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Abstract

Quiver gauge theories are widely studied in the context of AdS/CFT, which establishes a cor-
respondence between CFTs and string theories. CFTs in turn offer a map between quantum
states and Gauge Invariant Operators (GIOs). This thesis presents results on the counting and
correlators of holomorphic GIOs in quiver gauge theories with flavour symmetries, in the zero
coupling limit.

We first give a prescription to build a basis of holomorphic matrix invariants, labelled by
representation theory data. A finite N counting function of these GIOs is then given in terms
of Littlewood-Richardson coefficients. In the large N limit, the generating function simplifies
to an infinite product of determinants, which depend only on the weighted adjacency matrix
associated with the quiver. The building block of this product has a counting interpretation
by itself, expressed in terms of words formed by partially commuting letters associated with
closed loops in the quiver. This is a new relation between counting problems in gauge theory
and the Cartier-Foata monoid. We compute the free field two and three point functions of the
matrix invariants. These have a non-trivial dependence on the structure of the operators and
on the ranks of the gauge and flavour symmetries: our results are exact in the ranks, and their
expansions contain information beyond the planar limit.

We introduce a class of permutation centraliser algebras, which give a precise characterisa-
tion of the minimal set of charges needed to distinguish arbitrary matrix invariants. For the
two-matrix model, the relevant non-commutative algebra is parametrised by two integers. Its
Wedderburn-Artin decomposition explains the counting of restricted Schur operators. The struc-
ture of the algebra, notably its dimension, its centre and its maximally commuting sub-algebra,

is related to Littlewood-Richardson numbers for composing Young diagrams.



Contents

1 Introduction
1.1 Strings, dualities and quivers . . . . . . . . . . . .. . . 9

1.2 The one and two-matrix problem in N' = 4 Super Yang-Mills: multi-trace opera-

tors and giant gravitons . . . . . . ... ... 10
1.2.1  One-matrix problem . . . . . . .. .. .. o 12

1.2.2 Two-matrix problem . . . . . . . . . . . . .. ... 19

1.3 Generalisation to quiver gauge theories . . . . . . . . ... ... ... L. 23
1.4 Definitions and framework . . . . . . . .. ... L 25
2 Counting Functions and the Cartier-Foata Monoid 28
2.1 From gauge invariants to determinants and word counting . . . . . . . .. .. .. 31
2.1.1 Generalization to flavoured quivers . . . . . . .. ... ... ... ..., 32

2.2 Group integral formula to partition sums . . . . . ... ..o Lo 33
2.2.1 The generating function Z and the building block FI"l . . . . .. .. .. 41

2.3 The unflavoured case: contour integrals and paths on graphs . . . . . .. .. .. 42
2.3.1 F(gn] and the sum over subsets . . . . . . ... ... 50
2.3.2 F(gn] and determinants . . . .. ... L L L L L 51

2.4 Word counting and the building block ™ . . . . ... ... ... ... ... ... 52
2.5 The flavoured case: from contour integrals to a determinant expression . . . . . . 57
2.6 Afewexamples . . . . . . L 60
2.6.1 Onenode quiver . . . . . . . . . .. e 60
2.6.2 Twomnode quiver . . . . . . . . . .. L 63
2.6.3 Three node quiver: dPy . . . . . . . . . ... 65

3 Correlators in the Quiver Restricted Polynomials Basis 67
3.1 Gauge invariant operators and permutations . . . . . . . . . ... ... ... ... 69
3.2 The quiver restricted Schur polynomials . . . . . .. ... ... ... ....... 75
3.2.1 The quiver characters . . . . . . . . . . . ... 79

3.3 Two and three point functions . . . . . .. ... ... ... ... ... ... .. 83
3.3.1 Hilbert space of holomorphic gauge invariant operators. . . . . . . . . .. 83

3.4 Chiral ring structure constants and three point functions . . . . . . . .. .. ... 88
3.4.1 Diagrammatic derivation foran N =2SQCD . . . . ... .. ... .... 94



CONTENTS

3.5 An example: quiver restricted Schur polynomials for an N =2 SQCD . . . . .. 97
4 Permutation Centraliser Algebras 108
4.1 Definitions and Key examples . . . . . .. .. ..o 0oL 110
4.2 Structure of the A(m,n) algebra . . . . ... ... ... . 000 L. 111
4.2.1 Symmetric group characters and the pairing on the centre Z(m,n) . .. 116
4.2.2 Maximal commuting subalgebra . . . . .. ... o000 119
4.3 Star product for composite operators . . . . .. ..o oL 120
4.3.1 Omne matrix problem . . . . . . .. ... 120
4.3.2 Two matrix problem . . . . . . ... L L oo 123
4.3.3 Cartan subalgebra and the minimal set of charges . . . .. ... ... .. 127
4.4 Computation of the finite N correlator . . . . . . . .. .. ... ... .. ... .. 128
4.5 Numerical checks, possible applications and other examples . . . . ... ... .. 131
4.5.1 Structure of the centre . . . . . .. ... L oo 131

4.5.2 Construction of quarter-BPS operators beyond zero coupling and the struc-
ture constants of A(m,m). . .. ... Lo 132
4.5.3 Non-commutative geometry and topological field theory . . . . ... ... 133
4.5.4 Other examples of permutation centralizer algebras and correlators . . . 134
5 Conclusions and Outlook 137
Appendices 140
A Quiver Characters and Correlators: Proofs 141
A.1 Operator invariance . . . . . . . . . . .. 141
A.2 Quiver character identities . . . . . . . . . ... 144
A.2.1 Invariance Relation . . . . . . . . . . .. ... .. 144
A.2.2 Orthogonality relations . . . . . .. . ... ... . oL 147
A.3 Deriving the holomorphic gauge invariant operator ring structure constants . . . 156
A4 Quiver restricted Schur polynomials for an ' =2 SQCD: 7 = (2,2, 2) field content 169
B Proofs and Derivation of the Counting Formulae 176
B.1 Generating function . . . . . . ... L Lo 176
B.1.1 Derivation of the generating function . . . . . . .. ... ... . ... ... 176
B.1.2 A contour integral formulation for FI"l . . . .. ... 181
B.2 Residues and constraints . . . . . . .. ... L Lo Lo 190
B.3 Three node unflavoured quiver example . . . . . ... ... ... ... ...... 194
B.3.1 Permutation formula . . . . . . . ... ... o 197
B.3.2 Determinant formula . . . . . . .. ... oo 198
B.4 An equation for the pole coefficients in term of paths . . . . . .. ... ... ... 199
B.5 The building block F(En] and closed string word counting: Examples . . . . . . . . 202
B.6 Deriving the flavoured FI™ function . . ... .. .. ... ... ... ... .. .. 205



CONTENTS

C Useful Formulae for the Permutation Centraliser Algebras

C.1 Analytic formula for the dimension of M(m,n) . . . .. ... ...
C.1.1 Multi-variable polynomials . . . .. .. ... ... .....
C.2 LR rule for hook representations . . . . ... ... ... .. ....

C21 (Y,)Y)case . . ... ... ...

C22 (Y.N)case . . ... ...

C23 (N)N)case . .. ... ... i

C24 (NJY)case . . ... ... i

C.25 Asummary . . . . .. ...

C.3 Deriving the two point correlator . . . . . . . .. .. ... ... ..
Bibliography

210



Chapter 1

Introduction

1.1 Strings, dualities and quivers

String theory is one of the most promising candidates for a theory of everything. Born in
the late '60s as a mathematical model to explain the dualities of strong interactions in nuclear
physics [4], has been later reinterpreted as a possible way to consistently describe a unified theory
of gravitation and quantum physics. It was found that the spectrum of a certain one-dimensional
object propagating in spacetime, a bosonic closed string, contained an excitation with all the
correct quantum numbers of a graviton. Some of the initial flaws of the model, most notably
the absence of fermions and an unstable vacuum, have been overcome by the introduction of
supersymmetric string theory. In a supersymmetric theory, bosonic and fermionic particles
always come in pairs, and each pair shares important quantum numbers such as energy. It is
however important to underline that the existence of supersymmetry in Nature has still to be
proven. One the one hand, superstring theory is a remarkable model, truly a unifying theory. On
the other hand, many questions are still unanswered. For example, the theory is mathematically
sound only in ten dimensions. This value is known as the critical dimension of superstring theory,
and is the only one for which the theory is not anomalous. Therefore the quest for the missing
dimensions commenced. Many are the proposed solutions: according to one interpretation, the
6 missing dimensions are coiled up and form a compact topology, so small that we can not
probe it even with the most powerful collider. This idea was proposed during the so-called
first superstring revolution that started in 1984. That year signed the beginning of a period
during which many important discoveries heightened the scientific interest in string theory. For
example, it was found that the Green-Schwarz mechanism allowed for the anomaly cancellation
in type I superstring theory [5]. This was probably the single most important result of the first
superstring revolution. Other string theory models, such as the heterotic string, were theorised
as well in this time frame. These models were also shown to be anomaly-free.

Between 1994-1996 the second superstring revolution began. In 1995 Edward Witten sug-
gested that all the different string theory models could be particular limiting cases of a new
eleven dimensional theory, “mother” to all of the others [6]. This is M-theory. In the same

year Joseph Polchinski showed that, by themselves, strings are not enough to make a consistent



CHAPTER 1. INTRODUCTION

string theory, but one instead needs to add to the model other multi-dimensional extended ob-
jects [7]. This discovery considerably enriched the already vast mathematical landscape of string
theory. Finally, in 1997 Juan Maldacena proposed a duality [8] between type IIB string theory
propagating on a suitably chosen curved background, called AdSs x S°, and a supersymmetric
gauge theory in four flat dimensions, A’ = 4 Super Yang-Mills. This conjecture, called simply
AdS/CFT, has different formulations differing by the strength of their statement, and gave a
new thrust to string theory research. It is the most successful realisation of the holographic
principle, firstly proposed by Gerard 't Hooft, which states that the physical description of a
volume of space can in fact be encoded by the physics happening at its boundaries - not unlike
an actual hologram. One of the many reasons why AdS/CFT is so important is that it is a
weak-strong duality. This means that the strong interacting regime of one side of the duality,
where it is hard to perform computations, is mapped to the weakly interacting regime on the
other side, which is more tractable. Is is however important to say that creating the explicit
dictionary, that is mapping excitations on the gravity (string) side to excitations of the gauge
theory side, is not an easy task, and only a few examples are known. Over the years, gener-
alisations of the duality have been proposed. In these cases, the string theory is defined on a
different background (still involving AdS space), and are dual to more exotic gauge theories,
sometimes called quiver gauge theories. AdS/CFT is the central motivation of this thesis. We
will be focusing on the gauge side, and in particular we will study the counting and correlators

of matrix invariants in quiver gauge theories.

1.2 The one and two-matrix problem in N = 4 Super Yang-

Mills: multi-trace operators and giant gravitons

A number of questions on gauge invariant functions and correlators of multiple-matrices have
been studied in the context of N = 4 Super Yang-Mills (SYM). The impetus for these develop-
ments in physics, as we stated in the previous introductory section, has come from the AdS/CFT
correspondence [8-10], notably the duality between the N' =4 SYM theory with U(N) gauge
group and AdSs x S°. N/ =4 SYM is a maximally supersymmetric gauge theory in four dimen-
sion. Quite remarkably, it is the only consistent theory with these characteristics. On top of that
it is a Conformal Field Theory (CFT), meaning that it does not flow under its Renormalisation
Group action. The single coupling coefficient of the theory thus does not run when the energy
scale is changed. The conformal symmetry of the theory gives extra motivation, because of the
operator-state correspondence: quantum states correspond to gauge invariant local operators,
which are composite fields. These can be matrix-valued fields which are space-time scalars,
fermions, field strengths or covariant derivatives of these. A generic problem is to understand
U(N) invariants constructed from a number n of such fields

O.jl,"' 7“7‘" ~ ‘Fjl .. fj"‘ (121)

1, 5in Ly Nyin

10



CHAPTER 1. INTRODUCTION

This is subsequently used to understand their correlation functions. The n upper indices each
transform in the fundamental of U (), which we call V', while the lower indices transform in the
anti-fundamental, labelled V. Hence, an important ingredient is the nature of the invariants in
Ve V@, The number of linearly independent invariants is n!. They are obtained from (1.2.1)
by suitably contracting all the upper indices with a permutation of the lower ones. Let us now
focus on the special case in which all the F fields are scalars. There are six real scalars in N’ = 4
SYM, labelled ¢¢, transforming in the fundamental representation of SO(6) (or equivalently in
the antisymmetric representation of the SU(4) R-symmetry group). The euclidean action on

R x S3 for this bosonic scalar subsector is given by

5=y [Lao [ 508 (500006 + {16677 - 1) 122)

where A\ = g%, u NV is the 't Hooft coupling and D is the gauge covariant derivative. The mass
term ~ ¢'¢’ is a consequence of the conformal coupling to the metric of S3. It is customary

then to combine these six real fields into three complex holomorphic fields

X=¢1+id2, Y =¢3+ida, Z = ¢5 +igs (1.2.3)

The advantage of formulating the model in this way is that all half-BPS states of the gauge theory
can be described in terms of an ordinary matrix quantum mechanics [11]. This is a consequence
of the state-operator map. Half-BPS operators transform in the [0,n,0] representation of the
SU(4) R-symmetry group, and are eigenstates of the dilatation operator with eigenvalue A = n.
Let us consider the insertion of a half-BPS (local) operator at the origin of R*. The operator-
state correspondence associates to this operator on the plane a quantum state on R x S3.
Moreover, working in radial quantisation, the dilatation operator acting on the former becomes
the Hamiltonian for the quantum theory on the latter. Let us now focus on a single scalar field,
e.g. Z(Z,t), with the intent of building protected operators out of it. Restricting to a single
field, the R-symmetry group acts as an U(1) abelian group, and we can label representations
just by using their U(1) charge, n. Furthermore, since Z(&,t) is a scalar, it has classical scaling

dimension A = 1. Its Taylor expansion around the origin of a R? slice at fixed time ¢ is
e.9]
Z(%,t)=Z(0,t) + 1 OOy O, Z (T )] g 2 (1.2.4)

Since every derivative on the RHS contributes to the scaling dimension with one unit, the j-th
term in the sum will have A = j + 1. However, the R-charge of Z(Z,t) is fixed to 1 on both
sides of this equality. For protected operators, the R-charge must be equal to their scaling
dimension. This means that, for constructing half-BPS operators, only the Z(0,¢) term on the
RHS of (1.2.4) can be used. We conclude that to construct the half-BPS states in N’ =4 SYM

one only needs the S-wave reduction of the decomposition of the complex scalar fields, Z(0,t).

11



CHAPTER 1. INTRODUCTION

This is a one-matrix quantum mechanics. For example, the state

T [ 2(0,6)T Z2(0,6)T--- Z(0,8) | |2) (1.2.5)

n times

is a half-BPS supergravity mode on the S° internal space of AdSs x S°, where |Q2) denotes the
vacuum of the theory.

In the following sections we will focus on the one and two-matrix sector of the theory. We
will count and construct all the local matrix invariants made with at most two complex matrices,
give a finite N expression for their free field correlators and present evidences for what their

gravity duals are.

1.2.1 One-matrix problem

We consider here the case in which all the n operators F in (1.2.1) are the same complex scalar
matrix, X = ¢1 + i¢2. Since these fields live in the adjoint representation of U(N), a gauge

transformation by a unitary matrix U acts as
X - UXU! (1.2.6)

The matrix invariants are single- and multi-trace operators built with n copies of the same
matrix X. Arguably the simplest way to construct an invariant out of n copies of the same

matrix X is just to take the trace of their product. The result is a single-trace operator:
O~ Tr(X") (1.2.7)

These operators are interesting to study as they belong to a half-BPS multiplet: supersymmetry
protects their energy and they do not receive quantum corrections. As we stated in the previous
section, their conformal dimension is A = n and they transform in the [0, n, 0] representation of
the SU(4) R-symmetry group. We can also construct multi-trace invariant operators, by simply

taking products of single-trace operators:

O ~ Tr(XF)hTr(XF2)2 .. > kjilj=n (1.2.8)
j

One then asks what is the AdS/CFT dual of these operators. It has been shown that for
n < N they are dual to graviton excitations [9]. Single-trace operators (1.2.7) correspond to
single particle bulk excitations. In this case the number of X fields, n, is interpreted as the
angular momentum of the Kaluza-Klein graviton on the S° space. The construction of the Fock
space in the gravity side is then immediate for these excitations, as we can simply associate to
each single-trace operator a unique graviton mode. Multi-trace operators (1.2.8) are mapped
to multi-particle graviton excitations. For n = O(v/N) the gauge invariant (1.2.8) are dual to
strings [12]. For n = O(N) they are dual to giant gravitons [13]. These are gravitons with a very

12



CHAPTER 1. INTRODUCTION

large angular momentum: for large N the Myers effect [14] causes them to stretch into spherical
D3 branes expanding into either the AdS or the compact S® space of the AdSs x S® geometry.
The brane action in this background, when a RR flux is turned on, admits stable BPS solutions
- the giant gravitons. We will have more to say about these objects later in this section.

We will now focus on the problem of counting and computing correlators of single and multi
trace operators, made with n copies of a single complex matrix X. An effective approach to both
of these problems relies on permutations technology. As briefly stated in the previous section,
we can specify a composite operator by contracting the upper indices of (1.2.1) with a suitable
permutation of its lower indices. When all of the fields F are the taken to be the same, F = X,
this results in

Oo(X) = X! - X[ (1.2.9)
where o is a permutation of n elements, o € S,,. An equivalent way to write this equation is as

follows:
Os(X) = Tryen (X¥"0) (1.2.10)

Here the trace is taken over the tensor product space V®", where V is the fundamental repre-
sentation of U(N). Operators written in the form of (1.2.10) are often said to be in the ‘trace

basis’. The permutation o acts as the map

o yen — yen
S L . (1.2.11)
‘Z17127'”7Zn> — ‘ZU(1)710(2)7"'7ZU(n)>
with each |i) € V. Introducing the shorthand notations
1) = |i1, ... in) € V", (J| = (J1, s in] € V", (1.2.12)

where V is the antifundamental representation of U(N), we can write the matrix elements of
X®" and o as

o\l ® I . ;.
(xm), =Xy (o) =65, 0, 0 (1.2.13)
Therefore, we have
I K . ok k ke i .
(X)) = (X)) (o) = X - Xpr 85! 052 e 0 = X0 e X (1.2.14)

Tracing the RHS above gives eq. (1.2.9).
Eq. (1.2.10) can also be interpreted diagrammatically. If we draw the matrix elements
(X®”)§ and (o)’ as in Figure 1

13
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I 1
(xeny) ~ [ xen @ ~|
J J

Figure 1: Diagrammatic description of the matrix elements of X®" o € S,,.

then we can draw the operator O,(X), defined in (1.2.10), as in Figure 2. The horizontal

bar in this figure denotes the tracing of the indices.

X®n

Op(X) = Tryen (X®"0) =

Figure 2: Diagrammatic description of O,(X), as defined in eq. (1.2.10). The horizontal bars in the
diagram in the far RHS denote the identification of the indices, to form a trace.

Distinct o related by conjugation, i.e. o and yoy~! for some y € S,,, give the same operator:
~1(X) (1.2.15)

This is most easily seen from the definition (1.2.10), where we just need to use the cyclicality of
the trace and the fact that

[X®" 4] =0, o €Sy, (1.2.16)

The latter equation is just the statement that the adjoint action of 7 on a tensor product
X®" just reshuffles its constituent fields X. The equivalence relation (1.2.15) can also be seen

pictorially as in Figure 3.

14
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4 771 {
xe&n
xen xen
0707‘1()() = Dj - Elyj = ! = 0,(X)
o
o o
771

Figure 3: Diagrammatic interpretation of eq. (1.2.15).

Therefore, gauge invariants made with n complex matrices X are in a 1-1 correspondence
with the conjugacy classes of S,,, rather than permutations o € S,,. Since in S,, there are p(n)
conjugacy classes, where p(n) is the number of integer partitions of n, for fixed n we can form
up to p(n) invariants. This counting does not address the issue of finite N effects, that we will
discuss later in this section. The large N generating function for the counting of these operators

is therefore

1—2at
=1

Z(z) = Zp(n) " = H ! (1.2.17)

Aside from enumerating invariants, this permutation approach has been used to compute cor-
relators in the free field theory. Let us then consider the correlator <O(71 (X)(x1), o}, (X )(x2)>,
where we made the spacetime dependence of the two matrix invariants explicit. Using Wick
contractions we can decompose an n-point function into the sum of a product of propagators of

the form

dmx_00)

i 7@1 =)’ (1.2.18)

(Xi(1), X]*(22)) =
thus obtaining

. . in k k kn
(0 @)X () X ), X ) X[ )+ X[ )

AT A\ " 1 i1 ky1y cig ko (2) i by ()
- ( N > (x1 — x2)2” ZS 5lw(1) 61'1 5l7(2) 63’2 e '517(71) 5jn (1.2.19)
YESRn

From here it follows that, using the definition (1.2.9)

ot 81) - () e o) 2

YESn YESK

15
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Since the spacetime dependence in these correlators is trivial, we will drop it from our equations,

assuming it always implicit. We will also omit the coupling constant term, %, as it can always

be easily reinstated. The correlator above would then have the notationally simpler form

<(’)01 (X), OLQ(X)> =) Tryen (yory oy ") (1.2.21)
YESn

Using the diagrammatic description of the Wick contractions (1.2.19) shown in Figure 4

,, ,, o
<X®” 9 XT®"> :Z \11

Figure 4: Diagrammatic description of the Wick contractions (1.2.19).
we can interpret the correlator (1.2.21) as in Figure 5.
<X®"7XT®”>:§: \11

Figure 5: The correlator (1.2.21) in diagrammatic notation.

Now by using the relation
Tryen (o) = NI (1.2.22)
where C[o] is the number of cycles in the permutation o, we can rewrite eq. (1.2.21) as

<001(X), OI’Q(X)> — Z NC[WUW*IUQ—I]

YESh
= > N5 (vory7 oy ) (1.2.23)
a,YESn
where §(o) is the symmetric group delta, defined to be one iff ¢ = 1 and zero otherwise.

16
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Interestingly, this formula has also an interpretation in terms of the counting of branched covers
with three branch points over the sphere P! (see for example [15] and references therein). A few
comments are now in order. This correlator is N-exact, meaning it contains all the powers of
N. The planar limit is recovered by taking the leading power of N, which is given by the o =1
term in the sum on the RHS. This is because the identity permutation has the highest number

of cycles, C[1] = n. Therefore

<001(X), OLQ(X)> =N S 5 (oryloy ) (1.2.24)

lanar
P 'YGSTL

The RHS above is zero unless o1 and o9 are in the same conjugacy class. Since matrix invariants
are labelled by conjugacy classes, rather than permutations, we can say that the trace basis
(1.2.10) is orthogonal in the planar limit. However, we can now appreciate how the planar limit
and the large N limit, which are sometimes used interchangeably, are in fact quite different.
Consider the Next to Leading Order (NLO) correction of (1.2.23). It is

<(901 (X), OZZ(X)>N.L.O. = Z Z N6 (yory~toy ) (1.2.25)

a€Trasp. yESn

Here Trasp. is the set of transpositions of n elements. If n approaches order N, the combina-
torial factors ZaeTmsp_ Zvesn 4] (’yan‘lagla) in (1.2.25) become very large, overpowering the
suppression by powers of 1/N? of non-planar diagrams [16]. As such, this contribution can not
be discarded. The same consideration also holds for the other subleading orders. Therefore, the
trace basis (1.2.10) is not diagonal, even in the large N limit.

In the introduction we stated that matrix invariants made with n = O(NV) copies of the
matrix X are dual to giant gravitons. It becomes now apparent that GIOs built with a fized
number of traces, by themselves, cannot be dual to the latter. It is therefore important to find
a basis which diagonalises these matrix invariants. Another reason why it is desirable to find
another description of these states are finite N constraints. The set of O,(X), o € Sy, form in
fact a suitable basis only for n < N. For n > N the Cayley-Hamilton theorem implies that every
element of the form Tr(X N Jrk), k € Ny can be decomposed in a sum of multi-trace operators.

The way around both these problems has been resolved in [17]. The idea is to pass from the
permutation-based description that we have discussed so far to its dual description, which is
expressed in terms of representation theory data. This map is referred to as a Fourier transform
on the symmetric group. Instead of labelling an operator by a conjugacy class of Sy, as in
(1.2.10), we will label it with a Young diagram made with n boxes. Such diagrams are in a
1-1 correspondence with irreducible representations' of S,. This leads to the construction of

operators in the half-BPS sector parametrised by Young diagrams [17,18]. Operators built with

Since in this thesis we will not consider reducible representations, we will sometimes refer to an irreducible
representation simply as a representation.

17
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this formalism are called Schur operators, and are defined as:

OR(X) = 3 xu(0) Op(X) (1.2.26)
" oES,

where xgr(o) is the ordinary character of the representation R of S,. The set of operators of
the form (1.2.26) is sometimes called the ‘Young basis’, or ‘representation basis’. In [17] it was

shown that the operators in (1.2.26) diagonalise the pairing

n!Dim(R)

<OR(Z)702(Z)> =0R,s i

(1.2.27)
Here R, S are both representations of S,,, Dim(R) is the dimension of the U(N) representation
R and dp is the dimension of the .S, representation R. We will continue to use this convention
throughout this thesis.

There are a number of other features of Schur operators that help us in mapping them to
their gravity duals. In the founding paper [13], it was argued that giant gravitons extend to a
size of radius proportional to the square of their angular momentum. If the giant is extending
in the 5-sphere of the AdSs x S° space, its size has to be less than the one of the S°. This is the
manifestation of the stringy exclusion principle [19]: the particle cannot be bigger than the space
that contains it. This constraints therefore imposes a boundary on the angular momentum of
the graviton, which on the gauge theory side translates into a boundary for the R-charge of the
dual operators. Schur operators Or(X) associated to completely antisymmetric representations
have the constraint that the length of the first column of the representation R, ¢1(R), must be
at most equal to the rank N of the gauge group, ¢1(R) < N. In [16] the authors showed that
this boundary perfectly matches the cut-off of giant gravitons. This is a strong suggestion that
Schur operators of totally antisymmetric representations are dual to spherical giants. On the
other hand, since the anti-de Sitter space of the background is unbounded, AdS gravitons have
no size constraint to satisfy. It is then natural to associate them to the dual Schur operators
whose representation is totally symmetric.

Operators whose Young diagrams have order one long rows and order one long columns
are mapped to a system of AdS and spherical giants respectively [17]. Since the length of the
first column (row) of the Young diagram parametrising the giant is proportional to its angular
momentum, and since the angular momentum determines the size of the giant, a Young diagram
with order one long columns (rows) of the same length is mapped to a system of AdS (spherical)
giants whose worldvolumes overlap. On the other hand, Young diagrams with rows (columns)
of different length are mapped to giants with separated worldvolumes. In this multi-particle
context, the constraint ¢1(R) < N imposes a bound on the number of AdS giant gravitons. The
interpretation of this limit in the gravity side is given in terms of the Ramond-Ramond 5-form
flux originating at the centre of the AdS. When the threshold of N AdS giants is reached, adding
a further giant would reverse the sign of the flux, causing the collapse of some of the branes [20].

This argument shows that any system with more than N AdS giants is not stable.
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Three point functions of these half-BPS operators are known as well [17]. Consider then
three operators of the form given in (1.2.26), Or(X), Os(X), Op(X). Here R, S and T are
Young diagrams of S,,, S, and Sy,+r. Notice that we do not require m and n to be equal. The

computation of [17] gives

(m + n)! Dim(T)
dr

(OR(X) 05(X) O} (X)) = g(R. $;T) (1.2.28)
The key quantity on the RHS above is the Littlewood-Richardson (LR) coefficient g(R, S;T).
This is the number of times the representation 7" appears in the tensor product of representations
R® S [11,21-24]. LR coefficients will be reviewed in Appendix C.2. This is essentially the
quantity that controls the mixing of the representations R and S to give T', and it will be a
central element of this thesis. They are all positive integers, and can be expressed in terms of

the Unitary group integral
o(1.5:7) = [ DUXR()sOxs(U) (1.2.29)

where DU is the Haar measure and the xr(U) are the ordinary symmetric group characters.

Restoring the spacetime dependence in (1.2.28) gives

(m +n)! Dim(T)
dr|zy — x3|™ |z — x3|"

(OR(X)(@1) O5(X)(w2) OL(X)(25) ) = 9(R, $:T) (1.2:30)

Notice that the denominator is missing the term (x; — xQ)A1+A2*A3. This is because the O’s
are protected operators, and their conformal dimension do not receive quantum corrections, so
that A1 = m, As = n and Ag = m + n exactly. Therefore A1 + Ay — Ag = 0 at all orders in
perturbation theory.

In [17] it is also given the form for the generic k point extremal correlators. The result of
the computation is very similar to the RHS of (1.2.28), with the g(R, S;T) coefficient replaced
by the generalised LR coefficient

g(R1, Ro, ..., Ri; R) = Z g(Rq, Ra; 51) g(S1, R3;.52) - - - g(Sk—2, Ri; R) (1.2.31)
51,52, Sk_2

We only state these results without proving them, for a detailed derivation see [17].

1.2.2 Two-matrix problem

In this section we consider invariants built from two types of matrices, say m copies of X and
n copies of Y. We are interested in holomorphic polynomials in two complex matrices (X,Y)

that are invariant under a U(N) gauge symmetry that acts as
(X,Y) - (UXUT,UYUY) (1.2.32)
Like in the one-matrix problem, matrix invariants will be single- and multi-traces polynomial
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in the XY matrices. These operators are generally not protected. It has been proposed that
operators of this from are AdS dual to excitations of giant gravitons [11]. We stated earlier
that a giant graviton is constructed by taking n = O(N) copies of the same matrix, e.g. X.
Consider now a matrix invariant made with a large number m = O(N) of X-type matrices
and a few Y-type matrices, n = O(\/N ). The latter can be considered as ‘impurities’, and can
be interpreted as open strings emanating from the giant graviton, which is in turn generated
by the X matrices. The endpoint of the open string attached to the giant acts as a point-like
charge for its world-volume theory. Since the net charge of a giant has to be null, Gauss law
implies that for every string ending on the giant, a string must be leaving it. This proposal first
appeared in [11], where the author tested it by showing that the counting of the states satisfying
the Gauss constraint on the gravity side matches the counting of matrix invariants built with
two matrices. We will now describe the construction of these matrix invariants. The procedure

closely follows the one discussed in the one-matrix problem case. We define O,(X,Y) as
Os(X,Y) = Tryamn (X" @ Y®"0) (1.2.33)

which we represent as in Figure 6.

Figure 6: Diagrammatic description of O,(X,Y), as defined in eq. (1.2.33).

Permutations related by conjugation under the subgroup S, x S, label the same matrix

invariant:
0,(X,Y) = O,YU,Y—I(X,Y), v € Sm X Sy (1.2.34)

This is a generalisation of the equivalence (1.2.15) to the two-matrix case. The key difference
is that the permutation « is an element of the subgroup S,, X Sy, C Sp+n, rather than the full
group Sm+n. This identity is best understood pictorially as in Figure 7.
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11

X®7n Y®n X(X)m Y@n X®1n Y®n

Y=" X2 g g
I

Figure 7: Conjugate permutations under the subgroup S, x S, label the same matrix invariant. In the
picture, v =1 X ¥s.

In the large N limit, where the only constraint is expressed by eq. (1.2.33), the counting of
matrix gauge invariant is expressed by [25]
oo 1 o
Z(x,y) = H R p— = Z xmy" (# of matrix invariants with m,n copies of X, Y)

=1 m,n=0

(1.2.35)

Using Wick contractions, and suppressing the coupling constant and the spacetime depen-

dence of the operators, we can write the free field correlator as

<001 (X> Y)v O:rfg (X7 Y)> = Z HV@(M+H) (01702_1’7_1)
YESm X Sn

= > > NU§(o1y0,y ) (1.2.36)

Q€ESm4n YESm X Sn

This equation should be compared to the one-matrix case equivalent, eq. (1.2.23). The difference
is only in the sum over the permutation v, which, as in eq. (1.2.34), is now restricted to the
subgroup Sy, X S, C Simtn-

As we did for the one-matrix problem, we can now use the Fourier transform on the symmetric
group to map the operators in (1.2.33) to their respective dual, which are expressed in terms of
representation theory quantities. In this case, however, we will need more than a single Young
diagram to unequivocally specify a GIO. Given that the permutation basis was expressed in
terms of the embedding S, X S, C Spman, it is expected that the representation basis will know
about this reduction as well. Let us take an irreducible representation V}‘gm*" of Sm+n and to
restrict Si,+n to its subgroup Sy, X .S, C Spman- Vg’”*” becomes then reducible, and decomposes

as

S’m n m n
Ve ~ D Viy @ Vigy © Vi, (1.2.37)

Ri,Ro

Sm X Sn

where Vp™ and Vg; are irreducible representations of S, and Sy respectively. Vlg R, 18 the
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multiplicity vector space: it is in fact possible that the same representation Ry ® R appears
more than once in the decomposition of R, and this vector space keeps track of these possible
iterations. The dimension of the multiplicity vector space v is given by the LR coefficient
g(R1, Ra; R), already introduced in the previous section: dim (V}%RQ) = g(R1, Ro; R).

In the permutation basis description of the two-matrix sector, matrix invariants were labelled
by Sm X S, conjugacy classes, rather than Sy, t,. It is then natural to think that the repre-
sentation basis will be built with the vector space decomposition on the RHS of (1.2.37). The
application of this thinking leads to restricted Schur operators [11,22-24]. These are labelled by
three Young diagrams and a pair of multiplicity labels: a Young diagram R; with m boxes, a
Young diagram Ry with n boxes and a third diagram R with m +n boxes. The two multiplicity
labels i and j each run over a space of dimension equal to g(R1, Re; R). The restricted Schur

operators are written as

1

R
OR,y Rysig (X, Y) = —

Z Xgl,Rz;i,j(a—) OU(Xa Y) (1238)

UESm+n

Xﬁh Ry (0) 18 the restricted character, that we define as follows. Let D% (s) be the matrix
realisation of the permutation o in the representation R of Sy,4,. Let {|R1,{1)} be a basis for
the irrep V}%’” of S, and {|Ra, l2) } be a basis for the irrep V}i” of S,,. Also let |i) and |j) be states
in the multiplicity vector space VIQRQ. The state |R1,11) ® |Re,l2) ®|i) = |R1,11; Ra,l2; 1) is then
a natural basis element of the vector space on the RHS of (1.2.37). Aside from a normalisation

constant, we write the restricted characters as

Xy Rovij(0) = D (R, 115 Ry, o3| D (0)| Ry, Iy; Ry, los ) (1.2.39)

l1,l2

If |i) = |7), these object are just the trace of D®(c) over the V[gl’" ® Vg; vector space. If instead
4) # |5), we are evaluating D®(o) on a copy of Vgl’" ® V}%’L C Vg’”*" |s,, xS, labelled 7, and then
taking the pairing of the result on the basis of a different copy of V[gl’" ® Vg; C V5m+"| Sy XS s

labelled j (see for example the discussion in [26]). For this reason, another way to write them is

XELRQ;Z',]'(O-) = XR (P]}gLRQ;Z‘,j D%(a)) (1.2.40)

Here if ¢ = j, P}%’R%@j is the projector of the representation Vg’”*"|gmxsn on the i-th copy of
the representation Vgl’" ® VI%‘ C Vlgm“\ S, xS, whereas if 7 # j it is an intertwining operator
mapping different copies of Vglm ®V}§2”, labelled by ¢ and j, one onto another. We will have more
to say about these multiplicities label in the later chapters of this thesis, especially in Chapter
4.

It can be shown that the two point functions of gauge invariant operators in the two-matrix
sector are diagonalized by operators constructed using representation bases, such as the one in
(1.2.38). This was done with the Brauer basis in [27], with the U(2) covariant basis in [28, 29]
and with the restricted Schur basis in [30,31]. The key fact is that by using the Fourier trans-
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formation, which relates functions on a group to matrix elements of irreducible representations,
nice orthogonal bases of functions on these equivalence classes can be found. In mathematics,
in the context of compact groups this is known as the Peter-Weyl theorem. In the context of
finite groups, this follows from the Schur orthogonality relations.

On the other hand, the reason for the efficacy of permutation groups in enumeration of gauge
invariant operators is Schur-Weyl duality. This states that the tensor product of n copies of the

fundamental of U(N) decomposes into a direct sum of irreps of S,, x U(N)

vite @ virevy®W (1.2.41)
Clgg)]\S[N

Each summand is labelled by a Young diagram, and the Young diagrams are constrained to have
no more than N rows, equivalently the first column ¢;(R) is no greater than N. This uses the
fact that Young diagrams are used to classify representations of S, as well as representations
of U(N). This is useful in the permutation approach to gauge invariant operators, because it
says that once we have organised operators according to representation data for Sy, it is easy to
implement finite NV constraints. In the one-matrix problem, the single Young diagram label R
is cut-off at N, ¢;(R) < N. This leads directly to the connection between the stringy exclusion
principle for giant gravitons and Young diagrams [13,16,17,19]. In the two-matrix problem, the
Young diagram R is cut-off at ¢;(R) < N, which implies cut-offs for Ry, Ro. Within N/ = 4
SYM, perturbations of half-BPS giant graviton operators have been studied and integrability
at one-loop [32,32-36] and beyond has been established. The two-matrix problem can also
be approached using the walled Brauer algebra By(m,n) and its representation theory [27].
A third way to enumerate two-matrix invariants, also based on permutations but involving

Clebsch-Gordan multiplicities of S, keeps the U(2) global symmetry manifest [28,29].
The restricted Schur and covariant basis results have been extended beyond N =4 SYM to
the sector of holomorphic operators in general quiver gauge theories [1,26,36-39] which have
been shown to include sectors related to generalized oscillators [40]. Aspects involving Frobenius

algebras have been studied in [41].

1.3 Generalisation to quiver gauge theories

As we reviewed in the previous section, finite N aspects of AdS/CFT have motivated the study
of multi-matrix sectors of N' = 4 SYM, associated with different BPS sectors of the theory.
These multi-matrix systems are also of interest purely from the point of view of supersymmetric
gauge theory and their moduli spaces (e.g. [42]). These studies focused on the counting of gauge-
invariant operators, an inner product related to 2-point functions and higher point functions for
large N as well as at finite V. The connection between U (V) gauge invariants and permutations
was a central theme as well as representation theory of the permutation groups. The studies
were extended beyond N' = 4 SYM to gauge theories such as ABJM [43] and the conifold

[44-47]. In [26] these problems on counting and inner product were considered for general

23



CHAPTER 1. INTRODUCTION

quiver gauge theories. These theories, often arising in the context of 3-branes transverse to
6-dimensional singular Calabi-Yau, are associated with directed graphs, i.e. collections of nodes
with directed edges between them [48]. The gauge group of the theory is a product of unitary
groups, one unitary group for each node. The directed edges correspond to bi-fundamental
matter fields, which transform according to the anti-fundamental representation of the gauge
group corresponding to the starting node and the fundamental of the ending node. In the context
of AdS/CFT, adding matter to N' =4 SYM introduces flavour symmetries [49-53]. Typically,
the added matter transforms in fundamental and anti-fundamental representations of these
flavour symmetries. Matrix invariants in flavoured gauge theories do not need to be invariant
under the flavour group: on the contrary, they have free indices living in the representation
carried by their constituent fields. In this thesis, we consider a general class of flavoured free
gauge theories parametrised by a quiver. A quiver is a directed graph comprising of round nodes
(gauge groups) and square nodes (flavour groups). The directed edges which join the round nodes
corresponds to fields transforming in the bi-fundamental representation of the gauge group, as
illustrated in subsection 1.4. Edges stretching between a round and a square node correspond to
fields carrying a fundamental or antifundamental representation of the flavour group, depending
on their orientation. We will call them simply quarks and antiquarks.

It was shown in [26] that the quiver, besides being a compact way to encode all the gauge
groups and the matter content of the theory, is a powerful computational tool for correlators
of gauge invariants. In that paper a generalisation of permutation group characters, called
quiver characters, was introduced, involving branching coefficients of permutation groups in a
non-trivial way. Obtaining the quiver character from the quiver diagram involves splitting each
gauge node into two nodes, called positive and negative nodes. The first one collects all the
fields coming into the original node, while the second one collects all the fields outgoing from
the original node. A new line is added to join the positive and the negative node of the split-node
diagram. Each edge in this modified quiver is decorated with appropriate representation theory
data, as will be explained in the following sections. The properties of these characters, which
have natural pictorial representations, allowed the derivation of counting formulae for the gauge
invariants and expressions for the correlation functions.

In the first part of this thesis we study correlation functions of holomorphic and anti-
holomorphic gauge invariant operators in quiver gauge theories with flavour symmetries, in
the zero coupling limit. We will explicitly construct the operators and compute the free field
two and three point functions. These have non-trivial dependences on the structure of the oper-
ators and on the ranks of the gauge and flavour symmetries. Our results are exact in the ranks,
and their expansions contain information about the planar limit as well as all order expansions.
The techniques we use build on earlier work exploiting representation theory techniques in the
context of N' =4 SYM [11,17,18,22-24,27-29,54,55]. The zero coupling results contain infor-
mation about a singular limit from the point of view of the dual AdS. For special BPS sectors,
where non-renormalisation theorems are available, the representation theory methods have made

contact with branes and geometries in the semiclassical AdS background. These representation
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theoretic studies were extended beyond N' = 4 SYM to ABJM [43] and conifolds [44, 56-58].
The case of general quivers was studied in [26] and related work on quivers has since appeared
in [59-62].

As a way to understand the existence of the different bases in the multi-matrix problems, [54]
conducted a detailed study of enhanced symmetries in the free limit of Yang Mills theories. The
authors showed that Casimir-like elements constructed from Noether charges of these enhanced
symmetries can be used to understand these different bases. Different sets of these Casimir-
like charges each consist of mutually commuting simultaneously diagonalizable operators, which
associate the labels of the basis with eigenvalues of Casimir-like charges. Thus there is a set
of Casimir-like elements for the restricted Schur basis, another set for the covariant basis and
yet another set for the Brauer basis. The enhanced symmetries themselves take the form of
products of unitary groups, but the action of these Casimirs on gauge invariant operators can
be related, through applications of Schur-Weyl duality, to the algebraic structure of certain
algebras constructed from the equivalence classes of permutations or of Brauer algebra elements
discussed above. The discussion of charges which identify matrix invariants for general classical
groups has been given using a different approach in [63]. While a uniform treatment of the
Young diagram labels has been achieved, a treatment of the multiplicity labels running over

Littlewood-Richardson coefficients in that approach remains an interesting open problem.

1.4 Definitions and framework

In this thesis we consider free quiver gauge theories with gauge group [[,_; U(N,) and flavour
symmetry of the general schematic form [[I_, U(F,) x U(F,). Specifically, to work in the
most general configuration, we choose to focus our attention to the subgroup [[,_;[xgU(Fy )
X~ U(F, )] of the flavour symmetry where F, = > Fap and F, = > F, . This more general
flavour symmetry, where the U(F,) x U(F,) is broken to a product of unitary groups for the
quarks and anti-quarks, is likely to be useful when interactions are turned on. Our calculations
work without any significant modification for this case of product global symmetry, hence we
will work in this generality.

To recover the results for the global symmetry U(F,) x U(F,) it is enough to drop the
B,~ labels from all the equations that we are going to write. The constraint F, = F, solves
chiral gauge anomaly conditions. As a last remark, notice that strictly speaking the global
symmetry of the free theory contains only the determinant one part S(U(Fy1) x U(Fg2) X

- U(Fan,) X U(Fa1) X --- x U(F, j7.))- This means that, although for simplicity we write
[Th_y [xgU(Fa.p) x4 U(Fuy)] as the global symmetry, all the states we will write are neutral
under the U(1) which acts with a phase on all of the chiral fields and with the opposite phase
on all of the anti-chiral fields. This U(1) is part of the U(N,) gauge symmetry.

We now introduce the diagrammatic notation for the quivers. We follow the usual convention
according to which round nodes in the quiver correspond to gauge groups, whereas square nodes
correspond to global symmetries. Fields leaving gauge node a and arriving at gauge node b are

be denoted by @4, and transform in the antifundamental representation Vn, of U(N,) and
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the fundamental representation Vi, of U(N,). The third label o takes values in {1,..., Mg},
and is used to distinguishes between My, different fields that transform in the same way under

the gauge group. We can think of each ®,,, as a map
Papa : VN, = Vi, (1.4.1)

At every gauge node a we allow M, different families of quarks {Qq 3,5 = 1, ..., M, } transforming
in the antifundamental of U(N,) and M, different families of antiquarks {Qq~,y = 1,..., My},
transforming in the fundamental of U(N,). As for the field ®, the greek letters 8 and ~ distin-
guish the multiplicities of the quarks and antiquarks respectively. U(F, g) and U(F, ) represent
the flavour group of the quark Q, s and of the antiquark @, respectively. Figure 8 explicitly
show this field configuration for one node a of the quiver. Table 1 summarises instead all the

gauge and flavour group representations carried by every field in the quiver.

Qa,l Fa,l

Qa,Z Foa

Ub,a{éba,a}
Qa,MG Fo o,

Qa,l Fay

Figure 8: Pictorial representation of the fundamental fields (oriented edges), flavour group (square
nodes) for a single gauge node labelled a.

U(Na) | UN) || U(Fap) | U(Fap)
Dup.a O O 1 1
Poga | Adj 1 1 1
Qa,p O 1 O 1
Qary O 1 1 0

Table 1: Gauge and flavour group representations carried by @40, Qa,3 and Qaﬁ. 0O, O and 1 are
respectively the fundamental, antifundamental and trivial representations of the corresponding group.
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Chapter 2

Counting Functions and the

Cartier-Foata Monoid

In this chapter we will derive the counting function for the number of Quiver Restricted Schur
Polynomials, both for finite and large N. We will also establish a connection between the
counting of quiver gauge theory operators and a word counting problem associated with the
quiver graph. This creates a link between gauge invariant operators of quiver theories and the
mathematics of Cartier-Foata monoids [64,65]. The latter is expressed here in terms of a word
counting problem where the letters correspond to loops on a graph, with partial commutation
relations

The starting point of our derivation is the group integral formula for counting gauge invariant
operators [66,67]. The group integrals over U(N) are done by using character expansions. These
character expansions introduce characters of permutation groups, because of the Schur-Weyl
duality [68,69] link between unitary and symmetric groups. The finite N counting formulae
admit significant simplifications in the limit of large IN. At finite IV, the counting involves sums
over Young diagram labels. The sizes of the Young diagrams are related to the sizes of the local
operators. When these sizes are small compared to the ranks, the Young diagram sums run
over complete sets of representations of symmetric groups. This allows the use of formulae from

Fourier transformation over finite groups such as
1
3(0) = = 3 drxa(o) (2.0.1)
R

The delta function is 1 if ¢ is the identity permutation in S, - symmetric group of all permuta-
tions of m objects - and zero otherwise. The result is that the counting formulae can be expressed
in terms of sums over multiple permutations, related by delta function constraints. These sums
over permutations can be converted into sums over partitions, described by an infinite sequence
of integers p1,p9,---. This sequence is related to cycle lengths in the cycle decomposition of
permutations. The upshot is that the counting of gauge invariant operators at large rank can be

given in terms of a sum over the infinite sequence of integers p;. The general formula takes the

28



CHAPTER 2. COUNTING FUNCTIONS AND THE CARTIER-FOATA MONOID

form of an infinite product over i, where i is related to the cycle lengths in the above description
a .
|| EZRCCTEDDEN) (2.0.2)
=1 «

Each factor in the product is built from a basic function Fén]({xab}). The integer n is the
number of gauge nodes and the subscript denotes the unflavoured case. The index « runs over
the different edges with the same starting gauge node a and the same ending gauge node b. If
there is no edge from a to b, we substitute z,, — 0. This structure was derived in [26] for the
case without flavour. The function F(gn]({xab}) was explicitly computed for the case of quivers
with small numbers of nodes and a simple general formula was guessed. A general formula for
an]({xab}) was also derived in terms of contour integrals. However, the proof that the contour
integrals really give the guessed simple form for the Fo[n}({a:ab}) was not given. This missing
step is completed in this chapter. We also find that this function can be written in terms of a

determinant:

F (o)) = ———— (2.0.3)

~det (1, — X)

The matrix X, is defined to have variables x,, as the entry in the a-th row and b-th column.
We may think of X, as a weighted adjacency matriz associated with the quiver graph which has
n nodes and a single directed edge for every specified starting point a and end-point b. We refer
to this latter quiver graph as the complete n-node quiver graph. The notion of adjacency matrix,
and weighted versions thereof, are commonly used in the context of graph theory [70,71]. The
(a,b) entry of the adjacency matrix of a directed graph is equal to the number of oriented edges
Mgy, from node a to node b. In the present studies, it is natural to associate ), Zap o as the
weight for a given pair of nodes, which reduces to My, the entry of the adjacency matrix, when
the x4 o are set to 1.

While the infinite product (2.0.2) counts gauge invariant operators, the building block
Fén]({xab}) itself (2.0.3) has no obvious counting interpretation in terms of the original gauge
theory problem. Nevertheless, after applying a well-known identity, the determinant formula
(2.0.3) makes it clear that the expansion coefficients of this building block are positive, which
suggests a counting interpretation. We give such an interpretation. It is in terms of a word
counting problem involving letters corresponding to simple closed loops on the complete quiver
graph. Two letters commute if the loops do not share a node but they do not commute if the
loops do share a node. This, we describe as the closed string word counting problem. There
is an equivalent word counting problem in terms of charge conserving open string words. Here
open string words are made of string bits - which are edges of the quiver. T'wo different string
bits do not commute if they have the same starting point. They commute if they do not share a
starting point. Charge conserving open string words have the same number of open string bits
leaving any vertex as arriving at that vertex. This charge-conserving open string word counting

is actually directly related to the formulae in our derivations leading to the result. Its equiv-
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alence to the closed string word counting is a highly non-trivial fact, which is the content of a
theorem of Cartier-Foata [64] from the sixties! This type of word-counting is of interest in pure
mathematics and theoretical computer science, where it is known under the heading of Cartier-
Foata monoids [64,65,72]. The monoid structure arises because the words can be composed to
form other words, thus giving a product which turns the set of words into a monoid.

The infinite product form and the explicit formula for the building block, for the case of
flavoured quivers, is derived using contour integrals in [1]. The computation is presented in this
chapter. We find that the building block for the case of flavoured quivers is closely related to
the unflavoured case. It is worth emphasizing that the contour integrals we deal with for the
large N limit are significantly simpler than the original integrals over the U(N) groups. The
contour integrals we use involve n complex variables z,, where n is the number of nodes in the
quiver.

