Identification of Novel Targetable Signaling Pathways in the Inherited Ichthyoses
DEWAN, P
Identification of Novel Targetable Signaling Pathways in the Inherited Ichthyoses

Dr Priya Dewan
Supervisors: Professor Edel O’Toole & Professor David Kelsell

A thesis submitted for the degree of PhD

Centre for Cell Biology and Cutaneous Research
Blizard Institute, Barts and the London School of Medicine and Dentistry,
Queen Mary University of London
I, Priya Dewan, declare that the work presented in this thesis is my own, unless stated otherwise, and is in accordance with the University of London’s regulations for the degree of PhD.

Priya Dewan
Abstract
In this study the non-syndromic ichthyoses were studied to evaluate any genes or biological processes common to them and to identify key genes and pathways pertaining to each ichthyosis individually. This group of monogenic diseases comprises of ichthyosis vulgaris (loss of FLG), X-linked ichthyosis (loss of STS) lamellar ichthyosis/congenital ichthyosiform erythroderma (due to mutations in ALOX12B, ICH, ABCA12) and harlequin ichthyosis (due to ABCA12). They all affect terminal differentiation and the cornified layer and manifest as scaly conditions along a spectrum ranging from mild (as in ichthyosis vulgaris) to having a major impact on quality of life (as in lamellar ichthyosis/congenital ichthyosiform erythroderma) to severe (as in harlequin ichthyosis). The aim of this study was to investigate the effect of ichthyosis gene knockdown (STS, FLG, ABCA12, TGM1, ICH and ALOX12B) using RNAi technology in primary neonatal keratinocytes. 3D in vitro cultures using primary keratinocytes for the ichthyosis of interest, from the same genetic background, were developed including a novel model (STS knockdown). All the ichthyosis gene knockdowns in this study affected terminal differentiation (change in TGM1 expression) and loss of ABCA12 altered early differentiation in addition to terminal differentiation. RNA-Seq analysis was performed in primary keratinocytes transfected with siRNA. 62 genes were significantly down-regulated and 26 genes were significantly up regulated overlapping in all the ichthyoses models. Altered gene clusters were found for cell cycle, innate immune response, keratin filament/cytoskeleton and metabolism of lipids and lipoproteins. Functional studies showed an altered cytokine profile in unstimulated primary keratinocytes and following stimulation of TLR -2, -3, -5 in all the ichthyoses. The findings suggest that several overlapping genes involved in biological processes, including innate immunity, are altered in this group of non-syndromic, monogenic ichthyoses.
Acknowledgements

I would like to thank my supervisor, Professor Edel O’Toole for her support, guidance and patience throughout my PhD. I am very grateful to my collaborators Dr Anton Enright and Dr Harpreet Saini at European Bioinformatics Institute, Cambridge and to Dr Ute Meier for her advice and discussions related to chapter 7.

I would like to thank the members of my supervisors’ group in particular Dr Mat Caley and all my colleagues at the Centre for Cutaneous Research especially Dr Muhammad M Rahman. I would especially like to thank Dr Sofia Sisay without whose enthusiasm, encouragement and sense of humor this work would not have been possible.

I would like to acknowledge the Medical Research Council for funding this research.

Finally, to my family and especially to the many loved ones who strongly supported this piece of work but passed away during its evolution-you will always be my inspiration. I dedicate this thesis to you.
Table of Contents

Abstract ... 3
Acknowledgements .. 4
List of Figures and Tables ... 10
Abbreviations ... 13

Chapter 1: Introduction .. 16
1.1 An Overview Of The Skin .. 17
 1.1.1 Subcutaneous Fat/Hypodermis ... 17
 1.1.2 The Dermis ... 17
 1.1.3 The Epidermis ... 18
 1.1.3.1 Basal layer/Stratum Basale (SB): ... 19
 1.1.3.2 Stratified layer/Stratum Spinosum (SS): ... 19
 1.1.3.3 Granular layer/Stratum Granulosum (SG): .. 19
 1.1.3.4 Cornified layer/Stratum Corneum (SC): ... 20
 1.2 Classification of the Ichthyoses: disorders of cornification (DOC) ... 23
 1.2.2 The non-syndromic monogenic ichthyoses: ... 24
 1.3 Common Ichthyoses .. 26
 1.3.1 ICHTHYOSIS VULGARIS (IV) (MIM 308100) .. 26
 1.3.1.1 FLG: Gene ... 26
 1.3.1.2 Pro-Flaggrin and Flaggrin Protein ... 28
 1.3.1.3 Paucity/loss of keratohyalin granules due to loss-of-function mutations 29
 1.3.1.4 Flaggrin: Role in structural integrity of SC ... 30
 1.3.1.5 Flaggrin: Role in SC hydration ... 31
 1.3.1.6 Flaggrin: In Vitro knockdown models ... 31
 1.3.2 RECESSIVE X-LINKED ICHTHYOSIS (RXLI) (MIM 308100) ... 32
 1.3.2.1 STS: Gene ... 33
 1.3.2.2 Steroid sulfatase (SSase): Protein ... 33
 1.3.2.3 Sulfatases: The superfamily ... 34
 1.3.2.4 SSase: Role in Permeability Barrier Function .. 34
 1.3.2.5 SSase: Role in desquamation ... 35
 1.3.2.6 SSase: Regulation of differentiation by cholesterol sulfate 35
 1.4 The Autosomal Recessive Congenital Ichthyoses (ARCI) ... 35
 1.4.1 HARLEQUIN ICHTHYOSIS (HI) (MIM 242500): .. 36
 1.4.1.1 ABCA12: Other Genotype/Phenotype correlations 36
 1.4.1.2 ABCA12: Gene .. 36
 1.4.1.3 ABCA12: Protein ... 37
 1.4.1.4 ABCA: The transporter superfamily .. 38
 1.4.1.5 ABCA12: Role in lipid delivery and permeability barrier formation 39
 1.4.1.6 ABCA12: Role in protease delivery and corneodesmosome retention 40
 1.4.1.7 ABCA12: Role in late epidermal differentiation .. 41
 1.4.1.8 ABCA12: Gene Regulation ... 41
 1.4.2 LAMELLAR ICHTHYOSIS (LI)/NONBULLOUS CONGENITAL ICHTHYOSIFORM
 ERYTHRODERMA (NCIE) ... 41
 1.4.2.1 Lamellar Ichthyosis (LI) (MIM 242500) ... 42
 1.4.2.2 Nonbullos Congenital Ichthyosiform Erythroderma (NCIE) (MIM 242100) 42
 1.4.2.3 Transglutaminase-1 (TGM1) ... 43
 1.4.2.3.1 TGM1: Other genotype-phenotype correlations 43
 1.4.2.3.2 TGM1: Gene ... 43
 1.4.2.3.3 TGM1: Protein .. 44
 1.4.2.3.4 Transglutaminases (TGs): The superfamily ... 44
 1.4.2.3.5 TGM1: Role in Barrier function ... 45
 1.4.2.3.6 TGM1 expression .. 46
Chapter 2: Materials and Methods

2.1 Ethics

2.2 Cell culture

2.2.1 Primary Keratinocyte culture

2.2.1.1 Isolation of primary keratinocytes from neonatal foreskin

2.2.1.2 Subcultivation of keratinocytes

2.2.1.3 Subculture with 3T3-mouse fibroblast feeders

2.2.1.4 Subculture in serum-free conditions

2.2.1.5 Cryopreservation of cells

2.2.1.6 Thawing Cells

2.2.2 Primary fibroblasts

2.2.3 Immortalised keratinocyte (nTERT) culture

2.2.4 RNAi for terminal differentiation genes in nHEKs

2.2.5 Calcium shift assay

2.2.6 Organotypic cultures on de-epidermalised dermis (DED)

2.3 RNA methods

2.3.1 Extraction of RNA using the RNeasy Plus Mini kit

2.3.2 Complementary DNA (cDNA) synthesis using SuperScript VILO cDNA Synthesis Kit

2.3.3 Polymerase chain reaction

2.3.4 Quantitative polymerase chain reaction (qPCR)

2.3.5 Next Generation Sequencing (RNA-Seq) Experiment

2.3.5.1 Extraction of RNA using the miRNeasy Mini Kit and MaXtract High Density gel tube

2.4 Protein analysis

2.4.1 Western Blotting

2.4.1.1 Antibodies

2.4.1.2 Total cell lysate preparation

2.4.1.3 SDS-PAGE electrophoresis in Laemml system

2.4.2 Haematoxylin and Eosin (H&E) staining of DEDs

2.4.3 Immunohistochemistry

2.4.4 Immunofluorescence (IF) staining of PFA-fixed paraffin embedded and cryo-embedded sections

2.5 Functional Protein analysis

2.5.1 Stimulation of siRNA transfected keratinocytes with ligands

2.5.2 BD™ CBA Human Inflammatory Cytokines Kit

2.6 Replicates and Statistical analysis

Chapter 3: RNAi for Terminal Differentiation genes in Primary Human Keratinocytes

3.1 Introduction

3.1.1 Aim

3.2 Results
Chapter 5: Following Knockdown of Ichthyosis Genes

5.1 Introduction .. 125
5.1.1 Aim ... 128
5.2 Results ... 129
5.2.1 Confirmation of knockdown of siRNA transfected primary keratinocytes by DESeq 129
5.2.2 Common Genes differentially expressed following knockdown of the Ichthyosis genes: 130
5.2.2.1 Common Ichthyosis (STS and FLG knockdown) and the Autosomal Recessive Congenital
Ichthyosis (ABCA12, TGM1, ICH, and ALOX12B): ... 135
5.2.4 Genes differentially expressed following FLG knockdown: ... 142
5.2.5 Genes differentially expressed following TGM1 knockdown: .. 146
5.2.6 Genes differentially expressed following ALOX12B knockdown: .. 148
5.2.7 Genes differentially expressed following ICH knockdown: .. 150
5.2.8 Genes differentially expressed following ABCA12 knockdown: ... 151
5.3 Discussion .. 154
5.3.1 Common ichthyoses (STS and FLG) .. 155

Chapter 4: Characterisation of 3D Organotypic Cultures of Keratinocytes Following Knockdown of Ichthyosis Genes

4.1 Introduction .. 106
4.1.1 Development of skin models to study the ichthyoses in vitro .. 108
4.1.2 Aim ... 109
4.2 Results ... 109
4.2.1 Haematoxylin and Eosin staining of ichthyoses organotypic culture following
ichthyosis protein knock-down using de-epidermalised dermis ... 110
4.2.2 Ichthyosis protein expression in primary keratinocyte organotypic cultures 112
4.2.3 Further characterisation of organotypic cultures 4.2.3.1 Characterization of FLG
organotypic culture .. 113
4.2.3.2 Characterization of ABCA12 knockdown organotypic culture ... 115
4.2.4 Epidermal differentiation of ichthyoses organotypic cultures ... 115
5.3 Discussion .. 118
4.4 Future work .. 121
5.3.1.1 Loss of STS expression causes neurological abnormalities in X-linked ichthyosis
5.3.1.2 STS expression is important in lipid metabolism and cholesterol synthesis
5.3.1.3 Role of AP1 transcription factors in epidermal/keratinocyte differentiation following STS suppression
5.3.1.4 Extracutaneous features/syndromic features following loss of STS expression:
5.3.1.4.1 Prolonged labor in XLI
5.3.1.5 Role of NOTCH signaling in Epidermal Differentiation following loss of FLG expression
5.3.1.6 FLG loss causes abnormalities in ABC transport system
5.3.2 Autosomal Recessive Congenital Ichthyosis (TGM1, ALOX12B, ICH, ABCA12)
5.3.2.1 Role of Peroxisome proliferator-activated receptor (PPAR)-alpha in ARCI
5.3.2.2 Dysregulation in cornified envelope formation following TGM1 knockdown
5.3.2.3 TGM1 suppression may alter lipid metabolism
5.3.2.4 ALOX12B affects secretion of LG contents
5.3.2.5 Role of TLR signaling pathway in epidermal development by altering ABCA12 expression

5.4 Future work

Chapter 6: Transcriptome Analysis-Heat Maps

6.1 Introduction

6.2 Results

6.2.1 Impact of knock-down on other ichthyosis genes in this study
6.2.2 Interactions between known genes causing ARCI (LI/CIE) phenotype
6.2.3 Dysregulation of Epidermal Differentiation Complex (EDC)
6.2.3.1 Regulation of EDC
6.2.4 1q21 GENES (not EDC)
6.2.5 Cytokeratin downregulation common to all the ichthyoses
6.2.6 Desmosomal Dysregulation
6.2.7 Antimicrobial peptides (AMP)
6.2.8 Toll-like Receptors (TLR)
6.2.9 Cytokines
6.2.10 Kallikreins (KLKs)
6.2.11 Lipids

6.2.11.1 FA Transportation/Activation
6.2.11.1.1 FAT/CD36
6.2.11.1.2 FABP5
6.2.11.1.3 SLC27A1/FATP
6.2.11.1.3.1 SLC27A4/FATP4
6.2.11.1.3.2 SLC27A Others
6.2.11.2 Biosynthesis of very long-chain fatty acids (VLC-FA) or ultra long-chain fatty acids (ULC-FA)
6.2.11.2.1 Synthesis of FA
6.2.11.2.2 Elongation of FA
6.2.11.2.3 Cutaneous FA hydroxylation
6.2.11.2.4 α-Hydroxylation
6.2.11.2.5 ω-Hydroxylation of FA
6.2.11.3 Ceramide Synthesis
6.2.11.3.1 Generation of Sphingoid bases
6.2.11.3.2 Generation of ω-acyl-ceramide (and ω-acyl-(glycosyl) ceramide)
6.2.11.3.3 Glucosylation of acylceramides
6.2.11.3.4 Extracellular processing of probarrier lipids
6.2.11.4 Topology and Transport
6.2.12 Others

6.2.12.1 AP-1 family of transcription factors
6.2.12.2 Apoptosis

6.3 Discussion

6.3.1 Common Ichthyoses

6.3.1.1 STS
6.3.1.2 FLG

6.3.1.3 Other genes

5.4 Future work

Chapter 6: Transcriptome Analysis-Heat Maps

6.1 Introduction

6.2 Results

6.2.1 Impact of knock-down on other ichthyosis genes in this study
6.2.2 Interactions between known genes causing ARCI (LI/CIE) phenotype
6.2.3 Dysregulation of Epidermal Differentiation Complex (EDC)
6.2.3.1 Regulation of EDC
6.2.4 1q21 GENES (not EDC)
6.2.5 Cytokeratin downregulation common to all the ichthyoses
6.2.6 Desmosomal Dysregulation
6.2.7 Antimicrobial peptides (AMP)
6.2.8 Toll-like Receptors (TLR)
6.2.9 Cytokines
6.2.10 Kallikreins (KLKs)
6.2.11 Lipids

6.2.11.1 FA Transportation/Activation
6.2.11.1.1 FAT/CD36
6.2.11.1.2 FABP5
6.2.11.1.3 SLC27A1/FATP
6.2.11.1.3.1 SLC27A4/FATP4
6.2.11.1.3.2 SLC27A Others
6.2.11.2 Biosynthesis of very long-chain fatty acids (VLC-FA) or ultra long-chain fatty acids (ULC-FA)
6.2.11.2.1 Synthesis of FA
6.2.11.2.2 Elongation of FA
6.2.11.2.3 Cutaneous FA hydroxylation
6.2.11.2.4 α-Hydroxylation
6.2.11.2.5 ω-Hydroxylation of FA
6.2.11.3 Ceramide Synthesis
6.2.11.3.1 Generation of Sphingoid bases
6.2.11.3.2 Generation of ω-acyl-ceramide (and ω-acyl-(glycosyl) ceramide)
6.2.11.3.3 Glucosylation of acylceramides
6.2.11.3.4 Extracellular processing of probarrier lipids
6.2.11.4 Topology and Transport
6.2.12 Others

6.2.12.1 AP-1 family of transcription factors
6.2.12.2 Apoptosis

6.3 Discussion

6.3.1 Common Ichthyoses

6.3.1.1 STS
6.3.1.2 FLG
Chapter 8: Discussion ... 228
 8.1 Introduction ... 229
 8.2 A novel in vitro 3D model generated for XLI ... 229
 8.3 Filaggrin may play a key role in EDC regulation .. 230
 8.4 Epidermal differentiation is altered in all the ichthyoses knockdowns 230
 8.5 Innate immune system is dysregulated in all the ichthyoses 231
 8.6 Dysregulation in stratum corneum lipids in all the Ichthyoses 232
 8.7 Conclusions and Final Remarks .. 234

References .. 236

Appendices .. 266
List of Figures and Tables

Figure 1.1: Formation of the cornified envelope... 22
Table 1: Clinicogenetic classification of inherited non-syndromic ichthyoses................................. 23
Figure 1.2: The monogenic non-syndromic ichthyoses in this study... 25
Figure 1.3: Schematic representation of Pro-FLG showing loss of function mutations in the FLG gene detected in individuals with IV and eczema.. 29
Figure 1.4: Structure of ABCA12 protein:.. 38
Figure 1.5: Postulated role of 12R-LOX and eLOX-3 in the same metabolic pathway.................... 48
Table 2.1: RM+ supplement.. 56
Table 2.2: siRNA sequences... 59
Table 2.3 Primer sequences used for qPCR... 65
Table 2.4 Antibodies used for Western Blotting... 68
Table 2.5 Antibodies used in Immunohistochemistry and Immunofluorescence.......................... 72
Figure 3.1: The effect of HiPerFect transfection reagent quantity on nHEKs viability.................... 78
Figure 3.2: The effect of HiPerFect transfection reagent quantity on siRNA delivery into nHEKs..... 80
Figure 3.3: Optimisation of cell density at transfection for nHEKs... 81
Figure 3.4: qPCR showing downregulation of Ichthyosis genes.. 83
Figure 3.5: qPCR analysis of nHEK cells transfected with different concentrations of siRNA targeting the gene of interest.. 85
Figure 3.6: Genorm Analysis of HKGs.. 87
Figure 3.7: STS knockdown assessment following normalization with 3 different HKGs................ 88
Figure 3.8: ABCA12 knockdown assessment following normalization with 3 different HKGs........ 89
Figure 3.9: TGM1 knockdown assessment following normalization with 3 different HKGs............ 90
Figure 3.10: ICH knockdown assessment following normalization with 3 different HKGs............. 91
Figure 3.11: ALOX12B knockdown assessment following normalization with 3 different HKGs....... 92
Figure 3.12: Morphological changes in normal human keratinocytes due to different calcium ion concentrations.. 94
Figure 3.13: qPCR of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B gene expression over 7 days in nHEKs cultured in high Ca media compared to low Ca media.. 95
Figure 3.14: qPCR showing optimal suppression with siRNA targeting all genes of interest in low and high Ca media 2 days post-transfection.. 96
Figure 3.15: qPCR showing expression of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B in nHEKs posttransfectiona over a period of 8 days following calcium switch.. 97
Figure 3.16: qPCR showing expression of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B in nHEKs cultured in high calcium medium 4 days post transfection... 98
Figure 3.17: Western blot analysis showing siRNA-mediated silencing of STS, Ichthyin and TGM1..... 100
Figure 4.1: Organotypic culture of primary keratinocytes on fibroblast populated de-epidermalised dermis grown at the air/liquid interface (10 days) on a steel grid... 107
Figure 4.2: Organotypic cultures of primary keratinocytes following ichthyosis gene knockdown..... 111
Figure 4.3: IF staining of Filaggrin (red) in siC, siFLG organotypic cultures and skin sections........ 112
Figure 4.4: IHC staining of TGM1 in siC, siTGM organotypic cultures and skin sections using DAB.... 112
Figure 4.5: IHC staining of Ichthyin in siC, siICH organotypic cultures and skin sections using DAB... 113
Figure 4.6: IHC staining of ABCA12 in siC, siABCA12 organotypic cultures and skin sections using DAB. ... 113
Figure 4.7: IF staining of the epidermal differentiation marker LOR, K10 and K14 in siC, siFLG and normal skin.. 114
Figure 4.8: IF staining of filaggrin and K10 in siC, siABCA12 and skin sections......................... 115
Figure 4.9: IF staining of the epidermal differentiation marker TGM1 in siC, siSTS, siFLG, siABCA12, siTGM1, siLOX12B and siICH organotypic cultures... 117
Figure 5.1: Summary of workflow. .. 126
Table 5.1: Significant downregulation of the ichthyosis genes STS, FLG, TGM1, ICH, ALOX12B, ABCA12

Figure 5.2: 2D heatmap showing differentially expressed genes in the cell cycle following knock-down of the ichthyosis genes.

Figure 5.3: Network generated from differentially expressed genes in cell cycle.

Figure 5.4: 2D heatmap showing differentially expressed genes in apoptosis following knock-down of the ichthyosis genes.

Figure 5.5: 2D heatmap showing differentially expressed genes in immune function following knock-down of the ichthyosis genes.

Figure 5.6: 2D heatmap showing differentially expressed genes in keratin filament/cytoskeleton function following knock-down of the ichthyosis genes.

Figure 5.7: Venn Diagram of the number of genes that are dysregulated in the CI and ARCI using Venny.

Table 5.2: Dysregulation following knockdown of STS

Table 5.3: Dysregulation following knockdown of FLG

Downregulated genes:

Figure 5.11: Network generated from differentially expressed genes in the NOTCH signaling pathway following FLG knockdown.

Figure 5.12: Network generated from differentially expressed genes in arachidonic acid metabolism signaling pathway following FLG knockdown.

Table 5.4: Dysregulation following knockdown of TGM1

Table 5.5: Dysregulation following knockdown of ALOX12B

Table 5.6: Dysregulation following knockdown of ICH

Table 5.7: Dysregulation following knockdown of ABCA12

Figure 5.13: Network generated from differentially expressed genes involved in cytokine-cytokine receptor interaction following ABCA12 knockdown.

Figure 6.1: Heatmap showing gene expression of STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.2: Heatmap showing impact of ichthyosis gene knockdown on expression of other known genes causing ARCI.

Figure 6.3: Heatmap showing expression of the Epidermal Differentiation Complex genes following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.4: Heatmap showing impact of STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown on genes involved in regulating the EDC.

Figure 6.5: Heatmap showing gene expression of genes on 1q21 (not included in EDC) following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.6: Heatmap showing gene expression of cytokeratin genes following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.7: Heatmap showing changes in desmosomal genes following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.8: Heatmap of changes in gene expression of antimicrobial peptide genes following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.9: Heatmap of gene expression of toll-like receptors following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.10: Heatmap of impact of STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown on expression of cytokine genes.

Figure 6.11: Heatmap of gene expression changes in kallikreins after STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.12: Heatmap showing alteration in expression of genes involved in FA transportation/activation after STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Figure 6.13: Heatmap of changes in expression of genes involved in synthesis VLC-FA or ULC-FA following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.
Figure 6.14: Heatmap of genes involved in ceramide synthesis following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown. ...192

Figure 6.15 Heatmap of expression of genes involved in lipid topology and transport following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown. ...196

Figure 6.16: Heatmap of gene expression of AP-1 family of transcription factors following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown. ...198

Figure 6.17: Heatmap showing expression of genes involved in keratinocyte apoptosis following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown. ...199

Figure 7.1: Cytokine profile of IL-8, IL-6 and TNF. ..215

Figure 7.2: Cytokine profile of IL-6. ..217

Figure 7.3: Cytokine profile of TNF. ..219
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCG1</td>
<td>ATP-Binding Cassette, Sub-Family G (WHITE), Member 1</td>
</tr>
<tr>
<td>AD</td>
<td>Atopic Dermatitis</td>
</tr>
<tr>
<td>ACSVL</td>
<td>Very long-chain acyl-CoA synthetase</td>
</tr>
<tr>
<td>AMP</td>
<td>Antimicrobial peptides</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator Protein-1</td>
</tr>
<tr>
<td>ARCI</td>
<td>Autosomal Recessive Congenital Ichthyosis</td>
</tr>
<tr>
<td>CE</td>
<td>Cornified Envelope</td>
</tr>
<tr>
<td>CHUK</td>
<td>Conserved Helix-Loop-Helix Ubiquitous Kinase</td>
</tr>
<tr>
<td>CI</td>
<td>Common Ichthyosis</td>
</tr>
<tr>
<td>CLE</td>
<td>Cornified Lipid Envelope</td>
</tr>
<tr>
<td>CRISPR/Cas9</td>
<td>Clustered regularly interspaced short palindromic repeats</td>
</tr>
<tr>
<td>CSO4</td>
<td>Cholesterol Sulfate</td>
</tr>
<tr>
<td>CYP4F22</td>
<td>Cytochrome P450, Family 4, Subfamily F, Polypeptide 22</td>
</tr>
<tr>
<td>DED</td>
<td>De-epidermalised dermis</td>
</tr>
<tr>
<td>DEFB</td>
<td>Beta-defensins</td>
</tr>
<tr>
<td>DEGs</td>
<td>Differentially expressed genes</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DOC</td>
<td>Disorders of Cornification</td>
</tr>
<tr>
<td>DSC</td>
<td>Desmocollin</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded DNA</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double-stranded RNA</td>
</tr>
<tr>
<td>DSG</td>
<td>Desmoglein</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FLG</td>
<td>Filaggrin</td>
</tr>
<tr>
<td>GBA</td>
<td>β-glucocerebrosidase</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>HC</td>
<td>High calcium</td>
</tr>
<tr>
<td>HI</td>
<td>Harlequin Ichthyosis</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescence</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferons</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IKKa</td>
<td>IkB kinase 1</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IL6R</td>
<td>Interleukin-6-receptor</td>
</tr>
<tr>
<td>IV</td>
<td>Ichthyosis Vulgaris</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KIFs</td>
<td>Keratin Intermediate Filaments</td>
</tr>
<tr>
<td>KLK</td>
<td>Kallikrein</td>
</tr>
<tr>
<td>KRT</td>
<td>Keratin</td>
</tr>
<tr>
<td>LB</td>
<td>Lamellar Bodies</td>
</tr>
<tr>
<td>LC</td>
<td>Low calcium</td>
</tr>
</tbody>
</table>
LEP Leptin
LI Lamellar Ichthyosis
LOR Loricrin
LOX Lipoxigenases
miRNAs MicroRNAs
mRNA Messenger RNA
NBF Nucleotide Binding Folds
NCIE Nonbullous Congenital Ichthyosiform Erythroderma
NGS Next generation sequencing
nHEKs Normal human epidermal keratinocytes
nt Nucleotide
o/n Overnight
PAMPs Pathogen associated molecular patterns
PBS Phosphate buffered saline
PFA Paraformaldehyde
PGN Peptidoglycan
PKP plakophilin
Poly I:C Polynosinic–polycytidylic acid
PPAR Peroxisome proliferator-activated receptor
RNA Ribonucleic acid
RNAi RNA interference
RNase Ribonuclease
RT Room temperature
RT-PCR Reverse transcription PCR
RXLI Recessive X-linked Ichthyosis
SB Stratum Basale
SC Stratum Corneum
SG Stratum Granulosum
sgRNA single guide RNA
siRNA Short interfering RNA
shRNA Short hairpin RNA
SS Stratum Spinosum
TGF-β Transforming growth factor-beta
TGM Transglutaminase
TGs Transglutaminases
TLR Toll-like receptors
TMD Transmembrane Domains
TNF Tumor necrosis factor
UGCG UDP-Glucose Ceramide Glucosyltransferase
ULC-FA ultra long-chain fatty acids
VEGF Vascular endothelial growth factor
VLC-FA very long-chain fatty acids

SI units
G gram
Kb kilobase
M molar
mA milliampere
ml millilitre
mm millimetre
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction
1.1 An Overview Of The Skin
The skin consists of three layers: subcutaneous fat, the dermis and an overlying epidermis.

1.1.1 Subcutaneous Fat/Hypodermis
The tissue of the hypodermis is the innermost and thickest layer of the skin that protects vital structures, maintains body heat and acts as an energy reserve (Griffiths et al., 2016). The basic unit of the subcutaneous fat is the microlobule that is composed of collections of adipocytes-cells specialised in accumulating and storing fat. Aggregations of primary microlobules form secondary lobules that are separated by connective tissue septa containing nerves, vessels, and lymphatics (Haake et. al. 2001).

1.1.2 The Dermis
Beneath the epidermis a vascularized dermis provides structural and nutritional support. Its thickness varies from less than 0.5 mm to more than 5 mm (Calonje et al.; 2012). It is composed of two principle types of protein fibres: collagen and elastin. Collagen is the major extracellular matrix protein (comprising 80-85% of the dry weight of the dermis) and provides the skin with its tensile strength. 12 of the known twenty-nine collagens are expressed in the skin; the main interstitial dermal collagens are I and III (Smith et al., 2006). Elastic fibres (~2-4% of the extracellular matrix) play a major role in skin elasticity and resilience (Kielty et al., 2002). The dermis also contains a number of non-collagenous glycoproteins including fibronectin, thrombospondin, laminin, vitronectin, and tenascin that interact with other matrix components via cell surface receptors called integrins and facilitate cell adhesion, migration, morphogenesis and differentiation (Griffiths et al., 2016). Between the dermal collagen and elastic tissue is the ground substance made up of proteoglycans and glycosaminoglycan macromolecules (Haake et. al. 2001). These contribute only 0.1-0.3% of the total dry weight.
of the dermis but provide a vital role by maintaining hydration mostly due to the high water-binding capacity of hyaluronic acid (Calonje et al.; 2012). In addition, the dermis accommodates epidermal-derived appendages (hair follicles and sweat glands), the cellular components of the dermis such as fibroblasts (most abundant cells in the dermis and are known to synthesize collagen, elastin, other matrix proteins and enzymes), macrophages and mast cells (Griffiths et al., 2016). It is well vascularised by a deep and superficial vascular plexus.

1.1.3 The Epidermis
The normal epidermis is a terminally differentiated, stratified, squamous epithelium. It is typically 0.05-0.1mm in thickness (Calonje et al., 2012). It has evolved to provide a physical and permeability barrier, which is essential for survival as an adaptation to terrestrial life in mammals. The epidermis is mainly composed of keratinocytes (95% of epidermal cells). Other cells in the epidermis are melanocytes (distribute packages of melanin pigment in melanosomes to surrounding keratinocytes to give skin its colour), Langerhans cells’ (antigen-presenting cells and play a key role in adaptive immune responses in the skin) and Merkel cells (serve as mechanosensory receptors in response to touch) (Griffiths et al., 2016).

The keratinocyte moves progressively from the basal layer towards the skin surface, forming several well-defined layers during its transit (Freinkel et al., 2001). Thus on morphological grounds the epidermis can be divided into 4 distinct layers: stratum basale, stratum spinosum, stratum granulosum and stratum corneum.
1.1.3.1 Basal layer/Stratum Basale (SB):
This is a continuous layer that is generally only 1 cell thick. The basal cells are small and cuboidal and have large, dark staining nuclei and ribosome rich cytoplasm. A small number of stem cells are also present in the basal layer, these cells undergo mitotic divisions which results in the continued production of keratinocytes necessary for epithelial homeostasis. Basal keratinocytes are attached to the underlying basement membrane by hemidesmosomes and to the surrounding cells via desmosomes and adherens junctions (Simpson et al., 2011; Walters and Roberts, 2002). The basal layer is typified by the expression of keratins 5 and 14 (Candi et al., 2005).

1.1.3.2 Stratified layer/Stratum Spinosum (SS):
Triggered by poorly understood signals, certain basal keratinocytes migrate from the basal into the spinous layers, lose their mitotic activity, and begin to synthesize a new set of structural proteins and enzymes that are characteristic of cornification (the process by which epidermal cells progressively mature from basal cells with proliferative potential to non-viable corneocytes is called keratinisation or cornification) (Candi et al., 2005; Simpson et al., 2011). The spinous layer is characterised by the expression of differentiation-specific keratins 1 and 10 (Fuchs et. al. 1980, Sun et. al. 1983). Here tightly packed polyhedral shaped keratinocytes are held together by many desmosomes, which help to stabilize adjacent keratinocytes (Calonje et al.; 2012). The name of this layer is derived from the histological appearance of desmosomes that appear as narrow spikes or projections.

1.1.3.3 Granular layer/Stratum Granulosum (SG):
The granular layer can be identified by the presence of basophilic keratohyalin granules. The keratohyalin granules contain profilaggrin the precursor of the interfilamentous protein filaggrin. The cytoplasm of cells of the upper spinous and granular layer also contain
multifunctional, lysosome-like organelles, called lamellar bodies (LB). They discharge their lipid components into the intercellular space playing important roles in barrier function and intercellular cohesion within the SC (Candi et al., 2005; Kalinin et al., 2002; Walters and Roberts, 2002). In addition, they secrete a broad variety of lipid hydrolases, proteases/antiproteases, antimicrobial peptides, apolipoproteins and other proteins, in addition to lipids, into the extracellular spaces (Raymond et al., 2008). The movement of these organelles to the cell periphery in anticipation of secretion is dependant upon a set of colocalised motor and non-motor proteins (Raymond et al., 2008). In the stratum granulosum, keratinocytes are connected among each other by tight junctions (Simpson et al., 2011).

1.1.3.4 Cornified layer /Stratum Corneum (SC)

The outermost layer of the epidermis is the stratum corneum composed of mechanically tough, dead cornified cells (corneocytes), which develop as a result of terminal differentiation (Elias, 2010; Kalinin et al., 2002; Walters and Roberts, 2002) (Figure 1.1). These cells are anucleated and devoid of all organelles. Corneocytes in the cornified layer have a characteristic flattened shape. The shape of the keratinocytes is provided by a cytoskeleton made of keratin intermediate filaments, KIFs. Filaggrin aggregates the KIFs into tight bundles. This promotes the collapse of the cell into the flattened shape. The plasma membrane of the corneocytes is completely replaced and they are encapsulated within a highly specialized structure termed the cornified envelope (CE) formed by cross-linking of a series of structural proteins, involucrin, loricrin, trichohyalin and the small-proline-rich proteins, by specific epidermal transglutaminases that are synthesized in the high SS (Candi et al., 2005). A monomolecular layer of long-chain ceramides (ω-hydroxyceramides) is covalently bound to this protein layer, forming a cornified lipid envelope (CLE) on the surface of each
corneocyte. The cells in the CLE are surrounded by orderly intercellular lipids consisting of a mixture of ceramides, free fatty acids, cholesterol and its esters that are organised into repeating arrays of broad lamellar membranes that completely engorge the extracellular spaces (Candi et al., 2005). These lipids are processed/derived from precursor lipids (glucosylceramides, phospholipids and cholesterol), which were released from the lamellar bodies (LB) at the SG/SC interface, by concurrently released enzymes (Freinkel and Traczyk, 1985). The structural behaviour of the SC is analogized to a brick wall comprising of corneocytes, the “bricks”, provide the mechanical strength and are embedded in the "mortar" lipid lamellae, which represents the permeability barrier (Elias, 1983; Nemes and Steinert, 1999). The composition of the intercellular lipids is important for an intact barrier function (Holleran et al., 2006; Menon et al., 2012). Corneocytes are connected to each other by corneodesmosomes, which derive from desmosomes through morphological changes in the transition zone between SG/SC (Candi et al., 2005; Proksch et al., 2003; Simpson et al., 2011). Proteolysis of corneodesmosomes releases the bonds between corneocytes of the outer cornified layer, leading to desquamation (Elias, 2010; Walters and Roberts, 2002). Under physiological conditions skin surface pH is between 5.0 and 5.5 (Schmid-Wendtner and Korting, 2006), the optimal pH for lipid processing by enzymes and also for limiting the colonization of pathogenic bacteria (Chan and Mauro, 2011; Holleran et al., 2006). One main difference of the intercellular lipid lamellae to other lipid matrices in the human body, is the absence of phospholipids in the stratum corneum (Walters and Roberts, 2002). The lamellar body-derived phospholipids are processed by secretory phospholipase to A₂ (sPLA₂) free fatty acids and glycerol. The latter has a strong water-binding capacity and, hence, contributes to SC hydration (Feingold, 2007).
Figure 1.1: Formation of the cornified envelope
This is a complex process that involves the synthesis of cornified envelope proteins (envoplakin, periplakin, loricrin small proline-rich proteins (SPRs), involucrin and loricrin) and cross-linking of these proteins by transglutimases (TGs) to form the cornified envelope. The intercellular lipids (ω-OH-ceramides, fatty acids and cholesterol) are extruded by the lamellar bodies into the extracellular space and are covalently attached to the cornified envelope to form the cornified lipid envelope. Adapted from (Candi et al., 2005).
1.2 Ichthyoses

1.2.1 Classification of the Ichthyoses: disorders of cornification (DOC)

In 2009, the first Ichthyosis Consensus Conference was held to establish a consensus for the nomenclature and classification of inherited ichthyoses, by which an international consensus for the classification of ichthyoses was achieved (Oji et al., 2010). This is a clinically-based classification in which DOC are referenced with their causative gene. Two principal groups are recognised: non-syndromic (limited to the skin without other organ involvement) and syndromic forms (skin and other organ involvement). There are several non-syndromic inherited ichthyoses as follows (Table 1):

<table>
<thead>
<tr>
<th>Disease</th>
<th>Part A: nonsyndromic forms</th>
<th>Gene(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common ichthyoses*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Autosomal semidominant</td>
<td>FLG</td>
</tr>
<tr>
<td>RXLI Nonsyndromic presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCI Major types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI*</td>
<td>Autosomal recessive</td>
<td>ABCA12</td>
</tr>
<tr>
<td>LI*</td>
<td>Autosomal recessive</td>
<td>TGM1/NIPAL4/ALOX12B/ABCA12/loci on 12p11.2-q13</td>
</tr>
<tr>
<td>CIE</td>
<td>Autosomal recessive</td>
<td>ALOXE3/ALOX12B/ABCA12/CYP4F22/NIPA</td>
</tr>
<tr>
<td>Minor variants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHCB</td>
<td>Autosomal recessive</td>
<td>TGM1, ALOX12B, ALOXE3</td>
</tr>
<tr>
<td>Acral SHCB</td>
<td>Autosomal recessive</td>
<td>TGM1</td>
</tr>
<tr>
<td>BSI</td>
<td>Autosomal recessive</td>
<td>TGM1</td>
</tr>
<tr>
<td>Keratinopathic ichthyosis (KPI) Major types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EI*</td>
<td>Autosomal dominant</td>
<td>KRT1/KRT10</td>
</tr>
<tr>
<td>SEI</td>
<td>Autosomal dominant</td>
<td>KRT2</td>
</tr>
<tr>
<td>Minor variants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEI*</td>
<td>Autosomal dominant</td>
<td>KRT1/KRT10</td>
</tr>
<tr>
<td>ICM</td>
<td>Autosomal dominant</td>
<td>KRT1</td>
</tr>
<tr>
<td>AREI</td>
<td>Autosomal recessive</td>
<td>KRT10</td>
</tr>
<tr>
<td>Epidermolytic nevi**</td>
<td>Somatic recessive</td>
<td>KRT1/KRT10</td>
</tr>
<tr>
<td>Other forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LK</td>
<td>Autosomal dominant</td>
<td>LOR</td>
</tr>
<tr>
<td>EKV**</td>
<td>Autosomal dominant</td>
<td>GJB3/GJB4</td>
</tr>
<tr>
<td>PSD</td>
<td>Autosomal recessive</td>
<td>Locus unknown</td>
</tr>
<tr>
<td>CRIE</td>
<td>Autosomal dominant (isolated cases)</td>
<td>Locus unknown</td>
</tr>
<tr>
<td>KLIICK</td>
<td>Autosomal recessive</td>
<td>POMP</td>
</tr>
</tbody>
</table>

*Often delayed onset (in RXLI mild scaling and erythroderma may be present already at birth).
**May indicate gonadal mosaicism, which can cause generalized EI in offspring generation.
**Whether progressive symmetric erythrokeratodermia represents distinct mendelian disorders of cornification form is debated.

Table 1: Clinicogenetic classification of inherited non-syndromic ichthyoses.

The phenotype is limited to the skin without other organ involvement. Taken from (Oji et al., 2010).
This study focuses on the monogenic non-syndromic ichthyosis, due to mutations in STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B which constitute a subgroup within the greater group of DOC.

