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Abstract

Quiver gauge theories are widely studied in the context of AdS/CFT, which establishes a cor-

respondence between CFTs and string theories. CFTs in turn offer a map between quantum

states and Gauge Invariant Operators (GIOs). This thesis presents results on the counting and

correlators of holomorphic GIOs in quiver gauge theories with flavour symmetries, in the zero

coupling limit.

We first give a prescription to build a basis of holomorphic matrix invariants, labelled by

representation theory data. A finite N counting function of these GIOs is then given in terms

of Littlewood-Richardson coefficients. In the large N limit, the generating function simplifies

to an infinite product of determinants, which depend only on the weighted adjacency matrix

associated with the quiver. The building block of this product has a counting interpretation

by itself, expressed in terms of words formed by partially commuting letters associated with

closed loops in the quiver. This is a new relation between counting problems in gauge theory

and the Cartier-Foata monoid. We compute the free field two and three point functions of the

matrix invariants. These have a non-trivial dependence on the structure of the operators and

on the ranks of the gauge and flavour symmetries: our results are exact in the ranks, and their

expansions contain information beyond the planar limit.

We introduce a class of permutation centraliser algebras, which give a precise characterisa-

tion of the minimal set of charges needed to distinguish arbitrary matrix invariants. For the

two-matrix model, the relevant non-commutative algebra is parametrised by two integers. Its

Wedderburn-Artin decomposition explains the counting of restricted Schur operators. The struc-

ture of the algebra, notably its dimension, its centre and its maximally commuting sub-algebra,

is related to Littlewood-Richardson numbers for composing Young diagrams.
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Chapter 1

Introduction

1.1 Strings, dualities and quivers

String theory is one of the most promising candidates for a theory of everything. Born in

the late ’60s as a mathematical model to explain the dualities of strong interactions in nuclear

physics [4], has been later reinterpreted as a possible way to consistently describe a unified theory

of gravitation and quantum physics. It was found that the spectrum of a certain one-dimensional

object propagating in spacetime, a bosonic closed string, contained an excitation with all the

correct quantum numbers of a graviton. Some of the initial flaws of the model, most notably

the absence of fermions and an unstable vacuum, have been overcome by the introduction of

supersymmetric string theory. In a supersymmetric theory, bosonic and fermionic particles

always come in pairs, and each pair shares important quantum numbers such as energy. It is

however important to underline that the existence of supersymmetry in Nature has still to be

proven. One the one hand, superstring theory is a remarkable model, truly a unifying theory. On

the other hand, many questions are still unanswered. For example, the theory is mathematically

sound only in ten dimensions. This value is known as the critical dimension of superstring theory,

and is the only one for which the theory is not anomalous. Therefore the quest for the missing

dimensions commenced. Many are the proposed solutions: according to one interpretation, the

6 missing dimensions are coiled up and form a compact topology, so small that we can not

probe it even with the most powerful collider. This idea was proposed during the so-called

first superstring revolution that started in 1984. That year signed the beginning of a period

during which many important discoveries heightened the scientific interest in string theory. For

example, it was found that the Green-Schwarz mechanism allowed for the anomaly cancellation

in type I superstring theory [5]. This was probably the single most important result of the first

superstring revolution. Other string theory models, such as the heterotic string, were theorised

as well in this time frame. These models were also shown to be anomaly-free.

Between 1994-1996 the second superstring revolution began. In 1995 Edward Witten sug-

gested that all the different string theory models could be particular limiting cases of a new

eleven dimensional theory, “mother” to all of the others [6]. This is M-theory. In the same

year Joseph Polchinski showed that, by themselves, strings are not enough to make a consistent
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CHAPTER 1. INTRODUCTION

string theory, but one instead needs to add to the model other multi-dimensional extended ob-

jects [7]. This discovery considerably enriched the already vast mathematical landscape of string

theory. Finally, in 1997 Juan Maldacena proposed a duality [8] between type IIB string theory

propagating on a suitably chosen curved background, called AdS5 × S5, and a supersymmetric

gauge theory in four flat dimensions, N = 4 Super Yang-Mills. This conjecture, called simply

AdS/CFT, has different formulations differing by the strength of their statement, and gave a

new thrust to string theory research. It is the most successful realisation of the holographic

principle, firstly proposed by Gerard ’t Hooft, which states that the physical description of a

volume of space can in fact be encoded by the physics happening at its boundaries - not unlike

an actual hologram. One of the many reasons why AdS/CFT is so important is that it is a

weak-strong duality. This means that the strong interacting regime of one side of the duality,

where it is hard to perform computations, is mapped to the weakly interacting regime on the

other side, which is more tractable. Is is however important to say that creating the explicit

dictionary, that is mapping excitations on the gravity (string) side to excitations of the gauge

theory side, is not an easy task, and only a few examples are known. Over the years, gener-

alisations of the duality have been proposed. In these cases, the string theory is defined on a

different background (still involving AdS space), and are dual to more exotic gauge theories,

sometimes called quiver gauge theories. AdS/CFT is the central motivation of this thesis. We

will be focusing on the gauge side, and in particular we will study the counting and correlators

of matrix invariants in quiver gauge theories.

1.2 The one and two-matrix problem in N = 4 Super Yang-

Mills: multi-trace operators and giant gravitons

A number of questions on gauge invariant functions and correlators of multiple-matrices have

been studied in the context of N = 4 Super Yang-Mills (SYM). The impetus for these develop-

ments in physics, as we stated in the previous introductory section, has come from the AdS/CFT

correspondence [8–10], notably the duality between the N = 4 SYM theory with U(N) gauge

group and AdS5×S5. N = 4 SYM is a maximally supersymmetric gauge theory in four dimen-

sion. Quite remarkably, it is the only consistent theory with these characteristics. On top of that

it is a Conformal Field Theory (CFT), meaning that it does not flow under its Renormalisation

Group action. The single coupling coefficient of the theory thus does not run when the energy

scale is changed. The conformal symmetry of the theory gives extra motivation, because of the

operator-state correspondence: quantum states correspond to gauge invariant local operators,

which are composite fields. These can be matrix-valued fields which are space-time scalars,

fermions, field strengths or covariant derivatives of these. A generic problem is to understand

U(N) invariants constructed from a number n of such fields

Oj1,··· ,jni1,··· ,in ∼ F
j1
1,i1
· · · F jnn,in (1.2.1)
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CHAPTER 1. INTRODUCTION

This is subsequently used to understand their correlation functions. The n upper indices each

transform in the fundamental of U(N), which we call V , while the lower indices transform in the

anti-fundamental, labelled V̄ . Hence, an important ingredient is the nature of the invariants in

V ⊗n⊗V̄ ⊗n. The number of linearly independent invariants is n!. They are obtained from (1.2.1)

by suitably contracting all the upper indices with a permutation of the lower ones. Let us now

focus on the special case in which all the F fields are scalars. There are six real scalars in N = 4

SYM, labelled φi, transforming in the fundamental representation of SO(6) (or equivalently in

the antisymmetric representation of the SU(4) R-symmetry group). The euclidean action on

R× S3 for this bosonic scalar subsector is given by

Sφ =
N

4πλ

∫
R
dx

∫
S3

dΩ3

2π2

(
1

2
(Dφi)(Dφi) +

1

4
[φi, φj ]2 − 1

2
φiφi

)
(1.2.2)

where λ = g2
YMN is the ’t Hooft coupling and D is the gauge covariant derivative. The mass

term ∼ φiφi is a consequence of the conformal coupling to the metric of S3. It is customary

then to combine these six real fields into three complex holomorphic fields

X = φ1 + iφ2 , Y = φ3 + iφ4 , Z = φ5 + iφ6 (1.2.3)

The advantage of formulating the model in this way is that all half-BPS states of the gauge theory

can be described in terms of an ordinary matrix quantum mechanics [11]. This is a consequence

of the state-operator map. Half-BPS operators transform in the [0, n, 0] representation of the

SU(4) R-symmetry group, and are eigenstates of the dilatation operator with eigenvalue ∆ = n.