We stress that, even though the motivation of this work is to study 4 dimensional N’ = 1
gauge theories, focusing on the holomorphic gauge invariant operators made from chiral super-
fields which have a complex scalar as the lowest component of the superspace expansion, the
counting techniques we developed do not depend on either the spacetime dimension or on the
amount of supersymmetry. The results apply equally to holomorphic gauge invariants of a
matrix quantum mechanics, or of a matrix model of multiple complex matrices transforming as
bifundamentals.

The chapter is organized as follows. Section 2 gives a summary of the main results. Section
3 starts from an integral over a product of unitary groups [[, U(NN,), which gives the generating
function for the counting of gauge-invariant operators [66,67]. This generating function depends
on chemical potentials, one for each of the bifundamental fields in the theory, i.e. one for each
edge in the quiver joining gauge nodes. In addition, there are chemical potentials for the global
charges under the Cartan of the global symmetry groups. The integrand is expanded in terms
of characters of the (gauge and global) unitary groups along with characters of permutation
groups. The gauge unitary group characters can be integrated using orthogonality of the irre-
ducible characters. The resulting expressions contain sums involving Young diagrams and group
theoretic multiplicities called Littlewood-Richardson coefficients [68]. These sums are done in
Appendix B.1.1 and the outcome is an infinite product parametrised by an integer i. For each
i there are sums over integers, one for each edge of the quiver. We call these edge variables
Dab,a> Pa,B> Day- These sums are constrained by Kronecker delta functions, one for each gauge
node of the quiver. The structures of the sums in each factor of the i-product are closely related.
Once these sums are performed for ¢ = 1, the expressions for the factor at each ¢ can be written
down. The i = 1 factor is the building block function FI" ({4}, {ta}, {f2}) which can be viewed
as the generalization of F(gn} ({zap}) for unflavoured quivers to flavoured quivers. The Kronecker
delta constraints on the edge variables are expressed by introducing complex variables z,, giving
a product of n contour integrals.

Section 4 evaluates the contour integrals for the case without fundamental matter, recovering

the result written down in [26]. This involves finding the right prescription for picking up poles.
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The prescription is simple and intuitively very plausible. It is derived from the inequalities
which ensure the applicability of the summation formulae leading to the contour integral formula
obtained in Section 3. The derivation is presented in Appendix B.2. With the specified pole
prescription in hand, we describe the calculation of the integral. The integrand involves n
factors and there are n integration variables z1, 29, -+ ,2,. The recursive evaluation of the
integral leads to a formula (2.3.12) for the poles encountered at each stage. The pole coefficients
in this formula can be expressed neatly in terms of paths in the complete quiver graph. This
expression is equation (2.3.25) and is proved in Appendix B.4. Using this expression we are
able to prove the formula for F; [n], an inverse of a signed sum over permutations of subsets of n
nodes, guessed in [26]. We then recognise that the denominator is a determinant det(¥,, — X,,),
which leads to (2.0.3). Section 2.4 gives the combinatoric meaning of the basic building block
in terms of word counting problems. Appendix B.5 illustrates this interpretation in the case
of 2-node and 3-node quivers. Section 5 evaluates the n countour integrals for the building
block function FI™({zq}, {ta}, {fs}) and expresses it in terms of determinants and minors of
the matrix (1, — X,,). This gives a neat formula (2.5.16) for FI"l({z4}, {ta}, {s}) in terms of
Fén]({xab}). Appendix B.6 derives this formula, following a similar strategy to the unflavoured
case, namely finding expressions for pole coefficients in terms of paths in a complete n-node
quiver. Section 6 gives applications of the general counting formulae by considering explicit

quiver gauge theories with fundamental matter.

2.1 From gauge invariants to determinants and word counting

For quiver gauge theories with bi-fundamental fields, the generating function Z({x4}) for local

holomorphic gauge invariant operators constructed from the chiral fields, is given by [26]
Z({2aba}) = HF[ (= Zxaba (2.1.1)

It is useful to introduce the complete n-node quiver which is a quiver that has 1 edge for every
specified start and end-point. An expression for F ({xab}) was given as the inverse of a sum
over permutations of subsets of the set of nodes of the n-node complete quiver. Equivalently

this is an expression in terms of loops in the complete quiver

-1

Vuh =11+ Y I w (2.1.2)

VCV, o€Symm(V) i€Cycles(o)

Here V is any subset of nodes of the quiver (except the empty set), and for the cycle (abc---d)

we define Y(abe--d) = TabThe * * " Tda In this we observe, using standard matrix identities, that

n] _ 1

FM= 2.1.3
O 7 det(1, — X,) (2.13)
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where X, is an n X n matrix with entries z,,. This formula is the subject of the Mac Mahon
master theorem [73].

While the function Z({x4p}) counts gauge invariant operators, the gauge theory set-up does
not immediately offer a combinatoric interpretation for an]({xab}). We give an interpretation
of an] in terms of word-counting problems associated with the complete n-node quiver. There
are in fact two counting problems, one of them is a closed string counting problem. Consider
a language where the words are made from letters which correspond to simple loops in the
n-node quiver. These are loops that visit each node of the quiver no more than once. These
letters equivalently correspond to cyclic permutations of any subset of integers {1,--- ,n}. The
words are constructed as strings, i.e. ordered sequences, of these letters with the additional
equivalences introduced that letters corresponding to two simple loops ¢ and ¢’ commute if the

loops do not share a node. We denote these letters by g.. Then
Yeler = Yo' Ye (2.1.4)

if ¢ and ¢ are loops that do not share a node. Any word contains a list of these letters
UersUes -+ - Yo, With multiplicities (mq,ma,---,my). With these specified numbers, there is a
multiplicity M(myq,- -+ ,my) of words since, in general, the order of the letters matters: if two

loops §e, o do share a node then 3. # yoy.. The expansion of F(gn} in terms of the loop

mi

ek with coefficients, which are precisely the

variables contains terms of the form y'ty2 .- -y
multiplicities of the words M(myq,--- ,my).

This is a remarkable new connection between a counting problem of words built from a par-
tially commuting set of letters and the counting of gauge invariants. Since the letters correspond
to simple loops, we call this the closed string word counting problem. Thus F(gn] ({xap}) generates
multiplicities of closed string words. In section 2.4 we explain why this is true. Along the way,

we introduce another word counting formula based on letters corresponding to open string bits.

2.1.1 Generalization to flavoured quivers

We extend the counting results to quivers that have bifundemental matter fields, as well as
fundamental matter. We find again that the counting in the limit of large rank gauge groups is
given as an infinite product. Each factor is obtained by making a simple substitution in a basic
function FU" ({4, tq,14}), for the case quivers with n gauge nodes. The function F™ has an

elegant expression in terms of matrices X,, and A,,, whose matrix elements are
Xolgp = Tab Anlyp = tals (2.1.5)
Let us also define another n X n matrix,

Xn = (1n - Xn)_l (216)
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In terms of these, F[" is the determinant

FI ({zap}, {ta}, {Ta}) = det (xn exp [xn An]) = det(xn) exp (tr (XnAn)) (2.1.7)

The generating function Z can be obtained through the infinite product

Z({xab,a}a {%75}’ {7;,7})
. Tr(7 ¢ B 7_'
B 1 FCH RPN SR U0 PR o /120 ) PR S 0N G IRERS
: . Vi i
In the course of our derivation of FI™ we find the identity

FI"l = det (x,, exp [xn An])

with 7= U, {U}_ 1 Pab, Pa; Pa }- For the unflavoured case, this implies

R = det— Z H (Zm) (H pﬁb) 3 (zn:(pab —pba)> (2.1.10)

DPab b—1

where now p'= (J; ,—;{Pap}. This formula is interpreted in section 2.4 in terms of the counting
of words built from partially commuting open string bits. The open string word counting has

previously been studied in [64] and its equivalence to the closed string word counting given.

2.2 Group integral formula to partition sums

In this section we will derive a contour integral formulation for the generating function Z. Our

starting point is the group integral representation [66,67]

({:Eaba} {taﬁk} {ta%k} /(HdU)

[e.e]

xHexp Z% Z$2b7aTr(Ugi) Tr(Ubi)
a 1=1 b,
Fary
+)° ZtaﬁkTr U+ L  Te(U) (2.2.1)
B k=1 vy k=1
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Here x4 is the chemical potential for the ®4, . field, while t, 55 = = eask is the chemical

potential for a quark Qg charged under the U(1), of the maximal torus [];* Fap L U1); C
U(F,p). Analogously, Lok = e War.k ig the chemical potential for an antiquark Qamk charged
under the U(1), of Hfif U(1); C U(F,). Expanding the generating function gives the counting
function N ({nap,a}s {na,pk}s {Raqk}) for specified numbers ng, o of bifundamentals ®yp o, 14,8,k

of quarks Qg g and 7, x anti-quarks Qa,'y,k:

Z({zapads {tapit Lok ) = Do D Y N{naal, {napr} {faqn})

{nab,at {na,8,6} {Ra,k}

Tab,a Na.B,k _ﬁa, Jk
< | TT o IT tass IT t.en (2.2.2)
a,b,a a,B,k a,y,k
The chemical potentials for the quark/antiquark matter content can be nicely encoded in
the unitary matrices 7, 5 = diag(ta,s,1,ta,8,2; -+ ta,8,F, 5) and Tary = diag(fa1, tay,2y s an')’yFa,'y)

respectively, so that

2w (7). o) = [ (L) T d 3= {3 om0
a =1 b,a
+Z Te(US) T (T7 5) + Z Tr(7,;.) Te(UY) (2.2.3)

Using the shorthand notation [ ([[,dU,) = | and expanding the exponential function we get

Z({zava}t: {Tas}: {Tan})

Z paba

— /H Z H aba —the H(Tr U;ri)pgig,a (TI' UZ)PSI,),Q (2'2'4)

(z) Yo baHp nPab,a

aba

(1)

< > 11 — H(TrU“)aﬁ(TrW')

{()} B Hpaﬂ'naﬁ 7

<[ > HH z)' o) H Ta pg” (TrUZ)Pe
Y

{pa,’y 7 a»’Y

— oo —
where Z{piﬁ,{a}a = Hi’ba prflf’azo’ Z{Pﬁ)ﬁ}a = HB,%’ Zpa,@,i and Z{ﬁéi,)w} H’w Z . Rear-
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ranging sums and collecting like terms, we obtain

Z({zava}t: {Tas}: {Tan})

Zi ip((:lz,a

‘Tab,oc 1 ( 1 )
- Yy (Ot (T | (Do
0l 3 5% 4 ab,ex Hipt(zb),a!np“b’a a8 Hipz(z,)ﬁ!ip“’ﬁ ayy Hipg,)v!zpaw
(1)
x H(TrUTZ)Zbapaba+Zﬁp b (Tr U)o Phaat Sy Pl (2.2.5)

a,i

XH Hﬁw Pas

We now collect powers of Z4p o, 74,8, 7_377 denoted ngp o, Mg 8, Nay, and introduce the quantities

Bab = Uilply o} B = Uil ) Bary = Ui} (2.2.6)

These form partitions of n4p.«, 14,8, Na,y, Which can be interpreted as cycle lengths of permuta-

tions ap.a € Snyyos Ta,8 € Sn, 5 and 0o € Sp, , respectively. These cycle structures determine

a,y

conjugacy classes denoted [04p.4], (048], [0ay]. We have

Nap, oc'

00
Z z'pglb)@ = Ngb,a » ‘ﬁab,a‘ Hﬁ (2.2.7)
= Paha! 10

and similarly for p, g and ﬁaﬁ. The second equation above gives the number of permutations

with the specified cycle structure. We also use the identity

[Tmv)e” = 5= xrlo)xr(U), o€, UecUW) (2.2.8)
' (N

which follows from Schur-Weyl duality (see e.g. [68]): here R is a partition of n and [0]® is the
number of cycles of length ¢ in o, which is a function of the conjugacy class [0]. The Young
diagrams are constrained to have no more than N rows, which is expressed as {(R) < N. This
encodes the constraints following from finiteness of the ranks N,. For n, < N,, these constraints

can be dropped, which is the origin of simplifications at large N,. Collecting powers of traces
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of U;r, this equation can be used to rewrite the traces in (2.2.5) as

H(Tr U“)Zbapabﬁzﬁpaﬁ = Z XRa(Xb,a0aba X3 0a8)XR. (UL,

7 Rgbng
l(Ra)<Nq

Na =Y Naba+ Y Nag (2.2.9)
b, B

and similarly for the other terms. The product of the permutations over b, a;, 8 describes an
outer product of permutations acting on subsets of size 144 o, 14,5 0f 4. Using these definitions,

we can write

Z({zapab ATapb ATar )= D D > > > (2.2.10)

{nab,a} {"fa B} {pab,a} {pa,ﬁ} {pa,'y}

Na,y

Nab,a
xab,tsz N 1 N 1 -
X / H Nab | ’pab,a H naB! ’pa,,ﬁ‘ (H m ‘pa,7‘>

a0,
CL,b,OA ’ ll,ﬁ a,y

<I13 D Y. Xr.(Xea0aha X5 as) Xs.(XbaTbaa Xy Fary) Xra (Ud) x5, (Ua)

a RgFng SatFna
l(Ra)<Na U(Sa)<Na

X H Z H Xra,3 Ua B Xra 8 (7:1,5) Z H XTa,y Ua,'y X7a (7_;,7)

aﬁknaﬁ Ta »yFnafy
I(rg /3><Fa 8. G 'y)<Fa 1),

where o4p o, 04,8 and 7, , are representatives of the conjugacy classes specified by pyp o, Pa,s and
ﬁa,v respectively. We can now cast the sums over these vectors into sums over the permutations

Oab,a € Sn Oap € Snaﬁ and 04, € Sﬁw. We also use the symmetric group character

ab,a?

expansion

XRo(Xb.a0aba X3 0a3)

= Z g(Ub aTab,a UB Ta 6a H XTaba Oab a) H Xr g (O’aﬁ) (2.2.11)

Ub,a{"‘ab,aknab,a}
Uﬁ{ra,,B}_na,B}
and similarly for xs,(Xp.a0pa,a X~y Gay). In the formula above, g(UpaTaba Ug 7a,8; Ra) is a
Littlewood-Richardson coefficient. This is the multiplicity of the representation ®y 7q.pa®a74,3
of the subgroup xS

Napa X3 Ong s When the representation R, of Sy, is decomposed into

irreducibles of the product subgroup. Finally, using use the U(N) character orthogonality
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formula

/dUXR(UT)XS(U) =0rs (2.2.12)

we obtain

Z({zava}t: {Tas}: {Tan})

xnab,a 1 1
Y Y Yy oy (] (0h) ()
{nab,a} 1{(7}0,,[3{ {oab,a} {0a,8} {Fan} \@:bx ab,o 0.3 a,B
Na,y

X Z Z Z {H g(Ub,arab,a Ug Sa,8; Ra) g(Ub,asba,a Uy Sa,v; Ra)}

{ Rgtng {rab,a}_"ab,a} {Sa,ﬁ}_"a,ﬁ} a
URa)<Na | {sqp atnapal {5a,yFfa,~}

X X7 ab, o (Uab,a)Xsba o (Uba,a) Xsa.p (UQ,B) Xs, (O'a,’y)
s > > Y
a,ﬂ a,”y

a,b,«

x> s (0as)xre s (Tas) {foa,w(f‘fa,v)ma,w(%n)} (2.2.13)

{ra,pFna,pt \ a,8 ayy
{Fa,yFia,~}
Note that we dropped the I(r, g) < Fj g constraint on the sum over quark representations, since
contributions coming from representations with {(r, g) > F, g are automatically zero due to the
vanishing of x;, ;(7a,s) (similar comments hold for the sum over antiquark representations as
well).
Finally, using the orthogonality of the symmetric group characters > g xr(0)xs(0) =

nld, s, we get the formula

Z({aad ATasb AT D= S S ([T ane ] > > >

{nav,a} {ra,p} a,b,a RaFnag } {rap,atFnap,a} {Ta,sFnq,8}
g,y I(Ra)<Na {Fa,yF7a,vy}

(2.2.14)

a

H g(Ub,arab,a Ug Ta,83 Ra) g(Ub,arba,a Uy T3 Ra) H Xra,s (7:1,,8) (H XFa,~ (7:1,’)/)>
B v

Note that setting 7,3 = tq 14,3 (’7_;7 = tay la~) gives an unrefined generating function, in
which we no longer distinguish quark (antiquark) states charged under different U(1) factors

in the maximal torus of U(F,3) (U(F,~)). This unrefinement is immediately obtained from
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(2.2.14) through the substitutions

Xras(Tap) = dim”Fep) (rg ) 17950 Xrary (Tary) — dimVFan) (7, )72 (2.2.15)

)

The dimY)(r) is the dimension of the representation r of U(F).
For an F dimensional unitary matrix 7 with eigenvalues (¢1,to,...,tF) and a partition R of

n, we have

XR H Te 7)1 = 3 g(Usny); H £ (2.2.16)

oc€ESnh {n;}

where n = . n; and [n;] is the single-row totally symmetric representation of S,;. These
Littlewood-Richardson multiplicities for single-row representations and a general R are called
Kostka numbers [68]. Note also that the Littlewood-Richardson multiplicities satisfy [68,74]

> g(r1, s R)g(ra, r3;s) = g(r1,r2,73; R) (2.2.17)

Using these identities, we can write the counting function N ({nap,a}, {na,gk}, {faq.k}) as

N e ph (Far i) (2219
= > Yo T 9Usarasa Usk [nassls Ra) 9(Ubarbaa Unk [P il; Ra)
{ Rgtng }{Tab,alinab,a} a
I(Ra)<Na

where g = 3y o Nab.a + D51 a,f k-
We can give a pictorial interpretation of the counting function (2.2.18) as follows.

i) Choose the set of integers Ug p.a{nab,a} Ua,g,k {Ma,8,k} Uayk {Taqy,k - These determine the
numbers of elementary fields of various types in the composite operators under consider-

ation.

i1) To all edges joining the gauge node a to the gauge node b, associate a representation 74 o

of the symmetric group S,

ab,a*

i1) Divide each gauge node a into two components, a* and a~: the former collects all the
edges coming into the node a, while the latter collects all the edges leaving the node a.
Connect at to a~ by adding a directed edge carrying a representation R, of S,,, where

Na =D o Naba + .k Ma,8,k- Lhe result is called split-node quiver.

i1i) To each a™ attach the Littlewood-Richardson coefficient g(Up o7ab.a Uk [Ma,8,k]; Ra); to
each a™ attach the Littlewood-Richardson coefficient ¢(Up aTba,a Uy,k [Pa,qy.k); Ra)-

iv) Take the product of all the Littlewood-Richardson coefficients obtained in the previous step
and sum over all possible representations {R,} and {rq o}, imposing finite N constraints
l(R,) < N, at each gauge node a.
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As an example of the application of (2.2.14), consider an N' = 2 SQCD with an adjoint

hypermultiplet. The N = 1 quiver diagram for this gauge theory and its corresponding split
node quiver are depicted in figure 9.

Xr

s

X7

Figure 9: The A/ = 1 quiver and the corresponding split node diagram for a N' = 2 SQCD with an
adjoint hypermultiplet.

The generating function for this model can then be readily obtained using (2.2.14):

[e.o]

o0
(w1, 20,23, T, T) = > > aftah?al® (2.2.19)
ni,n2,n3=0 n,n=0
X Z Z Zg(rlar27r37r; R)g(r1,7’27T37F;R) XT’(T)X’I‘(T)
REm riFny  rkn
I(R) XN robng f7Fn
r3kng

with m = nj 4+ ng +n3 +n = n; + ng + ng + n. On the other hand, using (2.2.18) we can write
the counting function

N(”b na,ns, {n]}7 {ﬁk’})

= > Y glri,rrs il [nal, - [neli R) g(ra, v, s, [l [R2], -, [RpL R) (2.2.20)

I(R) XN rokng
r3kng

so that

Z (21,22, 23, {t;}, {t}) = Z Z Z N(n1,n2,n3, {n;}, {nx})

ni,n2,n3 {nj } {ﬁk}

F

F
x o)t ah? e T (2.2.21)
7=1 k=1

Let us now consider the flavoured conifold gauge theory [52, 53, 75, 76], whose quiver is
depicted in figure 10:
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= X
: A = 2
Fl F2 Xra
21,2
Figure 10: The flavoured conifold quiver and its split node quiver.
Applying (2.2.14), we find that the generating function for the flavoured conifold is
Z(x12,1, T12,2, T21,1, T21,2, T1, T2, T1, T2)
o0 o0
o n12,1 _N12,2 N21,1 _N21,2
= § E L1271 T122 To11 To12 E E : E E , E E
n12,1,n12,2=0 n21,1,n21,2=0 RiFmy RobFmg  rig1Fn121 721,1Fn21,1 T1Fny robng

I(R1)<Ny U(Rg)<Ngy r12,2kn12,2 721 2Fn21 2 riFny Tokng

x g(r12.1, 122,715 R1) g(ro1.1,721.2,71; R1) X (T1) X7, (T1)

x g(r21,1,721,2, 723 R2) 9(112,1, 12,2, 723 R2) X7 (T2) X7o (T2) (2.2.22)

where m1 = ni21+n122+n1 = n21,1 +n212+n1 and ma = N1 1 +n212+n2 = ni21 +ni2.2+n2.

As in the previous example, using (2.2.18) we get

N(ni2,1, ni22, no11, no12, {n1;}, {ne;}, {nix} {fek}) = Z Z Z Z

RitFmy Robmgo  r121Fni21 721,1Fn211
UR)SNy UR2)SN2 rypoFnig g 721,2Fn212

x g(ri2,1,m122, 1], P12l - 5 Inm | Ra) 9(ran1, ma12, [Pl [Rael, - oo [y g )5 Ba)
x g(ra1,1,721,2, [n2.1]; [n22], - -+, N2,/ ]; R2) g(r12,1, 12,2, [P21], [P22], -+, [Rg g5 Ra)
(2.2.23)
so that

Z(x12,1, T12,2, T21,15 T21,2,{t1,5}, {t2,;}, {tix}s {t2k})

= Z Z Z Z Z Z N(nig,1, ni2,2, m21,1, m21.2, {1 i} {n2,} {Pak}, {2k )

Z}g:; %ilé {n1,5} {n2,;} {n1,k} {R2}

Fy Fy Fl Fz
n12,1 Mi12,2 M21,1 N21,2 ni,j ng. j N1k T2k
x sy wiys iy s | [160 IS II4% I1%:
j=1 j=1 k=1 k=1
(2.2.24)

All of the previous formulae hold for any N. In the next section we will drop the I[(R,) < N,
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constraints, Va, to focus on the large N case.

2.2.1 The generating function Z and the building block F™

Let us take the large N limit, for all the gauge groups of the theory. In appendix B.1.1 we show
that Z({Zabats {Tas}, {Tan}) can be written as the multiple sum

Taa' | (7 (T Tas ) T 7, )
2= TN (I, ) (0 ) (T
P 7 a

) )
b Paba B8 Py g vy paﬂl

<vaa p((;ga + ZB pf(f)ﬁ>! i i i .
. 0 da | D0 = Phoa) + >0 — > BL) (2.2.25)
1=f T b, 8 ~

where p = Ugp aDab,a Ya, B Da,g Yay ﬁam and the vectors pup. o, Pa,gs 5&,7 are defined in (2.2.6).

Crucially, we can now define the quantity

F[n]({xab}v {ta}a {t_a}}) = Z H <Zpba +pa>! 5a (Z(pab - pba) + Pa — pa)
p a=1 \b=1

b=1

n xpzb tpa Da
X a = < 2.2.26
1)1_[1 Dab! <pa!> (pa!> ( )

with §'= Uy p{Pab} Ua {Pas Pa}, such that

Z({zabat {Ta} {Tan})
=™ {mab - ngb@} Rta— Y Tr(zTﬂ) , {ta — ZTr(Tlfw)} (2.2.27)
7 «@ B o

From this equation we see that F is the building block of Z. Note that the ¢ coefficients in
the RHS of (2.2.27) are weighted by a i~! coefficient, while the ¢ coefficients are not: in section
2.5 we will derive a more symmetric version of this formula, where the weighting for chemical
potentials of the quark and antiquark field is the same.

In appendix B.1.2 we derive an expression for FI") in terms of contour integrals, namely

F({ag}, {ta}, {Ta}) = (H]i ;ﬁ) || RAGERRAP (2.2.28)
a a=1

in which

Z= (21,22, s 2n) s ZTo = (T1a, T2a, -y Tna) (2.2.29)
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and

) exp (2a ta)

P : 2.2.30
a(% Za; ta, ta) za = (ta + D 2b Tha) ( |

We also obtained a pole prescription for the computation of these contour integrals: in the
appendices B.1 and B.2 we explain that only the z, pole coming from the I, term in the
integrand has to be enclosed by C,.

As a last remark, note that all the variables 2z, Tap, ta, tq in eq. (2.2.28) are charged under
the T[0_, U(1)q C [I,_; U(Ng) subgroup of the theory as in table 2

Variable | Charge | Subgroup of [[, U(1)q
Tab (—1,1) Ul)y xU1)p
ta -1 U(l)a
7?a 1 U(l)ll
Za 1 U(l)a

Table 2: U(1) charges of the variables appearing in FI"l.

The charge for the z,, coefficients comes from the fact that these variables are associated to
fields leaving node @ and joining node b, thus transforming under (N, N) in the original theory.
Similar comments holds for the charges of ¢, and ¢,, while the charge for z, has been chosen in
such a way that the function F[" is neutral under [] . U(1)g, as it should be.

For completeness, let us write down the contour integral formulation for Z, which can be

immediately obtained from (2.2.26) by means of (2.2.27), and reads

(Za,i 25 Tr(Tap i))
exp .

1

dZa K
L 2.2.31
H <Hf 2miz, Z) — z;zl (Zv Tr(Taq ) + Db Zbi xéa,a) ( )

The simplification coming from using FI in place of the latter is evident.

2.3 The unflavoured case: contour integrals and paths on graphs

We now have to calculate the contour integral in FI"l that is, calculate residues. In an n-node
quiver, each z, variable has n poles, but not all of them have to be included in the contour C,.
The constraints from the convergence of the sums in appendix B.1.2 instruct us on which poles
to pick and which ones to discard. In appendix B.2 we show that they indeed give us a very
simple and intuitive prescription: for all a, only the z, pole coming from the I, integrand has to

be enclosed by C,.
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We consider here the case in which we set t, = ¢, =0 Va in (2.2.28), to get the quantity

F[n}({:ﬂab},0,0) = F(g"]({l“ab}) = <H7€ dZu) H 1,(%; %) (2.3.1)

27
where
1
1,(Z%,) = S (2.3.2)
Recall that 1,(Z;%,) is a shorthand, which it will now be convenient to expand:
1,(Z;%,) = I4(21, 22, oy 203 Ta) (2.3.3)

so that we can rewrite (2.3.1) as

{xab} (H% gi‘;) H I(21, 22, oy 203 Za) (2.3.4)

We want to compute contour integrals in eq. (2.3.4). Let us choose an ordering in which to com-
pute such integrals: we choose the simplest one, that is we integrate over z1, 22, ..., 2i, Zit+1, ..., 2n
in this precise order. We will refer to this ordering as the ‘natural ordering’. With the pole pre-
scription discussed in appendix B.2, the z, integration picks up the z, pole in the I, integrand
only. Then, after the first integral (the z; integral with our ordering choice) has been computed,
eq. (2.3.4) becomes

M ({za)}) = <H% d"’“) TT LGzt 22, e 203 ) (2.3.5)
a>1

a>1

where we introduced the H; coefficient, outcome of the residue calculation, that depends only

on the x variables. After the integration has been done, z; is replaced by its pole equation
2] = 2] (22, 23, ..., 2n; T) (2.3.6)

in all of the remaining integrands I, (a > 1). The explicit form

. » 1 -
11) 7=
comes from solving Ifl(Z; Z1) = 0 for z;. In the second step, we can solve I{l(zl — 21, 20,23 ,2p) =
0, which gives
1 = Ty, 11,2
« 1
29 = Tpo + —— 2.3.8
27 (1= 211)(1 - w2) — w1 0w2 < B 331,1> (23.8)
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In the next step, we calculate Igl(zl — 2,22 — 25,23,24--- ,2,) and we solve 13_1 =0 to
calculate z3(z4, 25, - - 2).

Generally, the explicit equation for each of the z; (1 < j < n) comes from solving for z; the
equation

I;1(2T7 257 a3 Z;—l) Ry Zj+1y ey an/fj) =0 (239)

for each j. These pole equations are of the form

27 (2j41, 2425 oos 203 & Z i G j (2.3.10)
i>7

for some coefficients a; j, which are functions of Z. It is useful however to introduce a different
equation for the poles z . Note that z is a function of the set {211, zj42, ..., 2, }. If r integrations
have already been done, then the zj pole equations, with 7 < r, can be expressed in terms of
the remaining set of z,, that is {2,411, 2,42+, 2, }. The variables z; (j < k < r) appearing in

(2.3.10) can be substituted with their respective pole equations z;. We can thus write

* =
Z (]+17 G20 raZT+la-"a2na$)

= E Ziaij + g 23 (2341 202y o0 20y Zr 1y ooy 205 T) QA (2.3.11)
>7 A=j+1

Repeated substitutions to eliminate the variables z} in favour of z},, for k < k' < r, will lead to

an expression of the form

] _

“) Z;(zr-"—lv ey 203 T Z Zi Q ET;\ ) A<Zr (2.3.12)

i>r

for some new al"l coefficients, functions of Z, that we call pole coefficients. Inserting this equation

in (2.3.11) gives a recursive relation for &ETJ]-:

—a”+ Z az/\aM, P>, j<r<m-—1 (2.3.13a)
A=j+1

There is no /™ coefficient, as can be seen from (2.3.12). We will in fact observe that 2 = 0.
Comparing (2.3.10) and (2.3.12) gives

dl=ai,, i>r (2.3.13D)
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and we will shortly derive
r—1
=1
Tigr + Z aE’fk ] Tk
k=1
r—1
A[r—1
B (Mzazk ]>
k=1

Qi =

)

, i (2.3.14)

Now, for fixed r, all of the z;m equations (1 < j < r)in (2.3.12) will be functions of the same
set of z,, that is {zx, r < k < n}. With this notation, after r integrations have been done, F(gn]

will read

PN = (@) (H]{ dza) 11 2 (*[T] P zr+1,zr+2,...,zn;fa) (2.3.15)
] a>r

a>r

where explicitly

1, (27, 5" (2.3.16)

*(7r -4 —
a"'7Z'r[ ]7ZT+15Z1“+27"'7ZTL;33a) -
Za — (

> ZToat D Z;‘[T] :L'm>

b>r i=1,..,r

Going back to eq. (2.3.15), suppose we want now to calculate the z,y; integral. Consider

then the equation

Ir—&-ll ( i ]’ ;[ ]7 “"Z:[T}7Z7‘+17z7“+2a "'7zn;f7'+1>
= Zp41 — (Z 2p Tp 41 + Z z; $¢,7«+1> =0 (2.3.17)
b>r

and let us solve it for z,411. We have

(I —2py1,041) 2041 = E 25 Tprt1 + E 2 l'i,rJrl
b>r+1

r
E ' E :E : ~[r]
= 2p Tp i1+ 25 Qg Tir+1

b>r+1 =1 j>r

r r
= Z Zj (xj,rJrl + Z dyj xi’r+1> + Z Zr41 &1@_1,7; Tir+1 (2318)

j>r+1 i=1 =1
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Collecting terms we get

r
A7
<1 - (xr—&—l,r-l—l + Z aL—}—l,i xi,r—&—l)) Zr41 =
=1

T
=Y (ocj,m +3all a:i,m) (2.3.19)

j>r+1 1=1

so that we can finally write

.
§ :A[T]
Tir+1 + ;5 Tir41

Z:Jrl = Z Zj i:1r = Z 25 Ajr+1 (2.3.20)

i>r+1 § : ~[r] j>r41
J Tr4lr+1 + Ay Tir+1 J

=1

Recalling the definition of the pole coefficients a[l\ from (2.3.12) and substituting r — r — 1,
this proves eq. (2.3.14). It also shows that 27 = 0, as there is no z; with j > n to sum over.

Inserting this result in (2.3.15) we get

s = Tmeo (1T, 3)

a>r

1

T T
(1 - <$r+1,r+1 + Z dﬂl,i $i,r+1>> Zr41 — Z Zj (SUj,rH + Z dﬁ xi,r+1>

i=1 j#L,..rr+1 i=1

X

*[7"] *[r} *[r Lo
X H I ) 2 ’ "7zr[]7ZT+17ZT+27'”7Z717$(1)
a>r+1

:HHf
j=1

% dzr41 1
) Cri1 211 Zr41 — Z:+1

<$r+1 r+1 + E CLT+1 i Lir+1

x[r] _*[r -
" ( > l[] 22[]""7Z:[T]727+17Z7"+27"'7Zn;xa)
C‘l a>r+1
T T4 % 1)l r+1
_ — a *[r+1 *[r+1 *[r+1 *[r+1 =
= HH](.%') H f % H Ia(zl 722 7"'7zr[r ]7zr+1 7ZT+27"'7zn7xa>
7=1 a>r+1 Ca a>r+1

(2.3.21)
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where we called, in agreement with our initial definitions,

r —1
Hy1(7) = [1 - (xr+1,r+1 +>all, xi,m)] (2.3.22)

=1

It is clear now that once all the integration have been done, F(gn] will simply be the product

-1

n n i—1
A= L) = I {1 - s = Sl 2329
i=1 i=1 g=1

In appendix B.3 we present an explicit example of the application of these formulae to a three
node unflavoured quiver. From the last equation we can see how the pole coefficients qu_l] play
a central role in the computation of F(gn]. Our goal now is to rewrite them in a more compact

and appealing form. For notational purposes it is useful now to define G, as the inverse of
-1
G = ()
Choosing any 1 < r < mn, foralln > p >r and 1 < k < r we find an expression which can

be interpreted in terms of paths on the complete n-node quiver:

, ,
G by = Gonk Tpk + D Gl by Tpiik + O G\ (b} Tpai ik
foh i
.
+ ot Z G[r]\{k,ugzlih}xp,hxil,izmiz,is STy i Tig ke

Cigyig,ig=1
i1 FigF.. . FiyFEk

T

-t E : Tp,irTiyioLinyiz " Lip_gir_1Tir_1,k (2'3'24)

11569, rip_1=1
i1 A i1 £k

or, in a more compact form:

r—1 T
] _
Gy, = D GUpbU i} i TisiaTinsis Ty i i (2.3.25)
t=0 1,09, ig=1

i1Ai#  Aig R

with the convention that Gg) = 1. We prove this formula in appendix B.4. For fixed r < n we
now describe the interpretation of each of the terms in the expansion of (2.3.25) as a path on
the complete n-node quiver. Each term is a product of two different pieces. The first one is the
G function of a quiver containing a certain subset [r] \ {k, U} _,i} of the first [r] = {1,2,...,7}
nodes. The second one is a string of x4, variables, which can be interpreted as an oriented open
line on the quiver. It departs from a node p, which is not included in the set [r], passes through

some ¢ intermediate nodes i, and arrives at node k, with i1, 49, ..., k € [r].
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r—1 r

Gy =>. >

t=0 iy,i2,..,i¢=1
i1FAig#. . . Fig#k

Tiy iz

19

p

Figure 11: Pictorial interpretation of G|, &K]k. The starting point of the oriented open path, p, belongs
to the set {r + 1,7 +2,...,n}.

From here we also explicitly see that the pole coefficient &][DT ]k is charged under the U(1)"
subgroup of the gauge group of the quiver. Since every G|, has zero U(1)" charge, and the
product of x4, coefficients xp i, i, inTiyis - - iy, i, Tip i 15 charged under the p-th U(1) and the
k-th U(1) as (—1,1) respectively, the whole quantity d][:}k will carry a (—1,1) charge under
U(1), x U(1)g, just like an x,, , variable would. These quantities are also helpful in writing down

a recursive formula for G|,). Note that G|, ) can be written as

G[r+1] = G[r} <1 — Tr4+1,,+1 — Z d7[r‘rj’,l7k xk,r+1>
k=1

=Gy (1= 2pg141) — Z G &[rrjrl,k Tk (2.3.26)
k=1

The terms in the sum above are of the form (2.3.25), so that we can use it to bring G|, 4} into

the form

Grg1) = G (1 = Zpy141)

r r—1 r

E G[r]\{k,uzzlih}mTﬂ-l,ilxil,izxizyis C T g0 Ly kL k41

k=1 t=0 01,89,.,5¢=1
iy i FigEk

(2.3.27)
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and after relabelling some summation variables, we can write the this equation as

G[r+1] = G[r] - G[r}xr+1,r+1

T T
= Y G Ui T L T T Ty i Tl (2.3.28)

t=1 i1,ig,.ig=1
i1 FigF.. Fig

and since the second term on the RHS of this identity is just the ¢ = 0 term of the following

sum, we finally have

Gray=Gp =Y. >, GE\{UL _ in}Tr L TigiaTin,is ** * Tie_y in Lipr41 (2.3.29)

t=0 i1,i2,.,iz=1
i) FigF#. . Fig

We can also give a similar formula for each of the H; coefficients in the product (2.3.23). We
know that

-1
-1
H(@) = [1-20 - a), g (2.3.30)
q=1
and using F(E"] = G[;]l we can write
l ! — ! -
H(@) = [1-F e gay - Ry Guogay, Vg
q=1
! — ! B
=11- FO[ -1 G[Z,I]xu + Z G[Zfl] &l[;l} Ly, (2.3.31)
q=1

We again have terms like Gj;_y; dl[l; 1 %41, which have the same structure of the ones encountered
in the derivation of eq. (2.3.29). We can just redo the same steps done previously to bring the
equation for the H;(Z) coefficient into the form

-1
-1 -1

— -1
H(#) =|1-F, }Z > Gluap\ (Ut in}Plin TiniaTin s~ Tir_yin Tl

t=0 i1,i,..,iz=1

i1 Fig#.. Fig
-1
-1 -1
_ =1
=k G[l—l] - Z Z G[lfl]\{uﬁlilih}xl,ilxil,izximi?, T T4 Tyl
t=0 i1,ig,..,it=1
i Rig .. Ay
Gli—1
— ([; ] (2.3.32)
U
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where in the last step we used eq. (2.3.29). We can then rewrite eq. (2.3.23) as

n n Gi—
R = T o) = T S

i=1 i=1 G[i]

(2.3.33)

With G[O] =1.

2.3.1 Fo[n] and the sum over subsets

-1
In this section we will prove the expression for (Fo[n]) given in [26]

(F[n) =1+ >, > (D%w({za}) (2.3.34)

VCVn o€Sym(V)

where V is any subset of the set of nodes V,, = {1,2,...,n} of the quiver but the empty set, and
Sym(V) is the group of all the permutations of elements in V. C, is the number of cycles in o.

Yo ({xap}) is a monomial built from the z,, coefficients as

{zab} Hyg( ) {l‘ab} (2335)

where the product runs over the cycles ¢ of the permutation o = IL 0@ and for a single

Cycle (il,ig, e ,ik)
Y(irizsonin) ATab}) = TiyinTig i = Tig iy (2.3.36)

For example, when o = (12)(3), the permutation which swaps 1 and 2 and leaves 3 fixed, then
Y(12)(3)({Tab}) = T12721233. This equation has thus an interpretation in terms of loops {y.} on a
complete quiver, where each loop y. corresponds to a cycle ¢ = (i1, -+ , i) as in (2.3.36). Since
these loops corresponds to cyclic permutations, they do not visit the same node more than once:
for this reason we call them simple loops, to distinguish them from more general closed paths.

In the following we will write the above formula as é[n] :

=1+ > > (D% w({a}) (2.3.37)

VCVn oeSym(V)

To prove the identity (2.3.34) we will show that the sequence é[n} obeys the same recursion
relation (2.3.29) satisfied by the G|, coefficients obtained from the residue computations. We

have

Gy =1+ ) > ()%, (2.3.38)

V{1, ,n+1} c€Sym(V)

If the subset V of {1,--- ,n + 1} does not include n + 1, we have a sum which, together with

the leading 1, gives G,;. The remaining terms involve subsets which include the {n + 1} node.
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For such subsets, the permutation o can either be of the product form o'(n + 1), where o’ is
a permutation of {1,--- ,n}, or alternatively it is of the form o’(iy, 42, ,ix,n + 1), with ¢’ a

permutation of {1,--- ,n}\ {i1, -+ ,ix}. The first type of term gives

=Gp)Ynt1 = _G[n]xn+1,n+l (2.3.39)

The second type of term gives
n n ~
B Z Z G\ {ir, - ix }Yir o inont1 (2.3.40)
k=1 il#iz#---;ﬁik=1

Collecting the terms we find

~ - n n ~

Gty = Gpy(1 = Tnging1) — Z Z G\ {ir,- ig} TiniaTigis * * * Tign+1Tn+1,4 (2.3.41)

k=11i17#i27 ip=1

This proves that the guessed formula é[n] satisfies the same recursion relation as Gp,. It is

evident that Gy = é[l} = 1. This proves that é[n} = G, Vn.

2.3.2 F" and determinants
Equation (2.3.34) can be used to recast an]({xab}) as a determinant expression given by

F(gn}({%b}) = det(l:—Xn) (2.3.42)

where 1,, is the n dimensional identity matrix and X,, is a n X n matrix defined by
Xnlyj =25, 1<(,5)<n (2.3.43)

The following identity for the expansion of det(1,, — X,,) in terms of sub-determinants of X,,, or

equivalently characters of X,, associated with single-column Young diagrams, is useful:

M=

det (1, — Xp) = (_1)kX[1k} (Xn)

b
Il
o

Ey (-1)
(=1) Z Z Twiliau)xiﬂa(z) © g (k) (2.3.44)

0 11,12,..,i,=1 0ES}

I
NE

e
Il

This expansion is organized according to the number of 1 valued entries picked up from the
matrix (1, — X,,) in calculating its determinant. When we pick n — k of these 1 valued entries,
we have the sum of the sub-determinants constructed from blocks of size k from the matrix X,,.
The sign (—1)7 is the parity of the permutation. Because of the antisymmetrisation ) _(—1),
the sum over iy, 9, ..., i can be restricted to run over the set i1 # io # ... # i, so that it can

be rewritten as a sum over subsets Vj of k different integers from {1,---,n}. For each choice
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of subset there is a factor of k! for the different ways of assigning i1, --- ,4; to the elements of

the subset. Hence

det (1, — X,,) = Z (—=1)F=Coy, (2.3.45)
k=0 Vi oceSym(Vy)

Sym(V}) is the symmetric group of permutations of elements in Vi. Here we have used the
fact that the parity of a permutation ¢ can be written in terms of the number of cycles as

(=1)7 = (—1)#*=% and we also used the definition of y,. The expression (2.3.34) now follows.

2.4 Word counting and the building block F(gn]

The generating function Z ({4 }) for gauge invariant operators for unflavoured quiver theories
has been given as an infinite product built from a building block F(gn]({xab}). This has been
expressed in terms of a determinant of the matrix (1,, — X,,), where (X,,)|ap = Zap-

After expanding F ({xab}) in a power series in the variables x4, it is natural to ask if the
coefficients in this series have a combinatoric interpretation as counting something. The answer
does not immediately follow from the combinatoric interpretation of Z({zap;q }) in terms of gauge
invariants, nevertheless, the coeflicients in the expansion of F ({a:ab}) are themselves positive.

This follows from the Cauchy-Littlewood formula for the expansion of the inverse determinant:

(iet— Z k‘ Z Z :L‘Zl’ o'(l)x127 (7(2) xlk, Yo (k) (2.4.1)

111y =1 0€Sk

This strongly suggests that there should be a combinatoric interpretation in terms of properties
of graphs. We will find that there are in fact two combinatoric interpretations: both in terms
of word counting related to the quiver with one directed edge for every specified start and
end-point. We will call the latter the complete n-node quiver. We will refer to these two as
the charge conserving open string word (COSW) counting problem and the closed string word
(CSW) counting problem. It turns out that the equivalence between these two word counting
problems is a known mathematical result! This gives a new connection between word counting
problems and gauge theory.

To motivate the CSW interpretation, let us take the simple case of n = 2, for which we have

1
F[Q] r11,212,X21,T22) = 2.4.2
0 (@11, 212, @21, 222) (1 —z11 — 292 — 12221 + 11222) ( )
The denominator depends on variables
Y11 = 11, Y12 = T12%21 , Y22 = T22 (2.4.3)

These variables are associated with closed loops in a graph with two nodes, and one edge for
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every pair of specified starting and end points. Let us first set y19 = 0: we have

1 1 1
(1 —y11 —y22 +y11y22) (L —y11) (1 — y22)

(2.4.4)

Expanding in powers of y11, y22, we see

1 o0 o0
= >yt > (2.4.5)
mi1=0

(1 — 11 — Y22 + y11y22) a0

We describe the CSW interpretation in this simple case. Take the letters ¢11, 22 and consider
arbitrary strings of these, with the condition that

J11922 = 22911 (2.4.6)

A general word is characterized by the number mi; and mos of 911, §22. With these numbers

specified, the commutation relation can be used to write any such word as

(911)"™ (G22)™* (2.4.7)

There is thus, precisely one word with content (miy,ma2). Thus the coefficient of yi}" y5s2? is

equal to the number of words in a language made from letters 711, j22. The words are sequences

of these letters, with the commutation relation (2.4.6). Now set y11 =0

[e.e]

mi2, MmM22
2203/12+y22 Z Z m12,m i lma Y12 Y22
m=

m=0mi12=0

(mig + m22)'
Z Z Y Yy (2.4.8)

mislm
Moam0 a0 12!mao!

FD (11 = 0,512, y22) = m

In this case, we can consider letters 712, 922, without imposing the commutation condition. Then
a general word with specified numbers mq2, mos is the number of sequences we can write with
mi2, Moo copies of 412, 922. Each word corresponds to one way of placing the mis objects of one

kind and moo objects of another kind in mi9 + Mmoo positions. This shows that the number of

(mi24+ma2)!

words is —
mi2!maa!

in agreement with the coefficient above.

These simple examples illustrate a general interpretation of all the coefficients in the expan-
sion of FO["]7 in terms of the cycle variables y.. Consider the complete n-node quiver. To each
simple closed loop ¢ on the graph, associate a variable g.. If we label the nodes of the graph
{1,---,n}, every cyclic permutation of a subset of the nodes corresponds to a simple loop on
the graph. These simple loops visit each node no more than once. To define the CSWs, we

associate a letter to g. to every simple loop. We impose the relation

ﬁcgc’ = @c’ﬁc (2.4.9)
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for every pair of simple loops ¢, ¢’ that have no node in common. The letters which do share a
node are treated as non-commuting, while the letters that do not share a node are treated as
commutative. Then we consider strings containing m, copies of the letter g.. A simple guess,

[n]

based on the above examples, is that the coefficient of [[.y{* in the expansion of Fj;" is exactly
equal to the number of distinct words build from the letters ¢. with specified numbers m, for
each letter. This word counting interpretation is called closed string word counting since the
loops can be thought as closed strings made from open strings which are the edges extending
between nodes. The validity of this interpretation will be explained by using its equivalence to
an open string word counting.

Appendix B.5 gives more examples of direct checks of this connection between closed string
word counting and the building block function F(gn].

From the derivation of the generating function of gauge invariants we know that

1 Pab n
0" ({wab}) = det— ZH(Zm) (H b,)é(Z(pab—pba)> (2.4.10)

peq Pab: b=1

This gives another way to see that the coefficients in the expansion are positive, and in fact

integers. Consider the coefficient of [[, , #7;", which is

H M 0 (Z(pab - pba)) (2.4.11)

a Hb:l Pab: b—1

This leads directly to the open string word counting. Consider letters Z,;, corresponding to
each directed edge, going from a to b in the complete n-node quiver. We will call these open
string bits. Then consider words which are sequences of these letters. These words will be called

open string words. We impose the commutation condition
TabZaty = Loty Tab (2.4.12)

for a # a’. So sequences which differ by such a swap are counted as the same word. Thus, string
bits which have different starting points do not commute. Two different string bits with the

same starting point do not commute. For each starting point a the factor

(b1 Pad)!

2.4.13
H?:l pab! ( )

counts the number of sequences containing p,; copies of Z,p. Defining

Pa = Zpab - Zpba (2414)
b b
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an open string word will take the form

Wo = Tla;xlag " Llap, L2ap;11L2ap;12 """ L2ap14py " Lnap rogp,_ 141" Tnap 4. tp,

(2.4.15)

The open string bits with different starting points commute, so we have used that commutativity
to place all the ones starting at 1 to the far left, the ones starting from 2 next, and so on. The
integers ai,--- ,ay.p, will contain p; copies of 1, po copies of 2 etc. This condition says that

]

the sequence of open string bits that appear in the expansion of F(gn contains as many bits with
starting point ¢ as with end points as i. We will refer to this as charge conserving open string
words. So we have shown that the F(gn] counts charge-conserving open string words. Remarkably,
Cartier and Foata proved that charge-conserving open string words are in 1-1 correspondence
with closed string words! This is theorem 3.5 in Cartier-Foata [64].

We refer the reader to [64] for the formal proof. Here we explain, with examples, the meaning
of this equivalence between the counting of charge-conserving open string words (COSW) and
closed string words (CSW). Given an a CSW, it is easy to write down a corresponding COSW.

Take for example

911 912 911 P22 Y123 = Y11 Y12 Y22 Y11 U123 (2.4.16)
Write these closed-string letters in terms of open string bits:
Y11 =211, Yoo = To2, Y12 = T12@21, Y123 = 12823831 (2.4.17)
The word of interest becomes
T11212T21211222T12T23T31 = T11T12T11212 T21T22T23 T31 (2.4.18)

We have used the commutativity to arrange as in (2.4.15). A CSW determines in this way a
unique COSW.

The reverse is also true. A COSW determines a unique CSW. The general proof is non-
trivial [64]. We just illustrate with some examples here. Consider some COSW with specified
numbers of starting (and end-) points of particular types, say three starting and ending at 1,

two at 2 and three at 3. These words are of the form

A

181 8101)  Tor@%272) L373)%37(3)83,0(3) (2.4.19)

Here 7 is a permutation in Sg, which should be thought of as moving the integers {1,2,3} from
their initial positions (1,1,1,2,2,3,3,3) to a new position. When 7 is the identity we have the
COSW

T11®11811 Toodoe  233833%33 = Y11911011 Y2202 33933933 (2.4.20)
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Suppose now 7 = (1,2,3,4,5,6,7,8), a cyclic permutation. The COSW is
T13E11ln Tadee 32833833 (2.4.21)

If we map this to closed string words, this will involve two copies of 11, two copies of ¢33, and

Q132 = ilgfgg.f}m. The unique CSW is

G132 In911 Yo2 U33Yss (2.4.22)

In arriving at this, we did a re-arrangement which moves the Z3o across the Z99. This is allowed,
since the open string bits commute when they have different starting point. i.e. different first
index. The reader is encouraged to play with different choices of 7. It is easy to see that
permutations 7 in Sg are a somewhat redundant way to parametrize the COSW. In fact it
is a coset of Sg by S3 x So x S5 that parametrizes the COSW. For any choice of 7, there is
always a CSW, i.e a list of g. for different cycles, arranged in a specific order (modulo the
commutation relations (2.4.9)), which agrees with the COSW after re-arrangements allowed by
the commutation (2.4.12). This is guaranteed by theorem 3.5 of [64].