1.2.2 The non-syndromic monogenic ichthyoses:
Defects in SC lead to a clinically and etiologically heterogenous group of disorders ranging from mild (as in ichthyosis vulgaris MIM 146700) to having a major impact on quality of life (X-linked ichthyosis MIM 308100, lamellar ichthyosis MIM 242300/congenital ichthyosiform erythroderma MIM 242100) to severe cases that can be life-threatening (harlequin ichthyosis MIM 242500). The last 10 years have seen considerable advances in our understanding of the genetic basis of the ichthyoses (Oji et al., 2010) (Figure 1.2).

The pathogenesis of various ichthyoses can be thought to be associated with at least one of components of the epidermal skin barrier (sections 1.4 and 1.5). The known causative molecules underlying ichthyosis include ABCA12, lipoxygenase-3, 12R-lipoxygenase, ichthyin and steroid sulfatase, are thought to be related to the intercellular lipid layers. Transglutaminase1 plays a role in cornified cell envelope formation. Filaggrin is essential for the formation of keratohyalin granules.
Non-syndromic Monogenic Inherited Ichthyoses

Common Ichthyoses
- Ichthyosis Vulgaris
- X-linked ichthyosis

Autosomal Recessive Congenital Ichthyoses
- Collodion Baby
- Lamellar Ichthyosis
- Congenital ichthyosiform erythroderma
- Harlequin Ichthyosis

Variety of phenotypical findings in different monogenic non-syndromic ichthyosis:
- a) Fine scaling phenotype in ichthyosis vulgaris, taken from (Smith et al., 2006)
- b) Moderate scaling phenotype in recessive X-linked ichthyosis, taken from (Schmuth et al., 2013)
- c) Parchment like collodion membrane, taken from (Vahlquist et al., 2010)
- d) Large, brown scaling phenotype in lamellar ichthyosis, taken from (Jobard et al., 2002)
- e) Erythema and small scale of congenital ichthyosiform erythroderma, taken from (Oji and Traupe, 2006)
- f) Thick scale plates separated by fissures in harlequin ichthyosis, taken from (Kelsell et al., 2005).

Figure 1.2: The monogenic non-syndromic ichthyoses in this study.

Variety of phenotypical findings in different monogenic non-syndromic ichthyosis: a) Fine scaling phenotype in ichthyosis vulgaris, taken from (Smith et al., 2006) b) Moderate scaling phenotype in recessive X-linked ichthyosis, taken from (Schmuth et al., 2013) c) Parchment like collodion membrane, taken from (Vahlquist et al., 2010) d) Large, brown scaling phenotype in lamellar ichthyosis, taken from (Jobard et al., 2002) e) Erythema and small scale of congenital ichthyosiform erythroderma, taken from (Oji and Traupe, 2006) f) Thick scale plates separated by fissures in harlequin ichthyosis, taken from (Kelsell et al., 2005).
1.3 Common Ichthyoses

1.3.1 ICHTHYOSIS VULGARIS (IV) (MIM 308100)
Ichthyosis vulgaris represents the most common disorder of cornification. Its prevalence appears to vary with geographical region ranging from 1 in 100 in British school children (Wells, 1966) to 1:1000 and 2000 in Japan and Mexico (Cuevas-Covarrubias et al., 1999). Varying clinical criteria for the diagnosis and/or geographical variation in the mutation frequency and seasonal variability (improves in the summer months) are thought to account for the discrepant prevalence rates.

The phenotype is rarely evident before 3–6 months after birth, but usually manifests during childhood and becomes more severe with age. Individuals display mild generalized fine scaling most pronounced on the extensor surfaces of extremities with characteristic flexural sparing. Hyperlinearity of palms and soles (linear grooves perpendicular to the thenar and hypothenar eminence) is common as is the association with keratosis pilaris and atopic dermatitis (AD) (Sandilands et al., 2007).

Atopic dermatitis is a chronic relapsing inflammatory skin disease presenting as pruritic, dry, scaly skin with excoriations as well as cutaneous infections and is associated with asthma and/or allergic rhinitis (McGrath and Uitto, 2008, Sidbury et al., 2014, Spergel, 2010). It occurs most commonly during infancy/childhood but can also affect adults (Griffiths et al., 2016).

1.3.1.1 FLG: Gene
In 2006, loss of function mutations in the FLG gene, located in the epidermal differentiation complex (a region that also harbours genes for several other proteins that are expressed during
terminal differentiation several of which become cross-linked enzymatically into the CE) on chromosome 1q21, resulting in a lack of functional filaggrin were identified in IV patients from Scottish, Irish and European-American populations (Smith et al., 2006). In addition to causing IV, a monogenic genodermatosis, mutations in the FLG gene is the major genetic predisposing factor for AD, which is a complex trait, resulting from the interaction of multiple genetic and environmental risk factors (McLean, 2016).

FLG comprises three exons, the initiation codon for translation being located in exon 2, and the bulk of the profilaggrin protein is encoded by exon 3 (Presland et al., 1992). In addition to the two common premature termination causing mutations, p.R501X and c.2282del4 in exon 3, that were initially identified, several other rare or family-specific loss-of-function mutations within FLG exon 3 have been discovered in populations of white European ancestry. Asian populations have been shown to have their own mutation spectra, following detailed study of the Japanese (Osawa et al., Nomura et al., 2009) and Han Chinese (Zhang et al., 2011) and Singaporean Chinese populations (Chen et al., 2011). All mutations are either nonsense or frame-shift mutations in the protein encoding exon.

The prevalent filaggrin mutations are loss-of-function alleles leading to complete or almost complete loss of filaggrin expression (Sandilands et al., 2007, Palmer et al., 2006). There is a dose effect in that heterozygous patients display a mild or no phenotype, while homozygous and compound heterozygous FLG genotypes exhibit the full ichthyosis vulgaris phenotype. The same FLG mutations have been linked to atopic dermatitis (Palmer et al., 2006, Sandilands et al., 2007) but these are predominantly found in the heterozygous configuration.
1.3.1.2 Pro-Filaggrin and Filaggrin Protein
The initial product of FLG translation is Profilaggrin, a 400-kDa protein (Figure 1.3). It is composed of a short N-terminal domain, followed by the 10 to 12 repeats of nearly identical filaggrin that makes up most of the profilaggrin molecule (typically, there are 10 highly homologous and only slightly genetically distinct filaggrin units, although the number of filaggrin repeat units is variable and genetically determined). This means different individuals have 10, 11 or 12 filaggrin repeat units (copy number variants) in total plus a C-terminal domain (Gan et al., 1990). An incremental reduction in the risk of atopic dermatitis with each additional unit of copy number has been noted (Brown et al., 2012) and even a modest 10-20% increase in epidermal filaggrin expression is predicted to be therapeutic for eczema or protective against developing eczema (Brown and McLean, 2012).

Upon terminal differentiation, profilaggrin is proteolytically cleaved into filaggrin peptides of approximately 37 kDa and the N-terminal domain containing an S100-like calcium-binding domain. The N-terminal domain translocates to the nucleus where it possibly plays a role in the enucleation of keratinocytes in the outer stratum corneum (Sandilands et al., 2009). The S100-like calcium binding domain (Markova et al., 1993) may play a role in the regulation of calcium-dependent events during terminal epidermal differentiation (Presland et al., 1992) or conversely, calcium may be involved in the control of profilaggrin processing (Presland et al., 1992, Sandilands et al., 2009). Filaggrin has keratin binding properties. The precise function of the C-terminal domain is not known but it is required for the processing of profilaggrin to filaggrin.
1.3 Paucity/loss of keratohyalin granules due to loss-of-function mutations

In the absence of functional protein, as in IV, a reduced or absent granular layer due to paucity of keratohyalin granules and reduced cellular profilaggrin content (profilaggrin is the major component of the keratohyalin granules seen in the SG) is observed (Fleckman and Brumbaugh, 2002). Ultrastructurally, the residual keratohyalin granules are poorly formed (“crumbly”) (Anton-Lamprecht and Hofbauer, 1972) or absent (Fleckman and Brumbaugh, 2002). Absence of the granular layer is independent of body site and season of the year, but correlates with severity of the disease (Fleckman and Brumbaugh, 2002), and mutation status. Patients with one mutation (heterozygous) display a reduced granular layer whereas patients with two FLG mutations (homozygous or compound heterozygous) in most instances show a virtually complete lack of a granular layer (Smith et al., 2006, Gruber et al., 2007, Nomura et
al., 2007). However in rare cases even patients with two mutations show residual granular cells (Gruber et al., 2007). This persistence of keratohyalin granules appears to depend on the location of the mutation within the gene i.e. more proximal mutations show complete absence of profilaggrin in homozygotes (Smith et al., 2006), whereas more distal mutations show residual, yet greatly reduced, truncated profilaggrin species that are not processed to FLG monomers (Sandilands et al., 2007).

1.3.1.4 Filaggrin: Role in structural integrity of SC
Filaggrin, also known as filament-aggregating protein, aggregates the keratin cytoskeleton, facilitating the collapse and flattening of cells in the outermost stratum corneum to produce flattened anuclear squames (Manabe et al., 1991). Although, this process of cell flattening is seen in the absence of processed filaggrin, on an ultrastructural level disorganized keratin filaments are noted (Gruber et al., 2011). Additionally, impaired lamellar body loading and abnormal architecture of the lamellar bilayer is observed (Gruber et al. 2012). One possible explanation for this may be that filaggrin is a histidine-rich protein (Lynley and Dale, 1983) and histidine is metabolized to trans-urocanic acid (trans-UCA); pyrrolidone-5-carboxylic acid (PCA) is the other main breakdown product of filaggrin and together these organic acids help to maintain the pH gradient of the epidermis as evidenced by a higher surface pH in FLG null mutation carriers (Jungersted et al., 2010). An acidic pH within the stratum corneum is also important for the functional activity of enzymes involved in ceramide metabolism (Fluur et al., 2010). Another observation is reduction in corneodesmosome density and tight junction protein expression observed in the skin from ichthyosis vulgaris patients (Gruber et al., 2011). It is unclear as to how these observations may be attributable to filaggrin deficiency and the mechanisms by which profilaggrin and filaggrin, as intercellular proteins contribute to what appears to be a paracellular barrier defect (Gruber et al., 2011)
(Scharschmidt et al., 2009) remain to be defined.

1.3.1.5 Filaggrin: Role in SC hydration
FLG is proteolysed into its constituent amino acids and other small molecules, the so-called 'natural moisturising factor' which contributes to epidermal hydration and barrier function (Presland et al., 2000, Scott et al., 1982, Nachat et al., 2005). FLG null mutations are associated with lower levels of hygroscopic amino acids in the SC and there is a concomitant increase in transepidermal water loss (Kezic et al., 2008).

1.3.1.6 Filaggrin: In Vitro knockdown models
Several in vitro models for filaggrin knockdown and IV have been reported; these models were generated either using siRNA transfected primary keratinocytes grown at air-liquid interface on collagen I (containing fibroblasts) gels and were cultured for 7 (Mildner et al., 2010) and 14 days (Kuchler et al., 2011, Vavrova et al., 2014) or by shRNA interference of primary keratinocytes grown on a polycarbonate filter cultivated for 10 days (Pendaries et al., 2014). Loss of FLG was demonstrated by qPCR, immunofluorescence in all three models and additionally by western blotting by Mildner et al. and Pendaries et al (Mildner et al., 2010, Pendaries et al., 2014). The model generated by Mildner et al. did not demonstrate changes in keratinocyte differentiation and SC morphology but this was in contrast to the other models where alteration in both was noted and this difference was attributed to the longer cultivation time (Kuchler et al., 2011). No difference in intercellular lipid lamellae or total lipid content in the FLG knockdown compared to normal construct was found on day 7 (Mildner et al., 2010, Vavrova et al., 2014) but disordered intercellular lipid lamellae accompanied by an almost 2-fold increase in FFA was found on day 14 of cultivation (Vavrova et al., 2014). All the in vitro models showed reduced levels of FLG degradation products, urocanic and/or
pyrrolidone carboxylic acid compared to a normal skin model, which is in agreement with \textit{in vivo} findings (Kezic et al., 2008, O'Regan et al., 2010). The skin barrier function was assessed by assessing SC permeability using a dye penetration assay, Lucifer yellow, by Mildner et al. and Pendaries et al (Mildner et al., 2010, Pendaries et al., 2014). In both studies increased permeability was noted; the dye penetrated into the SC and diffused further down to the SB or polycarbonate filter in the FLG-deficient skin model whilst in the control it was retained within the SC. This finding was supported by Kuchler et al. who reported higher permeability towards lipophilic testosterone but no significant increase in permeability to hydrophilic caffeine in the FLG knockdown compare to control was noted. In contrast another FLG knock-down model using shRNA transfected NTERTs (on a collagen I scaffold cultivated for 14 days) showed no changes in SC permeability for lipophilic butyl \textit{p}-aminobenzoic acid. In addition there was no effect in SC lipid organisation and composition in the NTERT model in keeping with Mildner et al. (van Drongelen et al., 2013).

1.3.2 RECESSIVE X-LINKED ICHTHYOSIS (RXLI) (MIM 308100)
RXLI is a keratinization disorder and affects roughly 1:2000 to 1:6000 males (Shwayder, 1999) who inherit an X chromosome bearing a mutated steroid sulfatase gene (STS) from their asymptomatic carrier mother (Shapiro et al., 1978, Koppe et al., 1978). In 75\% of cases scaling is evident within the first week of life but 6\% develop scaling after the age of 1 year (D. A. Burns, 2010). The disorder sometimes presents with fine peeling of the entire integument at the age of 1-3 weeks and shows fine scaling in early life. The scaling increases throughout childhood and is polygonal, thick and dark. It is prominent on the posterior and lateral neck, upper, lateral abdominal wall, outer thighs, the lower legs and preauricular facial skin. Extensor surfaces of the upper arms are commonly affected but in contrast to IV, flexures are involved (Hernandez-Martin et al., 1999). Palms and soles are spared. Extra-
cutaneous organ involvement as a result of contiguous gene syndrome has been described. A family history of prolonged labour and consequently perinatal complications may be reported (Hernandez-Martin et al., 1999).

1.3.2.1 STS: Gene
STS is located on Xp22.3 and has 10 exons spread over 146 kilo base pairs encoding a 62 kDa polypeptide (Sugawara et al., 2006). STS gene deficiencies are heterogeneous and in addition to the more common deletions (80-90% of RXLI) there are several described point mutations; most are missense mutations but non-sense mutations and one splice site mutation has also been reported (Gonzalez-Huerta et al., 2006, Liao et al., 2007). Although the genotypic deficiencies are heterogeneous, they all lead to loss of STS enzyme activity.

1.3.2.2 Steroid sulfatase (SSase): Protein
The STS gene encodes steroid sulfatase, a membrane-bound microsomal enzyme that is ubiquitously expressed and hydrolyzes estrone sulfate, dehydroepiandrosterone sulfate, and cholesterol sulfate, CSO₄, (Alperin and Shapiro, 1997). In epidermis, SSase activity is low in the basal and spinous layers, whereas enzyme levels peak in the SG (10–20 times higher) and persist into the SC. In the SG, SSase is concentrated in lamellar granules and then secreted into the intercellular spaces of the SC, along with other lamellar granule-derived lipid hydrolases (Elias et al., 2004) where steroid sulfatase catalyzes the desulfation of CSO₄ generating cholesterol for the barrier (Shapiro et al., 1978, Kubilus et al., 1979). In RXLI, due to absence of the enzyme steroid sulfatase cholesterol sulfate accumulates in the SC (up to 10- to 20-fold increase) [(Williams and Elias, 1981)].
1.3.2.3 Sulfatases: The superfamily
Sulfatases belong to a conserved family of enzymes that are involved in the regulation of cell metabolism and in cell signaling (Mueller et al., 2015). They are hydrolytic enzymes that desulfate esters contained in hormones, proteins, and complex macromolecules. Each sulfatase has its own substrate specificity (Buono and Cosma, 2010). To date, 17 distinct genes that can code for sulfatases in humans have been identified, which have been further divided on the basis of their subcellular localization and their pH-dependent activities. The protein structures are characterized by four domains: A, B and C, highly conserved domains, participate in the formation of N-terminal region with the B domain including the active site while the D domain includes the less conserved C-terminal region. A highly conserved cysteine in their active site is post-translationally converted into formylglycine by the formylglycine-generating enzyme encoded by SUMF1 (sulfatase modifying factor 1) in all sulfatases leading to protein activation. Disorders due to gene mutations of sulfatases include those resulting from improper catabolism of substrates (ARSA gene mutations cause metachromatic leukodystrophy, which is characterized by extensive neuron demyelination in the nervous system due to improper catabolism of the sulfatide, cerebroside-3S, which is one of the major structural components of the myelin sheath) or accumulation of non-catabolised substrates (Louis and Fluharty, 1991; Buono and Cosma, 2010). Mutations in the genes encoding for lysosomal sulfatases such as ARSB results in a group of lysosomal storage disorders, mucopolysaccharidoses, that arise following accumulation of non-catabolized substrates which severely impair lysosomal function, resulting in defects in protein, glycoconjugate, lipid, nucleic acid, and phosphate metabolism) (Neufeld EFM, 1999).

1.3.2.4 SSase: Role in Permeability Barrier Function
Ultrastructural images of SC in RXLI show frequent but focal disruption of intercellular lipids (Rehfeld et al., 1988, Zettersten et al., 1998) due to excess CSO₄, and to some extent,
decreased cholesterol (reduced by ~50%) [(Elias et al., 2004)].

1.3.2.5 SSase: Role in desquamation
In normal epidermis, the progressive decline in cholesterol sulfate (~5% of total lipid in the SG, declining to ~1% in the outer SC [(Long et al., 1985, Ranasinghe et al., 1986, Elias et al., 1998)] permits corneodesmosome degradation leading to intact desquamation (Elias et al., 2004) and regulation of permeability barrier homeostasis. Loss of SSase in RXLI leads to persistence of corneodesmosomes. Two key serine proteases, kallikrein (KLK) KLK7 [stratum corneum chymotryptic enzyme (SCCE)] and KLK5 [stratum corneum tryptic enzyme (SCTE)] are thought to mediate desquamation by degrading corneodesmosomes. CSO₄, is a known serine protease inhibitor and accumulation of CSO₄, possibly retards desquamation by inhibiting serine proteases in the SC (Williams, 1991, Elias et al., 2004).

1.3.2.6 SSase: Regulation of differentiation by cholesterol sulfate
CSO₄ is known to stimulate epidermal differentiation by at least two mechanisms; It activates the η isoform of protein kinase C (Denning et al., 1995), which in turn stimulates the phosphorylation of differentiation-linked proteins (Elias et al., 2004). CSO₄ is a transcriptional regulator of TGM1 and involucrin expression, operating through an activator protein-1, AP-1, binding site in the promoter region (Hanley et al., 2001).

1.4 The Autosomal Recessive Congenital Ichthyoses (ARCI)
ARCI is an umbrella term for the lamellar ichthyosis (LI)/Nonbullous congenital ichthyosiform erythroderma (NCIE) spectrum patients and Harlequin Ichthyosis (Oji et al., 2010). They all share in common an autosomal recessive mode of inheritance and disease presentation at birth, most often with a collodion membrane.
1.4.1 HARLEQUIN ICHTHYOSIS (HI) (MIM 242500):
HI is the most devastating congenital ichthyosis. Affected newborns are encased in an “armour” of thick scale plates separated by deep fissures. There is bilateral ectropion and eclabium. The nose and ears are flattened and appear rudimentary. Digital contractures and autoamputation of digits due to constricting skin bands have been reported. Infants are often born prematurely, and some are stillborn. As the skin barrier is severely compromised, neonates are more prone to sepsis, dehydration, and impaired thermoregulation. Additionally, the constricting scales can impair respiration and/or feeding leading to perinatal mortality. In neonates who survive the perinatal period, the plate-like encasement is shed, and the phenotype shifts to a severe ichthyosiform erythroderma (Williams and Elias, 1993, Akiyama, 1999). The compensatory mechanisms for ABCA12 leading to the milder phenotype are not known. In 2005, mutations in ABCA12 on chromosome 2q33-5 were reported to underlie HI (Kelsell et al., 2005, Akiyama et al., 2005)

1.4.1.1 ABCA12: Other Genotype/Phenotype correlations
Several genotype/phenotype correlations with ABCA12 mutations, other than HI, have also been reported; in 2003 it was reported that combinations of missense mutations (resulting in only one amino acid alteration) underlie the LI phenotype, (Lefevre et al., 2003). Clinically, no distinct characteristic features are known for this type of LI (Parmentier et al., 1999, Parmentier et al., 1996, Lefevre et al., 2003). In addition, two cases of NBCIE were reported to have ABCA12 missense mutations (Natsuga et al., 2007, Nawaz et al., 2012, Sakai et al., 2009).

1.4.1.2 ABCA12: Gene
Thus far the mutations reported in HI are homozygous or compound heterozygous nonsense substitutions, whole exon deletions and insertions or splice site mutations predicted to cause a
truncated protein affecting important nucleotide-binding fold domains and/or transmembrane domains resulting in severe loss of ABCA12 function (although a compound heterozygous mutation with a missense and a premature stop codon has been reported) whereas the *ABCA12* mutations in LI/NCIE reported to date have solely been missense mutations. (Akiyama et al., 2005, Kelsell et al., 2005, Akiyama et al., 2006a, Akiyama et al., 2006b, Thomas et al., 2006, Akiyama et al., 2007b, Akiyama et al., 2007a, Rajpar et al., 2006). Both lamellar ichthyosis and NCIE have a much milder phenotype than HI. ABCA12 mutations in LI have been found exclusively in the first nucleotide-binding fold and in NCIE in the extracellular domain and the nucleotide-binding fold (Rajpopat et al., 2011, Nawaz et al., 2012). Thus, the severity of the disease is thought to be affected by the nature of the *ABCA12* mutation and its location within the protein and mortality is associated with homozygous mutations. Additionally certain mutations are more prevalent in certain populations due to founder effect such as c7322delC in exon 49 in 80% of Pakistani HI patients (Thomas et al., 2008).

1.4.1.3 ABCA12: Protein

ABCA12 is found in 2 isoforms-ABCA12-L (NM_173076) and the shorter ABCA12-S (NM_173076). The former has a calculated molecular weight of 293 kDa and the latter 257 kDa. The full-length expressed protein contains a signal peptide at the N terminus, two transmembrane domains (TMD) and two nucleotide binding folds (NBF) (Figure 1.4). The NBFs bind ATP and the energy released in this process is used to transport lipids across the membrane. In normal skin, ABCA12 is expressed throughout the epidermis with abundant expression in the spinous and granular layers (Sakai et al., 2007) and abnormal LGs are the most obvious characteristic findings in HI lesional epidermis. It serves as a putative transporter for glucosylceramides from the Golgi apparatus (Sakai et al., 2007) into epidermal LB.
ABCA12 is a transmembrane protein. It contains a signal peptide at the N terminus, two transmembrane domains (in red) and two nucleotide binding folds. The nucleotide binding folds bind ATP and the energy released in this process is used to transport lipids across the membrane (Akiyama, 2014).

1.4.1.4 ABCA: The transporter superfamily
ABCA12 is a member of a large superfamily of the ATP-binding cassette (ABC) transporters. ABCs are a large group of proteins which bind and hydrolyze ATP to transport various molecules across a limiting membrane or into a vesicle (Borst and Elferink, 2002). To date, 48 ABC genes have been identified, which have been further divided into seven subfamilies organized from A to G, based on the amino acid sequence and the organization of ATP nucleotide binding folds (Akiyama et al., 2005, Borst and Elferink, 2002, Allikmets et al., 1996, Dean et al., 2001). These proteins contain two transmembrane sequences and two ATP binding domains, which undergo conformational changes that facilitate first the binding and then the dissociation of attached lipids (Hollenstein et al., 2007). The transmembrane domains typically contain from six to eleven membrane-spanning alpha-helices and it is this region of the protein that provides the specificity for the substrate. The ABCA subfamily comprises 12
functional transporters that all mediate lipid transport (Jiang et al., 2008), (Peelman et al., 2003) with the exception of one pseudogene (ABCA11). ABCA transporters function as components of highly specialized cellular lipid-transporting organelles in major physiological systems, in which defects cause severe inherited diseases in the cardiovascular, visual, and respiratory systems. Gene mutations in ABCA1 leads to Tangier disease where patients have a greatly reduced ability to transport cholesterol out of their cells, leading to a deficiency of high density lipoproteins in the bloodstream and the accumulation of cholesterol in many tissues (Jetten et al., 1989, Jetten et al., 1987). ABCA3 regulates pulmonary surfactant transport/secretion by LB in type II alveolar cells (Yamano et al., 2001, Mulugeta et al., 2002) and pulmonary surfactant deficiency in newborns has been linked to ABCA3 deficiency (Strott and Higashi, 2003).

1.4.1.5 *ABCA12*: Role in lipid delivery and permeability barrier formation

In normal skin, ABCA12 localises to the LB and Golgi apparatus colocalising with glucosylceramide (Sakai et al., 2007). LB are found in the spinous and granular layers and are contiguous with the trans-Golgi network and fusion of LB with the surface of granular cells is observed (Ishida-Yamamoto et al., 2004). These observations imply that ABCA12 serves as a transporter for glucosylceramides from the Golgi apparatus into epidermal LB. The LB fuse with the plasma membrane at the apical surface of the granular keratinocytes secreting glucosylceramides into the extracellular space where they are hydrolysed to ceramides. They contribute both to lamellar extracellular lipids and to form the CLE (Sakai et al., 2007, Akiyama, 2006). In HI, loss of function mutations in *ABCA12* results in several morphological defects in skin. Compared to normal skin, electron microscopy of HI skin has shown absent, abnormally shaped, or reduced number of LB with absence of intercellular lamellae (Dale et al., 1990, Milner et al., 1992, Akiyama et al., 1994, Akiyama et al., 1998).
In HI keratinocytes an aberrant distribution of glucosylceramide immunofluorescent staining is noted, demonstrating defective glucosylceramide transport, but this phenotype is recoverable by in vitro ABCA12 corrective gene transfer (Akiyama et al., 2005). Furthermore, unlike in normal skin where there are polar and nonpolar lipids in HI skin the majority of the lipids are polar suggesting an absence of nonpolar lipids such as ceramides (Thomas et al., 2009). Mutations in ABCA12 cause defective lipid accumulation into LB (Akiyama et al., 2005, Yamanaka et al., 2007), resulting in malformation of the intercellular lipid layers of the stratum corneum (Akiyama et al., 2005) leading to a profound barrier abnormality (Moskowitz et al., 2004). Despite these findings the nature and scope of ABCA12’s involvement in lipid homeostasis remains unclear.

1.4.1.6 ABCA12: Role in protease delivery and corneodesmosome retention

Harlequin ichthyosis is characterized by striking hyperkeratosis. Although this is driven, at least in part, by the high transepidermal water loss (Moskowitz et al., 2004) due to the profound barrier abnormality, it is possible that this is also due to a desquamation abnormality, but by an indirect mechanism, since corneodesmosomes are found to persist in the outer SC. An array of LB-derived proteases is required for degradation of corneodesmosomes and normal desquamation (Brattsand et al., 2005, Caubet et al., 2004, Horikoshi et al., 1999). Lipid delivery to LB is required for the subsequent or concurrent importation of these proteases into these organelles (Jobard et al., 2002). Colocalisation of proteases Cathepsin D and KLK5 with ABCA12 in normal keratinocytes and reduction of both in HI skin and a HI organotypic model has been noted (Thomas et al., 2009). Thus a failure of lipid delivery may also impair the delivery of these proteins into LB and consequently to the SC thereby resulting in corneodesmosome retention, explaining (along with the intense hyperplastic response to the barrier abnormality) the extreme hyperkeratosis
in neonates with HI. However the mechanism by which this happens in HI is unknown.

1.4.1.7 *ABCA12*: Role in late epidermal differentiation
Expression of markers of late epidermal differentiation such as filaggrin, TGM1, K10 are highly dysregulated in HI skin leading to premature epidermal differentiation suggesting that ABCA12 may have a key role in keratinocyte differentiation (Thomas et al., 2009, Smyth et al., 2008).

1.4.1.8 *ABCA12*: Gene Regulation
Nuclear hormone receptors peroxisome proliferators-activated receptor, PPAR (gamma and -beta/delta) and liver X receptor, LXR (to a lesser extent than PPAR) upregulate ABCA12 expression in cultured human keratinocytes and improve epidermal permeability barrier homeostasis by stimulating keratinocyte differentiation, lipid synthesis, and increasing LB formation/secretion (Jiang et al., 2008).

1.4.2 LAMELLAR ICHTHYOSIS (LI)/NONBULLOUS CONGENITAL ICHTHYOSIFORM ERYTHRODERMA (NCIE)
The LI/NCIE group is clinically and genetically heterogeneous with LI phenotype at one end of the spectrum and NCIE at the other with many intermediate, overlapping phenotypes (Williams, 1992b, Williams, 1992a). Clinical phenotypes can change over time and in response to treatment e.g. retinoid-treated LI can turn into NCIE. Histological features in this patient group are non-specific but include a compensatory thickening of the SC and epidermal hyperplasia. Mutations in 8 genes have been identified that cause the observed phenotype including *TGM1, ABCA12, Ichthyin* (also known as *NIPAL4*) *CYP4F22* and the lipoxygenase genes *ALOX12B* and *ALOXE3, LIPN, CERS3* (Radner et al., 2013). *PNPLA1* (Grall et al.,
However, there is poor genotype-phenotype correlation. For example the LI phenotype is frequently, but not exclusively, caused by TGM1 deficiency. The same TGM1 mutation can cause both LI and NCIE phenotypes, and the LI phenotype can result from mutations other than TGM1 (Lawlor, 1988, Lefevre et al., 2004, Lesueur et al., 2007, Dahlqvist et al., 2007). Additionally, other variants/subtypes can be distinguished clinically: bathing suit ichthyosis attributed to TGM1 mutations and the self-resolving collodion baby associated with TGM1, ALOXE3 and ALOX12B mutations.

1.4.2.1 Lamellar Ichthyosis (LI) (MIM 242500)
The incidence of LI is estimated at 1:200000 (Eckl et al., 2005) but is more common in certain regions [(1:90,000 in Norway and 1:122,000 in Galicia in NW Spain due to a founder effect (Rodriguez-Pazos et al., 2011)]. Affected individuals are often (90%) (Burns et al., 2010) born with a parchment-like collodion membrane that is replaced in the first weeks of life by coarse, dark, plate-like scales (Williams and Elias, 1985). Due to the impaired skin barrier they are endangered by dehydration, sepsis and thermodynamics regulation (Huber et al, 1995). Eclabium and/or ectropion, with incomplete closure of the eye-lids, leading to conjunctivitis and keratitis, scarring alopecia, palmoplantar hyperkeratosis, hypoplasia of auricular and nasal cartilage, severe heat intolerance due to hypohidrosis may be noted (Griffiths et al. 2016).

1.4.2.2 Nonbullous Congenital Ichthyosiform Erythroderma (NCIE) (MIM 242100)
In nonbullous congenital ichthyosiform erythroderma, after desquamation of the collodion membrane in the first weeks of life, erythroderma develops with fine white-gray semiadherent scales which become large and plate-like on the lower limbs. Erythroderma often improves during childhood. Sites of predilection for scales are the face, arms and trunk. In up to about
70% of patients, palmoplantar hyperkeratosis is present (Burns et al., 2010). Further frequent characteristics are ectropion, eclabium, mild nail dystrophy and heat intolerance (Burns et al., 2010).

1.4.2.3 Transglutaminase-1 (TGM1)
Of the many genes implicated in ARCI a variety of loss-of-function mutations in TGM1 (Huber et al., 1995, Russell et al., 1995, Laiho et al., 1997, Akiyama et al., 2001), are most common accounting for over a third of this group (Fischer, 2009). The most typical phenotype of TGM1-linked ARCI is that of (classic) lamellar ichthyosis but TGM1 mutations are reported to underlie NCIE phenotype (Laiho et al., 1997, Akiyama et al., 2001).

1.4.2.3.1 TGM1: Other genotype-phenotype correlations
Other than the phenotypes mentioned above TGM1 mutations are also responsible for self-healing collodion baby (Vahlquist et al., 2010), limited lamellar ichthyosis and bathing suit ichthyosis (Oji et al., 2006). In self-healing collodion baby, the collodion membrane heals with no or only very mild ichthyosis, and bathing suit ichthyosis, characterized by pronounced scaling in the bathing suit areas but sparing of the extremities and the central face (Vahlquist et al., 2010, Oji et al., 2006). Bathing suit ichthyosis is thought to be a temperature-sensitive phenotype where the enzyme activity decreases at temperatures >33°C (Trindade et al., 2010). In this very rare condition there appear to be areas of normal looking skin and areas of skin with abnormal plate-like scaling. The amount of normal skin may vary at any one time.

1.4.2.3.2 TGM1: Gene
The TGM1 gene localizes to chromosome 14 and contains 15 exons. To date, over 115 different mutations have been identified in this gene in 234 individuals from diverse
racial/and ethnic backgrounds (Herman et al., 2009). Most reported mutations are missense followed by nonsense, deletion and insertion (Herman et al., 2009). The most severe cases of LI are caused by nonsense and missense mutations resulting in loss of functional protein (Russell et al., 1995). The c.877-2A>G is the most commonly reported TGM1 mutation and it had been shown that this mutation is common among North American and Norwegian patients due to a founder effect (Herman et al., 2009).

1.4.2.3.3 TGM1: Protein
TGM1 is mainly expressed on the upper spinous and granular layers of the stratified epidermis (Huber et al., 1995). It is a 92 kDa membrane-bound, calcium-dependent enzyme that is involved in CE assembly (by catalysing the N-y-glutamyl lysine) by cross-linking of precursor proteins such as involucrin, small proline-rich proteins and loricrin (Steinert and Marekov, 1995). Additionally it plays a role in covalently linking ω-hydroxyceramide, a constituent of the CLE, by ester bonds to CE proteins, most abundantly to involucrin (Candi et al., 2005).

1.4.2.3.4 Transglutaminases (TGs): The superfamily
Transglutaminases are encoded by a family of structurally and functionally related genes. Nine TG genes have been identified, eight of which encode active enzymes (Esposito and Caputo, 2005). A four-sequential domain arrangement is highly conserved in TG isoforms (Esposito and Caputo, 2005). The enzymes catalyze transamidation of glutamine resides a reaction associated with a wide variety of physiological processes including blood clotting, keratinization and fertilization (Huber et al., 1995). It consists of an N-terminal, a catalytic and two C-terminal β-barrel domains. The epidermis harbours four of the nine TG isoforms (TG1, TG2, TG3 and TG5). TG2 is only detected in the basal layers and it is not involved in
cornification. TG1, TG3 and TG5 are expressed in the upper layers (Esposito and Caputo, 2005). These play consecutive and complementary roles in the formation of CE (Esposito and Caputo, 2005) on the intracellular surface of the plasma membrane of keratinocytes undergoing terminal differentiation. Although TGM3 and TGM5 are involved in the assembly of the CE, TGM1 is the major subtype involved (Yamanishi et al., 1992, Kim et al., 1992); TG 3−/− mice display no obvious defect in skin development nor in barrier function suggesting that epidermal loss of TG3 can be compensated for by other family members (John et al., 2012) and mutations in TGM5 lead to another type of ichthyosis, acral peeling skin syndrome MIM 609796. The fact that TGM1−/− mice die soon after birth with impaired skin barrier is the strongest validation of the importance of TG1 for cornified-envelope formation (Kuramoto et al., 2002).

1.4.2.3.5 TGM1: Role in Barrier function
Although TGM1 plays a role in CE formation, the barrier defect is paracellular as seen by lanthanum tracer studies (Elias et al., 2002). Ultrastructural studies reveal that the CEs are focally attenuated at all levels of the SC and abnormalities in extracellular lipid structures are evident and these correspond to regions where the cornified envelope is attenuated (Hohl et al., 1993, Paige et al., 1994, Elias et al., 2002). Furthermore, alterations in the lipid fatty acid synthesis pathway, following microarray analysis, in a rat epithelial organotypic model have been reported (O'Shaughnessy et al., 2010). Thus, mutations in TGM1 secondarily cause defects in the intercellular lipid layers in the SC, leading to defective barrier function and to the ichthyotic phenotype seen in LI patients (Elias et al., 2002) and in transglutaminase 1 knockout mice (Kuramoto et al., 2002). Ex vivo gene replacement of TGM1, followed by transplantation to SCID mice, successfully corrects the ARCI phenotype, including the barrier abnormality (Choate et al., 1996).
1.4.2.3.6 TGM1 expression

TGM1 is expressed on cell borders in the granular layer of healthy skin. In patients with *ALOX12B*, *ALOXE3* and *NIPAL4* mutations, the expression of *TGM1* is altered and extends into the stratum corneum and in several layers of the viable epidermis (Li et al., 2012). *TGM1* and eLOX-3 are found to colocalize mainly in the granular layer of healthy control skin and this colocalization is markedly increased in patients with *ALOX12B* and *ALOXE3* mutations (Li et al., 2012). Additionally, loss of *TGM1* is reported to cause changes in epithelial differentiation markers (increase in keratins 1, loricrin and downregulation of involucrin) in a rat epidermal keratinocyte organotypic model (O'Shaughnessy et al., 2010).

1.4.2.4 ALOX12B/ALOXE3

In 2002, mutations in two lipoxygenase genes, *ALOXE3* and *ALOX12B*, on chromosome 17p13, coding lipoxygenase-3 and 12(R)-lipoxygenase, respectively, were reported to underlie LI/NCIE (Jobard et al., 2002). They represent the second most common cause of ARCI after *TGM1* (~15% of ARCI patients) (Eckl et al., 2009, Fischer, 2009). Most reported mutations are missense but deletions, insertions, splice site mutations leading to frameshift and mutations resulting in premature termination codons in both genes have been reported. Although *ALOX12B* mutations are distributed throughout the gene, two significant hotspots for mutations in *ALOXE3* were found in one study of 250 patients (Eckl et al., 2009). All mutations are loss of function mutations, either impairing enzyme activity or ablating protein synthesis thus confirming the crucial role of the LOX in barrier formation (Eckl et al., 2009) as evidenced by 12R-LOX and eLOX-R deficient mice that display a postnatal lethal phenotype due to severely impaired barrier function (Epp et al., 2007, Moran et al., 2007, Krieg et al., 2013).
1.4.2.4.1 LOX: Lipoxygenases family
Lipoxygenases (LOX) represent a widely distributed family of non-heme, iron-containing dioxgenases that insert molecular oxygen into polyunsaturated fatty acids producing highly active metabolites that play important roles in cell signaling or modification of membrane structures (Brash, 1999). Within the mammalian LOX family, a distinct subclass of epidermal-type LOX has been found to be preferentially synthesized in the skin and few other epithelial tissues (Brash et al., 1997, Boeglin et al., 1998). The genes for the human epidermal LOX, 15-LOX-2, 12R-LOX, and eLOX-3, map closely together on human chromosome 17p13.1 (Krieg et al., 2001). Their differentiation-dependent expression pattern in the epidermis suggests a common physiological role in epidermal differentiation. The epidermal 12R-LOX and eLOX-3 differ from all other mammalian LOX in their unique structural and enzymatic features (Boeglin et al., 1998, Krieg et al., 1999) as both proteins contain an extra domain located at the surface of the catalytic subunit. 12R-LOX represents the only mammalian LOX that forms products with R chirality (i.e. spatial arrangement of molecules with R chirality are mirror images of molecules with S chirality), and, unlike all other LOX, eLOX-3 does not exhibit dioxgenase activity but acts as a hydroperoxide isomerase (Yu et al., 2003).