Let us consider the insertion of a half-BPS (local) operator at the origin of R4. The operator-

state correspondence associates to this operator on the plane a quantum state on R × S3.

Moreover, working in radial quantisation, the dilatation operator acting on the former becomes

the Hamiltonian for the quantum theory on the latter. Let us now focus on a single scalar field,

e.g. Z(~x, t), with the intent of building protected operators out of it. Restricting to a single

field, the R-symmetry group acts as an U(1) abelian group, and we can label representations

just by using their U(1) charge, n. Furthermore, since Z(~x, t) is a scalar, it has classical scaling

dimension ∆ = 1. Its Taylor expansion around the origin of a R3 slice at fixed time t is

Z(~x, t) = Z(0, t) +
∞∑
k=1

1

k!
[∂µ1∂µ2 · · · ∂µkZ(~x, t)]x=0 x

µ1xµ2 · · ·xµk (1.2.4)

Since every derivative on the RHS contributes to the scaling dimension with one unit, the j-th

term in the sum will have ∆ = j + 1. However, the R-charge of Z(~x, t) is fixed to 1 on both

sides of this equality. For protected operators, the R-charge must be equal to their scaling

dimension. This means that, for constructing half-BPS operators, only the Z(0, t) term on the

RHS of (1.2.4) can be used. We conclude that to construct the half-BPS states in N = 4 SYM

one only needs the S-wave reduction of the decomposition of the complex scalar fields, Z(0, t).

11



CHAPTER 1. INTRODUCTION

This is a one-matrix quantum mechanics. For example, the state

Tr

Z(0, t)† Z(0, t)† · · ·Z(0, t)†︸ ︷︷ ︸
n times

 |Ω〉 (1.2.5)

is a half-BPS supergravity mode on the S5 internal space of AdS5 × S5, where |Ω〉 denotes the

vacuum of the theory.

In the following sections we will focus on the one and two-matrix sector of the theory. We

will count and construct all the local matrix invariants made with at most two complex matrices,

give a finite N expression for their free field correlators and present evidences for what their

gravity duals are.

1.2.1 One-matrix problem

We consider here the case in which all the n operators F in (1.2.1) are the same complex scalar

matrix, X = φ1 + iφ2. Since these fields live in the adjoint representation of U(N), a gauge

transformation by a unitary matrix U acts as

X → UXU † (1.2.6)

The matrix invariants are single- and multi-trace operators built with n copies of the same

matrix X. Arguably the simplest way to construct an invariant out of n copies of the same

matrix X is just to take the trace of their product. The result is a single-trace operator:

O ∼ Tr (Xn) (1.2.7)

These operators are interesting to study as they belong to a half-BPS multiplet: supersymmetry

protects their energy and they do not receive quantum corrections. As we stated in the previous

section, their conformal dimension is ∆ = n and they transform in the [0, n, 0] representation of

the SU(4) R-symmetry group. We can also construct multi-trace invariant operators, by simply

taking products of single-trace operators:

O ∼ Tr(Xk1)l1Tr(Xk2)l2 · · · ,
∑
j

kjlj = n (1.2.8)

One then asks what is the AdS/CFT dual of these operators. It has been shown that for

n � N they are dual to graviton excitations [9]. Single-trace operators (1.2.7) correspond to

single particle bulk excitations. In this case the number of X fields, n, is interpreted as the

angular momentum of the Kaluza-Klein graviton on the S5 space. The construction of the Fock

space in the gravity side is then immediate for these excitations, as we can simply associate to

each single-trace operator a unique graviton mode. Multi-trace operators (1.2.8) are mapped

to multi-particle graviton excitations. For n = O(
√
N) the gauge invariant (1.2.8) are dual to

strings [12]. For n = O(N) they are dual to giant gravitons [13]. These are gravitons with a very

12



CHAPTER 1. INTRODUCTION

large angular momentum: for large N the Myers effect [14] causes them to stretch into spherical

D3 branes expanding into either the AdS or the compact S5 space of the AdS5 × S5 geometry.

The brane action in this background, when a RR flux is turned on, admits stable BPS solutions

- the giant gravitons. We will have more to say about these objects later in this section.

We will now focus on the problem of counting and computing correlators of single and multi

trace operators, made with n copies of a single complex matrix X. An effective approach to both

of these problems relies on permutations technology. As briefly stated in the previous section,

we can specify a composite operator by contracting the upper indices of (1.2.1) with a suitable

permutation of its lower indices. When all of the fields F are the taken to be the same, F = X,

this results in

Oσ(X) = Xi1
iσ(1)
· · ·Xin

iσ(n)
(1.2.9)

where σ is a permutation of n elements, σ ∈ Sn. An equivalent way to write this equation is as

follows:

Oσ(X) = TrV ⊗n
(
X⊗nσ

)
(1.2.10)

Here the trace is taken over the tensor product space V ⊗n, where V is the fundamental repre-

sentation of U(N). Operators written in the form of (1.2.10) are often said to be in the ‘trace

basis’. The permutation σ acts as the map

σ : V ⊗n −→ V ⊗n

|i1, i2, ..., in〉 7−→ |iσ(1), iσ(2), ..., iσ(n)〉
(1.2.11)

with each |i〉 ∈ V . Introducing the shorthand notations

|I〉 = |i1, ..., in〉 ∈ V ⊗nN , 〈J | = 〈j1, ..., jn| ∈ V̄ ⊗nN , (1.2.12)

where V̄ is the antifundamental representation of U(N), we can write the matrix elements of

X⊗n and σ as

(
X⊗n

)I
J

=
〈
I
∣∣X⊗n∣∣ J〉 , (σ)IJ = δi1jσ(1)

δi2jσ(2)
· · · δinjσ(n)

(1.2.13)

Therefore, we have

(
X⊗nσ

)I
J

=
(
X⊗n

)
K

(σ)KJ = Xi1
k1
· · ·Xin

kn
δk1
jσ(1)

δk2
jσ(2)
· · · δknjσ(n)

= Xi1
iσ(1)
· · ·Xin

iσ(n)
(1.2.14)

Tracing the RHS above gives eq. (1.2.9).

Eq. (1.2.10) can also be interpreted diagrammatically. If we draw the matrix elements

(X⊗n)
I
J and (σ)IJ as in Figure 1

13



CHAPTER 1. INTRODUCTION

Figure 1: Diagrammatic description of the matrix elements of X⊗n, σ ∈ Sn.

then we can draw the operator Oσ(X), defined in (1.2.10), as in Figure 2. The horizontal

bar in this figure denotes the tracing of the indices.

Figure 2: Diagrammatic description of Oσ(X), as defined in eq. (1.2.10). The horizontal bars in the
diagram in the far RHS denote the identification of the indices, to form a trace.