We have focused on the combinatoric interpretation of Fén]({xab}), in terms of the complete
quiver graph. This basic building block generates the counting of gauge invariants at large N for
any quiver, after taking an infinite product with the substitutions in (2.1.1). If we are interested
in a quiver where there is no edge going from a to b, these substitutions involve setting z,, — 0

for that pair of nodes. It is instructive to consider the quantity
Fo {anal) = By ({2ar = D Tabal}) (2.4.23)
[e%

which is not an infinite product, but knows about the connectivity of any chosen quiver graph,
with general multiplicities (possibly zero) between any specified start and end-node. This quan-
tity has an interpretation in terms of word counting of open string words, as it follows immedi-
ately from (2.4.10):

n n Mgy n Mgy Paba n Mgy
({xaba} = Z H (Z Zpaba> (H H aba ) 0 <Z Z(pab,a _pba,a)> (2424)

b=1 a=1 blal b=1 a=1

We again have the basic rule that different open string letters corresponding to string bits with
the same starting point do not commute. Again by invoking the Cartier-Foata theorem we see
that, for any quiver, it is possible to map the open word counting problem to a closed word
counting problem, in which string letters corresponding to simple loops which share a node do
not commute.

The building block F ({xab}) gives the counting of gauge invariants at large N, by means
of a simple combinatoric operation involving an infinite product and elementary substitutions.
One of our motivations for developing a combinatorial interpretation for Fén]({xab}), is that it

highlights an interesting analogy with a deformation of the counting problems considered here.
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We have focused on the counting of all holomorphic invariants made from chiral fields in an
N =1 theory. In many of the N/ = 1 theories of interest in AdS/CFT, the general holomorphic
invariants form the chiral ring in the limit of zero superpotential, but beyond that, one wants to
impose super-potential relations. In these cases, the counting of chiral gauge invariant operators
leads to the N-fold symmetric product of the ring of functions on non-compact Calabi-Yau
spaces [77]. In the large N limit, the plethystic exponential gives the counting in terms of the
counting at N = 1. The N = 1 counting is a simple building block of the large N counting. It
has a physical interpretation as the ring of functions on the CY and the plethystic exponential
has an interpretation in terms of the bosonic statistics of many identical branes.

The procedure of taking an infinite product and making substitutions, that we have developed
for the N — oo counting at zero superpotential, can be viewed as an analog of the plethystic
exponential. In this analogy the function Fo[n]({azab}) corresponds to the U(1) counting, which
is the same as counting holomorphic functions on a CY. The counting problems we have solved
also correspond to some large N geometries: namely the spaces of multiple matrices, subject
to gauge invariance constraints. There is no symmetric product structure in this geometry,
but there is nevertheless a simple analog of the plethystic exponential. There is no physical
interpretation of F(gn]({:cab}) as a gauge theory partition function, but there is nevertheless an
interpretation in terms of string word counting partially commuting string letters. A deeper

understanding and interpretation of these analogies will undoubtedly be fascinating.

2.5 The flavoured case: from contour integrals to a determinant

expression

We now turn to the full picture, that is we allow for quarks and antiquarks. Take then eq.
(2.2.28):

P (s}, {ta}, ) = (H ¢ ‘jﬂ) T Lot tar 1) (25.1)

where

- exXp (Zata)

Ia(2§ _)aataata) = n
Zq — (ta + Z Zb xb,a)

b=1

(2.5.2)

Again we have to compute residues. First of all note that the numerator of (2.5.2) is regular in
Zq, SO that the only poles may come from its denominator. We can simplify the next steps by
using a trick: let us rename ¢, = z0, and multiply it by a dummy variable, z. Pictorially, this
would consist of taking all the open (fundamental matter) edges in the quiver and joining them

to a fictitious node, that we call ‘0 node’. For consistency, let us also rename t, = x,0 Using
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this notation we can rewrite eq. (2.5.2) as

o _ exp (2q Ta,0) exp (2q Ta,0)
Ia(z; a taa ta) = n = oy (253)
Zq — <20 Toa+ D 2 xb,a> Zq — (Z 2 xb,a>
b=1 b=0

where it is understood that zy will be set to 1 after the z; (1 < i < n) integrals have been done.
This means that the intermediate expressions arising from successive integrations will take the
same form as in the unflavoured case of Section 2.3. In particular the pole prescription still
holds unaltered.

With this formalism, eq. (2.3.12) becomes

z;f[r] = 27 (Zr41, -+ 2n, 20; ) = Z 2 &ETJ]., (2.5.4)
uff:%}

and correspondingly eq. (2.3.19) gets modified as

r
A7
(1 - <xr+1,r+1 + Z QH_LZ‘ xi,r—&-l)) Zr4+1 =

i=1

Sy, (xjmza;f;w) 255)

j>r+1 i=1
u{sj=0}

We can then proceed in the exact same fashion as in section 2.3. The only manifestly different
piece in the integrand are the numerators of (2.5.3). To highlight the similarity to the unflavoured

case, we write

1 1

I(Z%,) = — = - (2.5.6)
Za — (ﬂfo,a + Z Zp xb,a) Za — Z Zh Thq
b=1 b=0
such that
L exp(2ata) —
I,(Z 2, g, ta) = Z ¢ = exp(2q Ta,0) 1a(Z; Za) (2.5.7)
Zaq — <ta + Z Zb xb,a)
b=1
For the flavoured case the equation corresponding to (2.3.15) would then be
T n dz T [ ]
— a *|T
rlnl — HH](x) (Hé 2m> (H exp (zk xky0)>
7=1 a>r v va k=1
X H fa(zik[r},z;[r], ...,z,fm,zr+1,zr+2, wey Zn; Tq) €Xp(2aTa0) (2.5.8)

a>r
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where in exact analogy with (2.3.22)

-1

-1
H;(Z) = (1 - (%}j + Z&Ei—” 90”)) (2.5.9)
=1

Again, we see that the only addition in comparison to the unflavoured case is the product over
the exponential functions. After the n integrations have been done, using the definition in eq.
(2.5.4), we have

z;["} — 2% (20: %) Z s =2 g}g (2.5.10)
ugi>:no}
At this point we set zp = 1. Eq. (2.5.10) becomes
M =ay) (2.5.11)

so that

ﬁexp( *[n Tp 0) Hexp (%kl‘k 0) (2.5.12)
k=1

We can then say that F' is the product

ex Al
P\ 4 j%O

(2.5.13)

Flnl — ﬁHJ(f) exp (Z;[n] 53390) - ﬁ
j=1

o )
j 1— a2, — Zab ]xm,

where xp,0 = t, and x, = t,. As expected, by setting all the fundamental matter field chemical
potentials to zero we return to the unflavoured case.

In Appendix B.6 we show that the numerator of this formula has the form

p+a
exp Zag]t] = exp Z tpt qM (2.5.14)
p.a=1 "

where M, , is the (p,q) minor? of the matrix (1, — X,,). We can then write

1 1)Pta M
Pl — Z tply éet()qu) (2.5.15)
p.g=1 "

%We recall that the (p, ¢) minor M, ; of a square matrix A is defined as the determinant of the matrix obtained
from removing the p-th row and ¢-th column from A.
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A second expression for the same quantity is also given in Appendix B.6, and it reads

Flrl = Fén} exp <tpt_q 0P log F(gn}) (2.5.16)
where we used Einstein summation on p, ¢, and 074 = 8qu.

Note that, as in the unflavoured case, we can write FI" as a determinant of a suitable matrix,

which encodes all the information of the quiver under study. Since

(—1)P+a M, .
7 M g 2.5.17
det(1, — X,) ( ) ap ( )

if we introduce the n x n matrices y, and A,, defined by

Xnlpg = (Ln = Xa) 7Y s nlpg = tolq (2.5.18)
then we can write
F'({@a}, {ta}, {Ta}) = det xn exp [T (xn An)] (2.5.19)
Finally, the last equation can be put in the determinant form
F' (o}, {ta}, {ta}) = det (xu oxp [xn An]) (2.5.20)

The generating function Z is obtained from F using eq. (2.2.27). However, from e.g. eq. (2.5.20)
we see that t,,t, always appear pairwise, so that we can rewrite (2.2.27) in the more symmetric

form already anticipated in eq. (2.1.8), that is

Z({Jjab,a}? {771,5}? {7;,7})

: Tr(T. ) _
76
- HFM {:Eab — Zxéb’a} Ata = Tj : {ta = \ﬁ} (2.5.21)
¢ @ B ¥
This is the final expression for our large N generating function.
2.6 A few examples

We will now present some simple applications of our counting formulae, for the large N limit.

2.6.1 One node quiver

Rewriting the chemical potentials of the fields as x1; — z, t; — t, t1 — t, we have

1

, Ay = tE, (2.6.1)
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so that
tt
el—=x
FI = det(x1 exp[x1A1]) = det(x1) exp [Tr(x1A1)] = — (2.6.2)
The large N generating function is then
Tr(TH) Tr(T?
oxp [ S DT
_ i1 =20 7h)
2({zab AToH AT =[] T (263)
i (0% o
For the d =4, N' = 4 SYM theory with quiver shown in Figure 12
P2
¢1 ¢3
Figure 12: d =4, N =4 SYM quiver
the Z function is
zZ = ! 2.6.4
SYM(xl’xz’xs)_Hl—xﬁ—x’é—xg ( -0. )
(2
For the SQCD model, described by the quiver in figure 13
Q Q
F > @ > F
Figure 13: d =4 N =1 SQCD quiver
the generating function is instead
- 1 F F
Zsqop(T,T) = Hexp{ Te(7°) Te(T7) } H H (1—titp) ™", (2.6.5)
i Jj=1k=1
where we used
T = diag(t1,ta,...,tr), T = diag(t1,t2, ..., t5) (2.6.6)

Note that if in the last example we do not distinguish the U(1) C U(F) charges of the quarks
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and the U(1) C U(F) charges of the antiquarks, that is we set 7 =t1p and T =15, we get
Zsoop(tlp,t1p) = (1—tf) FF (2.6.7)

which was already derived in [78], using different counting methods.
An interesting gauge theory can be obtained by adding a flavour symmetry to N' = 4
SYM [49,50]. This operation breaks half of the supersymmetries leaving an N/ = 2 theory,

which in turn we can describe with the N' =1 quiver [79] in figure 14.

H,

Hy F

¢
Figure 14: N =2 SQCD with and adjoint hypermultiplet.

The N = 2 theory has a vector multiplet V (1 complex scalar ¢) and an hypermultiplet H
(two complex scalars Hy, Ha) both in the adjoint of U(N). A second hypermultiplet Q is in the
bifundamental U(N) x U(F'), where U(F') is a global (non-dynamical) flavour symmetry (two
complex scalars @, @, transforming in opposite way under the symmetry group). The large N

generating function for this quiver, that we denote by Zx—2(x1, 2,23, T,T), is given by

exp y y .
o 1 1 VA
2(1—x1—$2—333

Te(77%) Te(T7) ]
)

Z_/\/':Q(l‘lu x2,I3, T7 7:) = H

7

. - . (2.6.8)
1—a] —axy — 25

The first terms in the expansion of the unrefined Zx—o(1, 22, z3,t1p, ¢ 1p) read

ZNZQ(xl, To,x3,t 1F,t_lp) =14z +x2+ 23+ FQtt_—i- 2x1x9 + 22173 + 22973 + 2F2t£’L‘1

_ . F?
+ 2Fttwy + 2F*ttas 4 6 213023 + 5 1+ F?) ¢ (2.6.9)

_ _ _ F?
+ 6F2ttor mo + 6F2ttx1x3 + 6F2tta;2$3 + - (1 + 3F2) 2122 + ...

Let us now check explicitly the validity of our generating function for some of these coefficients,
in the large N limit. Let us start off by considering just one quark/antiquark pair and one

adjoint scalar, say Hi. The Gauge Invariant Operators (GIOs) we can build out of these fields
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are

DQQ)F,  (QeQ) (2.6.10)

where upper and lower indices belong to the fundamental and antifundamental of U(F') and
U(F) respectively, and round brackets denote U(N) indices contraction. The total number of
GIOs for this given configuration is 2F2. We see that this value is the same one of the coefficient
ttxy, so that we have a first test of the validity of (2.6.9). Consider now the situation in which

we only have two pairs of quarks/antiquarks. The only GIOs we can form are of the form

(QQ)M (QQ)? (2.6.11)

using the same convention of the example above for the flavour and gauge indices. This is just
a product of two matrix elements of the same F dimensional matrix (QQ). The total number
of inequivalent GIOs is then %F 2 (1 + F 2): once again this is the same coefficient of the term
(t1)? in (2.6.9). As a last example, suppose added to the last configuration a single field ¢. The

GIOs we can form would then be
(0) QP (QQ)E,  (QeQ) (QQ))* (2.6.12)

The one on the left consists brings a total of %2 (1 + F 2) GIOs, while the one on the right adds
another F?2 GIOs to the final quantity, which then reads

2

2
5 1+ F%) + F? = % (1+3F?) (2.6.13)

In agreement with the coefficient of (t£)2x; in (2.6.9).

2.6.2 Two node quiver

We now present some two-node quiver examples. From the definitions in (2.1.5) we can imme-

diately write

_ 1 1-— 22 T12
=(lg—Xy) = —— , 2.6.14
x2 = (12— %) det (12 — X3) ( T2 1—an ) ( )

and

titr  tit:
A2_< i 12); (2.6.15)

tgfl tQEQ
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so that, from (2.1.7):

Fi2 = det(x2 exp[x2A2]) = det(x2) exp[Tr(x2A2)]

(751751(1 — Tg2) + t1tower + tat1 12 + tata(1 — 9611))
exp

1 — 211 — 222 — T12w21 + T11T22
_ (2.6.16)
1— 211 — 292 — T12w21 + T11T22

Finally, recalling (2.1.8), we can get the large N generating function from F[? by mapping

M1 M2 Moy Moo
¥ VA A 3
T — g Ti1 0 T19 — E Tig g s To] — E Th o Tog — E Th9 o (2.6.17a)
a=1 a=1 a=1 a=1

My, My,
te =i VP TH(Tig), k=12, f—i P Tr(T), k=1,2 (2.6.17b)
B=1 y=1

and by taking the product over i from 1 to co.

The most famous two-node quiver is Klebanov and Witten’s conifold gauge theory, consisting
of the gauge group U(N) x U(N) and four bifundamental fields: two of them, A; and A, in the
representation (OJ, () and the remaining two, By and B, in the representation ((J, (J) of the
gauge group. Here we consider the deformation of such a model obtained by allowing flavour

symmetries, which is sometimes called ‘flavoured conifold’ [52,53, 75, 76]

Sy

81 52

Figure 15: The quiver character diagram for the flavoured conifold gauge theory.

We now choose a different notation for the chemical potentials of the fields, to accord to

more standard conventions:
121 — a1, T122 — a2, x211 — b1, 212 — by,

Tig— a1, T21 — q2, Tii— a, Ton — @
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The first terms in the power expansion of Zriavourea (a1, a2, b1, b2, q1, ¢2, G1, G2) in the large N limit
Conifold

then read

ZFlavoured =1 + a1b1 + 2&%[)? + 2a%b1b2 + 2a2a1b§ + aiby + 2&%1)? + agby + ashy + TI‘F1 (ql)Tl‘Fl ((jl)

Conifold
+ 20101 Ty (1) Tr g, (G1) + 2a2b1 Trpy (1) Tr g, (@1) + 4003 Trp, (q1) Tr s (G1)
+ 6aragbi Trp, (q1)Tr s, (@1) + a1 Trp, (q1) Tr g, (G2) + 12a1a2b1bo Trp, (q1) Tr g, (G1) + .-

(2.6.18)

2.6.3 Three node quiver: dF,

The del Pezzo dPy gauge theory (obtained from D3 branes on Cs3/Zs orbifold singularities [80])
contains nine bifundamental fields charged under the U(Nj) x U(N2) x U(N3) gauge group as

represented in figure 16, in which we also added flavour symmetry.

Figure 16: Flavoured dP, gauge theory.

We refer to this theory as the flavoured dP, theory. Using the convention for the chemical

potentials of the fields

12,1 —> a1, T122 — G2, T12,3 — a3, Tig— a1, Tig — i,

x23.1 — b1, x232 — ba, x93.3 — b3, T2 — g2, T — G2,

31,1 — €1, 312 — C2, 31,3 — €3, T3,1 — a3, T31 — @3
(2.6.19)
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we can write the generating function for the flavoured dFP, theory in the large N limit as:

1
ZdP() Flav. =— H 3
i 1= 3 (ajbra)

Ji.k,l=1

X exp
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Chapter 3

Correlators in the Quiver Restricted

Polynomials Basis

In this chapter we will be focusing on the construction of a basis for the Hilbert space of
holomorphic matrix invariants for the class of quiver gauge theories described in section 1.4.
This basis is obtained in terms of Quiver Restricted Schur Polynomials Og(L), that we define
in Section 3.2. These are a generalisation of the restricted Schur operators introduced in [22—
24,30,81]. In [26], the non-flavoured versions of these objects were called Generalised Restricted
Schur operators, constructed in terms of quiver characters xo(L) where L is a collection of
representation theory labels. In this flavoured case, we will find generalisations of these quiver
characters, where the representation labels will include flavour states organised according to
irreducible representations of the flavour groups. The advantages of using this approach is
twofold. On the one hand, the Quiver Restricted Schur polynomials are orthogonal in the
free field metric, as we will show, even for flavoured gauge theories. This leads to the simple

expression for the two point function in eq. (3.3.1):
(0o(@)OL(E)) = b1 e [T fva(Ra) (3.0.1)

In this equation fn, (R,) represents the product of weights of the U (N, ) representation R,, where
a runs over the gauge nodes of the quiver. cz is a constant depending on the matter content
of the matrix invariant Og(L), given in (3.2.27). On the other hand, the Quiver Restricted
Schur polynomial formalism offers a simple way to capture the finite N constraints of matrix
invariants. This can be seen directly from (3.0.1): each fy,(R,) vanishes if the length of the
first column of the R, Young diagram exceeds N,.

In subsection 3.4 we give an N-exact expression for the three point function of matrix
invariants in the free limit. This computation is performed using the Quiver Restricted Schur

polynomial basis. Specifically, we will derive the Gpa) @) ) coeflicients in

<OQ(L(1)) (’)Q(L(Q)) (’)TQ(L(?’))> = Cp(3) GL(U,L(Q),L@ H N, (Rg?’)) (3.0.2)
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The analytical expression for G L, L@, 3 looks rather complicated, but it can be easily un-
derstood in terms of diagrams. Although the identities we need appear somewhat complex,
they all have a simple diagrammatic interpretation. Diagrammatics therefore play a central
role in this chapter: all the quantities we define and the calculational steps we perform can be
visualised in terms of networks involving symmetric group branching coefficients and Clebsch-
Gordan coefficients. Both these quantities are defined in Section 3.2. The quantity Gra) pe) re)
is actually found to be a product over the gauge groups: for each gauge group there is a network
of symmetric group branching coefficients and a single Clebsch-Gordan coefficient.

The organisation of the chapter is as follows. In Section 3.1 we describe a permutation based
approach to label matrix invariants of the flavoured gauge theories under study. A matrix invari-
ant will be constructed using a set of permutations (schematically o) associated with gauge nodes
of the quiver, and by a collection of fundamental and antifundamental states (schematically s, § )
of the flavour group, associated with external flavour nodes. In this section we highlight how the
simplicity of apparently complex formulae can be understood via diagrammatic techniques. We
describe equivalence relations, generated by the action of permutations associated with edges of
the quiver (schematically 1), acting on the gauge node permutations and flavour states. Equiv-
alent data label the same matrix invariant. The equivalence is explained further and illustrated
in Appendix A.1. The equivalences 7 can be viewed as “permutation gauge symmetries”, while
the (o, s,5) can be viewed as “matter fields” for these permutation gauge symmetries.

In Section 3.2 we give a basis of the matrix invariants using representation theory data,
L. This can be viewed as a dual basis where representation theory is used to perform a Fourier
transformation on the equivalence classes of the permutation description. We refer to these gauge
invariants, polynomial in the bi-fundamental and fundamental matter fields, as Quiver Restricted
Schur polynomials. In this section we introduce the two main mathematical ingredients needed
in this formalism. These are the symmetric group branching coefficients and the Clebsch-Gordan
coeflicients. Their definition will be accompanied by a corresponding diagram.

In Section 3.3 we derive the results for the free field two and three point function of gauge
invariants. In subsection 3.3.1 we show that the two point function which couples holomorphic
and anti-holomorphic matrix invariants is diagonal in the basis of Quiver Restricted Schur poly-
nomials. In subsection 3.4 we give a diagrammatic description of the structure constants of the
ring of Holomorphic Gauge Invariant Operators (GIOs). In particular, we present a step by
step procedure to obtain such a diagram for the example of an N' = 2 SQCD, starting from
its split-node diagram. Using these formulae, we identify four selection rules, all expressed in
terms of symmetric group representation theory data. The analytical calculations are reported
in Appendix A.3, and rely on the Quiver Restricted Schur polynomial technology introduced in
the previous section.

Finally, in Section 3.5, we give some examples of the matrix invariants we can build using
our method, for the case of an N'=2 SQCD.
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3.1 Gauge invariant operators and permutations

In this section we will present a systematic approach to list and label every holomorphic matrix
invariant in quiver gauge theories of the type discussed above. We also allow for a flavour
symmetry of the type discussed in Section 1.4. The operators we consider are polynomial in the
®, @ and Q type fields that are invariant under gauge transformations. Therefore, all colour

indices are contracted to produce traces and products of traces of these fields. For example

(PabPre - Pea) s (PapPra) (Pec) (Q’i@za>7 (Q];(I)abq)bc"'q)chdl) (3.1.1)

and products thereof are suitable matrix invariants. In these examples round brackets denote
contraction of gauge indices (i.e. traces), while k,[ are flavour indices. The last two examples
belong to the class of GIOs that in the literature has been called ‘generalised mesons’ (see
e.g. [82]). In order to label these matrix polynomials, the first ingredient we need to specify is
the number of fundamental fields that they contain. Let n4 o be the number of copies of @4, o
fields that are used to build the GIO. Similarly, let n, g (74,4) be the number of copies of Q, g
quarks (Q(m antiquarks) used in the GIO. In other words, the polynomial is characterised by

degrees 71 given by
7 = Uq {Up,a Nab,a; Ug Na g5 Uy Tlay | (3.1.2)

For fixed degrees there is a large number of gauge invariant polynomials, differing in how the
gauge indices are contracted. To guarantee gauge invariance we have to impose that the GIO

does not have any free gauge indices. This condition implies the constraint on 7

Mo = Dy o Maba + 25 MaB = Doy o Mbaa + 2y Tlay  Va

Na = Za ZB Na,p = Za Z’y ﬁaa’y

(3.1.3)

We now introduce a second vector-like quantity, s. It will store the information about the
states of the quarks and antiquarks in the matrix invariant. To do so, let us first define the
states

®ng _ _ s
|Sa,8) € VFGT; 7, (San| € Vsz " (3.1.4)

Here VF, , is the fundamental representation of U(F ) and VFM is the antifundamental rep-
resentation of U(Fg ). Therefore, |s,g) is the tensor product of all the U(F; 3) fundamental
representation states of the n, g quarks Q, 3. Similarly, (s,.| is the tensor product of all the
U(F,,) antifundamental representation states of the fi,~ quarks Qq~. We define the vector §

as the collection of these state labels:
§=U, {Uﬁ 84,85 Uy 5(1’7} (3.1.5)
In the framework that we are going to introduce in this section, the building blocks of any
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matrix invariant are the tensor products of the fundamental fields @fbn;b’“, Q?g“’ﬁ and Q?ﬁ“’”.

Let us then introduce the states
) . RNab. . . ®ng
Tapa) = lits - ing,.) € Vy, Iag) = lit, e in, 5) € Viy, "
. . RNab,a T - - Rng
|Jab,a> = |]17 "'7]nab,a> € VNan " ) ’Jaﬁ) = |]1a -'-7]ﬁa,w> € VNan N

Using these definitions, together with eq. (3.1.4), we can write the matrix elements of every

@?bfg[b’a tensor product as
®nab,o¢ ]ab,a ®nab,o¢
<(I)ab,a )J = <Iab,oc (I)ab,a Jab,a> (3.1.6)
ab,a
and similarly for Q?Z“’B and Q? 2“’”:
®na,p lap ®Na,p ~Qfia,~ Sa,y _ A®Ra,y | 7
Qa,ﬂ s = Ia,ﬁ Qa,ﬁ Sa,8) » a,y 7 = (Sa,y Qa,f\/ Ja’fy (317)
a,B a,y

We will now present the first of the many diagrammatic techniques that we will use throughout

this chapter. We draw the matrix components of fundamental fields (@ab,a);, (Qaﬁ)i and (Qaﬁ)j

as in Fig. 17.
(2 7 s
L . — 3 —
(®apa)j ~ [Pave (Qup)l ~ | Qus (Qay)j ~ [ @en
\ 4 k
J s J

Figure 17: Diagrammatic description of the matrix elements of the fundamental fields ®, Q and Q.

ab,a
This diagrammatic notation is then naturally extended to the tensor products (@?bn;b’a> i
’ ab,a

Ia, — Q7 Sa,
(Q?g“’ﬂ) ’ and ( g:“”)j 7, defined in egs. 3.1.6 and 3.1.7, as in Fig. 18.
' Sa,p a,y
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Iab,oe Ia,B Sa,~y
Y v Y
PpENabia Tab,a PENab.a @nap) o8 ®na.p (Q‘X’ﬂm)gu'w QB®Man
ab,a ~ ab,« Qa,ﬁ ~ Qa,_;-; a,y 7 ~ a
Jab,a Sa,8 ay
Y v Y
Jab,a Sa,B Ja,’y

Figure 18: Diagrammatic description of the matrix elements of the tensor products of the fundamental
fields @, @ and Q.

Permutations act on a tensor product of states by rearranging the order in which the states
are tensored together. For example, given a permutation o € Si and a tensor product of k states

lia) (1 < a < k) belonging to some vector space V, we have

O‘|i1, iQ, ceey Zk> = ‘Z'U(l), 7:0—(2), ceey ia(k)> (3.1.8)

Therefore, there is a natural permutation action on the states (3.1.4) and (3.1.6).

The gauge invariant polynomial is constructed by contracting the upper n, indices of all the
fields incident at the node a with their lower n, indices. We describe these gauge invariants as
follows. First we choose an ordering for all the fields with an upper U(N,) index. Then we fix a
set of labelled upper indices: this means that we have picked an embedding of subsets into the

set [ng] = {1, -+ ,ng}, i-e.
[Ma1,a=1] U [Na1,a=2] U+ U [na2.0=1] U [Ra2,a=2] U -+ - U [ng g=1] U [ng =] U -+ = [na] (3.1.9)

which gives a set-partition of [ng,]. Similarly, there is an embedding into [n,] corresponding to

the ordering of the lower U([V,) indices, namely
[nla’a:l] (] [nla’azz] U---u [nga@:l] L [nga@:Q] - [ﬁa,'yzl] U [ﬁa’,yzg] U= [na] (3110)

Now we contract the upper indices of these fields with their lower indices, after a permutation

0q € Sy, of their labels. We will therefore be considering permutations o, € S,,, where

Ng = Zb@ Nab,a + Eﬁ Ng g = Zb,a Npa,a + E’y Na- Along the lines of egs. (3.1.6) and (3.1.7)
we can define the matrix elements of o, as

(0a) sbefpme e — (@ (Jpaal @2 (Tan]) Ta (Db allane) @slTas)) (3.1.11)

Xb,alab,aXBIa,B
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where the product symbols appearing in the upper and lower indices of o, are ordered as in
(3.1.9) and (3.1.10). We depict these matrix elements as in Fig. 19.

i
R

Xb, ana , o

( )Xb,ana,aX'y-]a,'y
a Xb,aIab,a XﬁIa,ﬁ

><b @ ab [e%
Figure 19: Diagrammatic description of the matrix elements of the permutation o.

Following the approach of [26], we can write any GIO Og of a quiver gauge theory Q with

flavour symmetry as

oot 5.9) =T T (+3) "

a,ba

e

e

”'ﬂ’

% H ) XbadoasaXyJay (3.1.12)

Xba abaxﬂla B

Here & = U,{0,} is a collection of permutations o, € S,,,, where n, = Zb,a nab,a—i-zﬁ ng,g. The
purpose of & is to contract all the gauge indices of the ®, @) and @ fields to make a proper GIO.
This formula looks rather complicated. However, it can be nicely interpreted in a diagrammatic
way. We will now give an example of such a diagrammatic approach. Consider an N/ = 2 SCQD
theory. The N' =1 quiver for this model is illustrated in Fig. 20.

9

¢ N ) . F
Q

Figure 20: The A/ =1 quiver for an N' = 2 SQCD model.

We labelled the fields of this quiver by ¢, Q and Q, simplifying the notation given in table 1.
Consider now the GIO (ngQ)g} (QQ)§§ Here s1, s9 and 51, 5o are states of the fundamental and
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antifundamental representation of SU(F') respectively, and the round brackets denotes U(N)

indices contraction. Figure 21 shows the diagrammatic interpretation of this GIO.

T 11 T

¢ [@ ¢l |@**

o= (12)(3) = 1 = (QeQ) (QQ)
4 Q®2 4 Q®2

I'nm  1n

Figure 21: Diagrammatic description of the GIO (Q¢Q)5! (QQ)$? in an N = 2 SQCD. The horizontal
bars are to be identified.

For fixed 77, the data &, § determines a gauge invariant. However changing &, § can produce
the same invariant. This fact can be described in terms of an equivalence relation generated by
the action of permutations, associated with edges of the quiver, on the data &, 5. This has been
discussed for the case without flavour symmetry in [26] and we will extend the discussion to
flavours here. Continuing the example of the N’ = 2 SQCD introduced above, let us consider a
matrix invariant built with n adjoint fields ¢ and n, quarks and antiquarks () and Q. We label the
tensor product of all the n, quark states |s;) € Vsy () with the shorthand notation [s) = @i |84)-
Here Vgy(r) is the fundamental representation of SU(F). Similarly, (8| = ®.¢, (5;| will be the
tensor product of all the antiquarks states (5;| € VSU( F), Where VSU( ) is the antifundamental
representation of SU(F'). In this model, a matrix invariant can be labelled by the triplet (o, s, 5).

The redundancy discussed above is captured by the identification

(0. 5.8) ~ ((nxpaln™ x p). pls). o)) (3.1.13)

where n € Sy, p,p € an and ,O(S) = (Sp(l)’sp(Z)a‘-~75p(nq))7 [3(5) = (55(1)755(2)a~-'7§ﬁ(nq))' The
last two equations are to be interpreted as the action of p and p~1 on the states |s) and (5]:

,0’3> = |$p(1)> Sp(2)1 -+ Sp(nq)> ) <§|:5_1 = <§ﬁ(1)7 gﬁ(?): ey gﬁ(nq)| (3114)

We refer to Appendix A.1 for a diagrammatic interpretation of this equivalence.

For the general case of a gauge theory with flavour symmetry, the degeneracy is described
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by the identity

Oo(7i; 5 7) = Oglfi; 7(7); Adjg 7)) (3.1.15)
Here we introduced the permutations
7= Uapallabat 5 Naba € Snp.a (3.1.16a)
P =UalUg pa,8; Uy Pay} 5 Pap € Snupg »  Pay € g (3.1.16b)
and we defined
Adjiiu #(5) = Ua{ (Xb.aMbaa X5 Par)Ta(Xballgye X8 Pag)} » (3.1.17)
F(5) = UadUs pop(85); Us fury (B} (3.1.18)

In Appendix A.1 we will derive the constraint (3.1.15). This is essentially a set of equivalences
of the type (3.1.13), iterated over all the nodes and edges of the quiver. The permutations
Nab,as Pa,Bs Pa,y Can be viewed as “permutation gauge symmetries”, associated with the edges of
the quiver. The permutations ¢ and state labels § can be viewed as “matter fields” for the
permutation gauge symmetries, associated with the nodes of the quiver. It is very intriguing
that, in terms of the original Lie group gauge symmetry, the round nodes were associated with
gauge groups U (N, ), while the edges were matter. In this world of permutations, these roles are
reversed, with the edges being associated with gauge symmetries and the nodes with matter.

So far we have used a permutation basis approach to characterise the quiver matrix invariants.
This has offered a nice diagrammatic interpretation, but on the other hand it is subject to the
complicated constraint in eq. (3.1.15). In the following section we are going to introduce
a Fourier Transformation (FT) from this permutation description to its dual space, which is
described in terms of representation theory quantities. In other words, we are going to change
the way we label the matrix invariants: instead of using permutation data, we are going to use
representation theory data. The upshot of doing so is twofold. On one hand the new basis
will not be subject to any equivalence relation such as the one in (3.1.15). On the other hand,
as a consequence of the Schur-Weyl duality (see e.g. [68]), it offers a simple way to capture
the finite N constraints of the GIOs. Schematically, using this FT we trade the set of labels
{ii; & &} of any GIO for the new set {Ra, Tab.as a8, Sa.8 Taqys Saqs Va » Vg |» that we denote with
the shorthand notation L:

FT:{n; 5,6} — L={Ra,Taba>Ta,p> 5,8 Tany; 5’(1,7,1/;',1/;} (3.1.19)

Each R, is a representation of the symmetric group S,,, where n, has been defined in (3.1.3).
Tab,os Ta,Bs Tayy are partitions of ngpo,n4 8,74, respectively. S, 3 and Sa,y are U(F, ) and

U(Fy) states in the representation specified by the partitions 7, g and 7, respectively. The
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integers V;t are symmetric group multiplicity labels, a pair for each node in the quiver. Their

meaning will be explained in the next section. Graphically, at each node a of the quiver we
change the description of any matrix invariant as in Fig. 22. The diagram on the right in this

figure is also called a split-node [26].

(I)(?nm
[ a RNna — O
N {7e: S}

Ta

Qng et
Q" PEnan {ra, Sy}
@@){lal Tal
a

Figure 22: Pictorial representation of the Fourier transform discussed in the text. The multiplicity
labels of the fields are not displayed.

We call the Fourier transformed operators Quiver Restricted Schur polynomials, or quiver
Schurs for short. These are a generalisation of the Restricted Schur polynomials that first
appeared in the literature in [22-24,30,81]. In section 3.3.1 we will show how the quiver Schurs

form a basis for the Hilbert space of holomorphic operators.

3.2 The quiver restricted Schur polynomials

In this section we describe the FT introduced above. In other words, we will explicitly construct

the map
FT: Og(i;8,6) — Og(L) (3.2.1)

In order to do so, we need to introduce two main mathematical ingredients. These are the
symmetric group branching coefficients and the Clebsch-Gordan coefficients. For each of these
quantities we give both an analytic and a diagrammatic description: the latter will aid to make
notationally heavy formulae easier to understand.

We begin by focusing on the symmetric group branching coefficients. Consider the symmetric
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group restriction
k
X{y S, = Sn, Y mi=n (3.2.2)

For each representation Vg" of Sy, this restriction induces the representation branching

k
Vi~ P (@ v,f”z‘) QVE,  F=(r1,r ... s) (3.2.3)
=1

rikFny
TQFnQ

Tank

V]’; is the multiplicity vector space, in case the representation ®;V,, appears more than once
in the decomposition (3.2.3). The dimension of this space is dlm(VR) = g( T R), where
g (Uleri; R) =g (r1,r2,...,7%; R) are Littlewood-Richardson coefficients [68].

In the following, the vectors belonging to any vector space V' will be denoted using a bra-ket
notation. The symbol (-|-) will indicate the inner product in V. Let then the set of vectors
{&F_|ri,li,v)} be an orthonormal basis for . (@le V{?"’) ® V. Here [; is a state in V{?""
andv=1,..,9 ( i1 75 R) is a multiplicity label. We adopt the convention that ®§:1|n, li,v) =
| U; 74, Uili, v). Similarly, let the set of vectors {|R,j), j =1, ..., dim(Vfg”)} be an orthonormal

basis for Vg". The branching coefficients Bf:uufl are the matrix entries of the linear invertible
operator B, mapping
Sn k Sni ¥
B: Vi — @ (®L i) o Vi (3.2.4)
so that
R v .
B]:UL:ik R, j) = | Ui, Uli, v) (3.2.5)

The sum over repeated indices is understood. By acting with (S,i| on the left of both sides of
(3.2.5) we then have

BT — (50| Uy 1y, Uiy, v) (3.2.6)

i—Uglk

Since B is an automorphism that maps an orthonormal basis to an orthonormal basis, it follows

that B is an unitary operator, Bt = B~!. We can then write
R—Ujri; Uisiip—R _ e 7
ZBJ:U lT Y BT)UZ;_‘? <H gonT 5ql7l> oY (3.2.7)

However, since all the irreducible representations of any symmetric group can be chosen to
be real [83], there exists a convention in which the branching coefficients (3.2.6) are also real.

Therefore B = BT where BT is the transpose of the map (3.2.5). Using this last fact we can
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write the chain of equalities

(S, Uj 74, Uly, vy = B2 7Okreiv — (BT)Ukriiv =8 (=IO v — g Ul v)S,0) (3.2.8)

’L—}Uklk Uklk—>i Uklk—>i

We draw the branching coefficients (3.2.6) as in Fig. 23. The orientation of the arrows can be

reversed because of the identities in (3.2.8).

R—U;r;;v
Bj—>Uili

Figure 23: Pictorial description of the symmetric group branching coefficients.
Consider now taking k irreducible representations VTZ.U(N) of the unitary group U(N), i =
1,2,..., k. For each VT[Z.](N), r; is a partition of some integer n;. This partition is associated with
a Young diagram which is used to label the representation. If we tensor together all the VriU(N) ’s,

we generally end up with a reducible representation, and we have the isomorphism (see e.g. [83])

k k
QViM= @ vyVevi, n=> mn, (3.2.9)
=1

i=1 Ll
Here R is a partition of n = ), n;. The direct sum on the RHS above is restricted to the Young
diagrams R whose first column length ¢;(R) does not exceed the rank N of the gauge group.
Vg, with 7= (r1,72,...,7%), is the multiplicity vector space, satisfying dim(V];) =g (Ulen-; R).
The g (Uleri; R) coeflicients that appear in this formula are the same Littlewood-Richardson
coefficients that we used in the above description of the symmetric group branching coefficients.
Now let the set of vectors {|r;, K;)} be an orthonormal basis for VTIZ.J(N)7 fori=1,2,...,k. Here K
is a state in VTZJ(N). Also let {|R, M;v)} be an orthonormal basis for @5, VRU(N) ®@VE. Here M

(N)

is a state in the U(N) representation V}g and v is a multiplicity index. The Clebsch-Gordan

coefficients Cﬁ:ﬁgf}i ‘ are the matrix entries of the linear invertible operator C, mapping

c: Vi — @, ViV e Vi (3.2.10)
so that
Ot Ui, UiKG) = |R, M;v) (3.2.11)

The sum over repeated indices is understood. By acting on the left of both sides of (3.2.11)
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with (U;s;, U; P;|, where P; are states of the U(INV) representations VSZ.U(N), we get
Oy oo = (Uisi, Ui PR, M v) (3.2.12)

From (3.2.11), we see that the automorphism C' maps an orthonormal basis to an orthonormal

basis. This makes C' an unitary operator, Ct = C~!, and we can therefore write

Z Criaties (COO R = 658 par 61 (3.2.13)

As with the branching coefficients, it is always possible to choose a consistent convention in
which all the U(N) Clebsch-Gordan coefficients (3.2.12) are real. If we choose to work with
such a convention, C' becomes an orthogonal operator: CT = C~!. We then have, in the same
fashion of (3.2.8)

(Uisi, Ui PR, Myw) = Oy ot = ()i 2 = (O H a2 = (R M v| U; s, Ui )
(3.2.14)

We draw the Clebsch-Gordan coefficients as in Fig. 24. Again, the orientation of the arrows can
be reversed, due to (3.2.14).

Py

Riv—U;s;
CM—)UZPZ

Figure 24: Pictorial representation of the U(N) Clebsch-Gordan coefficient in eq. (3.2.12).

Consider now the particular case of (3.2.9) in which every representation Vg(N)

tensored on
the LHS coincides with the U(N) fundamental® representation, that for simplicity we just call

V for the remainder of this section. This configuration allows us to use the Schur-Weyl duality

to write
k times
Vo aV=v*~ @ vijMeovsk (3.2.15)
Rk
c1(R)SN

where Vlg ™) and Vg’“ are irreducible representations of U(N) and S respectively. They cor-
respond to the Young diagrams specified by the partition R of k. By comparing (3.2.15) with

3We can get similar results by replacing the fundamental with the antifundamental representation of U (N).
The quantities we define here get modified accordingly.
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(3.2.9), we see that the representation Vg’“ has now taken the place of the generic multiplicity
vector space Vg. Since the Schur-Weyl decomposition will play a major role in this construction,
we are now going to introduce a more compact notation for its Clebsch-Gordan coefficients. Let

us consider the states
|8) = @y ]s;) € VEF, |s;) eV, IR; M, i) = |R,M) & |R,i) e VM o Vi  (3.2.16)

where {|R, M), M =1, ...,dim(Vg(N))} and {|R,i),i=1, ...,dim(Vg’“)} are orthonormal bases
of Vg(N) and Vg’“ respectively. The equations (3.2.11) and (3.2.14) imply

CRM |s) = |R, M, i) (3.2.17)
and
CfME = (R, M, i) = (R, M, ilt) = Ch 1. (3.2.18)

respectively. We draw these quantities as in Fig. 25.

M =t

R M

Figure 25: Pictorial representation of the U(N) Clebsch-Gordan coefficients (3.2.18) for the Schur-Weyl
duality (3.2.15).

3.2.1 The quiver characters

We now have all the tools necessary to introduce a key quantity, the quiver characters xo(L, §, 5).
Here L is the set of representation theory labels defined in (3.1.19). The quiver characters are
the expansion coefficients of the FT (3.2.1):

Oo(L) =) > xo(L.55) Oc(i, 5,5) (3.2.19)
5 &
We define them as
- o\ Ra—>Ub aTab,aYBTa, B3 Vg Ta,B) Sa B lo B
XQ(L?S’O-) =L Z H Z Dza ]a Ja_>Uba ab aU,Blaﬂ HC
{lab,at G ig,ja
o} fla}
Raﬁub,arba,au'y"_'a,’y;yt;‘_ H §u.,'y
Biaﬂub,alba,au'\/l_a,’y Cfa,'y»gaw:l_a,-y (3220)

oY
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where the coefficient ¢y, is the normalisation constant

1 1
1 2 2 3
d(Ra)) 2 1 1 1 :
IZI ( ng! g d(Tab.a) 1;[ d(rq,3) l;[ d(Tay)
Since we chose to work in the convention in which all symmetric group representations and

Clebsch-Gordan coefficients are real, then the quiver characters are real quantities as well:
vo(L.5.5) = X5(L,5,7) (3.2.22)

This convention will be convenient when we compute the 2-point functions of holomorphic and
anti-holomorphic matrix invariants in section 3.3.1.

These quantities have a pictorial interpretation. We have already introduced a diagrammatic
notation for the branching and Clebsch-Gordan coefficients B and C' in Fig. 23 and in Fig. 25
respectively. The pictorial notation for the ¢,j matrix element of the permutation ¢ in the
irreducible representation R, ij(a), is displayed in Fig. 26. All the edges of these diagrams

are to be contracted together as per instructions of formula (3.2.20).

Y
A 4
<

R .
Dm-(a) =

Figure 26: Pictorial description of the matrix element ij(a) of the S, symmetric group representation
R.

Let us give an example of the diagrammatic of the quiver character of a well-known flavoured

gauge theory. Consider the N' =1 quiver for the flavoured conifold [52,53,75,76] in Fig. 27.

— Ay
Fy Q1 A Qo Fy
Fl Q1 B, Qz }«:‘2

Figure 27: N = 1 quiver for the flavoured conifold gauge theory.

The quiver character for this model is depicted in Fig. 28. This figure explicitly shows how
all the symmetric group matrix elements, the branching coefficients and the Clebsch-Gordan

coeflicients are contracted together.
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Sy _

S$1 SQ
Figure 28: The quiver character diagram for the flavoured conifold gauge theory.

For completeness we also give a diagram for the the most generic quiver character xo(L, §, &).
This is done in Fig. 29. In this picture, we factored the quiver character into a product over
the gauge nodes a of the quiver. All the internal edges (that is, the ones that are not connected
to a Clebsch-Gordan coefficient) are contracted following the prescription of (3.2.20).

lla,l lal,l
la1,2

lla,2

XQ(L7 §7 0_:) l7L(l7A'f7,'a

~a ¥ I

{lab,a} a
{la,ﬂ} ) {l_a,w}

ﬁm,]&{na

\ 4
S)
Q

F(1,1

Figure 29: Pictorial description of the quiver characters xo(L, &, &).
The quiver characters (3.2.20) satisfy the invariance relation
xo(L;8,0) = xo(L; p(5), Adjzx 7)) (3.2.23)
where Adjz, 5(5) has been defined in (3.1.17):

Adjﬁxﬁ(g) = Ua{(Xb,aMbaa Xy ﬁaﬂ)ga(xb,ana_bl,a XB P;é)} (3.2.24)
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They also satisfy the two orthogonality relations

ZZXQ (L,5,3)xo(L,5,6) =0y, (3.2.25)
and
> xo(L.5,5) xo(L, £, 7) Za Adjz #5) 7 7) 6500 (3.2.26)
L Txp

where we introduced the normalisation constant

111 (1) (1)
a b,a B v

It is worthwhile to note that this quantity can be interpreted as the order of the permutation
gauge symmetry group. All of these equations are derived in Appendix A.2.

The set of operators (3.2.19) form the Quiver Restricted Schur polynomial basis. Using
(3.2.23) we can immediately check that such operators are invariant under the constraint (3.1.15).

We have

- ZZ xo(L,3,&) 0o (i, 5,&)
- ZZ xo(L,5,6) Oo(it, §(5), Adjz 5(5))
= ZZ XQ ,ﬁ Adjnxﬁ(ﬁ)) Og(ﬁ, ﬁ(g) Ad.]nxp( ))

=YY xo(L,5,3) Oqii, 5, &) = Og(L) (3.2.28)

were in the second line we used the constraint (3.1.15), in the third one the invariance of the
quiver characters (3.2.23) and in the fourth one we relabelled the dummy variables of the double
sum.

Finally, the FT (3.2.19) can be easily inverted. Starting from
L)=)_> xo(L.t;7) Og(i..7) (3.2.29)
v T

we multiply both sides by xo(L, §,5) and we take the sum over the set of labels in L to get

Z xo(L, 5,5) Og(L ZZ (Z xo(L, 5,&) xo(L,1, T)> Oo(it, ,7) (3.2.30)
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Using the orthogonality relation (3.2.26), the above equation becomes

> xo(L,5,5) Og(L) = ZZ - =376 (Adigep(8) ) S5 | Ol Eo7)
L

— —, =

T nxp

:—zog §), Adj;, 5(5)) = ZOQ 5.6  (3.2.31)

Cii i
" iixp " i p

where in the last line we used the constraint (3.1.15). Now the sum over the permutations 7j, p’
is trivial, and it just gives a factor of c;. We then have that the inverse of the map (3.2.19) is

simply

Og(i,5,5) = Y xol(L,5,5) Og(L) (3.2.32)

3.3 Two and three point functions

In this section we will derive an expression for the two and three point function of matrix
invariants, using the free field metric. All the computations are done using the Quiver Restricted
Schur polynomials. The result for the two point function is rather compact, and offers a nice
way to describe the Hilbert space of holomorphic GIOs. On the other hand, the expression for
the three point function is still quite involved. We give a diagrammatic description of the answer

in section 3.4, leaving the analytical expression and its derivation in Appendix A.3.

