D. Wu, F. Zhang, N. Ao, F. Wang, X. Liu, and G. Wang, “A batched gpu algorithm

for set intersection,” in Pervasive Systems, Algorithms, and Networks (ISPAN),

2009 10th International Symposium on, Dec 2009, pp. 752–756.

110

https://books.google.co.uk/books?id=iyIvGGp2550C
http://doi.acm.org/10.1145/324133.324234
http://viper-toolkit.sourceforge.net/
http://www.lasie-project.eu/


Appendix A

Example Application

Now an example use case is presented with working application code. This is a simple

application intended to showcase the functionalities of the semantic framework and how

one might go about implementing a TBM-enabled application with our approach. We

will base our example on the game of CLUEDO presented in [1]. We are tasked with

finding the murderer, the weapon, and the room where the murder happened. The first

player has a strong subjective belief of 80% that the murderer is “Colonel Mustard”

and the murder happened in the “Kitchen”. He doesn’t have any information about the

weapon. The second player believes also with a subjective 80% that the murderer is

“Colonel Mustard” and the weapon is “Candlestick” but he is not sure about the room.

A.1 Problem Definition and Ontology

The first step towards implementing an application with our framework is to define the

domain of the problem and encoding it in an OWL ontology. In this example, we created

a simple ontology using the name space http://mmv.eecs.qmul.ac.uk/CLUE.owl. We

used the Protègè Ontolgy Editor to create it, but any other mean of doing it is fine too as

long as it’s a standard OWL ontology. There are three classes: Murderer (with instances

i
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“Colonel Mustard”, “Miss Scarlett”, and “Mrs. Peacock”), Room (with instances “Din-

ing Room” and “Kitchen”), and Weapon (with instances “Dagger” and “Candle Stick”).

A simplified version of the triples of the ontology in N3/turtle format is as follows:

@prefix : <http://mmv.eecs.qmul.ac.uk/CLUE.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:Murderer rdf:type owl:Class .

:Room rdf:type owl:Class .

:Weapon rdf:type owl:Class .

:ColonelMustard rdf:type :Murderer .

:MissScarlett rdf:type :Murderer .

:MrsPeacock rdf:type :Murderer .

:DiningRoom rdf:type :Room .

:Kitchen rdf:type :Room .

:CandleStick rdf:type :Weapon .

:Dagger rdf:type :Weapon .

A.2 Initialisation

We now move to the Java code used to model and reason with this problem. The first step

is to initialise some variables that will be used thorughout the code. Namely: a string

with the URL of the ontology, The Jena model that will store the tuples, and references

to the resources that will be used later. Please note that not all of the instances of the

variables are being referenced, as we only need those which will be used explicitly in the

creation of the potentials, that is, :ColonelMustard, :Kitchen, and :CandleStick.

//Path on disk to the data files
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String datasetPath = "./db";

//initialise the TDB storage

Dataset dataset = TDBFactory.createDataset(datasetPath);

//Create the model

TBMModel model = TBMModelFactory.createTBMModel(dataset.getDefaultModel());

//For a memory-backed storage use:

//TBMModel model = TBMModelFactory.createTBMModel(null);

//Namespace of the ontology

String ont = "http://mmv.eecs.qmul.ac.uk/CLUE.owl";

//read the ontology

model.read("file:CLUE.owl");

//instantiate variables

//murderer variable

Resource murderer = model.getResource(ont + "#Murderer"); //Type

Resource ColMustard = model.getResource(ont + "#ColonelMustard"); //Instance

//room variable

Resource room = model.getResource(ont + "#Room"); //Type

Resource Kitchen = model.getResource(ont + "#Kitchen"); //Instance

//weapon variable

Resource weapon = model.getResource(ont + "#Weapon"); //Type

Resource Candlestick = model.getResource(ont + "#CandleStick"); //Instance

Note that this will create a TDB-backed storage. For a memory-backed storage, create

the model with the line: TBMModel model = TBMModelFactory.createTBMModel(null);
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A.3 Players’ Potentials

Here, the first player’s knowledge is modelled. Please note that the first player’s knowl-

edge is only defined on the domain {:Murderer, :Room} and the second player is on

{:Murderer, :Weapon}. The TBMFocalElement::addAllConfigurations() method is

a helper method which adds the entire frame of discernment to the Focal Element. As

we saw before this is done to model complete ignorance in the TBM. In this case, the

focal elements and configurations are modelled as bnodes as it is not necessary to name

them.

//first potential***********************

//instantiate p1 domain

TBMVarDomain d1 = model.createDomain();

d1.addVariable(murderer);

d1.addVariable(room);

//create first focal element

TBMFocalElement fe11 = model.createFocalElement();

fe11.setDomain(d1);

fe11.addConfiguration(ColMustard, Kitchen);

fe11.setMass(0.8);

//create second focal element

TBMFocalElement fe12 = model.createFocalElement();

fe12.setDomain(d1);

fe12.addAllConfigurations();

fe12.setMass(0.2);

//create potential with masses

TBMPotential player1 = model.createPotential();

player1.setDomain(d1);

player1.addFocalElement(fe11);

player1.addFocalElement(fe12);

//second potential ********************
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//instantiate p1 domain

TBMVarDomain d2 = model.createDomain();

d2.addVariable(murderer);

d2.addVariable(weapon);

//create first focal element

TBMFocalElement fe21 = model.createFocalElement();

fe21.setDomain(d2);

fe21.addConfiguration(ColMustard, Candlestick);

fe21.setMass(0.8);

//create second focal element

TBMFocalElement fe22 = model.createFocalElement();

fe22.setDomain(d2);

fe22.addAllConfigurations();

fe22.setMass(0.2);

//create potential with masses

TBMPotential player2 = model.createPotential();

player2.setDomain(d2);

player2.addFocalElement(fe21);

player2.addFocalElement(fe22);

The knowledge of the first player will create the Potential graph presented in Figure

1.1 in the ontology’s ABox:

This graph is a simplification, as there are some other relationships not depicted here.