Distinct σ related by conjugation, i.e. σ and γσγ−1 for some γ ∈ Sn, give the same operator:

Oσ(X) = Oγσγ−1(X) (1.2.15)

This is most easily seen from the definition (1.2.10), where we just need to use the cyclicality of

the trace and the fact that

[
X⊗n, γ

]
= 0 , σ ∈ Sn (1.2.16)

The latter equation is just the statement that the adjoint action of γ on a tensor product

X⊗n just reshuffles its constituent fields X. The equivalence relation (1.2.15) can also be seen

pictorially as in Figure 3.

14



CHAPTER 1. INTRODUCTION

Figure 3: Diagrammatic interpretation of eq. (1.2.15).

Therefore, gauge invariants made with n complex matrices X are in a 1-1 correspondence

with the conjugacy classes of Sn, rather than permutations σ ∈ Sn. Since in Sn there are p(n)

conjugacy classes, where p(n) is the number of integer partitions of n, for fixed n we can form

up to p(n) invariants. This counting does not address the issue of finite N effects, that we will

discuss later in this section. The large N generating function for the counting of these operators

is therefore

Z(x) =
∑
n

p(n)xn =
∞∏
i=1

1

1− xi
(1.2.17)

Aside from enumerating invariants, this permutation approach has been used to compute cor-

relators in the free field theory. Let us then consider the correlator
〈
Oσ1(X)(x1), O†σ2(X)(x2)

〉
,

where we made the spacetime dependence of the two matrix invariants explicit. Using Wick

contractions we can decompose an n-point function into the sum of a product of propagators of

the form

〈
Xi
j(x1), X†kl (x2)

〉
=

4πλ

N

δil δ
k
j

(x1 − x2)2
(1.2.18)

thus obtaining〈
Xi1
j1

(x1)Xi2
j2

(x1) · · ·Xin
jn

(x1), X†k1

l1
(x2)X†k2

l2
(x2) · · ·X†knln

(xn)
〉

=

(
4πλ

N

)n 1

(x1 − x2)2n

∑
γ∈Sn

δi1lγ(1)
δ
kγ(1)

j1
δi2lγ(2)

δ
kγ(2)

j2
· · · δinlγ(n)

δ
kγ(n)

jn
(1.2.19)

From here it follows that, using the definition (1.2.9)

〈
Oσ1(X)(x1), O†σ2

(X)(x2)
〉

=

(
4πλ

N

)n 1

(x1 − x2)2n

∑
γ∈Sn

∑
γ∈Sn

TrV ⊗n
(
σ1γσ2γ

−1
)

(1.2.20)
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Since the spacetime dependence in these correlators is trivial, we will drop it from our equations,

assuming it always implicit. We will also omit the coupling constant term, 4πλ
N , as it can always

be easily reinstated. The correlator above would then have the notationally simpler form〈
Oσ1(X), O†σ2

(X)
〉

=
∑
γ∈Sn

TrV ⊗n
(
γσ1γ

−1σ−1
2

)
(1.2.21)

Using the diagrammatic description of the Wick contractions (1.2.19) shown in Figure 4

Figure 4: Diagrammatic description of the Wick contractions (1.2.19).

we can interpret the correlator (1.2.21) as in Figure 5.

Figure 5: The correlator (1.2.21) in diagrammatic notation.

Now by using the relation

TrV ⊗n (σ) = NC[σ] (1.2.22)

where C[σ] is the number of cycles in the permutation σ, we can rewrite eq. (1.2.21) as〈
Oσ1(X), O†σ2

(X)
〉

=
∑
γ∈Sn

NC[γσ1γ−1σ−1
2 ]

=
∑

α,γ∈Sn

NC[α]δ
(
γσ1γ

−1σ−1
2 α

)
(1.2.23)

where δ(σ) is the symmetric group delta, defined to be one iff σ = 1 and zero otherwise.
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Interestingly, this formula has also an interpretation in terms of the counting of branched covers

with three branch points over the sphere P1 (see for example [15] and references therein). A few

comments are now in order. This correlator is N -exact, meaning it contains all the powers of

N . The planar limit is recovered by taking the leading power of N , which is given by the α = 1

term in the sum on the RHS. This is because the identity permutation has the highest number

of cycles, C[1] = n. Therefore〈
Oσ1(X), O†σ2

(X)
〉

planar
= Nn

∑
γ∈Sn

δ
(
γσ1γ

−1σ−1
2

)
(1.2.24)

The RHS above is zero unless σ1 and σ2 are in the same conjugacy class. Since matrix invariants

are labelled by conjugacy classes, rather than permutations, we can say that the trace basis

(1.2.10) is orthogonal in the planar limit. However, we can now appreciate how the planar limit

and the large N limit, which are sometimes used interchangeably, are in fact quite different.

Consider the Next to Leading Order (NLO) correction of (1.2.23). It is〈
Oσ1(X), O†σ2

(X)
〉

N.L.O.
=

∑
α∈Trasp.

∑
γ∈Sn

Nn−1 δ
(
γσ1γ

−1σ−1
2 α

)
(1.2.25)

Here Trasp. is the set of transpositions of n elements. If n approaches order N , the combina-

torial factors
∑

α∈Trasp.
∑

γ∈Sn δ
(
γσ1γ

−1σ−1
2 α

)
in (1.2.25) become very large, overpowering the

suppression by powers of 1/N2 of non-planar diagrams [16]. As such, this contribution can not

be discarded. The same consideration also holds for the other subleading orders. Therefore, the

trace basis (1.2.10) is not diagonal, even in the large N limit.

In the introduction we stated that matrix invariants made with n = O(N) copies of the

matrix X are dual to giant gravitons. It becomes now apparent that GIOs built with a fixed

number of traces, by themselves, cannot be dual to the latter. It is therefore important to find

a basis which diagonalises these matrix invariants. Another reason why it is desirable to find

another description of these states are finite N constraints. The set of Oσ(X), σ ∈ Sn, form in

fact a suitable basis only for n ≤ N . For n > N the Cayley-Hamilton theorem implies that every

element of the form Tr(XN+k), k ∈ N+ can be decomposed in a sum of multi-trace operators.

The way around both these problems has been resolved in [17]. The idea is to pass from the

permutation-based description that we have discussed so far to its dual description, which is

expressed in terms of representation theory data. This map is referred to as a Fourier transform

on the symmetric group. Instead of labelling an operator by a conjugacy class of Sn, as in

(1.2.10), we will label it with a Young diagram made with n boxes. Such diagrams are in a

1-1 correspondence with irreducible representations1 of Sn. This leads to the construction of

operators in the half-BPS sector parametrised by Young diagrams [17,18]. Operators built with

1Since in this thesis we will not consider reducible representations, we will sometimes refer to an irreducible
representation simply as a representation.
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this formalism are called Schur operators, and are defined as:

OR(X) =
1

n!

∑
σ∈Sn

χR(σ)Oσ(X) (1.2.26)

where χR(σ) is the ordinary character of the representation R of Sn. The set of operators of

the form (1.2.26) is sometimes called the ‘Young basis’, or ‘representation basis’. In [17] it was

shown that the operators in (1.2.26) diagonalise the pairing

〈
OR(Z),O†S(Z)

〉
= δR,S

n!Dim(R)

dR
(1.2.27)

Here R, S are both representations of Sn, Dim(R) is the dimension of the U(N) representation

R and dR is the dimension of the Sn representation R. We will continue to use this convention

throughout this thesis.