3.3.1 Hilbert space of holomorphic gauge invariant operators

In the free field metric, the Quiver Restricted Schur polynomials (3.2.19) form an orthogonal
basis for the 2-point functions of holomorphic and anti-holomorphic matrix invariants. In this

section we are going to show that
(0o(L)OL)) = bp1r e [] fva(Ra) (3.3.1)

where ¢z is given in (3.2.27). The quantity fn,(Rs) is the product of weights of the U(N,)

representation R, and it is defined as
o (Ra) = [[(Na =i +4) (3.3.2)
.3

Here i and j label the row and column of the Young diagram R,. At finite N,, this quantity
vanishes if the length of the first column of its Young diagram exceeds N, that is if ¢1(R,) > N,.
This means that for a generic quiver Q the Hilbert space Hg of holomorphic GIOs can be
described by

Ho = Span{Og(L)| L s.t. c1(R,) < Ng, Va} (3.3.3)
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We can see how the finite NV, constraints of any matrix invariant are captured by the simple

rule ¢1(R,) < N,. We are now going to give a step-by-step derivation of this result.

i) Compute the correlator in the permutation basis

- =) =

In this step we will compute the permutation basis correlator <Og(ﬁ, §,0) OTQ(n, §' ¢ )> In
the free field metric, the only non-zero pairings are the ones that couple fields of the same kind
(e.g. Pgp,o With (I)aba)

(@)t (@1, ) =010 (Qup)t (@10 = 0182, ((@un)} (@1 )E) = 0505 (33.4)

It then follows that

®nab,a Iab,a T®nab,a J(’zb,a _ 77(Iab a) Jtlzb,a
<<<I>ab’a )Jab,a (‘Pab,a )I/ >_ ST apleelg e | (3.3.5)

ab.a ab «
’ 776'S'”a,b,oz

where the sum over permutations represents all possible Wick contractions of the labels In; o =

{015 s tngy o b5 Jaba = {71, -+ Jngy.q }- Using the identities

577(Iab o) _ (nfl)Iaba _ ( )I(/zbcx _ 577—1(1(/““1)
- - 1

Ié,ba Itlzba ab,a - Iab,a
Jlb Jlb _ —1 Jaba _ J, b,
577? a(:) a) (Tl)Jsz - (”7 )J:zba - 5 : ?J(;ba) (336)

it is immediate to write the correlators

1 J! ’
®nab,a abo T ®nab,a ab,a _ —1 Iab e ']ab,a
< (q)ab,oc >Jab . (q)ab,oc )I’ > = § (77 )I/ (n)Jab,a (337&)

ab,a nGSnabya ab,a
1, s’
®ng,z) 8 T ®ng,g\% @8\ _ —1\1a,8 sap _ aB 8ap
<(Qa,,3 )SM (Qa,a ) p > = 2 (e el = >0 (7 D ) R CERY
s a,B pESna’ﬂ peSna,ﬂ
_ o 8a, _ = j/7 N _ jé B jé 5(5,
<< %a,w> e ( l?na,y)—lav > — Z (p 1);7(7 (p)jan — Z (p)jam 5;(: ) (3.3.7¢)
Ja,y 8o 7Sy Y Y S Y Y

We can now compute the pairing <Og(ﬁ, §,0) (’)TQ(ﬁ s’ _")>. We just need the Hermitean
conjugated version of the operator defined in (3.1.12), which is simply

obta 5 @) = T[T (el=) | & IT(es™),”

ab,a Sa
a b,a > 6 Y

N {CE
:

% H _]_ Uba cb auﬁlaﬂ (338)

C Ub anc aU'yJa’y
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where we used (J)z = (0*1)2. We then have

Tob,a J’ _\as ($0.5)
— = - = — 1 a0, 1 pa, a,
(0alit,5.5) 071,55y = 3" TT |TT (nala) " nav)e | |1 (k) o

7.5 a |ba b 8

ba,a

_ j(/l,"/ Pa,v(3a,y) Ub,ana,aU’yja,'y /\—1 UbﬂaI;b QU’BI‘; B
g [H (paﬁ)ja, 65’(1,7 (Ua)Ub,aIab,auﬁla,ﬁ ((Ua) )Ub,aJ/ U’Yjé,’y
v
B _ —1 —1 /IN—1
— E HT‘I‘V}?”“ |:(><b70¢77ba70¢ Xy pa"y) Oq (vaanab,a X pa,ﬂ) (Ua) :|
a
7.0 a

% 6pla,ﬁ(sa,ﬁ) [H 69(1'7(3@ ’7)] (339)

Sa,B Fany
B v
where, as we defined in (3.1.16),
n= Ua,b,a{nab,a} » Nab,a € Snab@ (3310&)

Pp=Ua{Ug pag; Uy Par} 5 Pap € Snas »  Pary € Shig (3.3.10b)

The trace is taken over the product space Vy e 1\ being the fundamental representation of
U(Na) and ng = 3 , Naba + D_5 Na,5- Recalling the definition (3.1.17) and the identity

Tryen (0) = NCll (3.3.11)

where C[o] is the number of cycles in the permutation o, we finally get

<Og(ﬁ 55)0T = —»l —'/ > ZH Hépa 8(8a,8) 6Pa ~(8a,y) Nf[AdjﬁXp“(ga)(Ut/l)_l]

s'ap §ay
o a v

(3.3.12)

ii) Fourier transform the permutation basis correlator

Using the definition of the Fourier transformed operator (3.2.19), we can immediately write

<0Q(L)c9T L'> ZZXQ L.56)xL (L5 *’)<og(ﬁ,§,5)ofg(ﬁ,§',5')> (3.3.13)

SS O'O'

-3 vell s (k. ) T AL ]

§ .06 1,p
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where we summed over 57, used the Kronecker delta functions and used the reality of the quiver

characters. Now redefining the dummy variable 5§ — 5 ~!(5) in (3.3.13) we further obtain

(0o(L)OL(LY)

_ZZZXQ § 75: XQ HN AdJnXp oa) (04)~ ]

§ &8 7m,p

_ZZZXQLSAdJnXp() HN [Adizsoe) (70)77)

s .06 1,p

=3 3> xolL,5 ) xol HN [ (7)) (3.3.14)

§ 8" m,p

To get the second equality we used the invariance relation (3.2.23), and in the third we relabelled
the dummy variable ¢ — Adj;,7(0). We then see that the dependence on the permutations 77

and p drops out, so that their sums can be trivially computed to obtain

(0o(L)OLL)) =33 xo(L. 5 #)xa(L',5,5")

<OQ(L)(9TQ(L')> =YY xo(L,57 3" xo(L,5.5") [ NET! (3.3.16)

s T,0 a

The only dependence on ¢’ and § is now inside the two quiver characters. We have therefore
reduced the problem of computing the holomorphic-antiholomorphic GIO pairing to the one of
computing the sum of a product of characters. This is done in the next step, and involves using

the quiver character orthogonality relations.
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iii) Use the quiver character orthogonality relations

We are now going to use the quiver character orthogonality relation eq. (A.2.15):

> xolL, 573" xol/,5,5")
s a’

| ’
_ N R vd va )
= CcLCy/ 1;[ d(Ra) Ty (D (Ta)PRa‘)Ub,arba,aUWFa,w 5Ra,R{l

X H 57‘ab,a’r;b,a H d T(I,B 6Ta B 7Na, B a B> S (H 57’@ T a Y Sa sV S ) 57/0, Va

b, B
(3.3.17)

to explicitly compute the pairing (3.3.16). We will also need to use the identity

Z TIr <DRE Ta) Ea;Ub aTba,aU~Ta, v) Ng[T“ - 2_, v’ H d(r5a O‘ <H dO:aW)) N (Ra)
~
(3.3.18)

a proof of which can be found in e.g. [83]. Inserting egs. (3.3.17) and (3.3.18) in (3.3.16) we
finally get

<0Q(L)0TQ(L >—cnchL,H T 5Ra, R0, 0t e | T]draba)ry o,

Va 71/(1
b,

Hd(Ta,B)%,B,r;,ﬁ55(‘,[;,5;,& (H Ta,1)0%0 .7, .05, .5, )fNa( a)

B v

= oL cncLH d”“ Hdraba) I d(rap) (Hd(rw)> I, (Ra)
B v
(3.3.19)

which, using the normalisation constant ¢y, defined in (3.2.21), reduces to eq. (3.3.1):
(0oL OL(E)) = bp.1r e [] fva(Ra) (3.3.20)
a

The orthogonality of the Fourier transformed operators is thus proven.
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3.4 Chiral ring structure constants and three point functions

In Appendix A.3 we derive an equation for the holomorphic GIO ring structure constants

GrLo) e Lo, defined as the coefficients of the operator product expansion

Og(LW) Oo(L®) =3 Gru o, 1o Oo(L?) (3.4.1)
L®

Because of the orthogonality of the two point function (3.3.1), we also obtain an equation for

the three point function:
<OQ(L<1>) Oo(L®) OTQ(L<3>)> = e Grov.ze o ] S, (Rg3>) (3.4.2)

We only give here a pictorial interpretation of the equation we derived for Gpa) L) @), leaving
the technicalities in Appendix A.3. In particular, eq. (A.3.45) gives the analytical formula for
the Gpa) e pe coeflicients.

Let us begin by considering an example. We will show how to draw the diagram for the
chiral ring structure constants for an N' = 2 SCQD, through a step-by-step procedure. The
quiver for this theory is shown in Fig. 20. As we discussed in the previous section, for any given
model, a basis of GIOs is labelled by L = {Ra, Tab,a:7a,85 Sa,8 Tasys Sa, v, vy }. However, for
an N = 2 SQCD theory, many of these a, b, a, 3, indices are redundant: for this reason we can

simplify L as
L={R,r, 1438, 7S, vT,v} (3.4.3)

Here r is the representation associated with the adjoint field ¢; S denotes a state in the SU(F)
representation 7, and S denotes a state in the SU(F) representation 7,. R is the representation
associated with the gauge group, U(NN). We therefore want to compute the three point function
(3.4.2), where all the L), i = 1,2, 3, are of the form given in (3.4.3). We split this process into

five steps, that we now describe.

i) Create the split node quiver diagram. The first step is to create the split-node quiver
diagram from the N = 2 SCQD quiver of Fig. 20. This involves separating the gauge
node into two components, one that collects all the incoming edges and one from which
all the edges exit. The former is called a positive node of the split-node quiver, the latter
is called a negative node. These two are then joined by an edge, called a gauge edge,
directed from the positive to the negative node. We then decorate all the edges in the
split-node quiver with symmetric group representation labels. The positive and negative
nodes in the split-node diagram are points where the edges meet. Since the edges now
carry a symmetric group representation, we interpret them as representation branching
points, to which we associate a branching coefficient (3.2.4). To the positive node we
associate the branching multiplicity v, to the negative node we associate the branching

multiplicity »~. Finally, we label the open endpoints of the quark and antiquark edges

88



CHAPTER 3. CORRELATORS IN THE QUIVER RESTRICTED POLYNOMIALS BASIS

with U(F) fundamental and antifundamental representation state labels, S and S. The
resulting diagram is shown on the left of Fig. 30. Notice that such a diagram contains all
the labels in L = {R,r, 4,5, 7, S, v, v}

ii) Cut the edges in the split-node quiver. In this step we will cut all the edges in the
split-node diagram, as shown in the middle picture of Fig. 30. After all the cuts have
been performed, we are left with two trivalent vertices and two edges corresponding to
the quark and the antiquark fields. As previously stated, the trivalent vertices will be
interpreted as branching coefficients (see Fig. 23). We group these four object into two
pairs, depending whether their edges are connected to the positive or negative node of the

split-node diagram. This is shown in the rightmost picture of Fig. 30.

r

Tq r

Figure 30: From left to right: the split-node quiver for the A' = 2 SQCD, the same diagram with the
cut edges, and the two components of the negative and positive node of the split-node quiver.

iii) Merge the edges connected to the negative node. We consider the set of edges
connected to the negative node of the split-node quiver. In order to compute the three point
function (3.4.2), we need three copies of these sets, one for each field Og(L(V), Og(L®?),
OTQ(L@)). These sets are shown in Fig. 31. The orientation of the edges in the last pair
is reversed: this is because the third field on the LHS of (3.4.2) is hermitian conjugate.

( \ ( \
0 e ) o)
< v~ T[(]l) } < =@ 7,513) }
RO st R® s
\ / \ /

Figure 31: The three sets of trivalent vertices and edges needed to construct part of the A" = 2 SQCD
three point function diagram.

We will now suitably merge the three trivalent vertices (branching coefficients) in Fig.

31, and join the three edges corresponding to the quark fields. The outcome of this
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iv)

fusing process is shown in Fig. 32. We introduced three new trivalent vertices, which
as usual we interpret as branching coefficients: the labels p, v, and v, denote their
multiplicity. The fusing of the three quark edges has been achieved by introducing
a Clebsch-Gordan coefficient, see Fig. 24. We further impose that the label for the
multiplicity of the representation branching 7"((11) ® 7"((12) — r((;’) is the same in both the
Clebsch-Gordan coefficient and the branching coefficient that appear in Fig. 31. In the
figure we also inserted a permutation A_ in the edge carrying the representation R®).
The purpose of this permutation is to rearrange tensor factors given the two different
factorisation of R®), that is from (r() @ r(V) ® (7“((,2) ® r((]2)) - r® 7',(13) — R®) to
R® RO @ R® — (+r(V g rél)) ® (r? e r(g2)).

s @
7"511> eI
Vq
v
s®

Figure 32: Merging of branching coeflicients and quarks labels for the three sets in Fig. 31.

We thus obtained a closed network of branching coefficients, together with a single SU(F')
Clebsch-Gordan coefficient. All the edges involved into this process were the ones con-

nected to the negative node of the split-node diagram they belonged to.

Merge the edges connected to the positive node. By repeating the fusing process
presented in point iii) for all the edges connected to the positive node of the split-node
quiver, we obtain a diagram very similar to the one in Fig. 32. The only rule that we
impose is that the multiplicity labels for representation branchings which appear in both
these diagrams have to be the same. In our example, the branching of R® into R and
R® will appear in both diagrams. This is because the edge carrying the representation
label R is connected to both the positive and negative node of the split-node quiver, as it
can be seen from Fig. 30. Therefore these two branching coefficients will share the same
multiplicity label, p. Similarly, the branching of M) and 7@ into ) will be present in
both diagrams too. Following the same rule, these two branching coefficients will then

have the same multiplicity label, v;,.
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v) Combine the diagrams and sum over multiplicities. To obtain the final expression
for the three point function, we just need put together the two diagram we obtained in

the steps iv) and v) and sum over the multiplicities u, v, v4 and 7. This final diagram is

shown in Fig. 33.

FORC)
2

0y 47

Vq

r{®

5®)

Figure 33: The diagram of the three point function (3.4.2) for the A/ = 2 SQCD.

In Appendix 3.4.1 we give a purely diagrammatic derivation of this result. We can see how the
answer for the three point function factorises into two components: the former features only
edges connected to the negative node of the split-node diagram, the latter only involves edges
connected to its positive node. The same behaviour can be observed in the answer for the three
point function of matrix invariants of generic quivers. We are now going to present this general

result. The diagram for the three point function (3.4.2) is shown in Fig. 34.
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Ub,a”ab,a
/”— s: \\ Ugla,s
-~ / P
v -
// / - \\ ,
P - \
7 /, i \ ,I \
// . -F 4 \\
/ ’ I \ ’ ¥
/ < ‘ 4 \,’ \
’
/ Up e /’ {
sl ab,a

Gro, L, L

<> > 2 I
{1a} {vab,a} {¥a,8}

va,v}

a

a(3)
\ ws )\ S

Figure 34: Pictorial description of the expression for the holomorphic GIO ring structure constants
Gro e Lo, corresponding to eq. (A.3.45).
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In drawing this picture we used the diagrammatic shorthand notation displayed in Fig. 35.
v ’{1)

[ . o
o2

-(1)

12 T
- UaTgl) 2
Uq Vg =" r®
- -
- 2)

T p— NG 3 — |

1)

Vn TfL
o0
\

Figure 35: A shorthand notation for a collection of branching coefficients.

The A\,— and A,4 in Fig. 34 are permutations of n( )

elements, defined by the equations
(A.3.2) and (A.3.3). Figure 34 shows that the holomorphic GIO ring structure constants fac-
torise into a product over all the gauge nodes a of the quiver. Each one of these terms, whose
diagrammatic interpretation is drawn in the figure, further factorises into a product of two
components. They correspond to the positive and negative nodes of the split node a, with
a =1,2,..,n (see also Fig. 22). Notice that the multiplicity labels fiq, Vap,a, Va,p and Ug
always appear in pairs. For example, u, appears both in the upper and lower (disconnected)
parts of the split-node a diagram. In the same diagram, v, 3 appears in both a symmetric group
branching coefficient and in a Clebsch-Gordan coefficient.

By inspecting Fig. 34 we can write four selection rules for the holomorphic GIO ring structure

constants:

i) upon the restriction Sn<3) , where H, = Snu) X Sn(z), the Sn<3) representation R,(lg)

1) g

becomes reducible. This reduction must contain the tensor product representation Ry
((1 ), Va. This implies the constraint g(R((l ), Rg ), (3)) #0, Va.

a

ii) upon the restriction S (s

, where Hyp, o = Sn(l) x S (2) , the S (3 representation

ab,a Hab,a ab,a aba
((l:z) ., becomes reducible. This reduction must contain the tensor product representation
C(Lb)a ® r((lb)a, Va, b, . This implies the constraint g(r C(Lb)a, C(Li)a, T ab, a) #0,Va, b, a.

3

a,

=

iii) upon the restriction Sn<3)
a.B

, where Hy 3 = S (1) x S (2), the S (3 representation r
H,p "a,p

™

becomes reducible. This reduction must contain the tensor product representation r((;% ®

93




CHAPTER 3. CORRELATORS IN THE QUIVER RESTRICTED POLYNOMIALS BASIS

é%v Va, 5. This implies the constraint g(r ( %, ((1/3, aﬁ) #0,Va, B.

=(3)

iv) upon the restriction S_ -(3) , where H, , = Sﬁu) X Sﬁ(2), the Sﬁ 3) representation 7 4
Na,~y Ha ~ a,

becomes reducible. This reduction must contain the tensor product representation rc(“)y ®

r((l,%, YV a, 7. This implies the constraint g(rg%,rg%, _a,y) #0,Va, .

All these rules are enforced by the branching coefficients networks in Fig. 34. Given two matrix
invariants labelled by L) and L® respectively, we conclude that G L, L@, e 7 0if and only

if L3 satisfies the selection rules i) - iv) above.

3.4.1 Diagrammatic derivation for an /' =2 SQCD

We are now going to present a diagrammatic derivation of the chiral ring structure constants
for the example of an N/ = 2 SQCD, already discussed in the previous section 3.4. Our starting
point is the analytic expression (A.3.11), where each L(%) has been simplified as in eq. (3.4.3).
We can depict this quantity as in Fig. 36.

Gro Lo L

s(1) 8(2) (1) o(2)
(1) 52

Figure 36: Diagrammatic representation of the chiral ring structure constants for an N' = 2 SQCD,
corresponding to eq. (A.3.11).
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After using identity (A.3.14), which is represented in Fig. 44, the diagram is transformed to
the one in Fig. 37. We see that now the three disjoint diagrams of the previous Fig. 36 are now

joined into a single connected component.

Gro) L@ Lo

x D

s(1) 5(2)

Figure 37: The diagram for the chiral ring structure constants after using the identity (A.3.14). The
horizontal bars are to be identified.

Here we can see the relevance of the permutations A_ and A, which were previously obtained
in the explicit derivation. They allow the fusing of all the state indices of the three disjoint pieces
of Fig. 36. This can be understood by looking at Fig. 37. Let us follow the flow at the top of
the diagram from rV ® fél) Rr@ 7752) to R, This corresponds to the embeddings

S, X Sn((lm X S, X Snglz) — Sn(l)_mgl) X Sn(2)+n((12) — Sn<1>+n(2>+ngl>+n,(f) (3.4.4)
and
M0 RPOTURPT0 R = Y+ a0 [ + 0] = Y +al) 0@+ 0] (3.45)
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The second embedding corresponds to the branching coefficient labelled by p. In the branching

after the A4 permutation, R® splits into 7(3) and ré?’). The relevant embedding is now

D + 1@ U R +2®] = O 4 2) 4+ @ 4 ?) (3.4.6)
which comes naturally from the construction of O(Ls). The purpose of Ay is to allow the
transition from (3.4.5) to (3.4.6). A similar (but reversed) role is played by the permutation A_.

Now we use the relation in Fig. 45 to separate the edges corresponding to the quark (and

antiquark) fields from the rest of the diagram. We thus obtain Fig. 38.

GrLo L@ e

Figure 38: The outcome of inserting the identity described by Fig. 45 into Fig. 37. The horizontal bars
are to be identified.

The last step is to separate all the edges connected to the negative node of the split-node from
all the edges connected to its positive node. As explained in the derivation above, this operation
is achieved through the identity (A.3.43), which in this example takes the form depicted in Fig.
39.
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13

1D 12

Figure 39: Diagrammatic description of eq. (A.3.43) for the A’ =2 SQCD example.

Once this diagrammatic relation has been inserted into Fig. 38, we straightforwardly obtain
the final diagram for the chiral ring structure constants for an N/ = 2 SQCD, depicted in Fig.
33.

3.5 An example: quiver restricted Schur polynomials for an N =
2 SQCD

We will now present some explicit examples of quiver Schurs for an N' = 2 SQCD, whose N = 1
quiver is depicted in Fig. 20. We will begin by listing all the matrix invariants in the permutation
basis (3.1.12) that it is possible to build using a fixed amount 7 of fundamental fields. We will
then Fourier transform these operators to the quiver Schurs basis using (3.2.19). The set of
representation theory labels needed to identify any matrix invariant in an N/ = 2 SQCD has
been explicitly given in (3.4.3). In the following we will continue to use such a convention.

The permutation basis is generated by

O, o) = (6°")) ® (Q®"2)° & (@%79)%, (0)1532 (3.5.1)

where 77 = {n, ng, ng} specifies the field content of the operator O, and 5 = (s,5). As we

previously stated, we construct the quiver Schurs O(L) by using the Fourier transform (3.2.19):

O(L) =Y x(L, 5 0)O(#, 5, o) (3.5.2)

-
0,8

where L = {R, 7, r4, S, 74,5, v7, v~} has been defined in eq. (3.4.3). In this formula x(L, 3, o)

97




CHAPTER 3. CORRELATORS IN THE QUIVER RESTRICTED POLYNOMIALS BASIS

is the A/ = 2 SQCD quiver character, which reads

X(L7 §7 0_) — ¢y ij<0) {BRHr,rq HZa Csrq,S,p} {BR*)T‘,fq;V+ ;q,s’,t} (353)

i— 1t

Jj—=lp

Figure 40 shows the diagram for this quantity.

Figure 40: Diagram for the A/ = 2 SQCD quiver character, corresponding to eq. (3.5.3).
We now focus on some fixed values of 7.

-1=(2,1,1) field content

We start by listing the Fourier transformed holomorphic GIOs (3.2.19) that we can build with
the set of fields {¢, ¢, Q, Q}, that is with the choice 77 = (2,1,1). In the permutation basis, these

operators read

O(it,s,5,(1)) = (6)(9)(QQ)3 O(it,s,5,(12)) = (60)(QQ)3,
) (13)) = (¢)(Q¢Q)§a O(ﬁ’sv s, (23)) = (¢)(Q¢Q)§v (3'5'4)
O(ﬁ 18,8, (123)) = (Q¢¢Q)§a O(ﬁ7‘97 s, (132)) = (QQSQSQ)E

O(1i, s,

Vo)l

where the round brackets denote U(N) indices contraction. Notice that in this case §= (s, 3).
We will now construct the Fourier transformed operators. For this field content we do not have
any branching multiplicity ™, ¥~: we can drop them from the set of labels L, which now reads
L={R,r, ry S, 74, S} We then look for the operators O(L;), i = 1,2, 3, 4, where

le{D:‘:l7Dj7D?S7i’S}’ LQZ{E7H7D7S7D’S}’ (3'5'5)

Li={P w0508, L={{H§o05s05)

We left the states S, S of the fundamental and antifundamental representation of SU(F) implicit.
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We first notice that, having one quark-antiquark pair only, the Clebsch-Gordan coefficients

simplify as

J

@l Ty

.S, _ rq, St 0,8,
Cq P =l =67, 577 =Cs

(3.5.6)

We can then easily compute x(Lj) and x(Lg2). Both the symmetric group representation branch-
ing [1T1]— [J®Jand @ — H@D describe the branching of a 1-dimensional space into itself: as

such their associate branching coefficients equal 1 identically. On the other hand, D™ (o) = 1

YV o and DE(U) = sign(o). We then have

X(Lla S, 8, U) = L 55 657 X<L17 8, S, U) =

7 sign(o) 6 5§ (3.5.7)

2~

The S3 irrep Hj is two dimensional, and we work in an orthonormal basis {e1, e2} in which

it reads?

T
/—E\E
=

I

VR
O =
=)
~_—

)

H
N

—_

[\
=

Il

VR
O =
=
—_

~—

)

H
N

—_

w
=

Il

N
S
w‘awh—l

|
M‘Hw‘a
S~

_1 V3 _1 _ V3 _1 V3
DP((23)) = < %g ; ) ,  D¥((123)) = ( %3? _; > ,  D((132)) = ( _é _2% >
(3.5.8)

If we restrict S3 to Sy x Sp, the Bj reduces as

~[el] & Hel (3.5.9)

52 ><Sl

The restricted group S3|g,, g, only contains two elements: S3|g .5 = {(1), (12)}. The branch-
ing coefficients for this restriction are the matrix elements of the orthogonal operator B such
that

BLD"((12))B = D™((12)) ® D*((1)) & D'((12)) ® D*((1)) = diag(1, —1) (3.5.10)

With our basis choice for Hj such a decomposition is already manifest, as it is clear from the
matrix expression of the identity element and the (12) transposition in (3.5.8). Therefore, for
this particular configuration, B is just the two dimensional identity matrix: B = 15. If we label
f1 the only state in the [T of Se and fo the only state in the H of Sa, the branching coefficients

read

&= gEN:
By 7" = (ej, f1) =051, Bj 11" = (5, f2) = 052 (3.5.11)

“Note that this is not the convention used in the SageMath software.
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Inserting this result in (3.5.3) we obtain an expression for x(Ls) and x(Ly):

X(Ls, s, 8, 0) = Tr [D¥ (o) PT 77 69 55,

Sl Sl

X(Ls, 5, 5, 0) = —= Tr [D¥ (o) P¥ %] 5565 (3.5.12)

Here P¥~=:" and P97 are the projection operators of the Bj of S5 on the CJ® [ of So x 51
and the Bj of S3 on the H@D of Sy x Sy:

1
promo = " proto_ (00 (3.5.13)
00 0 1

We are now ready to write down the Fourier transformed operators. Using the definition (3.5.2)
and the results (3.5.7) and (3.5.12), we find that

O(L) = —= ((6)(6)(QQ)S + (69)(QQ)S +2(6)(Q6Q)S + 2(Q00Q)S ) |

O(Ly) = = ((DONQQF - (69)QQ)F - 2)(Q0QF +2(QeoQ)T) . (3514
O(Ls) = jg ((@@(QQ)F + (60)(QQ)E — (9)(QoQ)S — (Q¥oQ)3 ) .

O(L1) = = ((€)()(QQ)S - (66)(QQ)S + (6 @0Q)S - Q)3 )

We can now perform some checks on this result. First of all, we expect to see the finite N
constraints to manifest themselves if the gauge group of the theory is either N =1 or N = 2.
In the former case, only O(L1) should remain, and it is in fact easy to see that for N =1 all the
other operators are identically zero. For the latter case, we expect O(L2) to vanish, as l(@) > 2,
and as such it violates the finite N constraints. Indeed, using the identity ¢? = (¢)¢ — det(¢)12,
which follows from the Cayley-Hamilton theorem, one can verify that O(Lg) = 0 for a U(2)
gauge group.

We also expect these operators to be orthogonal in the free field metric. According to eq.

(3.3.12), the two point function in the permutation basis is simply

<O(ﬁ,s,§,a)(9T(ﬁ,t,f,T)>:557,5557{ S NClDe T 2 (91,1) (3.5.15)
nES2

were C'[o] is the number of cycles in the permutation 0. With this equation we can check that
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all the states in (3.5.14) are orthogonal, and that
(O(L1) O'(L1)) =2N(N + 1)(N +2), (O(Ly) O'(Ly)) =2N(N — 1)(N —2),

(O(L3) O'(Ls)) = 2N(N? 1), (O(Ly) OF(La)) = 2N(N? 1)
(3.5.16)

in agreement with (3.3.1).

- 1= (1,2,2) field content

We now consider a different field content, that is {¢,Q,Q,Q,Q}. This choice corresponds to
7 = (1,2,2). In the permutation basis, the GIOs that we can form with these fields are

O(i, 5, (1)) = (¢) (QQ)3 (QQ)E O(,5,(12)) = (Q¢Q)3 (QQ)Z
O(7, 5, (13)) = (Q¥Q)Z (QQ)3 O(,5,(23)) = (¢) (QQ)Z (QQ)E, (3.5.17)
O(i, 5, (123)) = (Q9Q)2 (QQ)3 » O(i, 5, (132)) = (Q9Q)3} (QQ)E

Here §= (s1, s2, 51, 52), and the round brackets denote U (V) indices contraction.

Let us now construct the Fourier transformed operators. As in the previous example, for this
fields content we do not have any branching multiplicity v+, v~, so that we will drop them from
the set of labels in L. We will now write the expression for the six operators O(L;), i = 1,2, ..., 6,
with

L= {00,0,00,8,0,8,  L={J0HsH5},

Ly = {{),0,000,5,00,5} , L4={53,D,H,SE,S’}, (3.5.18)

Lsz{Bj,m,m,sE,S}, Lg={{’,0,H.5.00,5}

As in the previous example, we leave the SU(F) states S, S implicit.

The symmetric branching group coefficients are similar to the ones already introduced in
the previous example. Both the branchings [TT] — [0® 1] and @ —0O® H are trivial, as they
correspond to a branching of a 1-dimensional space into itself. These branching coefficients are

therefore equal to 1 identically:

BT =1, B?jﬁlﬂ =1 (3.5.19)
We now turn to the reduction
| —(e[T] @ D®H (3.5.20)

— S1 ><5'2

As in the previous example, the group Ss|g, g, only contains two elements, but this time they
are S3|g g5, = {(1), (23)}. This is because the (1) x (12) € S1 x Sy has to be embedded into

101



CHAPTER 3. CORRELATORS IN THE QUIVER RESTRICTED POLYNOMIALS BASIS

Ss3, where it corresponds to the transposition (23). The branching coefficients for the reduction

in (3.5.20) will be the matrix elements of the orthogonal operator B such that
B™'DF((23))B = D°((1)) ® D=((12)) @ D°((1)) ® D¥((12)) = diag(1, —1) (3.5.21)

We equip the Bj of S3 with a basis {ej1, e2}, in which the representation takes the explicit form
(3.5.8). We then choose f1 and fs to be the basis vectors of the [T] and the H of Sy respectively.

In this basis the orthogonal matrix B must then take the form
1 _ V3
_ 2 2
B = 3 1 (3.5.22)
2 2

We then have, by construction, Be; = f; and Bey = f3. The branching coefficients for the
reduction (3.5.20) then read

F 0,8
BI*}TE’E\:‘ = (61’ fl) = %’ BIHTE" = (617 f2) = 7@7
m oo (3.5.23)
B2—>_1>Em = (e2, 1) = @; Bz-?f,?’ = (e2, fo) = 3
It is useful to define the orthogonal projectors
B o g PR E Y P = B B (3.5.24)

projecting the Hj of S5 on the [J®[TJand on the ] ®B of S1 x So respectively. We also define
the linear operator T' through its matrix elements as

Tij= B 0BT (3.5.25)

Explicitly, these matrices read

H—o,m 1 1 \/?; H—o,H 1 3 _\/g 1 _\/§ 1
P ’ == ) P = ’ T=-
4\ /3 3 4\ -3 1 4

(3.5.26)
We will use these quantities to compactly write the quiver characters.

We now turn to the Clebsch-Gordan coefficients, Cgfj;g,;p and CT0 2"

51 5, » Where 74 and 7, are

both either [T] or H First of all notice that we can drop the symmetric group state labels p
and ¢, because all the irreducible representation of Sy are 1-dimensional. Let us call Vi the the
fundamental representation of SU(F'), and let us choose an orthonormal basis e;, i = 1,2, ..., F.
Consider now the Vi ® Vi vector space, equipped with the induced basis {e; ; = ¢; ® € }i;. The
11 of SU(F) is spanned by every symmetric permutation of the e; ; = e; ® e; basis vectors of
Vi ® Vp. We can label an orthonormal basis for this representation with the notation [ [j],
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where

=e e, (3.5.27a)

1
[i]jl=Fei®e+e@e), i (3.5.27b)

\V)

On the other hand, the H of SU(F) is spanned by every antisymmetric permutation of the
eij = €; ®e; basis vectors of Vi ® Vp. We can label an orthonormal basis for this representation
with the notation , where

; 1
= E(ei ®e;—e;® ei) (3.5.28)

We can therefore easily compute the Clebsch-Gordan coefficients (3.2.18). To optimise the

notation, we use the Young tableaux and — to label both the SU(F’) representations and
their states. The Clebsch-Gordan coefficients then read

Ck = (exy, Llil) = (ex @ er, €5 @ €5) = 0 01,
O = (exg, 1)) = V2 (er®ep, ei®ej+e5®e;) = V2 (Ok,i O1g + Okj Oui) s 17,
1 !
Cy1 = (exy, i) = V2 (er®ep, e;@e; —ej @e;) = V2 (Ok,i 01,5 — Onyj O1,i) (3:5.29)

A similar approach can be used to derive the Clebsch-Gordan coefficients for the decomposition
of the Vr ® Vi representation of SU(F'), which gives similar results to the ones in (3.5.29).

We can now write the quiver characters for the six states (3.5.18). Denoting the generic
flavour state |S) € V,ij(F) as in (3.5.27) for 7, = [ ] and as in (3.5.28) for r, = H (and
similarly for |S) € KSU(F)), the labels in (3.5.18) read now

L= {(T10,00,00.6a},  La= ,D,ﬂ},
L= {0,006} . L4:{ DE@} (3.5.30)

n-{PomB)  w-{Pofm)
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The quiver characters are

X(L1,5,0) = f cil et
\(Ls, 5,0) = 13 Tr [DF(0) PP~==] ¢ Bl |
x(Ly,5,0) = 13 Tr [D7 (o) P77 "] 0882 C@,SQ,

x(Ls, 5,0) = \}g T [D7(0) T] CLL] C’I

51,52 51,52

x(Ls,5,0) = \}g Tr [DBH(U) Tt] CS1I82 Cz

where T" denotes the transpose of the matrix T, defined in (3.5.26).

Defining the normalisation constants

1 if QA
Jid = Lot i=j
2

(3.5.31)

(3.5.32)

which keeps track of the different normalisation of the Clebsch-Gordan coefficients (3.5.27a) and

(3.5.27Db), the Fourier transformed operators take the explicit form

o) =111 (14) Q)7 Q)7 + 20Q6) 7 Q)7 .

Nl
O(L:) = —= () @ Q) - 2QoQ)f (QQ)] )
O(Ly) = ? i/;" () QT (@) (@) (9Q)7) ) .

O(Ls) = — £, (QoQ)L (QQ)Y .

O(Le) = ~ 3 (QeQ) (QQ)1)

(3.5.33)

Round brackets around the flavour indices denotes their symmetrisation, square brackets around

them denotes their antisymmetrisation.

As in the previous case, we now run some tests on this result. It is easily seen that if the
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rank of the gauge group is N = 1, then among these six operators only O(L;) is non-zero, in
agreement with our finite N constraints (3.3.3). Moreover, when N = 2, by explicitly writing
all the components of O(Ly) it is possible to check that O(Ly) = 0. This is a nontrivial result,
once again predicted by the finite NV constraints. Let us now check the orthogonality of these
operators, in the free field metric. For this field content the two point function in the permutation
basis, eq. (3.3.12), reads

—

(0(,5,0)0N@,E.7)) = . Opuiaadpme NI 7o — (1,2,9)
p1,p2ES52
(3.5.34)

As in the previous example, C'[o] is the number of cycles in the permutation o. Using this

equation we can verify that the states in (3.5.33) are indeed orthogonal. Similarly, their squared

(O(Ly) OY(L1)) =4 N(N + 1)(N +2), (O(L3) Of(Ls)) =4N(N — 1)(N —2),
(O(L3) OT(L3)) =4 N(N?—1), (O(Ly) O'(Ly)) =4N(N? - 1),
(O(L5) O'(Ls)) = AN(N? — 1), (O(Lg) O'(Lg)) = 4N(N? — 1)

(3.5.35)
in agreement with our prediction (3.3.1).
-1 =(2,2,2) field content

Consider now the field content {¢, ¢, Q, Q,Q, Q}, that is 7@ = (2,2,2). Using the same notation

of the previous examples, the quiver Schurs for this subspace can be labelled by the fourteen

sets
Ly = {1113, 00, 613, eal } Lzz{H,@}, (3.5.36)
L= mmem). n-{HUHmeEm). e
L5:{ | Dj} L6:{ | Dj} (3.5.38)
L= {1, e} ng{ H} (3.5.39)
ng{ HMM} Lm:{ w} (3.5.40)
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LH:{ Huﬂ} L12:{ H} (3.5.41)
L13:{ ,Dj,7@}, L14={ 757’} (3.5.42)

As usual, we left the states and FH (with 7,7 = 1,2, ..., F) of the symmetric and antisymmetric
representation of SU(F’) unspecified.

The quiver Schurs explicitly read

o) =221 (2G0) (Q00Q)] + @oQ)f (@0Q)] + 5@ (Q@)F (974
+5QQ @Q)F (00) + 2000 Q@)1 () ).
0<L2>=j§ ( (QQ)7 (Q00Q)] + Qo) Qo) + L(QQ)E (QQ) (6 +
~5(QQ)F Q@ (69) - 2000 ()] 0) )
OLs) = 75722 (- 20Q0Q)f (@0Q)]) + QQ)f Q@)Y (6 + Q@ Q)Y (69) )
O(E:) = 252 (- 2(Q0) (200Q)] + QO ()7 (6)°+
~(QQ)7 (QQ)) (99) +2(QQ)F (@Q9Q)) (9) )
O(Es) = 5 (21QQ)f (Q0Q)] + (QQ)f Q)] (0)+

+QQ)F (QQ)Y (60) +2(QQ)F (Qe)F (9) ) (38.5.43)
:—fu( &f@dxb@ T+ Q) Q) (9)).
= —fpa ( 7 (@o0Q)% + Q)T Q)Y (9) ).
( QF Qo)) + (QQ)F (QQ)] (9)* - Q) (QQ)) (49) ) ,

fij Io

O(Ly) = 2\/5

L (2QQ) (QésQ)) + QR (QQ)Y (6)*+
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1

O(Ly) = W)

(- 20QQ)F (QooQ)] + Q)T (QQ)] (9)*+

+HQOF (QQ)] (60) — 2QQ)F Qo) (9) )
O(Ln) = ~fi ((QR)F (Q00Q)7] ~ Q)T Q)% (4) ),
O(Lr2) = ~ fa ((QQ)T (Q06Q)7 - (QQ)T (Q6Q)T (9) ).,

fij Ipa
V3

O(Ls) — (—(@Q)f(@¢¢@> +(QoQ)P (Q0Q)7) + 1@QQ)T Q) (¢)+
QT Q) (99) - QT (Q6Q)! <¢>)

O(Luy) = —= (—(QQ)E (@ooQ)] + (Q6Q)l (@o)Y + 5(QQ) (QQ)] (6)°+

S

~5(QQ)F Q@ (69) + QI @oQ)] () )

The convention for round and square brackets around flavour indices is the same as the one used
in the previous example. The computation that leads to this result is summarised in Appendix
A.4. Using Mathematica, we checked that all these operators are orthogonal in the free field
metric, that their norm satisfy (3.3.1), and that they obey the finite N constraints (3.3.3).
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Chapter 4

Permutation Centraliser Algebras

This chapter lays the grounds for a systematic understanding of the algebraic structures involved
in the resolution of the gauge invariant operator spectrum [54]. To be more precise, we will define
the notion of permutation centralizer algebras. A particular class of these, denoted as A(m,n),
will be our main focus. Many of the important formulae we will use have already appeared in the
physics literature. Nevertheless the .A(m,n), as associative algebras with non-degenerate pairing,
have not been made fully explicit. This chapter, based on [2], proposes that these algebras are
interesting to study intrinsically, disentangled from the contingencies of being embedded in
a bigger symmetric group algebra, their simplicity hidden among the application to matrix
correlators for matrices of size N. Here we define the algebras A(m,n), study their structure,
and subsequently describe how they are relevant to matrix theory invariants. We expect that
a deeper study of this algebraic structure has the potential to give a lot of information about
correlators in free Yang-Mills theory, in the loop corrected theory, at all orders in the 1/N
expansion. This work is a step in this direction. Much as it is valuable to abstract Riemannian
geometry from the study of submanifolds of Euclidean spaces, abstracting a family of algebras
intrinsic to permutations hidden in the mathematics of matrix theory should be fruitful.

In section 4.1 we introduce the definition of permutation centralizer algebras. We consider
four key examples of these algebras, which are useful in the context of gauge-invariant operators.
In section 4.2, we focus on the algebras .A(m, n) formed by equivalence classes of permutations in
Sman, With equivalence generated by conjugation with permutations in S, X .S,. The dimension

of this algebra is

|[A(m,n)| = E g(R1, Ro; R)? (4.0.1)
RiFm,RoFn
RFm+n

where g(Ry, Ro; R) is the LR coefficient for the triplet of Young diagram (Rp, Rs, R) made
with (m,n, m + n) boxes respectively. We will show that this is an associative algebra with a

non-degenerate pairing. As a result, we know from the Wedderburn-Artin theorem that it is
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isomorphic to a direct sum of matrix algebras Mat [84,85]:

A(m,n) = @Mata (4.0.2)

a

In eq. (4.2.5) we give a more precise version of this formula, where the index a is identified
with triplets (R1, Rz, R) with non-vanishing LR coefficient g(R1, Ro; R). The construction of
restricted Schur operators in gauge theory is used to give the Wedderburn-Artin decomposition
of A(m,n). Two sub-algebras will be of interest. The centre of the algebra Z(m,n) is the
subspace of the algebra which commutes with any element of A(m,n). The dimension of this
centre is equal to the number of triples (R1, R, R) of Young diagrams, with numbers of boxes
equal to (m,n,m + n), for which the LR coefficient is non-zero. It is useful to develop some
formulae for the non-degenerate pairing on the centre, using characters of Sy, +n, Sm, Sn. The
Wedderburn-Artin decomposition also highlights the importance of a maximally commuting
sub-algebra M(m,n). The dimension of this sub-algebra is the sum of Littlewood-Richardson
coefficients g(R1, Ra; R). Appendix C.1 gives a multi-variable generating function for this sum
of LR coefficients. We explain the relevance of the this sub-algebra to the enhanced symmetry
charges studied in [54]. In particular we give a precise algebraic characterization (4.3.45) for
the minimal number of charges needed to identify all 2-matrix gauge-invariant operators. The
evaluation of this number is an open problem for the future.

In section 4.3, we explain some further physical implications of the permutation centralizer
algebras. The simplest of these algebras is the algebra of class sums of permutations. Given
the one-to-one correspondence between matrix operators and conjugacy classes of permutations
given in (1.2.9), this means that there is a corresponding product on half-BPS operators. This
is not the usual product obtained by multiplying the gauge invariant operator built from X
under which the dimension of the operator adds. The product on the class sums rather gives
a product for the BPS operators of fixed dimension, a product which is associative and admits
a non-degenerate pairing. We will refer to this as a star product for half-BPS operators. We
explain the relevance of this star product for the computation of correlators. Similarly the
product on the algebra A(m,n) gives a star product for gauge invariant polynomials in two
matrices, with degree m in the X’s and degree n in the Y’s. In the physics application, there
is a closed associative star product on the space of quarter-BPS operators at zero Yang-Mills

coupling. Conversely the usual product of gauge invariants gives a product on A (oo, c0)

A(oo,00) = @ A(m,n) (4.0.3)

m,n=0

which is the direct sum over all m,n. Thus A(co, 00) has two products one of which closes at
fixed m,n. This generalizes a structure seen in the study of symmetric polynomials.

In section 4.4, we show that the study of the structure of the algebra A(m,n) we developed
in section 4.2 is useful for the computation of correlators of 2-matrix gauge invariants. In

particular, we identify an efficiently computable sector of central gauge invariant operators

109



CHAPTER 4. PERMUTATION CENTRALISER ALGEBRAS

whose correlators can be computed using the knowledge of characters of Sy, 45, Sm, Sp. It does
not require the knowledge of more detailed data such as matrix elements Dﬁ(o’) or branching
coefficients for Sy,+n — Sm X Sp. To illustrate the simplicity of this central sector, we compute

the two-point function
<Tr(XmY")Tr((XT)m(YT)")> (4.0.4)

at finite N. The computation requires a calculation of Littlewood-Richardson coefficients
g(R1, Ra; R) where Ry, Ry are hook-shaped Young diagrams. This computation is given in
Appendix C.2. Further technical aspects of the computation are given in Appendix C.3. The
computation agrees with the one in [86] which was done with explicit Young-Yamanouchi sym-

bols which can be used to construct states in irreps R and describe their reduction to R;, Ras.

4.1 Definitions and Key examples

When studying the representation theory of a group G, it is useful to introduce the algebra C[G]|
which consists of formal linear combinations of group elements, equipped with the multiplication
inherited from the group. In the group algebra C[G], for each conjugacy class, we can form a sum
over all the elements in the conjugacy class of G. Such class sums commute with any element of
G and form the central sub-algebra of C[G], i.e. the sub-algebra which commutes with all C[G].
We will refer to Z[C[G]] as the centre of C[G]. Conjugacy classes are in 1-1 correspondence with

irreducible representations and there is a basis of the centre consisting of projectors of the form

d _
Pr=12%"xr(g) g7 (4.1.1)
|G geG

Of primary interest to us is the group algebra of C[S,,] and its centre Z[C[S,]]. The elements in
Z[C[S,]] are formal sums of all the permutations belonging to a given conjugacy class t of .S,,.

Therefore we have that
> o e zZ[Clq) (4.1.2)

Conversely, given any o € S, we can generate an element of this subalgebra by summing over
all v € S

Z yoy~t € Z[C[G]] (4.1.3)

YESn

Some properties of group algebras and their centre can be found in [83,84]. In the context of
AdS/CFT , group algebras C[S,,] and associated representation theory play a role in the half-BPS
sector of N'=4 SYM in 4D [17,18] and also in the symmetric orbifolds in AdS3/CFT2 [19,87].
Motivated by developments in AdS/CFT we will introduce a generalization of this construction.

Definition: Consider an associative algebra A containing a sub-algebra B = C[H], the group
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algebra of a finite group H. Now define the sub-space of A of elements which are invariant under

conjugation by H. This subspace will contain group averages of the form

Z yoyt, occ A (4.1.4)

yeEH

which commute with elements of B. It is easy to verify that these sub-spaces are sub-algebras.
We have

Svon D et | =D | D ooyt | ! (4.1.5)

y1E€EH y2EH 1€EH v3€H

where we set y3 = v, 1o, This shows that the product of two group averages is still a group
average. This sub-algebra of A commuting with B, in cases where H is a permutation group,
will be called a permutation centralizer algebra.

Three cases of primary interest will be

e Example 1 The algebra A = C[S,]. The algebra B = C[S,]. The centralizer of B is
Z[C[S]] -

e Example 2 A = C[S,,4,] ; B=C[S,, x S,]. We will call this algebra A(m,n).

e Example 3 A = By(m,n) - the walled Brauer algebra ; B = C[S,, x S,]. This algebra
is called By (m,n).

o Example 4 A = C[S,, x S,] ; B= C|[S,] where the latter is the .S,, diagonally embedded
in the product group. This should be called K(n).

The case where A is itself a group algebra has been studied in mathematics, for example, in [88].

Our primary interest in this chapter will be in A(m,n) of example 2. Z[C[S,]] of Exam-
ple 1 will be a useful guide and a source of analogies in our investigations. Fourier transfor-
mation on A(m,n) will be related to restricted Schur operators studied in AdS/CFT. These
are parametrised by representation theory data (R, Ri, Ra,4,j) consisting of Young diagrams
R1, Ry, R with m,n,m + n boxes as well as multiplicity indices i,j. The latter take values
1 <i,5 < g(Ry, Re; R) where g(R1, Ro; R) is the LR multiplicity for the triple of Young dia-
grams computed with the LR combinatoric rule (see for example [68]). Unlike Z[C[S,]], the
algebra A(m,n) is not commutative. The central sub-algebra Z(m,n), consisting of the sub-
space Z(m,n) C A(m,n) which commutes with all of A(m,n) will play a predominant role.

Likewise the algebras By (m,n) and (n) in Examples 3 and 4 are non-commutative.

4.2 Structure of the A(m,n) algebra

The algebra A(m,n) is constructed by taking all the elements in C[S),,] which are invariant

under C[S,, x S,]. Any element of o € C[S,,+,] can be mapped to a € A(m,n) by the group
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averaging

g= > vlov (4.2.1)

YESm X Sn

The & are formal sums of permutations 7 lying in the same orbit of ¢ under the S5, x S, action.

Each 7 has a stabiliser group, given by those v € S;,, x S;, for which
vy =1 (4.2.2)

The stabilisers of two permutations 7y, 72 in the same orbit are generally different (they are
conjugate to each other), but they have the same dimension. By the Orbit-Stabiliser theorem,

o is then a sum of permutations weighted by the same coefficient:

o = |Autg,, xs, (0)] > T (4.2.3)
T7€O0rbit(a, Sy X Sn)

A(m,n) is a finite-dimensional associative algebra (the associativity follows from the asso-

ciativity of C[Sp4nr]), which we can equip with the non-degenerate symmetric bilinear form
<0_'1,5'2> = 5(5‘15’2) , 012 € A(m,n) (4.2.4)

Here the delta function on the group algebra C[Sy,+,] is a linear function which obeys (o) =1
for 0 =1 and 6(0) = 0 otherwise.