1.4.2.4.2 LOX:12R-LOX/eLOX-3
Both 12R-LOX and eLOX-3 are localized to the stratum granulosum. Because the same phenotype is caused by mutation of either gene, the encoded proteins 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3) are proposed to function in the same pathway of skin barrier formation. It is thought that both enzymes act in sequence: 12R-LOX to convert fatty acid substrates to R-hydroperoxides and eLOX3 in turn converts the 12R-LOX product into a specific epoxyalcohol derivative.
1.4.2.4.3 Lipoxygenase-3 and 12(R)-lipoxygenase: Role in terminal differentiation
With arachidonic acid as a substrate, the 12R-LOX/eLOX-3 pathway results in the production of specific R-epoxyalcohol metabolites which are known to function as signaling molecules involved in regulating keratinocyte differentiation (Brash et al., 2007, Eckl et al., 2005).

![Diagram of metabolic pathway]

Figure 1.5: Postulated role of 12R-LOX and eLOX-3 in the same metabolic pathway.
12R-LOX converts fatty acid substrates to 12R-hydroperoxyeicosaatetraenoic acid (12R-HPETE) and eLOX3 converts the 12R-LOX product into the corresponding hepxilin- like epoxyalcohol, 8R-hydroxy-11R,12R-epoxyeicosatrienoic acid. Ichthyin is thought to be the putative receptor for the end products of this pathway.
1.4.2.4.4 LOX: Structural role in skin barrier formation (CLE)-defective ceramide processing

Here, linoleate-containing EOS ceramide is the substrate. It is catalysed by 12R-LOX/eLOX-3 to an oxidized linoleate moiety which is hydrolysed further resulting in a free hydroxyl on the ceramides for coupling to the cross-linked proteins of the CE and forming the CLE (Krieg et al., 2013, Zheng et al., 2011). Thus, it has been proposed that the LOX pathway may play a role in ceramide processing and consequently in the formation of the CLE (Zheng et al., 2011).

1.4.2.5 Ichthyin

1.4.2.5.1 LI/NCIE phenotypes due to Ichthyin mutations

In patients with Ichthyin mutations LI/NCIE phenotypes have been noted, with a slightly increased prevalence of the NCIE phenotype, but the spectrum of clinical variability is very
wide, even among members of the same family, (Wajid et al., 2010) ranging from NCIE to LI to a mixture of both. Palmoplantar keratoderma is present in most cases. Some patients are born with a collodion membrane (Lefevre et al., 2004, Dahlqvist et al., 2007). Other features such as hypohidrosis, itching, joint contractures, clubbing and ectropion have also been reported.

1.4.2.5.2 Ichthyin: Gene
Ichthyin, also known as NIPAL4, defects were reported to be associated with ARCI in 2004 (Lefevre et al., 2004). The gene is localized on chromosome 5q33 and has 6 exons. Homozygous mutations reported include 6 missense mutations (most common c.527C ->A), 2 splice site mutations and 1 nonsense mutation (Wajid et al., 2010).

1.4.2.5.3 Ichthyin: Protein
The protein belongs to a new family of proteins and is predicted to have several transmembrane domains. Ichthyin-like proteins are localized in the plasma membrane, and share homologies to both magnesium transporters and G-protein coupled receptors (Lefevre et al., 2004). In normal skin, Ichthyin is expressed in the viable part of epidermis with highest expression in the SG with localization to the cell borders in a honeycomb pattern (Li et al., 2013, Wajid et al., 2010). On electron microscopy it localises to keratin throughout the viable epidermis and desmoplakin (Dahlqvist et al., 2012). (Interestingly, patients with mutations in keratin 1 and desmoplakin have palmoplantar keratoderma, a feature observed in this ichthyotic phenotype).

In patients with Ichthyin mutations no loss of Ichthyin protein has been observed (Dahlqvist et al., 2012) but relocation to the cytoplasm as well as weak expression of the protein in the
stratum corneum has been detected (Li et al., 2013). Ultrastructurally, aggregation of mutant ichthyin protein is seen (Dahlqvist et al., 2012). These findings suggest altered or loss of functional protein in mutant Ichthyin.

1.4.2.5.4 Ichthyin: Role in lipid metabolism
The function of Ichthyin is unknown. It has been proposed to function both as a receptor for metabolites produced by the 12R-LOX and eLOX-3 lipoxygenases in the hepxobilin pathway (Lefevre et al., 2004) and as a magnesium transporter (Goytain et al., 2008) with a possible role in lipid metabolism; In support of this, structural changes in the SG (empty or partially filled vacuolar and vesicular structures, which are thought to represent defective LB and perinuclear elongated membranes) due to ichthyin deficiency have been seen on electron microscopy (Dahlqvist et al., 2007) and abnormal lipid accumulation within cells (but not in the intercellular space) is seen in the SG and SC on Nile Red lipid analysis (Dahlqvist et al., 2012, Wajid et al., 2010). Further support for the role of Ichthyin in lipid metabolism comes from another finding; Ichthyin is found to colocalize with FATP4 protein in the SG. The putative function of FATP4 is that of acyl-CoA synthetase with some predilection for long and very-long FFA (Lenz et al., 2011). It is thought to be essential for lipid deposition in the cornified layer and lack of fatty acid transport protein, FATP4, leads to a syndromic ichthyosis in the neonatal period called Ichthyosis Prematurity Syndrome. Down-regulation of Ichthyin results in the up-regulation of FATP4 expression possibly reflecting a compensatory feedback mechanism (Li et al., 2013). FATP4 is known to be a magnesium-dependent enzyme and it may be possible that it requires ichthyin for Mg$^{2+}$ recruitment (Li et al., 2013).

1.4.2.5.5 Ichthyin: Putative receptor for products of the lipoxygenase pathway
The expression of Ichthyin is upregulated in ALOX12B^{−/−}, ALOXE3^{−/−} and TGM1^{−/−} mutations.
In turn, along with altered localization of ichthyin, ALOX12B, ALOXE3 are upregulated with increased colocalisation in ICHTHYIN°° (Li et al., 2012, Li et al., 2013) suggesting abnormal enzyme turnover due to a chain of events in which these ARCI genes may be involved.

However, the exact mechanisms of how Ichthyin mutations can cause an ichthyotic phenotype and interact with other ichthyosis genes, in particular ALOX12B and ALOXE3 along a common pathway, remains to be clarified.
1.5 Hypothesis

The monogenic non-syndromic ichthyoses (ichthyosis vulgaris, X-linked ichthyosis, congenital ichthyosiform erythroderma, lamellar ichthyosis, harlequin ichthyosis) cause a similar clinical phenotype of varying severity that affects terminal differentiation in skin with compromise of the cornified envelope due to genetic defects arising from different underlying gene mutations located on separate chromosomes.

The null hypothesis states that despite the common phenotype the individual ichthyosis do not have interlinking pathomechanisms and biological pathways. In this study I test this as follows:

Aims and objectives

1. Development of in-vitro 2D (and where possible 3-D) models of the ichthyoses.
2. RNA-Seq on generated models from the same genetic background with knockdown of relevant ichthyosis genes using primary human keratinocytes from neonatal foreskin.
3. Analysis of the results to identify pathways and/or biological processes involved in disease pathogenesis.
Chapter 2: Materials and Methods
2.1 Ethics
This study was conducted according to the Declaration of Helsinki Principles and was approved by the East London and City Health Authority Research Ethics Committee and cooperating centres (Ethics reference: 08/H1102/73).

2.2 Cell culture

2.2.1 Primary Keratinocyte culture
Primary human keratinocytes were derived from neonatal foreskins and purchased from Invitrogen (Cat. No. C-001-5C).

2.2.1.1 Isolation of primary keratinocytes from neonatal foreskin
Foreskin was obtained following circumcision from neonatal Caucasian males. The skin was delivered post-operatively in transport medium [DMEM Dulbecco’s Modified Eagles medium (E4) containing 10% (v/v) foetal bovine serum (FBS), 1% (v/v) L-glutamine (200 mM), 1% (v/v) penicillin-streptomycin (P/S)] and processed the same day or the following day after overnight storage at 4°C. Skin was placed on a sterile Petri dish containing Versene (EDTA). Excess dermis and subcutaneous fat were removed. The skin pieces were washed with Versene and cut into small 1-2mm fragments. The fragments were placed in 1x trypsin in a 15 ml tube and incubated at 37°C, 10% CO₂ for 2 hours. At 30-minute intervals and at the end of the incubation the tube was shaken vigorously. The cell suspension was transferred into a sterile tube and resuspended in an equal volume of DMEM:Ham’s F12 (3:1) growth medium supplemented with 10% (v/v) (FBS), 1% (v/v) L-glutamine (200 mM), 1% (v/v) P/S and 1x RMplus (see Table 2.1) (keratinocyte growth media) and shaken vigorously for 5 minutes.
Table 2.1: RM+ supplement

<table>
<thead>
<tr>
<th>RMplus supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 µg/ml hydrocortisone</td>
</tr>
<tr>
<td>0.5 µg/ml insulin</td>
</tr>
<tr>
<td>10 ng/ml epidermal growth factor</td>
</tr>
<tr>
<td>0.1 nM cholera toxin</td>
</tr>
<tr>
<td>5 µg/ml transferrin</td>
</tr>
<tr>
<td>20 pM Liothyronine</td>
</tr>
</tbody>
</table>

The cell suspension was filtered through a sterile gauze into another Falcon tube and centrifuged (1200 rpm, 5 min, RT). The cell pellet was resuspended in keratinocyte growth media containing 2.5 µg/ml amphotericin, the cells counted in a haemocytometer, and plated at densities of 2x10⁶ cells/T75 flask on a feeder-layer of 3T3 (2x10⁶ cells/flask) mouse fibroblasts that that had previously been growth arrested by lethal irradiation-6000Gy (Rheinwald and Green, 1975). Cells were grown at 37°C, 10% CO₂ and media were changed 2-3 times/week. Old feeders were removed by incubating cells in Versene for 5 min at 37°C, and new growth arrested 3T3 cells were added every 2-3 days to maintain optimal 3T3 density. Primary keratinocytes are seen to grow in colonies.

2.2.1.2 Subcultivation of keratinocytes
The 3T3 feeders were removed by incubating cells in Versene for 5 min and the cells were incubated with 0.02% trypsin-EDTA at 37°C until cells were seen to be rounded and detached over a period of 5-7 minutes. Trypsin was neutralised with an equal volume of serum containing media. Cells were then centrifuged (1200 rpm, 5 min, RT) and frozen, subcultured for amplification, or seeded for experiments.
2.2.1.3 Subculture with 3T3-mouse fibroblast feeders

For cultivation of primary keratinocytes on a feeder-layer of irradiated 3T3 fibroblasts (Rheinwald and Green, 1975), 3T3 fibroblasts were seeded into T75 flasks at 2x10^6 cells/flask and grown in DMEM Dulbecco’s Modified Eagles medium (E4) containing 10% FBS overnight at 37°C, 10% CO2. The following day, primary keratinocytes were resuspended in keratinocyte growth media, and seeded at approximately 1.5-2 million cells per T75 flask containing the growth- arrested 3T3 fibroblasts. Cells were grown at 37°C, 10% CO2 and media were changed every 2-3 days. Old feeders were removed by incubating cells in Versene for 5 min, and new growth arrested 3T3 cells were added every 2-3 days. When the primary keratinocytes were 70-80% confluent, feeders were removed, and keratinocytes were frozen, subcultured for amplification, or seeded for experiments.

2.2.1.4 Subculture in serum-free conditions

Primary human keratinocytes derived from neonatal foreskins, nHEK, either isolated as above or purchased from Invitrogen, were expanded and cultured according to the company’s instructions. Briefly, cells were thawed and seeded into a T75 flask pre-coated with rat-tail collagen type I (2mg/ml, Firstlink), containing 14 ml of pre-warmed serum-free growth media (EpiLife Medium with growth supplement, HKGS (S-001-5), Invitrogen). Cells were incubated at 37°C, 5% CO2. Once the cells were 70-80% confluent, they were passaged. Old culture medium was removed, were washed once in Phosphate buffered saline (PBS), and then subcultured by incubation with pre-warmed 0.02% trypsin-EDTA at 37°C in stages (1-2min) over a period of 5-7 minutes. Trypsin was neutralised with an equal volume of growth medium containing serum. Cells were then centrifuged (1200 rpm, 5 min, RT), and resuspended in serum free media. Cell counts were obtained using a haemocytometer, and cells were then resuspended and subsequently seeded at 5x10^3 cells/cm^2 in collagen I coated
flasks for further amplification, or at variable densities for experiments. Cells were frozen for long-term storage as above.

2.2.1.5 Cryopreservation of cells
To maintain cell stocks for experiments, cells were cryopreserved. For this, following trypsinisation, cells were resuspended at a density of 1-2x10^6 cells/ml in freezing media containing 10% Dimethyl Sulfoxide (DMSO), and 90% complete growth medium, cooled in a Mr. Frosty™ Freezing Container (ThermoFisher Scientific) at -80°C o/n and then stored in liquid nitrogen.

2.2.1.6 Thawing Cells
Ampoules of cryopreserved cells were thawed rapidly by incubation in a water bath at 37°C. The ampoule was swabbed with 70% ethanol before opening. The cells were diluted in media containing 10% FBS, then pelleted by centrifugation (as above) and resuspended and plated as required.

2.2.2 Primary fibroblasts
Primary human fibroblasts were isolated from the separated dermis of neonatal foreskins by overnight incubation in collagenase D (1 mg/ml) (Roche) in DMEM supplemented with 10% FBS, 1% L-glutamine (200 mM) and 1% P/S (Fibroblast growth medium) at 37°C. Cells were collected by centrifugation and expanded until the second passage, at this point stocks of fibroblasts were cryopreserved and stored in liquid nitrogen. For routine culture primary fibroblasts were plated into T175 flasks at a density of 6,000 cells per cm² in fibroblast growth media and growth until 70-80% confluent. Subculturing was performed as described above in fibroblast growth media.
2.2.3 Immortalised keratinocyte (nTERT) culture
The immortalised cell line, nTERT, expressing the catalytic subunit of telomerase (nTERT) combined with deletion or mutation of p16INK4a, was obtained from cryopreserved departmental stocks (Rheinwald et al., 2002). The cell line was grown in keratinocyte growth media, and incubated at 37°C, 10% CO₂. Media were changed every 2-3 days until the cells were confluent. Cells were passaged and split 1:5 or counted and seeded depending on experimental requirements. For cryopreservation 1x10⁶ cells were resuspended in FBS containing 10% dimethyl sulfoxide (DMSO) as a cryoprotectant. Freezing was performed at a rate of -1°C/min to a temperature of -80°C. At this stage the tubes were transferred to -180°C liquid vapour phase cryostore.

2.2.4 RNAi for terminal differentiation genes in nHEKs
For transient transfection, custom made siRNAs (Invitrogen, UK) sequence-specific to the genes of interest were transfected into nHEKs.

Table 2.2: siRNA sequences

<table>
<thead>
<tr>
<th>Gene</th>
<th>siRNA used</th>
<th>siRNA sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>2</td>
<td>CCUCAGAAACAGCAACAUCCAUUGGA</td>
</tr>
<tr>
<td>FLG</td>
<td>1</td>
<td>ACAGAAAGCACAGUCAUAGAUA</td>
</tr>
<tr>
<td>ABCA12</td>
<td>1</td>
<td>GACCGAUCUCUUUGUGAAUCUGAA</td>
</tr>
<tr>
<td>TGM1</td>
<td>3</td>
<td>CGGGAGGACACACCUCUACCAUAUA</td>
</tr>
<tr>
<td>ICHTHYIN</td>
<td>3</td>
<td>CAAGAAGCGUCCUUGUGGACAUAUA</td>
</tr>
<tr>
<td>ALOXI2B</td>
<td>2</td>
<td>CCAUAAGCAGCUGCUAAACCACUUU</td>
</tr>
</tbody>
</table>

Control non-targeting primer sequences were not made available by Invitrogen.

Transfection was performed according to the HiPerFect transfection protocol (Quigen, UK) and optimised for a 6-well plate format. nHEKs were plated at a density of 1.5x10⁵ per well.
and incubated in Epilife media (Cascade Biologics, UK) in a 6-well plate, and incubated at 37°C/5% CO₂. After 24 h, nHEKs of 50–60% confluency using HiPerFect were transfected with a siRNAs for STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B (table 2.2) and the non-targeting control. For transfection, siRNA duplexes (5-25nM) and 15 µl of HiPerFect transfection reagent were diluted with 95 µl Epilife media, vortexed and incubated at room temperature (RT) for 10 min. After incubation the volume was made up to 2 ml in Epilife growth media and pipetted onto primary keratinocytes and incubated overnight at 37°C/5% CO₂. The following day transfection media was replaced with Epilife growth media. Cells transfected with non-targeting siRNAs, (Invitrogen, UK) at the same final concentration were used as negative controls.

2.2.5 Calcium shift assay
nHEKs were transfected as described previously. After 12 h, the cells were shifted to high calcium (1.3 mM) Epilife media and incubated for 24 h. Calcium was added to Epilife media as CaCl₂ (Sigma-Aldrich, UK), and the media filter-sterilised using a vacuum-driven filtration system (Millipore, UK). Cells incubated in low calcium media for 24 h were kept as a control. Cells were harvested in RLT Plus Buffer or QIAzole lysis reagent (Qiagen) for RNA analysis and 1x Triton-lysis buffer for Western Blotting.

2.2.6 Organotypic cultures on de-epidermalised dermis (DED)
Sterilised glycerol-preserved skin (Euro Skin Bank, Beverwijk, The Netherlands) was washed three times in PBS and incubated in PBS containing antibiotic mix (600 U/ml penicillin-G, 600 µg/ml streptomycin sulphate, and 2.5 µg/ml amphotericin) for 10 days at 37°C. After incubation the epidermis was scraped off the dermis using the blunt side of a scalpel, and cut into 1.5 cm²-squares. Each square of DED was placed into a well of a 6-well plate with the
reticular side facing up onto which a stainless steel ring was placed. 5x10⁵-primary human fibroblasts in 500 µl fibroblast growth media (DMEM supplemented with 10% FBS, 1% L-glutamine (200 mM) and 1% P/S) were seeded into each ring. Fibroblasts were cultured on the DED for 2 weeks with media changes every 2 days. Then, the DED was flipped over so that the papillary side was facing up, which allowed the seeding of 5x10⁵ keratinocytes in 500 µl Epilife growth media into rings placed on the papillary side of the DED. After 48 hours the cultures were raised to the air-liquid interface on stainless steel grids in a 6-well plate. Keratinocyte growth media containing 50 µg/ml ascorbic acid (vitamin C) was added and refreshed every 2 days. After 10 days the cultures were harvested and bisected, with one half being fixed in 4% PFA and paraffin embedded and the other half was snap frozen in liquid nitrogen, cryo-embedded in Bright Cry-M-Bed (Jencons), and stored at -80°C.

2.3 RNA methods

2.3.1 Extraction of RNA using the RNeasy Plus Mini kit
Total RNA was extracted from primary keratinocytes using RNeasy Plus Mini Kit (Qiagen, West Sussex, UK) according to the manufacturer’s instructions. Briefly, cells were harvested by adding 350 µL of lysing Buffer RLT Plus (containing β-Mercaptoethanol; 10 µl for 1 ml of RLT buffer). The lysates were homogenised by centrifugation for 2 minutes at maximum speed in a QIAshredder spin column (Qiagen) and placed in a collection tube. The homogenised lysate was transferred to a genomic (g) DNA eliminator spin column (Qiagen) and centrifuged for 60 s at 10,000 rpm to remove gDNA. One volume of (600 µl) of 70% ethanol was added to the flow-through and mixed well. The sample was then applied to an RNeasy spin column and centrifuged for 30 seconds at 10,000 rpm and the flow-through discarded. The column was washed with RW1 buffer (700 µl) followed by two washes with RPE buffer (500 µl). After a final centrifugation for 1 minute at 14,000 rpm for 1 min, the
RNeasy column was then transferred to a new 1.5 ml collection tube and RNA eluted by adding 25 µl of RNase free water and centrifuging. A second elution step with a further 25 µl was performed before quantifying the RNA. Purified RNA was stored at –80°C in RNase-free water.

2.3.1.2 Spectrophotometric quantification of RNA
RNA concentration was determined by measuring the absorbance at 260 nm with a spectrophotometer after RNA extraction (Nanodrop, ND-1000 Spectrophotometer) and samples were stored at -80°C.

2.3.2 Complementary DNA (cDNA) synthesis using Superscript VILO cDNA Synthesis Kit
cDNA was synthesised from total RNA using the Superscript VILO cDNA synthesis kit (Invitrogen, Paisley, UK) according to manufacturer’s instructions. Briefly, 2 µg of total RNA was added to a mixture containing 1X SuperScript enzyme mix (containing, SuperScript III RT, RNaseOUT recombinant ribonuclease inhibitor, and a property helper protein), 1X VILO reaction mix (containing, random primers, MgCl₂, and dNTPs), and DEPC-treated water to a final volume of 20 µl. The mixture was placed in the DNA Engine Tetrad 2 Peltier Thermo Cycler (MJ Research, CA) and incubated at 25°C for 10 minutes, and then at 42°C for 60 minutes. To terminate the reaction the sample was heated to 85°C for 5 minutes. cDNA was stored at 20°C. cDNA was quantified using the NanoDrop and then stored at -20°C.

2.3.3 Polymerase chain reaction
PCR is a method used to amplify specific DNA sequences that are selected by specific primers. To do this, oligonucleotide primer sequences (Sigma, Poole, UK) were designed
around the region of interest. Primer sequences were designed using the internet-based Primer3 program and were checked with the mRNA sequence of interest. In the case that multiple isoforms exist for the same gene, all isoforms were aligned together using the ClustalW alignment tool and primers were designed to overlap a region common to all the isoform sequences (Larkin et al., 2007). To check the specificity of the primers, both forward and reverse primer sequences were input into the NCBI Nucleotide BLAST search tool which searches the primer sequence against other genes (Altschul et al., 1990). This prevents the amplification of other genes that may have a similar sequence which would give a false positive result.

qPCR was performed with 200 ng of cDNA using The ReddyMix® PCR Mastermix kit (Fisher Scientific, Leicestershire, UK). cDNA was mixed with ReddyMix® (12.5 μl), 25 mM MgCl2 (1 μl), 1 μM primer template (2 μl). The mix was adjusted to a reaction volume of 20 μl with RNase free water. For genes that have lower expression, the cDNA and/or primer concentration was increased. For a negative control, a reaction mix was made with cDNA substituted with an equal volume of H2O. PCR reactions were performed using the PTC-240 DNA Engine Tetrad 2 Peltier Thermal Cycler (MJ Research, USA) with the following cycle sequence: initiation at 95°C for 5 minutes, 45 cycles of denaturation at 95°C for 20 seconds, annealing for 20 seconds (optimised primer annealing temperature ranging from 57°C to 64°C), and extension at 72°C for 25 seconds and a final extension at 72°C for 25 seconds.

PCR products were then run on a 1% agarose gel to confirm the presence of the right size amplified PCR fragment; a 0.6% (w/v) agarose gel (Fisher Scientific, Leicestershire, UK) was prepared in 1x TAE solution (48.4 g Tris, 11.4 ml 17.4 M glacial acetic acid, 3.7 g
EDTA made upto 1 L with distilled water. Diluted 1:10 (v/v) with distilled water and repeatedly boiled until the agarose crystals were fully dissolved. The agarose solution was cooled for 1 minute with cold tap water before GelRed was added at 1 μl/ml (Biotium, CA, USA). The solution was then poured into a gel castor with a comb and left to solidify. The PCR reaction products were loaded onto the gel (placed in gel tank, submerged in 1x TAE) along with DNA Hyperladder II. The gel was run at 90 V until the size of the PCR product was determinable compared to the DNA ladder.

2.3.4 Quantitative polymerase chain reaction (qPCR)

qPCR was performed with 200 ng of cDNA using the Rotor-Gene SYBR green PCR kit (Qiagen, West Sussex, UK). cDNA was mixed with SYBR mix (12.5 µl), 25 mM MgCl₂ (1 μl), 1 μM primer template-forward and reverse (2 µl). The mix was adjusted to a reaction volume of 20 µl with RNase free water. For primer sequences refer to Table 2.3. The qPCR reaction was carried out using Rotor-Gene Q (Qiagen, West Sussex, UK) with the following cycle sequence: initiation at 95°C for 5 minutes, 35 cycles of denaturation at 95°C for 5 seconds, annealing at 60°C for 5 seconds, and extension at 60°C for 10 seconds. A housekeeping gene was used as an endogenous control and gene expression was normalised to the housekeeping gene (details in section 3). Technical triplicates were used for each sample. Water (no template, cDNA excluded) was included as a negative control. Data analysis was performed using Microsoft Excel 2008. The relative mRNA expression values were calculated using the x=2−ΔΔCt formula where x represents the induction value and Ct represents the average threshold cycle of the triplicate samples. ΔCt refers to the difference between the Ct values of the gene of interest and the housekeeping reference gene. ΔΔCt represents the difference between the ΔCt of the cDNA sample compared to the control sample.
<table>
<thead>
<tr>
<th>GENE</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>F-GCCTTCCGTGTCCCCCCTGGC
R-GCTCTTGCTGGGCTGTGTC</td>
</tr>
<tr>
<td>B2M</td>
<td>F-GATGAGTATGCTGGCCGTGTC
R-CAATCCCAATGGCGCATCT</td>
</tr>
<tr>
<td>TBP</td>
<td>F-CACGAAACCACGGGCAACTGATT
R-CTCCCTGGCTGCCCATGCTGGAC</td>
</tr>
<tr>
<td>RPLOPO</td>
<td>F-ATCAACGGGTACAAACGAGTC
R-CAGATGGATCAAGCCAAGAG</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>F-ACCTTTGGTACATTGGCTGCTTCAA
R-CCGAGGAGGAAACCGGGAG</td>
</tr>
<tr>
<td>GUSB</td>
<td>F-GCTCTTGCTGGGCTGGTGG
R-CAGATGGATCAAGCCAAGAG</td>
</tr>
<tr>
<td>STS</td>
<td>F-AACCTACATCGACCTGGCA
R-GGGAGGAGGAGGAGAGAGAG</td>
</tr>
<tr>
<td>FLG</td>
<td>F-TACAGTCACGTGGCAGTCTCT
R-CCAAACGCACCTGCTTTACA</td>
</tr>
<tr>
<td>ABCA12</td>
<td>F-CACTGGCCCTATGGAGGAAA
R-ATGCAACCTGCTTACAGAG</td>
</tr>
<tr>
<td>TGM1</td>
<td>F-AATCCCTCTGATCGCATCACC
R-GTGCGGACTGTGAACTGAAA</td>
</tr>
<tr>
<td>ICHTHYIN</td>
<td>F-GACGGAATCTCCCGTTTGT
R-CTGCCTCCAAAGGAGGAGAG</td>
</tr>
<tr>
<td>ALOX 12B</td>
<td>F-CCTCCTGGACACGACAGAAAAG
R-TGAGGAAGGAGTAGCGGAGA</td>
</tr>
</tbody>
</table>

2.3.5 Next Generation Sequencing (RNA-Seq) Experiment

Tranfection was performed as described in section 2.2.4 for the genes of interest (STS, FLG, ABCA12, TGM1, ICHTHYIN ALOX12B) and three negative controls (non-targeting siRNA, mock and untreated). For mock conditions, 2 ml of culture media with transfection reagent
were added per well and for untreated cells 2 ml of culture media were added per well and incubated at 37°C/5% CO₂. For untreated cells 2 ml of culture media were added per well and incubated at 37°C/5% CO₂. 12 h post-transfection, a calcium switch assay was performed as described in section 2.2.5. RNA was extracted 3 days post-calcium switching as described in section 2.3.1. RNA concentration was determined as described in section 2.3.1.2. RNA (from triplicated biological replicates) was sent to GSK (RD Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA) for sequencing. The laboratory at GSK confirmed that all samples had an RNA Integrity Number of >8. Dr Harpreet Saini (Dr Anton Enright group) carried out analysis of the sequenced reads at European Bioinformatics Institute (EBI), Cambridge (described in section 5.0) and differentially expressed gene (DEG) lists were provided. The DEGs were analysed further using DAVID, REACTOME and GeneMANIA (chapter 5). Heatmaps were generated using ggplot2 by Dr Harpreet Saini at EBI (chapter 6).

2.3.5.1 Extraction of RNA using the miRNeasy Mini Kit and MaXtract High Density gel tube
RNA was extracted from primary keratinocytes using miRNeasy Mini Kit and MaXtract High Density gel tubes (Qiagen, West Sussex, UK). MaXtract High Density gel tubes enables improved recovery of nucleic acids and ensures ease of handling when working with standard organic extraction mixtures. It acts as a barrier between the organic and aqueous phases, allowing the nucleic acid-containing phase to be easily removed by decanting or pipetting. Compared to traditional organic extraction methods, use of MaXtract High Density gel can result in the recovery of 20–30% more nucleic acid. Cells were harvested by washing in PBS, lysed in 700 µL of QIAzol Lysis Reagent and the lysate was transferred into a prespun (13000 rpm for 30s) MaXtract High Density gel tube (Qiagen). 140 µl chloroform was added to the tube containing the homogenate and the tube was shaken vigorously for 15 s. The tube was left at RT for 15 s and then centrifuged at 4°C at 13000 rpm to separate the phases. After
centrifugation, the sample separated into 3 phases: an upper, colourless, aqueous phase containing RNA; a white interphase (MaXtract High Density gel); and a lower, red, organic phase containing protein. The upper, aqueous phase was decanted into a fresh tube with 525 µl of 100% ethanol and mixed thoroughly by pipetting up and down several times. The sample was washed as described previously (section 2.3.1). Each RNA sample was eluted with 50 µl of nuclease-free water and divided into a 2µg aliquot for RNA-Seq and the remainder kept for qPCR.
2.4 Protein analysis

2.4.1 Western Blotting

2.4.1.1 Antibodies

The antibodies used for this project together with their dilutions for Western blotting are listed as follows:

Table 2.4 Antibodies used for Western Blotting

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species</th>
<th>Company, Catalogue Number</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>R</td>
<td>Abcam, ab83668</td>
<td>1:250</td>
</tr>
<tr>
<td>TGM1</td>
<td>M</td>
<td>B.C1</td>
<td>1:1000</td>
</tr>
<tr>
<td>ICTHYIN</td>
<td>R</td>
<td>Ichthyin (P-12) sc-133280</td>
<td>1:250</td>
</tr>
<tr>
<td>GAPDH</td>
<td>R</td>
<td>Abcam, ab9485</td>
<td>1:5000</td>
</tr>
</tbody>
</table>

The secondary antibodies (goat anti-rabbit #P0448, goat anti-mouse #P0447) for Western blotting were purchased from Dako, UK and used at 1:5000 dilution.

2.4.1.2 Total cell lysate preparation

Cell extracts were prepared from keratinocytes that were 80% confluent in a 6 well plate. At the appropriate time points, media were removed from the cells, cells were washed with PBS and lysed for approximately 30 min on ice in a 1XTrition lysis buffer (20mM Tris pH 7.4, 137 mM NaCl, 2 mM EDTA pH 7.4, 1 % Triton X-100 and 10 % glycerol) containing a complete protease inhibitor cocktail 2 mM N-ethylmaleimide (NEM), 1 mM phenylmethylsulfonyl fluoride (PMSF), and 10 mM EDTA (Roche, UK) and collected using a cell scraper. Lysates were sonicated for 10 seconds and cleared by centrifugation at 12000 rpm for 15 minutes at 4°C.

For quantification of protein concentration 20 µl of the lysate was put into a 1.5 ml tube for quantification using the Bio-Rad DC Protein Assay kit (Bio-Rad, MA, USA). 2 µl of Solution S and 98 µl of Solution A were added to the tube and mixed. 800 µl of Solution B was added
to each tube and mixed at which point, the mix changed colour. A high protein concentration creates stronger blue colour intensity. A set of diluted standards was used to generate a standard curve. Using a spectrophotometer, the protein absorbance (AU) measured at a wavelength of 655 nm. A standard curve was generated using the AU measurements obtained from known concentrations of bovine serum albumen (BSA, Sigma, Poole, UK).

2.4.1.3 SDS-PAGE electrophoresis in Laemmli system
Equal protein amounts were separated by SDS-PAGE with 10% polyacrylamide resolving gels using electrophoresis apparatus from Hoefer Inc., USA. Samples were diluted in 5x sample buffer (6% (w/v) SDS, 180 mM Tris-HCl pH 6.8, 15% (w/v) β-mercaptoethanol, 60% (v/v) glycerol, and 6% (w/v) bromophenol blue), boiled for 5 minutes at 95°C and loaded onto the polyacrylamide gel. Samples were boiled with the sample buffer for 2 min at 80°C, spun down and then loaded into wells created in the 5% stacking gel. 7 µl of Precision Plus Protein Kaleidoscope Standards (Biorad, UK) were loaded in a separate lane to visualize progress and to evaluate the molecular weight of separated proteins. Electrophoresis was performed in 1x running buffer (25 mM Tris-HCl pH 8.3, 0.2 M glycine, 0.1% (w/v) SDS) at 90 V until samples reached the resolving gel, then at 120 V for approximately 90 min to separate the proteins. Proteins were electrotransferred from the polyacrylamide gel onto Amersham Hybond-C Extra (GE Healthcare, UK) nitrocellulose membrane in transfer buffer (25mM Tris-HCl pH 8.3, 0.2 M glycine, 0.01% (w/v) SDS, 20% (v/v) methanol) at a 70 V current for approximately 120 min at 4°C. Transfer quality was assessed in Ponceau S (Sigma-Aldrich MO, USA) solution for 5 minutes followed by de-staining in ddH₂O.

Membranes were blocked in 5% milk (Marvel) in TBST (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20) for 1 hour at RT to block non-specific antibody binding to the
membrane. Membranes were incubated with primary antibody (Table 2.4) at the appropriate dilution in 5% milk o/n (4°C) with gentle agitation. After washing three times with TBST, the membranes were incubated with horseradish peroxidase-conjugated secondary antibody (1/5000 in 5% milk in TBST) for 1 hour at RT. After membranes were washed again (as described above) and incubated in ECL plus Mix Solution (GE Healthcare, UK), and exposed to chemiluminescence sensitive film (GE Healthcare, UK) and developed.

2.4.2 Haematoxylin and Eosin (H&E) staining of DEDs
Haematoxylin and Eosin (H&E) staining of paraformaldehyde (PFA) fixed paraffin embedded and cryo-embedded organotypic culture sections was undertaken. Sections (5 µm-thick) of 4% PFA-fixed and paraffin-embedded organotypic cultures were cut. Sections were de-paraffinised in two changes of xylene for 5 and 3 minutes and hydrated in descending grades of ethanol (100% twice, 90% and 30%) for 3 minutes each. Sections were washed in distilled water for 5 minutes. Nuclei were stained with Haematoxylin for 5-8 minutes, washed in running tap water, differentiated by immersing briefly in 1% acid alcohol, and rinsed in water. The cytoplasm was stained with Eosin for 5 minutes. Sections were then dehydrated by ascending grades of ethanol followed by xylene (inverse of described above). Sections were mounted with DePex mounting medium (Fisher Scientific).

2.4.3 Immunohistochemistry
Cryosections (5 µm-thick) of frozen samples mounted in optimal cutting temperature, ,OCT, (Tissue-Tek®, NL) were cut in a cryostat, placed on a Poly-lysine plus coated slide and stored at -80°C. For H&E staining, sections were air-dried at room temperature for 30 minutes and the same procedure as described above was used with the exception of the de-paraffinisation step.
Specimens were mounted in paraffin and sectioned at 5 µm. Haematoxylin and eosin staining was performed first, then sections were deparaffinized, quenched with 3% hydrogen peroxide to block endogenous peroxidases, and antigen retrieval was achieved by boiling in a microwave in antigen unmasking solution (10 mM citrate buffer pH=6.0), for 10 minutes. Sections were blocked with 2.5% normal horse serum, and probed with primary antibodies either overnight at 4°C, or for one hour at RT. Peroxidase conjugated secondary antibodies were then applied, and DAB substrate kits were used for peroxidase detection (Vector Laboratories).

2.4.4 Immunofluorescence (IF) staining of PFA-fixed paraffin embedded and cryo-embedded sections

The PFA-fixed paraffin embedded sections were cut, de-paraffinised and hydrated as described above (Section 2.4.4.1). Antigen retrieval was performed by heating sections in 10 mM citrate buffer (pH 6.0) in a water bath set to 95°C for 10 minutes. Sections were washed in distilled water for 5 minutes and PBS for 5 minutes before proceeding to IF staining protocol. Cryoembedded sections of 5 µm were cut on a cryostat microtome (Thermoscientific cryotome FSE) and placed on electrostatically charged slides (Superfrost plus, BDH). Frozen sections were dried and either fixed in 4% PFA at room temperature for 10 minutes or fixed in 1:1 methanol: acetone for 10 min before proceeding to the IF staining protocol.

Slides were washed three times for 5 minutes in phosphate-buffered saline (PBS). Non-specific binding was blocked with PBS containing 0.3% Bovine Serum Albumin (BSA) for 20 min at RT and washed as previously. The sections were incubated with primary antibody diluted in PBS containing 1% BSA (Table 2.5), overnight at 4°C. The sections were washed
again and the secondary antibody, Alexa Fluor 568-red or 488-green, goat anti-rabbit or goat anti-mouse was applied at a dilution of 1:800 in the same diluant at room temperature for 40 min. The samples were light protected thereafter. Sections were washed twice in PBS before counterstaining with 4',6-Diamidino-2-phenylindole (DAPI, 1:20,000 in PBS) nuclear stain for 5 min at room temperature. After a further washing step, sections were mounted with ImmuMount mounting medium (Thermo-Fisher Scientific).

Table 2.5 Antibodies used in Immunohistochemistry and Immunofluorescence.

R= rabbit, M= mouse

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species</th>
<th>Company, Catalogue Number</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>R</td>
<td>Abcam, ab83668</td>
<td>1:50</td>
</tr>
<tr>
<td>TGM1</td>
<td>M</td>
<td>B.C1</td>
<td>1:1000</td>
</tr>
<tr>
<td>ICHTHYIN</td>
<td>R</td>
<td>Ichthyn (P-12) sc-133280</td>
<td>1:800</td>
</tr>
<tr>
<td>GAPDH</td>
<td>R</td>
<td>Abcam, ab9485</td>
<td>1:5000</td>
</tr>
<tr>
<td>Keratin 10</td>
<td>M</td>
<td>CRUK (LHK10)</td>
<td>1:1000</td>
</tr>
<tr>
<td>K14 MM</td>
<td>M</td>
<td>CRUK (LL002)</td>
<td>1:100</td>
</tr>
<tr>
<td>LOR</td>
<td>R</td>
<td>Abcam ab85679</td>
<td>1:100</td>
</tr>
<tr>
<td>ABCA12</td>
<td>R</td>
<td>Abcam ab98976</td>
<td>1:500</td>
</tr>
<tr>
<td>FLG</td>
<td>M</td>
<td>Novocastra (NCL-FILAGGRIN)</td>
<td>1:100</td>
</tr>
<tr>
<td>ALOX12B</td>
<td>R</td>
<td>Thermo Scientific PA5-23608</td>
<td>1:50</td>
</tr>
</tbody>
</table>
2.5 Functional Protein analysis

2.5.1 Stimulation of siRNA transfected keratinocytes with ligands
Transfection was performed as described in section 2.2.4 for the genes of interest (STS, FLG, ABCA12, TGMI, ICHTHYIN and ALOX12B) and negative control, non-targeting siRNA (C). 12 h post-transfection, a calcium switch assay was performed as described in section 2.2.5. 24 h following calcium switching, keratinocytes were stimulated with peptidoglycan (PGN) from Staphylococcus aureus (10 ug/ml), Poly I:C (10 ug/ml) and flagellin (Salmonella Typhimurium 1 ug/ml) (in duplicate for each condition). Culture supernatants were recovered at 12 and 24 hours thereafter for cytokine measurement. Total RNA was extracted 24 hours following addition of ligands as described in section 2.3.1.

2.5.2 BD™ CBA Human Inflammatory Cytokines Kit
The (Cat No. D8000C) was used to quantitatively measure interleukin-8 (IL-8), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor (TNF), and interleukin-12p70 (IL-12p70) protein levels in a single sample using flow cytometry.