There are a number of other features of Schur operators that help us in mapping them to

their gravity duals. In the founding paper [13], it was argued that giant gravitons extend to a

size of radius proportional to the square of their angular momentum. If the giant is extending

in the 5-sphere of the AdS5×S5 space, its size has to be less than the one of the S5. This is the

manifestation of the stringy exclusion principle [19]: the particle cannot be bigger than the space

that contains it. This constraints therefore imposes a boundary on the angular momentum of

the graviton, which on the gauge theory side translates into a boundary for the R-charge of the

dual operators. Schur operators OR(X) associated to completely antisymmetric representations

have the constraint that the length of the first column of the representation R, c1(R), must be

at most equal to the rank N of the gauge group, c1(R) ≤ N . In [16] the authors showed that

this boundary perfectly matches the cut-off of giant gravitons. This is a strong suggestion that

Schur operators of totally antisymmetric representations are dual to spherical giants. On the

other hand, since the anti-de Sitter space of the background is unbounded, AdS gravitons have

no size constraint to satisfy. It is then natural to associate them to the dual Schur operators

whose representation is totally symmetric.

Operators whose Young diagrams have order one long rows and order one long columns

are mapped to a system of AdS and spherical giants respectively [17]. Since the length of the

first column (row) of the Young diagram parametrising the giant is proportional to its angular

momentum, and since the angular momentum determines the size of the giant, a Young diagram

with order one long columns (rows) of the same length is mapped to a system of AdS (spherical)

giants whose worldvolumes overlap. On the other hand, Young diagrams with rows (columns)

of different length are mapped to giants with separated worldvolumes. In this multi-particle

context, the constraint c1(R) ≤ N imposes a bound on the number of AdS giant gravitons. The

interpretation of this limit in the gravity side is given in terms of the Ramond-Ramond 5-form

flux originating at the centre of the AdS. When the threshold of N AdS giants is reached, adding

a further giant would reverse the sign of the flux, causing the collapse of some of the branes [20].

This argument shows that any system with more than N AdS giants is not stable.
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Three point functions of these half-BPS operators are known as well [17]. Consider then

three operators of the form given in (1.2.26), OR(X), OS(X), OT (X). Here R, S and T are

Young diagrams of Sm, Sn and Sm+n. Notice that we do not require m and n to be equal. The

computation of [17] gives

〈
OR(X)OS(X)O†T (X)

〉
= g(R,S;T )

(m+ n)! Dim(T )

dT
(1.2.28)

The key quantity on the RHS above is the Littlewood-Richardson (LR) coefficient g(R,S;T ).

This is the number of times the representation T appears in the tensor product of representations

R ⊗ S [11, 21–24]. LR coefficients will be reviewed in Appendix C.2. This is essentially the

quantity that controls the mixing of the representations R and S to give T , and it will be a

central element of this thesis. They are all positive integers, and can be expressed in terms of

the Unitary group integral

g(R,S;T ) =

∫
DUχR(U)χS(U)χS(U †) (1.2.29)

where DU is the Haar measure and the χR(U) are the ordinary symmetric group characters.

Restoring the spacetime dependence in (1.2.28) gives

〈
OR(X)(x1)OS(X)(x2)O†T (X)(x3)

〉
= g(R,S;T )

(m+ n)! Dim(T )

dT |x1 − x3|m |x2 − x3|n
(1.2.30)

Notice that the denominator is missing the term (x1 − x2)∆1+∆2−∆3 . This is because the O’s

are protected operators, and their conformal dimension do not receive quantum corrections, so

that ∆1 = m, ∆2 = n and ∆3 = m + n exactly. Therefore ∆1 + ∆2 −∆3 = 0 at all orders in

perturbation theory.

In [17] it is also given the form for the generic k point extremal correlators. The result of

the computation is very similar to the RHS of (1.2.28), with the g(R,S;T ) coefficient replaced

by the generalised LR coefficient

g(R1, R2, ..., Rk;R) =
∑

S1,S2,...,Sk−2

g(R1, R2;S1) g(S1, R3;S2) · · · g(Sk−2, Rk;R) (1.2.31)

We only state these results without proving them, for a detailed derivation see [17].

1.2.2 Two-matrix problem

In this section we consider invariants built from two types of matrices, say m copies of X and

n copies of Y . We are interested in holomorphic polynomials in two complex matrices (X,Y )

that are invariant under a U(N) gauge symmetry that acts as

(X,Y )→ (UXU †, UY U †) (1.2.32)

Like in the one-matrix problem, matrix invariants will be single- and multi-traces polynomial
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in the X,Y matrices. These operators are generally not protected. It has been proposed that

operators of this from are AdS dual to excitations of giant gravitons [11]. We stated earlier

that a giant graviton is constructed by taking n = O(N) copies of the same matrix, e.g. X.

Consider now a matrix invariant made with a large number m = O(N) of X-type matrices

and a few Y -type matrices, n = O(
√
N). The latter can be considered as ‘impurities’, and can

be interpreted as open strings emanating from the giant graviton, which is in turn generated

by the X matrices. The endpoint of the open string attached to the giant acts as a point-like

charge for its world-volume theory. Since the net charge of a giant has to be null, Gauss law

implies that for every string ending on the giant, a string must be leaving it. This proposal first

appeared in [11], where the author tested it by showing that the counting of the states satisfying

the Gauss constraint on the gravity side matches the counting of matrix invariants built with

two matrices. We will now describe the construction of these matrix invariants. The procedure

closely follows the one discussed in the one-matrix problem case. We define Oσ(X,Y ) as

Oσ(X,Y ) = TrV ⊗(m+n)

(
X⊗m ⊗ Y ⊗n σ

)
(1.2.33)

which we represent as in Figure 6.

Figure 6: Diagrammatic description of Oσ(X,Y ), as defined in eq. (1.2.33).

Permutations related by conjugation under the subgroup Sm × Sn label the same matrix

invariant:

Oσ(X,Y ) = Oγσγ−1(X,Y ) , γ ∈ Sm × Sn (1.2.34)

This is a generalisation of the equivalence (1.2.15) to the two-matrix case. The key difference

is that the permutation γ is an element of the subgroup Sm × Sn ⊂ Sm+n, rather than the full

group Sm+n. This identity is best understood pictorially as in Figure 7.
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Figure 7: Conjugate permutations under the subgroup Sm×Sn label the same matrix invariant. In the
picture, γ = γ1 × γ2.

In the large N limit, where the only constraint is expressed by eq. (1.2.33), the counting of

matrix gauge invariant is expressed by [25]

Z(x, y) =

∞∏
i=1

1

1− xi − yi
=

∞∑
m,n=0

xmyn
(

# of matrix invariants with m,n copies of X,Y
)

(1.2.35)

Using Wick contractions, and suppressing the coupling constant and the spacetime depen-

dence of the operators, we can write the free field correlator as〈
Oσ1(X,Y ), O†σ2

(X,Y )
〉

=
∑

γ∈Sm×Sn

TrV ⊗(m+n)

(
σ1γσ

−1
2 γ−1

)
=

∑
α∈Sm+n

∑
γ∈Sm×Sn

NC[α]δ
(
σ1γσ

−1
2 γ−1α

)
(1.2.36)

This equation should be compared to the one-matrix case equivalent, eq. (1.2.23). The difference

is only in the sum over the permutation γ, which, as in eq. (1.2.34), is now restricted to the

subgroup Sm × Sn ⊂ Sm+n.