The non-degeneracy of the bilinear form (4.2.4) implies that A(m, n) is semi-simple. Accord-
ing to the Wedderburn-Artin theorem, it can then be decomposed into a direct sum of matrix

algebras:

Amn)= @  Span{QE, g, 510} (4.2.5)
RFm+n
RitFm, Rokn
In this equation R, Ry and Ry are representations of Sy, 1, Sy, and S, respectively. The integers
i, j run over the multiplicity g(R1, Ro; R) of the branching R — R1® Ra: 0 <i,j < g(R1, Ro; R).
An explicit expression for le Ra.i,; 18 given in terms of the restricted Schur characters [26,30,54],
defined as

R R R—R1,Raii »R—R1,Ra:j
Xty Ravinj (0) = Dt s (o) Byl By 22 (4.2.6)

These objects and have already been introduced in equation (1.2.39). Here DE (o) are the
pE—FR R ’
m—)ll,lg

for the representation branching R — R; ® R, in the j-th copy of R1 ® Ry C R. li2 are

matrix elements of ¢ in the irreducible representation R. is the branching coefficient

states in Ry 2. The restricted Schur characters Xgl Roli j(a) are invariant under conjugation by
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C[Sm x Sp] elements. With these definitions we can write
R R
Qb Roi = D Xty i j(0) 0 (4.2.7)
g

which is manifestly invariant under the action of C[S,, x Sy]. It follows that

R s R.S R
QR Ry.i j Q31,55 k0 =07 OR1,S1 ORy, 55 0k @Ry Ry i) (4.2.8)

This is in accordance with the decomposition (4.2.5). Consequently it is useful to write le Rovij

as

le,Rg,z’,j = Z |R — R1, Rs, ml,mg,i)(R — R1, Ro, ml,mg,j] (4.2.9)

mi,m2

Moreover, the basis {Qgh Rw}j} is complete as we now explain. The number of distinct
Qgh RNJ’S is equal to the number of restricted Schur characters, which is in turn equal to
> Ri.Ro.r 91, Ro; R)2. On the other hand the dimension of A(m,n) is by definition equal to
the number of elements of C[S,+,] invariant under the C[S,, x S,] action. Using the Burnside

lemma, it is possible to show that this dimension |A(m,n)| is given as

[A(m,n)| = > g(Ri, Ry, R)? (4.2.10)

RiFm,Rotn
RFEm+4n

In each of the blocks in (4.2.5) there is a projector of the form P}'{iﬂ2 => lesz,i,i‘ Let
now Pr, Pr, and Pg, be the projectors onto the irreps R, R; and Ry of Sp4n, Sy and S,

respectively. Since
(R — Ry1, Ry, m1, ma, i|PrPR, Pry|R — Ri, Ro,m}, mby, j) (4.2.11)
= (R — Ry, Ry, m1,my,i|P§, g |R — Ry, Ry, my,mby, §) = 6yt g gt 0
for all triplets R, R1, Ry, we can write
PE p, = PrPr, Pr, (4.2.12)

so that the projectors PI%, R, are just products of ordinary Sy, yn, Sy and S, projectors. The
set {Pgh R, forms a basis for the centre of A(m,n), which we call Z(m,n). Its dimension is

then given by the number of non vanishing LR coefficients g(R1, Re; R), or

Emn) = S (1—0(g(Ri, Rai R)) (1.2.13)
RiFm,Rotkn
RFm+n

Here §(g(R1, Re; R)) = 1if g(R1, Ro; R) = 0 and 0(g(R1, Ra; R)) = 0 otherwise. The generating
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function for the dimension of the centre is [25]

1
Z = _— 4.2.14
(z,y) H(l—aﬂ—y’) (4.2.14)
We will now argue that the collection of the generators of the centres of C[Sy,y], C[Sp,] and
C[Sy], that we denote as {T,ngr")}, {T, q(lm )} and {T, q(Qn )} respectively, is a set of generators for

Z(m,n). Here p, ¢1 and g9 are integer partitions of m+mn, m and n respectively. For example, for

the partition p = (p1, p2, ...) of m + n, the operator Téern) consists of a sum over permutations
belonging to the conjugacy class p = (p1,p2,-..):
ngm+n) = Z (drig - ip1)(ip1+1ip1+2 T ip1+p2) T (4.2.15)

i1, Sipy +pg - E[m+n]

T,J(m+n) are sums of conjugates by elements of S,,1,, whereas T, q(lm ) and Tq(; ) are sums over

Sm C Smn and Sy, C Syyqy respectively. To show that {7, ISern)’ Tq(lm ), T q(,f )} generate the whole
centre Z(m,n) we can use the following argument. Using the Wedderburn-Artin decomposition
(4.2.5), we see that the centre of A(m,n) is the direct sum of the centres of the matrix algebras
Span{le’RN’j;i, j}. For each of these matrix blocks, that is for any fixed representations
R, Ry, Ry for which g(R;, Re; R) # 0, the centre is one-dimensional, and is spanned by

Pgl,RZ = Z le,Rz,i,i (4216)
i=1

Using the equation (4.2.8), it is immediate to check that

[P}}%%LRZ’ le,Rz,i,j] - 0, V Z,j (4217)

We know that Pgb r, = PrRPR, PR,, With Pg, Pg, and Pg, projectors on the representations R,
Ry and Ry. Therefore every central element of A(m,n) can be generated with the collection of

projectors { Pr, Pr,, Pr,}. For an R irrep of S, the projector is

1 1
Pr=—3 ) xp()o=— 3 xrlop) T (4.2.18)

o€Sn " pcPartitions(n)

where oy, is a representative permutation belonging to the conjugacy class p = n. This means that
every projector Pr can be written as a linear combination of the central elements {7, ,E”)}. We
can then write the set {Pr, Pr,, Pr,} in terms of the central elements {Tlngrn), Tq(lm ), q(; )}.
Since we know that the former generates the whole Z(m,n), we can now conclude that the
latter is a complete set of generators for the centre Z(m,n) as well. The basis thus obtained
will be useful in the following sections. However, it is important to point out that such a
basis is overcomplete. An easy way to see it is to note that, given (4.2.12), Pr Pr, Pr, = 0 if

g(R1, R2, R) = 0. Therefore, taking a triplet (R, Re, R) for which g(R1, R2, R) = 0 we have,
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using (4.2.18):

1
m Z XR(UP)XRl(UQI)XR2(0q2)T}Sm+n) Tq(lm) Tq(gn) =0 (4.2.19)
pk(m+n)
q1tm,gakn

This shows that {7, ng+n), Télm ), Tq(Qn )} is indeed an overcomplete basis.
We can also argue that {Téern), Tq(lm ), T q(zn )} generate Z(m,n) just by using the Schur-Weyl
duality as in [54]. The TU™ elements are Schur-Weyl dual to U(N) Casimirs acting on the upper

m indices of X-type matrices. This action is generated by

4 , 9

i i )
(Eﬂf) - (D.Z’)] - Xl 8Xl] (4.2.20)
The T elements are Schur-Weyl dual to U(N) Casimirs acting on the upper n indices of
Y-type matrices. We have

(B,); = (D)} = ¥i 2 (4.2.21)

Finally, the 70"t elements are Schur-Weyl dual to U (N) Casimirs acting on the upper n and

m indices of both X- and Y-type matrices, and the generator is
E) = (E.) + (Ey)) (4.2.22)
We then have three distinct types of Casimirs:
C = LB

G = (B (B (Bt

2 i3 i1

G = (By)iy (B - (B, (4.2:23)
But the C’,Em—m), the C’,E,m) and the C’,gn) operators measure respectively the R, R; and Rs

labels of the restricted Schurs Xgl Therefore they can be used to isolate every subspace

JRo,1,5°
R1 ® Ry C R, and to build all the cerréspondent projectors PI}%, R, Since we know that each of
these projectors is in a 1-1 correspondence with an element of Z(m,n), the whole centre Z(m,n)
is obtained.

On the other hand, non-central elements are needed to measure the multiplicity labels i, j.

This observation will be developed in section 4.3.
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4.2.1 Symmetric group characters and the pairing on the centre Z(m,n)

A central element Z, € Z(m,n) can be expanded in terms of the projectors Pgh R, 88

= Y zRmRPpR o (4.2.24)
R,R1,Ry

We can then define

X%l,RQ;i,j(Za) - Z <R_>R17R27m17m27i’Za‘R_>R17R27m17m27j>

mi,m2

- 62] Z Z ZaS’ShSQ<R — R17R27m17m27i|P§1,SQ‘R — R17R27m17m27j>

S,Sl,SQ mi,m2
=6z qp dp, (4.2.25)
and

XR:[,RQ Z XRl,Rg,z,z Zf:’Rl’RQ.g(Rlﬂ Ry, R)de dR2 (4'2‘26)

From these equations it also follows that for any central element Z,

5i s
R % R
(7)) = Za 4.2.27
XR17R2,Z,‘]( ) g(Rl’ RQ; R) XRl,RQ( ) ( )
Another useful expansion is in terms of {7 ISer")}, {Tq(Zn )} and {Tq(;l )}. Since these elements

generate the centre, we can write
Z, = ZPaa ngm’n) Tq(;ﬂ) Tq(;l) (4.2.28)

for some Z57% coefficients. However, since the basis generated by {T£m+n), Tq(ln ), Tq(Qn )} is

overcomplete, such coefficients are not unique. Using the expansion (4.2.28), we can write

D,q1,92 XR(TTgm+n)) (m) (n)
Xy, Ro.ij(Za) = 6ij Z5T" TXRl (T3 )xro (T)) (4.2.29)
and
P Xr(T" ) (m) ()
XR1,R2 Z XR1,R2,2,1 Za’ ’ g<R17 Rs, R)TXRl (qu )XRQ (qu ) (4230)

From these equations we see that all the restricted characters of central elements are determined
by characters of Sy,1n, Sm, Sn. Just as the centre of S, is generated by class sums, which are dual
to irreducible characters of S, the centre Z(m,n) of A(m,n) is dual to the characters Xgh Ry

which are nothing but products of symmetric group characters. Therefore, to compute restricted
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characters of elements in Z(m,n) we only need the ordinary symmetric group character theory.

We will now use some of the known equations for the character of symmetric group and use
them to compute restricted characters in Z(m,n). Our aim will be to compute the dual pairing
(4.2.4) for central elements. Equation (B.12) in [26] reads

(m + n)! B dp
T minl Z 6(0-,}/7—7 1) - Z deng Xgl,Rz,i,j(U)Xgl,RZ,m‘(T) (4.2.31)

~ESm X Sn R,R1,R2,i,j

By setting 7 = 1 this equation simplifies to

(m+n)1d(0) = > drxf, pyii(0) (4.2.32)
R

where we used

Xt 2,0,5(1) = 0ijdr, dr, (4.2.33)

We can immediately use this result to show that 5(@%17 Ryij) = 0ijdr,dr,. This is because,
using (4.2.7)

3 (QF, Rovif) Z Xt 0,050 (0) = Xty 15 (1) = iy dp, (4.2.34)

It is also worthwhile to notice that, for O € A(m,n), Tr(O) = 6(0O). Therefore we could have

obtained the same result by considering

Tr(QR, Ryij) Z Z Z<5—>51,527m17m2,/€|R—>R1,R2, mi,ma, i)

S,51,52 "1m2k
1'm

2
5
X <R — R17R27 m17m27j|5 — 51?527m/17m/27k>

— 6;;dr, d, (4.2.35)

where we used the definition (4.2.9).
Let us now go back to eq. (4.2.32). If we replace o by a central element Z,, using the
expansion (4.2.28) and eq. (4.2.30), we find

(m+n)6(Za) = Y ZP™Pg(Ry, Ry, R)XR(T\™ ™)X a, (TS xRy (T (4.2.36)
R,R1,R>
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By further replacing o — Z,, 7 — Z; in (4.2.31) we get, in a similar fashion

dr
(m+n)'6(Za2y) = Z I d Xﬁl,Rg,i,j(Za)Xgl,Rg,i,j(Zb)
RRi Ry T H2
_ gy gl 3 9(B1, Ry, R) (4.2.37)
Rinr, RIR AR

< XR(TS™ ) X, (TS) Xy (T WX R(TS™ ™) X Ry (T0) X (TS
q1 4z

Comparing the LHS above with eq. (4.2.4) we find that for central elements Z,, Z,

' (R, Ro, R)
77\ — zpaa2 gP 41,95 9(Fa, By, 4.2.38
< as b> a b m + TL RRzl:RQ deRl dR2 X ( )

< XR(T™™) X (T X (TY)X (T ™) Xy (T X (T )

Thus we have an explicit way of computing the dual paring on the centre Z(m,n) in terms of
ordinary S, characters.

Similarly, there is a character expansion for §(Z,Z,Z.). We begin by writing

dr
(m+n)6(ZaZpZe) = ﬁxghw,j(Zazb)xglﬂm(zc)
R.Ry Rpjiyj T 0H2
= > il X1 ko (ZaZb)X Ty o (Ze) (4.2.39)
R, ARy g(Ra, Roy R) 7007 Lt

Since Z, is central, Z, = (ca)g1 R, 1, where (ca)g1 R, 15 a constant. This constant can be obtained

by considering:

X%l,RQ,i,j(Za) = (Ca)gl,szgl,Rz(]‘) = (Ca)gl,Rz de dRZ-g(R17 RQ’ R) (4240)
We therefore have that

Xgl 2 (Za) XELRQ (Zb)
dR, dR, g(Rq1, Ro; R)

X?ELRQ(ZGZI)) = (4241)
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Using (4.2.41) in (4.2.39), and then exploiting (4.2.30), we obtain

dr
(m + n)' 5(ZaZch) = Z d2 d2 (Rl Rg' R)2 Xgl,Rz (Za)Xgl,Rz (Zb)Xgl,Rz (Zc)
R,R1,R 9 9

'q d! " g RI;R27R
- g o 2 5 G i) () 1)
R,R1,R2

< XR(Ty" ) X () X (L) xr( Ty ™) Xy (T7) X (T,)) (4.2.42)

More generally, we can use (4.2.41) to compute the identity coefficient of an arbitrary large

products of central elements, 6(Z,Zy - - - Zy), just by using ordinary symmetric group characters.

4.2.2 Maximal commuting subalgebra

In this section we describe the Maximal commuting subalgebra M(m,n) of A(m,n):
Z(m,n) C M(m,n) C A(m,n) (4.2.43)

We often refer to M(m,n) as the Cartan subalgebra of A(m,n). M(m,n) is spanned by elements
of the form le,Rg,i,i (no sum over ). For fixed Ry, R and R, the total number of basis elements

is g(R1, R2; R), so that its dimension is

(M(m,n)| = Y g(Ri,Ra;R) (4.2.44)

RiFm,Roln
REm+n

In Appendix C.1 we derived the dimension formula

(M(m,n)| = > FpFeFprg Sym(p + q) (4.2.45)

pkFm gkn

where p, ¢ are partitions of m and n, Fp, Fy, Fp+q are combinatorial quantities dependent only
on the partitions p, ¢ and p+ ¢ respectively, and Sym(p+q) = [[, " T% (p; + ¢;)! is a symmetry
factor.

We now turn to the problem of constructing a basis for M(m,n). According to the definition
(4.2.9), to write the basis elements Qﬁh Ry.ii We first need to compute the branching coefficients
for the branching R — R; ® Re. These quantities are in general computationally hard to obtain
°, and require a choice of a basis in S, representations adapted to S, x S,. However, using
the correspondence with matrix algebras given by the Wedderburn-Artin decomposition, we can

construct the Cartan by solving, in each block, the following equations for (g(R1, R2; R) — 1)

Ssee for example a discussion of the difficulty and the simplifications in a “distant corners approximation”

n [35]
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linearly independent elements Qﬁh Roa € A(m,n)

Pgl,RQ le,Rg,a = QELR27Q (4246&)
(P, ry QFy Roa) =0 (4.2.46b)
[Q§17R27a’ QELRQ,b] =0 (4246C)

In the second equation, we are using the pairing defined in (4.2.4).

4.3 Star product for composite operators

In the previous sections we discussed the algebra A(m,n) and its centre Z(m,n). We noted that
central elements are special, as all their properties only depend on ordinary symmetric group
character theory. An example of this is eq. (4.2.42). In this section we will take advantage of
this fact to compute physically relevant quantities, in particular two and three point functions
of BPS operators in N' = 4 SYM. To do so, we will first start by discussing the one matrix
sector in ' = 4 SYM, reviewing the permutation description of U(NN) matrix invariants which
are Gauge Invariants Operators (GIOs) in the conformal field theory. We will stress that for this
case there is an underlying Z[C[S,,]] algebra. The one matrix problem will be used as a guide
to extend to the two matrix problem, that we treat in subsection 4.3.2. Here the underlying
algebra will be A(m,n).

4.3.1 One matrix problem

Let us consider a matrix invariant constructed with n copies of the same matrix Z. Any such

invariant can be written in terms of a contraction

O,(Z) =tr (Zz%"0) , oeS, (4.3.1)
subject to the equivalence relation

O05(Z2) = Oy144(2), v €Sy (4.3.2)

Polynomials in Z like the one in (4.3.1) can be multiplied together. Set o1 € Sy, 02 € Sp,.
By multiplying together O, (Z) and O,,(Z) we get

O051(Z) O5y(Z) = Ogy00,(Z) (4.3.3)

where 1002 € Sy, X Spy C Sny4n,. LTherefore for the usual product of matrix invariants, o; ooy

lives in the symmetric group of degree ny + ns. We can define

C[Sx] = EH CIS,] (4.3.4)
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which is closed under the circle product
0: C[Sx] ® C[Sec] = C[Sxo] (4.3.5)

However, we can define another associative product, that we call star product, which closes on

the operators of fixed degree:
OUI(Z) * Og,y (Z) = 0010, (Z) ) 01,2 € Sh (436)

It is immediate to see how this product is different from the ordinary GIO multiplication product
(4.3.3): 01, 09 and o109 are all permutations of n elements, and the star product is generally
non-commutative. Let [o] be the conjugacy class of 0. We now define a map from the multi-trace
GIOs to the class-algebra

size of

0,(Z) — Z =2 ‘ (4.3.7)

This map is 1-1 at large N. Let us focus on this case. We can expand the product of T;, T} €
Z[CI[S,]] as

T,T; = C5iTy, (4.3.8)

Here the ij are the class algebra structure constants. By multiplying both sides above by T;
and taking the coefficient of the identity we get

§ (TTYT) = Cfy 6 (TeT) = 0kiCf; ITh| = CF| Tl (4.3.9)

Now we expand the star product O, (Z) * O,,(Z) as

T, (T, T, T
O0,(Z) % Ogy(Z Z|T01| Ty0] Clorliors) Qo (Z)—ZP:WOUP(Z) (4.3.10)

where the sum is over the conjugacy classes p of S,. o0, is a representative element of the
conjugacy class p. This equation will lead to a new expression for the two point functions of
GIOs built from Z, Z' in N' = 4 SYM. First observe that setting Z to the identity N x N matrix

Oy(Z =1y) = N (4.3.11)

where C, is the number of cycles in the permutation ¢. Now consider taking the star product
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of Oy, (Z), Op,y(Z) and then setting Z = 15. We have, according to (4.3.10)

1

05, (Z) * OJQ(Z)’Z:hV = W

> 6(T5, T, Ty,) Oc,y (1)
p

1 _
DIRCE AR TR CERE)

T 1Toa] 22

1
=—— §(T,,T,,T, ) Nr =
|T01|T02|§ g1+02 O'P

where we set = Zp Ty, N Cop. On the other hand the free field correlator, already discussed
at the end of Section 1.2.1, is known to be [17]

1

(05,(2)0},(2)) = T 2 STy T ) (4.3.13)
o1 o2 YES,
so that
<001(Z)o;2(2)> =l O, (2) * OOQ(Z)}ZZW (4.3.14)

The two point function <(9(,1 (2)0L,(Z )> is therefore proportional to the star product O, (Z) *
Oy, (Z) followed by the evaluation Z — 1y.

Similar considerations lead to the following expression for the extremal three point func-
tion. In this case, we find that <OUI(Z )Os, (Z)(93;3 (Z )> is proportional to the usual product
Os,(Z) Op,(Z), followed by the star product with O,,(Z), followed by the evaluation Z — 1y.

To see this, take o1 € Sy, 02 € Sy, and consider

1
01(2) 00u(2))+ 00(2)| = i 8 (Trr00s T 4.3.1
(On(2)On(2) 1 On(2) | = b T Tn® (1319
where Ty 00, € Z[C[Sn,4nsl]s Tos € Z[C[Sn,+n,]] and Q = Zaesn1+n2 oN% . On the other hand
the correlator in N'=4 SYM [17] is

(05,(2)00,(2)0},(2)) = WESZ 5 (Vo1 002)y oy '0) = %5 (Tor00: T, 2)
(4.3.16)
so that
(0n1(2)07,(2)01,(2)) = (m + 1) (Opsers(2)) * Oy (2)],_ (4.3.17)

Given that these correlators are neatly expressed in terms of the star product, it would be
interesting to give an interpretation of the latter in the dual AdSs x S5 side.

We will now write similar equations for the two matrix problem.
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4.3.2 Two matrix problem

For the two matrix problem, the GIOs are polynomials in the XY matrices. Formally, we can

write them in terms of a permutation o € S,,1,, as
O0,(X,Y)=Tr (X" @Y®" o) (4.3.18)
As in the one matrix problem, there is an equivalence relation
Os(X,Y) =045y (X,Y), v E Sy X Sy (4.3.19)

To each of these GIO O, we can associate a specific element N, of A(m,n) that we call a

necklace. We define a necklace N, as

1
A — yor ! (4:3:20)
‘AUtSmen (0)| ’}’GS%;S”

or equivalently as

N, — , (4.3.21)
TEOrbit(U, S'rn ><‘S"I’L)

where the sum is restricted to the permutations 7 in the group orbit of ¢ under S,, x S,,. We
can think of the necklaces as the normalised version of the ¢ elements defined in (4.2.3). The

set of necklaces form a basis for A(m,n). We associate a GIO to a necklace simply by mapping

1
O0,(X,Y) - ——N, (4.3.22)
| No |
For example, for the GIO corresponding to the permutation 6 = (1,2,4,5)(3,6) € Sg:
O05(X,Y) = Tr(X2YH)Tr(XY) (4.3.23)
we associate, through the map (4.3.22), the A(3, 3) element
N& = Z ’75’7_1 = Z (al, ag, l_)l, 52)(&3, l_)g) (4.3.24)
S3x.S3 aj#ag#az€{1,2,3}
b1#by#b3€{4,5,6}
Similarly, for the GIO specified by & = (1,2, 3) € Sg
05(X,Y) = Te(X?*Y)Tr(Y)? (4.3.25)
we associate the A(2,4) necklace
N& = Z (CLl,CLQ,Bl) (4.3.26)
ay#ag€{1,2}
b1 €{3,4,5,6}
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Notice that in the necklaces we do not explicitly write the single cycle permutations, but rather
we leave them implicit. In the last example, these single cycle permutations would account for
the multi-trace Tr(Y)3 component of Oz = Tr(X2Y)Tr(Y)3.

From these examples it is clear how these necklaces are built by taking products of cyclic
objects, which in turn are constructed using two different types of beads. Such cyclic objects are
well studied in Polya theory. They can be related to the single cycle permutations in S, 4+, with
equivalences generated by S, x S,,. These equivalence classes form the algebra .A(m,n). We can
imagine having blue beads corresponding to integers [1,2,..m] and red beads corresponding to
integers [m+1,m+2,...,m+ n]. Therefore, we can pictorially depict the necklaces of examples
(4.3.24) and (4.3.26) as in figure 41. The same structure is present in the GIO O, corresponding
to the necklace N,. In this case the single-traces are the cyclic objects, and the role of the blue

and red beads is played by the X and Y type fields respectively.
A(3,3) A(2,4)

& =(1,2,4,5)(3,6) & =(1,2,3)

w230 | n

Figure 41: Pictorial interpretations of the necklaces in the examples (4.3.24) and (4.3.26).

The map (4.3.22) is 1-1 at large N: as in the l-matrix problem, we now focus on this
case. There is a natural product on the space of two matrix GIOs coming from multiplying the

multi-traces. For such a product, the degrees of the permutations add:
O (X, Y)O05y (X, Y) = Opy00,(X,Y) (4.3.27)

Here 01 € Sy, +n, is a representative of a class in A(mi,n1) and oy € Sp,4n, represents a
class in A(mg,ng), while 01 0 09 € Spy4ny X Smotns C Smi+matni+n, TePresents a class in

A(mi + ma,ny + ny). Continuing the analogy with (4.3.4), we can define

A(oco, 00) = @A(m,n) (4.3.28)

and for 71 € A(my,n1) and G2 € A(mg,n2) we have
o : A(oo,00) ® A(co, 00) = A(00,00) (4.3.29)

As in the one matrix case, there is however a second type of product of GIOs that we can
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construct. The product on A(m,n) can in fact be used to define a closed and associative star
product on the space of the multi-trace operators with fixed numbers (m,n) of (X,Y), in the

same fashion as (4.3.6):
05 (X,Y) % 05y (X,Y) = O5,5,(X,Y), &1 € Alm,n) (4.3.30)

Notice that here 61, 62 and 719 are all of the same degree, and that the star product is non-
commutative. We will use this star product to express the two point function of GIOs built from
X, Y.

Since the set of necklaces {IV, } forms a basis for .A(m,n), we can expand the product N, Ny

as
NoNp = Cg , Ne (4.3.31)
for some structure constants Cg ,. Moreover, the necklaces are orthogonal in the metric (4.2.4):
(Na, No) = 6(NaNp) = 0a,5| No| (4.3.32)

Here |NV,| is the number of permutations in the necklace N,. We can write
S(NaNyNe) = INJCE, (4.3.33)

Now use the map (4.3.22) to map the two matrix invariants O,(X,Y) and Oy(X,Y) to the
necklaces N, and N, respectively. Then

[Nl 1
Ou(X,Y) % Oy(X,Y) 0X,Y) =S —— §(N.NyN,) O.(X,Y)
= 2 Corn ) P
(4.3.34)
As for the one matrix problem case, by setting X =Y = 15 we get
1
Ou(X,Y) %O X,Y‘ — . S(N,NQ 4.3.35
( ) b( ) X=Y=1y |Na| |Nb’ ( b ) ( )
where Q=3 g = oN Co. On the other hand the free field correlator [18,30] is
1
(OuXO[X.Y)) = 3T S b ) = e 3 0N N Q)
YESm xS INal [No] YESm X Sn
mln!
5(N.N, Q) (4.3.36)
A

Therefore, in analogy with (4.3.14) and (4.3.17), we can write the two point function as

<(9a(X, V)0 (X, Y)> = mlnl O(X.Y)x Oy(X.Y)| (4.3.37)
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and the extremal three point function as

<oa(x, Y)Oy(X,Y)O!(X, Y)> = (m1 +ma)!(n1 +n2)! Ogop(X,Y) * Oc(X,Y) Neyiy

(4.3.38)

where a € Sy 4n,, b € Smgtn, and ¢ € Sy 4ny +matn,- Finally, notice that the pairing (4.2.4) is
proportional to the planar correlator [89-91] of BPS operators: given O, (X,Y) and Oy(X,Y),

we have

<(’)a(X, V)0 (X, Y)> = m!n! (a,b) (4.3.39)
planar
where the pairing on the RHS is the one in eq. (4.2.4).

Let us now focus on the centre of A(m,n). In section 4.2 we argued that the centre is
generated by {ngm+n), Télm), Tq(;)}. We remind the reader that {TISm+n)}, {Tq(lm)} and {Tq(;)}
are the generators of the centres of C[Sy4n], C[Sy]| and C[S,] respectively, and that p, g1 and
g2 are integer partitions of m + n, m and n. A GIO OTW“‘) (X,Y) can be understood as a

p

descendant of a single matrix 1/2 BPS state O (m+n) (X) under the U(2) internal symmetry
P

that mixes the X and Y fields. In fact, given (D_)z» =Y} 8)80': we can write
k

O pomam (X, Y) ~ (D7) O mim (X) (4.3.40)
p p

This means that central elements (and their corresponding matrix gauge invariants), described in
terms of the over-complete basis {Tgm’”) Tq(fn ) Tq(2n )}, are formed from composites which employ

both the usual product and the star product :
[Descendant Operators] * {(X-Operators ) (Y-Operators )} (4.3.41)

The descendant GIOs are associated to T, ISern) elements, X- and Y- GIOs to T, q(lm ) and T, q(Qn )
elements respectively. In terms of the permutations we are taking the product in A(m,n) along
with the circle product o : A(m,0) ® A(0,n) — A(m,n).

Single-trace symmetrised traces are U(2) descendants of single-trace operators built from a
single matrix. In terms of the permutation language, they correspond to single-cycle permu-
tations which are invariant under any reshuffling®. On the other hand, U(2) descendants of
multi-trace operators built from one matrix form a subspace of the space spanned by products
of symmetrised single-trace states. In other words, not all products of single-trace descendants
are themselves descendants. One way to see this explicitly is the following. Let ST}, , be the

space of symmetrised traces with m copies of X and n copies of Y matrices. The generating

SFurther details of symmetrised traces in terms of an operation on the permutations in the O, (X,Y) can be
found in [91].
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function for the dimension Dim(ST}, ) is

1 .
11 T2yl > Dim(STin ) a™y" (4.3.42)
1,JEQ m,n

where Q = {0 <i <00} U{0<j < oo} \{i=j=0}. Let STp,1, be the space of symmetrised

traces with a total of m 4+ n matrices, with any number of X or Y. We have

m-+n
Dim(STymn) = Y DIm(ST;msn-i) (4.3.43)
=0

On the other hand, the total number of U(2) descendants obtained from a multi-trace operator

with m 4+ n copies of X is
(m+n+1) p(m+n) (4.3.44)

p(m + n) is the number of partitions of m + n (the number of highest weight states), while
m + n + 1 is the number of descendants for a fixed highest weight. It can now be checked that
Dim(STy+4n) > p(m + n)(m +n + 1). This indeed proves our original claim.

4.3.3 Cartan subalgebra and the minimal set of charges

In [54], it was observed that, in the free limit, multi-matrix gauge theories have enhanced
symmetries including products of unitary groups. There are Noether charges for these enhanced
symmetries. Casimirs constructed from these charges have eigenvalues which can distinguish
all the labels R, Ry, Rs,1,j of restricted Schur operators. Because of Schur-Weyl duality, these
charges are also expressible in terms of permutations. Given the definitions in this chapter, this
action of permutations amounts to the action of A(m,n) on itself by the left or right regular
representation. We can now characterize more precisely what is a minimal set of charges which
can measure all the labels. In section 4.2.2 we introduced the Cartan subalgebra M(m,n), and
gave a prescription to build a basis for it. We need to find a subspace C, ,, of M(m,n) such
that polynomials in some basis elements ¢, € C,,, with coefficients taking values in the centre
Z(m,n) span M(m,n). In other words C,, , contains a minimal set of generators for M(m,n)
as a polynomial algebra over Z(m,n). A minimal set of generators for Z(m,n), along with the
basis elements of the subspace C,, ,, provide a complete set of charges, which can measure all
the labels of the le,Rg,i,j by left and right multiplication. Let N™"(Z(m,n)) be the minimal
number of elements of Z(m,n) which generate Z(m,n) as a polynomial algebra. Also, let
N?(%n) (M(m,n)) be the minimal number of elements of M(m,n) which generate M(m,n)
as a polynomial algebra over Z(m,n). Left multiplication by these generators correspond to
enhanced symmetry charges which measure the multiplicity index 4 of restricted Schur operators.
Right multiplication by the same generators correspond to other enhanced symmetry charges

which measure the multiplicity index j of restricted Schur operators. Hence the minimal number
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of charges is
N™(Z(m,n)) + 2NZ( (M (m,n)) (4.3.45)

An important open problem is to determine this function of (m,n) in general. This will tell us
how many bits of information completely specify all the operators in a multi-matrix set-up.
The above discussion is complete for the case where m + n < N, which is adequate for
a treatment of the physics at all orders in the 1/N expansion. For finite N effects, where
we consider m + n > N, the charges given by the above still determine all the multi-matrix
invariants, but they are not a minimal set any more. The discussion can be easily adapted to

this case. Define

At (m,n) = D D  Span{QF, r,ijii.d} (4.3.46)

RFm+n:ci (R)>N RiFm, Rabn

The quotient
A (m,n) = A(m,n) /AR (m, n) (4.3.47)

is a closed sub-algebra of blocks surviving the finite N cut. It has a centre Zx(m,n) and a
Cartan My (m,n) which are simply related to Z(m,n) and M(m,n) by quotienting out the
parts belonging to A% (m,n). Let N™"(Zy(m,n)) be the number of generators in a minimal
generating set for Zy(m,n) as a polynomial algebra. Let N?ﬁm,n) (Mn(m,n)) be the number
of generators in a minimal generating set for My (m, n) as a polynomial algebra over Zy(m,n).
The minimal number of charges needed is

N™™(Zyn(m,n)) + 2NZ" (My(m,n)) (4.3.48)

i

N(mvn)

We expect (4.3.45),(4.3.48) will have implications for information theoretic discussions of AdS/CFT
such as [92,93].

4.4 Computation of the finite N correlator

In this section we will derive a finite N generating function for the two point function of operators

of the form
O =Tr(X™Y") (4.4.1)

in the free field metric. Operators like the one in (4.4.1) correspond to A(m,n) elements

L (X))
ot 1 ) L)

(4.4.2)
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X)Y) X)

where T7 ; = T2( — T2( T2(Y) . Here TQ(X’Y), TQ(X) and TQ(Y) are the sum of transpositions
in Sy 4n, Sm and Sy, respectively. Tj; can be understood as a joining operator, merging the
(1---m) type cycles with the (m + 1---m + n) type cycles.

The two point function (4.3.36) therefore reads, with O = Tr(X™Y™)

mm”” > X d(rmam) T 2 T T o) N

YESM XSn 0ESm4n

(00) =

_ 6 (1A T

— 1) T T T ) (4.4.3)

[m] ~[n]

where weset Q = St o N . This quantity can be computed using only ordinary character

theory. Using eq. (4.2.42) and using the shorthand notation g = g(Ry, Ra; R) we write

i )Y R
(oot = (m+n i 2 d2 (XRLRQ (a7 T0)) X (@) (44.4)
ZQT—ZL RFm+4n

We now expand 717 ; = T2(X’Y) - TQ(X) - TQ(Y) so that

TP _ XY (XD p(Y) _ p()p() () pl(X) (V) p()
Py Ty = 1277 A Ly = T2 Ty Ty = L L2 Ty (445)

We also have (see e.g. [26])

dp,d .
Fo@=xE e Y onNG :gizilR?(nqu)!DlmN(R) (4.4.6)
O’GSm+n R
Eq. (4.4.4) simplifies then to
2

) Di r (1 T 4.4.
09" = 7 };n R;m; dn, dR2 iy (R) (e (T T3 7)) (4.4.7)

Robn

On the other hand, as shown in Appendix C.3

(X) (V)
Xk Ry <T1 1Ty T )

(X,Y) (X) ()
(_1>ch+cR2 g(m o 1)|(n _ 1)' |:XR(T2 ) xR, (Ty"7) _ XRQd(z;Q ):| . Ry, Ry hooks

dR de 2

0 otherwise

Here cp, is the number of boxes in the first column of the Young diagram associated with the
representation R;. This expression restricts the sums over representations Ry - m, Ry F n in
(4.4.7) to a sum over hook representations hy = m, ho F n.

We now need an equation for g(hi, he; R), with h; and hy hook representations of S,, and

Sy, respectively. We specify any representation R by the sequence of pairs of integers R =
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((a1,b1), (a2, b2),...(aq, bg)). In a Young diagram interpretation, a; (1 < j < d) is the number
of boxes to the right of the j-th diagonal box, and b; is the number of boxes below the j-th
diagonal box. We refer to d as the ‘depth’ of the representation R. Let us write hy = (ki1,11),
ho = (ka,l2) and R = ((a1,b1), (az2,b2)). In Appendix C.2 we show that

g(hlv ha; R) = 6k1+k2,a1 511+l2+1,b1 5—17412 50,172 + 6k1+k‘2+17a1 5l1+l27b1 50702 6—1752

1 min(klel?:z,szeleg) min(l17€1€2,l276162)
+ Z Z Z 6k1+k2—i+€162,a1 511+l2—j+61€2,b1 51761527112 5j—€162,b2
€1,e2=0 1=¢€1€2 Jj=€1€2
(4.4.8)
where €12 = 1 — €1 2. Using this identity, in Appendix C.3 we derive the formula
(Tr(X™Y™)Tr(X™Y™)T) (4.4.9)

n+m

= > D gtki+l+1=m)d(ky+1a+1—n) Flay,by,az,by, ky,l, ko, l2)

kl,l1=0 kQ,lQZO ay,b;=0
ag,bg=0

where we defined the function

kﬂkg!ll!lg! (a1 — ag)(bl — bg)
(a1 +bo+1)(ag+br+1)(k1 + 11 +1)(ka + 12+ 1)

X<a1+b1><a2+b2>< N +a; >( N + as >><
b1 by ap+b1+1 as +by+1

X ((a1 +b1 +1)(a1 — b1) + (ag + b2 + 1)(ag — b2)+

F(ahb11a27b27k17l17k21l2) = 4

—(ky+ 1+ 1) (ky — 1) = (ka4 1o + 1) (k2 — 12))? (4.4.10)

In [86] a closed form for the two point function has been given by using a different approach
based on Young-Yamanouchi symbols. We have checked agreement of (4.4.9) with that closed
form for up to n = m = 10. It is an interesting exercise to simplify (4.4.9) into the closed form
obtained in [86]. It will also be interesting to apply the present framework to obtain formulae
analogous to (4.4.9) for more general GIOs corresponding to central elements of A(m,n).

In this section we have shown how to calculate a particular two point function of a central
operator, without explicitly constructing projectors. The result rather follows from knowing
how central operators of interest are generated via the star product of pure X gauge invariants,
pure Y gauge invariants and descendants of half-BPS operators.

The correlator computations above can be expressed in terms of ribbon graphs, equivalently
the usual double-line graphs of large N expansions, but with edges coming in two colors, as
explained for example in [15]. The graphs can be organised by the minimum genus of the

surface they can be embedded in and these graphs of a given genus contribute to a fixed power
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of N. For small m,n, we have checked with GAP that directly computing the permutation sums

for a given genus agree with the analytic result (4.4.9) we have derived.

4.5 Numerical checks, possible applications and other examples

4.5.1 Structure of the centre

A number of questions about A(n), A(m,n) and the centre A(m,n) can be explored experi-
mentally, with the help of group theory software, notably GAP. In particular, since Z(m,n) is
generated by the centre of S,,, the centre of S,, and that of S, 4, it is a useful first step to know
about these centres.

Since S, is generated by transpositions, one might naively expect that the sum of permu-

tations Ty will generate A(n). This is actually not true. We know that 75 obeys a relation of
degree p(n)

11 <T2 — ”il(?) =0 (4.5.1)

If this is the only relation, then we know that 75 alone generates Z[C[S,]]. However simpler
relations occur when there are coincidences in the normalized characters, e.g. two different irreps
have the same normalized character. In fact the the failure of 75 to generate centre is always

correctly predicted by the degeneracies of the normalized characters. If we take

1 <T2 - XR;}?) —0 (4.5.2)

where the product is taken over a maximal set of irreps with distinct normalized characters,

we are getting an element in C[S,,] which vanishes in all irreps. It is a central element, so
the matrix elements in any irrep are proportional to the identity. We conclude that the above
element vanishes. Given that the Peter-Weyl theorem gives an isomorphism between C[S,,| and
matrix elements of irreps, it follows that something which has vanishing matrix elements in all
irreps should be identically zero.

Even for large n, it is possible to check that the centre of C[S,] is generated by a small
number of T),’s. Using GAP we tested that Tj; ;n-2 and Tj3 1n-3) are enough to generate the
centre for C[S,] up to n = 14. The procedure we used to perform these checks is the following.
We know that the set of projectors { Pr}, with R integer partition of n, generate the centre of
Sy. We can compute the overlap of Pr with the k-th power of T),, that we simply write as T}f:

<T§,PR>—5T’1PR ZXS )Xs(Pr) = ,Zd < )kXS(PR)

" Skn Skn

—dp (’“j?)k (4.5.3)
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Similarly, we can derive

(TETY, Pr) = dr (XR;RT”)>k (XR;:")>I (4.5.4)

Now we construct the AB x p(n) matrix M (A, B), whose matrix elements are the overlaps
(4.5.4):

Jw@LBMmezdR<Xig”>k<Xigw>l (4.5.5)

with 0 < k < A and 0 <[ < B. By computing the rank of this matrix we obtain the number of
independent central elements in C[S,] that are obtained by taking at most A — 1 powers of T},
and B — 1 powers of T,. This method can be easily generalised to obtain the number of central
elements generated by the string of operators Tzfll TIZZ e Té“lfvv.

These studies on the centre of C[S,,] inspire a similar analysis for centre of A(m,n). The task
is to find a minimal set of generators for Z(m,n) as a polynomial algebra. The importance of this
problem is discussed in section 4.3.3. Concretely, we would like to determine N™"(Z(m,n)).
There are many approaches one can take in this case, which would be interesting to investigate
in the future. For example, using GAP we checked that low powers of the sum of two- and
three-cycles permutations, T: 2(m+n) and TS(ern), together with the generators of the centres of
C[Sm] and CJ[S,], generate the whole centre Z(m,n). We leave a more systematic discussion of

this problem for future work.

4.5.2 Construction of quarter-BPS operators beyond zero coupling and the
structure constants of A(m,n).

The centre of C[Sy, 5] is denoted by Z[C[Sy4n]]. Z[C[Sm+n]] is @ commutative sub-algebra of
A(m,n). The A(m,n) algebra is a module over Z[C[Sy,+n]]. We can write

ToNi = CJ; Ny (4.5.6)
for some coefficients C. The 7, are themselves linear combinations of necklaces:
To =T;N; (4.5.7)
Hence
ToN; = TIN;N; = TICL.N; (4.5.8)

Another subspace in A(m,n) is the subspace of symmetrised traces. A symmetrised trace

S, can be parametrised by a vector partition v of (m,n). We can expand S, on the basis of
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necklaces { Ny} as
S, = SFN;, (4.5.9)

Symmetrised traces and their products are quarter-BPS at weak coupling in the large N limit.
One can get the complete set of 1/N corrected BPS states at large N by acting on S, with
Q1 which belongs to Z[C[Sy,1n]] ® C(1/N) [26,28,29,90]. The coefficients of T, are easily
computable. The expansion of T}, in terms of necklaces is also easily computable. The non-
trivial part of the calculation is the Cikj of the necklace algebra A(m,n). For any symmetrised
trace Sy, the corrected operator is

018, = Q' T,SIN; = Q1 SICH Ny, = Q) L SITLCF N (4.5.10)

p v=pI

Central quarter BPS sector

A subspace of symmetrised trace elements is central. The symmetrised trace elements give
a subspace of A(m,n) and the central elements form another subspace. The intersection is
the space of central symmetrised traces. The dimension of this subspace can be computed for
small m,n using GAP. Suppose S¢ is an element in this subspace. Then elements Q2~1S¢ in
A(m,n) are very interesting. They are quarter-BPS beyond zero coupling and they are central,
so computations of their correlators have the simplicity of the centre. The computations can be
done using knowledge of the characters of Sy, Sp, Spmrn, without knowing branching coefficients.
From AdS/CFT this central quarter BPS sector should have a dual in the space-time theory, e.g.
some sub-class of states in the tensor product of super-graviton states. An interesting question
is to compute their correlators in space-time and verify the matching with the gauge theory

computations.

4.5.3 Non-commutative geometry and topological field theory

Studies in non-commutative geometry in string theory suggest that open strings can be associ-
ated to non-commutative algebras and the centre is related to closed strings [94]. If we apply
this thinking to A(m,n) and Z(m,n), how do we interpret these emergent open and closed
strings? The traditional view is that Yang-Mills theory is the open-string picture in AdS/CFT
with the closed string picture given by the AdS description, so this is an intriguing question.
Non-commutative algebras and their centre have also been discussed in non-commutative geom-
etry in [95]. The study of the pair {A(m,n), Z(m,n)} should form an interesting example of
this discussion. Additionally we have the Cartan M(m,n) here, with physical relevance in dis-
tinguishing the multiplicity labels. So a more complete picture of strings and non-commutative
geometry for the triple {A(m,n), M(m,n), Z(m,n)} looks desirable. Given that the infinite
direct sum A(0c0, 00) comes up in connection with matrix invariants, it would also be interesting
to study the triple {.A(co, ), M(o0,0), Z(00,00)} from this point of view. Some relevant work

in this direction is in [41] (see also [96]).
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4.5.4 Other examples of permutation centralizer algebras and correlators

Based on our study of .A(m,n), we outline some properties of the other examples of permutation
centralizer algebras given in section 4.1 and sketch the connection to correlators. We leave a
more detailed development for the future.

Consider By (m,n), which is the subspace of the Brauer algebra By (m,n) invariant under
C[Sm % Sp). This is Example 3 in Section 4.1. Brauer algebras were used to construct gauge
invariant operators in [27] from tensor products of a complex matrix and its conjugate. For an

element b in the walled Brauer algebra By (m,n), we use
trmn (2™ @ Z€"b) (4.5.11)

where the trace is taken in V& ®@ V", a tensor product of fundamentals and anti-fundamentals

of U(N). We focus here on the case m +n < N. The number of gauge invariant operators is

> (M) ) (4.5.12)

7,08

where 7 labels an irrep of By(m,n), while o, 8 are irreps of S,, and S,, respectively. M;’ glsa
multiplicity with which («, 3) appears in the reduction of v from By (m,n) to its C[S,, x S,] sub-
algebra. The sum of squared dimensions in (4.5.12) is the dimension of the algebra By (m,n).
This is a non-commutative algebra. The dimension of its centre is the number of triples (v, «, 3)
for which Mg’ﬁ is non-vanishing. There is a maximally commuting sub-algebra of dimension

equal to the sum

> M, (4.5.13)

7,08

This follows since the (7, «, 3) give a Wedderburn-Artin decomposition of By (m,n). A tractable
sector of correlators should be given by the centre of By(m,n) and more detailed study of the
structure of this centre will be useful.

The next algebra of interest is the sub-algebra IC(n) of C[S,] x C[S,] which is invariant under
conjugation by Diag(C[S,]). Let us denote this as Agjqq(n,n). We can generate elements in

this algebra by summing over the elements of the sub-group

01 Q09 — Z yo1y ! @ yooy T (4.5.14)
YESH

The dimension of this algebra is

Y C(R,S,T)? (4.5.15)
R,S, T

where C(R, S, T) is the Kronecker coefficient, i.e. the number of times the irrep T" of S,, appears
in the tensor product R ® S. The dimension of the centre is the number of triples (R, S,T) for
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which the C(R, S,T) is non-zero. A maximal commuting sub-algebra has dimension

> C(R,S,T) (4.5.16)
R,S,T

These properties follow from the fact the Wedderburn-Artin decomposition of the algebra K(n)
has blocks labelled by triples (R, S,7T) with non-vanishing C(R, S,T). An explicit formula for
this decomposition is

QEST =N > giiingtatrpl (01)Dy;,(02) 01 @ 02 (4.5.17)

71772 S 71,72, 151 272
01,02 11,12,13,71,]2
The D’s are representation matrices for 5, irreps. The S’s are Clebsch-Gordan coefficients. One
verifies, using equivariance properties of the Clebsch’s that these are invariant under conjugation
by the diagonal .5,,.

There is another definition of X(n) which is more symmetric in (R, S,T). C(R,S,T) is also
the multiplicity of invariants of the diagonal S,, acting on R® S®T. K(n) can be defined as the
subalgebra of C[S,] ® C[S,] ® C[S,] which is invariant under left action by the diagonal C[S,,]
and right action by the diagonal C[S,,]. These invariant elements can again be constructed by

averaging

Z (710172, 110272, 710372) (4.5.18)
V1,72

A representation basis is given by

01 ® 02 ® 03DE  (01)D5 J, (02) DL (03) S0 g b2 (4.5.19)

13,73 11,22,13 J1,J2,J3

labelled by R, S, T, 1, Ts.

These triples of permutations (o1, 02, 03), with equivalences given by left and right diagonal
action have appeared in the enumeration invariants for tensor models built from 3-index tensors
[97]. The simplification from a description in terms of permutation triples to one in terms of
permutation pairs was also described there, which lead to a connection between 3-index tensor
invariants and Belyi maps. By analogy with the discussion in this thesis, we expect that the
centre of K(n) will lead to a class of simpler correlators in tensor models. The discussion of

A(oo, 00) will analogously lead to

K() = P K(n) (4.5.20)

This space will have two products: one related to the algebra structure of C(n) and one related to
the multiplication of tensor invariants. Somewhat related algebraic structures appear in [98] and
it would be useful to better understand these relations. As a last remark, consider the Kronecker

multiplicities C(R, R,T'), i.e. in the special case where R = S. These have also appeared in the
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construction of gauge-invariant multi-matrix operators in a basis which is covariant under the
global symmetries [28,29]. The structure of K(n) can thus also be expected to have implications

for multi-matrix correlators in the covariant basis.
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Chapter 5

Conclusions and Outlook

In this thesis we considered free quiver gauge theories with gauge group [[/'_, U(N,) and flavour
group [['_, U(F,) x U(F,).

In Chapter 2, based on [1], we focused on the problem of counting of local holomorphic
operators in flavoured quiver gauge theories. We used Schur-Weyl duality relating the repre-
sentation theory of unitary groups to permutation groups in order to convert integrals over
the gauge unitary groups for the counting into permutation sums. The sums involved multiple
permutations with constraints. These constraints were expressed by introducing contour inte-
grals. This lead to an analogous infinite product formula for these flavoured quivers (2.1.8). For
any quiver with n gauge nodes, all the factors in the infinite product are obtained by substitu-
tions in one function FIM({ze}, {ta}, {ta}), with a,b ranging over the n nodes. The building
block FI"({za}, {ta}, {ta}) was found to be closely related to F(gn}({xab}). The determinant
and cofactors of the matrix (1,, — X,,) played a prominent role in these formulae. We also ob-
tained results for the counting of local operators at finite N in terms of Young diagrams and
Littlewood-Richardson coefficients.

The flavoured counting at large N is determined by F[™ which is closely related to F(gn],
which in turn we have related to word counting problems associated to the complete n-node
quiver. One formulation of the word counting problem was in terms of words made from letters
corresponding to simple closed loops on the quiver. The letters do not commute if they share a
node, otherwise they commute. In another formulation, the letters correspond to edges of the
quiver. Distinct letters do not commute if they share a starting point. These open string bits
form words, a subset of which obey a charge conservation condition. A non-trivial combinatoric
equivalence between the open string and closed string counting problems is given by the Cartier-
Foata theorem. We have come across these string-word-counting problems in connection with
the counting formula for gauge invariants. It is natural to ask if such words, and their monoidal
structure, are relevant beyond the counting of gauge theory invariants. One often finds that
mathematical structures relevant to counting a class of objects are also relevant in the under-
standing of the interactions of such objects (see e.g. [35, 74] for a concrete application of this
idea). Do the string-words found here play a role in interactions, namely in the computation

of correlators of gauge-invariant operators in the free field limit and at weak coupling? Since
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the work of Cartier-Foata has subsequently been related to statistical physics models [72,99],
this underlying mathematical structure could reveal new connections between four dimensional
gauge theory and statistical physics.

In the context of AdS/CFT, comparisons between the counting of a class of local gauge-
invariant operators and the spectrum of brane fluctuations was initiated in [49-51]. These
papers considered the simplest quiver gauge theory, namely N = 4 SYM, and the additional
fundamental matter corresponds to the addition of 7-branes in the dual AdS5 x S® background.
The results presented in Chapter 2 of this thesis should be useful for generalizations of these
results, such as increasing the number of 7-branes, and more substantially, going beyond the
N =4 SYM as starting point to more general quiver theories. The finite N aspects of counting,
where operators are labelled by Young diagrams, should be related to giant gravitons. This will
require the investigation of 3-brane giant gravitons in AdSs x S°, in the presence of the probe
7-branes. Some discussion of such configurations is initiated in the conclusions of [100]. Such
detailed comparisons for the general class of flavoured quiver theories we considered here would
undoubtedly deepen our understanding of AdS/CFT.

In the absence of a superpotential, holomorphic GIOs form the space of chiral operators in
the theory. When we turn on a superpotential, equivalence classes related by setting to zero the
derivatives of the super-potential, form the chiral ring [101,102]. This jump in the spectrum of
chiral primaries has been discussed in the context of AdS/CFT in [103]. An important future
direction is to understand this jump in quantitative detail. We have found that the quiver
diagram defining a theory contains powerful information on the counting of operators in the
theory, and the weighted adjacency matrix played a key role in giving a general form for the
generating functions at large N. It would be interesting to look for analogous general formulae,
involving the weighted adjacency matrix, along with the superpotential data, for the case of
chiral rings at non-zero superpotential. In a similar vein we may ask if indices in superconformal
theories, for general quivers, can be expressed in terms of the weighted adjacency matrix. It will
be interesting to investigate this theme in existing examples of index computations for quivers
(e.g. [104-106]). Beyond counting questions, the transition to non-zero superpotential poses the
question of the exact form of BPS operators. In cases where the 1-loop dilatation operator is
known, such as N'= 4 SYM, we can find the BPS operators by solving for the null eigenstates
among the holomorphic operators. Partial results at large IV as well as finite IV, building on
the knowledge of free field bases of operators, are available in [28,29,35,55,74,90,91,107]. A
similar treatment should be possible for orbifolds of N' = 4. The counting of chiral operators
with and without superpotential is of interest in studying the Hilbert series of moduli spaces
arising from super-symmetric gauge-theories [78,108,109]. These moduli spaces often have an
interpretation in terms of branes. Quiver gauge theories, with and without fundamental matter,
have been studied in this context. The formulae obtained here, for finite N as well as large N,
will be expected to have applications in the study of these moduli spaces. Another potential
application of the present counting techniques is in the thermodynamics of AdS/CFT or toy
models thereof, e.g. [110].
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For quiver gauge theories with bi-fundamental matter (no fundamental matter), the counting
and correlators of gauge invariant operators can be expressed in terms of defect observables in two
dimensional topological field theories (TFT2). These theories are based on lattice gauge theory
where permutation groups play the role of gauge groups [26]. The relevant two dimensional
surfaces were obtained by a process of thickening the quiver. This leads us to expect that the
counting and correlators for the present case can be expressed in terms of defect observables in
TFT2 on Riemann surfaces with boundary. It will be very interesting to elaborate on this in
the future. Another interesting future direction is the relation of gauge invariant correlators to
the counting of branched covers. This has been discussed for the case of a single gauge group
and one or more adjoint fields [90,111-115]. The equation (3.3.12) giving the formula for the
2-point function in the permutation basis would be a good starting point. By tracing the flavour
indices, we expect to see that powers of the flavour rank are related to the counting of covering
surfaces with boundaries (see for example [116]).