Six bead populations with distinct fluorescence intensities had been coated with capture antibodies specific for IL-8, IL-1β, IL-6, IL-10, TNF, and IL-12p70 proteins i.e. each capture bead in the kit had been conjugated with a specific antibody. The six bead populations were mixed together to form the bead array. A single set of diluted standards was used to generate a standard curve for each analyte. The inflammatory cytokine capture beads were mixed with the recombinant standards or samples, containing recognized analytes, and incubated them with the detection reagent, phycoerythrin (PE)-conjugated detection antibodies which provides a fluorescent signal in proportion to the amount of bound analyte, to form sandwich complexes (capture bead + analyte + detection reagent). Flow cytometry was used to measure
these complexes. The intensity of PE fluorescence of each sandwich complex correlated with the concentration of that cytokine. FCAP Array™ software was used to generate results in graphical and tabular format.

2.6 Replicates and Statistical analysis

Technical triplicates were used for all qPCR experiments. Biological triplicates were used for the RNASeq experiment and western blots. Biological duplicates were used for cytokine analysis using the BD™ CBA Human Inflammatory Cytokines Kit. Ten measurements from each organotypic were taken at random from different positions using the measuring tool with Image J. Statistical analysis was performed using an paired two-tailed t-test using Prism v7.od (GraphPad software Inc. Ca, USA). Cell count quantification was done using cell profiler (http://cellprofiler.org). Statistical analysis was performed using an paired two-tailed t-test using Excel.
Chapter 3: RNAi for Terminal Differentiation genes in Primary Human Keratinocytes
3.1 Introduction
RNA interference (RNAi) is the process of mRNA degradation that is induced by double-stranded RNA in a sequence specific manner. This process was first discovered to occur endogenously in plants (Napoli et al., 1990) and subsequently in the nematode Caenorhabditis elegans (Tabara et al., 1999), humans (Elbashir et al., 2001a) and other mammalian cells (Hammond et al., 2000). The mechanism of RNAi exists to protect the host from molecular invaders such as viruses and transposons. Double stranded RNA (dsRNA) entering a cell will be targeted for immediate destruction via this pathway. Using RNAi as a molecular tool allows the investigator to study the function of one gene at a time, as the process of gene knockdown is usually very specific (Moazed, 2009).

RNAi is a two-step process. The first step involves the cleavage of long dsRNA into 21 to 23 bp siRNA with dinucleotide 3’ overhangs by the enzyme Dicer (Zamore et al., 2000). Dicer is a type III endoribonuclease and is a ubiquitous member of the proteome. In the second step, one strand of siRNA (the guide strand) is assembled into an RNA-inducing silencing complex (RISC) that cleaves the target mRNA leading to down regulation of the protein encoded by that gene (Elbashir et al., 2001b). The siRNA is thought to provide target specificity of RISC through base pairing of the guide strand with the target mRNA. Assessing the phenotype of a cell after suppressing expression of a specific gene by siRNA transfection has become a powerful tool in laboratory research.

3.1.1 Aim
The aim of this chapter was to establish an in vitro disease model for the non-syndromic ichthyoses by knockdown of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOXI2B in normal keratinocytes from neonatal skin. Transient knock-down of the Ichthyosis genes was achieved by using siRNAs in normal human keratinocytes. This will enable analysis
of the effect of knockdown in keratinocytes with the same genetic background.

3.2 Results

3.2.1 Transfection of primary keratinocytes with siRNA to knockdown ichthyosis genes: STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B

3.2.1.1 Optimisation of the siRNA-transfection conditions

Low transfection efficiency will result in a lower level of silencing, and the transfection efficiency may vary between cells and cell lines and should be optimised for each cell line. Therefore, prior to transfecting the siRNA sequence-specific to the ichthyosis genes into the normal human keratinocytes (nHEKs), the transfection efficiency was optimised by determining the volume of lipid-based HiPerFect transfection reagent (Qiagen) having least impact on cell viability and the highest efficiency of siRNA delivery.

Three different volumes (according to the range suggested by the manufacturer) of the transfection reagent (12, 15 and 18 µl) were tested on nHEKs. Cells were plated in a 6-well plate and incubated with the transfection solution containing the respective amount of HiPerFect, according to the manufacturer’s instructions. Cell number and morphology were analysed under bright-field microscopy twenty-four hours post-incubation. Further cell count quantification was done using cell profiler (http://cellprofiler.org). A significant reduction (p=0.004) was found between 12 µl and 18 µl but no significant difference in cell count was observed between 12 µl and 15 µl or 15 µl and 18 µl of transfection reagent.
Figure 3.1: The effect of HiPerFect transfection reagent quantity on nHEKs viability.
Representative photomicrographs of nHEKs 24 h after incubation with different volumes of HiPerFect transfection reagent diluted in 2 ml of medium: 12 µl (HiPerFect-12 µl) or 15 µl (HiPerFect-15 µl) or 18 µl (HiPerFect-18 µl). Pictures were taken under brightfield microscopy. Scale bars represent 50 µm. Cell count quantification for different volumes of HiPerFect transfection reagent using Cell Profiler. Significant difference between 12 and 18 µl is noted. Data represent mean ± standard deviation (n=4) with *** P =0.004.
Then, it was determined which of the following volumes 12, 15 or 18 µl of transfection reagent, provided the highest siRNA-delivery efficiency into these cells at 24 or 48 hours. For that, a siRNA control fluorescently labelled with the fluorophore Cy3", siGLO" siRNA, was used. The uptake of siGLO" siRNAs can be visualised with the appropriate filters on a microscope. Analysis of transfected cells under fluorescence microscopy showed that all volumes of transfection reagent were effective in delivering the siRNA molecules into the cells. Cells transfected with 15 µl of HiPerFect reagent at 24 hours, showed increased fluorescence compared to 12 or 18µl viability, thereby suggesting that transfection of these cells under these conditions gives the best results.
3.2.1.2 Cell density at transfection

The optimal cell confluency for transfection should be determined for every new cell type to be transfected and kept constant in future experiments. This is achieved by counting cells before seeding and by keeping the interval between seeding and transfection constant. This ensures that the cell density is not too high and that the cells are in optimal physiological condition at transfection. For transfection a 50-60% cell density at the time of transfection is optimal. To determine the optimal seeding density nHEKs were seeded at three different cell densities:

- 12 µl
- 15 µl
- 18 µl

![Figure 3.2: The effect of HiPerFect transfection reagent quantity on siRNA delivery into nHEKs.](image)

Representative photomicrographs of nHEKs transfected with the siGLO siRNA (siRNAs fluorescently labelled with the fluorophore Cy3 for easy detection) and different volumes of HiPerFect transfection reagent diluted in 2 ml of medium: 12 µl (HiPerFect-12 µl), 15 µl (HiPerFect-15 µl) and 18 µl (HiPerFect-18 µl). Twenty four and forty-eight hours after, cells were analysed under brightfield (top panel) and fluorescence (bottom panel) microscopy (n=3). The presence of fluorescently labelled-siRNAs (white) inside the cells can be detected with fluorescence microscopy. Scale bars represent 50 µm.

3.2.1.2 Cell density at transfection

The optimal cell confluency for transfection should be determined for every new cell type to be transfected and kept constant in future experiments. This is achieved by counting cells before seeding and by keeping the interval between seeding and transfection constant. This ensures that the cell density is not too high and that the cells are in optimal physiological condition at transfection. For transfection a 50-60% cell density at the time of transfection is optimal. To determine the optimal seeding density nHEKs were seeded at three different cell densities:

- 12 µl
- 15 µl
- 18 µl

![Figure 3.2: The effect of HiPerFect transfection reagent quantity on siRNA delivery into nHEKs.](image)

Representative photomicrographs of nHEKs transfected with the siGLO siRNA (siRNAs fluorescently labelled with the fluorophore Cy3 for easy detection) and different volumes of HiPerFect transfection reagent diluted in 2 ml of medium: 12 µl (HiPerFect-12 µl), 15 µl (HiPerFect-15 µl) and 18 µl (HiPerFect-18 µl). Twenty four and forty-eight hours after, cells were analysed under brightfield (top panel) and fluorescence (bottom panel) microscopy (n=3). The presence of fluorescently labelled-siRNAs (white) inside the cells can be detected with fluorescence microscopy. Scale bars represent 50 µm.
counts, 100,000, 200,000 and 300,000, according to the manufacturer’s instructions. Cell density was determined the following day.

Collagen is the most widely used extracellular matrix protein and has been shown to be involved in cell attachment and differentiation. Type I collagen can be used as a thin film to promote cell attachment and/or proliferation \textit{in vitro}. To evaluate if collagen I affected nHEK cell proliferation and differentiation, cells were seeded, as above, on collagen uncoated and coated six well plates. Higher cell proliferation and epithelioid morphology was observed with collagen-coated plates. 50-60\% cell density for transfection was observed with a cell count of 150,000 cells.

![Figure 3.3: Optimisation of cell density at transfection for nHEKs.](image)

Representative photomicrographs of nHEKs 16 hours after seeding 100,000, 200,000 and 300,000 cells/well in a six-well plate uncoated and coated with rat tail Collagen I. Photomicrographs were taken under brightfield microscopy (n=2). Scale bars represent 100 \(\mu \)m.
3.2.1.3 RNAi knock-down expression of ichthyosis genes of interest

Three custom made Stealth siRNAs (25bp each) targeting different regions in the mRNA for the gene of interest and a high and low GC negative control, designated CH and CL respectively, were obtained from Invitrogen. The siRNA was transfected into nHEKs of 50–60% confluency using HiPerFect. siRNAs were used at a concentration of 25nM each. The degree of gene expression down-regulation was determined at mRNA level two days post-transfection using quantitative, real-time PCR (qPCR). For that, RNA was extracted, total cDNA synthesised and used for qPCR with specific primers for each gene of interest. Relative quantitation of gene expression was calculated using the Comparative CT method. Expression of each gene of interest was normalized to expression of the housekeeping gene, GUSB. Each siRNA sequence for each gene of interest down-regulated gene expression at the mRNA level. The most effective siRNA sequence for each gene was used in subsequent experiments. Since the GC content of siRNA used for subsequent experiments was between 36-52% a low GC negative control was used as advised by the manufacturer.
Figure 3.4: qPCR showing downregulation of Ichthyosis genes.
Each siRNA sequence targeting the gene of interest lead to significant down-regulation of gene expression. qPCR analysis of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B expression in nHEKS two days post transfection with three different siRNA sequences targeting each gene of interest. Two different non-targeting controls, CL and CH, were used. Values derived from qPCR for siC were set at 1 (fold induction) and the relative expression levels of cells transfected with the experimental siRNA (n=3). Error bars represent mean ± standard deviation.
3.2.1.4 Optimal siRNA concentration to minimize off-target effects in RNAi experiments

Studies have indicated that transfection of siRNA can result in off-target effects, in which siRNAs affect the expression of non-homologous or partially homologous gene targets. The mechanisms of off-target effects are not fully understood. They may be caused by siRNA targeting mRNA with close homology to the target mRNA, by siRNAs functioning like miRNAs, or by a cellular response to siRNA toxicity. Off-target effects, which may produce misleading results in RNAi experiments, can be largely avoided by using low siRNA concentrations. To evaluate the lowest concentration of siRNA for each gene of interest that will allow gene silencing without compromising knockdown efficiency nHEK cells were transfected with 5 nM, 10 nM and 25 nM of siRNA. Low GC non-targeting siRNA, siC, was used as a negative control. Gene expression was determined at the mRNA level, 2 days after transfection, by qPCR.
Figure 3.5: qPCR analysis of nHEK cells transfected with different concentrations of siRNA targeting the gene of interest.

nHEK cells were transfected with three different concentrations, 5 nM, 10 nM and 25 nM, of siRNA targeting STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B. Nonsilencing siRNA, siC, was also transfected. 2 days later, cells were harvested for qPCR. Values derived from qPCR for siC were set at 1 (fold induction) and the relative expression levels of cells transfected with the experimental siRNA (n=3). Error bars represent mean ± standard deviation.
3.2.2 Reference gene selection for qPCR in siRNA transfected primary keratinocytes
For qPCR to yield meaningful results, it is necessary to normalise expression of the gene of interest to a stably expressed endogenous control. Housekeeping genes are genes coding proteins responsible for maintaining basic functions of cells. They are thought to be relatively constitutively expressed and therefore are candidates for internal control genes in qPCR. However, evidence shows that these and other housekeeping genes are not as resistant to internal and external environmental changes as previously thought and that mRNA expression of housekeeping genes may show alterations depending on applied experimental conditions (Balogh et al., 2008).

The current study involved establishing expression profiles for 6 putative housekeeping genes (GAPDH, B2M, RPLOPO, TBP, YWHAZ and GUSB) with different functions in cellular maintenance to study gene expression of STS, FLG, ABCA12, TGM1, ICHTHYIN, and ALOX12B in neonatal human epidermal keratinocytes, nHEKs, following gene silencing using 3 different primer siRNA sequences targeting each gene of interest, as previously described.

The stability of gene expression for candidate HKGs was analyzed using the geNorm analysis program. Genes with different cellular functions were chosen because selecting genes that share identical biochemical pathways could bias analyses (Bär et al., 2009). The geNorm algorithm expresses the internal control gene-stability measurement as M. Genes with the lowest M-values exhibit the most stable expression and are thought to be more reliable for normalization (Allen et al., 2008). Genes with a M-value under 0.5 are considered acceptable for valid HKG (Minner and Poumay, 2009). This analysis revealed that the cutoff M-value of GUSB was below 0.5 thus supporting the choice of GUSB as HKGs in experiments to study
differentiation of keratinocytes by real-time qPCR.

Figure 3.6: Genorm Analysis of HKGs.
Average expression stability values, M. M-values under 0.5 are considered acceptable for valid HKG (Minner and Poumay, 2009). GUSB was the only gene with an M value below 0.5. Following transfection with siRNA gene expression of the ichthyosis genes was analysed; Total RNA was extracted, reverse transcription was performed and cDNA was analyzed (n=3), by qPCR.

To further confirm the stability of HKGs qPCR analysis was undertaken using three different HKGs- GAPDH, YWHAZ and GUSB. GUSB and YWHAZ were chosen because they had the lowest M values. GAPDH was chosen because it is a commonly used HKG in nHEK experiments.
Figure 3.7: STS knockdown assessment following normalization with 3 different HKGs. STS expression is consistent directionally with quantitative changes observed in siSTS-1 compared to controls, siCH and siCL, following normalization with GAPDH (least stable HKG) when compared to GUSB and YWHAZ (n=3). Error bars represent mean ± standard deviation.
Figure 3.8: *ABCA12* knockdown assessment following normalization with 3 different HKGs. *ABCA12* expression is consistent directionally and quantitatively following normalization with all three HKGs (n=3). Error bars represent mean ± standard deviation.
Figure 3.9: TGM1 knockdown assessment following normalization with 3 different HKGs. TGM1 expression is consistent directionally and quantitatively following normalization with all three HKGs (n=3). Error bars represent mean ± standard deviation.
Figure 3.10: *ICH* knockdown assessment following normalization with 3 different HKGs. *ICH* expression is consistent directionally with some quantitative changes observed with *GAPDH* (least stable HKG) when compared to *GUSB* and *YWHAZ*, following normalization with all three HKGs (n=3). Error bars represent mean ± standard deviation.
In order to understand what impact reference gene selection might have on expression data of the genes of interest, the expression of siRNA transfected nHEKs was measured and normalized versus the most stable reference genes (GUSB and YWHAZ) and least stable reference gene (GAPDH) calculated by geNorm analysis. For all genes of interest all three HKGs showed directionally similar results i.e. reduced expression compared to control. Some quantitative differences were noted between the HKGs.

Figure 3.11: *ALOX12B* knockdown assessment following normalization with 3 different HKGs. *ALOX12B* expression is consistent directionally with some quantitative changes observed, following normalization with all three HKGs (n=3). Error bars represent mean ± standard deviation.
3.2.3 Establishing an experimental system for epithelial differentiation in monolayers

Mammalian epidermis displays a characteristic calcium gradient, in the non-linear gradient in human skin with a low concentration in the basal layer, the lowest concentration being in the supra-basal / early spinosum layers and with a marked increase in the late spinosum, granular and corneum layers (Leinonen et al., 2009). Calcium has been shown to be a major factor in controlling keratinocyte differentiation (Hennings et. al., 1980). In vitro, nHEKs can be selectively cultured and grown optimally in monolayers in media having a calcium concentration <0.1mM with protein markers characteristic of basal cells. Calcium addition (1.2mM or above) to cultures leads to inhibition of cell proliferation followed by induction of terminal differentiation characterized by a series of coordinated morphological changes such as formation of adherens junctions and desmosomes coupled with the increased expression of terminal differentiation markers such as involucrin (Micallef et al., 2009). Although in vitro results cannot be directly extrapolated to the in vivo situation (e.g. due to the impact of the dermis on the epidermis) much has been learned about calcium-regulated differentiation from in vitro studies, that is applicable to the in vivo epidermis (Bikle et. al., 2012).

3.2.3.1 Morphological changes shown in normal human keratinocytes cultured in high calcium media

nHEKs were plated at a density of 1.5x10^5 and calcium switched as described in section 2.2.4. After 12 h, the cells were shifted to high calcium (1.3 mM) Epilife media and incubated for 24 h (section 2.2.5). Cells incubated in low calcium media for 24 h were kept as a control. Cell morphology was observed with brightfield microscopy. 24 hr post calcium switch, morphological changes such as cell-cell adhesion and stratification were noted in HC media due to calcium addition.
STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B expression are induced by calcium switch from LC to HC media in nHEKs. For all qPCR experiments, results are shown comparing mRNA expression on days 1, 3, 5 and 7 following calcium switch to gene expression in cells grown in LC media indicated as baseline. The expression of all genes except FLG was elevated 24 h post calcium switching and was maintained for 7 days for STS, ICHTHYIN, FLG AND ALOX12B but not for TGM1 and ABCA12. However gene expression was upregulated during days 3 and 5 for all genes of interest. All genes had sufficient baseline expression in LC on day 1 to serve as controls. Further gene expression knock-down experiments using siRNA with this model were performed on day 3.

Figure 3.12: Morphological changes in normal human keratinocytes due to different calcium ion concentrations.
Morphological changes in nHEKs cultured in low calcium (LC) and high calcium (HC) medium for 24 hours shown by phase contrast microscopy (n=2). Scale bars represent 50 µm.
3.2.3.2 Comparison of expression of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B in low and high Ca media following transfection with siRNA 2 days post-transfection

nHEKs were plated at a density of 1.5x10^5 per well in incubated in low calcium (0.06 mM) Epilife (Cascade Biologics, UK) medium a 6-well plate, and incubated at 37°C/5% CO2. After 24 h, nHEKs were transfected with siRNAs for STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B and the non-targeting control, as described previously. After 12 h, the cells were shifted to high calcium (1.3 mM) Epilife media and incubated for 24 h. Additionally, transfected cells for each gene were incubated in low calcium media for 24 h and kept as a control. Optimal suppression with siRNA targeting all genes of interest was achieved 2 days post-transfection (Figure 3.15).
Figure 3.14: qPCR showing optimal suppression with siRNA targeting all genes of interest in low and high Ca media 2 days post-transfection. Transfection with siRNA targeting STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B respectively in low and high Ca media 2 days post-transfection. Optimal suppression with siRNA targeting all genes of interest was achieved (n=3). Error bars represent mean ± standard deviation.
3.2.3.3 Time-course analysis of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B down-regulation

The degree of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B down-regulation in nHEKs after transfection with the siRNA targeting the gene of interest and after induction of differentiation by calcium switching as described was assessed for 8 days. Cells were harvested at day 2 and 8 post-transfection and STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B expression analysed by qPCR. There was significant down-regulation of expression of all genes on day 2 but this was maintained significantly for STS, FLG, ABCA12 only by day 8 (Figure 3.16) suggesting that this is a good monolayer model for all 6 knockdowns on day 2 but not day 8.

Figure 3.15: qPCR showing expression of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B in nHEKs post-transfection over a period of 8 days following calcium switch. Time course of mRNA expression of STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B at day 2 (D2), and 8 (D8) after siRNAs transfection into nHEKs following calcium switch 1 day post-transfection (n=3). Error bars represent mean ± standard deviation.
3.2.3.4 Optimal knock-down of *STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B* 4 days post transfection in differentiated nHEKs

The degree of *STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B* down-regulation in nHEKs 4 days post transfection (mRNA expression of all genes was upregulated Figure 3.13) was assessed in differentiated cells using three negative controls (non-targeting, mock and untreated) as described in section 2.3.5. For non-targeting control cells were transfected with non-targeting siRNA, for mock cells were cultured in media with transfection reagent and for untreated cells were cultured in culture media only. Cells were harvested in QIAzole lysis reagent and RNA extracted using miRNeasy Mini kit (Qiagen) from triplicated biological replicates. cDNA was made as previously and gene expression assessed by qPCR. Knock-down of *STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B* compared to each control used was noted (figure 3.17). RNA was sent to GSK for sequencing (section 2.3.5).

![siRNA-mediated silencing in STS](image1)

![siRNA-mediated silencing in FLG](image2)

![siRNA-mediated silencing in ABCA12](image3)

![siRNA-mediated silencing in TGM1](image4)

![siRNA-mediated silencing in ICHTHYIN](image5)

![siRNA-mediated silencing in ALOX12B](image6)

Figure 3.16: qPCR showing expression of *STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B* in nHEKs cultured in high calcium medium 4 days post transfection. Analysis of siRNA mediated silencing in of *STS, FLG, ABCA12, TGM1, ICHTHYIN and ALOX12B* in nHEKs cultured in high calcium medium 4 days post transfection using three different controls, non-targeting, mock and untreated, (n=3). Error bars represent mean ± standard deviation.
3.2.4 Optimal knock-down of *STS, TGM1* and *ICHTHYIN* in HEKs 4 days post transfection in differentiated nHEKs leads to loss of protein confirmed by western blotting

Significant knock-down of *STS, TGM1* and *ICHTHYIN* in HEKs 4 days post transfection in differentiated cells (differentiation induced the day following transfection as previously described) was confirmed at protein level by Western blotting.
Figure 3.17: Western blot analysis showing siRNA-mediated silencing of STS, Ichthyin and TGM1. Representative Western blots of 3 biological repeats. Separate blots for knockdown and HKG shown because following transfer the membrane was cut in two for immunoblotting.
3.3 Discussion

In this chapter *in vitro* disease models for the non-syndromic ichthyoses by knockdown of *STS, FLG, ABCA12, TGM1, ICHTHYIN* and *ALOX12B* in normal keratinocytes derived from neonatal foreskin were developed. Primary keratinocytes were selected as a model because they are more physiologically relevant to keratinocytes *in vivo* than a cell line (Pan et al., 2009). However, as they have a limited passage capability siRNA was used to induce a transient knockdown (rather than stable knockdown where intracellular expression of siRNAs is induced). This enabled analysis of the effect of knockdown in keratinocytes with the same genetic background.

The efficiency of transfection was optimised for the primary keratinocytes as low transfection efficiency usually results in lower levels of gene knock-down. This happens because mRNA expression from untransfected cells will contribute to the total observed mRNA level. Optimal transfection reagent volume (HiPerFect-15 µl) with highest efficiency of siRNA delivery with least impact on cell viability and optimal cell plating density (150,000 cells/well on collagen I coated plate) were determined. Three custom made siRNAs targeting different regions in the mRNA for the gene of interest. Demonstration of the siRNAs' specificity by providing the appropriate controls is crucial (Hüttenhofer et al., 2003). Two different non-targeting controls, a high and low GC negative control, designated CH and CL respectively, were used. Each siRNA sequence for each gene of interest down-regulated gene expression at the mRNA level detected 2 days after transfection. The most effective siRNA sequence for each gene was used in subsequent experiments. Since the GC content of siRNA used for subsequent experiments was between 36-52% a low GC negative control was used as advised by the manufacturer.

For RNAi to be a useful tool in gene knock-down experiments, it is critical that siRNA-mediated silencing is specific i.e. limited to the specific knock-down of the target gene.
Down-regulation of unintended gene targets, i.e. off-target effects, is a result of non-specific silencing and can be a consequence of siRNA methods. Sequence independent off-target effects can result from high siRNA concentration introduction as this can displace endogenous miRNAs from RISC (Khan et al., 2009). The lowest concentration of siRNA (5-25nM) for each gene of interest that would allow gene silencing without compromising knockdown efficiency nHEK cells was evaluated.

For qPCR to yield meaningful results, it is necessary to normalise expression of the gene of interest to a stably expressed endogenous control (Bustin et. al.; 2005, Huggett et.al.; 2005). The stability of gene expression for 6 candidate HKGs (GAPDH, B2M, RPLOPO, TBP, YWHAZ and GUSB) was analyzed using Genorm analysis and further by qPCR for the 2 most stable genes GUSB and YWHAZ and the commonly used GAPDH. The overall findings supported the choice of GUSB as HKG to study gene suppression in siRNA transfected nHEKs by qPCR and hence it was used as HKG for this project.

The ichthyosis genes play a role in terminal differentiation and the genes of interest in this study are expressed late in differentiation. Induction of genes in monolayer cultures was achieved by switching low calcium media to high calcium media. Gene expression was upregulated during days 3 and 5. All genes had sufficient baseline expression in LC on day 1 to serve as controls. In one study, a 3 day calcium switch lead to induction of TGM1 but, in contrast to our study, not in FLG and induction of FLG in vitro was attributed to increased cell confluency (Borowiec et al., 2013). These differences may be explained by different cell culture conditions (serum and cell confluency). Use of a negative control (cells cultured in low calcium media) in this study confirms that gene induction was due to calcium switching in this project. It has been suggested that calcium switch is a potent model for inducing
calcium-dependent genes but not for studying differentiation of *in vitro* keratinocytes (Borowiec et al., 2013). In this study, induction of all genes of interest was noted at transcriptome level following calcium switch. Confirmation of gene induction at protein level to allow for post-translational modifications would allow further validation of this model. To assess whether the experimental conditions in this project serves as an appropriate model for keratinocyte differentiation other genes involved in differentiation e.g. genes involved in induction of the ER stress response (Sugiura et al., 2009) can be assessed at transcriptome and/or protein level.

Following calcium switch optimal suppression with siRNA targeting all genes of interest was achieved on day 3 (confirmed using three different controls). The silencing potential of the siRNAs targeting the ichthyosis genes was maintained for 8 days for *STS*, *FLG*, *ABCA12* but not for the other genes. Knockdown was confirmed at protein level for *STS*, *TGM1* and *ICHTHYIN* by Western blotting on day 3. Further gene expression knock-down experiments using this model were performed at this time point.

In summary, a model to study transient knockdown of genes expressed in late differentiation in monolayer cultures was developed. By optimizing transfection conditions (including calcium switching) and by using the appropriate controls a highly reproducible protocol for consistent, efficient and specific knock-down in *STS*, *FLG*, *ABCA12*, *TGM1*, *ICHTHYIN* and *ALOX12B* nHEKs was established at transcriptome level and confirmed at protein level for *STS*, *TGM1* and *ICHTHYIN* by Western blotting. This paves the way for further experiments where the specific effect of *STS*, *FLG*, *ABCA12*, *TGM1*, *ICHTHYIN* and *ALOX12B* loss on nHEKs can be determined.
3.4 Further work

The limitation of siRNA as a method for protein knockdown is that the knockdown is transient; therefore it is desirable to generate a stable knockdown so that long-term experiments can be carried out. For example, although the effects of siRNAs are sustained for longer in organotypic skin model than in monolayers (Mildner et al.; 2006) longer lasting experiments could be performed. For this a keratinocyte cell line such as N/TERT-1 would be appropriate because it was shown that normal keratinocyte differentiation was maintained after immortalisation (Dickson et al., 2000). To produce a stable induction of RNAi, endogenous expression of short-hairpin RNAs (shRNAs) by expression plasmids or viral vectors is commonly used (Paddison et al., 2002, Stegmeier et al., 2005). shRNAs are processed by Dicer to produce siRNAs. Upon binding to the cell the viral genome is transported into the cytoplasm where it undergoes reverse transcription into DNA. The DNA is then integrated into the host genome, allowing the shRNA to be constitutively expressed. Additionally keratinocytes from ichthyosis patients with known mutations could be used.
Chapter 4: Characterisation of 3D Organotypic Cultures of Keratinocytes Following Knockdown of Ichthyosis Genes
4.1 Introduction
Organotypic culture is a form of three-dimensional tissue culture where cultured cells are used to reconstruct a tissue or organ in vitro the objective being to allow the cells to exhibit as many properties of the original organ as possible. Three-dimensional organotypics (3D organotypics) are superior to monolayers of keratinocytes because they preserve the physiological 3D architecture of the skin, with cell proliferation occurring in the basal layers and cell differentiation towards the surface. Gene silencing by means of RNA interference (RNAi) is a powerful tool for gene function analyses in vitro. The combination of RNA interference technology and human organotypic skin cultures is an efficient method to study gene functions in epidermal development (Mildner et al., 2006, Kuchler et al., 2011, Vavrova et al., 2014, O'Shaughnessy et al., 2010).

The skin consists of a stratified cellular epidermis composed mainly of keratinocytes and an underlying dermis composed predominantly of fibroblasts in a collagen-rich stroma. Full thickness skin models contain both epidermal and dermal compartments. The best in vitro model that best mimics normal skin are organotypic cultures of keratinocytes on a fibroblast populated scaffold where a SC is formed indicating terminal differentiation and complete barrier formation. Terminal differentiation of keratinocytes can be induced by culturing keratinocytes at an air/liquid interface resulting in a multilayer stratified tissue modelling normal skin. The keratinocytes used for epidermis formation can vary in that either keratinocyte cell lines or primary keratinocytes can be used. In addition, there are a number of possible dermal materials/scaffolds that can be used for organotypic cultures of skin such as de-epidermalised dermis, type I collagen gels (Boelsma et al., 1999), and collagen and Matrigel mixtures (Sobral et al., 2007).
In vitro skin models (using siRNA in primary keratinocytes using dermal scaffolds) provide a way of mimicking monogenic skin disorders. This is advantageous in that it allows the gene specific effects to be evaluated without other possibly contributing factors. However it does not mimic in vivo skin and lacks other epidermal cells-melanocytes, Langerhans cells, Merkel cells. Additionally the amount and composition of SC lipids in in vitro models varies from that of skin (Vavrova et al., 2014). Furthermore, the dermal scaffolds do not represent the vascularized dermis, including circulating immune cells, and appendageal structures such as hair follicles and sweat glands. Additionally, the underlying subcutaneous layer is not represented.

For this study, fibroblasts were cultured in de-epidermalised dermis for two weeks prior to seeding primary keratinocytes. Primary keratinocytes were grown at the air/liquid interface for 10 days.

Figure 4.1: Organotypic culture of primary keratinocytes on fibroblast populated de-epidermalised dermis grown at the air/liquid interface (10 days) on a steel grid.
4.1.1 Development of skin models to study the ichthyoses \textit{in vitro}

In recent decades a number of murine models have been developed for the ichthyoses. The flaky-tail mouse, which lacks processed murine filaggrin because of a frameshift mutation in the gene encoding profilaggrin, has impaired barrier function (Presland et al., 2000, Fallon et al., 2009). However this mouse model has another recessive hair mutation, \textit{matted} and it was found that the latter gene, rather than filaggrin, causes development of spontaneous development of AD with increased IgE levels (Sasaki et al., 2014, Sasaki et al., 2013). Subsequently, the FLG−/− mouse model was generated. These mice have dry skin, enhanced percutaneous allergen priming but do not develop spontaneous dermatitis under specific pathogen-free conditions (Kawasaki et al., 2012). Thus, it has been suggested that the flaky tail mouse is not a true model of filaggrin deficiency and all of the previous work on these models needs to be re-evaluated (Moniaga et al., 2010, Moniaga and Kabashima, 2011, Oyoshi et al., 2009, Scharschmidt et al., 2009, Moniaga et al., 2013).

Skin from the 12R-LOX mice transplanted onto wild-type nude mice develops an ichthyosiform phenotype (de Juanes et al., 2009). Mice knockouts for \textit{ABCA12} have been described as having a post-natal lethal phenotype with skin resembling that of newborn HI skin (Smyth et al., 2008, Yanagi et al., 2008). The expression of \textit{ABCA12} in normal foetal skin development and the grafting of HI keratinocytes on immunodeficient mice have also been described (Yamanaka et al., 2007). Mice knockouts for \textit{TGM1} do not recapitulate the human skin phenotype and die within the first hours of life (Matsuki \textit{et al.}, 1998). A TGM1 deficient skin-humanized mouse model for LI has been reported (Aufenvenne et al., 2012).

\textit{In vivo} models of the skin such as murine animals provide a 3D model however interspecies transferability of the results and ethical issues remain a problem. Reconstructed human
epidermis serve as effective models for the study of skin disorders. *In vitro* human FLG (Mildner et al., 2010), ALOX12B, ALOXE3, TGM1, ICH/NIPAL4, ABCA12 (Thomas et al., 2009, Eckl et al., 2011) models using siRNA in primary human keratinocytes and a rat *in vitro* model (O'Shaughnessy et al., 2010) have been described. These have not been fully characterized. No 3D *in vitro* models for STS or ichthyin are known.

Skin models to study the ichthyoses were developed using siRNA transfected primary keratinocytes and harvested 10 days post transfection.

4.1.2 Aim
The aim of this chapter was to study the role of the ichthyosis genes (FLG, STS, TGM1, ALOX12B, NIPAL4, and ABCA12) in epidermal differentiation and maturation of the epidermal barrier by establishing (and characterizing) full-thickness human skin models for the common ichthyosis and the autosomal recessive congenital ichthyosis. Organotypic cultures were generated using primary keratinocytes with knockdown of FLG, STS, TGM1, ALOX12B, ICH, and ABCA12 using siRNA. The effect on epidermal differentiation was investigated in these cultures compared to control.

4.2 Results
4.2.1 Haematoxylin and Eosin staining of ichthyoses organotypic culture following ichthyosis protein knock-down using de-epidermalised dermis
Organotypic cultures on a fibroblast populated de-epidermalised dermis were generated with primary keratinocytes with knockdown of the ichthyosis genes: STS, FLG, TGM1, ALOX12B, ICH, and ABCA12 (siSTS, siFLG, siABCA12, siTGM1, siALOX12B, siICH). A non-targeting siRNA was used as a control (siC). Figure 4.2 shows H&E staining of siSTS, siFLG,
siABCA12, siTGM1, siALOX12B, siICH and siC organotypic cultures. A multi-layered fully differentiated epidermis was observed in all cultures. The *stratum corneum* was present confirming that the keratinocytes have successfully undergone terminal differentiation. The nucleated epidermis of the ichthyosis gene knock-downs were thicker (i.e. more acanthotic) as well as the SC (i.e. compact hyperkeratosis) compared to the control suggesting that the ichthyosis knock-downs have an influence on keratinocyte differentiation and SC development.
Figure 4.2: Organotypic cultures of primary keratinocytes following ichthyosis gene knockdown.
(a) Haematoxylin and eosin staining of 3D organotypic cultures on a fibroblast populated de-epidermalised dermis were generated with primary keratinocytes with knockdown of the ichthyosis genes: STS (siSTS), FLG (siFLG), TGM1 (siTGM1), ALOX12B (siALOX12B), ICH (siICH), and ABCA12 (siABCA12). Non-targeting siRNA was used as a control (siC). Sections were stained with haematoxylin, which stains the cell nucleus purple, and eosin, which stains the cytoplasm pink. Scale bars represent 200µm (b) Graphs showing epidermal and stratum corneum (SC) thickness (* P < 0.05, ** P < 0.01, **** P < 0.0001).
4.2.2 Ichthyosis protein expression in primary keratinocyte organotypic cultures
Due to the transient nature of siRNA knockdown it was important to confirm knockdown was still present in organotypic cultures of primary keratinocytes. There was efficient knockdown of FLG as measured by IF staining (Figure 4.3) and of TGM1, ICH and ABCA12 as measured by IHC (Figure 4.4-4.6 respectively).

Figure 4.3: IF staining of Filaggrin (red) in siC, siFLG organotypic cultures and skin sections. IF staining of Filaggrin (red) in siC, siFLG organotypic culture and skin sections. DAPI (blue) was used as a nuclear stain. Scale bars represent 100µm in siC and siFLG and 200 µm in Untreated Skin panels.

In normal skin filaggrin staining was observed in the SG and SC, as expected. In siC organotypics, filaggrin expression was observed in the upper layer of the epidermis. However, this was absent in the siFLG cultures in keeping with complete knockdown of filaggrin protein.

Figure 4.4: IHC staining of TGM1 in siC, siTGM organotypic cultures and skin sections using DAB. IHC staining of TGM1 in siC, siTGM organotypic culture and skin sections. DAPI was used as a nuclear stain. Scale bars represent 100µm in siC and siTGM1 and 200 µm in Untreated Skin panels.

The TGM1 protein is expressed primarily in the SC in normal skin. In siC it is expressed throughout the entire epidermis but primarily in the SC, SG and upper SS. In the TGM1 knockdown TGM1 expression is limited to the SC only.
Expression of Ichthyin was examined by IHC. Ichthyin is expressed throughout the viable and non-viable epidermis in normal skin and siC. In the ICH knockdown reduced expression is noted throughout the epidermis.

IHC demonstrated ABCA12 was expressed throughout the epidermis with apparent increased expression in the upper epidermis. This could be an edge artefact, but is in keeping with staining pattern in normal skin (Thomas et al., 2009). In the ABCA12 knockdown reduced staining is noted throughout the epidermis.

4.2.3 Further characterisation of organotypic cultures 4.2.3.1 Characterization of FLG organotypic culture
To further characterize FLG 3D model loricrin (LOR) and keratin10 (K10)-late and early differentiation markers respectively were used. Furthermore, IF staining was done using
keratin14 (K14) to evaluate changes in the SB. LOR was expressed in the SC in normal skin and siC. There was loss of expression of LOR following FLG silencing. K10 is expressed in the suprabasal layers of the epidermis and a typical staining pattern is shown in siC and normal skin sections. There is reduced expression of K10 in siFLG. K14 expression is most evident in the basal layer as seen in normal skin. There is increased expression of K14 in siC and siFLG and it is seen in the suprabasal layers compared to normal skin. Suprabasal K14 has been noted previously in 3D epidermal models (Lamb and Ambler, 2013).

Figure 4.7: IF staining of the epidermal differentiation marker LOR, K10 and K14 in siC, siFLG and normal skin.
IF staining of LOR (green) and K14 (red) and K10 (red) in siC, siFLG and skin. DAPI (blue) was used as a nuclear stain. Scale bars represent 100µm.
4.2.3.2 Characterization of *ABCA12* knockdown organotypic culture

To further characterize the siABCA12 organotypic culture filaggrin a late differentiation marker and K10 expression were evaluated. There was expression of filaggrin in the SG in siC and siFLG but also in the SS in the latter lending support to premature termination differentiation in an *ABCA12* knockdown (immortalized cell) model (Thomas et al., 2009). Early differentiation marker K10 is expressed in the suprabasal layers of the epidermis as seen in siC and normal skin sections. K10 expression is limited to the upper spinous layer in siABCA12.

4.2.4 Epidermal differentiation of ichthyoses organotypic cultures

The localization TGM1 in normal skin was assessed by IHC (fig.4.4) and was primarily in the SC. On comparison to siC TGM1 expression was altered in the remaining ichthyoses knockdowns suggesting dysregulation of terminal differentiation (Figure 4.9); there was reduced expression of TGM1 in *TGM1* knockdown as expected but also in the *STS* and *ICH* knockdowns. In siFLG, siALOX12B and siABCA12 there was increased expression in the SS; increased expression was noted in the upper SS the lower SS in siFLG and siABCA12.
suggesting premature terminal differentiation in these disease models. This was most striking in siABCA12 which is representative of the most severe ichthyosis phenotype.
Figure 4.9: IF staining of the epidermal differentiation marker TGM1 in siC, siSTS, siFLG, siABCA12, siTGM1, siALOX12B and siICH organotypic cultures.