As we did for the one-matrix problem, we can now use the Fourier transform on the symmetric

group to map the operators in (1.2.33) to their respective dual, which are expressed in terms of

representation theory quantities. In this case, however, we will need more than a single Young

diagram to unequivocally specify a GIO. Given that the permutation basis was expressed in

terms of the embedding Sm×Sn ⊂ Sm+n, it is expected that the representation basis will know

about this reduction as well. Let us take an irreducible representation V
Sm+n

R of Sm+n and to

restrict Sm+n to its subgroup Sm×Sn ⊂ Sm+n. V
Sm+n

R becomes then reducible, and decomposes

as

V
Sm+n

R

∣∣∣
Sm×Sn

'
⊕
R1,R2

V Sm
R1
⊗ V Sn

R2
⊗ V R

R1,R2
(1.2.37)

where V Sm
R1

and V Sn
R2

are irreducible representations of Sm and SN respectively. V R
R1,R2

is the
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multiplicity vector space: it is in fact possible that the same representation R1 ⊗ R2 appears

more than once in the decomposition of R, and this vector space keeps track of these possible

iterations. The dimension of the multiplicity vector space v is given by the LR coefficient

g(R1, R2;R), already introduced in the previous section: dim
(
V R
R1,R2

)
= g(R1, R2;R).

In the permutation basis description of the two-matrix sector, matrix invariants were labelled

by Sm × Sn conjugacy classes, rather than Sm+n. It is then natural to think that the repre-

sentation basis will be built with the vector space decomposition on the RHS of (1.2.37). The

application of this thinking leads to restricted Schur operators [11,22–24]. These are labelled by

three Young diagrams and a pair of multiplicity labels: a Young diagram R1 with m boxes, a

Young diagram R2 with n boxes and a third diagram R with m+n boxes. The two multiplicity

labels i and j each run over a space of dimension equal to g(R1, R2;R). The restricted Schur

operators are written as

ORR1,R2;i,j(X,Y ) =
1

m!n!

∑
σ∈Sm+n

χRR1,R2;i,j(σ)Oσ(X,Y ) (1.2.38)

χRR1,R2;i,j(σ) is the restricted character, that we define as follows. Let DR(σ) be the matrix

realisation of the permutation σ in the representation R of Sm+n. Let {|R1, l1〉} be a basis for

the irrep V Sm
R1

of Sm, and {|R2, l2〉} be a basis for the irrep V Sn
R2

of Sn. Also let |i〉 and |j〉 be states

in the multiplicity vector space V R
R1,R2

. The state |R1, l1〉⊗|R2, l2〉⊗|i〉 ≡ |R1, l1;R2, l2; i〉 is then

a natural basis element of the vector space on the RHS of (1.2.37). Aside from a normalisation

constant, we write the restricted characters as

χRR1,R2;i,j(σ) =
∑
l1,l2

〈R1, l1;R2, l2; i|DR(σ)|R1, l1;R2, l2; j〉 (1.2.39)

If |i〉 = |j〉, these object are just the trace of DR(σ) over the V Sm
R1
⊗V Sn

R2
vector space. If instead

|i〉 6= |j〉, we are evaluating DR(σ) on a copy of V Sm
R1
⊗V Sn

R2
⊂ V Sm+n

R |Sm×Sn , labelled i, and then

taking the pairing of the result on the basis of a different copy of V Sm
R1
⊗ V Sn

R2
⊂ V

Sm+n

R |Sm×Sn ,

labelled j (see for example the discussion in [26]). For this reason, another way to write them is

χRR1,R2;i,j(σ) = χR
(
PRR1,R2;i,j D

R(σ)
)

(1.2.40)

Here if i = j, PRR1,R2;i,j is the projector of the representation V
Sm+n

R |Sm×Sn on the i-th copy of

the representation V Sm
R1
⊗ V Sn

R2
⊂ V

Sm+n

R |Sm×Sn , whereas if i 6= j it is an intertwining operator

mapping different copies of V Sm
R1
⊗V Sn

R2
, labelled by i and j, one onto another. We will have more

to say about these multiplicities label in the later chapters of this thesis, especially in Chapter

4.

It can be shown that the two point functions of gauge invariant operators in the two-matrix

sector are diagonalized by operators constructed using representation bases, such as the one in

(1.2.38). This was done with the Brauer basis in [27], with the U(2) covariant basis in [28, 29]

and with the restricted Schur basis in [30, 31]. The key fact is that by using the Fourier trans-
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formation, which relates functions on a group to matrix elements of irreducible representations,

nice orthogonal bases of functions on these equivalence classes can be found. In mathematics,

in the context of compact groups this is known as the Peter-Weyl theorem. In the context of

finite groups, this follows from the Schur orthogonality relations.

On the other hand, the reason for the efficacy of permutation groups in enumeration of gauge

invariant operators is Schur-Weyl duality. This states that the tensor product of n copies of the

fundamental of U(N) decomposes into a direct sum of irreps of Sn × U(N)

V ⊗nN '
⊕
R`N

c1(R)≤N

V Sn
R ⊗ V U(N)

R (1.2.41)

Each summand is labelled by a Young diagram, and the Young diagrams are constrained to have

no more than N rows, equivalently the first column c1(R) is no greater than N . This uses the

fact that Young diagrams are used to classify representations of Sn as well as representations

of U(N). This is useful in the permutation approach to gauge invariant operators, because it

says that once we have organised operators according to representation data for Sn, it is easy to

implement finite N constraints. In the one-matrix problem, the single Young diagram label R

is cut-off at N , c1(R) ≤ N . This leads directly to the connection between the stringy exclusion

principle for giant gravitons and Young diagrams [13,16,17,19]. In the two-matrix problem, the

Young diagram R is cut-off at c1(R) ≤ N , which implies cut-offs for R1, R2. Within N = 4

SYM, perturbations of half-BPS giant graviton operators have been studied and integrability

at one-loop [32, 32–36] and beyond has been established. The two-matrix problem can also

be approached using the walled Brauer algebra BN (m,n) and its representation theory [27].

A third way to enumerate two-matrix invariants, also based on permutations but involving

Clebsch-Gordan multiplicities of Sn, keeps the U(2) global symmetry manifest [28,29].

The restricted Schur and covariant basis results have been extended beyond N = 4 SYM to

the sector of holomorphic operators in general quiver gauge theories [1, 26, 36–39] which have

been shown to include sectors related to generalized oscillators [40]. Aspects involving Frobenius

algebras have been studied in [41].

1.3 Generalisation to quiver gauge theories

As we reviewed in the previous section, finite N aspects of AdS/CFT have motivated the study

of multi-matrix sectors of N = 4 SYM, associated with different BPS sectors of the theory.

These multi-matrix systems are also of interest purely from the point of view of supersymmetric

gauge theory and their moduli spaces (e.g. [42]). These studies focused on the counting of gauge-

invariant operators, an inner product related to 2-point functions and higher point functions for

large N as well as at finite N . The connection between U(N) gauge invariants and permutations

was a central theme as well as representation theory of the permutation groups. The studies

were extended beyond N = 4 SYM to gauge theories such as ABJM [43] and the conifold

[44–47]. In [26] these problems on counting and inner product were considered for general
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quiver gauge theories. These theories, often arising in the context of 3-branes transverse to

6-dimensional singular Calabi-Yau, are associated with directed graphs, i.e. collections of nodes

with directed edges between them [48]. The gauge group of the theory is a product of unitary

groups, one unitary group for each node. The directed edges correspond to bi-fundamental

matter fields, which transform according to the anti-fundamental representation of the gauge

group corresponding to the starting node and the fundamental of the ending node. In the context

of AdS/CFT, adding matter to N = 4 SYM introduces flavour symmetries [49–53]. Typically,

the added matter transforms in fundamental and anti-fundamental representations of these

flavour symmetries. Matrix invariants in flavoured gauge theories do not need to be invariant

under the flavour group: on the contrary, they have free indices living in the representation

carried by their constituent fields. In this thesis, we consider a general class of flavoured free

gauge theories parametrised by a quiver. A quiver is a directed graph comprising of round nodes

(gauge groups) and square nodes (flavour groups). The directed edges which join the round nodes

corresponds to fields transforming in the bi-fundamental representation of the gauge group, as

illustrated in subsection 1.4. Edges stretching between a round and a square node correspond to

fields carrying a fundamental or antifundamental representation of the flavour group, depending

on their orientation. We will call them simply quarks and antiquarks.