In Chapter 3, based on [3], we found that the basis of Quiver Restricted Schur polynomials
(3.2.19) diagonalises the two point function (3.3.1). Relying on diagrammatic methods, we
also provided an analytical finite N expression for the three point function of holomorphic
matrix invariants. The relevant diagram is shown in Fig. 34. An interesting future direction
is the relation of gauge invariant correlators to the counting of branched covers. This has been
discussed for the case of a single gauge group and one or more adjoint fields [90,111-115]. The
equation (3.3.12) giving the formula for the 2-point function in the permutation basis would be
a good starting point. By tracing the flavour indices, we expect to see that powers of the flavour
rank are related to the counting of covering surfaces with boundaries (see for example [116]).

Another interesting line of research would be to study the action of the one-loop dilatation
operator on the basis of matrix invariants (3.2.19) for flavoured theories, possibly in some simple
subsector. The action of the one-loop dilatation operator on the Schur basis for N' = 4 SYM
has already been studied [35,117]. For example, in the giant graviton sector of N' = 4 SYM,
the explicit action of the one-loop dilatation operator corresponds to moving a single box in the
Young diagram that parametrises the giant graviton. It is an open problem to find analogous
results in flavoured theories: an interesting starting point would be N/ = 2 SQCD with gauge
group SU(N) and flavour symmetry SU(2N), which is a conformal theory. An explicit basis for
its matrix invariants is given in (3.5.2).

Chapter 4 is based on the results of [2]. We initiated a systematic study of Permutation
Centralizer Algebras (PCAs), in connection with gauge invariant operators. We focused our
attention on the algebras A(m,n) which are related to restricted Schur operators studied in the
context of giant gravitons in AdS/CFT. Other closely related algebras are related to the Brauer
basis for multi-matrix invariants, the covariant basis and to tensor models.

While many of the key formulae we have used were already understood in the literature on
giant gravitons, we have emphasized the intrinsic structure of .A(m,n) as an associative algebra
with a non-degenerate pairing. This means that it has a Wedderburn-Artin decomposition,

which gives a basis for the algebra in terms of matrix-like linear combinations. The construction
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of these matrix-units in terms of representation theory data from Sy, n, Sm, Sy has already been
extensively used in the context of giant gravitons, although the link to the Wedderburn-Artin
decomposition has not been made explicit before. In addition to explicating this link, the new
emphasis in 4 has been on the structure of the centre Z(m,n) and the maximally commuting
sub-algebra M(m,n).

We have used the structure of M(m,n) as a polynomial algebra over Z(m,n) to characterize
the minimal number of charges needed to identify any 2-matrix gauge invariant (section 4.3.3).
It will be interesting to generalize this discussion to gauge invariants for more general gauge
groups.

Two key structural facts about .A(m,n) have played a role in the computation of correla-
tors in Section 4.4. The first is that (™) * (y") = (z™y") and the second is that (z™y") is
part of Z(m,n). The non-degenerate pairing on A(m,n), when restricted to elements in the
centre, can be expressed in terms of characters of .S, Sy, Sp+m Without requiring more detailed
representation theory data such as matrix elements and branching coefficients. These are in
general computationally hard to calculate, although there has been progress in the context of
“perturbations of half-BPS giants”. This makes it very interesting to understand the structure
of the centre A(m,n). A special case is Z[C[S,]], which is the algebra of class sums in S,.

For the case of a single gauge group but multi-matrices (quiver with one node and multiple
edges), a complete set of charges measuring the group theoretic labels of orthogonal bases for
gauge invariant operators were given in [54]. They were constructed from Noether charges for
enhanced symmetries in the zero coupling limit. We have shown that a minimal set of charges
can be characterised by using properties of PCAs. We expect similar applications of PCAs to
gauge invariant operators in general quiver theories (without fundamental matter) to proceed in
a fairly similar manner. For the case of quivers with fundamental matter, we may expect that
appropriate PCAs along with modules over these algebras will play a role. There are in fact two
ways one might associate a PCA to quiver with fundamentals. One is to excise the flavour legs
of the quiver to be left with a quiver with bi-fundamentals only. Putting back the legs might
correspond to going from algebra to a broader construction involving modules over the algebra.
The other way is to tie all the incoming and outgoing legs to a single new node, preserving their
orientation. This latter procedure was useful in consideration of the counting of gauge invariant
operators [1].

The broad summary of this thesis is that the quiver, combined with its corresponding permu-
tation algebras and topological field theories, can be a powerful device in constructing correlators

of gauge invariant observables and in exposing their hidden geometrical structures.
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Appendix A

Quiver Characters and Correlators:

Proofs

A.1 Operator invariance

In this appendix we will derive the identity (3.1.15). Let us consider a matrix ® in the bi-
fundamental ([J,0J) representation of U(N,) x U(Ny), and a permutation n € S,. Eq. (3.1.15)

arises from the equivalence
(@) n=2%" = [2¥ ] =0 (A.11)
which follows from the identities

(e, e, ... ,eZ”\(I)®n|ejl,ej2, .. ’ejn> — (@@n)117127~--1n — (I);llq)zz e Pin — VPR L )

J1:325--50n Jn Jn@1) = In(2) Jn(n)
_ (PO @@ ) iy i@y L. i) O e - L e
=(® )jn(1>,jn<2),...,jn<n> = (e, e, e e s €y )
L —
= (", e, -+ e 0% e, eyt €4 ) s nE Sy (A.1.2)
Here |ej,, €jy, -+ ,€5,) € VJ(%" and (ef1,e2, ... eln| VJ%”, Vy, and Vi, being the fundamental

and antifundamental representations of U(N,) and U(Ny) respectively. In the following, we will

need the two identities
(Q®np)s - <6Zl ) 6127 T, eln |Q®np|681 3 €59y ° 7"y €5n>

. . . 1
= (6“,612, T 7€ln|Q®n‘esp(1))esp(2)7 U 7€sp<n)> = (Q®n)p(s) (A13)
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and
(ﬁ_:[Q@n)f] = <€§1,€§2, e 7e§n’ﬁ_1Q®n’€j17€j27 e ?ejn>
= (%P0, %@ ... 5 |Q% e €4, 0 e4,) = (Q®")§(s) (A.1.4)
Now let us consider a generic GIO Og(7; §; &), built with ng, o type Pap,o fields, ng g type
Qq,p fields and 7, type Qaﬁ fields. We also 1ntroduce the permutations
7= Ua,b,a{nab,a} y o TNab,a € Snab@ (A'l‘Sa)
p= Ua{UB Pa,B; Uy /_)afy} »  Pa,B € S?’La,g y Pay € Sﬁaﬁ (A-1-5b)

From (A.1.1), we then have the equivalences

— Rng NeY Rng NeY — ® a, ®ng, —— _®_a, — _®_a,
nab%a (q)abilab ) Nab,oe = (I)al:ab ’ pa,é (Qa,g ﬁ) Pa,p = Qa B ’ ’ pa,}Y ( a,z AV) Pay = a,: !
(A.1.6)

for every a, b, v, 3, v. Inserting these identities in (3.1.12) gives

Ja o
a |ba b 8

I I
N _ RNab.a ab,a _ Rng a,B
Oo(ii; 5 ) =[] |11 (nazia (q’azfab’ ) nab,a) @ |11 (Paé (@afé ’ﬁ) pa’f?)s ;

a Xb,alab,axﬁla,ﬁ

¥ L“’”]

——1 AQNa,y | = 8ay Xb,ana,aX’yja,’y
H <pa77 ( a,”y > p@ﬁ)J ] o )
Y

a,y

=TT |TT (25) o |[1 (at@is)

aba

® 1;[( ®na5 )

L _ L Xb.oJba,a Xy Ja, Tap,a _1\as
< | T r) 32 [H@a,m:;;'] o v ien \ LT (ate) o | (TL (o)
v B *

b,a b,a

Now we use the equations (A.1.3) and (A.1.4) to obtain
Ka [e3 Ka — n 704: (gav )
=, 2 ® ab,a b, ® a B8 QRnNg Pa,~ Yy
oot =)~ T [T (o5) " | o | T (@)™, | [TT (022),
’ Lab.o Pa (sa ) La,'y
a |ba ’ B B15ap vy

Xb,aLba,a X'yLa,'y

= -1 -1
X ( Xb.alb X Oal Xp X )
( 7a77 CL?a ,y paﬂ’Y) a’( 7a77ab,()f /B pa,/B) Xb’aKab,aXﬁKa’ﬁ

— Oo(7i; 7(5); Adjy5(5)) (A.L8)
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where we also used the definition of Adj, ;(5), eq. (3.1.17):

Adjﬁxﬁ(‘ﬂ = Ua{(Xp,07ba,a Xy ﬁa,v)ga(xb,ana_zia xB P;E)} (A.1.9)

We thus have explicitly shown the equivalence (3.1.15).

As it usually is the case when working in this framework, (3.1.15) has a pictorial interpre-
tation. We now give an example of this diagrammatic interpretation, for the simple case of an
N = 2 SQCD. The N' = 1 quiver for this model is the one depicted in Fig. 20. Let us then
consider an A’ = 2 SQCD GIO built with n adjoint fields ¢ and n, quarks @ and antiquarks Q.
Each quark comes with a fixed state s; state belonging to the fundamental representation of the
flavour group SU(F'). We label the collection of these n, states as s = (s1, 82, ..., 5, ). Similarly,
5 = (51, 52,...,5p,) is the collection of the SU(F') antifundamental states of the antiquarks Q.

The generic GIO Og(n,ngy; 8,8; o) can be drawn as in Fig. 42.

@@n Q@’ﬂq

O(n,ng; 8,58; 0)

I
Q

4 Q®n“

Figure 42: Diagram corresponding to a generic N’ = 2 SQCD GIO.

The horizontal bars denotes the identification of the indices. Specialising eq. (3.1.15) to this

case, we have the identity
O(n,ng; 8,8; o) = O(n,ng; p(s), p(8); Adj,x,(0)) (A.1.10)

for o € Spyn,, 1 € Sp and p p € Sp,. This equivalence is described in diagrammatic terms in
Fig. 43.
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5 p(3) p(8)
Y
Y ,’7—1 Y Y
(I)(Xm Q@nq (1>®” <I)®n Q@nq q)®n Q®7Lq
L Y 4
Enjwn
o = o = o = Adj, (o)
e o
Y Y
4
v Q®n,q v Q®nq Q®nq v Q®nq
Y
s s p(s) p(s)

Figure 43: Diagrammatic interpretation of the identity (A.1.10).

A.2 Quiver character identities

In this appendix we will derive equations (3.2.23), (3.2.25) and (3.2.26). Many of the symmetric
group identities that we will use in this appendix were already introduced and discussed in
Appendix A of [26].

A.2.1 Invariance Relation

In this section we will prove formula (3.2.23):

Using the definition of Adj;.7(5) given in (3.1.17)
AdJﬁXﬁ(g) = Ua{(xb,anba,a Xy ,aa,'y)o'a(xb,an;b%a X p;/lg)} (A22)
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we start by writing

XQ<L7 §7Ad.] =CL H Z Z laa]a Xb,anba,a X'Y ﬁa,’y)aa(xb,ana_b%a X’B p;}-}))
a  ig,ja a.b o
lg B,la vy

X BRa_>Ub aTab auﬁra ﬁvl’a H Cra NeE) S NeE) la B BRaﬁUb,arba,anFa,’ﬁl’;— H Cga,'y

ja_>Ub alab auﬁla B ia—wb,alba’auyla,«, Fa77,Sa,fy,l_a7A/

Y

R, _ _
=CL H Z Z Dza il (Xb.alba.a X~ p(m)D (JG)D (Xb,anab%a B pa,lﬁ)

a  ig,ja ab,_a
la,ﬁvlaa’Y

BRa‘)Ub,a'rab,auB’ra,B§Vai H Ta NeE) Sa,Bala,B BRa‘)ul),ozTba,ozL—J'jfn.m/;’/z;F H sa Y

jaHUb,alab,aUﬁla,ﬁ Sa,p ia‘)Ub,alba,aU’Yla»’Y Ta Y 777ia77

.
(A.2.3)

To ease the notation, for the remainder of this section we will drop the summation symbol in
our equations. The sum over repeated symmetric group state indices will therefore be implicit.
Notice however that there is no summation over the repeated representation labels 74 o, 74,3,

Ta,- Using the equivariance property of the branching coefficients [83]

D (xava) B = HD (va) | Bioare (A.2.4)

we can write

R, —1 —1 Raﬁub,a"’ab,auﬁra,ﬂ§yai
Dj{z’ja(xb’anabvoé XB pa,ﬁ) Bjaﬁub,alab,auﬁla,ﬁ

Tab,« 1 a [‘] -1 Raﬁub,arab,aUBTa,B)Vaj
H Dy, () L1207, () | Byl

ab a’ ab a ﬁ? ab,a
B
(A.2.5)
and
5t
R, = Ra%ub,arba,au'yra,ﬁ/ﬂ/a
Dimi{l(xb,anba,a Xy pa,v) Bia%Ub,alba,aUWl_a,w (A26)

- =t
Tba,a Ta — Roa—Up,aTba aUyTa,viVa
_ Drea I | Dra_ B. ; ) ;
H lba,ana,aN (nba’a) la,'yyla,’y” (pa”y) laﬁub,alba,auuﬁlaﬁ”
b, Y

145



APPENDIX A. QUIVER CHARACTERS AND CORRELATORS: PROOFS

Inserting the last two equations in (A.2.3) gives

ab a’ ab a lba,avlba,a

xa(L, 3 Adjz7(5)) =c | | sz, HDTGM (M) D1 1 (Tlbae)

Raﬁub,arab,auﬁra,ﬁvyai ra,Bvsa,B’la,B
X Bj,g—>ub,&l' Ul 4 HDag I, (Pa,) Csa's

ab,a

Raﬁub,arba,au’y":a,w;yi_ H Ta Y ga,'y
X Biflﬁub,alba,auuwla,'y” Dla ~olay" pa,«,) wa,gaﬁ,l‘m (A.2.7)
A first simplification comes from noticing that
Tab,« —1 Tba, o H
H Dab o’ aba ab a)lea,cwlbaa nbaa 5lab a’ aba (A28)
a,b,a a,b,a

We now focus on the Clebsch-Gordan coefficients. Let us first consider the chain of equalities

D} (o)CIMt = D (0)(s|R, M, i) = (s|D(0)|R, M, i)

4,1’

= (D(0)"s|R, M, ') = (o7 (8)| R, M, ) = CL-1(] (A.2.9)
We can use this identity to write
Ta,B CTa B Sa B lg N C"’a,ﬁvsa,ﬁvl:l’g A 2.10
o, (Pa) Gl o b (50) (4.2.10)
and
- —1 /=
Ta — Sa, _ Pa, (SG«W)
Dla "jala 'y (pan/) Cfﬂ.,”y\/yga,'y»l_a,w o Cfa,’;/aga,'y:l_a,'y” <A211)
Using these results in (A.2.7) we then get
. . N Ra
XQ(L, S, AdJﬁXﬁ<a)> =Cr, H D’ifzyjé (O'a) H 6l;bya7lab,a”
a
BRH.‘)Ub,arab,aUﬂTa,Bzyai Cra B> Sa B la B
74— Un ally, nUsll 5 L 0
Raﬁub,arba,au Ta, ;Vj pa ( )
X Biaﬁub,alba,auu’:l(ly’:” { Cra ':75 ’:/y»la 'y// } (A212)
¥
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_CL H DR Ra%Ub,arab,aUBTa,ﬁvl’a_ H ra15’5a7ﬂ7l:1,ﬁ
a J o= Ub,alyy o Ysly 5 p;lg(sa,ﬂ)
B
+ =1z
> BRa‘)Ub,arba,aU’yra ~viVa Hcpa,'y(fa,'y)_ (
igﬁub,aléa,auvlaﬁ” Fa,’Y’Sa,wyla,-y XQ
Y

(8,9

Substituting § — p'(§), we finally get
(A.2.13)

xo(L, 5,6) = xa(L, 7 (5), Adjz (7))

Our proposition is thus proven

A.2.2 Orthogonality relations
In this section we will prove the quiver character orthogonality equations (3.2.25) and (3.2.26)

Orthogonality in L

Let us start with eq. (3.2.25)
> > xolL,5d)xol.55) =61 (A.2.14)
E

This formula is actually a particular case of the more general identity

> xolL, 50" - 5) xo(L, 5,5) (A.2.15)
5 &
T DRa PV;“F’VG, 6 _
r ( ( ) Rq _>Ub aTba,aUyTa, 'y) R4,Ra

_CLCLH dna )

<H 67:a,777%a,75§aﬁ,§a,7> 51’a_,l7a_

I dra6)8ra 570595, . 5. 5
"

| | 5Tab,a 7fab,oc
b,a B

Va 7Va 1
Here Pp’ U athe Uy ey 15 @ linear operator whose matrix elements are
Ra_>Ub aTba,aY~yTa, wal’a Ra—>Ub aTba,aYyTa,viVa (A 2 16)
7fa.‘>ub,ozlba,,ozu"/la'y o

Za_>Ub alba aU'yl(L 2%

v od

PRR*)Ub alba aUWFa B2
’ ’ 7 ayta
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Let us prove eq. (A.2.15). As a first step we expanding its LHS to get

8,0 &) xo(L,5,7)

ZZXQ(L
=cL CLZZ H iaa(

00) DI (0,)

ta,Ja

Raﬁub aTab auﬁra B3 Vg ra NeE) Sa,B:la BCTa B Sa NeE) la B

1]e

BRaA)Ub,arab,aUBTa,B§Vai
jaﬁub,alab,auﬁla,ﬁ ]aﬁub alab aUBla 8 Sa,B8 Sa,B
Rag)Ub aTba,aYUyTa, vyVa Raﬁub aTba aU'yTa ’nya Csa o B Cga,'y ~ ~ (A 2 17)
1a—>Up,alba, aUyla,y za—>Ub alba O(U—Yl Ta,ysSa,v:la,y Ta,yySa,ysla,y o
¥
The next step is to rewrite the known relation
R Rl TL!
Y Di(0)Dyy(0) = A(R) OR,R0i,p0jq (A.2.18)
oESy
into the form
N DEe. (oh - 0a)DEe. (0,) =Y DEy (0l) T E 8y 5 by 56
ia,ja a)&5 5. \Ya a,ka\" @ d(Ra) Ro,Ra " kayia jasja
Oq ku,
= Dfe (o) g, (A.2.19)
tasla a d(Ra) RﬂvRa ja,ja e

This identity can be inserted into eq. (A.2.17) to get
s d
na! R, ’
= cLcf Z H D (o,)

0r = '
LG,y O e P

Ra_>Ub aTab auﬁra [‘hl’a
]a_)Ub alab auﬁla B

Ra%Ub,arab,aUBTa,B§Va_

X 6ja,3a Ja—Up,alab,aUplae,s fa.p

Ta,BSaBla,B TGBSEBIGE
[Tens et

Sa,y

Ra—Up,aTba,aUvyTa, ry,Va Ra—Up, oTba, aU"/TCL "/aya CSCL Y (A 2 20)
ia—Up,alba,aUylay ia—Up albuyauwla 5 TayysSayslasy o r,Saqylany

Now using the orthogonality relation (3.2.7) in eq. (A.2.20), we further obtain

-

> xo(L,5,0"-7) xo(L,5,5)

Dy (o)

lasla

Ng!
=gy [] d(R )5Ra,f%a H57’ab,afab,a5lab,a,iab,a Ouz oz
- a
§ a b,a
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N N ra,ﬂvsa,ﬁvlu,ﬁ 'Fa,ﬂvga,ﬁja,ﬂ
X H Ora 70,801, 51s s Coas Csals

+ —_ -
Ra_>Ub aTba aU’y”"a ’nya Ra_>Ub a””ba au’yra vyiVa I | Sa,y Sa,y
ia—Up,alba,aUvla,y za—>LJ;,7O‘lba,aU7la77 TaysSavlay  Fon,Samslany

Ng! H H Ro (/1
= CL Cf, : : | | d R 6Ra’]~%a 5Tab,oc777ab,a 67‘0,,[‘3»&1,,3 511;,5; DZ ; (Ua)
— ( a) asla
5 a b, B

0.6+Sa.85la.8 Ta,8>5a.8rla
XHCTﬁ B> ﬂcrﬁ ,Bsta,B

sa/g

Ra_)Ub aTba aU'yTa,’y’Va Ra_>Ub alba au’yTa ’yvV(-LF §a,'y -§a,'y
B! (A.2.21)

ia—=Up,alba,aUryla,y ia—Up.alba.aUnrla Ta,ysSa,yslayy  Fq~,Sa.mla
b,atba,ayta,y yaRa,ysta,y

)S 7l T 7§ 7l . .
Broaf “‘ECS'I’E @78 in this formula.

Let us focus on the pair of Clebsch-Gordan coefficients C;Z s
It is immediate to verify that, for a U(F") Clebsch-Gordan coefficient crs

o CpSiey ST =N ", S ils) (', S ils) = (r,S,il (D ls) (sl | ', 8", )
s S

S
=(r,S, i|1|7‘/, S’ i/> = 0y 05,57 0 i (A.2.22)
Therefore we can write
Ta,ﬂ Sa,Bvla,ﬁ ra,ﬁaga,ﬁvla,,ﬁ _ ~ _ N
Z > Gl Co.. = 04 .5, =d0ap)ds, 5, (A.2.23)

a B Sa,ﬁ

Inserting this in (A.2.21) we obtain

> xolL, 50" 7) xo(L,5,5)

Tg! R,
= CL Cf, H . 5Ra7Ra H 57‘ab,a1fab,a H d<ra75)5ra,ﬁvfa,ﬁdsa ,S‘a 51/;7[); D,L z (O{Q)
-+ d(Ra) . 5 85,8 asla

ta—Up, alba aU’Yla et Za%Ub,alba,aU’yl - v

Ruﬁub aTba,aYrTa, ’nya Rag)Ub aTba, uU"/Ta 'nya | | 2 Csa Y Cga,-y

Ta,y>5a,y:la,y Ta,vSa,v:la,y
Y Sany

n ' R,
- CL Cf, H 7Q5Ra7éa H 57‘ab,a7fab,a H d<ra75)5ra,ﬁyfa,ﬁdsa ,S‘a 51/;7[); D,L z (0{@)
-+ d(Ra) o 5 85,8 asla

+
Ra—>Ub aTba aU'yTa,'yvVa Ra_>Ub aTba aUWTa,mVa | | 6 B B
TaysTay " Sa,y,Say laqysla,y

ia—+Up,alba,aUylay laHUb,alba,anla,w
M
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o
= CL Ci g méRzﬁRa H 5Tab,oufab,a H d(ravﬁ)(sra,ﬂ’ﬁlyﬁ6Sa73,§a,ﬁ

b7a ﬁ
Ra—Up.aba,aUTa,viVa 5 Ra—Up.aTba,aUyFa,~Pa
% | I 5 5 5 5 5 Rg O_/) a b,aTba,a9yTa,viVa a b,aTba,aYUyTa,vVa
Ta,vsTa,y " Sa,v,5a,~ Vg sVa faytag = & ia—)Ub’alba@U»yla,—y ta—Up,alba,aUryla,y
Y
(A.2.24)

In the second equality above we again used (A.2.22):

Cga,v Sa,y —
Ta,v:Sa,ysla,y

(A.2.25)

_ s = R s z ==
Ta,vy9a,vila,y a7y Tay " Sa 80, la,ysla,y

Sa,~y

Pl/(-l‘—vﬂl;!—

R s Up b o U o0 WHOSe matrix elements are
a ,aTba,aYyTa,y

We now define the projector-like operator

V;,ch B fza_>L'|b,oz7ﬂba,ozU;yfa,’y?D;r Raﬁub,arba,aujﬁz,-ﬁl’; (A 2 26)
Ra—Up,aTba,aUyTay |5, 5 1a—=Up alba,aUsla ia—=Up alba,aUnyla
For v = i the operator P% % is the projector on the (UpaTba.q Uy Taqys Vi)
a a p Rag)Ub,aTba,aU'y'Fa,v pro) b,a’ba,a ~y Ta,yy) Va

subspace of R, but when v;” # 7} it is rather an intertwining operator mapping the copies v
and 7, of the same subspace Up,aTba,a Uy Tay C Rq one to another. With this definition, we can

finally write

- ~

Z ZXQ(L’ s,0' 5:) XQ(Lv 8, O_:)

| -

Na: Ra( 1\ pVa e
:cc~|| Tr(D“J P _ 6p 7
LCf, ; d(Ra) ( a) Ro—Up aTba,aU~Ta,y Ra,Ra

X H 57‘ab,o¢7fab,a H d(raaﬁ)(sTa,ﬂvfa,ﬁ5SQ’B,§E76 H 6Fa77’7~_‘a775§a,'yy§a,w 51/;,170’_
b,a

B Y
(A.2.27)
which is eq. (A.2.15). Consider now the case in which ¢’ = 1. Then
oot I
Ra Va 71/(1 JE— Vﬂ 71/0,
Tr (D (1)PRa%Ub7a7“ba7aUA,Faﬁ> =Tr (PRaaubyarba,auwa,)
— 2 : § BRaﬁUb,arba,aU;yfa,’yﬂ);rBRa%Ub,a"‘b(L,an":a,'ﬁV;L (A ) 28)
- iaﬁub,alba,auwla,'y Z.a—>UbA,allm,ozu'yla,’y o
l{)a,a la
la,y
= 5V;7Dj Z H (5lba,o¢7lba,a H 5[(1,7,[7@,7 = 511;,17; H d(/rb(l,a> H d(Fa,'y)
lba,oz b7a Y b,a Y
lay
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where the third equality follows from the orthogonality relation (3.2.7). Using this identity in
(A.2.15) we get

Z ZXQ(Lv s, O_:) XQ(z” 8, 6)

o
=cCL CL H d ) 5Ra,Ra 51’(1 Wa 5I/+ l/ H d Ta/b O‘)é"'ab ourab «

b,a
H d Ta,ﬁ 67”0, B Ta B Sa B> Sa B (H d 'I”a,’y Ta,y, Ta ,yésfay 7§a,’y> (A229)
B

Recalling the definition of the set of labels L = {Rq,7ab,a:7a,8: Sa,8 Tays S”aﬁ, v, v}, we can

thus write

> xol(L,5,5) xo(L, 5,7)

=opperep]] d(‘gi) [T dtrave) | | T] d(ras) (H d(m,ﬁ) =0, (A.2:30)

The identity (A.2.14) is proven.

Orthogonality in &, &
In this section we are going to prove (3.2.26):
Z xo(L,3,5) xo(L Z §( Adjnxp ) S53).7 (A.2.31)
L nxXp

We start by writing two useful identities, which will allow us to connect state indices appearing
in the first quiver character with state indices appearing in the second quiver character. Consider

contracting both sides of the equation [83]

/ n'
Y Dij(0) Diy(0) = —<0r08i 1050 (A.2.32)
SR
oc€Sh
R—r,- v~ pR—r,- R—1/, R—r! v~ . .
with Bj i B; i B K _}k "B Ll and then summing over the representation

" = n. By domg S0, we get the 1dent1ty

BR—>'7“7~-~ 2 BR—HT,M wt BR—)T‘,“~ 2 BR—)nm wt (A233)

T—sir K i, L1, T,

R—r,- v~ R—)T‘ wt HR—=r vt SR’ r r!
- nl Z Z Bl—n J—>], BK—m,... BL_>1, D ( )Dk,l(a)
o€Sh r'tn
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Alternatively, contracting both sides of (A.2.32) with Cg LSk Cy S and summing over the rep-

resentations r’ F n, we obtain

C;,S,z' C’[’S’j _ M Z (Z Dkl CT S’fc’" Sl) (A.2.34)

n!
gESy 'Fn

This is the second identity we are going to need.

Let us then consider the product

BRa%Ub,arab,aUBTa,ﬁ;Va_ Cra B Sa B la B BRaﬁub,arba,aU’yFa,’Wth— Cga,’y
Ga—Up.alab.aUgl Sa,8 ia—Up alba. o U~ Fa.msSa.n sl
b,alab,a™~Bla,B la b,alba,aPyla,y Ta,vy,Qa,vsta,y

v
% BRaHUb,aTab,aUBTaﬁ;VJ H Cra 8:5a,8> la B BRaHUb,arba,anﬁmV&k H ta ~
j&eub,al;b’au@l;ﬁ igeubﬁal{)a’auyl{lﬁ Ta,ys Sa ’Y7 A -
Y
(A.2.35)
Using (A.2.33) and (A.2.34) in (A.2.35) we find
(L S U) XQ( ’ 7 L E E E E
777p {rab,a} {Tawﬁ} {Ta,,'y}
Tab a) d(ra,ﬁ> R, DB
X H H H ' Dld?]a i:lhj{l (Ta)
h Nab,a 3 Ng, B naﬁ
Tab,a Ra_>Ub alab auﬁra ﬁvl’a
X H Dpab,a,p;b,a w"b»a) H Dpa 8P 5 (P 5 Ja—>ub aPab,aUsPa,s
b, B
< (TIDI  (pag) Gz %o 10 St
Qa,ﬁhq;,ﬁ paﬁ s
/ +
Tba,o H Ta,y Ro—Up O‘Tba oYyTa,viVa
X H qua,a,q,’,a,a (nba’a) ( Dpa ’Y7pa Y ’Oa”y B'La_>ub aQba,aYvDa,~
L b,a 0%
(T G
qav'y’(ﬂl»’*/ paﬂ/ Fél,’v’sflyﬁvqa "/ Ta ’sza A Y
ol
Ra—Up, aTab,aUsTa,8:Va Ro—Up C!Tba oY Ta, 'yvVa (A 9 36)

jé_)ub,ap;byauﬁp;,ﬁ i, ﬁUb,aqba,aU"{pa,'y

where {r};, .}, {r, 3} and {7} are shorthands for Uapa{7(p o} Uas{rs g} and U, {7} re-
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spectively. We now use the equivariance property of the branching coefficients (eq. (A.2.4)) to

rewrite the terms in the square brackets above as

Tab,a Ta,B Raﬁub,arab,auﬁra,ﬁ§ya_
H Dpab,ouplabp[ (nab’a) H Dpa,,(%pla”@ (pa’ﬁ) Bjaﬁub,apab,auﬁpa,ﬁ
B

b,a

R, Ra*)ub,aTab,aUBTaﬁ;V;
= D}t (Kvatlaba %5 pap) By, L0, Uy (A.2.37)

and

4 / N
[1202 o) | (TDPR sy ) ) B e
Toa,arpg o 0D o) Pa,r Pl e ta—=Up,aqba,aUvPa,y
b, Y

N
Ra%ubvay‘éa,auwraa’%l’a
’ / 5/
la_)Ubvaqba,aU7pa77

— Df;fjl,a (Xb.aMba.o X~ Paqy) B (A.2.38)

On the other hand, we can use eqs. (A.2.10) and (A.2.11) to write the Clebsch-Gordan coefficient
terms as

7’/,13 agvsaﬁv%zﬁ aﬁ? aﬂvqa@ aB7 aﬁvqag agvsaﬁvqa@
[0 (pas)Cs ce ||c c, (A.2.39)
da,8:94 .5 ’ a,B (Sa @ ta,p

(there is no sum over the r, g and S, g labels) and

=1

[0 (pan)Co7  CRo e _H(J”M(s”) clar (A.2.40)

/
da,v:9a,~ Ta,fwsa,'y,(Ia,'y Ta,fyvsa,quagy Ta nya oA Y Ta,ryysa,'yvqa,ry
v

(again no sum over the 7, and S, labels).
Inserting the last four equations in (A.2.36), taking the transpose of the matrix element on
the RHS of (A.2.38) and relabelling the dummy permutation variables as 77 — 7 ~!, 0 — p !

gives

CEEeLin= LY Y Y ¥

P {Sab a} {Sa B} {sll ’Y} a
R, R, R, -1 -1 R,
X Dlémia (Xb,anba,a X'Y pa,w) Diauja <O-a)Djavlll (Xb’anab7a Xﬁ pa76> Di{"’j‘ll (Ta)

% BRa‘)Ub,arab,aUBTa,B;Vai RaHUb,arab,aUBTa,B§Vai
laHUb,aP;b’aUﬁP;,B j&ﬁub,ap;byauﬁp;ﬁ

BRa‘)Ub aSba,aYvTa, 'y;l/a Rag)Ub aSba,aUyTa, WyV;r
1 —>Ub,aqba7auvpa,y 2 —>Ub,aqba7au"/pa,'y

5a,8)5a,6:9a,6 ~Sa,5+5a,8:da,p Pa,(8a,y) ta,y
X | | | | e I A.241
Cpa,ﬁ (sa,B) Cta,ﬂ ( CSE,’Y:SG,’Y?qLZy'Y CSa,v:Sa,’yvq&'y ( )

B v
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where we also used the definitions of ¢f and ¢z given in (3.2.21) and (3.2.27). Now, from eq.
(A.2.16) we have

Raﬁub,arab,auﬁra,,fﬂyai Raﬁub,a"‘ab,auﬁra,ﬁ§yai _ Vg Vg (A 92 42)
laﬁubyap;byaU/gp;ﬁ jg%ubyap:lb,aUBp;ﬂ Ra%ub,aTab,aUﬁT'a,g la,j[l L.
BRG‘}Ub arba oY Ta, ’77”(1 Ro—Uy arba oY Ta, WyV;L o yj’y;f (A 9 43)
U= Ub,alhg. 0 YrPh 6 —Ub,alhq o U700, Ra=Ub,aThe o UrvTany | i 2.
a?
so that we can write
B AR
Q(Lv’S?J) XQ(L7th) = E , E : H Dl’a (AdJnXp( )) D (Ta)
Ci Ng! aJa
P {T;b,a} a
+
Va 7Va Va 71/(1
X _ L.
PRa_>Ub aTab auﬁra B ‘l ]ér, RaHUb’a’f'Z/’ayaU»yT‘aw (A 2 44)

loia
y Z H ag:aﬁqaﬁcagﬂaﬁqaﬁ Z Hcpavsav Ct_a,ﬂ,i
{ } 5 Pa,B sa B ta,p {7/ } a 'yaSll ~vsqa,~y 7_‘(/17’\/75(1,’}/36(1,7
Te.8 Taq~nr Y

where we defined

Adjiu 5(0a) = (XbaTlbae Xy Par)(0a)(Xb.allgya X5 Pap) (A.2.45)

Now we can proceed to sum over L = { Ry, T4b.s Ta,8> Sa,8: Ta,ys S’am v v, }. This introduces,
among others, a summation over the flavour states S, g and S’aﬁ. Consider then a pair of Clebsch-
Gordan coefficients like the ones appearing in the last line of eq. (A.2.44). It is easy to write

the relation

SoCr eyt = (p(s)] | Y I, S,iy(r, Sl | ) = (p(8)|1E) = Gpia)e (A.2.46)
7,51 S

We then have the identity

, ’
T’a’ﬁ,Sa”g,qa,ﬁ Ta’ﬂysa,[%qa,ﬁ _
Z pa,ﬁ(sa,ﬁ) Cta,B - 6pa73(3ﬂ73)’t‘1vﬁ (A247)
7’;’57 Sa,ﬁy‘la,,@
and similarly
Z Cpa 'y(sa ’Y) CEG,W _ — 5_ _ T (A 2 48)
Ta 'yysa ~vyqa,y Ffz,’YvSa,"/vqa,"/ pa,»y(sa,'y)fta,'y o

_, G _
ra,fx/»Sa,'y:Qa,’Y
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Inserting this result in eq. (A.2.44) we obtain

> xo(L,5,5) xo(L, L, 7)
L

P Z H Z 1 Dﬁala Adjﬁxﬁ(aa)) Dz‘lzc,lj&(Ta)

cn —. —¢
l/ Vg
X a sYa P
Z Z RaﬁUb aTab,aUsTas ] Z Z a—>Ub aTha,aUrTay i,
Up, a{Tab a} Ugire,gt “ Up a{"'ba,a} U’Y{j—l %
vg Vg

10 oot <H 5pa,w(§a,7>,fa,w> (A.2.49)
B v
Now using the projector identity

v,V
Z PR—>Um

Ui{ri}, v

= Oy (A.2.50)

)

we further get

> voll.sd)velLis =~ S [ N
a R,

n - =
L 7, p

Adjnxp(aa) 1)

L1000 50 tas <H5pmsw i > (A.2.51)
8

Finally, through the identity

> M, (o) = b(0) (A2:52)

RFn

we can rewrite (A.2.51) as

> xo(L,5,5) xo(L,T,7) =
L

; Z H 0 (Adjgup(oa) 70 ') H(spaﬁ(sa,ﬁ)vta,ﬁ <H 0pay (a2 o

0,0 a B gl

)
)
~—

; Z 0 (Adjyp(6) 77) O5(3),7 (A.2.53)

This last equation is exactly (3.2.26).
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A.3 Deriving the holomorphic gauge invariant operator ring

structure constants

In this appendix we will derive the analytical expression for the holomorphic GIO ring structure
constants GL(l)’L(Q)’L((s), corresponding to the diagram given in Fig. 34. We will divide the
computation into five main steps, for improved clarity. In the following subsection 3.4.1 we will
explicitly derive the chiral ring structure constants for an N’ = 2 SQCD, by using diagrammatic

techniques alone.

1) The permutation basis product

In this first step we are going to rewrite the product of two operators in the permutation
basis, Og(7i1,51),71) Og(iia, 53,52, as a single operator Og(iiz, 53, 53)), specified by
appropriate labels 773, §3) and ). We use the defining equation (3.1.12) for Og(#, 5, &) to

write this product as

Oo(iiy, 51, 1) Og(iig, 52, 52)

& 1) (1) _
I I
®”E.1b)& ab,a ®”E.1;3 a,B _®ﬁgl)w Sa,y (1) xb’(,J,Ei?anyg,l)Y
ST|TT (o) o | T (@us) o [TL (@R ) ] (o) e
a ba Jab,a 8 saﬁ ~ Jg‘,,Y b,atah,a a,f
(2) (2 5(2) -
®n(2) Iab,a ®TL(2) IU/)B ,®7(2) Sa,y Xp 04‘]152) XWJ(g,Q’)Y
o, b Q a.f ® Na,y (2) Hrbaa
X ab,a @) ® a,B ) o ~(2) Ta xp ol xg1®
a b, Jab,a 154 sa,ﬂ v Jll»’Y balab,a”Bla,p
JORNTe) IONC
1 2 ab,a ab,a 1) 2 a,B a,B
_ ®®(n§1b>,a+nflb),a> ®<nt<l,ﬁ+n¢(1«2“})
SO () ()
1 2 1 2
a b’a Jab,ax‘]ab,a ﬁ saﬁxsaﬂ

L) L (1) D 5@ )

(1) -
_ Sa,yXSa,y 1 7 =

—®(nu,w+"a,'y) (1) () XbﬂaJlEa?aX'YJ‘gv’YXbaa ba,aX'YJ‘(1=7

@ [T | Qan O’ X 04 W W @ @)

v bealub aXﬁIa,ﬁvaaI XBIa,B

T %72 : e

(A.3.1)

In the following we will continue to use the shorthand notation

’€i1,6i2,...,ein> = ’I>, I = (il,ig, ...,in),
(el e, . eln| = (J], J = (41,725 -+ Jin)

which was already introduced in the previous sections. For each gauge node a, let us now define
the A\y— and A,4 permutations such that

7O

)\a— Xb,a ab,a

o 1) i 1D 0 1) = s (100, % 12.) s (19) % 22)) (a32)
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and

—1 (1)
ACL-‘:— Xb,o Jba,a

X T80 ua e %0 TE) = o (el X Tia) 5o (0 < TE2)) - (433)

These permutations have been chosen such that, when suitably acting on the U,gl) X UC(LZ)

com-
ponent of (A.3.1), the resulting term has the right index structure to match the index structure

of the associated field component,

& (nl}) 40 (n) 40 (a8 (1))] %0 (L X i) %5 (04 <105)

b, b, @\, 311 3 —~®(Na,y+7a,y
RN By o e Ny Fot
B ¥

1 2 =(1) _ (2
b,a Xb,a (Jlga,)ax‘]lga?a) ><7<J‘§V)Y><J‘g*')y)
(A.3.4)
We have in fact

1 =1 2 =(2 1 2 =(1) _ (2
(0'(1) " 0(2)> Xb,ajéa?ax—\,]é,%Xb,aJéa’)aX»yJ,;% _ ()\71 (0'(1) " 0_(2)) )\71> Xb, o (Jb(a?aij(a?a> XAY(J(&,),XJ((Z’),)

a a 1 1 2 2 - a+ a a a— 1 2 1 2
Xbiallpa X1k X0l x5 10 Xba (I a X 1a ) %o (1< 13))

(A.3.5)

The purpose of A, and A, is therefore to change the embedding into [n,] corresponding to
the ordering of the upper (lower) U(N,) indices of the fields coming into (departing from) node
a, eq. (3.1.9) (eq. (3.1.10)). It can be seen that the index structure of the RHS of (A.3.5) now
matches the one in (A.3.4). Inserting (A.3.5) into (A.3.1), we then obtain

Oo (11,51, 31) Og(iiy, 52, 5@)) = Og (i1 42,5V UFD X! (5(0 X 5@)) 37D (A3.6)
where
142 = Ua {Una {n(hq niaa i Us {n s niZhys s (R0D, R}

FOUFD = U {Usls), Y5 Uy {50, 533} (A.3.7)

a

A0t (6(1) x &@)) A =U 0] (a“) X a}?) A}

2) Using the inversion formula

In this step we are going to use eq. (A.3.6) to write a first expression for the GrLo, L@ L®
coefficients. Let us start form the product Og (L) Og(L?)), that we expand as

Og(LM) 0g(L?)
= Z Z XQ(L(1)7 NGO XQ(L(Z)a 52 7Y 0g (711, 51, 71) Og(itg, 52, 72)

5 52 71) 52

(A.3.8)
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Plugging eq. (A.3.6) into this equation we get

Oo(L™M) Og = > Y xe@W,5W.5W)xq(L®,5®),5%)

7)) 5(2) 7(1) 7(2)

x Og(fi1p2,§M UFD X (5“) X &@)) X
(A.3.9)

We now use the inversion formula (3.2.32) to get

M) xo(L®, 52, 50))

Ql

Oo(LW) 0oL =} Z Z xQ(L, 50,

LB | 3() 5(2) (1) 7(2)

x xo(L®,5WuF® X1 (5“) X 5@)) X—l)} Oo(L®)

from which we obtain an expression for GL(I),L(2>,L(3>5

GLo, L@, L®

Y xe@®,50 M) o(L®, 53,5 @)y o(L®, 50 U@, X! (5<1>><5(2>) ah

) @ 3 () 7(2)

R R® R 7 7
= Cp() €L CLE) Z Z H D¢ el (1) )D @ (2)( o’ ))D i®) (3)(>\a+1 (U((zl) X J((12)) )‘a—l)

§(1) 32 1) 7(2) a

HB (p)HU Oﬂﬂ(p) Ugr(p) y;(p) R((lp)Hu aréi)auv-(p) +(p)
(P)

" (A.3.11)
vlay

—Up, al(P) Ug Z(P) iflp)_wb al(lﬂ)

ab,a ba,o

p=1
(1) (1) ;(1) (2) ¢(2) (2) (3) (3) (3)
HC aB’Sa ,B’laﬂc aﬁ’Sa ,B’a,BC aff’Saﬁ’a[B Hcsay 5122\/ Cs((llgyu.s@)
(1) (2) (1) (2) =(1) a(1) 7(1) —(2) (2) _(2) —(3) (3) 7(3)
5 Us ,S, l Sy S l

CLB aﬂ a,B a,ysta,y a,ysta,y

3) Fusing of gauge edges

At this stage the chiral ring structure constants are given as a product of three definite quantities,
i.e. three quiver characters. We now proceed to fuse together their gauge edges, by using

standard representation theory identities. Let us then focus on the permutation dependent
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piece of eq. (A.3.11), namely

ph R Ry - -1
>> T2 o@D o@D 500! (o8 x o) A7

) 52 a

RY Gl RP 2y R RY 1 2y AR -1
Z HD(1) (1) ))Dz‘f),jf)(g‘g))Dié‘o’),hé‘?’)u )Dh(3) (3)( ()XUQ(L))D RO (3>(>\ )

(1) 72) a

Using the identity

D,LI;(O'(I) X 0—(2)) — Z BR—>T1,T2,/L BR—)rl,rg,,uDrl

i—l1,l2 j—k1,ko l1,k1

(e Dp2, (o) (A.3.13)

T1,72, L
we can write

pRY Ry RY) —1y R 1 2)y RS -1
Z H i (1) ))D i@ (2)( ol ))D 513),h,(13)()\a+)Dh§3) o (Uz(z) X Jt(z ))Dg(3) ,(3)()‘a—)

) 52 a

i R R 1\ R® _
- Z H s <1> ))Dm (2>( ())Dim h(3>()‘abD & o (Aal)

(1) 72) a

y 3 RO g §@., pO) g0 ¢@, o) (o)) DS S o)
ROBNIONE) ROBRTCING) L) ) @ L@
SM 58 ha
D)y, (2),
Ng +MNg " R((f) 1 R((L3) 1
= ——— D7 ()\a+)D 2 (Agl) (A.3.14)

il 8 gt 48

1 2
d(RED) d(RLY)
(3) _, g(1) ¢(2) R gD g
Ry’ =84 7,53 ska —Sq Sa sHa
X Z Bhgg)%lg),lg) B (3) k<1 H 5R(Q) S(q) d (q) l(q) J. (q) k(q)
S5, a
1 2
M

Na
d(RS) d(RY)

®) (3)_ p) p(2). ®) R®) R0 R2),
R( 1\ pRP SRY RP .y RS a
X E : D5 i @A) By a5 (o) D) (3)(/\ )B e (1) (2)
h hg ' =g yia

Ja9a —Jd " +Ja

where in the second equality we used

n!
Z D o) Do) = (R ——0R,5 0 k 0 (A.3.15)
c€Sh

It is important to stress that all the steps that we will be describing in this appendix can be also
interpreted diagrammatically. For example, (A.3.14) can be understood trough the diagram in
Fig. 44.
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I i iy I s X

2 g " G Ao
1

E I | o) ) (o0 o) 21 x H E Z:

g > (3)
G1,02 @ a i > R;
Ry RY

(
a a ll

Figure 44: Diagrammatic interpretation of eq. (A.3.14).

Similar pictures can be drawn for all the following steps. In equation (A.3.14) (or equivalently,
in Fig. 44) we see the emergence of the first of the selection rules already anticipated in section

3.4. This selection rule is expressed by the terms

R -RY RE R =R R i (A.3.16)
MDD T B e

3)

These coefficients are non-zero only if the restriction of the S, 4y, representation Ry’ to Sy, X

Sp, contains the representation Rgl) ® Rﬁf), Va.

4) Fusing of the quark/antiquark edges

In this step we will perform the fusing of the edges corresponding to the fundamental/anti-
(1,2)

fundamental matter fields. This involves summing over the quark/antiquark states s, 5 and

5 y) Let us then turn to the Clebsch-Gordan parts of equation (A.3.11), that is

LD ) M) (@) ¢2) () (3) ¢(3) 3)

aﬁ’aﬂ’aﬂ a,ﬁ’aﬁ’aﬂ aﬂ’aﬁ’aﬁ
Z ¢ s ¢ e C s s (A317)
(1> (2> 113 ‘7«5 llﬁ GB
a B’ a,f
and
(1) -(2) (1) =)
S04 Sa,~ 5a,vUsg
Z O s ) 07(2) 52 7@ C &) o6 1 (A.3.18)
(1) () Ta,vsQa,ysta a,ys'ta,y Ta,vsQa,vysta,y
sa "/78(1 vy

Consider for example the former. Aiming at simplifying notation, we rewrite it here dropping
the a, 8 labels:

1) @) (1) (2) 52 1(2) (3),503) 1(3)
Z CT‘ S ,l CT‘ ,S ,l CT‘ ,S ,l (A.3.19)

s(1) s(2) s(HUs®)
s(1),5(2)
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We can expand this quantity as

Z CT( S0 ~r),5C) 1) CT(S S 1(3)
52

1)u3(2)
s(1) s(2)

_ 1) o) 1) 1My (,-(2) g(2) 7(2)16(2)y (,-(3) g(3) (2)
(M, SO 10|50y (1), §2) 1[5y () §6) 13)[5(1) 1 52)

s(1) 5(2)
- Z (<T(1>75(1>’l(1>,®<T<2>,5<2),l(2)|) <|s<1)>® ‘3(2)>> (@ §®) 1350 | 52))
s s(2)
= (M, s 1M g (2 @) 1sM) @ s (s @ (sP] | |r3), 5G) 16)y
3(1) s(2)
= ((7"(1) SW W@ (r@ 5C |> [r®3), §3) 16))
= ({rM,r@}, {sM @1 O 12y}6) (3)y (A.3.20)

Since the generic state |r,S,1) € V9 ® vV i by definition the tensor product |r,S,l) =
Ir,S) @ |r,1), we may separately decompose the two states |r(3), SG) [G)y and |{r(),+3)},
{81, 81 1M 1) as follows. We factorise the former according to the decomposition
(3.2.3), which in this case reads

S, _ n(D) n(2) w2
v D P (V BRI )V (A.3.21)
W En 1) 42 Fn(2)

We then write

‘743)7 56, z<3>> _ ‘r<3>, 5<3>> ® ‘743), z<3>>

> X X B e
13) S5 p(1) p(2)

w2 p) p@) v

SPIRPID I it

u®) 4 (2) p(1) p2) v

3, 5(3>> ® ‘{uu)’u(z)}, (D, p®1. ,,>

{u®,u® @y, p0,p?}, 53 v) - (A3.22)

For the latter we use instead the the unitary group decomposition (3.2.9), which in this case
takes the explicit form
U U(F 1) (2
Vi @V = Vu@() Yo vy n® =nM) 4> (A.3.23)
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We therefore have
[, r @}, (5D, 5@}, (10,12}) = [0, r @}, (8D, 5@} ) @ | (D, D}, 10,12})
U 3) v '/‘<1 7‘<2>
_Z§:ZQWQmmwaﬂa>®W Q%WWMD

u® p®B) v
@ipr®r® e (1) (2) 60 ) @ pB). A
- Z Z ZCP<3)~>S(1) S (2) {T‘ T , U }7 {l 7l }7 P v ( 324)
u® pB) v
The vector spaces V(;> w® n (A.3.21) and VT(B)) 7 (A.3.23) are both multiplicity vector

spaces. We recall that dlm(‘/;;;)) i )) = g(rM,+@):r6)), where ¢ is the Littlewood-Richardson

coefficient. Notice that both the states on the far RHSs of (A.3.22) and (A.3.24) live in the

tensor space W, where

(1) (2

W=va® g va® e vih gy (A.3.25)

Taking the scalar product of (A.3.22) and (A.3.23) then gives

(D r@) 150 gy M) @yp6) gB) @)y

3
(I 2) (TT2) S % s ez

k=1 (k) q=1 p(a) P®B) v,v

3 2
X <H 5r(k>,u(k>> I 6o p | 55, ps 6,5
k=1

g=1

B P (D) 12y )y (D) (2
—Z Bz(aul(m,lm Cg(ausm,s@) (A.3.26)

v

We conclude that

P(D g j(1) _n(2) §(2) 1(2) _p(3) §3) 1(3) 1) Sp @) p @)y 3y (D) (2)
Z Coy’ Ci’ Conla *Z By ) 12 Cs(3>_>s(1> S@) (A.3.27)

s(1), 52 ”

The diagrammatic interpretation of eq. (A.3.27) is drawn in Fig. 45.
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1 s e 5@ 1@ 5™ o) s 1@ 5@ 1@ s®

Figure 45: Diagrammatic interpretation of eq. (A.3.27).