IF staining of TGM1 (green) in siC, siSTS, siFLG, siABCA12, siTGM1, siALOX12B and siICH organotypic cultures. DAPI (blue) was used as a nuclear stain. Scale bars represent 100µm.
4.3 Discussion

In this study, *in vitro* human skin models were generated for the common ichthyoses and the autosomal recessive congenital ichthyoses. Organotypic cultures were generated using primary keratinocytes with knockdown of *FLG*, *STS*, *TGM1*, *ALOX12B*, *ICH/NIPAL4*, and *ABCA12* using siRNA on a de-epidermalised dermis. Full thickness epidermis was generated for each organotypic culture and loss of protein assessed (where possible) by IHC or IF. Further characterization by staining with differentiation markers was undertaken to assess the effect of knockdown on epidermal differentiation.

Novel ichthyosis *in vitro* disease models for *STS* and *ICH* knockdowns were developed. H&E staining in the *STS* knockdown demonstrated a fully differentiated epidermal compartment with all viable layers and SC. The SC appeared more compact and thicker (compact hyperkeratosis) and the viable layers slightly thicker (slight acanthosis) than that of control as noted *in vivo* (Calonje et al.; 2012). Immunofluorescent staining did not reveal any changes compared to control or normal skin. For the *ICH* knockdown compact hyperkeratosis, nuclei in the SC (parakeratosis) and acanthosis were noted on H&E staining. *ICH* mutations lead to LI/NCIE phenotypes and several of the observed histological features in the generated model have been noted in affected patients; hyperkeratosis, moderate acanthosis and parakeratosis in NCIE phenotype and orthohyperkeratosis, moderate acanthosis, normal or reduced granular layer and mild irregular undulation of the epidermal surface (papillomatosis) are seen in lamellar phenotype (Fischer et al., 2007). The loss of the target protein following knockdown was further demonstrated by IHC analysis of diseased skin compared to normal skin equivalent. However, the staining pattern noted throughout the epidermis may not be representative of Ichthyin expression but may be non-specific due to the polyclonal antibody used; polyclonal antibodies target multiple epitopes of the same antigen and are less specific.
than monoclonal antibodies that recognize one epitope of an antigen only. IHC with another antibody would verify these findings.

In addition to the novel models generated, *in vitro* cultures were established for the remaining ichthyoses using primary keratinocytes (neonatal) from the same genetic background i.e. same donor. In the FLG knockdown H&E staining demonstrated, a fully differentiated epidermal compartment with all viable layers and SC. Morphology of the SC did not appear to be compromised. The impact of FLG knock down on filaggrin protein expression in the skin construct was verified by IF. Immunofluorescence labeling of filaggrin in the granular layers of control organotypic and normal skin was seen. Notable reduction of fluorescence staining intensity in FLG knock down in comparison to normal control was noted most likely due to loss of keratohyalin granules in the granular layer. Further characterization revealed loss of LOR and reduced expression of TGM1 confirming that it affects terminal differentiation and leads to disturbed maturation of the epidermis in contrast to previous studies (Mildner et al., 2010). These differences are most likely due to the shorter cultivation period of seven days; it is thought that the influence of filaggrin deficiency on epidermal maturation does not become visible until cultivation periods exceed one week in duration (Kuchler et al., 2011). No changes were noted on IF staining with K14 (expressed in the basal layer) confirming that it does not impact on the SB as shown in previous studies (Mildner et al., 2010). IHC of three-dimensional organotypic cultures expressing siRNA to ALOX12B showed reduced expression of ALOX12B throughout the epidermis compared to complete loss of ALOX12B protein noted by IF in another reported model reflecting the differences in technique used-IHC being more sensitive than IF (Eckl et al., 2011). TGM1 knockdown displayed compact hyperkeratosis and acanthosis. IF and IHC staining showed a reduction in TGM1 staining in the viable epidermis compared to C and skin. This is in keeping with another TGM1 *in vitro* model
using primary keratinocytes (Eckl et al., 2011). A HI model using primary keratinocytes was generated in this study; This bears out several features related to epidermal differentiation noted in HI skin; hyperkeratosis and acanthosis were noted. Furthermore nuclei were seen in the SC (parakeratosis) and there was irregular undulation of the epidermal surface (papillomatosis). Protein knockdown was confirmed by IHC. Terminal differentiation was altered in the HI model with increased expression of both TGM1 and filaggrin in the viable epidermis compared to control suggesting premature terminal differentiation as noted previously in HI skin (Thomas et al., 2009); filaggrin expression was in keeping with HI skin and involved the upper spinous layers adding further support to the previously reported error in filaggrin processing in HI skin (Thomas et al., 2009). TGM1 expression was limited to the suprabasal layers rather than the entire epidermis as seen in HI skin and NEB1 organotypic model in another study (Thomas et al., 2009). This may be because of the different antibodies used in the two studies. In addition, there was a reduction of K10 expression implying altered early differentiation in HI.

Assessment of terminal differentiation of all disease models (from the same genetic background) generated in this study was undertaken to evaluate comparative changes in terminal differentiation by IF staining of TGM1. All the ichthyosis knockdowns impact on TGM1 expression suggesting dysregulation of terminal differentiation. Transglutaminase 1 (TGM1) is an enzyme involved in the cross-linking of the components of the CE proteins (Candi et al., 2005). The CE functions as a platform for cross-linking organized lipid layers-which is essential for the barrier function of the skin (Lorand and Graham, 2003). Additionally, TGM1 contributes to the formation of the CLE by attachment of long-chain omega-hydroxyceramides to involucrin (Nemes et al., 1999). Thus, interactions between TGM1 and ALOX12B (involved in lipoxygenase pathway) and ICH (putative receptor for the
end products of this pathway) may be explained by perturbations in omega ceramide synthesis that compromises CLE formation and TGM1 expression. How these changes come about mechanistically in the remaining ichthyoses is unclear. This could result from impairment of barrier function leading to compensatory changes as observed in other barrier diseases, AD and psoriasis, where upregulation of TGM1 has been observed (de Koning et al., 2012).

In summary, all the ichthyosis knockdowns in this study impact on TGM1 and changes in \textit{ABCA12} alter early differentiation in addition to terminal differentiation. In addition, in this study 3D \textit{in vitro} cultures using primary keratinocytes for the ichthyosis of interest, from the same genetic background, were developed including a novel models (\textit{STS} and \textit{ICH} knockdown) in order to study the individual ichthyosis and make comparative assessments and evaluate impact on epidermal biology.

4.4 Future work

Further characterization of the ichthyosis models (other than for \textit{FLG} knockdown) to assess changes in SB and SS can be undertaken by IF staining with K14 and K10 respectively (for \textit{ABCA12} knockdown further K14 IF staining).

The ichthyoses are disorders of cornification and impair the skin barrier. To investigate functional barrier assessment a penetration assay using Lucifer yellow can be applied on fully differentiated organotypic skin cultures for the disease models and control. Lucifer yellow can be added on top of the organotypic cultures and its penetration measured, which is indicative of a functional SC (Mansbridge and Knapp, 1993). The cultures can be harvested 2 hours post application for permeation studies.
As lipid composition is crucial for epidermal barrier function alterations in the composition of total lipids by Nile Red analysis of lipids can be performed to compare the lipid profile between the knockdowns and control. Nile Red fluoresces green in the presence of nonpolar lipids (such as ceramides) and red in the presence of polar lipids (such as phospholipids and sphingomyelin) (Thomas et al., 2008). Furthermore lipids extracted from 3D organotypics (control and knockdowns) can be investigated using mass spectroscopy.

Organotypic cultures of skin are a model for the in vivo environment; therefore it is important to confirm that the phenotype observed due to ichthyosis knockdown is biologically relevant. Ichthyosis patient samples could be used to see if the above in vitro findings are also seen in vivo.

RNAi, leads to gene-specific silencing but can also lead to off-target effects. Rescue experiments remain the gold standard control to confirm the specificity, and hence the validity of RNAi data (Hüttenhofer et al., 2003). There are two main methods used (Cullen, 2006); if the siRNA used was designed to bind to a sequence in the mRNA open reading frame, then this resistance can be achieved by mutation of the mRNA, without changing the encoded protein, by taking advantage of the redundancy of the genetic code. Alternatively, the siRNA can be designed to target the 3’ untranslated region (UTR) of the mRNA, and rescue of expression can then be achieved by expressing a form of the mRNA lacking its normal 3’ UTR. Another acceptable approach is to show that two or three distinct siRNAs targeted to different regions of the mRNA exert the same phenotypic effect (Hüttenhofer et al., 2003).

Stable knock-down models can be used to investigate the role of the ichthyosis genes in epidermal differentiation and barrier function by using primary keratinocytes with stable
knockdown. This can be achieved by lentiviral shRNA infection. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system (CRISPR-CAS9) can be also be used for performing targeted editing to alter or knockout gene expression of the ichthyosis genes. This system requires a Cas nuclease and a single guide RNA (sgRNA) against the target sequence to function as a site-specific nuclease.

In this project, transcriptome analysis was undertaken on a 2D models. A more robust approach would be evaluation of the transcriptome using the epidermal component of the generated skin equivalents.
Chapter 5: *RNA-Seq* analysis of keratinocytes following ichthyosis genes knockdown
5.0 Introduction

RNA sequencing (RNA-Seq) is a powerful method for transcriptome analyses. The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition. Understanding the transcriptome is essential for interpreting the functional elements of the genome and revealing the molecular constituents of cells and tissues, and also for understanding development and disease (Wang et al., 2009). Various technologies have been developed to deduce and quantify the transcriptome. The automated Sanger method is considered as a ‘first-generation’ technology and the newer methods, which include RNA-Seq (this supersedes the automated Sanger method), are referred to as next-generation sequencing (NGS) (Metzker, M.L., 2010). RNA-Seq generates huge amounts of data, which poses a challenge both for data storage and analysis, and consequently often necessitates the use of powerful computing facilities and efficient algorithms (Trapnell., 2012).

In this project, RNA (from triplicated biological replicates) was sent to GSK for sequencing. Analysis of the sequenced reads was performed in collaboration with the Enright group at European Bioinformatics Institute, Hinxton (http://www.ebi.ac.uk/research/enright) and differentially expressed gene (DEG) lists were provided. The DEGs were analysed further using DAVID, KEGG, REACTOME and GeneMANIA.

RNA was converted to a library of cDNA fragments and adaptors attached to one or both ends. Following amplification each molecule was sequenced in a high-throughput manner using the Illumina platform to obtain sequences from both ends i.e. pair-end sequencing (the alternative is single-end sequencing where sequences are from one end) with read length of 50bp (the reads are typically 30–400 bp). The reads were not strand specific.
RNA sequencing data was analysed using the pipeline as shown in Figure 5.1:

Figure 5.1: Summary of workflow.
Software used in the workflow and the main functions of each tool. All tools used are fully documented on the web and actively maintained by a team of developers.

KRAKEN (http://www.ebi.ac.uk/research/enright/software/kraken) pipeline, used for quality control, developed in the Enright lab was used to process the RNA-Seq data. It consists of 3 tools: Reaper, Tally and Minion. Reaper is a program for demultiplexing, trimming adapter sequences and filtering sequencing data. First, the Reaper command was used to trim the 3’ adaptor sequences. The 3’ adaptors were stripped using the criteria: 14-nt alignment stretch with no more than 2 mismatches and no gaps. Low complexity sequences were then removed with a dust score cut-off of 20. Complexity scores range from 0 to 100. Higher scores imply lower complexity. Then, Tally was used to reduce identical reads to a single entry while
keeping the depth values. A file with unique reads and their corresponding counts was generated for each sample.

The final processed unique paired-end reads were aligned to the reference human genome (GRCh37/hg19) with Tophat v2.0.4. TopHat2 aligns RNA-Seq reads to the genomes using the short read aligner BOWTIE, and then analyzes the mapping results to identify splice junctions between exons.

For transcript quantification, the number of reads mapped to transcripts (Homo_sapiens.GRCh37.74.gtf from Ensembl) were obtained from Tophat2 aligned sam files using the HTSeq-count command from the HTSeq library (http://www.wubزم.emb.de/users/anders/HTSeq/doc/). HTSeq was used to assemble individual transcripts from the reads. Longer transcripts produce more sequencing fragments than shorter transcripts. Therefore the read count to each transcript’s length must be normalized and differential expression calculated using the Bioconductor DESeq2 package (http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html). DeSeq2 calculates expression levels of transcripts from different conditions and tests the statistical significance of observed changes. Differential gene expression analysis was based on a negative binomial distribution.

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. Bioconductor uses the R statistical programming language, and is open source and open development (http://bioconductor.org/packages/release/bioc/html/DESeq.html). For functional grouping of differentially expressed genes lists of the differentially expressed genes, DEGs, (upregulated and downregulated) were then analysed via two internet based bioinformatics resources Database for Annotation, Visualization and Integrated Discovery
DAVID (https://david.ncifcrf.gov) (Huang da et al., 2009) and REACTOME (http://www.reactome.org) (Fabregat et al., 2016). DAVID is a gene annotation tool that highlights biological processes and functions from list of DEGs. There are a number of annotation categories including protein-protein interactions, protein functional domains, disease associations, gene functional summaries, molecular events and functional annotation clustering. REACTOME is a open-source, curated and peer reviewed of human biological processes. The central unit of this data model is a Reaction, and subclasses of Reaction model these core biological events (Croft et al., 2014). Reactions are grouped into pathways, which in turn are assembled into a hierarchy of biological processes. This allows indication of whether there were interesting clusters of genes to investigate further as opposed to single genes that may be affected by the suppression of the ichthyosis gene of interest. Kyoto Encyclopedia of Genes and Genomes KEGG database (accessed through DAVID) was used to overlay the list of DEGs onto known signaling pathways. The number of components that are highlighted helps determine the extent by which certain pathways were affected. GeneMANIA (http://genemania.org) (Warde-Farley et al., 2010) performs biological network integration between a gene list and networks generated from available genomic and proteomic data. The list of DEGs was input into GeneMANIA to evaluate physical interactions, shared protein domains or identify DEGs that participate in the same pathway and also to predict functional relationships.

5.1.1 Aim
The overall aim of this chapter was to analyse the transcriptome of siRNA transfected keratinocytes in monolayer in order to identify differentially expressed genes in keratinocytes with knockdown of ichthyosis genes compared to control to evaluate the following:
1. To directly test the null hypothesis at the level of the transcriptome. If the null hypothesis is correct no commonality in gene expression profiles for the in vitro disease models will be
observed.

2. To identify key pathways or biological functions for each ichthyosis.

For this lists of DEGs following ichthyosis gene knockdown (STS, FLG, TGM1, ICH, ALOX12B, ABCA12) were subjected to analysis using DAVID, KEGG and REACTOME.

5.2 Results

5.2.1 Confirmation of knockdown of siRNA transfected primary keratinocytes by DESeq

For differential expression analysis knockdowns were compared to non-targeting controls for all 6 knockdowns (STS, FLG, TGM1, ICH, ALOX12B, ABCA12) using DESeq2 in the R/Bioconductor environment.

There was significant downregulation of all 6 knock-downs:

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>log2 FoldChange</th>
<th>FDR <0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>-1.807514883</td>
<td>1.50E-23</td>
</tr>
<tr>
<td>FLG</td>
<td>-1.242284384</td>
<td>3.07E-08</td>
</tr>
<tr>
<td>ABCA12</td>
<td>-2.067862732</td>
<td>2.23E-146</td>
</tr>
<tr>
<td>TGM1</td>
<td>-2.287142185</td>
<td>2.41E-49</td>
</tr>
<tr>
<td>NIPAL4</td>
<td>-1.723383376</td>
<td>5.64E-48</td>
</tr>
<tr>
<td>ALOX12B</td>
<td>-1.090237652</td>
<td>2.07E-08</td>
</tr>
</tbody>
</table>

DESeq2 generated a list of differentially expressed genes for each knockdown (STS, FLG, ABCA12, TGM1, ICH and ALOX12B) compared to non-targeting, C. These lists were modified by selecting genes with a p-value below 0.05 and 0.01. The genes that had the greatest expression changes due to each ichthyosis gene knockdown with p-value below 0.01 are shown in Appendix 1.1.
5.2.2 Common Genes differentially expressed following knockdown of the Ichthyosis genes:

It is important to investigate whether there were any common signaling pathways or biological functions affected following the knockdown of the ichthyosis genes. 62 genes were significantly down-regulated and 26 genes were significantly up-regulated (FDR < 0.05). Gene clusters were found for cell cycle, humoral immune response, keratin filament/cytoskeleton and apoptosis (Figures 5.2-5.6). In addition genes related to cytokine signaling (FOS, TREM2, CFH, RIPK1, PIP4K2C) and metabolism of lipids and lipoproteins (PPARGC1B, LPCAT4, PIP4K2C) were noted.
Figure 5.2 2D heatmap showing differentially expressed genes in the cell cycle following knock-down of the ichthyosis genes.

DAVID was used to generate a heat map from differentially expressed genes common to all the ichthyosis gene knockdowns (STS, FLG, TGM1, ICH, ALOX12B, ABCA12). The heatmap shows corresponding gene terms positively associated (green) and corresponding gene terms not associated (black).
Figure 5.3 Network generated from differentially expressed genes in cell cycle. DAVID® used defined gene lists onto well known KEGG® pathways to help interpret the data in a network context. *shows differentially expressed genes.
Figure 5.4 2D heatmap showing differentially expressed genes in apoptosis following knock-down of the ichthyosis genes.

DAVID was used to generate a heat map from differentially expressed genes common to all the ichthyosis knockdowns (STS, FLG, TGM1, ICH, ALOX12B, ABCA12). The heatmap shows corresponding gene terms positively associated (green) and corresponding gene terms not associated (black).
Figure 5.5 2D heatmap showing differentially expressed genes in immune function following knock-down of the ichthyosis genes.

DAVID was used to generate a heat map from differentially expressed genes common to all the ichthyosis knockdowns. The heatmap shows corresponding gene terms positively associated (green) and corresponding gene terms not associated (black).
DAVID was used to generate a heat map from differentially expressed genes common to all the ichthyosis knockdowns. The heatmap shows corresponding gene terms positively associated (green) and corresponding gene terms not associated (black).

5.2.2.1 Common Ichthyosis (STS and FLG knockdown) and the Autosomal Recessive Congenital Ichthyosis (ABCA12, TGM1, ICH, and ALOX12B):

Venn Diagram for dysregulated genes in the CI and ARCI were made using Venny. (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 68 overlapping genes were common to the CI and 34 for the ARCI. Overlapping genes between two or three knockdowns for the ARCI were also noted (Figure 5.7). Analysis of dysregulated genes in CI and ARCI using GeneMANIA was undertaken. For CI shared protein domains were noted in the epidermal differentiation genes. Pathway connections were noted between FOS and NFIB, SPRR3, LPAR3, CA2, SAP30, CA2, CCL2, MAPK14 and GSTP. Several physical interactions, pathway connections and shared protein domains were noted for CDK2. For ARCI predicted interactions were noted between FOS and OPTN. Pathway connections were noted between
FOS and CA2. Several physical interactions, pathway connections and predicted interactions were noted for CDK2.
Figure 5.7: Venn Diagram of the number of genes that are dysregulated in the CI and ARCI using Venny. The number of dysregulated genes are displayed for each ichthyosis knockdown in primary keratinocytes. 68 overlapping genes were common to the CI and 34 for the ARCI. For the ARCI, 9 genes were common to TGM1/ALOX12B/ABCA12 knockdowns, 22 to TGM1/ICH/ABCA12 knockdowns and 45 to TGM1/ALOX12B/ICH. 31 overlapping genes were found for ICH/ABCA12 knockdowns, 8 for TGM1/ABCA12 knockdowns, 9 for ABCA12/ALOX12B knockdowns, 39 for ICH/ALOX12B knockdowns and 66 ICH/TGM1 knockdowns.
Figure 5.8 Analysis of dysregulated genes in CI using GeneMANIA.

Several gene clusters were noted. Insert: (Left) Shared protein domains were noted in the epidermal differentiation genes. (Bottom) Pathway connections (genes involved in the same pathway) were noted between FOS and NFIB, SPRR3, LPAR3, CA2, SAP30, CA2, CCL2, MAPK14 and GSTP. (Top) Several physical interactions, pathway connections and shared protein domains were noted for CDK2.
Figure 5.9 Analysis of dysregulated genes in ARCI using GeneMANIA.
Predicted interactions were noted between FOS and OPTN. Pathway connections (genes involved in the same pathway) were noted between FOS and CA2. (Insert) Several physical interactions, pathway connections and predicted interactions were noted for CDK2.
5.2.3 Genes differentially expressed following STS knockdown:

258 genes were significantly down-regulated and 200 genes were significantly up-regulated (FDR < 0.01). Several genes involved in female pregnancy, steroid metabolic process, neurological processes including behaviour, learning and memory and calcium ion homeostasis/binding were noted. STS is known to play a role in these processes but genes pertaining to these functions in XLI may be a novel finding.

Altered expression in 27 genes (n = 14) in patients with XLRI has been reported in a study where mRNA expression profiles were determined by oligonucleotide arrays (Hoppe et al., 2012). None of these genes were altered in our study. This discrepancy may be because expression profiling was undertaken on skin containing both epidermis and dermis (obtained by taking punch biopsies) rather than micro-dissected epidermis. In addition, tissue was obtained from volar forearms of the subjects. This location is only mildly affected by ichthyosis in patients with XLRI, and may not be completely representative of their skin barrier function in other places (Hoppe et al., 2012).
Table 5.2: Dysregulation following knockdown of STS

Downregulated genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Development/differentiation</td>
<td>ASPRV1, C1orf68, DHRS9, KRT1, KRT2, SPRR2F, SPRR3, TXNIP</td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td>UGCG, ACER1, HPGD, LIPM, LIPN, PSAPL1, STS</td>
</tr>
<tr>
<td>Female pregnancy</td>
<td>CLIC5, HPGD, JUNB, OXTR, STS, FOS</td>
</tr>
<tr>
<td>Steroid metabolic process</td>
<td>CYP2R1, DHRS2, DHRS9, DIO2, HSD17B2, KLK6, LEP, STS</td>
</tr>
<tr>
<td>Neurological processes</td>
<td>HTR1B, S100P, CCL2, CXCL17, CXCL2, CLIC5, CHRNA5, DEFB4A, EGR1, KLK6, LEP, OXTR, KCNO3, SCG2, FOS</td>
</tr>
<tr>
<td>Calcium ion homeostasis</td>
<td>CCL2, STC1, CCL2/S100P, CLSTN2, CATSPER3, PADI2, PLA2G4D, RPTN, FLG2, SCG2, STS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>REACTOME</td>
<td></td>
</tr>
<tr>
<td>Arachidonic acid metabolism</td>
<td>CYP4F22,HPGD</td>
</tr>
<tr>
<td>Cytokine Signaling in</td>
<td>IL36B,CNKSR2,SOCS3,CSF3,FGF19,IFNB1,IL37,MX2,EGR1,IL20</td>
</tr>
<tr>
<td>Immune system</td>
<td></td>
</tr>
<tr>
<td>KEGG</td>
<td></td>
</tr>
<tr>
<td>Cytokine-cytokine receptor</td>
<td>CCL2, CXCL2,CSF3,IFNB1,IL20,LEP</td>
</tr>
<tr>
<td>receptor interaction</td>
<td></td>
</tr>
</tbody>
</table>

Upregulated genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense/immune response</td>
<td>EPHA3, ITGB6, SERPINA3, VNN1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REACTOME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine signaling</td>
<td>EDA,PIK3R3</td>
</tr>
<tr>
<td>Metabolism of lipids and lipoprotein</td>
<td>ELOVL3, PIK3R3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEGG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation of actin cytoskeleton</td>
<td>ARHGEF6, ITGA11, ITGB6, PIK3R3</td>
</tr>
</tbody>
</table>
Figure 5.10 2D heatmap showing differentially expressed genes in neurological function following knock-down of the STS.

DAVID was used to generate a heat map from differentially expressed genes involved in neurological function following STS knockdown. The heatmap shows corresponding gene terms positively associated (green) and corresponding gene terms not associated (black).

5.2.4 Genes differentially expressed following FLG knockdown:
There is no published study looking at the transcriptome of IV patients without AD or an IV model. Winge et al looked at the transcriptome of 5 AD/IV FLG -/- patients by microarray analysis and found that several pathways were significantly altered compared to the healthy control group (Winge et al., 2011). Focal adhesion, extracellular matrix receptor interactions, regulation of actin cytoskeleton, ABC transport system and calcium signaling pathways
showed significantly altered expression (Winge et al., 2011).

In this project, knockdown of FLG lead to the largest number of dysregulated genes compared to other knockdowns. 395 genes were significantly down-regulated and 327 genes were significantly up-regulated (FDR < 0.01). Interestingly there are 2 interactions noted with the ichthyosis genes of interest in this study-with TGM1 and ALOX12B (Figure 5.9); TGM1 is involved in CE formation and filaggrin-dependent keratin aggregation (by a yet incompletely understood mechanism) yields keratins that remain as the prevailing proteins inside the CEs (Norlen and Al-Amoudi, 2004). In addition to this, genes involved in arachidonic acid metabolism (involving ALOX12B) were downregulated. The mechanisms of how FLG interacts with TGM1 and ALOX12B needs to be elucidated.

In addition genes involved in acyl-chain remodelling were downregulated. Shorter fatty acid chain lengths have been reported in AD (also caused by FLG mutations) which in turn produce abnormalities in lipid organization that most likely compromise permeability barrier function (Ishikawa et al., 2010, Janssens et al., 2012, Janssens et al., 2011).

Several genes involved in the phenotype of IV involving Ca^{2+} dependent membrane targeting were noted. It is known that FLG may be involved in calcium metabolism in the skin (Bieber, 2008), and the calcium gradient is important for epidermal differentiation- a loss of this gradient increases keratinocyte proliferation and decreases differentiation (Jensen et al.; 2005).
Table 5.3: Dysregulation following knockdown of *FLG*
Downregulated genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th>Keratinocyte differentiation</th>
<th>Epidermis development</th>
<th>Defense/immune response</th>
<th>Cornified envelope</th>
<th>Leukocyte chemotaxis</th>
<th>Serine hydrolase</th>
<th>Lipid metabolic</th>
<th>S100/CaBP-9k-type, calcium binding, subdomain</th>
<th>Cell cycle</th>
<th>MAP kinase</th>
<th>Acyl-chain remodelling</th>
<th>Vesicle mediated transport</th>
<th>Interleukin-6 family signaling</th>
<th>KEGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRT1,KRT10,KRT14,KRT2,KRT76,KRT77,KRT84,ZNF492</td>
<td>BARX2,CALML5,CRP14,CRABP2,C1orf68,EMP1,FABP5,S100A7,UGCG,ALOX12B,ASPRV1,FLG,KRT1,KRT10,KRT14,KRT16,KRT16P2,KRT2,LOR,SPRR3,TXNIP,TGM1,TGM5</td>
<td>CD74,S100A12,S100A7,S100A8,S100A9,CCL2,CFD,CFH,HEF1,ITGB6,IFNk,IL12A,IL27RA,KRT1,PGLYR3,PGPGLYR4,PDNP,P2RX7,SAA1,TLR1,TLR2,FOS</td>
<td>CD74,S100A12,S100A7,S100A8,S100A9,CCL2,CFD,CFH,HEF1,ITGB6,IFNk,IL12A,IL27RA,KRT1,PGLYR3,PGPGLYR4,PDNP,P2RX7,SAA1,TLR1,TLR2,FOS</td>
<td>FLG, LOR, RPTM, TGM1</td>
<td>S100A9, CCL2, CORO1A, SAA1</td>
<td>CFD,DPP4,FAP,KLK1,KLK6,PLAT,PRS S21,TMPRSS11D</td>
<td>ST3GAL5, ST3GAL6, UGCG, ACER1,ITGB8,PSAPL1,P2RX7</td>
<td>S100A12,S100A2,FLG,S100A9,S100A7,S100A4,S100A8,FLG2,RPTN</td>
<td>CHEK1,E2F2,E2F8,BXO43,KAT2B,LFNG,SPC25,CENPJ,CDT1,IL12A,KIF20B,KIF22,KNTC1,LZTS1,LIN9,MND1,PDPN,TXNIP</td>
<td>CD74, EGF, P2RX7, IRAK3</td>
<td>PLA2G2F, PLA2G4D</td>
<td>CD36,ARRB1,KIF20B,KIF22,RAC2,GJA1,KIF26A,GJB6,SAA1,TUBA4A,TUBA4B,GJB2</td>
<td>IL12A, IL27RA</td>
<td>KAT2B, LFNG, DLL1, HES5, MAML2</td>
</tr>
</tbody>
</table>
Upregulated genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th>Vesicle mediated transport</th>
<th>ANG, FGF2, GRM8, HMOX1, INHBB, SYT1, TAC4, TAC1, TRPV6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calcium-dependent membrane targeting</td>
<td>SYT1, SYT2, CADPS2</td>
</tr>
<tr>
<td></td>
<td>Activation of protein kinase activity</td>
<td>ADCY1, ADRB1, ANGANKHD1-EIF4EBP3, AMH, CCK, COL4A3, FGF2</td>
</tr>
</tbody>
</table>

KEGG

| NOTCH signaling | HEY1, MIR34A, NEURL |

Figure 5.11 Network generated from differentially expressed genes in the NOTCH signaling pathway following FLG knockdown.

KEGG® pathway showing network generated from differentially expressed genes in NOTCH signaling pathway following FLG knockdown. *Shows differentially expressed genes.
Figure 5.12 Network generated from differentially expressed genes in arachidonic acid metabolism signaling pathway following FLG knockdown. KEGG® pathway showing network generated from differentially expressed genes in arachidonic acid metabolism signaling pathway following FLG knockdown. * shows differentially expressed genes.

5.2.5 Genes differentially expressed following TGM1 knockdown:
163 genes were significantly down-regulated genes and 231 genes were significantly up-regulated (FDR < 0.05). As expected several genes involved in CE formation/peptide cross-linking (a key step in CE formation) were dysregulated. Several of these changes CE proteins (LOR, FLG) have been noted in a proteomic study of a TGM1 deficient skin-humanized mouse model (Aufenvenne et al., 2012). As noted previously (O'Shaughnessy et al., 2010) changes in fatty acid synthesis pathway and in the inflammatory response were also dysregulated although the genes involved in this project were different. This is most likely due to different disease models-human in this study compared to rat and possibly different gene expression platforms used (microarray in the reported study). Additionally RNA-Seq data analysis implies that lipid metabolism is regulated by PPAR-alpha following TGM1 knockdown. Several genes involved in keratinocyte differentiation, epidermal development and keratin filament organisation were found to be perturbed. KRT1 expression was downregulated in this study and was found to be altered in LI in another study
(O'Shaughnessy et al., 2010). No changes in its pairing partner \textit{KRT10} were noted bearing out the findings of a proteomics study (Aufenvenne et al., 2012).

| Table 5.4: Dysregulation following knockdown of \textit{TGM1} |
|------------------|------------------|
| **Downregulation:** |
DAVID	**Cell cycle**
	CHEK1, DBF4B, E2F2, E2F8, HAUS8, SPC25, CENPJ, CDT1, CCNF, KIF20B, KIF22, KNTC1, LIN9, MND1, CHEK2, SMC4
	Keratinocyte differentiation
	S100A7, LCE3A
	Epidermal development
	S100A7, CASP14, C1orf68, KRT1, KRT10, LCE3A
	Cornified envelope
	TGM1, RPTN, LOR, FLG
	Peptide cross-linking
	LOR, TGM1, TGM2, TGM4, TGM5, MAMDC2
	Defense response
	S100A7, ANKRD1, DEFB4A, HIST1H2BF, IL27RA, KRT1, FOS
REACTOME	**Cell cycle**
	POLE2, HIST1H2BF, CDT1, SPC25, CENPH, CENPJ, SMC4, CHEK2, CHEK1, ORC1, MND1, LIN9, HAUS8, PRIM1, POLA2, KNTC1, LMNB1, E2F2
	Arachidonic acid metabolism
	CYP4B1, PTGS1
	Metabolism including lipids and lipoproteins
	ANKRD1, GBA3, CYP4B1, PTGS1
	Regulation of lipid metabolism by PPAR alpha
	ANKRD1, CYP4B1
KEGG	**DNA replication**
	POLA2, POLE2, PRIM1

| **Upregulation:** |
DAVID	**Membrane bound vesicle**
	CSPG5, C12orf39, NPY1R, SHH, SYT2
	Plasma membrane
	ADAM23, DIXDC1, GPR1, RAB33A, ADCY1, CHRM3, CSPG5, DTNA, HDAC6, HAS3, IL1RL1, IL18R1, NPY1R, OLR1, KCNMB3, PRKD1, PTPRB, SGCG, SCN9A, SHH, SYNE1, SYT2, SDC2
	Cytoskeleton
	LDB3, HDAC6, IL1RL1, KIF5A, SGCG, SYNE1
REACTOME	**Fatty acid CoA synthesis**
	ELOVL2
	Cytokine signaling
	IL1RL1, IL18R1, IFI30
5.2.6 Genes differentially expressed following *ALOX12B* knockdown:
150 genes were significantly down-regulated and 159 genes were significantly up-regulated (FDR < 0.01). *ALOX12B* encodes the 12R-LOX enzyme which is a iron-containing dioxygenase that oxygenates lipids (polyunsaturated fatty acids and their esters). In keeping with this several genes annotated to oxidoreductase activity, iron ion binding and lipid biosynthetic process/lipid metabolism were noted. *RNA-Seq* analysis showed several genes involved in keratinocyte differentiation/cytoskeleton organization lending support to its possible role in keratinocyte differentiation (section 1.5.2.4.3). Genes involved in inflammation were also noted thereby implying possible novel functions for *ALOX12B*, whose specific role in skin barrier function is not well understood. Genes involved in regulation of lipid metabolism by PPAR-alpha were also noted.
Table 5.5 Dysregulation following knockdown of ALOX12B

Downregulation:

<table>
<thead>
<tr>
<th>DAVID</th>
<th>Cell cycle</th>
<th>Extracellular matrix</th>
<th>Cytoskeleton</th>
<th>Intermediate filament</th>
<th>Immune/defense response</th>
<th>Lipid localization and transport</th>
<th>Lipid biosynthetic process</th>
<th>Oxidoreductase activity, iron ion binding and lipid biosynthetic processes</th>
<th>REACTOME</th>
<th>KEGG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BARD1, CHEK1, DBF4B, E2F8,</td>
<td>MAMDC2, COL4A2, COL12A1,</td>
<td>CHEK1, ACTG2, CENPJ, CNKSR2,</td>
<td>KRT31, KRT77, LMNB1,</td>
<td>GEM, CCL2, CXCL2, CFH, IL27RA,</td>
<td>ABCG4, SLCA1A2, SLCO2A1, SORL1,</td>
<td>ST3GAL5, ALOX12B, CYP1A1, PTGS1</td>
<td>ALOX12B, BBOX1, CYP1A1, DHR52, DIO2, DYPD, LOXL2, MOXD1, PTGS1, ST3GAL5</td>
<td>Arachidonic acid pathways</td>
<td>CYP1A1, ALOX12B, PTGS1</td>
</tr>
<tr>
<td></td>
<td>CENPJ, CCNF, KPNA2, KIF20B,</td>
<td>HMCN1, LUM, MMP19</td>
<td>GDPD2, KRT31, KRT77, KIF20B,</td>
<td>LMNB1, VIM</td>
<td>TLR1, TREM2, FOS</td>
<td>TC</td>
<td></td>
<td></td>
<td>TLR cascades</td>
<td>FOS, JUN, TLR1</td>
</tr>
<tr>
<td></td>
<td>KIF22, KNTC1, LZTS1, LIN9,</td>
<td></td>
<td>KIF22, KIF24, KIF26A, KNTC1,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interleukin-6 family signaling</td>
<td>SOCS3, IL27RA</td>
</tr>
<tr>
<td></td>
<td>MND1, PTTG1, PLK2, SMC4</td>
<td></td>
<td>LZTS1, TNNT3, VIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upregulation:

<table>
<thead>
<tr>
<th>DAVID</th>
<th>Defense response</th>
<th>Immune response</th>
<th>Regulation of secretion</th>
<th>Lysozome</th>
<th>REACTOME</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCK, INHBB, IL1RL1, KYNU,</td>
<td>IFI6, OLR1, TNFSF18,</td>
<td>GDNF, INHBB, TAC1, TRPV6</td>
<td>IFI30, LAMP3, SLC29A3</td>
<td>Regulation of lipid</td>
<td>PLIN2, ANGPTL4, PPARGC1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OLR1, TAC1, VNN1</td>
<td>IL1RL1, KYNU, VNN1</td>
<td></td>
<td></td>
<td>metabolism by Peroxisome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>proliferator-activated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>receptor alpha (PPARalpha)/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PPARA activates gene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cytokine signaling</td>
<td>IL1RL1, TNFSF18, RET, GDNF,</td>
<td>PLIN2, ANGPTL4, PPARGC1A, CPNE7,</td>
<td>Metabolism of lipids and lipoproteins</td>
<td>PLIN2, ANGPTL4, PPARGC1A, CPNE7,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Signaling by Interleukins</td>
<td>IFI6, IFI30, IFI27</td>
<td>PLA2G4D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLIN2, ANGPTL4, PPARGC1A</td>
<td>PLA2G4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

149
5.2.7 Genes differentially expressed following *ICH* knockdown:
258 genes were significantly down-regulated and 200 genes were significantly up-regulated (FDR < 0.01). Several genes were down-regulated involved in metabolism of lipids and lipoproteins and vesicle mediated transport most likely through LB. *ICH* is known to encode a magnesium transporter membrane associated protein hypothetically involved in epidermal lipid processing and in lamellar body formation and transport (Goytain et al., 2008). Additionally several genes annotated to keratinocyte differentiation, keratin filament regulation of cell differentiation/epithelial development were noted suggesting that *ICH* is involved in keratinocyte differentiation.
Table 5.6 Dysregulation following knockdown of ICH

<table>
<thead>
<tr>
<th>DAVID</th>
<th>Keratin filament</th>
<th>KRT1, KRT10, KRT2, KRT77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation of cell differentiation</td>
<td>CNTN1, DLL1, HES7, JAG1, MAML2</td>
<td></td>
</tr>
<tr>
<td>Regulation of immune response</td>
<td>THY1, CFH, HSPD1P5, IL12A, IL27RA, IRAK3, KRT1</td>
<td></td>
</tr>
<tr>
<td>Epithelial development</td>
<td>TBX18, CA2, DHR59, JAG1, KRT2, TXNIP</td>
<td></td>
</tr>
<tr>
<td>Vesicle mediated transport</td>
<td>ABCA3, CSPG5, C12orf39, GAD1, SHH</td>
<td></td>
</tr>
<tr>
<td>REACTOME</td>
<td>Metabolism of lipids and lipoproteins</td>
<td>PPARGC1B, FABP5, CYP4B1, UGCG</td>
</tr>
<tr>
<td>Cytokine signaling</td>
<td>IL12A, IFIT1, ACTG1, CNKS2, IL7R, OAS1, BIRC3, OAS2, OAS3, DDX58, IFIT2, IFIT3, MX1, IL33, MX2, IFITM1, CSF3, PDGFRA, IL27RA, EGR1, FGF1, BST2, EB3, IL20, IRAK3, UBA7, IFI35, IL1RL2, XAF1, USP18</td>
<td></td>
</tr>
<tr>
<td>Innate immune system</td>
<td>IRAK3, CNKS2, FGF1, ACTG1, TXNIP, FOS, PDGFRA, TREM2, BIRC3, UBA7, CFH, DDX58</td>
<td></td>
</tr>
<tr>
<td>IL-6-type cytokine receptor ligand interactions</td>
<td>IL12A, IL27RA</td>
<td></td>
</tr>
<tr>
<td>KEGG</td>
<td>Cytokine/cytokine receptor interaction</td>
<td>CCL2, CXCL2, CXCL6, CSF3, IL12A, IL20, IL7R, PDGFRA</td>
</tr>
<tr>
<td>Cell cycle pathways</td>
<td>CHEK1, E2F2, CDK6, PTTG1, CHEK2</td>
<td></td>
</tr>
</tbody>
</table>

Upregulated Genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th>Vesicle</th>
<th>ABCA3, CSPG5, C12orf39, GAD1, SHH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoskeleton</td>
<td>LDB3, DNAH1, SGCG, KIF5A</td>
<td></td>
</tr>
<tr>
<td>Plasma membrane and ion transport</td>
<td>CCK, VIP, SHC2, INHBB, ADRB1, ADCY1, KIF5A, CHRM3, TAS1R3, NEURL, SHH, CDON, HEY1, ATP6V0D2, TXNB</td>
<td></td>
</tr>
</tbody>
</table>

5.2.8 Genes differentially expressed following ABCA12 knockdown:

Knockdown of ABCA12 produced fewer gene expression changes compared to loss of the other ichthyosis genes with 136 significantly down-regulated and 87 significantly up-regulated genes (FDR < 0.01). In this project, RNA-Seq analysis shows several genes annotated to lipids, transportation, secretion and endomembrane systems. This is in keeping
with the known function of ABCA12 as a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids via lamellar granules. Additionally, several genes involved in metabolism of lipids and lipoproteins were dysregulated. Malformation of the intercellular lipid layers in HI skin has been noted previously (Aufenvenne et al., 2012, Dale et al., 1990, Milner et al., 1992, Akiyama et al., 1998). Defective lipid transport due to loss of ABCA12 function leads to the accumulation of intracellular lipids, including glucosylceramides and gangliosides, in the epidermal keratinocytes. The accumulation of gangliosides seems to result in the apoptosis of Abca12−/− keratinocytes (Akiyama, 2014). In this study, several genes involved in cell cycle apoptosis were found to be dysregulated following ABCA12 knock down in primary keratinocytes.
Table 5.7 Dysregulation following knockdown of \textit{ABCA12}

Downregulated Genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory response</td>
<td>CCL2, CFH, FN1, IL6, KRT1, FOS</td>
</tr>
<tr>
<td>Endomembrane system</td>
<td>VGF, CLSTN2, CHST6, CORO1A, DHRS2, HSD17B2, LMNB1, PTGS1</td>
</tr>
<tr>
<td>Cytoplasmic bound vesicle/secretory granules</td>
<td>RAB3B, VGF, ARC, ANXA2P1, CORO1A, FN1</td>
</tr>
<tr>
<td>Epithelial development</td>
<td>GATA6, CA2, LAMA1, TIMELESS</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>CHEK1, ARC, CENPJ, CORO1A, HOMER1, KRT1, KIF24, KNTC1, LMNB1, LZTS1</td>
</tr>
<tr>
<td>Cell cycle</td>
<td>CHEK1, DBF4B, E2F2, CDT1, KNTC1, LZTS1, TIMELESS</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>E2F2, GATA6, XAF1, IER3, IFI6, IFNB1, IL6, STAT1, TNFRSF11B, TNFRSF18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REACTOME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine signaling interaction</td>
<td>IFIT1, IFNB1, IL7R, OAS1, OAS2, STAT1, OAS3, DDX58, IL6, IFIT2, TNFRSF18, IFIT3, FN1, PRLR, MX1, MX2, SAMHD1, RSAD2, CD70, EGR1, OASL, BST2, TNFRSF11B, IFI6, ISG15, IFI35, XAF1, USP18</td>
</tr>
<tr>
<td>Fatty acids</td>
<td>CYP4F22</td>
</tr>
<tr>
<td>Arachidonic acid metabolism</td>
<td>CYP4F22, PTGS1</td>
</tr>
<tr>
<td>Metabolism of lipids and lipoproteins and cell cycle</td>
<td>CYP4F22, PTGS1</td>
</tr>
<tr>
<td>Interleukin-6 signaling</td>
<td>STAT1, IL6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEGG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine-cytokine receptor interaction</td>
<td>CD70, CCL2, IFNB1, IL6, IL7R, PRLR, STST1, FOS, TNFRSF11B, TNFRSF18</td>
</tr>
<tr>
<td>TLR signaling pathway</td>
<td>STST1, IL6, INFb1, FOS</td>
</tr>
</tbody>
</table>

Upregulated Genes:

<table>
<thead>
<tr>
<th>DAVID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma membrane and secretion</td>
<td>C1QTNF4, EGFL6, COL21A1, CRB1, IL34, OLR1, PAMR1, TNXB, VIP, WNT1</td>
</tr>
<tr>
<td>Extracellular region</td>
<td>ENDOU, C1QTNF4, EGFL6, COL21A1, CRB1, IFI30, IL34, OLR1, PAMR1, TNXB, VIP, WNT1</td>
</tr>
<tr>
<td>Transcription and apoptosis</td>
<td>NKX3-2, ARHGEF6, ADCY1, NME5, OLR1, PREX1, PTGER3, RP1L1, TNFRSF10D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REACTOME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism of lipids and lipoproteins</td>
<td>PLA2G4D, PIK3R3, AKR1C2</td>
</tr>
<tr>
<td>Arachidonic acid metabolism</td>
<td>AKR1C2</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>HEPH, ADCY1, SLC24A3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEGG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemokine signaling pathway</td>
<td>ADCY1, PREX1, PIK3R3</td>
</tr>
</tbody>
</table>
Figure 5.13 Network generated from differentially expressed genes involved in cytokine-cytokine receptor interaction following ABCA12 knockdown. KEGG® pathway showing network generated from differentially expressed genes involved in cytokine-cytokine receptor interaction following ABCA12 knockdown. * shows differentially expressed genes.