It was shown in [26] that the quiver, besides being a compact way to encode all the gauge

groups and the matter content of the theory, is a powerful computational tool for correlators

of gauge invariants. In that paper a generalisation of permutation group characters, called

quiver characters, was introduced, involving branching coefficients of permutation groups in a

non-trivial way. Obtaining the quiver character from the quiver diagram involves splitting each

gauge node into two nodes, called positive and negative nodes. The first one collects all the

fields coming into the original node, while the second one collects all the fields outgoing from

the original node. A new line is added to join the positive and the negative node of the split-node

diagram. Each edge in this modified quiver is decorated with appropriate representation theory

data, as will be explained in the following sections. The properties of these characters, which

have natural pictorial representations, allowed the derivation of counting formulae for the gauge

invariants and expressions for the correlation functions.

In the first part of this thesis we study correlation functions of holomorphic and anti-

holomorphic gauge invariant operators in quiver gauge theories with flavour symmetries, in

the zero coupling limit. We will explicitly construct the operators and compute the free field

two and three point functions. These have non-trivial dependences on the structure of the oper-

ators and on the ranks of the gauge and flavour symmetries. Our results are exact in the ranks,

and their expansions contain information about the planar limit as well as all order expansions.

The techniques we use build on earlier work exploiting representation theory techniques in the

context of N = 4 SYM [11, 17, 18, 22–24, 27–29, 54, 55]. The zero coupling results contain infor-

mation about a singular limit from the point of view of the dual AdS. For special BPS sectors,

where non-renormalisation theorems are available, the representation theory methods have made

contact with branes and geometries in the semiclassical AdS background. These representation
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theoretic studies were extended beyond N = 4 SYM to ABJM [43] and conifolds [44, 56–58].

The case of general quivers was studied in [26] and related work on quivers has since appeared

in [59–62].

As a way to understand the existence of the different bases in the multi-matrix problems, [54]

conducted a detailed study of enhanced symmetries in the free limit of Yang Mills theories. The

authors showed that Casimir-like elements constructed from Noether charges of these enhanced

symmetries can be used to understand these different bases. Different sets of these Casimir-

like charges each consist of mutually commuting simultaneously diagonalizable operators, which

associate the labels of the basis with eigenvalues of Casimir-like charges. Thus there is a set

of Casimir-like elements for the restricted Schur basis, another set for the covariant basis and

yet another set for the Brauer basis. The enhanced symmetries themselves take the form of

products of unitary groups, but the action of these Casimirs on gauge invariant operators can

be related, through applications of Schur-Weyl duality, to the algebraic structure of certain

algebras constructed from the equivalence classes of permutations or of Brauer algebra elements

discussed above. The discussion of charges which identify matrix invariants for general classical

groups has been given using a different approach in [63]. While a uniform treatment of the

Young diagram labels has been achieved, a treatment of the multiplicity labels running over

Littlewood-Richardson coefficients in that approach remains an interesting open problem.

1.4 Definitions and framework

In this thesis we consider free quiver gauge theories with gauge group
∏n
a=1 U(Na) and flavour

symmetry of the general schematic form
∏n
a=1 U(Fa) × U(F̄a). Specifically, to work in the

most general configuration, we choose to focus our attention to the subgroup
∏n
a=1[×βU(Fa,β)

×γ U(F̄a,γ)] of the flavour symmetry where Fa =
∑

β Fa,β and F̄a =
∑

γ F̄a,γ . This more general

flavour symmetry, where the U(Fa) × U(F̄a) is broken to a product of unitary groups for the

quarks and anti-quarks, is likely to be useful when interactions are turned on. Our calculations

work without any significant modification for this case of product global symmetry, hence we

will work in this generality.

To recover the results for the global symmetry U(Fa) × U(F̄a) it is enough to drop the

β, γ labels from all the equations that we are going to write. The constraint Fa = F̄a solves

chiral gauge anomaly conditions. As a last remark, notice that strictly speaking the global

symmetry of the free theory contains only the determinant one part S(U(Fa,1) × U(Fa,2) ×
· · ·U(Fa,Ma) × U(F̄a,1) × · · · × U(F̄a,M̄a

)). This means that, although for simplicity we write∏n
a=1

[
×βU(Fa,β)×γ U(F̄a,γ)

]
as the global symmetry, all the states we will write are neutral

under the U(1) which acts with a phase on all of the chiral fields and with the opposite phase

on all of the anti-chiral fields. This U(1) is part of the U(Na) gauge symmetry.

We now introduce the diagrammatic notation for the quivers. We follow the usual convention

according to which round nodes in the quiver correspond to gauge groups, whereas square nodes

correspond to global symmetries. Fields leaving gauge node a and arriving at gauge node b are

be denoted by Φab,α, and transform in the antifundamental representation V̄Na of U(Na) and
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the fundamental representation VNb of U(Nb). The third label α takes values in {1, ...,Mab},
and is used to distinguishes between Mab different fields that transform in the same way under

the gauge group. We can think of each Φab,α as a map

Φab,α : VNa → VNb (1.4.1)

At every gauge node a we allowMa different families of quarks {Qa,β, β = 1, ...,Ma} transforming

in the antifundamental of U(Na) and M̄a different families of antiquarks {Q̄a,γ , γ = 1, ..., M̄a},
transforming in the fundamental of U(Na). As for the field Φ, the greek letters β and γ distin-

guish the multiplicities of the quarks and antiquarks respectively. U(Fa,β) and U(Fa,γ) represent

the flavour group of the quark Qa,β and of the antiquark Q̄a,γ respectively. Figure 8 explicitly

show this field configuration for one node a of the quiver. Table 1 summarises instead all the

gauge and flavour group representations carried by every field in the quiver.

Figure 8: Pictorial representation of the fundamental fields (oriented edges), flavour group (square
nodes) for a single gauge node labelled a.

U(Na) U(Nb) U(Fa,β) U(F̄a,γ)

Φab,α 1 1

Φaa,α Adj 1 1 1

Qa,β 1 1

Q̄a,γ 1 1

Table 1: Gauge and flavour group representations carried by Φab,α, Qa,β and Q̄a,γ . �, �̄ and 1 are
respectively the fundamental, antifundamental and trivial representations of the corresponding group.
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Chapter 2

Counting Functions and the

Cartier-Foata Monoid

In this chapter we will derive the counting function for the number of Quiver Restricted Schur

Polynomials, both for finite and large N . We will also establish a connection between the

counting of quiver gauge theory operators and a word counting problem associated with the

quiver graph. This creates a link between gauge invariant operators of quiver theories and the

mathematics of Cartier-Foata monoids [64, 65]. The latter is expressed here in terms of a word

counting problem where the letters correspond to loops on a graph, with partial commutation

relations

The starting point of our derivation is the group integral formula for counting gauge invariant

operators [66,67]. The group integrals over U(N) are done by using character expansions. These

character expansions introduce characters of permutation groups, because of the Schur-Weyl

duality [68, 69] link between unitary and symmetric groups. The finite N counting formulae

admit significant simplifications in the limit of large N . At finite N , the counting involves sums

over Young diagram labels. The sizes of the Young diagrams are related to the sizes of the local

operators. When these sizes are small compared to the ranks, the Young diagram sums run

over complete sets of representations of symmetric groups. This allows the use of formulae from

Fourier transformation over finite groups such as

δ(σ) =
1

m!