Reintroducing the a, 8 notation, we then obtain

1) o1 ;1) (2) ¢(2) ,(2) (3) g3 ;3) 3) (1) (2). (3). 1) (2
Z Crfaf’saﬁ’laﬁ C’TEI,)B’Saﬁ’laﬁ Cr(ﬂa)ﬁ’sl?ﬁ)?’la,ﬂ _ Zasﬁﬁra;ﬂ’:a)ﬁ’ya’ﬁ Ta,[;7ya7i_;ra,ﬁ)7ra,6
1 2 1 2 3 1) (2 3 1) o2
1) (2) Sa,8 Sa,8 8q,8Y84,3 v laﬁ_)la,ﬂ’la,ﬂ Sa,ﬁﬁsa,ﬁ’saﬂ
8a.575a,8 “P
(A.3.28)
Similarly, we can show that for (A.3.18)
S o ) 5 ot s )
2 G s G s am O s = 2 B O 8
)
(A.3.29)

From eq. (A.3.28) and (A.3.29) (or equivalently by considering Fig. 45) one can see the manifes-

tation of another selection rule for the holomorphic GIO ring structure constants. In particular,
(3) 1 ,.(2)
. T —T 5T ;Va,, o . o . o
the coeflicients B (‘gf (T)’B (2“)’[3 7 are identically zero if the restriction of the S (1) | (2) represen-
la,ﬂ*}la,ﬁ’la,ﬁ Ne 5t 3
tation ) to S @) X S 2y does not contain the representation rM @13 A similar condition
a, n a8 a8

a,B a,8

(3) (1) (2)
holds for the coefficients B'% " @7 avivan

1) i (2

a,y “7ta,yrta,y

Inserting eqs. (A.3.14), (A.3.28) and (A.3.29) into (A.3.11) we then get

a1 2)

'ng

o d(RMYd(RDY)

3) (3)_, p(D) R, (3) (3)_, p(D) @,
phé —1y gRe) =R RPpa | [ pRS pRY —=RY R
X E ,( e h<3>()‘a+)B ) < & @ (Aa=)B G ) o)
ua a »'ta ,]a 7gﬂ. gll ,]a

GLo), L@, L® = CLo) CLe) CLe)

WO D i ol

3 -
R Uy or® Usr®hve ® R 0y o Uyl @)
X | | O @ @) D) 0 ()
Ja batab,a~Bba,s ta b,alpg, o =vba,y

p=1
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g%wa brPhivas v gl )
HZ 13 1) 1) CS<3> —5),52)

B Va,p -
3 3 1) (2
H Z r((l%ﬁraﬁ,r(g,%,l/a,w CT((I ’))’71/0‘77%7'1(1«2/’7“(11’; (A 3 30)
113) *)lfly’)y’li@ S(3> A)S(}%,S(Q)
Y Va,y

5) Fusing the bi-fundamental edges and factorising the + nodes

The two tasks of this last step are to fuse the edges corresponding to the bi-fundamental fields
and to factorise the positive and negative node of the split-node quiver. We start by considering

the product

3
3 3)_, p(1) p2). RY) Uy or) UgrPhwe @)
Dl o (Nam) Bllg) i e ”BA(:) R A (A.3.31)
Ja "s9a 9a "—Ja "sJa Ja  —Ub,a lab Cyul

p=1

which appears in eq. (A.3.30). We want to decompose this term into a product of branching
@ L0 @
coefficients of the form {;l; @ ;‘f)b “l’:;)b’“

aba ab,a’”ab,x

First we notice that the equivariance property of the branching coefficients

R ala,Ya a R aTaiVa
D,fj(Xa'Va) B]—?Uil: = H Dlrfl,la (Ya) Bk:LLJJalZ : (A.3.32)
also implies
R—Uqarasva R—Uqrasva
Bi—)Uala - D a'Ya H Dl l/ Bk—)Ual:l (A333)

for a collection of permutations Us{v, € Sy, }, where each r, is a partition of the integer n,.
We can use this identity to write (A.3.31) as

3
ROy R SRY R, REP =0y arf), Uar yva ™)
(Aa-) 11

ROBGIC JP 0ol D Ual?)

a sYa a »]a

p=1

R 1 ( 2
= (Djm kén(xha?h(w?a x 1) DY @ <2>(Xb,a"7¢(Lb?a x 1)

(3) (3) (1) p(2).
Rq (1) 2) Ry’ =Ry Ry sp
X D]< D) 4 ()\ (Xb,a%b,a X1 Xpa Neple X1 Bk:&g)—mgla) kff()l a

3 (») (») ®) . ()

Rap —Up 0/"1177 Ugr, P Va p
X | | B ave P A.3.34
jff) Up.al éz;)au l(?) ( )

=1

ab,« ab,a

where (xban( D) o 1)e s @) and 77( D ocg » ,forp=1,2.
nab,a
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Let us now go back to the equation defining the A\, permutations, (A.3.2). It is easy to see
that

(1) 1 (2) @) _ 1 (2) ® . 2
)\a* (vaanab,a B paﬁ b,a Tlab,a B pa,,B = [ Xba nab,oz X nab,a B pa”B X pa,,B )\a*
(A.3.35)
We can use this identity in (A.3.34) to get
R(s) ( ) R?MR&”,R?;M ﬁ Rép)ﬁub,aréb)augr(w —(p)
e R I S R T TN
= DR‘SU (x ) 1)DR( (x ) 1)
= 70 g\ 7 balaba @ )\ "ballaha
(3) (3)_, g1 g™,
Ry (1 ) Rq'—Ra " Ra 5
X DG @ ((Xb,a <"7ab,a X Nap ) X 1) A=) By ) o) 7"
(l k(l 7ka
S RP Ly, Upr s ®
<\ 1B o . o e (A.3.36)
bl Ja *)Ub’alab,auﬁla,,@
Next we use the identity (A.3.32) in eq. (A.3.36) as follows, for p =1,2:
RP (») R U, arff;)augr(p) ;P
D ) k(?)(xbanaba x1)B §P U3l a7
B HDTELI’?’)“ ( ®) ) H(5 BR‘(IP) Upar® Ugr®) s @
! 1® g Nab,a ; 10470 | P SUpad®) Usa)
_ HDT((fz’,)a (n(p) ) BRép)ﬁubarﬁ)aUﬂr(P% ve @ (A.3.37)
; ((;;)w L(lzz)a ab,o k(p)%ub OLq(p) Ug l(p) v
7a ’
Similarly, we use (A.3.32) also for the term
(3) 1) (2) R® LU, arﬁ) uﬁr“’) -®
DR ((x <( X )><1>>\_>B abe 0 a5
o (Cnr Qe X i) 1) ) B "
(3) (3) R Uy ar® ugr®las®
R R (1) (2) b,alab,a 5a[3’a
=D Aa—) D74 (>< ( X x1) B
ggs)’kg)( a-) ;@ g@ \ *ba aba ™ Maba 305Uy al @ Usl?)
(3) r(3> R< >—>U r( ) @] r(3) v, 3
R ab,a (1) () b,a ab,a Baﬁ’a
= D% (A D ( B A.3.38
e kg)( a-) H 1@, \Mlaba * Mlab,a 050500 Us1®) ( )

b.a ab a’dab,a
b

165



APPENDIX A. QUIVER CHARACTERS AND CORRELATORS: PROOFS

Putting these last equations together, we get to

3 _
DR(S) ()\ )BRS’)HREII)RSIQ);M H BR(p)HUb aT(z;)aUBr( [)3 Vi (p)
i) g8 94D 55 3P =0y oD Usl?)

— ab,a

e (2) (3)

_ ab,a (1) Tab,a (2) Tab,a ( ) (2) R<3)_>R(l> R(<12>y Ha
= HDlu) &) (%b,a) D" o (%b,a D" @ (Maba X Maba) | BLér_, @ 1)
b,Oc ab,a’dab,a ab,a’dab,a ab,a’dab,a a a va
(3) (3) ). ,-37 2 (») ® .0
" DR((L3) ()\ ) BRa %Ub’arab BT, BiVa R —uUy, ara;l; QBT pﬂ,u (A 3 39)
(3) 1,(3) \7la— (3) (3) (3) (p) (P) (p) v
9a "sRa Ja ﬁubvaqab,auﬁla,ﬁ - ko’ —Up.a dap UBZ

p=1

Notice that the quantity on the LHS above is independent of the permutations 1. We can
then sum over all possible permutations 77 on the RHS, provided we divide by the number of

permutations themselves: we thus obtain

3
R R®SRY RP ., RP LU, arib)auﬁr(m —(p)
) o) Il

983 38 G50 —Up, ) st

p=1

(2

== 1 D g}))a (1) D aba (2)
- (1) (2) Z H JISORCY Mab,a 1@ @ Mab,a
Hb ‘ b (1) (2) b ab a? ab « ab,a’%ab,a

,Oé b,a” n, a ubva{nba’naba} a

3
« pliba W () RY RN R g
@ 3 Maba * Mab,a KB k(D @)

ab,a’1ab,a

2
o R 0t ® 0ar® @] 2 R, 0
X (g) (3) (Aa_) (3) (3) (3) (p) (») (») ( 340)
9o ska Ga )Ub,aqab Y l o k. )Ub,aqab auﬁla B

p=1

The quantity inside the curvy brackets above has the same structure of the far LHS of eq.
(A.3.14). Performing similar steps to the ones presented in that equation we obtain, dropping

the a, b, a notation for improved clarity
(1) (2) (3)
> iy (1) D o (1) DR o () x 1)
n), 52

W10
 aW1p®) P (D) 12y 1) (1) p(2),,)
~d(rW)d(r®) Z By i1 By s g (A.3.41)
v
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Inserting this identity in (A.3.40) we get

3 _
B () B R B (TT R Uit oUsryiva
o

:(3) (3) (3)_, (1) +(2) -(p) (p) (»)
Ja "»9a 9a " —Ja sJa =1 ]ap %Ub,alalg,auﬂla’jﬂ
3 1 2 3 1 2
. Z H 1 /r'((lb),ag)r((lb),a’r((lb),a;yabva Brt(lb3a4)r¢(7,b?a’rt(1b),a;yabva R,(;LS)—>R511>,R§12);/.L0,
= 3 ( 2 3 1 2 3) 1) (2
o W amyaemy P B | P
_ 2 _
DR‘(IS) A\ BR¢(13>—>U1,,O¢T$)7QU5T$23;VG ®) R((zp)—>ub7aré€3au/3r{(1%;ua ®)
X 1DG @ A=) B o @@ WP @) )
Ga "HFa Ga b,algp.o-Bla,p =1 a b,ad4p,0, 2B,
(A.3.42)
Using the substitutions k:((f’) — t,(lg) and g((lg) — k:c(lg) we can then write
3 _
DR () B 8 B (T R it o U piva
Qe B b o M\ UL By, 00
Z H 1 rz(z:lg)),a %Ti}))‘a ’r((ﬁ)),a Wab,a Brt(z:?)),a Hrt(zi),a ’Tfﬁ)),a Wab,a
= ©) @ 2@ 0 @ @ W @)
Ub,a{Vab,a} b,a d(?"ab7a) d(’l”ab7a) ab,a ab,a’ab,a qab,a qab,a qab,a
BR<3)—>R(1> R, R® ) RP Uy orl) UprLws @
X a a sita " Ha a _ sl ab,o a,
e | Pu o Ga) B, "6 6
« R((lp)%Ub’ar(gi?aulgri}?%;u;(p)
(p) (p) (p)
=1 kap ﬁUb,aqai,anllfﬁ
Z H 1 Brt(z:l;))a *)rt(z%))a ’rt(zi)oz Wab,a rt(z:li)a *)Tt(zé)a ’T((zi)a Wab,a
= @ @ P Lm0 @ @ o m (@)
Ubya{Vabya} b,a d(rab,a) d(’["ab7a) ab,a ab,a’ab,a qab,a qab,a qab,a
RS ) BRSO SRY R 5 BRE}’MUMM? Usryva P (A.3.43)
X a . a a sIfta "iHa @l ab,a a,
(3) ,(3) \7*a (3) _7.(1) 1.(2) H (p) (») (») e
ko’ ta to ' —ka ko =1 kup _)Ub,aqall:,auﬁlaljﬂ

We see here the manifestation of the last selection rule, enforced by the branching coeflicients
(3) 1 (2

Ta a_>ra a’Ta a;”ab,a L . . .
(3§’ (15’ ’ (Q)b’ . These quantities are non zero only if the restriction of the S 1y | (2
lab a_>lab a’lab a nab,a—‘rnab,a
. (3) g g s th . (1) ()
representation r ;" to LD X0 @) contains the representation r,;’ & 1.’ .
’ ab,« ab,a ’ ’

With the identity (A343) we have achieved a factorisation of the branching coefficients over
all the nodes of the quiver. Moreover, the positive and negative node of every split-node a

are now disentangled. There are no symmetric group states qé? . (i =1,2,3), associated with

the negative node of the split-node a, that mix with symmetric group states lz)) o (1=1,2,3),

associated with its positive node.
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Plugging eq. (A.3.43) into (A.3.30), we get

G (1)| n(Q); 1
L) L) LB = CLm) €Le) CLe) ) @) @) Z
a d(Ra ) ( ) Hba ( ab a) d( ab a) Ha
i ) RO R g, R@bub B Ugr® g @
~ H
ROMC RONNTON k<2> (P —>ub,aq§’g>&u¢al%
2 A(p) .+
o« | pEY ) pRY =R R s H R<p)—>Uba7”(p) Uy v ¥
i® p Vat) Byo o 0 Ul U )
% H Z t(z:z)a (g;)a’rtfb aiVab,a t(zi)a_)rii)awt(zb)a’yab @
® 0 @ NCIRNCOINC)
b, Vab.o aba aba’aba Qab,o ab,a9ab,a
3 2 3 1 2
% HZ izﬁ%wié,vaac i}wawrééwi}g
13 ) 1) 5355 52
B Vap @7 @
=3) _ =(1) ~(2) #(3) =1 =(2)
7’a A TayTayVaqy ~TayVa,y—=Ta,y:Ta,y
X HZ 1) 1) 12) Cety 5 @ (A.3.44)
a,y a,yQa,y

"/7
Va,y “

The latter equation can be finally rewritten as

GLo), L@, L® = CLo) CLe) CLe)

OIC ).

a

1;[ d(R") d(RS

) Hba ( ab a) d(raba)

1 >{IX

b, Vab, o
. 3
" DRS‘J) ) BR1(13)—>R511),R§.2);M H RP Uy, aT(p) UM(% —(p)
kff),tff) a— tfl3>ak,§1),kf) ] k(p)aub aq(p) Uﬁlffz)a
p= ’
(e e T
@ 0 (@) I1> B 1) 1) @) 5 5 5@
b,a qn.b,m_> ab,a’tab,a B Va.g a,8"a,B a,ﬂ a,B?
3 FP) Lt
y R,(f) ( 71) BR((JS)*)R(D Rf),ua HBR(p)ﬁ\Ub z(;p), Uy 7l (P) (p)
z',(f’),hﬁf) h{(13)_>ig1)’ g2) e (”)—>Ub l(p) le_@/
(3) 1 (2 = (1) - (1) -
% H Brba a_ﬂ‘ba a'Tba,aVba,a H Z Tgs'z/ﬁrél')ymg??y,ya,w ré.gzwl’a,'yﬁrél')y:"'c(f')y
(3) 1 42 13 ) 7(2) (3) (1) a(2)
lba @ lba a’lba « la ay ,’y:la Yy Sa Sa "/7S
b, Y Va,y
(A.3.45)

The last equation shows that, at each node a in the quiver, the holomorphic GIO ring structure

constant factorises into two components, one associated with the positive node and one asso-
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ciated with the negative node of the corresponding split node a. Figure 34 shows a pictorial

interpretation of this formula.

A.4 Quiver restricted Schur polynomials for an N' = 2 SQCD:
= (2,2,2) field content

In this appendix we will summarise the main steps which led to the expression of the operators in
(3.5.43). In particular we will derive all the fourteen different quiver characters, corresponding
to the set of labels L; described in (3.5.36), i = 1,2,...,14. The operators (3.5.43) are then
readily obtained by using the definition (3.2.19).

We start from O(L;) and O(Lg). Their quiver characters can be immediately computed to

be respectively

" 1 []d] @ I I
x(L1,8,0) = 7 031,52 Cs 5y X(La, §,0) = ﬁ sign(o) Cg; s, Cs, 5 (A.4.1)
Here we used the Clebsch-Gordan coefficients already derived in (3.5.29). We will keep using
this notation for the rest of this appendix.
Let us now turn to the three dimensional representation Bjj of S4. We choose a basis
{e1, €2, e3} in which the three Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) of S4

have the eigenvalues in table 3.

(12) | (13)+(23) | (14) + (24) + (34)
e1 1 -1 2
es | -1 1 2
es | 1 2 -1

Table 3: Eigenvalues of the Jucys-Murphy elements (12), (13) 4 (23), (14) + (24) + (34) on our chosen
basis {e1, e2, eg} for the standard representation of Sjy.

Alternatively, we can specify our basis choice with the standard Young tableaux

20, Il 120 (142

€1 ~

We now consider the group restriction Sy|g,, s, = {(1), (12), (34), (12)(34)}. Under this restric-
tion, the Hjj decomposes as

[ =[Te[T] & H@Dj @ Dj@H (A43)

L SZXSQ

The branching coefficients for this group reduction will then be the matrix elements of the
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orthogonal operator B such that

1 00 0
BT'D¥((1))B=|0 1 0 |, B~'D¥((12))B=| 0 -1 0 |,
0 0 1 0 0
1 0 0 1 0 O
B7D¥(34))B=|0 1 0o |, B7'D7((12)(34))B=| 0 -1
0 0 -1 0 0 -1
(A.4.4)
In our basis choice (A.4.2) the matrix B reads
. V2 0 -1
B=— 0 3 0 A.45
7 V3 (A.4.5)
10 V2
The branching coefficient for (A.4.3) are then
FP—m, F -4, e =A=
B1—>?1ED T = \/5’ Bl—)?l T =0, Bl—flm = _%v
f- , H -8, g NE
BZ%?lm =0, BQ%?I T=1, B2ef1m =0, (A.4.6)
BT =1, BT =0, B =03
We now define the orthogonal projectors
PE;DHED,ED _ Bzafljm’mB]Bj?lm’mv _F)E;DHH,ED _ BZEfHH,mBJEfﬁH,m’
p weio pf omipl oms (A.4.7)

which project the Hjj of S4 on the [TI® [T, on the H ®[1J and on the [TJ® H of Sy x S

respectively. We also define a fourth operator, that we label T, as

Ty =Bl B " (A.4.8)
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These matrices explicitly read

2 0 V2 000
PB:D—HZD,ED_ 1 0 0 0 , PB:D%H,ED_ 0 1 0 ,
V2 0 1 0 0 0
(A.4.9)
1 0 —V2 V2 0 2
prromi-1l o9 o o |, T=1[ o o o
-2 0 2 -1 0 V2
The quiver character for O(L3), O(Ly), O(Ls), O(Lg), O(L7) are then
- 1 o, @ [o[d)
x(Ls,8,0) = m Tr [DBI(O') P ] Csiso Csisa s
1 T oTal
X(L4,5,0) = —= Tr [D¥(g) P775=] ¢ cld
2V2 ’ ’
!
X(Ls5,5,0) = —= Tr [D7 (o) P77 O, Ci s, (A.4.10)
2V/2 ’ ’
- 1 =
x(Lg, 5,0) = ﬁ Tr [D (o) T] Csl,sg C§ql,§2 ’

_
> (plq]
X(L7> S, U) = ﬁ Tr [DBE(O-) Tt] 081782 C151752
Here T is the transpose of the matrix 7" in (A.4.8).
We now focus on the @j representation of Sy. This representation can be obtained by

tensoring together the standard and the sign representation of Sy:

_L g (AA4.11)

In the following, we will continue to use (A.4.2) as our basis choice for the standard representation
Bj:‘. Under the group restriction Si|g,, s, = {(1),(12),(34), (12)(34)}, the @j decomposes as

| =Dj®H @ H@Dj @ H@H (A.4.12)

SQXSQ

As in the previous instance, the branching coefficients for this group reduction are the matrix
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elements of the orthogonal operator B, such that

100 0 0
B DY (1))B=|0 10|, BDF((12))B=| 0 -1 :
0 0 1 0 -1
10 0 -1 0 0
BD¥(@34)B=| 0 1 0o |, BD7((12)34)B=| 0 -1 0
0 —1 0 1
(A.4.13)
In our basis choice, the matrix B reads
. 0 -1 V2
B=— 3 0 0 A4.14
7 V3 ( )
0 V2
The branching coefficient for (A.4.12) are thus
H' 5 m,8 ERNS 58,8
B1—>_1>E]7 =0, Blﬁ:},l’m:_%7 Bl—>_1>,17 = \/57
5,8 EJENE ERN:
By iy =1, By =0, By 1 =0, (A.4.15)
g5 m,8 ERNG 58,8
By 15 =0, By 1T T= /2, By i =k

Closely following the procedure of the previous paragraph, we define the orthogonal projectors

pomB_ g oo gl om,8 pobm_ 8w e

b =11 =Ll 0. i—1,1 1,1 o
SB,8_ o 8,8 0 -8,8
Pzaj =B, 1" Bj_i: (A.4.16)

These operators project the @j of S4 on the Dj@H, on the H@Dj and on the H@H of Sy x Sy

respectively. We also introduce the operator V:

Vij = BETE ’EBJE.;TE’H (A.4.17)

172



APPENDIX A. QUIVER CHARACTERS AND CORRELATORS: PROOFS

These matrices explicitly read

000 1 0 -2
Pa:‘—HZD,E: 01 0 , PEJ%EAZ\]_I 0 0 0 ,
000 -2 0 2
(A.4.18)
= 2 0 V2 -2 0 -1
pioBE=LL 9 o 0o |, v=i]l 0 0 o0
-2 0 1 2 0 V2

Notice that V' = T*, where T is the matrix defined in (A.4.9). The quiver character for O(Lg),
O(Ly), O(L1p), O(L11), O(L12) are therefore

_
12Tr [D@](U)Pﬁjﬂ’ﬁ] o ol

x(Ls,5,0) = 7 s1,82 /51,82

X(Lo,5,0) = 2\1/§ ™ [DP(0) PPooe] ol Cs, (A4.19)
(Lo, 5.0) = 2\1@ ™ [DF (o) P70 el 0752 ,

(L1, 5,0) = 2\1/5 [0y v] L C,SQ ,

(L2, 5,0) = 2\1/5 ™ [ (o) V'] el com

Two operators still remain. They can be obtained by considering the Sy B} representation

branching

=[] Ie[]] & H@H (A.4.20)

SQXSQ

The B} representation of Sy is really a representation of the quotient group Sy/{(1),
(12)(34), (13)(24), (14)(23)}, which in turn is isomorphic to S3. This representation is thus
just the standard representation of S3 pulled back to Sy via this quotient [68]. We choose a
basis {e1,e2} in which the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) of Sy

have the eigenvalues in table 4.
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(12) | (13) +(23) | (14) + (24) + (34)
€1 1 -1 0
€9 -1 1 0

Table 4: Eigenvalues of the Jucys-Murphy elements (12), (13) 4 (23), (14) + (24) + (34) on our chosen
basis {e1,es} for the two-dimensional representation of Sy.

The standard Young tableaux labelling of this basis is

1]2 BNIE
34’ 27 2]4]

€1 ~

(A.4.21)

An explicit representation of BE( is therefore obtained by considering the set of matrices

DE((1)) = DT((2)(34)) = DF((13)(24)) = DT((14)(23)) = ( 01 ) ,

DE((12)) = DF((34)) = DT((1324) ) = DF((1423) ) = ( )
1 _ V3
DE((13)) = DF((24)) = DH((1234) ) = DF((1432) ) = ( 5 L ) ,
27 (A.4.22)
_1 V3
DH((23)) = DF((14)) = DH((1342) ) = DF((1243)) ( 2 2 > ,
2 2
_1 _¥3
DB((123)) = DF((243) ) = DB((142)) = DZ((134) ) = ( g2 ) ,
2 T2
1 V3
DB((132)) = DF((143)) = DB((234)) = (124)) ( R )
T2 2
With this basis choice, under the group restriction Sy|g,, 5, = {(1 34),(12)(34)}, we have
. (10 . (1 0
D((l))—<01>, D((12))—<0_1),
(A.4.23)

DE<<34>>=<(1) _01>, DE<<12><34>>=<; ?)

The decomposition (A.4.20) is already manifest. The branching coefficients for this reduction

are then

BJBE‘—;{T] T =051, BE??H =052, J=12 (A.4.24)
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We can now write the orthogonal projectors

1 0
PZB,?_)DH7D3:B;€>?1E\H,EB]EIE>T7?7E — PBH—H:D,ED — ( ) ,

0 0
(A.4.25)
H—H,H H—-H,H oH—-H,H 0 0
Pi,j—> :BHTJ Bj%_l),l — pH=Ef :<0 1)

projecting the H} of Sy on the [TI®[T] and on the H ® H of So x So respectively. The quiver

characters for the remaining two operators, O(Li3) and O(L14), are then

X(L137§7 U) = \]-/g TI‘ [DEE(O-) PBH_>ED,ED:| C C@

2 81,82 81,52

(A.4.26)

$1,82 81,82

2 1 = T—0,0
X(L14,s,o’):ﬁTr [D¥(0) PP C C
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Appendix B

Proofs and Derivation of the

Counting Formulae

B.1 Generating function

B.1.1 Derivation of the generating function

In this appendix we will derive eq. (2.2.25). Our starting point will be eq. (2.2.14):

2w (Tsh (T = 3 3 ([ ofe] T > >

{nab,a} {nq ﬁ} a7b7a { Rqt-ng } {rab,a'_nab,a} {rﬂwﬁ)_"a,ﬂ}
{Ray I(Rq)<Ngq Fa,yFia,y}
(B.1.1)

H Q(Ub,ar(zb,a Uﬁ Ta,B35 Ra) Q(Ub,arba,a UV Tany Ra) H Xra,p (7:1,6) (H XFa,y (7_- )>
a B Y

in which we will take the large N limit, in such a way that we will be allowed to drop the
constraints on the sums over R,. The derivation will involve well known symmetric group

identities. In particular, we will use the equation

XR H (TrUHe” U eUF) (B.1.2a)
oESh

where R is a partition of n, [¢]®) is the number of cycles of length 4 in the conjugacy class [o]
of the permutation ¢ € S, and Tr(U) is the trace taken in the fundamental representation of

U(F). We will also use the formulae

> xr(@)xr(r) =Y d(yoy v, (B.1.2b)

RFn ’YESn
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and

9(Uarai R (H Z) XR(XaT4) XT;E;’“) (B.1.2c)

Here r, are partitions of n, and §(o) is the symmetric group delta function, which equals one

iff o is the identity permutation. With these relations we can rewrite Z in (B.1.1) as

l[a'ab oc](Z>
b
z=> > II|IIX “n“ X (abe) Xruna (Thnc)
n &, a b,a Tab,a ab,a
[gaﬂ}(i)
H Z XTGJD) (O-avﬂ)xra,ﬁ (0-1/17ﬁ)
B Tap
=i \[G (1)
H(TrTf )[Ua,v]
X H Z : (ﬁ . 7[)2 X Y (UQ77)XTa 'y( ,’y)
Y Tany a"
X Z XRa(Xb,aUab,a Xp J:;,,B)XRa(Xb,oco-(,m@ Xy 5':177) (B13)
R,

where we defined

G = UapalOabat Yas {008} Yany {Tar ],

Taba € Sngpa s 0a,3 € Sngp s Tayy € Shig., (B.1.4)
and similarly
7 = Uap,a{nab,at Ua,s {na,s} Uay {Raq} (B.1.5)

Summing over the representations Ry, 7ap s 7a,3, Ta,y then gives, using (B.1.2b)

Z Z[O'ab a](>
b r—1
=3 YR T =5t (e i)
n o,d p
; (1)
H'(TrTlﬁ)[o ] -1 —
X H ‘ na7 ‘)2 5 (p(l,ﬁ O-Cb,ﬁ pa,ﬁ U;,Bl)
B a,B:
Hi(Tr tf’y)[ﬁaﬁ](z‘) ) - .
X H (ﬁ ')2 5(p¢170‘l7pa'y a,y )
~y a,y:
x Za( (Xba0aba X8 T s)a (XtaThoa X3 7o) ") (B.1.6)
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with
= Yapalpabat Yas {Past Yoy {Par}
Pab,a € Snabﬂa ) Pa,B € Sna,ﬂ ’ ﬁa,'y € Sﬁaﬁ (B17)

If we now sum over the ¢ permutations we get, redefining the dummy I', permutations as

', — (beapba@ Xy ,(_)a;y)_l T, (Xb7a1 X g ,Oa,,B):

Z 'L[Uab a]() o (2) - o (4)
Lab,a Hz( 7; ) .} Hz(Tr 7;?7)[0(1’7]
2o I e ) (I ) (™
i B Ma.p gl Mayy
XZ 5( Xbaaaba X O'aB)F I(Xbaffbaa X70a7)71> (B.l.S)
Finally, by summing over the now trivial p' permutations we obtain
Zi i[Uab,a} @
_ xab,a 1 1
X I ) (T ) ()
i & a \ba anar g Wb N ey
Ho({oaba} {005} {0an}i {Ta8} {Tan}) (B.1.9)

where we defined

Ho({0abo b {0ast dan b {Tas} {Tan}) = | [J( Tip)lead™ | | [T (T 7. )01

Byi V58

X Z5< Xbaaaba X3 0q 5)1‘ I(Xbao'baa X Ua'y) 1) (Bll())

Eq. (B.1.9) is a function of the conjugacy class of the permutations o, rather than of the

permutations themselves. Exploiting this fact we can rewrite it as follows. Let us introduce

the vectors of integers pap o = Uz{paba} Da,g = Ul{paﬁ} and g = Ul{p(m} Here pgb)a is the

() ()

number of cycles of length 7 in the permutation o4 o, while P, and Py~ are the number of

cycles of length ¢ in the permutations o, g and &, respectively. In accordance with eq. (B.1.4)

we have

nab,a!
(i)

—_— (B.1.11)
]._[i p((zlb)a! iPave

o0 .

g ipl) =n
pab,a — Tlab,a »

i=1

and similarly for p, g and ﬁaﬁ. For notational purposes, it will be convenient to introduce the

compact shorthand p = Ugp oPab.a Ua,B Pa,g Yay ﬁaﬁ. With this notation we can rewrite (B.1.9)
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as

2SI 2 ) (112 ) (1124)
Y

el 5 Tas! Na,y!

Ho({Paba}s {Pa,p} {Pan }i {Tas} {Tan})  (B.112)

where now Hy({Pab.a} {Pap} {Par }i {Tas}s {Tar}) reads, after summing over the I'y, permuta-
tions

Ha({fab}, {Bap} B Y { Tas} ATan ) = [ | (H(Trﬂf/a)p S’)ﬁ <H(Tr7_;i7)[ﬁ5’i)”)
i \ 8

S\ zpb2a+zp2%
X(Sa Z(paba pbaa +Zpa Zpgl,)"/ i e
b,a

Using (B.1.13) and (B.1.11) in (B.1.12) gives then

in() ()
(Eb ozpba Qo + Z DPa 7) ﬂfai(fgja (TI‘TZ )
2= (g (I8,

Py *

— ()
(T 7,1,y
x (Hp(f, S | D050 — Phia) +Zp -y, (B.1.14)
il a,y: ba 0%

which is eq. (2.2.25).
Note that if we define the function F™({za}, {ta}, {a})

F[n]({$ab}v {ta}v {{a}}) = Z H (ﬁa + Zpba> !'6a (pa — Da + Z(pab - pba))
7 a=1 b=1 b=1

n Dab Pa FPa
T, ty ta
8 (H pab!> <pa!> (;Ba!> (B1.15)
b=1

where now p' = Ugp{Pab} Ua {Pas Pa}, we can immediately obtain the generating function Z
(B.1.14) through the relation

Z({xab,a}a {7;75}7 {7;:’7})

=[[F™ ({xab - Zwib,a} : {ta = Tr(laﬁ)} , {ta — ZTr(’];fv)}) (B.1.16)
i a B
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In fact, the RHS of (B.1.16) reads

H Z H <]5a + cha)! O (pa — Pa + Z(pac — pca)>

b Dab! Da! Da!

N\ Pab (7,75 \ " .\ Pa
() (BTN ()

and through the identity

n k n n a
(Z za> => <k - Zpa> kT ;p, 7= (p1,p2, ., Pn) (B.1.18)

we can write (B.1.17) as

HZ H (pa + Zpba) ! 5@ (pa — Do + Z(pab —pba)>
i P a b

b

(©)

Py o
<> (pab - Zpab a) 11 xai)"' (B.1.19)

ﬁ(EZ b,a pab @
Tr Ezﬂ)p;% (%) (Tf ley)ﬁé%
) = =7 3
| 20| pam Zp B H —a o | [ 20 pe2nd ) I —5—
7 gk pa’g! 5 ¥ ¥ Da,y:

=(i) _

o) = = Ug {p u ﬁ} and p, = Uﬁ,{paﬁ} Summing over p gives, exploiting

where p; ' = U Oé{pab)oé}

—»(z
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the second, third and fourth Kronecker deltas in the expression above

I > > Z%ﬁZP 100 | Do (P~ Pra) + Py = D P

7 a ﬁ(zb) ﬁél) —‘a(l) b @ b,a IB S
e\ (T (17743
ab,a any ’
% H ) H 7@ H 0,
b P ) oy
o Faba B a ~ a,y
B Dap (i)
(Zbapba)a +2, p%) T (Tr T,ig) e
= Z H H Z p(z) H T' H T
P ¢t a B ba pab,a' 8 aﬁ
= (1)
(Tr ’Tﬁy)pa o~
x Hp(l) Oa Z(paba pbaa "’Zpag me =Z (B.1.20)
i a:’Y' b,oé

where in the second equality we used p = Ugp oDab,a Ua,8 Da,8 Ya,y ﬁa,v and the third one follows
from (B.1.14). We can now appreciate how every property of Z is determined by the FI"
function, which will play the role of fundamental building block of the generating function.
In the following we will then focus mainly on the latter, which will improve the clarity of the

exposition: the generating function Z can be obtained at any time through the relation (B.1.16).

B.1.2 A contour integral formulation for F[

All of the Kronecker deltas J, in eq. (B.1.15) ensure that, at each node a in the quiver, there
are as many fields flowing in as there are flowing out, ensuring the balance of the incoming and

outgoing edge variables pup, Pa, Po- Using the contour integral resolution of the Kronecker delta

5(1:% . (B.1.21)

c 2miz

where C is a closed path that encloses the origin, we can write a contour integral formulation
for FI", and thus for Z. Let us then use (B.1.21) in (B.1.15), to get

F[n]:ZH 5 +Zp | H wopt \ [t (8" f Za__pa—pa+ S, (Pab—pra) (B.1.22)
5 a ¢ - “r b Pab! Pa! Pa! Ca 2Tz ¢ o
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or, conveniently rearranging the integrands above,

(g () (2

b

51 —a Da
X (pa + Zm)l <(“pat,)> (B.1.23)

Summing over the p, s gives the exponentials

>

Pa

(Zata)pa

ol exp (zata) (B.1.24)
!

while it is a little bit trickier to sum over the p, s. Using the identity

(pa-irzc:pca) (Zm) (1 +§C:pm> . (B.1.25)

where (a), = a(a+1)---(a+n —1) is the Pochhammer symbol, we can rewrite (B.1.23) as

- (md s ne) )

a Pa,Pa b

Za—l Ea Pa
X exp (zata) (1 + me> <(ﬁa,)> (B.1.26)
(pa)

where we also used (B.1.24). In the following section B.1.2 we show that

(Z;l Ea)ﬁa 1 1+;pca
1 ca — | = ——— B.1.27
£(emn) (G0 (k)™ we

Pa

We impose absolute convergence of the sums on the LHS, which ensures that we can swap the
sum and integral symbols in (B.1.26). Using (B.1.27) in (B.1.26), we can write FI"l as

dzg exp (2q4lq Lzl Pee
HZ% 27sz _1t (cha> H (m) (B.1.28)

Now we just have to compute the p,, sums. In section B.1.2 we show that

szbazil Pba 1_ 2;1 7,
(H Z) <Zpba> H <1—za1t) ] i (Bt > % Tha) (B.1.29)

b DPba
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where again we impose the absolute convergence of all the sums on the LHS, for the same reason

just discussed. Eq. (B.1.28) has now become

2 exp (2q4ta
FI{zaw}, {ta}, {fa}) = (H ]{ Qfma> — (zizz%%) (B.1.30)

We can rewrite the latter equation more compactly as

FIl (g}, {ta} 1)) = (H 74 jj‘;)ﬂfa@;fa,ta,ta) (B.1.31)

where Z = (21, 22, ..., 2n), n being the number of nodes of the quiver, ¥, = Up{xp,} and

L exp (Zqta)

- B.1.32
Za — (ta + Zb Zh :Uba) ( )

Eq. (2.2.28) is thus obtained.

Summing over p,

We want to prove eq (B.1.27)

(231 1a)™" 1 143 pea
Z <1+cha> B < pa! B <1 _Zalta> (B'1‘33)
Pa ¢ (pa)

for any node a of the quiver. We also have to take care about the convergence of all the sums
on the LHS of this equation. These z, variables will eventually be integrated over closed curves
C, in the complex plane, which we will use to compute the contour integrals in (B.1.26) through
residues theorem. As discussed in the previous section, we require absolute convergence of the
sums on the LHS,

(2" ta)™

| < (B.1.34)

> (1 + Zc:pca> .

Da

Throughout this section we will therefore restrict to the z, that satisfy this constraint. With

the mappings
=1+ Pea (B.1.35)

11, (B.1.36)
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the equality (B.1.33) reads

2P 1
B.1.37
Z ( )(P) (1 _ Z) ( )
p
This is a known identity, and can be derived with the chain of equalities

1 S -1\ ,  (p+a—1)! » = (@) ,
ﬂ—z)sz(p P )Z :sz =2 pf)z (B.1.38)

p=0 p=0

The first step above holds only when |z| < 1. Our proposition is thus proven.

Summing over pg,

We want now to prove (B.1.29), for each node a of the quiver:

L/ zppezg b\ 1—z71¢,
Pba | <J‘”_) = . B.1.39
(HZ> (; ) ¥ Gl G g Bt pesy ey vy S

b DPba

As in the previous section, we work in a region of the U,{z,} variables where the sums converge
absolutely:

wabazfl
1— 24 -1 ta

Pova

< 00 (B.1.40)

) (s~

b Pba

and we will restrict our computation to the set of Ug{z,} that satisfy such a constraint.

Let us then prove the simpler identity

Z(Zm) Hpb (1?’y)pb— - <1y ) (B.1.41)

Y+

with 7= Up{pp}, which turns into (B.1.39) through the mappings
2y = ZTpa Zq y— 2z g, Db — Pha (B.1.42)
Similarly, the condition for absolute convergence (B.1.40) becomes

RO

2 Py

1—y

< 00 (B.1.43)

We will prove (B.1.41) twice, starting from its right hand side, by choosing two different
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ways of factorising the ratio

1 1
Y - Y (B.1.44)

1—(y+§%) (1—za)—<y+22b>

b#a

In the first one we will factor out the term (1 — y)/(1 — z,) and in the second one the term
(1 —y)/(1 = (y+ Xpze2)). We will then expand in power series the remaining part of each
expression, to obtain two different power expansions. The upshot is that we will obtain two
different sets of constraints for the convergence of the power series. Both sets of constraints will
hold in the region of absolute convergence (B.1.40), and they will determine the pole prescription

for the contour integrals in (2.2.28).

First factorisation

We start from the RHS of eq. (B.1.41). We are going to factor out the term (1 —y)/(1 — z,)

and expand in a power series the remaining part of the expression. Let us then write

1- 1- 1
Y =2 J (B.1.45)
1_<y+2zb> B R
b 1— 2z,
and let us expand the second factor on the RHS above to get
1 - R TES DA
y = - y ( : bra ) (B.1.46)
1—<y—|—zzb> ~Fa =0  a
b
with the constraint
+ z
YF g (B.1.47)
1— 2z,

We now rewrite eq. (B.1.46) as

_ o " 1
1-— (y —+ zb: Zb> n=0 b#a ( - Za)

n
in order to expand the two terms (y + Zb?éa zb) and (1 — za)f("ﬂ) separately. For the first

one we get
n

D Db
Y b

y-i—Zzb = HZ Z—nw n—py—Zpb H% (B.1.49)
b#a ’

|
bta bta pp=0) py—=0 PV’ bta
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while for the second one, using eq. (B.1.38), we obtain

1 _ i (Pa +n)! 26"

S B.1.
(1 _ Za)n—‘rl ’I’l' pa! ( 50)

paZO

The last equality is valid for |z,| < 1. Inserting egs. (B.1.49) and (B.1.50) into eq. (B.1.48),

and rearranging the order of the sums’ to let the sum over n act first we get

n=0 p py*O b#a

i’ zzzfa =S o | (ot ) Hf!
() b

e y?’y Zfb
- Y e+ '] (B.1.51)
7m0 PV b b P

Now, since

(a+n)! , 1

n=0

we can sum over p, in the last line of eq. (B.1.51) to obtain

1-— 2P 2PP
< =(1-y) ) (1 Zblﬁbszb H o Z Hprb H o
1—<y—|— ) P

D!

Z <Zpb)‘1;Ipl< “ )pb (B.1.53)

together with the constraint

ly| <1 (B.1.54)

Eq. (B.1.53) is exactly eq. (B.1.41), which becomes our initial proposition (B.1.39) through the

substitutions (B.1.42). In the steps presented above, we got three constraints:

{

"Since we are only considering {z,} variables that satisfy absolute convergence condition (B.1.43), this is a
legitimate operation.

Y+ D hta %
1—2z,

< 1} , A{lzal <1}, Ayl <1} (B.1.55)
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The first one becomes, through the substitutions (B.1.42),

2, + b; ZyTpa 2
a

<1 B.1.56
[ ( )
which we can also write as the set K}
Ea + E 2bLpa
K =1 24 € Csit. |2a| > bEa (B.1.57)
1— 244

We stress that the set of U,{z,} that satisfy the latter constraint includes the set of Ug{z,} that
makes the sums in (B.1.41) absolutely convergent, to which we restricted our computation. On
the other hand, imposing (B.1.55) alone would not be enough to guarantee the validity of all

the steps presented in this section.

Second factorisation

We will now show (B.1.39) in a different way, again starting from the RHS of eq. (B.1.41).
This time we factor out the term (1 —y)/(1 — (y + 354, %)), to expand in a power series the

remaining part of the expression. Let us then begin by writing

11—y B 1—y
1—<Z/+Zzb> 1—{y+> 2] | —2
b btc
1— 1
- i (B.1.58)
z
1- (y + > zb> 1— ‘
b#c
b#c
Now we expand the second term in the line above in power series, to get
n
1- 1-— ad z
i - L 3 ‘ (B.1.59)
1- (y‘Lzzb) I—ly+>a) "\ 1-(v+X 2
b b#c b#c
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along with the constraint

Zc

me
b#c

All these steps are similar to the ones in egs. (B.1.41)-(B.1.47). Proceeding in the same fashion

<1 (B.1.60)

we first write

L=y =(1-y) izg ! (B.1.61)

) (- (ze)

Then we expand the rational part of the RHS in power series, rearranging the order of the sums

in such a way that the sum over k acts first, to get

k

oo
1 il (A

n+1 In!
b#c

oo
(k+n) y Py zb
=2 Iy Z kepy =2 m | ]
k=0 b#c pp=0 py—O b#c b;éc
o0 O Py (n+py+zb pb)! Db
() s & Sl e L02)
Dy n! pp!
btepy=0) py=0 'Y bc
together with the constraint (coming from the first equality)
y+ > ml <1 (B.1.63)
b#c
Using eq. (B.1.62) in (B.1.61) we get
= (1-y) Zzﬁﬂpc )| n+py+ D ‘Hﬁ
1-— (y + Z Zb) n=0 p py= Y b#c b
b

=(1-y ) ﬁ; (perZpb)!szj (B.1.64)
_ Py: b Db:
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where we again rearranged the order of the sums to let the sum over n act first. Now this

equation is identical to eq. (B.1.51), and we know that if we impose the constraint
ly| <1 (B.1.65)

(B.1.64) is enough to prove (B.1.39). Our initial proposition is again proven.

In the derivation we got, among others, the constraint

Zc
<1 (B.1.66)
1- (3/ + > Zb)
b#c
which with the substitutions (B.1.42) becomes
ZcZeq z;l
<1 (B.1.67)
L=z ta+ 3 2ptpa 20
b#c

The same quantity can also be described in terms of the set k_,, defined as

Za — (ta + Z Zb-rba>
b#c

Lca

koo =1 2c € Csit. |ze| <

(B.1.68)

This constraint has to be interpreted in the same manner as the one in (B.1.57): k_, includes
the set of Uy{z,} that makes (B.1.41) absolutely convergent.

Fixing node a, the derivation above holds for any ¢ # a. This means that we can obtain
constraints like the one in (B.1.66) for all the nodes ¢ # a of the quiver, that we can impose all

at the same time. We can then define the set

Ze — (ta +> Zb%a)
b#c

xca

K, = m koo = ﬂ ze € Cs.t. |z < (B.1.69)

c#a c#a

Just like K (eq. (B.1.57)), this constraint will be of central importance when we will compute

189



APPENDIX B. PROOFS AND DERIVATION OF THE COUNTING FORMULAE

the integrals in (2.2.28): the set K, defined as

Koe=KI nK;
fa"" Z ZbTha
b#a
zq € Cs.t.|zq] > T
aa

- (ta + Z beba>
b#c
ﬂ ze € Cs.t. |z < ? (B.1.70)

cta Lca
will in fact determine which poles are to be included by the contour C,.

B.2 Residues and constraints

In this appendix we will present the rule for including/excluding poles when calculating the

contour integrals in eq. (2.2.28), that is

Fl{zg), {tad, {ta}) = (H% ‘Z’;) H I4(Z: %y ta, ta) (B.2.1)

We recall that the integrands I, are defined by

_ exp (24 tq)
1,(Z; %0, ta, ta) = =
a(Z;xay as a) Za _ (ta + Zb beba)

(B.2.2)

The prescription is that we have to pick only the z, pole coming from the I, factor in the
integrand of (B.2.1), for each a. Let us show how this rule arises.
If the quiver under study has n nodes, each I, will have n poles, one for each z variable.

Explicitly

t_a + Z ZbTha Za — <t_a + Z beba>
b
Z; = b#—a, zy = 7e , Ve #a (B.2.3)

1— 244 Lca

From appendix B.1.2 we know however that we have to restrict to the set of U,{z,} that belongs

190



APPENDIX B. PROOFS AND DERIVATION OF THE COUNTING FORMULAE

to the intersection of the set (B.1.70)

7?a + z ZpTpa
b#a

Ko =< 24 € Cs.t.|zq] >
1 — 244

Za — (ta + Z beba>
b#c

Lca

ﬂ ze € Cs.t. |z <
c#a

={zq € Cs.t.|zq] > |2, } ﬂ {zc € Cs.t. |zc] < |22]} (B.2.4)
c#a

with the set of Uy{z,} satisfying the condition of absolute convergence (B.1.40):

TSTS

-1
b Poa a: 1 Za ta

1 |Pba

“bTba%a < (B.2.5)

In the same appendix, we also argued that the former constraint (B.2.4) includes the latter
(B.2.5): this means that if we impose (B.2.5), then (B.2.4) is also valid. But this is telling us
that for any I, we only have to pick up the pole relative to the z, variable, and discard all the
others. However this is a prescription which holds only before we perform any integration: after
we do so, the poles for each of the remaining z variables will have a different equation. This
problem is anyway easily overcome: the constraint in (B.2.4) comes from the sums in (B.1.28)
that contribute to the I, piece of the integrand (B.2.1) alone. So in principle we could have
chosen any a in (B.1.28), performed the sums over Uppy, only, got the I, term together with the
constraint above, inferred from the previous discussion that only the z, pole has to be picked
up and finally compute the z, integration (all the other z, appearing in (B.1.28) are regular and
have no pole). Let us then imagine to be in such a situation, and for concreteness say that we
have chosen to integrate over z;. After the z; integration has been done, we are left with n — 1
sums (n being the number of nodes in the quiver) of the form already discussed in appendix
B.1.2, that is

L/ zpwpazg O\ 1—z't,
oo 1 TT — <j_> _ ] . a#1 (B.26
(HZ> (zb: a) lglpba! 1— 2"t 1~ za ! (fa+ Y2y 25 ta) —

b DPba

where now every z; has to be substituted with its pole equation, which will be of the form

21 = 27 (22,23, oy 203 T) = ZZC Ge (B.2.7)
c>1

for some coefficients a.. As usual, we impose absolute convergence of the sums on the LHS
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of (B.2.6). Adapting the notation of appendix B.1.2 to the present case, let us work with the

! (B.2.8)

simpler identity
) () () S -
p! p1! 1= > 2z — 2
b pp=0 b>1 b1
which becomes (B.2.6) through the substitutions
ZbTha Zq
zp — — — B.2.9
b T () Pb — Dba (B.2.9)
Note that now we have
Z*%melaza_l_chacxlaza_l_zzci‘caza_l_Zg (B.2.10)
1 i - _ — —_— i —_— C oo
1—za1ta 1 1—za1ta C>11—za1ta 1
(B.2.11)

in which we defined

- ZeTea Ry
Leg = Qe Tlq Zc =

1— 2z, ~1 ta

Consider now the LHS of (B.2.8) and write it as

) () (59)

) () (1) 550 - (M%) (S
b pp=0 b>1 b pp=0 b b>1
i 59c
11> (Zm)l (H ) 11 Z 5 <p1 - Z%) 115 (B.2.12)
b pp=0 b b>1 c>1 qe= c>1 c>1 e
After summing over p; we obtain
- (z0)™
P a2 e O
%) () (I05) 5
0 s4c
() (Srese) (M) 2
b>1 =0 b>1 e>1 por P01 )
00 Py zqb
=111>. (Z(pb + (Ib))! (H ;Z Zl; ) (B-2.13)
b>1 pb:g b>1 b>1

qp=
where the last equality follows from noticing that the b and ¢ labels in the products and sums
run over the same set of variables. Now multiplying the far right hand side of the above equation
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by [Tps1 Z ’;Igb;, = 1 and inserting the identity

> 6—p—a) =1, (B.2.14)

b>1 A\p=0

we get, exploiting the support of the delta function

s ) (S (I50)

b py=0 b>1

(IS 3 ) (S0 () T st 2
b>1 Pgio Ap=0 b>1 b>1 A b>1 ol @b

=11 X (Z%)!H 25 (Ao —pb — ab) al 2P 5 (B.2.15)

|
b>1 A\p=0 b>1 b>1 pp=0 p @b
qp=0

The quantity inside the square bracket is of the form

|
Z §(n —ky — ko) —— a1 bk2 = (q + b)", (B.2.16)
Y
k1,k2=0

so that we eventually have, relabelling A\, — pp

15) () ()5

b pp—=0 b>1 wy!

s (Zpb)ln@b*fb)“ (B.217)

b>1 pp=0 b>1 b>1 Po:

for the LHS of eq. (B.2.8).