5.3 Discussion

RNA-Seq is a powerful method to analyse the transcriptome of cells of interest. In this project, RNA-Seq analysis was employed to investigate differentially expressed genes following ichthyosis gene knockdown (STS, FLG, TGM1, ICH, ALOX12B, ABCA12). The lists of differentially expressed genes generated following ichthyosis gene knockdown underwent gene enrichment and pathway analysis using DAVID and REACTOME.

In this project, analysis of common genes differentially expressed following knockdown of the ichthyosis genes was undertaken to identify any common genes or pathways to provide more insight into the biology of this group of diseases with similar phenotypes. Furthermore, individual ichthyosis knockdowns were analysed separately.
5.3.1 Common Ichthyoses (STS and FLG)

5.3.1.1 Loss of STS expression causes neurological abnormalities in X-linked Ichthyosis
Several genes associated with neuronal processes and steroid metabolic processes were altered following STS knock-down in primary keratinocytes. It is known that XLI patients demonstrate cognitive behavioral abnormalities, such as attention-deficit disorder and social communication deficits (Trent et al., 2012, Kent et al., 2008). In addition, inactivation of SSase increases aggressive behavior in rodents (Nicolas et al., 2001). These abnormalities have been attributed to altered sterol metabolism in the central nervous system (Kent et al., 2008, Bicikova et al., 2013).

5.3.1.2 STS expression is important in lipid metabolism and cholesterol synthesis
Several dysregulated genes annotated to lipid metabolism were noted. SSase is secreted into the intercellular spaces of the SC, along with other lamellar granule-derived lipid hydrolases (Elias et al., 2004) where steroid sulfatase catalyzes the desulfation of cholesterol sulfate generating cholesterol for the barrier. Several genes altered here are related to ceramides and are possibly secondary defects following cholesterol synthesis disruption.

5.3.1.3 Role of AP1 transcription factors in epidermal/keratinocyte differentiation following STS suppression
It is known that AP1 (JUN/FOS) transcription factors (C-JUN, JUNB, JUND, C-FOS, FOSB, FRA-1, AND FRA-2) are key regulators in epidermal differentiation (Eckert et al., 2013). RNA-Seq analysis following STS knock-down showed significant dysregulation of genes involved in differentiation. As noted in section 1.4.2.6 cholesterol sulfate is thought to be operate through an AP-1 binding site in the promoter region of several proteins involved in cornified envelope formation thereby regulating their transcription. In this study, both FOS
and JUNB were downregulated. Several epithelial abnormalities have been noted following perturbations of members of the AP1 transcription family; mice lacking JUNB in keratinocytes display pronounced epidermal hyperproliferation, disturbed differentiation and delayed wound healing (Florin et al., 2006). In addition, simultaneous deletion of C-JUN and JunB in the epidermis produces a psoriasis-like phenotype (Schonthaler et al., 2009).

5.3.1.4 Extracutaneous features/syndromic features following loss of STS expression:
XLI recessive may be non-syndromic (phenotype limited to the skin) or syndromic when accompanied by extracutaneous features (Oji et al., 2010).

5.3.1.4.1 Prolonged labor in XLI
Failure of labor either to initiate or to progress due to placental sulfatase deficiency has been noted to occur in pregnancies of XLI fetuses. Following RNA Seq analysis suppression of several genes associated with female pregnancy was noted (Bradshaw and Carr, 1986).

5.3.1.5 Role of NOTCH signaling in Epidermal Differentiation following loss of FLG expression:
In this dataset, several genes involved in keratinocyte differentiation, epidermis development, intermediate filament were enriched following loss of FLG expression. As discussed in chapter 1, filaggrin is thought to aggregate the keratin cytoskeleton, facilitating the collapse and flattening of cells in the outermost SC to produce flattened anuclear squames (Manabe et al., 1991). Furthermore, the top signaling pathway implicated in this study for the FLG knockdown was the NOTCH signaling pathway. NOTCH signaling is essential for keratinocyte differentiation. NOTCH1 is expressed in all epidermal layers, NOTCH2 in the basal cell layer and Notch3 in basal cell and spinous cell layers in normal epidermis. NOTCH
signaling functions as a molecular switch that controls the transition of cells between skin layers during the epidermal differentiation process (Lin et al., 2012). In addition, previous studies have shown involvement of NOTCH signaling in keratinocyte differentiation in embryos of mice and rats (Baker et al., 2006, Takahashi et al., 1996) and NOTCH molecules are thought to cause aberrant expression of K10 and K14 leading to anomalous differentiation of the epidermis in psoriatic lesions (Ota 2014). In this study IF of 3D FLG knockdown organotypic model showed reduced expression of K10 in the knockdown and no change in expression of K14 in siFLG and siC (section 4.2.4.1).

5.3.1.6 FLG loss causes abnormalities in ABC transport system
Several genes related to vesicle-mediated transport were enriched. Abnormalities in lamellar body loading and secretion in FLG-deficient IV suggest that FLG deficiency produces a cytoskeletal defect sufficient to impair organelle secretion (Man et al., 2008). Thus the immune dysfunction noted may be due to abnormalities in the ABC transport system that delivers antimicrobial peptides through secretion of LB contents (Braff et al., 2005, Oren et al., 2003, Aberg et al., 2008).

5.3.2 Autosomal Recessive Congenital Ichthyosis (TGM1, ALOX12B, ICH, ABCA12)

5.3.2.1 Role of Peroxisome proliferator-activated receptor (PPAR)-alpha in ARCI
Peroxisome proliferator-activated receptor (PPAR)-alpha is a fatty acid activated transcription factors that belongs to the nuclear hormone receptor family. There are three PPAR isotypes (alpha, beta/delta, gamma) with variable ligand specificity and metabolic functions. All three PPAR isotypes are expressed in human skin (Westergaard et al., 2001). PPAR-alpha is preferentially expressed in the suprabasal epidermis (Icre et al., 2006, Rivier et al., 1998). It
is known that epidermal differentiation and SC formation are stimulated by activation of PPAR-alpha (Hanley et al., 1997, Man et al., 2006, Rivier et al., 2000, Batheja et al., 2009). There is a strong link between epidermal lipid metabolism and skin barrier function as permeability barrier function is largely determined by extracellular lipids in the SC. PPAR-alpha ligands induce lipid synthesis (Batheja et al., 2009, Rivier et al., 2000) as well as lamellar body formation, secretion and lipid processing, correlating with accelerated skin barrier repair (Man et al., 2006). Chakravarthy et al. identified the oxidised phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC) as a specific PPAR-alpha ligand in the liver (Chakravarthy et al., 2009). It is speculated that epidermal lipoxygenases, including ALOX12B, generate oxidized phospholipids in cutaneous tissue (Munoz-Garcia et al., 2014) and may be endogenous PPAR-alpha agonists in the skin. Both PPAR-alpha and ALOXE3, have been found to be downregulated in vitro following barrier disruption.

In addition to their role in barrier formation PPARs play a role in inflammation and PPAR-alpha expression has been found to be reduced in AD (Plager et al., 2007). It was suggested that downregulation of PPAR-alpha could be involved in AD development or maintenance by affecting the lipid pathway (Plager et al., 2007). The underlying mechanism is thought to involve nuclear factor kappaB signaling (NF-κB) (Daynes and Jones, 2002, Staumont-Salle et al., 2008). Lipoxygenases are thought to play a role in inflammation (Krieg and Furstenberger, 2014); however the specific role of ALOX12B in immune responses/inflammation is not known.

In this study, RNA-Seq data supports the hypothesis that ALOX12B may be a ligand for PPAR-alpha and the changes caused by ALOX12B in epidermal differentiation, barrier formation and inflammation may be mediated by PPAR-alpha.
RNA-Seq data analysis also showed dysregulation of genes involved in lipid metabolism regulated by PPAR-alpha following TGM1 knockdown. PPAR-alpha is an established transcriptional regulator of transglutaminase (Hanley et al., 1998). Alterations in lipid synthesis and desaturation of fatty acids and acute response inflammatory pathways involving the up-regulation of IL1A and NFkappaB/retinoic acid signaling have been reported in an in vitro TGM1 knockdown rat model (O'Shaughnessy et al., 2010). Additionally IL1A up-regulation from patient skin scrapings with LI were reported at the protein level. Normally, in response to barrier disruption, trauma and in normal keratinocyte homeostasis, the expression of IL1A and IL1RA are tightly controlled and linked (Wood et al., 1994) and NFkappaB activation is the downstream effect of IL1A up-regulation. It is known that the PPAR transcription factors (Michalik and Wahli, 2007), stimulate synthesis of IL1RA, a direct transcriptional target in response to IL-1 increase (Chong et al., 2009).

It has been reported that ABCA12 expression is upregulated by ceramides via PPAR delta-mediated signaling pathway (Jiang et al., 2009, Feingold and Jiang, 2011) although PPARbeta/delta, PPAR-gamma and LXR activators all stimulate ABCA12 expression in human keratinocytes in a dose- and time-dependent manner (Jiang et al., 2008). In this dataset, no significant changes in ABCA12 and nuclear hormone receptors were noted. This could be because the effects of ligand activation on keratinocyte proliferation and differentiation may differ between monolayer cultures, 3D equivalents and the in vivo setting.

5.3.2.2 Dysregulation in cornified envelope formation following TGM1 knockdown
In this study, several genes related to CE and peptide cross-linking as well as calcium ion binding site / calcium ion homeostasis were suppressed. TGM1 participates in the formation
of the cornified envelope by catalyzing calcium-dependent cross-linking of several proteins such as involucrin, loricrin, and proline-rich proteins (Kalinin et al., 2002) (Robinson et al., 1997). The CE is missing when TGM1 activity is reduced or nonexistent (Akiyama et al., 2003, Rice et al., 2005). In keeping with this and also with a proteomic study of a TGM1 deficient skin-humanized mouse model downregulation of FLG and dysregulation in LOR was noted. Surprisingly no change in involucrin was observed, confirming the findings of the proteomics study (Aufenvenne et al., 2012).

5.3.2.3 TGM1 suppression may alter lipid metabolism

Several genes involved in lipid synthesis and metabolism including lipids and lipoproteins, linoleic acid metabolism, fatty acid CoA synthesis and arachidonic acid metabolism, were dysregulated following TGM1 knockdown in primary keratinocytes. TGM1 is responsible for ceramide (thought to be generated by lipoxygenases) coupling to corneocyte proteins. Although the mechanisms are not well understood, all mutations that cause ARCI (except for transglutaminase) are thought to affect some of the above lipid pathways resulting in metabolite deficiency and substrate accumulation. The changes noted in this dataset may be alluding to secondary (compensatory) defects secondary to barrier disruption caused by loss of TGM1. The fact that inactivating mutations in all the ARCI genes produce related skin phenotypes supports the idea that they may have common pathomechanisms. Thus, an alternative explanation may be that LOX (by metabolising linoleate) via a novel-signaling pathway may be upregulating/downregulating transglutaminase thus forming an efficient self-regulating system (Munoz-Garcia et al., 2014).

5.3.2.4 ALOX12B affects secretion of LG contents:

Several genes annotated to glycosyltransferase (ST3GAL5, ST3GAL6, GLT8D2, QPRT) and vesicle-mediated transport (ARC, MEGF10, SORL1) were suppressed. From the study of
ALOX12B mutant mouse skin transplants, it was suggested that 12R-LOX deficiency might affect the processing of LGs (de Juanes et al., 2009). Other studies have reported lipid droplets in the cornified cell layers (Harting et al., 2008, Akiyama et al., 2010), and partially disturbed LG content secretion into the intercellular space in the epidermis of a patient with CIE with ALOX12B mutations suggesting that partially disturbed secretion of LG contents is involved in the pathogenesis (Akiyama et al., 2010). This study supports the possibility of ALOX12B causing these changes either through an independent signaling pathway or in the same signaling pathway as ABCA12 (which is located in LG associated with glycosylceramides) (Sakai et al., 2007).

5.3.2.4 Role of TLR signaling pathway in epidermal development by altering ABCA12 expression

RNA-Seq analysis found several genes related to epidermal development and cytoskeleton were altered. It has been suggested that ABCA12 deficiency leads to differentiation defects in keratinocytes (Akiyama, 2014). The mechanism by which these abnormalities occur is unknown; Non-coding double-strand RNA (dsRNA) has been reported to induce TLR3-dependent increased expression of ABCA12 in human keratinocytes, resulting in increased epidermal lipid and lamellar bodies (Borkowski et al., 2013). Additionally, noncoding dsRNA can stimulate some events in keratinocyte differentiation that are important for skin barrier repair and maintenance via ABCA12 upregulation (Borkowski et al., 2013). In this dataset TLR signaling pathway was downregulated and several genes involved in defense response were identified possibly explaining the aberrant keratinocyte differentiation.

In summary, RNA-Seq analysis of keratinocytes with loss of ichthyosis genes has been successfully employed as a technique to analyze gene expression changes in these cells. Knockdown of FLG caused the highest number of dysregulated genes. Gene clusters were found for cell cycle, keratin filament/cytoskeleton, apoptosis, humoral immune response, and
metabolism of lipids and lipoproteins common to all knockdowns. In addition, several genes involved in TLR signaling pathway and cytokine signaling were impaired (tables 5.2-5.7). TLRs, in addition to their role in innate immunity, have been reported to play a role in the epithelial barrier (Kuo et al., 2013a, Borkowski et al., 2015, Lin et al., 2011). On further analysis (sections 6.2.8 and 6.2.9) TLR2 and TLR3 were downregulated in all the ichthyoses and TLR5 was downregulated in both FLG and ICH. Also, changes were predicted in the pro-inflammatory cytokines IL6 and IL8. Thus, the RNA-Seq data was validated at protein level (chapter 7) by assessing cytokine profile secretion in unstimulated or stimulated primary keratinocytes (following stimulation of TLR2, 3, 5).

5.4 Future work
RNA-Seq can only provide information at the level of the transcript, therefore it is important to confirm gene expression changes at the protein level. This can be achieved by proteomic analysis for each ichthyosis gene knockdown. Innate immune systems were further investigated in this study (common to all the knockdowns). In the future it will be important to investigate other biological functions identified in this study in order to ensure that new insights are not neglected. It might be possible to integrate the RNA-Seq data with proteomic data, as altered RNA transcript expression does not always translate into changes at the protein level.
Chapter 6: Transcriptome Analysis-Heat Maps
6.1 Introduction
A heatmap can graphically visualize the matrix data by representing individual values with different colours. For visualization, a heat map compacts large amounts of information into a small space to bring out coherent patterns in the data (Weinstein, 2008). This can is useful as it allows selection of regions of interest for further study.

Coherent patterns (patches) of colour can be generated by hierarchical clustering on both horizontal (and vertical axes) to bring like together with like (Weinstein, 2008). Cluster relationships are indicated by tree-like structures adjacent to the heat map, and the patches of colour may indicate functional relationships among genes and samples (Weinstein, 2008). The heat map is one of the most widely used graphs in the biological sciences (Weinstein, 2008).

Recent progress in high-throughput techniques, such as next generation sequencing (NGS) has increased the demand for the visualization of data (Deng et al., 2014) to aid in the recognition of meaningful association patterns involving complex relations between genetics and biological features (Haarman et al., 2015).

In this project, heat maps were generated using the ggplot package in Bioconductor (Gentleman et al., 2004, Huber et al., 2015, Wickham, 2009) in collaboration with the Enright group at European Bioinformatics Institute, Hinxton (http://www.ebi.ac.uk/research/enright). The level of expression of known genes, obtained from NGS, associated with different biological processes (identified by literature review by myself) were represented. Triplicate samples for each knockdown and non-targeting control, C, were analysed. Heatmaps are plotted using the normalized gene expression data i.e. mean centralized using all 27 samples. Each heat map was drawn using this data. Mean centralization was done to visualize deviation
of gene expression in a specific sample from the genes’ average across all samples. Thus, genes, which are unchanged, were displayed as white. Up-regulated genes were displayed as red. Down-regulated genes were displayed as blue. The variability colour pertaining to each *in vitro* model (sample) was indicative of how much a gene was expressed in that particular sample. A histogram for each heat map shows fold change on the x-axis (value) and gene counts on the y-axis (count).
6.2 Results

6.2.1 Impact of knock-down on other Ichthyosis genes in this study

Heat maps were made to evaluate the impact of knock-down on other ichthyosis genes.

Figure 6.1: Heatmap showing gene expression of STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

Reduced expression of the individual genes (blue) following knockdown, compared to C, is seen in STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 respectively. Upregulation (red) and downregulation (blue) of other genes is noted following knockdown.

In each ichthyosis studied there is downregulation compared to control. In the STS knockdown there was downregulation of FLG but this was not significant. FLG knock-down showed no changes in STS expression but there was downregulation of ALOX12B (log2FC -1.26, pval<0.01), TGM1 (log2FC -1.01, pval<0.01) and ICH. In ALOX12B knockdown there was upregulation of FLG, ICH and TGM1 but these were not significant. A slight non-
significant downregulation of STS, FLG and ALOX12B was noted in TGM1 knockdown. No interactions were noted in the ICH and ABCA12 knockdown models. These findings suggest that there are some interactions between the ichthyosis genes.

6.2.2 Interactions between known genes causing ARCI (LI/CIE) phenotype
Several genes (other than those studied in this project) have been implicated in the pathogenesis of ARCI (section 1.5.2). Interactions between the ichthyosis knockdowns and these genes were evaluated.

Figure 6.2: Heatmap showing impact of ichthyosis gene knockdown on expression of other known genes causing ARCI.

STS silencing lead to downregulation of LIPN (log2FC -1.22, pval<0.01) and CYP4F22
(log2FC -2.06, pval<0.01). Several genes were significantly downregulated in FLG knockdown including ALOXE3 (log2FC -1.04, pval<0.01), PNPLAI (log2FC -1.22, pval<0.01) and CYP4F22 (log2FC -1.26, pval<0.01). CYP4F22 expression was reduced in ABCA12 knockdown (log2FC -1.51, pval<0.01). Thus, interactions were seen between CI and ARCI genes and between two ARCI genes-ABCA12 and CYP4F22.

6.2.3 Dysregulation of Epidermal Differentiation Complex (EDC)

Many proteins essential for epidermal differentiation are encoded by genes clustered on human chromosomal region 1q21 (Mischke et al., 1996). The genes constitute the EDC. It is known that mutations in the EDC genes are the strongest risk factors for atopic dermatitis (FLG genes) and faulty formation of the CE (TGM1 deficiency) causes lamellar ichthyosis (Kypriotou et al., 2012). Heat maps were generated to evaluate changes in the EDC genes in the ichthyosis knock-downs.

The clustered organization of the EDC genes suggests duplication of ancestors adapting to changes in terrestrial conditions during evolution (Backendorf and Hohl, 1992). The EDC is divided on the basis of common gene and protein structures, into three clustered gene families (Kypriotou et al., 2012):

(i) S100A calcium-binding proteins;
(ii) Cornified Envelope (CE) precursors-a group of precursor proteins of the CE including involucrin, loricrin, the SPRRs and the ‘late cornified envelope’ (LCE) proteins (previously LEP, XP5 and SPRRL), and
(iii) S100 fused genes. The ‘fused gene’ proteins (SFTPs ‘S100 Fused Type Proteins’) FLG, filaggrin-2 (FLG2), trichohyalin (TCHH), trichohyalin-like protein (TCHHL1), hornerin (HRNR), repetin (RPTN) and cornulin (CRNN) evolved from families (i) and (ii).
UCSC Genome Bioinformatics (http://genome.ucsc.edu) was used to generate a list of genes listed on human chromosomal region 1q21. Several genes are significantly downregulated in the common ichthyoses: In FLG knockdown a subset of S100 genes [(S100A2 (log2FC -1.03, pval<0.01), S100A4 (log2FC -1.32, pval<0.01), S100A7 (log2FC -2.28, pval<0.01), S100A8 (log2FC -1.20, pval<0.01), RPTN (log2FC -2.81, pval<0.01), FLG2 (log2FC -3.17, pval<0.01) and LOR (log2FC -2.50, pval<0.01)]. There is significant downregulation in several other EDC genes in STS knockdown (S100P (log2FC -1.16, pval<0.01), RPTN (log2FC -1.69, pval<0.01) and FLG2 (log2FC -2.32, pval<0.01)]. A number of EDC genes were also significantly dysregulated in the ARCI; downregulation in TGM1 [(S100A7 (log2FC -1.29, pval<0.01), FLG2 (log2FC -1.55, pval<0.01)) and ICH [(FLG2 (log2FC -2.18,
pval<0.01)) and upregulation in ALOX12B ((HRNR (log2FC -1.09, pval<0.01)) knockdowns. Thus, there appears to be significant dysregulation in EDC mRNA expression in the CI and ARCI. Interestingly, there was down regulation of all the EDC genes following FLG knockdown.

6.2.3.1 Regulation of EDC
The expression of genes of the EDC is regulated by a pool of transcription factors: Krüppel-like factor 4 (KLF4), grainyhead-like 3 (GRHL3), and aryl hydrocarbon receptor nuclear translocator (ARNT) (Kypriotou et al., 2012). The relationship between the EDC regulatory genes and the knockdowns was evaluated.

ICH silencing causes significant upregulation of ARNT (log2FC 1.11, pval<0.01). Changes were noted in the common ichthyosis genes and ALOX12B knockdowns (non significant); in the STS knockdown KLF4 expression was up-regulated whereas GRHL3 and Arnt were down-
regulated. In the FLG knockdown there was downregulation of GRHL3 and ARNT. In ALOX12B knockdown KLF4 expression was up-regulated but ARNT was down-regulated.
6.2.4 1q21 GENES (not EDC)
Heat maps were also generated for the remaining genes on chromosomal human region 1q21.
Figure 6.5: Heatmap showing gene expression of genes on 1q21 (not included in EDC) following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

In STS and FLG knockdowns there was downregulation of TXNIP (log2FC -1.69, pval<0.01 and log2FC -1.94, pval<0.01 respectively). Other downregulated genes noted in FLG knockdowns were PGLYRP3 (log2FC -1.34, pval<0.01), PGLYRP4 (log2FC -1.29, pval<0.01), C1orf68 (log2FC -3.69, pval<0.01). ALOX12B silencing lead to C1orf68 (log2FC -2.84, pval<0.01) downregulation. This suggests that several genes on chromosome 1q21 outside the EDC are dysregulated in the CI and ALOX12B knockdown; Almost all the non-EDC genes on 1q21 were downregulated following FLG knockdown.

6.2.5 Cytokeratin downregulation common to all the ichthyoses
Changes in keratins have been reported in the ichthyosis [(Toivola et al., 2015, Chamcheu et al., 2011), Table 1]; Upregulation of K1 has been reported in LI and IV (O'Shaughnessy et al.,
2010) and KRT1 downregulation is known in HI (Grone, 2002) and in several other non-syndromic ichthyosis (Table 1).

Keratins are structural proteins found in all epithelial cells to which they confer stability when under mechanical stress. Keratins are grouped into two classes, the acidic type I (K9-K20) and the neutral-basic type II (K1-K8) which are expressed in pairs in a tissue and differentiation-specific manner (Smith et al., 2003). Keratin 5 (KRT5) and KRT14 are both expressed in the basal layers of the epidermis, but are down-regulated and replaced by the expression of KRT1 (KRT2 in upper spinous and granular layer; KRT9 in palmoplantar) and KRT10 in suprabasal keratinocytes (Schnare et al., 2001). Keratin 15 (KRT15), is a type I keratin without a defined type II partner. KRT15 has been shown to be a basal epidermal stem cell (Takeda et al., 2003) and its expression is normally down regulated with epidermal differentiation.
Figure 6.6: Heatmap showing gene expression of cytokeratin genes following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

KRT1 was significantly downregulated in all the ichthyoses. Its pairing partner *KRT10* was also downregulated in all the ichthyoses but this was significant in ICH, TGM1, FLG [(log2FC -1.39, pval<0.01), (log2FC -1.007, pval<0.01) and (log2FC -1.67, pval<0.01) respectively]. The other pairing partner, *KRT2* is downregulated in all knockdowns but this was significant in STS, FLG and ICH [STS (log2FC -1.23, pval<0.05), FLG (log2FC -1.37, pval<0.05) and ICH (log2FC -1.31, pval<0.01)] other than in *ABCA12*. Basal keratins *KRT5* and 14 were downregulated in all the ichthyoses but *KRT14* expression suppression was significant in FLG knockdown (log2FC -1.009, pval <0.01). *KRT15* expression was also
downregulated in all the ichthyoses but was most pronounced in FLG and ABCA12 knockdowns. Upregulation of K1 has been reported in LI (O'Shaughnessy et al., 2010) and KRT1 downregulation is known in HI (Grone, 2002). Thus, K1 downregulation underlies all the ichthyosis in this study at transcriptome level and this is significant.

6.2.6 Desmosomal Dysregulation
Ichthyin has been found to localise to desmoplakin throughout the viable epidermis (Dahlqvist et al., 2012). Netherton syndrome (OMIM #256500) characterized by congenital ichthyosiform erythroderma, an atopic diathesis, and a characteristic hair-shaft abnormality known as trichorrhexis invaginata is caused by serine protease inhibitor lympho-epithelial Kazal-type-related inhibitor LEKTI (encoded by SPINK5) (Sarri et al., 2016) and it is thought that there is premature cleavage of desmosomal proteins (including desmocollin1 (DSC1), desmoglein 1 (DSG1) and corneodesmosin) (Yang et al., 2004, Descargues et al., 2005, Descargues et al., 2006). Changes in desmosomal genes were evaluated in the ichthyosis knockdowns.

Desmosomes are “mechanical” junctions, involved primarily in cell cohesion (Yamamoto et al., 2003a) required for the integrity of epidermis. Desmosomal proteins interact with keratins, 1(2)/10 in the suprabasal layers of the epidermis and provide cytoskeletal structure (Fox et al., 2008). Additionally, they contribute to the correct formation and maintenance of the stratum corneum barrier.

The structural components of the desmosomes involve three protein families: Desmosomal cadherins (desmogleins DSGs and desmocollins DSCs), armadillo proteins (desmoplakin DSP and plakoglobin JUP), and the plakophilin family (PKP 1 to PKP 3) (Takeuchi et al., 2000).
Desmosomal cadherins located on adjacent cells mediate intercellular connection via interactions of their extracellular domains. The intracellular ends of desmosomal cadherins are inserted in the molecular network of adaptor proteins, DSP, JUP, PKP 1-3, to which keratin filaments bind.

DSG1-4 and DSC1-3 are expressed in the epidermis. According to the level of keratinocyte differentiation, DSG2 and 3 from the lower epidermal compartment are progressively substituted by DSG1 and 4 in the upper viable epidermal layers. In the same way DSC3 is replaced by DSC1. PKP1, 3 are expressed throughout the viable epidermis but expression is most prominent in the SG (Takeuchi et al., 2000). PKP2 expression is found in the SB only (Yamamoto et al., 2003a).
Dysregulation (downregulation predominantly) of several desmosomal genes in the common ichthyosis knockdowns was noted throughout the viable epidermis: in STS knock-down there was upregulation of desmosomal cadherins $DSG1$, $DSG2$, $DSC2$, $DSC3$ and downregulation of $DSG4$ expression. Additionally, $PKP2$, $PKP3$ and DSP were upregulated. In the FLG knock-down downregulation of $DSC1$ (log2FC -1), $DSC2$ (log2FC -1.04), $DSC3$ and $DSG1$, DSP, $PKP1$, $PKP3$ was seen. In ICH knock-down the SG desmosomal cadherins were altered; $DSG1$, $DSC1$ were downregulated but $DSG4$ was upregulated. $PKP2$ was upregulated in $ALOX12B$. Thus, significant alterations in desmosomal genes were noted.
6.2.7 Antimicrobial peptides (AMP)
Ichthyosis can be complicated by secondary infection (Grahovac et al., 2009, Fleckman et al., 2003). AMP are one of the primary mechanisms used by the skin in the early stages of immune defense to prevent infection from bacteria, viruses and fungi. The production of AMP such as the S100 proteins, psoriasin (S100A7) (Akiyama, 2010) and calprotectin (S100A8/A9 complex) (Umemoto et al., 2011) as well as RNase 7 (Harder and Schroder, 2002) occurs constitutively in the epidermis. Upon recognising the microbe e.g. by TLRs, keratinocytes initiate a defense response by further inducing already present AMP and increasing expression of inducible AMPs such as human beta-defensins DEFB4A, DEFB103A, DEFB103B and the cathelicidin CAMP (LL-37) (de Koning et al., 2012). The impact of the knockdown on AMPs was evaluated.
Figure 6.8: Heatmap of changes in gene expression of antimicrobial peptide genes following STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

In our dataset, several beta-defensin genes were down regulated. DEFB4A (log2FC -1.06, pval<0.01) and DEFB4B (log2FC -1.17, pval<0.05) in TGM1 knockdown. DEFB4A in STS knockdown (log2FC -1.01, pval<0.01) and DEFB103B (log2FC -1.907, pval<0.05) in ALOX12B knockdown. Upregulation of DEFB1, DEFB4A and DEFB103B was seen in ICH and ABCA12 knockdowns but this was not significant. The constitutive AMP, S100A7 (log2FC -2.28, pval<0.01) and the S100A8/A9 complex (log2FC -1.2, pval<0.01 / log2FC -1.07, pval<0.01) were downregulated in FLG. S100A7 (log2FC -1.29, pval<0.01) is downregulated in TGM1 (EDC heatmap, Fig. 6.5).
6.2.8 Toll-like Receptors (TLR)

Human Toll-like receptors (TLRs, numbered 1–10) are found on a variety of different cell types and can recognise various components of microorganisms, subsequently initiating signaling pathways important in the generation of cytokines, chemokines, antimicrobial peptides, and upregulation of adhesion and costimulatory molecules involved in innate and acquired immune responses (Jones et al., 2004). In addition to their antimicrobial effects the function of TLRs has recently extended to include epithelial barrier regulation (Kuo et al., 2013a). Keratinocytes are reported to express TLRs 1,2,3,5,9 and 10 (Hari et al., 2010); the evidence supporting TLR4 expression is conflicting (Hari et al., 2010). In addition, TLRs on keratinocytes are functional and respond to their respective ligands to produce cytokines implying that keratinocytes can initiate immune responses via activation of TLRs (Chong et al., 2004, Yamamoto et al., 2003b); thus TLR2 heterodimerises with TLR1 and recognises bacteria-derived lipoproteins, TLR3 recognizes viral double-stranded RNA, TLR4 recognizes lipopolysaccharide of Gram-negative bacteria and TLR5 recognizes bacterial flagellin (Miller, 2008).
In our dataset there is downregulation of TLR2 and TLR3 in all the ichthyoses but this is most marked in FLG for TLR2 ($\log_{2}\text{FC} -1.412$, $p\text{val}<0.01$) and ICH for TLR3 (not significant). TLR1 and TLR5 are downregulated in both FLG and ICH.

6.2.9 Cytokines

Cytokine production influences keratinocyte proliferation and differentiation processes and may have pleiotropic effects on the immune system (Nedoszytko et al., 2014). Cytokines are produced by keratinocytes, either constitutively or upon exposure to viral or bacterial stimuli (Uchi et al., 2000, Grone, 2002). Altered epidermal cytokine production has been noted after
barrier disruption and may play a role in restoring the cutaneous permeability barrier (Wood et al., 1992) by influencing keratinocyte proliferation and differentiation, at least in part by modulating the gene expression in these cells (Hanel et al., 2013). The impact of the ichthyosis knockdowns on cytokines was analysed.

In this study, *IL12A* was downregulated in *FLG* (log2FC -1.39, pval<0.01) and in *ICH* (log2FC -1.46, pval<0.01). Other trends noted were that the pro-inflammatory cytokine *IL6* was upregulated in all knock-downs compared to control except in *ABCA12* where it was
down-regulated (log2FC -1.25, pval<0.01). The pro-inflammatory cytokine *IL8* was
upregulated in all knock-downs compared to control except in *STS* where it was down-
regulated.

6.2.10 Kallikreins (KLKs)
Desquamation (detachment of the superficial corneocytes) requires proteolytic degradation of
corneodesmosomes which form connections between corneodesmosomes and is mediated by
a cocktail of proteases including serine proteases. Tissue KLKs are the largest family of
human secreted serine proteases encoded by 15 genes (Paliouras and Diamandis, 2006).
Several kallikreins are expressed in the upper stratum granulosum (SG) and stratum corneum
(SC) of the epidermis, including KLKs 1,3,5-11, 14,15 (Shaw and Diamandis, 2007).
Kallikrein proteolytic activity in the skin is mostly attributed to the trypsin-like proteases
KLK5 and KLK14 and the chymotrypsin-like protease KLK7. In XLI desquamation is
thought to be retarded by KLK5 and KLK7 (section 1.4.2.5) and reduction in KLK5 in HI
skin has been noted (section 1.5.1.6). The impact of the ichthyosis knockdowns on the KLKs
was evaluated.
Figure 6.11: Heatmap of gene expression changes in kallikreins after STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.

KLK6 was significantly down regulated in the common ichthyoses STS (log2FC -1.61, pval<0.01), FLG (log2FC -1.65, pval<0.01) and upregulated in the ARCI. KLK1 was significantly downregulated in FLG (log2FC -1.63, pval<0.01) and several ARCI knockdowns ALOX12B (log2FC -1.46, pval<0.01); TGM1 (log2FC -1.48, pval<0.01); ABCA12 (log2FC -1.86, pval<0.01). KLK 5 and 7 showed upregulation in all the ARCI and STS knockdowns and a slight upregulation in KLK14 was seen in ICH and ABCA12 knockdowns but these changes were not significant.

6.2.11 Lipids
The permeability barrier resides in the SC which is composed of corneocytes embedded in a
matrix of lipid-enriched lamellar sheets. Impairment of the skin permeability barrier leads to several cutaneous disorders, including ichthyosis. SC lipids consist free fatty acids (FA), ceramides and cholesterol in nearly equimolar ratios (Lampe et al., 1983). The adequate balance of these major components is imperative for a proper structure and maintenance of SC barrier competence (Janssens et al., 2011). The impact of the ichthyosis knockdowns on the known SC lipid genes involved in synthesis, activation (where applicable) and transportation were evaluated.