∑
R

dRχR(σ) (2.0.1)

The delta function is 1 if σ is the identity permutation in Sm - symmetric group of all permuta-

tions of m objects - and zero otherwise. The result is that the counting formulae can be expressed

in terms of sums over multiple permutations, related by delta function constraints. These sums

over permutations can be converted into sums over partitions, described by an infinite sequence

of integers p1, p2, · · · . This sequence is related to cycle lengths in the cycle decomposition of

permutations. The upshot is that the counting of gauge invariant operators at large rank can be

given in terms of a sum over the infinite sequence of integers pi. The general formula takes the
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form of an infinite product over i, where i is related to the cycle lengths in the above description

∞∏
i=1

F
[n]
0 ({xab →

∑
α

xiab;α}) (2.0.2)

Each factor in the product is built from a basic function F
[n]
0 ({xab}). The integer n is the

number of gauge nodes and the subscript denotes the unflavoured case. The index α runs over

the different edges with the same starting gauge node a and the same ending gauge node b. If

there is no edge from a to b, we substitute xab → 0. This structure was derived in [26] for the

case without flavour. The function F
[n]
0 ({xab}) was explicitly computed for the case of quivers

with small numbers of nodes and a simple general formula was guessed. A general formula for

F
[n]
0 ({xab}) was also derived in terms of contour integrals. However, the proof that the contour

integrals really give the guessed simple form for the F
[n]
0 ({xab}) was not given. This missing

step is completed in this chapter. We also find that this function can be written in terms of a

determinant:

F
[n]
0 ({xab}) =

1

det (1n −Xn)
(2.0.3)

The matrix Xn is defined to have variables xab as the entry in the a-th row and b-th column.

We may think of Xn as a weighted adjacency matrix associated with the quiver graph which has

n nodes and a single directed edge for every specified starting point a and end-point b. We refer

to this latter quiver graph as the complete n-node quiver graph. The notion of adjacency matrix,

and weighted versions thereof, are commonly used in the context of graph theory [70, 71]. The

(a, b) entry of the adjacency matrix of a directed graph is equal to the number of oriented edges

Mab from node a to node b. In the present studies, it is natural to associate
∑

α xab,α as the

weight for a given pair of nodes, which reduces to Mab, the entry of the adjacency matrix, when

the xab,α are set to 1.

While the infinite product (2.0.2) counts gauge invariant operators, the building block

F
[n]
0 ({xab}) itself (2.0.3) has no obvious counting interpretation in terms of the original gauge

theory problem. Nevertheless, after applying a well-known identity, the determinant formula

(2.0.3) makes it clear that the expansion coefficients of this building block are positive, which

suggests a counting interpretation. We give such an interpretation. It is in terms of a word

counting problem involving letters corresponding to simple closed loops on the complete quiver

graph. Two letters commute if the loops do not share a node but they do not commute if the

loops do share a node. This, we describe as the closed string word counting problem. There

is an equivalent word counting problem in terms of charge conserving open string words. Here

open string words are made of string bits - which are edges of the quiver. Two different string

bits do not commute if they have the same starting point. They commute if they do not share a

starting point. Charge conserving open string words have the same number of open string bits

leaving any vertex as arriving at that vertex. This charge-conserving open string word counting

is actually directly related to the formulae in our derivations leading to the result. Its equiv-
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alence to the closed string word counting is a highly non-trivial fact, which is the content of a

theorem of Cartier-Foata [64] from the sixties! This type of word-counting is of interest in pure

mathematics and theoretical computer science, where it is known under the heading of Cartier-

Foata monoids [64, 65, 72]. The monoid structure arises because the words can be composed to

form other words, thus giving a product which turns the set of words into a monoid.

The infinite product form and the explicit formula for the building block, for the case of

flavoured quivers, is derived using contour integrals in [1]. The computation is presented in this

chapter. We find that the building block for the case of flavoured quivers is closely related to

the unflavoured case. It is worth emphasizing that the contour integrals we deal with for the

large N limit are significantly simpler than the original integrals over the U(N) groups. The

contour integrals we use involve n complex variables za, where n is the number of nodes in the

quiver.

We stress that, even though the motivation of this work is to study 4 dimensional N = 1

gauge theories, focusing on the holomorphic gauge invariant operators made from chiral super-

fields which have a complex scalar as the lowest component of the superspace expansion, the

counting techniques we developed do not depend on either the spacetime dimension or on the

amount of supersymmetry. The results apply equally to holomorphic gauge invariants of a

matrix quantum mechanics, or of a matrix model of multiple complex matrices transforming as

bifundamentals.

The chapter is organized as follows. Section 2 gives a summary of the main results. Section

3 starts from an integral over a product of unitary groups
∏
a U(Na), which gives the generating

function for the counting of gauge-invariant operators [66,67]. This generating function depends

on chemical potentials, one for each of the bifundamental fields in the theory, i.e. one for each

edge in the quiver joining gauge nodes. In addition, there are chemical potentials for the global

charges under the Cartan of the global symmetry groups. The integrand is expanded in terms

of characters of the (gauge and global) unitary groups along with characters of permutation

groups. The gauge unitary group characters can be integrated using orthogonality of the irre-

ducible characters. The resulting expressions contain sums involving Young diagrams and group

theoretic multiplicities called Littlewood-Richardson coefficients [68]. These sums are done in

Appendix B.1.1 and the outcome is an infinite product parametrised by an integer i. For each

i there are sums over integers, one for each edge of the quiver. We call these edge variables

pab,α, pa,β, p̄a,γ . These sums are constrained by Kronecker delta functions, one for each gauge

node of the quiver. The structures of the sums in each factor of the i-product are closely related.

Once these sums are performed for i = 1, the expressions for the factor at each i can be written

down. The i = 1 factor is the building block function F [n]({xab}, {ta}, {t̄a}) which can be viewed

as the generalization of F
[n]
0 ({xab}) for unflavoured quivers to flavoured quivers. The Kronecker

delta constraints on the edge variables are expressed by introducing complex variables za, giving

a product of n contour integrals.