Some of the simplifications for space and clarity were: the types of some of the nodes,

the domain node of the Potential and the Focal Elements, and the representation of

the frame of discernment (Ω), which in reality should be several configurations, one for

each possible combination of the instances of the variables in the domain. Player two’s

potential has a similar graph but the domain is different.
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Fig. 1.1: TBM graph of the knowledge from player one

A.4 Combination and Interrogation

Once we have the two players’ knowledge set up, we can combine the two Potentials and

get the combined knowledge in a new Potential. The result potential can then be inter-

rogated. In this case we want to know the belief that {:ColonelMustard, :Kitchen,

:Candlestick} is the solution. Please note that the global potential will have a Domain

of {:Murderer, :Room, :Weapon}

//Combine the two Focal Elements

TBMPotential finalPotential = model.combine(ont + "#finalPotential", player1,

player2);

//instantiate global domain

TBMVarDomain d = model.createDomain();

d.addVariable(murderer);

d.addVariable(room);

d.addVariable(weapon);
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//create the query focal element

TBMFocalElement query = model.createFocalElement(ont + "#queryFocalElement");

query.setDomain(d);

query.addConfiguration(ColMustard, Kitchen, Candlestick);

//Commit changes to the DB

if (model.supportsTransactions()) {

model.commit();

}

//Query the system and print

System.out.println("Belief: " + finalPotential.bel(query));

System.out.println("Plausibility: " + finalPotential.pls(query));

System.out.println("Doubt: " + finalPotential.dou(query));

System.out.println("Ignorance: " + finalPotential.ign(query));

This will produce the following output on the computer’s Standard Output:

Belief: 0.64

Plausibility: 1.0

Doubt: 0.0

Ignorance: 0.36

With the SPARQL hooks, it is also possible to interrogate the knowledge using

SPARQL queries. This also opens the possibilities of using the belief functions with

SPIN rules [17] for more advanced reasoning with incomplete knowledge.

String queryString

= "PREFIX TBM: <http://mmv.eecs.qmul.ac.uk/TBM.owl#>\n"

+ "PREFIX CLUE: <http://mmv.eecs.qmul.ac.uk/CLUE.owl#>\n"

+ "SELECT ?p ?fe ?bel ?pls ?dou ?ign\n"

+ "WHERE {\n"
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+ " bind(CLUE:finalPotential as ?p) .\n"

+ " bind(CLUE:queryFocalElement as ?fe) .\n"

+ " bind(TBM:bel(?p, ?fe) as ?bel) .\n"

+ " bind(TBM:pls(?p, ?fe) as ?pls) .\n"

+ " bind(TBM:dou(?p, ?fe) as ?dou) .\n"

+ " bind(TBM:ign(?p, ?fe) as ?ign) .\n"

+ "}";

// Execute the query and obtain results

Query q = QueryFactory.create(queryString);

try (QueryExecution qe = QueryExecutionFactory.create(q, model)) {

ResultSet results = qe.execSelect();

// Output query results

ResultSetFormatter.out(System.out, results, q);

}

The output of this would be:

Please note that the SPARQL formatter is introducing some very small rounding

errors.
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Riot Detection Dataset

The videos that comprise the dataset where acquired by MMV at QMUL thanks to

it’s involvement in the LASIE Project [66] of which the London MET police is also a

partner. Given that two of the use cases in the project involve riots (logo and behaviour

detection), the MET has kindly shared the data in a legal, ethical, and privacy compliant

information sharing agreement framework.

In total, more than 3 terabytes of videos where shared by the MET. But for this

work, 149 videos where selected. They are a total of 14,6 gigabytes, and are composed

by 1,562,516 frames.

All the videos where given a 32 chars long hexadecimal name. The videos are encoded

with a variety of codecs, but most of them are mpeg4/AVC videos. The also come in a

variety of resolutions, but most of them are 704x288 or 704x576. Most of the videos are

12 frames per second. The average length of the videos is 14.6 seconds, but there are

some videos that are an hour long, while a few others are only a few frames.

The ground truth annotation consists of XML files generated by the Viper GT tool

[65]. The annotations were performed on the frames extracted from the videos. The

annotation consists on the presence of 6 concepts related to riots. The concepts have

ix



Fig. 2.1: Example of “Running”

all been defined in Chapter 5. Figures 2.1 to 2.7 present example frames for each of the

concepts. All faces in the frames have been pixelated to protect the identity of those

involved.

Viper GT uses it’s own XML format for the annotation. More information on the

schema employed by Viper GT can be seen in [65]. The Viper GT Schema used for

this task consisted of an OBJECT descriptor called “Concepts” comprised of 6 different

dynamic attributes, one for each relevant concept. Only one “Concept” record is needed

for each frame. This concept record indicates the presence or absence of the different

concepts.

We are making publicly available this ground truth data at http://www.eecs.qmu

l.ac.uk/~chps3/riotDetectionDataset.zip. No personal identifiable information is

present in the annotations to protect the identity of the people in the videos.
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Fig. 2.2: Example of “Face Covered”

Fig. 2.3: Example of “Crowd”
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Fig. 2.4: Example of “Fire”

Fig. 2.5: Example of “Vandalism”
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Fig. 2.6: Example of “Riot”

Fig. 2.7: Example of a frame without an event
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