6.2.11.1 FA Transportation/Activation
Fatty acids (FA) used in the epidermis can be synthesized de novo by keratinocytes or taken up from the diet or extracutaneous sites of the body (e.g. linoleic acid and other essential fatty acids are unable to be synthesized by keratinocytes) in a process that likely involves protein transporters. Several proteins have been proposed to facilitate FA uptake including fatty acid translocase (FAT/CD36) (Weinstein, 2008), fatty acid binding protein (FABP) (O'Shaughnessy et al., 2010), and members of the fatty acid transport protein/very long-chain acyl-CoA synthetase (FATP/ACSVL) family (Cuzick et al., 2013).
6.2.11.1.1 FAT/CD36
FAT/CD36 functions as a transmembrane protein that facilitates the translocation of FA across the plasma membrane (Maloney et al., 1984). It is not normally expressed in human epidermis, but it is detected in skin lesions of patients with ichthyosis vulgaris (IV), psoriasis and several other dermatological diseases (Grone, 2002) (Rearick et al., 1987). In this dataset there is downregulation of CD36 in the common ichthyoses i.e. STS and FLG (log2FC -1.27, pval 0.01) and ICH and TGM1 knockdowns.

Figure 6.12: Heatmap showing alteration in expression of genes involved in FA transportation/activation after STS, FLG, TGM1, ALOX12B, ICHTHYIN, and ABCA12 knockdown.
6.2.11.1.2 FABP5
In contrast to CD36 FABP5 is expressed in the normal epidermis (Epstein et al., 1984).
FABP5 expression was downregulated in FLG (log2FC -1.07, pval 0.01) and ICH (log2FC -1.02, pval 0.01). In contrast its expression is upregulated in psoriasis and eczema (Yanagi et al., 2011) (Zuo et al., 2008) possibly highlighting the differences in pathomechanisms of the barrier diseases.

6.2.11.1.3 SLC27A /FATP
The FATP family consists of six integral membrane proteins that are encoded by solute carrier family 27 member 1 to 6 genes (SLC27A1 to SLC27A6). SLC27A1, -3, -4, and -6 are normally expressed in human epidermis (Akiyama et al., 2005). In addition to FA transportation SLC27A/FATP proteins play a central role in activation of fatty acids. Activation of FA is a pre-requisite before they can be directed to different metabolic pathways (Watkins and Ellis, 2012).

6.2.11.1.3.1 SLC27A4/FATP4
A recent report of a functional linkage between SLC27A4 and ICH highlighted the possible involvement of SLC27A4 in common pathways essential for lipid processing in the epidermis (Li et al., 2013). SLC27A4 has also been implicated in a syndromic ARCI, ichthyosis prematurity syndrome. It is up-regulated in several ARCI (ICH/ALOX12B/TGM1).

6.2.11.1.3.2 SLC27A Others
SLC27A1 (or FATP1) is the most closely related protein to SLC27A4. Thus it may exhibit similar substrate specificities. It is downregulated in all knockdowns (albeit slight reduction in ICH) and SLC27A6 expression is upregulated in FLG knockdown only.
6.2.11.2 Biosynthesis of very long-chain fatty acids (VLC-FA) or ultra long-chain fatty acids (ULC-FA)

6.2.11.2.1 Synthesis of FA
In addition to FA taken up from the diet or extracutaneous sites of the body FA up to 16 carbons in length can be synthesized *de novo* by the enzyme complex fatty acid synthase (FASN) in keratinocytes (Uchiyama et al., 2000).

Figure 6.13: Heatmap of changes in expression of genes involved in synthesis VLC-FA or ULC-FA following STS, FLG, TGMI, ALOX12B, ICHTHYIN, and ABCA12 knockdown.
6.2.11.2.2 Elongation of FA
Fatty acids synthesized by FASN or taken up from an extracellular source can be further elongated into VLCFA or ULCFA containing 18 or more carbon atoms (Jakobsson et al., 2006). Each elongation cycle requires four reactions: acyl chain elongation, reduction, dehydration and another reduction step. The rate-limiting step is the initiation of elongation by a family of seven enzymes, elongation of very long chain fatty acids 1–7, ELOVL1–7 (Guillou et al., 2010). ELOVLs 1, 3 and 4 have been detected in skin (Jakobsson et al., 2006). The ELOVLs exhibit a preference for selected substrates depending on their hydrocarbon chain length and degree of unsaturation; ELOVL 1 and ELOVL 4 are crucial to generate ULC-FAs with ≥26 carbon atoms; ELOVL 1 accepts activated FA with a chain length of C18 to C26 (Ohno et al., 2010) and the biosynthesis of FAs longer than 24 carbon atoms depends exclusively on ELOVL4 (Guillou et al., 2010) (Jakobsson et al., 2006, Ohno et al., 2010).

There was dysregulation of several ELOVL genes in our dataset. Broadly, there was upregulation of several ELOVLs in the knockdowns; ELOVL1 and 7 in all, ELOVL2 in ALOXI2B and TGM1 knockdowns (log2FC 1.5, pval<0.01; log2FC 1.13, pval<0.05), ELOVL3 in STS, ALOXI2B and ABCA12 knockdowns (log2FC 1.2, pval<0.05) and ELOVL4 in all except FLG knockdowns. ELOVL 5, 6 expression was downregulated in ALOXI2B knockdown but the latter was upregulated in all the other models.

6.2.11.2.3 Cutaneous FA hydroxylation
Epidermal fatty acid may be hydroxylated in the α- or ω-position. Hydroxylation in the ω-position is unique to the epidermis.

6.2.11.2.4 α-Hydroxylation
The epidermal enzyme with capacity for α-hydroxylation remains unidentified. Two potential candidates are fatty acid 2-hydroxylase (FA2H) and phytanoyl-CoA 2-hydroxylase (PHYH) (Rabionet et al., 2014). In this dataset FA2H expression in STS and ABCA12 knockdowns was
6.2.11.2.5 ω-Hydroxylation of FA
Fatty Acids (and possibly also ceramides containing ULC-FAs) can undergo ω-hydroxylation most likely catalyzed by a cytochrome P450 isoform, CYP4F22 (Behne et al., 2000). It is known that human mutations in CYP4F22 cause ARCI (Lefevre et al., 2006). CYP4F22 was downregulated in the common ichthyoses STS (log2FC -2.067, pval<0.01) and FLG (log2FC -2.067, pval<0.01) and in ABCA12 (log2FC -1.1516, pval<0.05) knockdown. It was upregulated in ALOX12B knockdown. Thus, perturbations in the CI genes and ABCA12 (which is not thought to be involved in the 12R-LOX pathway) lend support to the additional role of CYP4F22 in ω-hydroxylation in addition to its proposed involvement in the 12R-LOX pathway.

6.2.11.3 Ceramide Synthesis
Ceramides are composed of a FA acid amide linked to a sphingoid base. The heterogeneity of the sphingoid bases and the huge variety of FA moieties (variation in carbon chain length, degree of saturation, hydroxylation) confer epidermal ceramides with an immense structural complexity.
6.2.11.3.1 Generation of Sphingoid bases
Serine palmitoyltransferase (SPT) is a key enzyme in generating sphingoid bases (by the condensation of palmitoyl-CoA and L-serine) at the ER. It is a heterodimer of subunits, Serine Palmitoyltransferase Long-Chain SPTLC 1 either with SPTLC 2 or with SPTLC 3 (Hornemann et al., 2007). Significant reductions of SPT expression and of ceramide levels have been reported in psoriatic lesions compared with non-lesional skin (Hong et al., 2007). SPTLC3 was downregulated in FLG and to a lesser extent in ICH knockdowns but upregulated in STS.

Figure 6.14: Heatmap of genes involved in ceramide synthesis following STS, FLG, TGMI, ALOX12B, ICHTHYIN, and ABCA12 knockdown.
6.2.11.3.2 Generation of ω-acyl-ceramide (and ω-acyl-(glycosyl) ceramide)

Unique epidermal ceramides are acylceramides. Along with α- or ω-hydroxylated ceramides they have an essential function in the formation of lipid lamellae. In addition, acylceramides are also important as a precursor of protein-bound ceramide, which functions to connect lipid lamellae and corneocytes. After the removal of linoleic acid, the exposed ω-hydroxyl group of acylceramide is covalently bound to corneocyte proteins, forming a corneocyte lipid envelope.

Acylceramides have C28–C36 ULCFAs, which are ω-hydroxylated and ω-esterified to FA (>95% of the esterified FA consists of linoleic acid) forming hydrophobic ULC-acylceramides (acylCer).

The linoleate is derived from triacylglycerides (TAG) by an unidentified triacylglyceride lipase activated by CGI-58 (gene ABHD5) (Grone, 2002). ABDH5 mutations cause Chanarin-Dorfman syndrome. This is a rare autosomal recessive lipid storage disorder characterized by ichthyosis, liver disease and lipid vacuolations in neutrophils (also called neutral lipid storage disease).

The final step of TAG biosynthesis is catalysed by diacylglycerol acyltransferase 2 (DGAT 2). This enzyme is decreased in human psoriatic skin (Ilves et al., 2015). Downregulation of DGAT2 was seen in FLG knockdown. PNPLA2 (known cofactor of adipose TAG lipase) was downregulated with STS knockdown.

6.2.11.3.3 Glucosylation of acylceramides

Ceramide biosynthesis increases along with keratinocyte differentiation. They are further processed to glycosylated ceramides (GlcCers) and sphingomyelins (SM) in the Golgi
apparatus. Glucosylation of ceramides is by UDP-Glucose Ceramide Glucosyltransferase (UGCG) (Edwards et al., 2003). UGCG expression was downregulated in the common ichthyoses STS (log2FC -1.25, pval<0.05) & FLG (log2FC -1.18, pval<0.01). SMs and GlcCers are then recruited into lamellar bodies (LBs) for transport and exocytosis into the extracellular space. After secretion, they are degraded back to ceramides predominantly at the interface between SG and SC as described in Section 6.1.11.4.

Currently it is unclear if ω-OH-ceramides are glucosylated first to ω- OH-GlcCer and then acylated to acylGlcCer.

6.2.11.3.4 Extracellular processing of probarrier lipids
Probarrier lipids synthesized (acylGlcCers, acyl-Cers, ULC-FAs etc.) are recruited into lamellar bodies for transport and exocytosis into the extracellular space at the interface of the SG and SC. In the extracellular space the linoleic moiety is stepwise oxidized by 12R lipoxygenase (12R-LOX) and epidermal lipogenase 3 (eLOX3) (Zheng et al., 2011) followed by generation of ceramides by deglucosylation of acylGlcCers (catalyzed by LB-secreted β-glucocerebrosidase, GBA, and its co-factor Saposin-C, SAP-C) and SM (by Sphingomyelin Phosphodiesterase 1, Acid Lysosomal, SMPD1). Ceramides derived from acylGlcCers ultimately generate protein-bound ceramides thereby forming CLE (ceramides derived from SM do not form the CLE). A slight upregulation of GBA and SMPD1 in the ICH knockdown was seen (not significant).

6.2.11.4 Topology and Transport
Despite the crucial role of LBs in lipid transport and ultimately in epidermal barrier homeostasis, our understanding of LB formation and transport is rather superficial. ABCG1, a member of the ABCA12 family, is thought to play a role in normal LB formation and secretion.
Lack of the Golgi pH regulator (Gpr89), an anion channel protein essential for normal acidification of the Golgi apparatus, has also been suggested to be prerequisite for proper LB formation. In the SG, newly made ceramides are quickly transported to the Golgi apparatus for GlcCer and SM formation. The current literature suggests that this transport is carried out by both a vesicular-dependent and a vesicular-independent route (Sawada et al., 2012). Vesicular flow is believed to be the major mode for transport of ceramides to the cis-Golgi cisternae for GlcCer synthesis at the cytosolic site (Wang et al., 2004). The non-vesicular transfer of ceramides to the trans-Golgi is mediated by the ceramide transport protein, Collagen, Type IV, Alpha 3 (Goodpasture Antigen) Binding Protein (COL4A3BP) for luminal synthesis of SM (Arican et al., 2005).
In this dataset, GPR89A was downregulated in ALOX12B knockdown (log2FC -1.47, pval<0.01). ABCG1 expression is increased in all the knockdowns except STS. Conversely, GPR89C is upregulated in STS knockdown only (non significant). Expression of COL4A3BP was downregulated in ABCA12 knockdown.

6.2.12 Others

6.2.12.1 AP-1 family of transcription factors:
In XL1, abnormal desquamation as well as the permeability barrier abnormality is attributed to disruption of this cholesterol sulfate cycle. In the epidermis, cholesterol sulfate increases from 1% to 5% of the total lipid content as keratinocytes move from the basal to the granular layer,
and then declines again to 1% as corneocytes move, from inner to outer *stratum corneum* (Long et al., 1985, Rearick et al., 1987). An ‘epidermal cholesterol sulfate cycle’ in which cholesterol is first sulfated in the lower epidermis, and then desulfated back to cholesterol in the outer epidermal nucleated layers has been proposed as an explanation (Epstein et al., 1984). It has been proposed that the increase in cholesterol sulfate that occurs in conjunction with keratinocyte differentiation may not just be a marker of differentiation but may in fact be a signaling molecule that plays a role in inducing keratinocyte differentiation mediated by the AP-1 family of transcription factors or by activating the η isoform of protein kinase C (PRKCH) (section 1.4.2.6). This was evaluated for *STS* and the other ichthyosis gene knockdowns.
Our data show that expression of members of the AP-1 family of transcription factors, FOS, was significantly downregulated in all the ichthyoses in this study. Additionally JUNB (significant in STS silencing, log2FC-1.27, pval<0.01) and FOSL2 (FRA-2) was in all the knockdowns (not significant). There was reduced expression of JUN (log2FC-1.01, pval<0.01) in ALOX12B. This suggests that all the ichthyosis genes studied play a role in keratinocyte differentiation and this may be mediated by the AP-1 family of transcription factors in particular FOS.
6.2.12.2 Apoptosis

It has been suggested that keratinocyte apoptosis is involved in the pathomechanisms of HI (Yanagi et al., 2011). Defective lipid transport due to loss of \(ABCA12 \) function leads to the accumulation of intracellular lipids and it is thought that may result in the apoptosis of \(Abca12^{-/-} \) keratinocytes. In addition, AKT signaling pathway has been demonstrated to help survival of \(ABCA12^{-/-} \) keratinocytes during keratinization (Yanagi et al., 2011). Furthermore, PPAR\(\delta \) and RXR\(\alpha \) are candidate anti-apoptotic molecules in \(ABCA12^{-/-} \) keratinocytes (Yanagi et al., 2011).

Figure 6.17: Heatmap showing expression of genes involved in keratinocyte apoptosis following \(STS, FLG, TGM1, ALOX12B, ICHTHYIN \), and \(ABCA12 \) knockdown.
In this dataset no significant changes were observed. Several trends were noted: *RXRA* is downregulated in all the ichthyosis knockdowns. *PPARA* and *NR1H3* are downregulated in *FLG* and *ALOX12B* knockdowns. *PPARD* was upregulated following *ALOX12B* silencing and *AKT3* is downregulated in *ABCA12* knockdown.

6.3 Discussion

6.3.1 Common Ichthyoses

6.3.1.1 STS

STS silencing lead to *FLG* down regulation; however this was not significant. A subset of patients with XLRI have STS as well as FLG mutations. It is known that *FLG* mutations appear to have a modifying effect on XLRI subjects; those with a mutation in *FLG* as well as mutations in the *STS* gene appear to have a more severe phenotype and greater barrier defects than patients with XLRI with wild-type *FLG* (Janeway and Medzhitov, 2002). Additionally, there was statistically significant down-regulation of *LIPN* and *CYP4F22* genes that are implicated in the ARCI; *LIPN* (log2FC –1.22, pval<0.01) encodes one of six acid lipases known to be involved in triglyceride metabolism and mutations in this gene lead to late onset ARCI (Hari et al., 2010). *CYP4F22* (log2FC –2.06, pval<0.01) has been suggested to be involved in the 12(R)-LOX pathway.

Significant downregulation of the suprabasal keratins *KRT1* and *KRT2* was seen. Several genes in the EDC were significantly downregulated (*S100P, FLG2, RPTN*).

STS silencing is thought to lead to accumulation of cholesterol sulfate. Cholesterol sulfate is a potent transcriptional regulator (van Smeden et al., 2014a). *Hanley et al* demonstrated that cholesterol sulfate increased the expression of *Fra-1, Fra-2,* and *JunD*, members of the AP-1 transcription factor family.
family of transcription factors (Danso et al., 2014). Our data show that expression of members of the AP-1 family of transcription factors FOS, JUNB, FOSB, Fra-2 (FOSL2) were downregulated suggesting that it could play a role in keratinocyte differentiation/proliferation. Changes in cell cycle in XLI have been reported previously (Jensen et al., 1989).

Several genes involved in lipid synthesis UGCG, ELOVL3 and CYP4F22 were dysregulated.

The hyperkeratosis in XLI largely reflects delayed desquamation, the early stages of which are thought to be due to reduced activity of KLK 5 and 7 (see Section 1.4.2.5). KLK 5 and 7 were upregulated at the transcriptome level but this was not statistically significant. Post translational modifications may explain these findings. In our dataset, significant downregulation of KLK6 was noted. There is some suggestion that KLK6 may be a desquamatory protease (Borgono et al., 2007).

6.3.1.2 FLG
Contrary to the observation in STS knockdown, where FLG expression was downregulated, there was no alteration in STS expression in the FLG knockdown. Several ARCI genes- ALOX12B (significant) and ALOXE3 (downstream of ALOX12B in the LOX pathway), TGM1 (significant) and ICH were downregulated. FLG expression was upregulated in the ALOX12B knockdown but remained unchanged in the remaining knockdowns. Additionally, there was significant down regulation in CYP4F22, mutation in which is known to cause ARCI (Lefevre et al., 2006).

Structural changes were noted in the viable and non-viable epidermis. Several keratins were significantly downregulated throughout the viable epidermis-KRT1(2)/10 in the suprabasal layer and K14 in the basal layer. Additionally, expression of LOR (component of the CE) in the SC was significantly downregulated. Downregulation in the other SB keratins KRT5/15
was also noted. Additionally, desmosomal genes \textit{DSC1}, \textit{DSC2} were significantly downregulated thereby reducing cell-cell adhesion. (\textit{DSC3} and \textit{DSG1}, \textit{DSP}, \textit{PKP1}, \textit{PKP3} were also downregulated but this was not significant).

The expression of \textit{TLR2} was significantly downregulated. Keratinocytes mainly signal through \textit{TLR2} once activated with \textit{Staphylococcus aureus} and \textit{Candida albicans} (Hari et al., 2010). Expression of the constitutive AMP genes was also significantly downregulated but not of beta-defensins and cathelicidin perhaps indicating that an adequate response upon stimulation to pathogens is mounted thereby explaining the relatively low rate of infection in IV patients compared to the other ichthyoses.

\textit{FLG} is located in the EDC. The impact of FLG knockdown on the other EDC genes was evaluated. Several genes in the S100, CE precursors family and fused gene family were downregulated. Several other genes on the chromosome 1q21 but not thought to be part of the EDC were also downregulated; suggesting that they may play a role in epidermal differentiation. Interestingly, there was down regulation of all the EDC genes following \textit{FLG} knockdown (\textit{S100A2}, \textit{S100A4}, \textit{S100A7}, \textit{S100A8}, RPTN, \textit{FLG2} and \textit{LOR} significant). In addition, almost all the non-EDC genes on 1q21 were downregulated following \textit{FLG} knockdown (\textit{TXNIP}, \textit{PGLYRP3}, \textit{PGLYRP4}, \textit{C1orf68} significant). Furthermore, there was downregulation of two EDC regulatory genes \textit{GRHL3} and \textit{ARNT}. This suggests that FLG may play a key role in the EDC.

The permeability barrier defect, in IV, lies in the lipid-enriched extracellular space. The effect of \textit{FLG} mutations on SC lipids is contradictory. In populations of northern European descent eczema or atopic dermatitis (AD) occurs primarily due to inherited abnormalities in FLG
(Irvine et al., 2011). In IV, caused by FLG mutations but, unlike in AD, there is no inflammation. Changes in lipid composition have also been reported in AD patients (van Smeden et al., 2014b, Ishikawa et al., 2010, Janssens et al., 2012). These have been attributed to reduction in FFA chain length and associated reduction in ceramide chain length suggesting a common synthetic pathway (van Smeden et al., 2014b). Therefore knowledge of the role that FLG (also known to cause AD) plays in epidermal lipids is of interest not only in IV but also in AD.

In this dataset, significant downregulation of FA transporters CD36 and FABP5 (SLC27A1 downregulated but not significant) was observed. No changes in SLC27A4/FATP4 were noted (loss-of-function mutations in FATP4 has been associated with AD) (Khnykin et al., 2012). SLC27A6 expression was upregulated. Expression of fatty acid elongases, ELOVL1 and ELOVL4 remained unaltered in contrast to reduced levels of ELOVL isoforms that have been seen in a murine AD model (Park et al., 2012). In addition, UGCG involved in glucosylation of acylceramides and CYP4F22 involved in ω-hydroxylation (Ohno et al., 2015) are downregulated. Our data suggests that some enzymes involved in FA transportation and ceramide synthesis may contribute to lipid abnormalities due to FLG knockdown in addition to altered FFA chain length. Kallikrens, KLK1 and -6 were both downregulated.

6.3.2 Autosomal Recessive Congenital Ichthyoses

6.3.2.1 ALOX12B
There was significant downregulation of ALOX12B following FLG silencing. There was upregulation of FLG (not significant) in the ALOX12B knockdown suggesting that these two genes may interact with each other: with FLG being downstream of ALOX12B. Additionally, another CE gene TGM1 was slightly upregulated in ALOX12B knockdown (not significant). Upregulation of these CE genes is consistent with previous studies where LOX deficiency
was reported to affect proteins of the CE (including disturbed processing of pro-FLG to FLG) in addition to severely affecting the lipid components causing barrier dysfunction (Krieg and Furstenberger, 2014).

There was a slight upregulation of ICH in keeping with the observation that patients with mutations in ALOX12B have up-regulation of ichthyin, the putative receptor for the end products of the LOX-pathway (Li et al., 2013). There is upregulation (not significant) of ALOXE3 (thought to be downstream of ALOX12B) and CYP4F22 (also involved in the LOX pathway) genes suggesting an attempt to compensate for the absence of ALOX12B.

In this study, other significantly dysregulated genes in the ALOX12B in vitro model were noted: KRT1 was significantly downregulated. HRNR, a component of the EDC, is upregulated in ALOX12B knockdown. KLK1 is significantly downregulated. KLK1 is known to be expressed in the skin (Fischer and Meyer-Hoffert, 2013) but it’s role as desquamatory protease is unknown. The beta-defensin gene DEFB103B was down regulated in ALOX12B suggesting that it may play a role in cutaneous infections in the LI/CIE patient group. GPR89A (prerequisite for proper LB formation) was downregulated in ALOX12B knockdown (log2FC -1.47, pval<0.01) suggesting a role in lipid transportation. The FA elongase gene ELOVL2 was upregulated.

6.3.2.2 ICHTHYIN/NIPAL4
Changes in the other ichthyosis genes were not seen. Suprabasal keratins KRT1/2 and 10 were significantly downregulated in ICH knockdown indicating structural changes in the suprabasal viable epidermis.
ICH silencing causes significant downregulation of FLG2 (in the EDC) and upregulation of the EDC regulatory gene, ARNT. Expression of FA transporter genes was altered; FABP5 was reduced. Upregulation of SLC27A4 was noted and although this was not significant it confirmed previous reports that downregulation of ICH results in upregulation of SLC27A4 (Li et al., 2013). Cytokine IL12A was downregulated in the ICH model.

6.3.2.3 TGM1
FLG knockdown lead to a significant reduction in expression of TGM1 suggesting an interaction. Both the suprabasal keratins KRT1 and 10 were significantly down regulated in TGM1 knockdown. Overexpression of keratin 1 has been noted in LI patients (O'Shaughnessy et al., 2010).

There was downregulation of EDC genes (S100A7 and FLG2).

The gene ELOVL2 was significantly upregulated. Genes involved in fatty acid biosynthesis were also perturbed in a rat epithelial organotypic model although the genes involved in the latter were not significantly altered in this study (O'Shaughnessy et al., 2010).

6.3.2.4 ABCA12
No interactions with the other ichthyosis genes were noted. The suprabasal keratinocyte marker KRT1 was significantly downregulated in keeping with previous studies (Grone, 2002). Its pairing keratin KRT10 was also downregulated (not significant). Downregulation of KRT15 was seen (not significant) but no change was seen in the other basal keratins. This lends further evidence to ABCA12 deficiency leading to differentiation defects in keratinocytes.
In this study *FLG* expression was not significantly altered at the mRNA level suggesting that the defective profilaggrin/filaggrin conversion noted in previous studies (Grone, 2002) is due to post-transcriptional changes.

The expression of *KLK1* was significantly downregulated and mRNA expression of several *KLKs* including *KLK5* was upregulated (not significant). This is in keeping with Yanagi et al. findings in that upregulated *KLK5* mRNA expression was reported although the protein expression was reduced (Coutinho et al., 2005).

CYP4F22 thought to be involved in ω-hydroxylation was found to be significantly downregulated in *ABCA12* knockdown cells. ω-Hydroxyceramides are essential for intact barrier function of the SC. A significant reduction in linoleic esters of long-chain ω-hydroxyceramides and a corresponding increase in their glucosylceramide precursors have been noted in the skin of *ABCA12*-disrupted HI model mice (Zuo et al., 2008). In addition *ELOVL3* was significantly upregulated suggesting involvement in FA elongation. *IL6* expression was significantly reduced following *ABCA12* silencing and this may possibly explain the prevalence of skin infections in this patient group.

6.4 Summary

In summary, in this chapter heatmaps were generated in collaboration with EBI to look at known biological processes and genes related to the ichthyosis knockdowns. Significant changes noted in this study were as follows:

Some interactions were found in the ichthyosis genes in this study; *FLG* silencing downregulated *ALOX12B* and *TGM1* expression. Interactions were seen between other CI and
ARCI genes—other than those studied in this project (STS with LIPN and CYP4F22, FLG with ALOXE3, PNPLA1 and CYP4F22) and between the ARCI genes ABCA12 and CYP4F22.

Two genes were significantly altered in all the in vitro ichthyosis models; KRT1 and FOS; KRT1 expression was significantly reduced in all the generated models. Its pairing partners were significantly disrupted in some but not all the ichthyoses. FOS was significantly downregulated in all the ichthyoses in this study. Other trends were noted in other AP-1 family of transcription factors; down regulation of JUNB (significant following STS silencing), FRA-2 (FOSL2) in all the ichthyosis. Cell cycle related changes in the ichthyosis have been reported previously (Jensen et. al., 1989, Penneys et al., 1970).

Several EDC genes (clustering of genes on 1q21 that fulfil important functions in epidermal differentiation) were significantly downregulated in the CI; all were downregulated in FLG knockdown (significant S100A2, S100A4, S100A7, S100A8, RPTN, FLG2 and LOR) and all were dysregulated (most downregulated) in STS knockdown (significantly downregulated S100P, RPTN and FLG2). A number of EDC genes were also significantly dysregulated in some ARCI-TGM1 (downregulation of S100A7, FLG2 and ICH) and ALOX12B knockdowns (HRNR upregulation). Although no significant EDC gene dysregulation was observed in ICH, significant upregulation Arnt (EDC regulatory gene) (Kypriotou et al., 2012) was observed following ICH silencing. Downregulation of all the genes in the EDC in the FLG knockdown suggests that it may be the master regulatory gene for the EDC.

Several genes not in the EDC, on chromosomal human region 1q21, were also dysregulated with changes noted in almost all genes following FLG knockdowns (significant downregulation of TXNIP in STS and FLG knockdowns, other downregulated genes noted in
FLG knockdowns were PGLYRP3, PGLYRP4, C1orf68). ALOX12B silencing lead to C1orf68 downregulation. This suggests that several genes on chromosome 1q21 outside the EDC are deregulated in the CI and ALOX12B knockdown and these non-EDC genes may also be regulated by FLG.

In our dataset TLRs and cytokines (components of the innate immune system but also play a role in epithelial barrier function) were found to be altered in all the ichthyoses. Significant findings were: downregulation of TLR2 in FLG knockdown. The cytokine IL12A was downregulated in FLG and in ICH knockdown models. IL6 expression was reduced following ABCA12 silencing. Several beta-defensin genes were down regulated in several knockdowns; TGM1 (DEFB4A and DEFB4B), STS (DEFB4A) and ALOX12B (DEFB103B). The constitutive AMP (AMP S100A7 and S100A8/A9 complex) were downregulated in FLG and in TGM1 (S100A7). These may be responsible for the impaired antimicrobial barrier in these ichthyoses.

Desmosomal genes were predominantly down regulated. KLK6 was down regulated in the CI and KLK1 in FLG and several ARCI knockdowns (ALOX12B TGM1 and ABCA12). KLK 5, 7 implicated in XLI and KLK5 in HI were not significantly altered at transcriptome level implying that this may be a post-translational modification.

Several genes involved of biosynthesis of FA and ceramide synthesis were dysregulated. Novel findings were downregulation of genes involved in FA transportation was noted-CD36 in the FLG, FABP5 in FLG and ICH knockdowns and FA elongation ELOVL3 in ABCA12 knockdowns. Genes involved in ceramide synthesis: CYP4F22 (involved in ω-Hydroxylation
of FA) and *UGCG* (involved in glucosylation of acylceramides) were downregulated in the CI.
Chapter 7: Validation of RNA-Seq analysis - Innate Immunity following Ichthyosis gene knockdown
7.1 Introduction

7.1.1. Innate Immunity and Toll-like receptors (TLRs)
The epidermis, the multilayered stratified epithelium of the skin, provides a first line defense barrier for the host. The epidermis consists of three main resident cell populations: the keratinocytes, Langerhans’ cells and melanocytes. Keratinocytes represent the major cell population of the epidermis. Keratinocytes produce various cytokines, either constitutively or upon exposure to viral or bacterial stimuli (Uchi et al., 2000, Grone, 2002) suggesting that they play a role in innate immunity of the skin and are a key component of the epithelial antimicrobial barrier (Kupper and Fuhlbrigge, 2004).

The cytokines produced by keratinocytes include interleukin (IL)-1, -6, -7, -8, -10, -12, -15, -18, -20, -IL23, -IL33, IL34, -TGF-beta, -VEGF, GM-CSF, tumor necrosis factor-alpha (TNF) and interferons (IFN) -alpha, -beta, and -gamma (Grone, 2002). Such cytokine production by keratinocytes has multiple consequences for the migration of inflammatory cells, influences keratinocyte proliferation and differentiation processes, affects the production of other cytokines by keratinocytes and may have pleiotropic effects on the immune system.

The innate immune system has evolved to recognize a broad spectrum of pathogens as a first line of defense. Innate immune cells also instruct adaptive immune responses with information required for this most effective and specific second line response, which helps eradicate the pathogen (Medzhitov, 2001). Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors that recognize conserved pathogen associated molecular patterns (PAMPs). One major group of pattern-recognition receptors is formed by the Toll-like receptors (TLRs) (Medzhitov, 2001, Akira et al., 2001).
In humans, at least ten TLRs have been identified. In the epidermis these receptors are expressed on several cells including keratinocytes, melanocytes, and Langerhans cells. Keratinocytes are reported to express TLRs -1, -2, -3, -5, -9, and -10 (Hari et al., 2010); the evidence supporting TLR 4 expression in keratinocytes is conflicting (Hari et al., 2010). TLRs detect a variety of ligands, which include viral double-stranded RNA (TLR 3), and bacterial flagellin RNA (TLR 5) (Hemmi et al., 2003, Takeda et al., 2003). TLR2 either forms a heterodimer with TLR1 or TLR6 resulting in the distinction between bacterial- and mycoplasma-derived lipoproteins (Brightbill et al., 1999). Keratinocytes, once activated with Staphylococcus aureus (S. aureus) or Candida albicans, mainly signal through TLR 2 (Hari et al., 2010). Once stimulated TLRs activate the transcription factor NF-kB, leading to the production of pro-inflammatory cytokines, chemokines and antimicrobial peptides (Akira and Hemmi, 2003).

In addition to their antimicrobial effects the function of TLRs has recently extended to include epithelial barrier regulation (Kuo et al., 2013a). It has been demonstrated that TLR2 activation by bacterial ligands promotes aspects of the skin barrier; enhances the barrier function of tight junctions (Yuki et al., 2011, Kuo et al., 2013) and treatment of human epidermis wounded by repeated tape stripping (e.g., model of mechanical injury) with TLR2 agonists enhances skin barrier recovery (as measured by transepidermal water loss). Additionally, TLR2-/- mice display a skin barrier repair defect (Kuo et al., 2013, Yuki et al., 2011). Desmosomes and tight junctions play an important role in forming a functional skin barrier (Furuse et al., 2002). Activation of TLR3 has been shown to induce expression and function of tight junctions and expression of skin barrier repair genes ABCA12, GBA, SMPD1 and TGM1 (Borkowski et al., 2015). Mice lacking TLR3 demonstrate a decreased capacity to restore permeability barrier function (Borkowski et al., 2015, Lin et al., 2011).
This skin barrier can be divided into three lines of defense: the physical barrier against pathogens and mechanical injuries, the chemical/biochemical barrier with antimicrobial activity, and a barrier against the unregulated loss of water and solutes (Hanel et al., 2013). In the ichthyoses there is abnormal barrier function. The permeability barrier and antimicrobial barrier, which keeps out pathogens, are closely related (Fischer et al., 2014). In keeping with this, clinically, colonization with pathogens e.g. Staphylococcus aureus (manifesting as maceration, irritation and odour) and recurrent skin infections have been noted clinically in ichthyosis patients.

7.1.2 Aim:
RNA-Seq analysis identified that keratinocytes with knockdown of ichthyosis genes had altered expression of genes associated with innate immunity and defense responses (Section 6.7). The aim of this chapter was to assess the following:

1. Cytokine profile of STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control in unstimulated primary keratinocytes.

2. Cytokine profile of STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control following stimulation of TLR -2, -3, -5 in primary keratinocytes using PGN, Poly I:C and Salmonella typhimurium respectively.

7.2 Results
The cytokine profile of IL-8, IL-1β, IL-6, IL-10, TNF, and IL-12p70 was examined in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control, C for stimulated and unstimulated in duplicate samples as described in section 2.4. There was no detection of IL-10 and IL-12p70 in all samples and no detection of IL-1B for
unstimulated samples. TNF, IL6 and IL8 were analyzed further.
7.2.1 Cytokine profile in unstimulated keratinocytes

Figure 7.1: Cytokine profile of IL-8, IL-6 and TNF.
Cytokine profile of IL-8, IL-6 and TNF in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control, C, in unstimulated primary keratinocytes. Constitutive IL8 induction was noted in both C and knock-downs. Weak induction of IL6 and minimal induction of TNF was also noted in both C and knock-downs as evaluated by BD™ CBA Human Inflammatory Cytokines Kit in duplicates.
Altered IL6, IL8 and TNF profiles were noted in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control, C. in unstimulated primary keratinocytes (Figure 7.1). TNF was detectable at very low levels only. IL6 was downregulated in STS, FLG, ABCA12, TGM1 and ALOX12B compared to C but was upregulated in ICH. IL8 was the most abundant cytokine expressed constitutively in the C and the knockdowns. It was downregulated in STS, FLG, ABCA12 and TGM1 compared to C but was upregulated in ICH and ALOX12B knockdowns.

7.2.2 Cytokine profile in stimulated keratinocytes
Primary keratinocytes were stimulated with three different TLR ligands: TLR2 ligand PGN, TLR3 ligand poly (I:C) and TLR5 ligand S. typhimurium.
7.2.2.1 Induction of cytokine IL-6

Figure 7.2: Cytokine profile of IL-6.
Cytokine profile of IL-6 in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control, C, in primary keratinocytes after stimulation with various TLR ligands. Samples were stimulated at indicated final concentrations: peptidoglycan (PGN) from S aureus (10 ug/ml), Poly I:C (10 ug/ml) and flagellin (Salmonella Typhimurium 1 ug/ml). All three receptors were found to be functional. Results for stimulated were normalized to unstimulated for each ichthyosis gene and then compared to control, also normalized, for meaningful results.
Activation of all three TLRs by the appropriate ligands was seen (Figure 7.2). The TLR3 ligand poly (I:C), a synthetic analogue of double-stranded viral RNA, lead to the strongest activation of primary keratinocytes followed by TLR2 ligand (PGN) and TLR5 (S. typhimurium). Induction of IL6 was reduced in all knockdowns compared to control following TLR2 and TLR3 induction. Following TLR5 activation there was downregulation of IL6 secretion in STS, ABCA12 and ALOX12B knock-downs but upregulation was seen in FLG and ICH knock-downs.
7.2.2.2 Induction of cytokine TNF

Figure 7.3: Cytokine profile of TNF

Cytokine profile of TNF in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control, C, in primary keratinocytes after stimulation with various TLR ligands. Samples were stimulated at indicated final concentrations: using peptidoglycan (PGN) from S aureus (10 ug/ml), Poly I:C (10 ug/ml) and flagellin (Salmonella Typhimurium 1 ug/ml). All three receptors were found to be functional. TLR3 was stimulated more than TLR2. There was minimal stimulation of TLR5.
All three TLRs were functional (Figure 7.3). Induction of TNF was reduced in all knockdowns compared to control following TLR2 and TLR3 stimulation. TLR5 activation lead to downregulated secretion in \textit{TGM1} and \textit{ICH} knock-downs. Increased secretion was seen in \textit{STS}, \textit{FLG}, \textit{ABCA12} and \textit{ALOX12B} knock-downs.

7.2.2.3 **Induction of cytokine IL8**
All three TLRs were stimulated but several values were not within range i.e. were above the maximum range.

7.3 **Discussion**

\textit{RNA-Seq} analysis is a powerful method to investigate the effect of protein knockdown by identifying differentially regulated genes. In this study \textit{RNA-Seq} analysis revealed that genes important in innate immunity response were altered as a result of ichthyosis gene knockdown in primary keratinocytes. The aim of this chapter was to validate these results and show that these changes in gene expression are functionally relevant.

The RNA Seq data showed alterations in cytokine genes as a result of knockdown of ichthyosis genes. The \textit{RNA-Seq} data predicted changes in pro-inflammatory cytokine IL6 and IL8 (section 6.2.9). These predictions were evaluated by examining the cytokine profile of \textit{STS}, \textit{FLG}, \textit{ABCA12}, \textit{TGM1}, \textit{ICH} and \textit{ALOX12B} knock-downs compared to non-targeting control in unstimulated primary keratinocytes. IL6 was downregulated in \textit{STS}, \textit{FLG}, \textit{ABCA12}, \textit{TGM1} and \textit{ALOX12B} knock-downs compared to C but was upregulated in \textit{ICH}. IL8 was downregulated in \textit{STS}, \textit{FLG}, \textit{ABCA12} and \textit{TGM1} compared to C but was upregulated in \textit{ICH} and \textit{ALOX12B} knockdowns. Thus, these changes confirmed the \textit{RNA-Seq} findings for IL6 secretion in \textit{ICH} and \textit{ABCA12} knock-downs but were not consistent for the remaining
Ichthyoses. For IL8 STS, ICH and ALOX12B knock-downs were in keeping with the RNA Seq data but for the remaining ichthyoses did not show the same expression changes as the RNA-Seq data. This discrepancy may be explained by the ligand chosen for TLRs.

Cytokine profile of STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to non-targeting control following stimulation of TLR-2, -3, -5 in primary keratinocytes using PGN, Poly I:C and Salmonella typhimurium respectively. After stimulation of primary keratinocytes with three different TLR ligands-TLR2 by ligand PGN, TLR3 by ligand poly (I:C) and TLR5 by ligand S. typhimurium respectively induction of pro-inflammatory cytokines IL6, IL8 and TNF-α was seen in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs. Stimulation of all three receptors was noted suggesting that TLR2, -3, -5 were functional in STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs in cultured human primary keratinocytes and responded by induction of pro-inflammatory cytokines IL6, IL8 and TNF to appropriate stimuli. For IL8 several values were out of range (very highly stimulated) and further deductions could not be made. There was reduced induction of cytokine secretion in all knock-downs compared to C for IL6 and TNF following TLR2 and -3. This may be due to down-regulation of TLR2 and -3 genes as shown by the RNA-Seq data. IL6 secretion was observed predominantly following TLR2 and TLR3 stimulation. TNF induction was predominantly through TLR3 stimulation. These findings suggest that, although reduced compared to C, a more effective cytokine response is produced in the ichthyosis knock-downs following viral compared to bacterial stimulation.