Consider now the RHS of the same formula: it reads

1 1 1
1= =2 1= - %2 1= (+%)

b>1 b>1 c>1 b>1

(B.2.18)

Equating the right hand sides of the last two equations we then get

s (Zb +§b)pb _ 1
11> <Zm>! 11 P e ey (B.2.19)

b>1 pp=0 b>1 b>1 b1

Using the substitutions in (B.2.9) and defining the new quantity &, = Tp, + Tp, We immediately

obtain

o -1 Sy 1 N
ZbTpa 2, 2bTba Zq - _ % (Toa + Tba) Zq - _ 2bTba 2g
l—zalta 1— 25114, 1— 251, 1—25'1%,

zp + Zp — (B.2.20)
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so that eq. (B.2.19) becomes

%) (S i ()

|
b>1 ppa=0 b>1 b1 Phas
1—z2711¢,
= g , a#1 (B.2.21)
1-— Za_l <t_a + Z Zbiﬁba>
b>1

This is exactly the equation in (B.1.39) with the substitution xp, — Zp, and the removal of
the first node. We have already proven such an equality in appendix B.1.2, where we have also
obtained the set of constraints in (B.2.4). This means that the constraints coming from the

convergence of the sums on the LHS of (B.2.21) can be described by the intersection of the set

Ea"’ Z Zbi‘ba
b#a,l

1 —Z4q

Ko =< 24 € Cs.t. |24 >

Ze — (ta + Z bei‘ba)
b#c,1
ﬂ ze € Cs.t. |z| < - , a#1 (B.2.22)

ca ca

with the set of Uy>1{z,} satisfying the absolute convergence condition

Pba
< 00, a#1 (B.2.23)

-1
a

1— 2714,

|1 i (Zpba)!Hp;! 2b Lba 2

b>1 ppa=0 b>1 b>1

We stress once again that the former includes the latter. Such an intersection gives us a
prescription on which poles to include/exclude after one integration has been done: in complete
analogy to the situation discussed at the beginning of this section, we find that only the z,
pole coming from the I, term in the integrand of (B.2.1) has to be picked up, Va # 1. The
steps presented here are trivially generalisable, and they can be redone in the exact same way
integration after integration. We can then say that, at any level of integration, only the z, pole
in the I, factor has to be enclosed by C, in (B.2.1). This is our pole prescription to perform

integrals.

B.3 Three node unflavoured quiver example

In this section we will provide an explicit example of application of the formulae presented in

section 2.3 to the three node unflavoured case. Let us start by writing 2], 25 and z3. According
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to eq. (2.3.9), the equation for zj(z2, z3; %) is obtained by solving for z; the equation

3
-1 L _
I (21,20, 28, %) = 21 — 5 2y Tp1 =0
b=1

that gives
. i1
(22,23 8) = ) 2 -
i>1 L1
From (2.3.10) we then have
0 = Tl
2,1 1"$1J

We now turn to z3(z3; Z), which is obtained by solving for zs the equation

3
—1/_x% *
I (2], 22, 23) = 22 — g 2pxp2 — 21012 =0
b>1

Using (B.3.2) we get

. - (Tinz12 + xio(l —x11))
25(23: %) = ;
2( ) Z (1 —m11)(1 — 292) — 712721
1>2
so that
(Tin@12 + il — 211))
(I —211)(1 —x22) — x12%21

;9 =

)

Finally, I3 1(zik , 23, 23) = 0 is solved by 2§ = 0. We can now write down the pole coefficients a

(B.3.1)

(B.3.2)

(B.3.3)

(B.3.4)

(B.3.5)

(B.3.6)

[r]

l?p,

which we will need in computing F[£3]. Following the definition given in (2.3.13), we have

~[0] _
Aip =Y

1
1] _ E : (1] ..
al,p - al7p + a’L,A G/)\’p - azvp
A=p+1
and

. [2] .
ain +a;5021 =ai1+aigaz; ifp=1

2
iy = aip+ Y g, =
A=p+1 i p ifpﬁ> 1
Using egs. (B.3.3) and (B.3.6), and noting that

L—=211 =Gy, (1 —211)(1 — 222) — 212721 = G|y
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we can also write

2] a;1 + %221 _ Ti2%21 +@ia( T2.2) ifp=1
a2 — Gy G (B.3.11)

i p ifp>1

By using eq. (2.3.12),

= 2 s ®) =Y mall,  1<j<r (B.3.12)
i>r
we then obtain
3 2 Tj
2 W29, 25, 8) = S all = 1,1 (B.3.13)
; o G
i>1 1=2,3
and similarly
3
1—
Pl ) = 3 ] = g TR T 2] (B3.11)
1>2 2
3
1—
1>2 2

Finally, we can compute F(gg] using formula (2.3.23). We have

. —1
3 3 i—1

At =TT =TT (1= w0 — Sl s 3310
i=1 i=1 q=1

2]

1 (1] -t -~ [2] A -
=1 —21,1)" (1222 — 0571712 1 — 233 —a37%1,3 — G35%2,3

-1
1 1 T2,1T1,3
=1—-z11) (1 —222—az1712) <1 — 33— a3,171,3 — 432 (1 . + 332,3))
— 211
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Using the equations for ag 1 and a3 defined in (B.3.3) and a3 defined in (B.3.6), we get

5 _ £1,3T3,1
Fi¥ = (1 = 211)(1 = 229) — 21.9m9,1) " (1 DS A E—

x31212 + x32(1 —211) <CU2,1SU1,3 >)_1
— + xo3
(1—211)(1 —x22) —x1 2021 \ 1 — 211

T13731
= <((1 —211)(1 — 222) — ¥12721) <1 — T33 — >

1-— Z1,1

21T !
—(z3121,2 + 232(1 — 21,1)) 17 +x23

=1 —211 — 222 — 233 — T12%21 + T1,1T22 — T1,3T3,1 + L1,1033 — T23%3,2 + T22233

-1
—21,1222%33 + T1,1223%32 + T2221 3231 + T3 3212221 — T1223%31 — T1,3T3222.1)
(B.3.17)

which concludes our computation.

B.3.1 Permutation formula

Let us now give an example of the application of formula (2.3.34) in this simple case of a three

]

node unflavoured quiver. We have already computed the correct answer F(g?’ in the previous
section, so we can explicitly check that (2.3.34) indeed reproduces the correct result. Let us call
the three nodes of the quiver simply 1, 2 and 3. We can immediately write the simple loops

Yoy ({xap}) using eq. (2.3.36):

y(l)({fﬂab}) = 11, y(2)({$ab}) = 22, y(g)({%b}) = 33,
y(12)({93ab}) = T12%21, y(13)({~"3ab}) = X13731, y(zs)({l’ab}) = xo3r32, (B.3.18)
’y(123)({$ab}) = 12723731 ?/(132)({93ab}) = 13732721

From these quantities we can construct y,({zq}), for every o, by using the definition in eq.
(2.3.35):

Yo({zar}) = (=1)* Hya(i)<{xab}) (B.3.19)
For example, if we had o = (12)(3), then

yan e {za}) = (1) yazy({za}) ye) ({Ta}) = 212021 33 (B.3.20)

the power 2 in the —1 comes from the fact that o = (12)(3) is a product of two cycles. Getting

back to our three node quiver example, there are 7 non empty subsets that we can form out of
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the set {1,2,3}, namely {1}, {2}, {3}, {12}, {13}, {23}, {123}. According to eq. (2.3.35) we

then have

> wel{za}) =yo)({za}) = —211,

oeSym({1})

> vel{za}) = yoy({za}) = 22,

oeSym({2})

Z Yo({za}) = y(3)<{xab}) = 33,

oeSym({3})

Z Yo({zav}) = Yy {2ab}) + vz ({Zav}) = 21,1222 — 712721,

o€Sym({12})

> wel{za}) = vy {za}) + yas ({2a}) = 211233 — 213231,

oeSym({13})

> wel{za}) = vy {za}) + yes) ({2a}) = 220133 — 723732,

c€eSym({23})

Yo vol{za)) = ymee (za)) + yaze (za}) + yase ()

oc€eSym({123})

+ Y23)1) {Tab}) + Y23 {Tav}) + yaz2){Tab})

= —X1,1%22%33 + T12%2,173,3 + T1,373,1222
+ X23%32%1,1 — T1,222,3%3,1 — 1,373,221

Summing all of the terms above we get

[3]

(B.3.21a)

(B.3.21D)

(B.3.21c)

(B.3.21d)

(B.3.21¢)

(B.3.21f)

(B.3.21g)

=(1—211 — 222 — 233 — T12%21 + T1,1T22 — T1,3T3,1 + T1,1T33 — 23732 + L2233

—1
—21,1%22%33 + T1,1223%32 + T2221 3231 + T3 3212221 — T12223%3.1 — T1,3T32221)

in perfect agreement with (B.3.17).

B.3.2 Determinant formula

(B.3.22)

To conclude this section we now calculate Fgg] yet another time, using the determinant formula:

plnl _ 1 _ .
on m, Xn|7jj = Tijj , 1< (17]) <n
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]

This is the simplest way to calculate F(gg . Since

Tl T2 713
Xg=| xo1 w22 w23 (B.3.24)

Tr31 T32 T33

we have
1—z11  —z12 —T13
F(gg} =det ~'(13 — X3) = det ! —x21 1 —wap  —wo3 (B.3.25)
—31 —r32 1 — 33

and so we immediately get
3]
Fo'' = (1 =211 — @22 — 033 — T12%2,1 + T1,1%22 — 1,323,1 + £1,103,3 — T2,3%32 + T22233

-1
—1,1%22%33 + T1,1723%3,2 + T2,271,3%3,1 + £3,3%21,272,1 — £1222,3T31 — $1,3$3,2$2,1)
(B.3.26)

This is the same result we obtained using other computational methods earlier in this section.

B.4 An equation for the pole coefficients in term of paths

In this section we will prove eq. (2.3.25):

r—1 r
Gy alll = G t i\ Tp i1 Ti ioTinig ** Tip_q,ig Li (B.4.1)
[r] p,q [FI\{q,U},_yin } D5t -Vin,iaiasis i—1,5¢ Vi, ke
t=0 11 ,49,.,5¢=1

i1 FigF#.. . FitF#q

In the case ¢ = r this identity becomes particularly easy to prove, so let us start with this one.
From the definitions (2.3.13b) and (2.3.14) we get

A r—1
Tip + a% Yoy,
A~ A=
0} = a;, = Ll[l] (B.4.2)
~[r—
1- (xr,r + A, T 7“>
A=1

Now let us multiply and divide the far RHS above by G|,_y): recalling egs. (2.3.30) and (2.3.32)

we have

r—1
r— G|,
G[r—l] 1-— (xr,r + Z CALL)\ 1 l‘>\7r> G[r—l] G[Hl] = G[r] (B.4.3)
A=1 T
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so that we can write eq. (B.4.2) as

G[T] &Ez]ﬂ = G[r—l} Tip + Z G[r—l} dgt’)\_l] T (B.4.4)
Ae[r—1]

Using the last equation we can prove eq. (B.4.1), for the ¢ = r case, by induction. The identity

is trivial for 1 point: it just reads
Gy aﬂ = Gupy Tin = Gpoy i (B.4.5)
for any 7 > 1, and since

_ _ 1] _ Tl
G[O] - 17 G[l] =1- T1,1, ai71 =a;1 = 1 _Z$1 .

(B.4.6)

eq. (B.4.5) is trivially satisfied. Let us now assume (B.4.1) is true for » — 1 points and let us
show that it holds for 7 points too. We can then use (B.4.1) in the terms G,y &ET/\_I] of (B.4.4),

to obtain

+ Gl 1\AUL_ in}Tiin TiiaTinyis *** Tipor,inTig A Trr (BAT)

A=1 t=0 i1,i9,..,iz=1
i1 Aig . Fi AN

The next step is just a relabelling of the summation variables: first relabel A — 4;11 and then

t —t' =t+1 to get (dropping the prime symbol on ¢)

G[r] &EZ]« = G[rfl} Li.r

r—1 r—1
+) > G\ U in} T Ti i Ty Tig iy T (B.4.8)
t=1 i1,i2,..,5t=1
i Fig .. iy

Note that the first term on the RHS of the above equation is just the t = 0 component of the

sum following it, so that

r—1 r—1
~[r] _
Gpy iy, =) Y G Ub i) Tisia Ty iaTinis Ty i Ty (B.4.9)
t=0 i1,i9,..,it=1
i Fig .. iy

which using G|,_1; = G|\ {»} We can write as

r—1 T
] _
Gy, = ) G\ {r Ut _in)Tiia Tir i Tin,iz *** Tig_1,ir Tig,r (B.4.10)
t=0 1,09, ip=1

iy Fig#.. FipFr
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which is exactly eq. (B.4.1) for the case ¢ = r. This observation concludes the first part of our
proof.

The case ¢ # r could be potentially difficult to analyse, but we can overcome this complica-
tion using a trick: loosely speaking we will change the order of integration in (2.3.1), in such a
way that the z, variable, corresponding to the ¢ node, will be integrated last. This will allow us

to use the same induction process mentioned above, with trivial modifications. To begin with,

~[r]

we will argue that the order of integration does not affect the expression for the a;, i coefficients
defined in (2.3.12) and (2.3.13).
Consider again eq. (2.3.12):
zj*[r] =2z (Zrg1y ey 20 T ZZZ (B.4.11)

i>T

These are the equations for the poles of the z; (1 < j < r) variables after we have integrated
over 21,22, ...,2r in this order, which in section 2.3 we called ‘natural ordering’. We labelled
this ordered set as {z1, 22, ..., 2} = [r]. Now consider integrating over the same set of variables
21,22, -+, Zr, DUt in a different order, which we call {25(1), 25(2), -+ Zo(r) } = [7]o- We then have,

analogously to eq. (B.4.11),

ol = 2 Gty 2 B) = Y g (B.4.12)

i>r

The key observation is that equations (B.4.11) and (B.4.12) have to contain the same set of
equations. To see this, suppose that we want to calculate the z,.,.1 pole equation. Following

section 2.3 we would have

(1 — Tr4+1,r+1 ZT+1 Z 2b Thr+1 + Z Z xz 41 (B413)
b>r+1 i=1,..,r

if we use the [r] set (the natural ordering), and

*[7]
(1 = Tr+1,r+1 ZT+1 E 2p Thr41 T+ E Z Z'o o(i),r+1

b>r+1 i=1,..,r
*[r] o
= Z 2p Tpry1 + Z ziH Tirt1 (B.4.14)
b>r+1 i=1,..,r

if we use the [r], set. Now take the difference of the two equations above to get

0= Z (z;m — z:[r]") Tir+1 (B.4.15)

i=1,..,r

Since ;41 does not appear inside z; T or z m", for any 7, the only way that the RHS of (B.4.15)
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can be zero is that each term in the sum vanish on its own, so that

S = e Vie{1,2,..,r} (B.4.16)
This indeed shows that (B.4.11) and (B.4.12) do contain the same set of equations. More
precisely, since eq. (B.4.16) does not depend on a particular o, we see that the order in which we
compute integrals does not matter: after r integrations, whatever the order, the pole equations
will be described by (B.4.11). Eq. (B.4.16) also implies that
o = gl (B.4.17)
Z?q Z’q : :
if [r] and [r], differ only by the order of their elements. This is what we need to prove the
identity (B.4.1) for generic q. The proof will be based upon a comparison between a coefficients
computed in two different orderings.
Let us then choose the ordering [r],, = {21,22, ..., 24-1, 241, -+, 2, 2}, Which we will just

call [r], for notational purposes. From (B.4.17) we have then

Tig+ D dl[.i\_l]q Thg
all = gl'le = Al (B.4.18)

g T g
A [r—1]q
1- (mq,q"‘ > Agxn — Trg

AE[r—1]q

in which the last equality follows from (2.3.14): with the ordering [r],, 2z, is in fact the last vari-
able to be integrated over, so that it plays the role of the starting point (2.3.13b) in the recursion
relation (2.3.13a). We are therefore in the same configuration discussed at the beginning of this
section, where the right lower index of a corresponds to the last one in the ordering [r],: we can
therefore redo the steps (B.4.2) - (B.4.10), with trivial modifications, to obtain

—_

rT— s

Gty = Galy! = >~ Y Gphau_yinBiaTiiaisis* Tir it ing | (BA19)

= iy, =1
i1 Aig#.. . Fit#q

~

Eq. (B.4.1) is then proved.

B.5 The building block Fo[n] and closed string word counting:
Examples

Let us consider the 2-node case. We will verify that the coefficients in the expansion of F(?]

count words made from letters corresponding to simple loops in the 2-node quiver, with one edge

for every specified start and end point. Thus there are letters 91, 92, y12. We require that letters

corresponding to loops which do not share a node commute. Thus here we have 192 = 9291. It
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is useful to define

Y1 =211, Y2 = T2, Y12 = T12221 (B.5.1)
together with
F[Q} 1 _ 1
5 =
l—yi—y2—yizt+yyz (1—y)(1 —y2) — v

1 1
= B.5.2
Q—y)(1—y2)1— Uiz (B.5.2)

(1= y1)(1 —y2)

Expanding this we get

m
F[2} — ni, no Y12
s s (e

ni,n2=0

- S n na m ki ke (M AEL—= 1) (m 4+ ko —1)!
= D D>y i im (B.5.3)

n1,n2=0m=0 k1,ko=0

and defining N1 = ny + k1 and No = ng + ko we can write

o0 N1 N2
m—i—kl — D! (m+ k2 —1)!
D VRS 3 oL 354
— | — 1)
N1,Na,m= 0 k1 =0 ko =0 D kal(m —1)!
Finally, using the identity
i (m+k1—1)!:(m+Nl)!:§: (M), (B55)
k1=0 k1=0
the expansion of Fgm reads
o0
2] _ Nz, m (M4 N1)! (m + No)!
Foi= ) wur il mIN; mINy! (B.5.6)
N1,Na,m=0

The coefficient counts the number of words made from letters 91, 92, §12, with the condition
that 9192 = 7291. The words containing m copies of g2 can be built by writing the g2 letters
out in a line, with spaces between them, and then inserting the N; g; letters in any of the
m + 1 slots. Now build a sequence of N; numbers, recording which slot the first §; goes into,
which the second goes into and so on. Each number in the sequence is something between 1 and
m + 1. Such a sequence can be mapped to a state e;, Q@ eq, ... €ay, - Sequences related by the
symmetrization procedure of shuffling around the N; factors correspond to same word, because
what matters is what goes in the m + 1 slots, not the order in which the N; copies of x1; were

put there. Thus the sequences are in one-one correspondence with a basis for the symmetric
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tensors Sym(Vﬁfll). The dimension of this space is precisely
. QN N (m -+ Nl)'

Then we can insert the g2 in the m + 1 slots and we get the other factor. This proves that, in
the 2-node case, the words in the language we defined are counted by the F(£2]—function.

Let us now turn to the three node case. Let us define
Yi = Xy Yij = TijTj; Yijk = Tij%jkThi (B.5.8)

In this case

R N N = = R e e

_ Y23 _ Y123 _ Y132
(T—y2)(I—ws) (A—y)A—y2)I—y3) (=)l —y2)(1—ys)
5 o0
= > Dy YR yEe s ol uhs uhss vl

mi,mz,m3=0 p1,-,p5=0

o (Prtp2t-- 4 ps)! 1
p1!palpslps!ps! (1 — yl)P1+P2+p4+P5(1 — y2)p1+p3+p4+p5(1 — ys)P2+p3+P4+p5

oo o

mi ms ms.piop2.ops . pa . ps (PLTDP2H 4 ps)!

= Y1 Yo " Yz " Y12 Y13 Yoz Y193 Y
Z Z 1 Y2 Y V1o Vi3 Y2 Yias Yise T

mi,mz2,m3=0 p1,-,p5=0

[o@)
" Z (p1 + p2 + pa+p5)1, (P1 +p3+ pa+0s5)1, (P2 + P34+ pa+ D5)iy Jyleyl

1! l5! 3! 19293
l1,l2,l3=0 ! 2 3

(o.0] (e.)
(p1+p2+- +ps)!
D DD DR AN A R W e (B.5.9)
ni,n2,m3=0 pi,,p5=0 1-P2:P3-P4-P5-

ny n2 N3

(p1 4+ p2+ pa+ps)i, (p1+p3+ pa+ps)i, (P2 +P3+Pa+DP5)s 1, 1o i
x Z Z Z ! ! 3! Y'Y Ys

11=0102=013=0

Finally we use the identity (B.5.5) above three times, to get

F[g] i 3 ny,nz2,n3, pr ,pP2 D3 )P4 Ps5 (pl +p2 Tt p5)! (B 5 10)
= E Y1 Y27 Y3" Y12 Y13 Y23 Y123 Y e
0 1 92 93 J12 J13 J23 J123 J132 p1!p2!p3!p4!p5!

ni,n2,n3=0 pi,-,ps=0

v PL+pP2+PpPs+ps+n1) [(pP1L+pP3s+ps+ps+ne\ P2+ p3+ps+Dps
ni n2 n3

For the closed string words in this case, there are letters §;, 9, ;1. The five letters g12, 913, 923,
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7123, Y132 do not commute with each other. i, %9, 93 commute with each other. ; commutes
with ¢23. 92 commutes with 713, and g3 commutes with ¢12. We can build an arbitrary word by
first fixing the numbers p1, pa, ..., ps of the letters from the set {g;;, s }. Then choose an order

of these. The first multinomial factor

(p1+ -+ +ps5)!

B.5.11
pi!---ps! ( )

gives the number of choices of this order. For each fixed order of these, we can insert the g;.
Consider the insertion of the §; and choose the number n; of them. We have (p1+p2+ps+ps+1)
slots which specify where, relative to 912, 913, 123, §132, We are inserting these. As in the 2-node

case, this is the dimension of Sym™ (Vp, {po+pa+ps+1) Which is given by

<p1 + p2 + pa + ps —|—n1> (B.5.12)

ni

The position relative to go3 is immaterial in the word counting because g; commutes with
this. Hence p3 does not appear in the above formula. In the same way, the insertion of the
72 and g3 account for the additional binomial factors. Since the f; commute with each other,
the insertion of the 7o is insensitive to the previous insertion of the 7;. Likewise the insertion
of the g3 is insensitive to the positions of the ¢1,7. Hence the word counting for specified
pi,- -+ ,Ps5,M1,N2,n3 has separate factors corresponding to insertions of 1, 92,73 among the
mutually non-commuting set {ij, ¥ijk }-

These examples illustrate the general fact that the function F(gn]({xab}) counts words made
from letters corresponding to simple loops in the complete n-node quiver, with the condition

that letters corresponding to loops without a shared node commute.

B.6 Deriving the flavoured F!" function

In this section we will prove eq. (2.5.16):
Flrl — Fo[n] exp (tpfq 0P log F(gn]) (B.6.1)

We will start from eq. (2.5.13):

Flrl = H = (B.6.2)
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We already know that the denominatorof (B.6.2) is

1 1—3:11—2«1/ Uy H G[z . L —ap (B.6.3)
=1

so that we only need to work on its numerator, which is the exponentiation of the sum Z a tk
k=1
As we did in section 2.5, let us now set t, = zo, and t, = xp0. We can multiply and divide

B.6.3) by G},1 to get
( ]
— .[n 1
g alr! ) G ]a([”]gxko (B.6.4)

[n]

Using eq. (2.3.25) on each of the terms G| a;, in the sum above gives

n—1 n

Tho Y ) G\ (kU in 0,61 Ty in Tin i *** Tig— iy Tig o
k=1 k:l t=0 i1,i9,..,ig=1
i1 Fio .. Fir £k

n—1 n

Z Z G[n]\{k,uzzlih}xo,hxi17i2xi2,is © Ty 1,0 Lig kTR0 (B.6.5)

] k=1 t=0 11,89,-,8¢=1
i1Ai#  Aig R

Consider the product of x, coefficients in the equation above,
T0,i1 Ty in Tig i * * * Liy_q,is Tiy kTh,0 (B.6.6)

This can be interpreted as a path on the quiver starting from node 0, passing through ¢ interme-
diate nodes iy, 1 < h < t, reaching node k and returning back at node 0. Crucially, since all the
i, nodes in this term do not ever take the value k (because of the summation ranges in (B.6.5)),
such a path never intersects itself. Our aim now is to factor out the 0 node from such a term,
rewriting it as a path starting from node k, passing through the same ¢ intermediate nodes iy,
and ending at node k again. We can achieve this goal by letting an appropriate derivative act

on the string of x4, coefficients in (B.6.6). Consider the identity
L0,i1Ti1,i0Tigiz " " Lig—1,it Lig,kLh,0
0 0
= Tk,0 (mom D + ok Drr Tk iv iy iaTinyig **° Tig_1,ir Lig k (B.6.7)
Thiy Th

(no sum on k or i1), where we added the term

0 0 .
(0 o # 00 gy ) i =m0 (B.65)
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The 0/0xy, j, derivative has been added in order to account for the ¢t = 0 case (the one in which
there are no intermediate steps in the path (B.6.6), which would just read xoyxo): in this

situation we would trivially get

0
ToRTR,0 = Th,0 (0 + 2o,k i k> Thk = T0kTk,0 (B.6.9)

)

so that the identity (B.6.7) holds for any ¢ > 0. Note also that we can rewrite the same equation

as

L0,i1 Liy,i0Lig,iz ** " Lip_1,0:Lig,kLk,0 =

)

n
0 0
= Tk, E o P T 2ok 5 Thiy TinioTig,ig *** Tig_1,ie Tig b (B.6.10)
p—y Tk p Tk k

pF#k

where the values that p can take ({1,2,...,n} \ {k}) are the same ones on which i runs in the
sum in (B.6.5): all the 41,149, ..., 4; indices never take the value k, leaving xy,;, as the only variable

on which the 0/0x},, derivative can act with nonzero result. We can then rewrite the identity
(B.6.10) as

20,i1Liq,i2Tig,iz *** Tig_1,i4Lig,kTk,0

n
0
= Zk,0 E :fﬂo,p Dn Lh,iy TiiaLin iz " " Lip_1,itLigk
pzl k7p

n
-
=ty 0P Bp g, @iy iy i iy Ty T (B.6.11)
p=1

where in the last line we set % = 9%4 and used the original notation T = tg, Togk = tk. At
»qd

this stage, we successfully rewrote a our initial path (0,41, 42, ..., i, k,0) in terms of a suitable

differential operator acting on a new path (k, 1,12, ..., 4, k).

Inserting eq. (B.6.11) into (B.6.5) gives

n
~[n] _
> g wro = (B.6.12)
k=1
n n—1 n n
e [\ {k,U¢ _ in} YrUp LhirTin,iaLiosig " Lig_1,ieLig,k
[n] k=1 t=0 i1,i0,..,iz=1 p=1

i1 Fig . Fip £k

Note that 0k can pass through G\ (kU since the latter does not contain the k-th point

1in}?
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(by construction). We can then write

n
> ko

n

tp O Z DGRl in) i T T T i Tk (B.6.13)

kp 1 01,82, =1
ll;ﬁig#m#iz#k

Z tktp 8k7p Z Z G[”]\{k,UZ:ﬂh}xhhxi17i2xi2,i3 C Ty a,i Ligk T G[n]\{k’}

k,p=1 11,12,.,0¢=1
117512# FigFk

G ]

where in the last line we added G\ under the derivative action: indeed Ok G\ (xy = 0,
since G\ (&} does not contain the k-th point, and thus any xy , Vp. Note that the term in the
round brackets of the equation above is just —GJ,). The definition of G|,; we gave in eq. (2.3.29)
reads

n—1

Gy =Gy — >, >, Glu1\{U,_, in}Bnsia Tisin T s~ Tip_y,in Lig,n

t=0 i1,i9,..,ig=1
i FigF#. . Fig

= G\{n} — Z Z Glap\fn,Ut_in}Tnis TirinTigyis ** Tiy_1,is Lign (B.6.14)

11 ,89,.,0¢=1
117622# Al FEn

but the same equation holds if, instead of n, we remove any integer 1 < k < n from the set [n]:

Gln) = Gup\(k} — Z Z G\ {k,Ut _ i} Thyia i ia Tingis *** Ty 10 i (B.6.15)

11,89,.,0¢ =1
zl#zzyé FiyFEk

Using (B.6.15) in (B.6.13) gives then

n
~[n] _
Lko0 Q) =
k=1

Z tkt 8k’p G[n = Z tkt 8’“”’ logG[ ] (B.6.16)

Gln) kep—1 kp—1

so that we can write, for the numerator of F' in (B.6.2)

H exp (“0 . T 0) = exp (i d([f;g ZL‘k70> =exp | — En: titp okp log G (B.6.17)

k=1 k,p=1
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This means that F[" can be written as

k,p=1
_ (B.6.18)
Gl

exp (— ST tyt, 0P logGM>
Jald

or, using Einstein summation

exp (—txtp PP log G[n])

il —
G

(B.6.19)

Recalling that F(gn] = G[n]_l, where Fj is the generating function for the unflavoured case, we

also have
I = B exp (48, 07 log ') (B.6.20)

Furthermore, considering the chain of equalities

(=1)PH My q _ 1
det(1, — X,,) det(1,, — X,,)

8p’q det(ln — Xn) = ap7q log (M) (B621)

we finally get to

(=) My g

rlnl — F(g”] exp Z tptq det(L, — X,)

p,g=1

(B.6.22)

The latter is exactly (2.5.15).
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Appendix C

Useful Formulae for the Permutation

Centraliser Algebras

C.1 Analytic formula for the dimension of M(m,n)

In this section we derive a formula for the dimension of M(m,n). This dimension is equal to

the sum of Littlewood-Richardson coefficients

Dim M(m,n)= > Y  g(Ri, Ry, R (C.1.1)

RiFm,RaFn RFm+n

The sum of squares of the Littlewood-Richardson coefficients is the dimension of A(m,n) and
has a simple 2-variable generating function. It is natural to ask if we can write a nice generating
function for the dimension of M(m,n). While we have not been able to derive something of
comparable simplicity, we will derive two interesting expressions (C.1.11) and (C.1.28) in terms
of multi-variable polynomials.

Let T}, denote a conjugacy class of permutations with cycle structure determined by a vector
(p1,p2,---), i.e. permutations with p; cycles of length i. Let now o, be an element in 7). For
op € T, it is known that [118]

£
XR:XR(UP) = H Coeff (fi(ti)7 p'> (C.1.2)

;!
where
a-(vh, i
filti) =e 2 T2 (C.1.3)

We can define

F(t1,to,-- Hfz t) (C.1.4)
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and write

S xr(op) = Coeft (F(tl,tg, I tP) (C.1.5)

R

It is also useful to define

= H et e (C.1.6)
We can write the LR coefficients in terms of T),’s as

9(R1, Ry, R) = > > xri(00)xm, (02)xR(01 0 09)

01€ESm 02€Sy

1
—ZZXRl )X R, ( )XR(TOT)IZIMZ)Z-!%!

pkEm gkn

m'n'

(C.1.7)

This uses the fact that the number of permutations in the class T}, is n!/ [ [, ?'p;!. Now use the

above formula for ), xr(7}), to obtain

> g(Ri, Ry, R)

R17R27

= > [ Coefi(fi(si), t8") Coeft (fi(t:), ) Coeft (fi(us), uf ) (p; + g;)!

pFEm gkn ¢

=Y " Coeft (F(3)F(£)F (i), Hsfitgiufﬁ% (pi 4+ ¢)'™ ")

pFm gkn

=Y Coeft (F(3)F(i)F (i) H sPitdiq DTy Pt ai (p; 4 g;)! (C.1.8)

pEm gkn

It is useful to make the substitutions s; — s'z;,t; — t'2;, u; — Z; and to introduce a pairing 8

<Z;c Z; > =05 Oy k!4 (C.1.9)

With these substitutions define

F(zi,5) = F(ti = s'z) (C.1.10)

8 Alternatively we can think about expectation values in a Fock space with z; — a;, Z; — a;r, This would allow
us to write the subsequent formulae in terms of quantities in a 2D field theory. This perspective could be fruitful,
but we will leave its exploration for the future
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Then we can write
Dim (M(m,n)) = ( Coeff (F(z;, $)F(zi, t)F(zi,u =1),s™t")) (C.1.11)
This has been checked for very simple cases, e.g. up to (m,n) = (3,3)

C.1.1 Multi-variable polynomials

It is useful to isolate the multi-variable polynomials in the z; variables at each order in the s,

variables. Let us introduce the quantities

B(Z.s)= I1 o [Slz] (C.1.12)

F(Z,s) = A(Z,s)B(Z,s) (C.1.13)
Introducing polynomials F,, (%) for each order in s we can rewrite the latter quantity as

Z,8) =Y Fm(Z)s" (C.1.14)
m=0

We will now write formulae for the coefficients of s™ in A and B. For A(Z,s) we derive

0 o om 0 Zzplz Pi
) =Y Agm(2)s”" = Z H o (C.1.15)
m=0 p1,p2,=01i=1 pit
so that
2ip;
z.
Ao (2) = ! C.1.16
()= (2i)Pip;! ( )

pFEm

We can also define A,,(2) to be zero for odd m and equal to the above for the even values. It

is useful to define the coefficients of 277" 29?2 ... 22 in the A(Z,s = 1) as

1
‘A[P} = A[th"'] = H pi!(%)pi (0'1-17)

so that we may write

m=>_ Au [ (C.1.18)

pFm =1
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Similarly, for B(Z, s) we obtain
00 (2i41) 5.
B(zZ,s) = Hexp [ _ (C.1.19)
Pl (20 4+ 1)
and
Bu(?)= > H plp ; (C.1.20)

{p1,p3--- }Frmi odd

Therefore it is natural to define

1
Bip, ps,] = H ]

?) = ZB[pl,p&...] I1 =" (C.1.21)

pFEm i odd

Going back to (C.1.14) we get, using the formulae just derived

Fn(2) =Y Ap(D)Bmi(2) = > A(2)Bpa(Z)
k=0 k=0
K3
i(2r;4q;
- S© ABg [T (C.1.22)
k=0 rHk g-m—2k i

q odd

Grouping terms with the same power of z; we obtain

= > i H pi (C.1.23)

[pl sP2-- }

with

T = Z Z Alry g 1Big1,2,-] H 6(pi, 21;) H5(pi,2ri+qi) (C.1.24)

[T17T‘27---] [q17q2"'} i even t odd

Note that the function F(Z,s) is closely related to the generating function for the cycle

indices of S,, which is

> tizi
Z =
(Z,t) = exp [Z ; ]
=1
A(Z,s) = (Z(z, — 225 — 32))1/2
B(j 5) = (Z(z2i41 — 22i41,22i — 0))1/2 (C.1.25)
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We can work with the same function if we change the pairing. With the pairing
(2527 = 0igde il i (C.1.26)
we can write the above formulae as
Dim(M(m,n)) = (Fin(2)Fn(2), Fmin(2)) (C.1.27)

or, equivalently,

Dim(M(m,n)) = Z Z Fprpa-Faraz,Fpi+p2,a1 4+, Hipﬁ_qi (pi + )"

pFm gkn %

=> D FoFaFpraSymp +q) (C.1.28)

pFm gkbn

This is eq. (4.2.45).

C.2 LR rule for hook representations

Here we derive the LR decomposition rule for the tensor product of two hook representations.
Let us consider three representations R, Ry and Ry of Sp,1p, Sy and S, respectively. The LR
coefficient g(Ry, Ra; R) gives the multiplicity with which the representation R; ® Rs appear in
the representation R upon its restriction to S,, X S,. There is a systematic procedure to obtain
such coefficients [68], that we now briefly review. We take the Young diagrams corresponding
to Ry and Ry, and we start by decorating the latter as follows. We write ‘1’ in all the boxes of
the first row, ‘2’ in all the boxes of the second row and so on in a similar fashion until the last
row. Then we proceed to move all the ‘1’ boxes from Ry to Rj, ensuring that that we produce
legal Young diagrams and no two copies of ‘1’ appear in the same column. We then move the
‘2’ boxes following the same rules, and so on. In doing so, we also require a reading condition.
At any step, reading from right lo left along the first row and then subsequent rows, the number
of ‘1’ boxes must be greater or equal to the number of ‘2’ boxes. Similarly, the number of ‘2’
boxes must be greater or equal to the number of ‘3’ boxes, and so on.

At the end of this procedure we are left with a collection of Young diagrams, made with m+n
boxes. If two or more of the resulting diagrams are identical (that is, the not only match in shape
but also in the numbering of their boxes), we only retain one of them. Otherwise, if k diagrams
R appear with the same shape but different numbering, we can say that g(R1, Re; R) = k. These
will be the prescriptions that we will follow to derive our LR formula.

We specify any representation R by the sequence of pairs of integers R = ((a1,b1), (a2, b2),
...(ag,bq)). In a Young diagram interpretation, a; (1 < j < d) is the number of boxes to the
right of the j-th diagonal box, and b; is the number of boxes below the j-th diagonal box. We

refer to d as the ‘depth’ of the representation R. Hooks therefore are representations of depth
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1. Schematically, in this appendix we will obtain the RHS of

(k1,01) ® (ko,12) = @ ((a1,b1), (a2, b2)) (C.2.1)

In our derivation we imagine to keep the first hook fixed, and to add to it boxes coming from
the second diagram. In doing so we are careful to follow the LR prescription. The boxes of the
second diagram are decorated by a ‘1’ or a ‘v’, depending whether they come from the first row
of the diagram or not. The tensor product (ki,{1) ® (k2,l2) will decompose into a direct sum
of a varying number of depth 2 representation and precisely two hooks (regardless of the actual

value of ki 2, l12). These hooks are
Hook 1: (lﬁ + ko + 1,011 + lg)

Hook 2: (k‘l + ko, l1 + 1o + 1) (022)
Notice that we can rewrite them using the notation we use for the depth two diagram as

Hook 1: ((kl +ko+ 1,011 + lg), (0, —1)) (C.2.3)
Hook 2: ((kl + ko, l1 + 1o + 1), (—1,0)) (024)

This notation will be helpful at a later stage.
We now turn to the depth two representations. We proceed systematically, grouping them

into four categories according to the two yes/no questions:

1) Is there a in the first column of the resulting diagram?

2) Is there a in the first row of the inner hook of the resulting diagram?

We now analyse these four possibilities.

C.2.1 (Y,Y) case

The diagrams in this class are of the form

kq ko —i

Ll [111111]
gommn
I

0
v
Ly v
v

—_——

7

la—3j

v
v

Figure 46: (YY) case
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They can be described by the expression
YY) (k4 ke =i+l — ), (4,5)) (C.2.5)
where ¢ and j are constrained by the boundaries
0 <i<min(ky,ka — 1)
0 <7 <min(ly,lz — 1) (C.2.6)

The upper bound on 4 is min(ky, ks — 1) because, if k1 > ko, we cannot remove all the ks
type boxes from the first row. This has to be avoided since by construction the rightmost box
in the second row has to be a type box. A diagram with no type boxes on the first row
and a type box at the end of the second row would violate the LR reading condition.

C.2.2 (Y,N) case

The diagrams in this class are of the form

k?l kQ—i
Ll [111111]
gOmEm
v
v .
ulole j
}
—H_J
1 7
v |
lp—j |V
v
v

Figure 47: (Y ,N) case

They can be described by the expression
(Y,N): (k1 + ke —i,li +la—j+1),(i—1,5)) (C.2.7)
with the boundaries
1 <@ < min(ky, k2)

0 <j <min(ly,l2) (C.2.8)
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C.2.3 (N,N) case
The depth two diagrams in this class are of the form
k1 ko —i
Ll [111111]
g
v
Ll j
v
| H—J
v 1
v
la—7g|Y
v
v
Figure 48: (N,N) case
They can be described by the expression
(N?N) : (<k1+k2_i7l1+l2_j)7(iaj)) (C29)
with the boundaries
0 é ) S min(k:l — 1, ]{32)
0<j<min(ly —1,l) (C.2.10)
C.2.4 (N,Y) case
The diagrams in this class are of the form
k1 ko—i+1
Ll [111111
ghEEnn
» j
I v
v
_W—J
v 7
v
la—7|Y
v
v
Figure 49: (N)Y) case
These can be described by the equation
(N.Y): (k1 the—i+ 1Ll +1—j),07-1)) (C.2.11)
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The boundary for i is
0 S 7 S min(k:l, kg) (C.2.12)

The upper bound is k2 and not k2 + 1 because we cannot remove all the from the first row,
as the rightmost box in the second row has to be a type box. In this way, we are enforcing

the LR reading condition. On the other hand, the boundary for j is
1 < j <min(ly,l3) (C.2.13)

The lower bound is a 1 as by construction there has to be a box in the first row of the inner
hook.

C.2.5 A summary

These four cases comprise all possible valid depth two diagrams. Summarising our result, we

have
e (YY) case: (k1 + ko — i, 01 + 12— 3),(4,7))
0 S /) S min(k:l,kg — 1)
0<j < min(ly,lo — 1) (C.2.14)
e (Y,N) case: (k1 +ko—d, i+l —7+1),0—1,7))
1 <4 < min(ky, ko)
0<j < min(ly, l5) (C.2.15)
e (N,N) case: (k1 4+ ko — il + 12 —7),(4,7))

0 S ) S min(k:l — 1,k2)

0<j<min(ly — 1,1y (C.2.16)

218



APPENDIX C. USEFUL FORMULAE FOR THE PERMUTATION CENTRALISER

ALGEBRAS
e (N,Y) case: (k1 +ko—i+ 1,00 +12—7),(,5—1))
0 S ) S min(kl,kg)
1 <j <min(ly,l2) (C.2.17)
We now introduce the boolean parameters
¢ — 0 If the answer to the first quest?on ?s no (C.2.18)
1 If the answer to the first question is yes
and
o — 0  If the answer to the second quest?on ?s no (C.2.19)
1 If the answer to the second question is yes
With this notation we can compactly rewrite (C.2.14) - (C.2.17) as
(k1 + ke —itée,lh+l—j+eae) (i—aé,j—ae)) (C.2.20)

where the sign~denotes the logical negation of a boolean variable, so that €12 = 1 — €1 2. In this

notation, ¢ and 7 have the boundaries
€160 <1 < min(k:l — €162, ko — 6162)
€1e2 < j < min(h — €169, 19 — 6162) (C.2.21)

By denoting hy = (k1,11) and he = (ko,l2), together with R = ((a1, b1), (ag, b)) we can then

write

g(h1,ha; R) = Okytkyar Oy +1a+1,61 0—1,a 00,6y + Ok +hatT,as Oty +12,01 00,05 01,5

1 min(k‘1—€1€2,k’2—6162) min(l1—€1€2,l2—5162)
+ § E E 6k1+k2—i+€1€2,a1 5l1+lg—j+61€2,b1 5i—51€2,a2 53'—5162,172
€1,e2=0 1=€1€2 J=€1€2

(C.2.22)

where we also added the two hooks in the depth two notation, (C.2.3) and (C.2.4). Explicitly,

summing over the €1 o parameters, we get the lengthier expression

219



APPENDIX C. USEFUL FORMULAE FOR THE PERMUTATION CENTRALISER
ALGEBRAS

g(h1,he; R) =

min(k1,k2) min(ly,l2)

= Oytkaiar Olitip+1b1 013 00y + D Y " Okitka—iar Oti-ta—jr1,b1 i taz Oy
i=1 §=0

min(k1,k2) min(ly,l2)

+ Ok +ko+1,a1 Oty 412,61 00,02 0—1,b5 + E E Ok +ha—i+1,a1 Ol +la—j,by Oisan 05—1,by
i=0 j=1

min(k1,k2—1) min(l1,lo—1)  min(k1—1,k2) min(l1—1,l2)

* Z Z + Z Z Oy +ha—isar Ol +la—jbr Oiaz Ojpy  (C.2.23)

i=0 j=0 i=0 j=0

From this equation it is clear that g(hi, he; R) can be either 0, 1 or 2. In particular, g(h1, he; R) =
2only if R= ((k1 +k2—4,l1 + 12— 7),(¢,7)) and 0 < ¢ < min(ky, k2), 0 < j < min(ly,l2).

C.3 Deriving the two point correlator

In this Appendix we will derive eq. (4.4.9) from eq. (4.4.7). Let us start by considering the
quantity

B (T 1)) (C.3.1)

where we remind the reader that Ry, Rs and R are irreps of Sy, S, and Sy, respectively. Let
us define T. Q(X’Y), T 2(X) and TQ(Y) as the sum of transpositions in Sy,1n, Sm and S, respectively.
We can expand (C.3.1) as

X Y
X§1 ,R2 (Ti,lT[(m] ) T[sl] )>

XY X Y X X Y X Y Y
:XghRg (TQ( )T( )T( )) _Xgl,RQ (TZ( )T( )T( )) _Xgl,Rg <T )Tg( )T( ))

[m] *[n] [m] [n]

Xr(T3Y)) (x) ) 1 p (X\.R (X)p(¥)
= QT XR; (Cr[m] )XRQ (,T[n} ) - mXRLR2 (T2 )XR17R2 (]ﬂ[m] Cr[n] ) +
_ # R Y)\ R (X)) (Y)
g de dR2 XR17R2 (TQ ) XRl,RQ (T[m} T[n] )
(X,Y) (X)
T T
_ gXR(d2> Y (T9) (1)) - XRéfz) B oTOT0)
R R

(Y)
Xry (T3 ") X) (Y
- Qde X§17R2(T[(Tn])T[(n]))
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XY X Y
BRI xm () xm(Ty)
dr dr, dr,

(Y))

=g xm (Tio)) X, (T (C.3.2)

But now
(=1)mtt (m —1)! if Ry is a hook representation

T = C.3.3
X &y (Tim)) { 0 otherwise ( )

where cg, is the number of boxes in the firs column of the Young diagram associated with the

representation R;. A similar equation holds for x g, (7},)). We then have

(X) ()
‘hr (TaTi) 1) =

dr dr, dr,

(X,Y) (X) (Y)
(=1)“R1TR2 g (m — 1)!(n — 1)! [XR(TQ ) _xm(y7)  xrp(Tp 7) : Ry, Ry hooks

0 otherwise
(C.3.4)

thisis eq. (4.4.8). Let us now restrict to the case in which both R;, R are hooks representations.
We will denote there representations as h; = Ry = (k1,l1) and he = Ry = (ka,l). This also
forces the representation R to be at most of depth two, as we derived in Appendix C.2. We

now consider such a representation. With the notation given at the beginning of this section,

R = ((a1,b1), (a2, b2)), it is immediate to write an equation for the normalised character 7”3(}?)
xr(T2) _ %+ 1) = . ) ) .
dn **Z“ ri = 2i+1) = ar(ar +1) + (ag + 2)(ag — 1)+ (C.3.5)
ba+2 b1+1
+2 Z —20)+2 ) (1—-4)
i=bo+3
Lo 2 2 L9 2
= (0l + a3 +ar+as) = S (0] + by + b1 +bo)
1 1
= 5(a1+ b+ 1)(ar = bi) + 5(az + b2 +1)(az = by) (C.3.6)

We now need the equivalent of this formula for the depth one representations hy and he, i.e.
the hooks. Such an equation can be directly obtained by setting (as,b2) = (—1,0) or (ag,b2) =
(0,—1) in (C.3.5). We can then write (C.3.4) as

—1)Chq TChy
1) = E - 1t - 1)

o (12,1070 2
X [(al + b1+ 1)(a; —by) + (ag + ba + 1)(ag — ba)+ (C.3.7)
— (ki +l+ 1)k —l) — (k2 + 12 + 1) (k2 — o)
where R = ((a1,b1), (a2, b2)) and hy = (k1,11), ha = (ko,2).

The last piece we need is an equation for the U(N) dimension of a depth two representation
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R = ((a1,b1), (az,b2)). It is straightforward to write

Dim (R)— (al—ag)(bl—bg) <a1+b1><a2+b2)< N+ ap >< N+ a )
N (a1 +b2+1)(az + b1 +1) b1 by a1+ +1 Nag+by+1

(C.3.8)

This equation reduces to its depth 1 equivalent by imposing (a2,b2) = (—1,0) or (a2, b2) =
(0,—1). Tt is also helpful to recall the dimension formula for a S;;;.1 hook representation (k,1):

dr = (k ;r l) (C.3.9)
Let us now consider eq. (4.4.7):
f ; R (X)rp(Y)
(00" mw oY i ng Dimy(R) (XRLRQ (T“T[m] T} )) (C.3.10)

RiFm RbFm+4n
Robn

Inserting eq. (C.3.7), (C.3.8) and (C.3.9) into the above equation gives

(Tr(X™Y™)Tr(X™Y™)h

n+m

Z Z ST g (ki1 +1—m)d(ky+la+1—n) Flay,bi,az,ba, ki, ko, l2)

kl,l1 Ok:g,lz 0 a1,b1=0
ag,bg=0

(C.3.11)

where we defined the function

k‘l'k‘g'll'lgl (a1 — az)(bl — bg)
d(ar +ba+1)(ag + b1+ 1) (k1 + 11 + 1) (ko + 12 + 1)

X<a1+bl><a2+b2>< N+ ay >< N+ a >><
by by a1 +bi+1/\as+by+1

X ((a1 + b1 + 1)(a1 — bl) + (CLQ + by + 1)(&2 — bg)—i—

F(a1,b1,a2,b2, k1,01, k2,1l2) =

—(ky + 1+ 1) (kr — 1) — (ke 412 + 1) (k2 — 12))? (C.3.12)
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