IL-6 and IL-6 receptor expression is increased and localized to all nucleated epidermal layers after barrier disruption. In a human epidermal keratinization model IL-6 reduces the amount of ceramide in the SC but increases the total epidermal ceramide level. The expression of
genes encoding key enzymes accountable for the synthesis of ceramides was also inhibited by IL-6 treatment (Sawada et al., 2012). IL6−/− mice exhibit a delay in skin permeability barrier repair after tape stripping whereas the application of IL-6 enhances this repair process in a concentration dependent manner (Wang et al., 2004). The role of IL6 in bacterial infection has been highlighted following reports that IL6R blockade with Tocilizumab (approved for the treatment of rheumatoid arthritis) shows an inverse relationship to bacterial infection (Lang et al., 2012).

Filaggrin expression is decreased in AD and is reversely associated with IL-6 (Ilves et al., 2015) and interruption of IL-6 receptor signaling improves the severity of AD (Wong et al., 2012). Reduced epidermal TLR2 expression has been observed in AD patients (Kuo et al., 2013b). This suggests that IL6 secretion may be due factors other than stimulation of TLR2 (keratinocytes) in AD. It has been reported that a functional amino acid change in the IL-6 receptor (IL-6R Asp358Ala; rs2228145) was significantly associated with AD (Esparza-Gordillo et al., 2013). IL6 has been implicated in another skin barrier condition, psoriasis; Increased skin and serum IL-6 levels are a feature of psoriasis (Arican et al., 2005). IL-6 is a key mediator of IL-23/Th17-driven cutaneous inflammation (Fujishima et al., 2010). Serum levels of IL-6 are regarded as a marker of the inflammatory activity in psoriasis as well as an indicator of treatment response (Neuner et al., 1991, Grossman et al., 1989, Arican et al., 2005); a positive correlation between IL-6 serum levels and clinical severity of psoriasis before treatment has been described (Balato et al., 2014). Additionally, serum IL-6 levels have been reported to decrease after effective treatment with methotrexate or UVB phototherapy (Mizutani et al., 1997, Lo et al., 2010). The role of IL6 in the ichthyoses has not been studied before. In this dataset, there is marked reduction in secretion of IL6 following stimulation of TLR2 and TLR3 in the knock-downs compared to controls.
The transcription factor STAT3 is activated by cytokines of the IL-6 family. After ligand-induced dimerization of the IL-6 receptor, the associated kinases JAK1 and JAK2 cross-phosphorylate tyrosine residues of adjacent glycoprotein 130 (gp130) subunits of the complex. The SH2 domain of STAT3 binds to newly phosphorylated tyrosines, followed by the phosphorylation of Y705 of STAT3 (Heinrich et al., 2003). Two phosphorylated STAT3 monomers then dimerize and translocate to the nucleus, where they activate the transcription of many downstream genes whose products mediate the diverse effects of STAT3 in development and disease (Levy and Darnell, 2002). STAT3-dependent gene expression also causes upregulation of inhibitory proteins of the SOCS family that interfere with JAK activity (Naka et al., 1997, Starr et al., 1997, Ernst et al., 2001).

STAT3-deficient mice die during early embryogenesis (Takeda et al., 1997). However, analyses of tissue-specific STAT3-deficient mice indicate that STAT3 plays a crucial role in a variety of biological functions including cell differentiation, cell growth, suppression and induction of apoptosis, and cell motility (Hirano et al., 2000, Akira, 2000). Phenotypically the mutant mice had marked acanthosis with hyperkeratosis and scaling. In addition there was aberrant hair follicle expression with pronounced inflammatory infiltration and fibrosis throughout the dermis (Akira, 2000). Also, STAT3 regulates the migration of keratinocytes (Hirano et al., 2000) and is therefore important for wound healing.

Activation/phosphorylation of transcription factor STAT3 has been reported during permeability barrier repair and topical application of IL-6 or Hyper-IL-6, a complex of IL-6 linked to the soluble IL-6 receptor, enhanced epidermal barrier repair in wild-type mice.
(Wang et al., 2004). However phosphorylation was markedly reduced, but not completely absent, in IL-6-deficient mice compared with wild-type mice suggesting that IL-6 is an important (Ernst et al., 2001), though not sole, regulator of STAT3 phosphorylation in the skin (Wang et al., 2004) and is involved in permeability barrier repair. Thus it may be hypothesised that in the ichthyosis the effects of IL6 in barrier disruption may be mediated by STAT3.

Interleukin (IL)-8 is a pro-inflammatory cytokine that has a direct effect on immune cells, including polymorphonuclear cells (Jiang et al., 2012). Keratinocytes are a rich source of IL-8. In this dataset constitutive expression of IL8 was observed to be higher than all other cytokines both in the C and the knockdowns. There was reduced secretion in STS, FLG, ABCA12 and TGM1 compared to C but there was increased secretion in ICH and ALOX12B knockdowns. The profiles of pro-inflammatory cytokines IL6 and IL8 were identical for all knock-downs except in ALOX12B.

TNF-α is overexpressed in the epidermis of psoriasis skin (Kim et al., 2011) and has a pivotal role in the pathogenesis of psoriasis and TNF-α antagonists are highly effective therapeutic agents in most patients (Kim et al., 2011). TNF-α was recently shown to modulate filaggrin expression via a c-JUN N-terminal kinase dependent pathway (Kim et al., 2011). Psoriasis patients treated with a TNF-α antagonist had significant enhancement of epidermal barrier protein expression, suggesting that TNF-α acts to inhibit key skin barrier proteins and use of specific antagonists may improve barrier protein expression. Thus, specific immunomodulatory therapy could be of benefit in other diseases with epidermal barrier abnormalities including the ichthyoses. In this dataset secretion of TNFα is noted and is higher following TLR3 stimulation than following TLR2 stimulation. There was minimal
stimulation of TLR5. There is reduced secretion in all knockdowns compared to control following both TLR2 and TLR3 stimulation. The gene STS encodes SSase. TNFα upregulates SSase enzyme activity (Elias et al., 2014). TNF stimulates keratinocyte differentiation and increases cholesterol sulfotransferase activity (Elias et al., 2014). TNFα-mediated induction of human STS occurs by transcriptional activation via a mechanism involving PI 3-kinase/Akt pathway in human prostate cancer cells as well as in human mammary cancer cells (Suh et al., 2011). In addition, TNFα has been shown to inhibit the proliferation of keratinocytes and it is involved in sphingomyelin cycle with a subsequent increase in intracellular ceramide which in turn induces cell differentiation (Geilen et al., 1997).

Transcriptome analysis showed downregulation of TLR2 and TLR3 in all the ichthyoses but this was most marked in FLG for TLR2 (log2 FC -1.412, p <0.01) and ICH for TLR3 (not significant). TLR5 was downregulated in both FLG and ICH. The TLR3 ligand poly (I:C), a synthetic analogue of double-stranded viral RNA, led to the strongest activation of primary keratinocytes compared to TLR2 and TLR5 ligands. TLR3 stimulation in all knock-downs was found to be less than in controls. It has been suggested that TLR3, in addition to its role in viral defense, may have other functions in the skin including a role in barrier repair after recognition of dsRNA, which keratinocytes detect following epidermal injury (Borkowski et al., 2013). In addition it has been demonstrated that TLR3 activation of keratinocytes leads to alterations in some of the ichthyosis genes; an increase in transcript abundance of ABCA12, and TGM1 in a TLR3-dependent manner (Borkowski et al., 2013). Additionally non-coding double-strand RNA was reported to induce TLR3-dependent increased expression of ABCA12 in human keratinocytes, resulting in increased epidermal lipid and lamellar bodies.
Thus, reduction in TLR3 gene expression in the ichthyosis knock-downs may play a role in reduced epithelial repair mechanisms.

A reduction of TLR2 expression in AD skin epithelium has been noted (Kuo et al., 2013a). In addition, TLR2 has been shown to play a role in the maintenance of tight junction integrity in response to barrier insults (Kuo et al., 2013a). There is a downregulation of TLR2 expression in all the knock-downs (significant in FLG) in the transcriptome dataset and reduced secretion of IL6 and TNF for all the knock-downs compared to control following TLR2 stimulation with staph aureus. Thus, there may be an association between the ichthyosis genes, reduced TLR2 expression that may contribute to barrier defects.

7.4 Summary

In summary, the cytokine profiles of stimulated and unstimulated primary keratinocytes in the ichthyoses of interest: STS, FLG, ABCA12, TGM1, ICH and ALOX12B knock-downs compared to control were examined.

The cytokine profile is altered in unstimulated primary keratinocytes in the ichthyoses of interest compared to control. On comparison of the cytokine secretion to cytokine gene expression IL6 secretion in ICH and ABCA12 knock-downs confirmed the RNA-Seq findings but were not consistent for the remaining ichthyoses. For IL8 STS, ICH and ALOX12B knock-downs were in keeping with the RNA Seq data but did not show the same expression changes for the remaining ichthyoses.

Cytokine profile following stimulation of TLR -2, -3, -5 in primary keratinocytes is altered in the ichthyoses of interest in this study, compared to control. Induction of pro-inflammatory
cytokines IL6, IL8 and TNF was observed in response to appropriate stimuli. There was reduced induction of cytokine secretion in all knock-downs, compared to control, for IL6 and TNF following TLR2 and -3. Secretion of IL6 was observed predominantly following TLR2 and TLR3 stimulation. Induction of TNF was predominantly through TLR3 stimulation.

In conclusion, altered expression levels of several TLR receptors as well as dysregulated production of pro-inflammatory cytokines (IL-6, IL8) is observed in the ichthyoses of interest.

7.5 Future Work
It is important to validate TLR 2, 3 and 5 expression pattern of IL6 and TNF cytokine expression in organotypic cultures and patient samples by IF staining to ensure the *in vitro* findings are observed *in vivo*. As changes in IL8 cytokine expression were noted these could be evaluated by BD™ CBA Human Inflammatory Cytokines Kit with higher reference ranges or by ELISA. Furthermore, plasma IL6, IL8, TNF levels in uninfected, colonized and infected ichthyosis patients would allow validation of cytokine profiles observed in this study.
Chapter 8: Discussion
8.1 Introduction
In this study the non-syndromic monogenic ichthyoses were studied to evaluate any genes or biological processes common to them and to identify key genes and pathways pertaining to each individual ichthyosis. This group of monogenic diseases comprises of ichthyosis vulgaris (loss of FLG), X-linked ichthyosis (loss of STS), lamellar ichthyosis/congenital ichthyosiform erythroderma (due to mutations in ALOX12B, ICH, ABCA12) and harlequin ichthyosis (due to mutations in ABCA12). They all affect the cornified layer and manifest as scaly conditions along a spectrum ranging from mild (as in ichthyosis vulgaris) to having a major impact on quality of life (as in lamellar ichthyosis/congenital ichthyosiform erythroderma) to severe (as in harlequin ichthyosis).

In this study the effect of ichthyosis gene knockdown (STS, FLG, ABCA12, TGM1, ICH and ALOX12B) was examined using RNAi technology (siRNA in primary keratinocytes) targeting each gene in monolayers and organotypic 3D cultures. RNA-Seq analysis was undertaken and compared to control to identify differentially regulated genes following gene knockdown. Functional analysis was undertaken to evaluate changes in TLRs and cytokines (altered at transcriptome level).

8.2 A novel in vitro 3D model generated for XLI
No previous 3D in vitro models for XLI have been reported before. In this study a novel 3D organotypic culture models for this condition were generated using primary keratinocytes using de-epidermalised dermis as scaffold. Loss of expression for the causative gene STS was confirmed at transcriptome and protein level by qPCR and Western blot respectively. Changes in terminal differentiation (TGM1) were noted (figure 4.7). RNA-Seq analysis revealed 458 dysregulated genes that are involved in cutaneous and extracutaneous processes suggesting
that STS may directly contribute to contiguous gene defects in XLI. Validation of these results by IF or western blotting is important to confirm these findings.

8.3 Filaggrin may play a key role in EDC regulation
Down regulation of all the EDC genes and almost all the non-EDC genes on 1q21 following FLG knockdown was noted. This novel finding suggests that FLG may be a key regulator of the EDC. This was further supported by complete loss of LOR (an EDC gene) in the 3D FLG knockdown model. FLG is one of several genes that comprises the EDC, a 2Mb region on chromosome 1q21, that encodes proteins that fulfil an important role in terminal differentiation in the epidermis (Hoffjan et al., 2007). EDC protein expression is regulated in a gene and tissue-specific manner. Several transcription factors including Klf4, Grhl3 and Arnt (Kypriotou et al., 2012) and interaction of Fra-2/AP-1 with Ezh2 and ERK1/2 (Wurm et al., 2015) have been reported as regulators of EDC. To validate the hypothesis that FLG is a key regulator of the EDC (and non-EDC genes on 1q21) IF on FLG knockdown 3D organotypic models and/or Western blotting of the other EDC (and non-EDC genes on 1q21) proteins could be undertaken.

8.4 Epidermal differentiation is altered in all the ichthyoses knockdowns
This study shows that both early and late differentiation is altered in the ichthyoses. KRT1 downregulation, early differentiation marker, was found to underlie all the ichthyosis in this study (at transcriptome level) and altered TGM1, a terminal differentiation marker, was noted in all the ichthyosis 3D organotypic models. Interestingly RNA-Seq analysis did not show significant changes in TGM1 gene expression in all the ichthyosis knockdowns highlighting the difference between the transcriptome and the functionally relevant proteome. In addition
to downregulation of KRT1, its pairing partner KRT10 was significantly downregulated in ICH, TGM1, FLG and the other pairing partner, KRT2 was significantly suppressed in STS, FLG and ICH. These findings are limited to mRNA level and further validation at protein level is required by IF staining of organotypic cultures and patient samples to confirm these gene expression changes.

This study also provided novel insights for the individual ichthyosis; Loss of FLG confirmed changes in terminal differentiation (LOR, TGM1) and implies that a disrupted CE is formed. These changes may be explained by gene alterations noted in the NOTCH signaling pathway (Lin et al., 2012). Premature terminal differentiation was noted following ABCA12 knockdown (with increased expression of filaggrin and TGM1 in the viable epidermis) confirming findings seen in HI skin (Thomas et al., 2009); In addition, reduction of K10 expression was noted implying altered early differentiation in HI possibly due to premature terminal differentiation. Noncoding dsRNA (via TLR stimulation) have been reported to stimulate some events in keratinocyte differentiation that are important for skin barrier repair and maintenance via ABCA12 upregulation (Borkowski et al., 2013). Our data showed downregulated TLR signaling which may explain the aberrant keratinocyte differentiation. Validation of genes involved in the NOTCH and TLR pathways by qPCR, Western blotting and IF would be required to confirm these findings.

8.5 Innate immune system is dysregulated in all the ichthyoses
In this project altered TLRs and cytokines in unstimulated and stimulated cytokines in all the ichthyoses were noted. Clinically colonization with pathogens and recurrent skin infections have been noted in the ichthyoses (Grahovac et al., 2009, Fleckman et al., 2003); most in HI
followed by the ARCI and may be explained by severity of the impaired permeability barrier (most in HI followed by the other ARCI) impacting on the antimicrobial barrier. In addition, differences in infection prevalence and inflammation are noted between atopic dermatitis and ichthyosis vulgaris (higher in the former), both caused by loss of FLG expression. In addition to their role in the innate immune system TLRs and cytokines also play a role in epithelial barrier function (Wood et. al., 1992, Hanel et al., 2013). Mechanistic insights following further study of these components of the innate immune system may explain these observations. It may be hypothesised that the effects of IL6 in barrier disruption may be mediated by STAT3 in the ichthyoses (section 7.3).

8.6 Dysregulation in stratum corneum lipids in all the Ichthyoses

The ichthyoses cause a defect in the epidermal barrier. Epidermal lipids are critical to epidermal barrier formation/function in the SC. The SC is composed of corneocytes that are filled with water and keratin that is surrounded by a cornified envelope, CE, which consists of a densely crosslinked layer of proteins such as filaggrin, loricrin and involucrin. A monolayer of non-polar lipids (ω-hydroxylated ceramides and free fatty acids, FFA) referred to as the cornified lipid envelope, CLE, is esterified to the cornified envelope, mainly to glutamate residues of involucrin (Lazo et al., 1995, Marekov and Steinert, 1998, Swartzendruber et al., 1987). The CLE is suggested to form a template for the formation of the intercellular lipid layers (Sandhoff, 2010, Schuette et al., 1999, Wertz et al., 1989). The cornified envelope, together with the CLE allows proper formation of the lipid matrix.

In this project genes annotated to lipid metabolism were dysregulated in all the ichthyosis knockdowns and arachadonic acid pathway (in all but ICH knockdown). Metabolism of
arachidonic acid by ALOX12B is known (section 1.5.2.4.3). In the FLG knockdown DEGs which included ALOX12B in arachidonic acid metabolism were noted implying that there are interactions between FLG and ALOX12B (section 5.2.4). ICH it is thought to the putative receptor in the same metabolic process as ALOX12B (i.e. metabolism of arachidonic acid) (Dahlqvist et al., 2007, Lefevre et al., 2006). It is therefore surprising that genes altered in this pathway were not dysregulated in this knockdown.

Dysregulated lipid metabolism in the other ichthyoses may be explained secondary to the following; irregular lipid matrix formation resulting from a deficient CE following TGM1 loss have been noted (Meguro et al., 2000, Behne et al., 2000, Li et al., 2007, Downing, 1992). In support of this several genes involved in peptide cross-linking and CE including FLG were dysregulated in the TGM1 knockdown. In addition to its role in the arachidonic acid pathway ALOX12B is known to oxidise the ω-esterified linoleic acid moiety which serves as the substrate for generation of ω-hydroxylated-(glucosyl) ceramides (section 1.5.2.4.4), a prerequisite for CLE formation (Zheng et al., 2011). CLE and bound ceramides are almost entirely absent in ARCI caused by mutations in ALOX12B (Krieg et al., 2013, Epp et al., 2007). In keeping with this genes involved in several lipid processes-lipid localization and transport, lipid biosynthetic process, oxidoreductase activity, iron ion binding and lipid biosynthetic process were altered. The role of ichthyin in epidermal biology is poorly understood; as noted it is the putative receptor in the same metabolic process as ALOX12B (Dahlqvist et al., 2007, Lefevre et al., 2006) and it may play a role in the formation, transport or fusion of LBs with the plasma membrane (Dahlqvist et al., 2007). Several genes annotated to vesicle mediated transport were downregulated. Furthermore, a novel finding was involvement of genes in FA/FA biosynthesis. ABCA12 is involved in lipid transportation via LB to the intracellular layers in the SC. Transmembrane transport in this study. Lipid
abnormalities due to loss of FLG have been attributed to reduction in FFA chain length and, as some FFAs are components of ceramides, in ceramides (van Smeden et al., 2014). RNA-Seq data confirmed these findings. In addition genes involved in lipid transportation and ceramide synthesis were altered. The basis for the permeability barrier abnormality due to loss of STS in XLI has been attributed to excess cholesterol sulfate and also in part to the decreased cholesterol content of the SC (section 1.4.2.2) and lipid and arachidonic acid metabolism have not been reported.

8.7 Conclusions and Final Remarks
In this study of the non-syndromic monogenic ichthyosis, my original null hypothesis was that despite a common phenotype the individual ichthyoses have different underlying pathomechanisms and biological pathways. For this in vitro models for the CI (IV/XLI) and ARCI (LI/CIE) were developed by transient knockdown of STS, FLG, ABCA12, TGM1, ICH and ALOX12B in monolayers and 3D organotypic cultures (including a novel XLI model) by using siRNA in primary keratinocytes (neonatal). Knockdown of ichthyosis genes in monolayers was confirmed by qPCR and where possible by western blotting. In the generated 3D models architectural changes and altered terminal differentiation were noted. RNA-Seq on generated 2D models from the same genetic background was successfully undertaken. Altered gene clusters were found for cell cycle, keratin filament/cytoskeleton, innate immune response, and metabolism of lipids and lipoproteins. Functional studies showed altered TLR and cytokine profile in all the ichthyoses. Altered differentiation was noted in all the ichthyosis (early and late differentiation). Furthermore, expression of FOS, a member of the AP-1 family of transcription factors, was significantly downregulated. Changes in cell cycle have been noted in the ichthyosis previously (Jensen et al., 1989, Penneys et al., 1970). As it is clear that in this knockdown model of the ichthyoses, there are common pathways altered in
all 6 gene knockdowns, I can partially disprove the null hypothesis. A future hypothesis to interrogate might be that the common phenotype of each individual ichthyosis is caused by changes in the cell cycle and this may be mediated by the AP-1 family of transcription factors, in particular \textit{FOS}. However, it is clear that individual ichthyosis genes also have major effects which may be relevant to the individual gene, such as the major effect of loss of FLG on the EDC or the effect of loss of STS on steroid hormone and ceramide pathway genes which is congruent with the null hypothesis. A large data set, such as the data set generated by this thesis could generate many more hypotheses. Further protein analysis (proteomics/lipidomics) would be required to firm up possible biomarkers or therapeutic targets and this work is in progress.
References
ABERG, K. M., MAN, M. Q., GALLO, R. L., GANZ, T., CRUMRINE, D., BROWN, B. E.,
2008. Co-regulation and interdependence of the mammalian epidermal permeability

AKIRA, S. 2000. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene, 19,
2607-11.

AKIYAMA, M. 1999. The pathogenesis of severe congenital ichthyosis of the neonate. J
Dermatol Sci, 21, 96-104.

AKIYAMA, M. 2006. Pathomechanisms of harlequin ichthyosis and ABCA transporters in

AKIYAMA, M. 2011. The roles of ABCA12 in keratinocyte differentiation and lipid barrier
formation in the epidermis. Dermatoendocrinol, 3, 107-12.

Regional difference in expression of characteristic abnormality of harlequin ichthyosis
in affected fetuses. Prenat Diagn, 18, 425-36.

Characteristic morphologic abnormality of harlequin ichthyosis detected in amniotic

AKIYAMA, M., SAKAI, K., YANAGI, T., TABATA, N., YAMADA, M. & SHIMIZU, H.
2010. Partially disturbed lamellar granule secretion in mild congenital ichthyosiform

AKIYAMA, M., SAKAI, K., SATO, T., MCMILLAN, J. R., GOTO, M., SAWAMURA, D.
& SHIMIZU, H. 2007a. Compound heterozygous ABCA12 mutations including a

AKIYAMA, M., SAKAI, K., SUGIYAMA-NAKAGIRI, Y., YAMANAKA, Y.,
MCMILLAN, J. R., SAWAMURA, D., NIIZEKI, H., MIYAGAWA, S. & SHIMIZU,
H. 2006a. Compound heterozygous mutations including a de novo missense mutation
in ABCA12 led to a case of harlequin ichthyosis with moderate clinical severity. J
Invest Dermatol, 126, 1518-23.

AKIYAMA, M., SAKAI, K., WOLFF, G., HAUSser, I., MCMILLAN, J. R.,
SAWAMURA, D. & SHIMIZU, H. 2006b. A novel ABCA12 mutation 3270delT

AKIYAMA, M. 2010. ABCA12 mutations and autosomal recessive congenital ichthyosis: a
review of genotype/phenotype correlations and of pathogenetic concepts. Hum Mutat,
31, 1090-6.

AKIYAMA, M., SUGIYAMA-NAKAGIRI, Y., SAKAI, K., MCMILLAN, J. R., GOTO, M.,
ARITA, K., TSUJI-ABE, Y., TABATA, N., MATSUOKA, K., SASAKI, R.,
SAWAMURA, D. & SHIMIZU, H. 2005. Mutations in lipid transporter ABCA12 in
harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest,
115, 1777-84.

mutation 371delA in TGM1 leads to a classic lamellar ichthyosis phenotype. Br J
Dermatol, 148, 149-53.

ARICAN, O., ARAL, M., SASMAZ, S. & CIRAGIL, P. 2005. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm, 2005, 273-9.

CHONG, H. C., TAN, M. J., PHILIPPE, V., TAN, S. H., TAN, C. K., KU, C. W., GOH, Y. Y., WAHLI, W., MICHALIK, L. & TAN, N. S. 2009. Regulation of epithelial-
mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis and wound healing. J Cell Biol, 184, 817-31.

FEINGOLD, K. R. & JIANG, Y. J. 2011. The mechanisms by which lipids coordinately regulate the formation of the protein and lipid domains of the stratum corneum: Role of fatty acids, oxysterols, cholesterol sulfate and ceramides as signaling molecules. Dermatovendocrinol, 3, 113-8.

HIRANO, T., ISHIHARA, K. & HIBI, M. 2000. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 19, 2548-56.

LI, W., SANDHOFF, R., KONO, M., ZERFAS, P., HOFFMANN, V., DING, B. C., PROIA, R. L. & DENG, C. X. 2007. Depletion of ceramides with very long chain fatty acids

gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat Protoc*, 7, 562-78.

Appendices
1.1 List of the top twenty most down-regulated and up-regulated genes following each ichthyosis knockdown.

STS Knockdown

<table>
<thead>
<tr>
<th>Genes</th>
<th>log2FoldChange</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR1</td>
<td>-3.13659516</td>
<td>2.77E-40</td>
</tr>
<tr>
<td>CXCL2</td>
<td>-2.625523507</td>
<td>3.02E-36</td>
</tr>
<tr>
<td>CSRNP1</td>
<td>-2.486409501</td>
<td>4.90E-28</td>
</tr>
<tr>
<td>MXD1</td>
<td>-2.378182062</td>
<td>1.95E-25</td>
</tr>
<tr>
<td>STS</td>
<td>-2.326989107</td>
<td>1.50E-23</td>
</tr>
<tr>
<td>UGCG</td>
<td>-2.256061764</td>
<td>7.36E-22</td>
</tr>
<tr>
<td>PTTG1</td>
<td>-2.236460179</td>
<td>8.64E-21</td>
</tr>
<tr>
<td>FOS</td>
<td>-2.176869043</td>
<td>7.29E-19</td>
</tr>
<tr>
<td>S100P</td>
<td>-2.119997068</td>
<td>8.24E-19</td>
</tr>
<tr>
<td>GLRX</td>
<td>-2.102568035</td>
<td>1.40E-17</td>
</tr>
<tr>
<td>ORFP</td>
<td>2.534510476</td>
<td>0.045116527</td>
</tr>
<tr>
<td>LINC00475</td>
<td>1.95865165</td>
<td>0.038651169</td>
</tr>
<tr>
<td>IL10RB-AS1</td>
<td>1.923746485</td>
<td>0.03537792</td>
</tr>
<tr>
<td>ANKUB1</td>
<td>1.845987226</td>
<td>0.03434547</td>
</tr>
<tr>
<td>ATP8B5P</td>
<td>1.82658206</td>
<td>0.033147429</td>
</tr>
<tr>
<td>C11orf85</td>
<td>1.6713127</td>
<td>0.02991356</td>
</tr>
<tr>
<td>SERPINA3</td>
<td>1.631787293</td>
<td>0.02868242</td>
</tr>
<tr>
<td>RNF224</td>
<td>1.612742671</td>
<td>0.024576875</td>
</tr>
<tr>
<td>C9orf84</td>
<td>1.586141844</td>
<td>0.02395999</td>
</tr>
<tr>
<td>GNG2</td>
<td>1.568269762</td>
<td>0.0205199</td>
</tr>
</tbody>
</table>

FLG Knockdown

<table>
<thead>
<tr>
<th>Gene</th>
<th>log2FoldChange</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTN1</td>
<td>-3.722811366</td>
<td>5.41E-41</td>
</tr>
<tr>
<td>SLC1A3</td>
<td>-3.694306697</td>
<td>5.63E-35</td>
</tr>
<tr>
<td>TM4SF1</td>
<td>-3.569569903</td>
<td>7.83E-32</td>
</tr>
<tr>
<td>LMNB1</td>
<td>-3.563780925</td>
<td>3.83E-25</td>
</tr>
<tr>
<td>WFDC5</td>
<td>-3.498235445</td>
<td>1.47E-24</td>
</tr>
<tr>
<td>ZFP36L2</td>
<td>-3.31897206</td>
<td>1.55E-24</td>
</tr>
<tr>
<td>SLC39A2</td>
<td>-3.178334284</td>
<td>1.58E-23</td>
</tr>
<tr>
<td>CA2</td>
<td>-3.157168997</td>
<td>5.69E-23</td>
</tr>
<tr>
<td>SERPINB3</td>
<td>-3.066075787</td>
<td>7.71E-23</td>
</tr>
<tr>
<td>MLKL</td>
<td>-3.005266984</td>
<td>9.30E-23</td>
</tr>
<tr>
<td>ANKRD20A5P</td>
<td>4.119379676</td>
<td>0.009629861</td>
</tr>
<tr>
<td>TAC4</td>
<td>3.222839048</td>
<td>0.009552845</td>
</tr>
<tr>
<td>ZBTB20</td>
<td>2.990840502</td>
<td>0.009106532</td>
</tr>
<tr>
<td>Gene</td>
<td>log2FoldChange</td>
<td>p-value</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NEU1</td>
<td>2.943962461</td>
<td>0.009055</td>
</tr>
<tr>
<td>FBXO39</td>
<td>2.810769202</td>
<td>0.008908187</td>
</tr>
<tr>
<td>AMH</td>
<td>2.806019735</td>
<td>0.008645296</td>
</tr>
<tr>
<td>EN2</td>
<td>2.762803279</td>
<td>0.008560863</td>
</tr>
<tr>
<td>KCNMA1</td>
<td>2.755662932</td>
<td>0.008437104</td>
</tr>
<tr>
<td>KLHL32</td>
<td>2.689702161</td>
<td>0.008406787</td>
</tr>
<tr>
<td>GOLGA8M</td>
<td>2.652082658</td>
<td>0.008292749</td>
</tr>
</tbody>
</table>

ABCA12 Knockdown

<table>
<thead>
<tr>
<th>Gene</th>
<th>log2FoldChange</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFRSF11B</td>
<td>-3.262374639</td>
<td>8.11E-07</td>
</tr>
<tr>
<td>MX2</td>
<td>-3.077488486</td>
<td>1.54E-20</td>
</tr>
<tr>
<td>IL7R</td>
<td>-2.737010076</td>
<td>3.47E-08</td>
</tr>
<tr>
<td>CCL2</td>
<td>-2.580335899</td>
<td>3.63E-10</td>
</tr>
<tr>
<td>RPSAP52</td>
<td>-2.487336996</td>
<td>1.40E-05</td>
</tr>
<tr>
<td>CLSTN2</td>
<td>-2.465467559</td>
<td>8.79E-20</td>
</tr>
<tr>
<td>IFIT1</td>
<td>-2.417825371</td>
<td>5.24E-10</td>
</tr>
<tr>
<td>OAS2</td>
<td>-2.407346905</td>
<td>1.02E-20</td>
</tr>
<tr>
<td>RSAD2</td>
<td>-2.259594746</td>
<td>7.08E-08</td>
</tr>
<tr>
<td>STC1</td>
<td>-2.119862431</td>
<td>0.000126778</td>
</tr>
<tr>
<td>VIP</td>
<td>2.676812773</td>
<td>0.001939983</td>
</tr>
<tr>
<td>ENDOU</td>
<td>2.619950415</td>
<td>3.65E-08</td>
</tr>
<tr>
<td>COL23A1</td>
<td>2.440437982</td>
<td>0.003164209</td>
</tr>
<tr>
<td>WNT1</td>
<td>2.312568832</td>
<td>0.003538192</td>
</tr>
<tr>
<td>EGFL6</td>
<td>2.300764418</td>
<td>0.000369775</td>
</tr>
<tr>
<td>AF131216.5</td>
<td>2.300504172</td>
<td>7.00E-05</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>2.209047391</td>
<td>0.000462555</td>
</tr>
<tr>
<td>AF064858.6</td>
<td>2.16692109</td>
<td>0.000704831</td>
</tr>
<tr>
<td>MIR34C</td>
<td>2.119188862</td>
<td>0.009675273</td>
</tr>
<tr>
<td>CRB1</td>
<td>2.088379811</td>
<td>0.005023746</td>
</tr>
</tbody>
</table>

TGM1 Knockdown

<table>
<thead>
<tr>
<th>Genes</th>
<th>log2FoldChange</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AANAT</td>
<td>-2.79949805</td>
<td>0.003278747</td>
</tr>
<tr>
<td>ANKRD1</td>
<td>-2.769682308</td>
<td>0.007868913</td>
</tr>
<tr>
<td>PSG6</td>
<td>-2.633544666</td>
<td>0.001492824</td>
</tr>
<tr>
<td>LYPD2</td>
<td>-2.614205954</td>
<td>0.001236176</td>
</tr>
<tr>
<td>PADI1</td>
<td>-2.523012149</td>
<td>1.93E-06</td>
</tr>
<tr>
<td>MYCN</td>
<td>-2.51405814</td>
<td>0.008475865</td>
</tr>
<tr>
<td>PPP1R1B</td>
<td>-2.459253324</td>
<td>0.000284455</td>
</tr>
<tr>
<td>TICRR</td>
<td>-2.428793703</td>
<td>1.12E-13</td>
</tr>
<tr>
<td>Genes</td>
<td>log2FoldChange</td>
<td>p-value</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NIPAL4</td>
<td>-3.216795734</td>
<td>5.64E-48</td>
</tr>
<tr>
<td>EGR1</td>
<td>-3.137258364</td>
<td>9.55E-44</td>
</tr>
<tr>
<td>FOS</td>
<td>-2.999518922</td>
<td>4.98E-41</td>
</tr>
<tr>
<td>TCF4</td>
<td>-2.802168449</td>
<td>1.20E-32</td>
</tr>
<tr>
<td>NFIB</td>
<td>-2.588661344</td>
<td>3.01E-32</td>
</tr>
<tr>
<td>LMNB1</td>
<td>-2.504270664</td>
<td>3.43E-28</td>
</tr>
<tr>
<td>CENPJ</td>
<td>-2.477199161</td>
<td>3.77E-26</td>
</tr>
<tr>
<td>KIF20B</td>
<td>-2.441856784</td>
<td>1.55E-25</td>
</tr>
<tr>
<td>PTTG1</td>
<td>-2.366780049</td>
<td>1.53E-24</td>
</tr>
<tr>
<td>KNTC1</td>
<td>-2.353831724</td>
<td>3.49E-23</td>
</tr>
<tr>
<td>SHH</td>
<td>3.505214354</td>
<td>2.99E-06</td>
</tr>
<tr>
<td>VIP</td>
<td>3.08968926</td>
<td>0.00213322</td>
</tr>
<tr>
<td>OLR1</td>
<td>2.758240021</td>
<td>3.00E-11</td>
</tr>
<tr>
<td>ASNSP1</td>
<td>2.619783444</td>
<td>0.001394379</td>
</tr>
<tr>
<td>SLC5A2</td>
<td>2.592642863</td>
<td>0.000414818</td>
</tr>
<tr>
<td>CEND1</td>
<td>2.579983511</td>
<td>0.00204604</td>
</tr>
<tr>
<td>AF131216.5</td>
<td>2.53198813</td>
<td>8.55E-06</td>
</tr>
<tr>
<td>CCK</td>
<td>2.423864811</td>
<td>7.84E-05</td>
</tr>
<tr>
<td>C1QL4</td>
<td>2.317633698</td>
<td>0.005626192</td>
</tr>
<tr>
<td>TBC1D29</td>
<td>2.283336876</td>
<td>0.003513647</td>
</tr>
</tbody>
</table>

ALOX12B Knockdown

<table>
<thead>
<tr>
<th>Gene</th>
<th>log2FoldChange</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCG4</td>
<td>-1.206351542</td>
<td>0.001727122</td>
</tr>
<tr>
<td>ACTG2</td>
<td>-1.489615109</td>
<td>0.004631323</td>
</tr>
<tr>
<td>ALOX12B</td>
<td>-1.090237652</td>
<td>2.07E-08</td>
</tr>
<tr>
<td>ANKRD20A11P</td>
<td>-1.7595322882</td>
<td>0.005914811</td>
</tr>
<tr>
<td>ANXA8L1</td>
<td>-1.539526985</td>
<td>0.000542176</td>
</tr>
<tr>
<td>ARHGAP19</td>
<td>-1.038402414</td>
<td>2.42E-21</td>
</tr>
<tr>
<td>ATAD2</td>
<td>-1.413821341</td>
<td>2.86E-15</td>
</tr>
<tr>
<td>ATAD5</td>
<td>-1.012589339</td>
<td>0.000768791</td>
</tr>
<tr>
<td>BARD1</td>
<td>-1.033412284</td>
<td>2.16E-08</td>
</tr>
<tr>
<td>BBOX1</td>
<td>-1.775978591</td>
<td>8.59E-09</td>
</tr>
<tr>
<td>CCK</td>
<td>2.625026792</td>
<td>2.41E-05</td>
</tr>
<tr>
<td>SLC5A2</td>
<td>2.554282964</td>
<td>0.000794129</td>
</tr>
<tr>
<td>VIP</td>
<td>2.528158454</td>
<td>0.005192918</td>
</tr>
<tr>
<td>TAL1</td>
<td>2.517034085</td>
<td>0.000545945</td>
</tr>
<tr>
<td>Name</td>
<td>Conc (ng/ul)</td>
<td>Volume (ul)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C-1</td>
<td>553.4</td>
<td>10</td>
</tr>
<tr>
<td>C-2</td>
<td>559.1</td>
<td>10</td>
</tr>
<tr>
<td>C-3</td>
<td>581.1</td>
<td>10</td>
</tr>
<tr>
<td>NT-1</td>
<td>428.3</td>
<td>10</td>
</tr>
<tr>
<td>NT-2</td>
<td>470.9</td>
<td>10</td>
</tr>
<tr>
<td>NT-3</td>
<td>416.7</td>
<td>10</td>
</tr>
<tr>
<td>M-1</td>
<td>342.1</td>
<td>10</td>
</tr>
<tr>
<td>M-2</td>
<td>342.1</td>
<td>10</td>
</tr>
<tr>
<td>M-3</td>
<td>324</td>
<td>10</td>
</tr>
<tr>
<td>FLG-1</td>
<td>375.9</td>
<td>10</td>
</tr>
<tr>
<td>FLG-2</td>
<td>412.7</td>
<td>10</td>
</tr>
<tr>
<td>FLG-3</td>
<td>383.2</td>
<td>10</td>
</tr>
<tr>
<td>ABCA-1</td>
<td>270.7</td>
<td>15</td>
</tr>
<tr>
<td>ABCA-2</td>
<td>249</td>
<td>15</td>
</tr>
<tr>
<td>ABCA-3</td>
<td>268.3</td>
<td>15</td>
</tr>
<tr>
<td>TGM-1</td>
<td>446.7</td>
<td>10</td>
</tr>
<tr>
<td>TGM-2</td>
<td>418.7</td>
<td>10</td>
</tr>
<tr>
<td>TGM-3</td>
<td>354.2</td>
<td>10</td>
</tr>
<tr>
<td>ALOX-1</td>
<td>401.5</td>
<td>10</td>
</tr>
<tr>
<td>ALOX-2</td>
<td>379</td>
<td>10</td>
</tr>
<tr>
<td>ALOX-3</td>
<td>393.5</td>
<td>10</td>
</tr>
<tr>
<td>ICH-1</td>
<td>366.4</td>
<td>10</td>
</tr>
<tr>
<td>ICH-2</td>
<td>384.6</td>
<td>10</td>
</tr>
<tr>
<td>ICH-3</td>
<td>409.9</td>
<td>10</td>
</tr>
<tr>
<td>STS-1</td>
<td>356.9</td>
<td>10</td>
</tr>
<tr>
<td>STS-2</td>
<td>347.5</td>
<td>10</td>
</tr>
<tr>
<td>STS-3</td>
<td>395.7</td>
<td>10</td>
</tr>
</tbody>
</table>

1.2 RNA quantity and quality for microarray analysis: nanodrop.

C=control, M=mock, NT-non-targeting