Section 4 evaluates the contour integrals for the case without fundamental matter, recovering

the result written down in [26]. This involves finding the right prescription for picking up poles.
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The prescription is simple and intuitively very plausible. It is derived from the inequalities

which ensure the applicability of the summation formulae leading to the contour integral formula

obtained in Section 3. The derivation is presented in Appendix B.2. With the specified pole

prescription in hand, we describe the calculation of the integral. The integrand involves n

factors and there are n integration variables z1, z2, · · · , zn. The recursive evaluation of the

integral leads to a formula (2.3.12) for the poles encountered at each stage. The pole coefficients

in this formula can be expressed neatly in terms of paths in the complete quiver graph. This

expression is equation (2.3.25) and is proved in Appendix B.4. Using this expression we are

able to prove the formula for F
[n]
0 , an inverse of a signed sum over permutations of subsets of n

nodes, guessed in [26]. We then recognise that the denominator is a determinant det(1n−Xn),

which leads to (2.0.3). Section 2.4 gives the combinatoric meaning of the basic building block

in terms of word counting problems. Appendix B.5 illustrates this interpretation in the case

of 2-node and 3-node quivers. Section 5 evaluates the n countour integrals for the building

block function F [n]({xab}, {ta}, {t̄a}) and expresses it in terms of determinants and minors of

the matrix (1n −Xn). This gives a neat formula (2.5.16) for F [n]({xab}, {ta}, {t̄a}) in terms of

F
[n]
0 ({xab}). Appendix B.6 derives this formula, following a similar strategy to the unflavoured

case, namely finding expressions for pole coefficients in terms of paths in a complete n-node

quiver. Section 6 gives applications of the general counting formulae by considering explicit

quiver gauge theories with fundamental matter.

2.1 From gauge invariants to determinants and word counting

For quiver gauge theories with bi-fundamental fields, the generating function Z({xab}) for local

holomorphic gauge invariant operators constructed from the chiral fields, is given by [26]

Z({xab,α}) =
∏
i=1

F
[n]
0 ({xab →

∑
α

xiab;α}) (2.1.1)

It is useful to introduce the complete n-node quiver which is a quiver that has 1 edge for every

specified start and end-point. An expression for F
[n]
0 ({xab}) was given as the inverse of a sum

over permutations of subsets of the set of nodes of the n-node complete quiver. Equivalently

this is an expression in terms of loops in the complete quiver

F
[n]
0 ({yi}) =

1 +
∑
V⊆Vn

∑
σ∈Symm(V)

∏
i∈Cycles(σ)

(−yi)

−1

(2.1.2)

Here V is any subset of nodes of the quiver (except the empty set), and for the cycle (abc · · · d)

we define y(abc···d) ≡ xabxbc · · ·xda In this we observe, using standard matrix identities, that

F
[n]
0 =

1

det(1n −Xn)
(2.1.3)
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where Xn is an n × n matrix with entries xab. This formula is the subject of the Mac Mahon

master theorem [73].

While the function Z({xab,α}) counts gauge invariant operators, the gauge theory set-up does

not immediately offer a combinatoric interpretation for F
[n]
0 ({xab}). We give an interpretation

of F
[n]
0 in terms of word-counting problems associated with the complete n-node quiver. There

are in fact two counting problems, one of them is a closed string counting problem. Consider

a language where the words are made from letters which correspond to simple loops in the

n-node quiver. These are loops that visit each node of the quiver no more than once. These

letters equivalently correspond to cyclic permutations of any subset of integers {1, · · · , n}. The

words are constructed as strings, i.e. ordered sequences, of these letters with the additional

equivalences introduced that letters corresponding to two simple loops c and c′ commute if the

loops do not share a node. We denote these letters by ŷc. Then

ŷcŷc′ = ŷc′ ŷc (2.1.4)

if c and c′ are loops that do not share a node. Any word contains a list of these letters

ŷc1 , ŷc2 · · · ŷck with multiplicities (m1,m2, · · · ,mk). With these specified numbers, there is a

multiplicity M(m1, · · · ,mk) of words since, in general, the order of the letters matters: if two

loops ŷc, ŷc′ do share a node then ŷcŷc′ 6= ŷc′ ŷc. The expansion of F
[n]
0 in terms of the loop

variables contains terms of the form ym1
c1 y

m2
c2 · · · y

mk
ck

with coefficients, which are precisely the

multiplicities of the words M(m1, · · · ,mk).

This is a remarkable new connection between a counting problem of words built from a par-

tially commuting set of letters and the counting of gauge invariants. Since the letters correspond

to simple loops, we call this the closed string word counting problem. Thus F
[n]
0 ({xab}) generates

multiplicities of closed string words. In section 2.4 we explain why this is true. Along the way,

we introduce another word counting formula based on letters corresponding to open string bits.

2.1.1 Generalization to flavoured quivers

We extend the counting results to quivers that have bifundemental matter fields, as well as

fundamental matter. We find again that the counting in the limit of large rank gauge groups is

given as an infinite product. Each factor is obtained by making a simple substitution in a basic

function F [n]({xab, ta, t̄a}), for the case quivers with n gauge nodes. The function F [n] has an

elegant expression in terms of matrices Xn and Λn, whose matrix elements are

Xn|ab = xab , Λn|ab = tat̄b (2.1.5)

Let us also define another n× n matrix,

χn ≡ (1n −Xn)−1 (2.1.6)
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In terms of these, F [n] is the determinant

F [n]({xab}, {ta}, {t̄a}) = det (χn exp [χn Λn]) = det(χn) exp (tr (χnΛn)) (2.1.7)

The generating function Z can be obtained through the infinite product

Z({xab,α}, {Ta,β}, {T̄a,γ})

=
∏
i

F [n]

{xab →∑
α

xiab,α

}
,

ta →∑
β

Tr(T i
a,β)
√
i

 ,

{
t̄a →

∑
γ

Tr(T̄ i
a,γ)
√
i

} (2.1.8)

In the course of our derivation of F [n], we find the identity

F [n] = det (χn exp [χn Λn])

=
∑
~p

n∏
a=1

(
pa +

n∑
b=1

pab

)
!

(
n∏
b=1

x pabab

pab!

)(
y paa
pa!

)(
ȳ p̄aa
p̄a!

)
δ

(
pa − p̄a +

n∑
b=1

(pab − pba)

)
(2.1.9)

with ~p =
⋃n
a=1{∪nb=1pab, pa, p̄a}. For the unflavoured case, this implies

F
[n]
0 =

1

det(1n −Xn)
=
∑
~p

n∏
a=1

(
n∑
b=1

pab

)
!

(
n∏
b=1

x pabab

pab!

)
δ

(
n∑
b=1

(pab − pba)

)
(2.1.10)

where now ~p =
⋃n
a,b=1{pab}. This formula is interpreted in section 2.4 in terms of the counting

of words built from partially commuting open string bits. The open string word counting has

previously been studied in [64] and its equivalence to the closed string word counting given.

2.2 Group integral formula to partition sums

In this section we will derive a contour integral formulation for the generating function Z. Our

starting point is the group integral representation [66,67]

Z({xab,α},{ta,β,k}, {t̄a,γ,k}) =

∫ (∏
a

dUa

)

×
∏
a

exp


∞∑
i=1

1

i

∑
b,α

xiab,α Tr(U †ia ) Tr(U ib)

+
∑
β

Fa,β∑
k=1

tia,β,k Tr(U †ia ) +
∑
γ

F̄a,γ∑
k=1

t̄ia,γ,k Tr(U ia)

 (2.2.1)
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Here xab,α is the chemical potential for the Φab,α field, while ta,β,k = eiθa,β,k is the chemical

potential for a quark Qa,β,k charged under the U(1)k of the maximal torus
∏Fa,β
j=1 U(1)j ⊂

U(Fa,β). Analogously, t̄a,γ,k = e−iθa,γ,k is the chemical potential for an antiquark Q̄a,γ,k charged

under the U(1)k of
∏F̄a,γ
j=1 U(1)j ⊂ U(F̄a,γ). Expanding the generating function gives the counting

function N ({nab,α}, {na,β,k}, {n̄a,γ,k}) for specified numbers nab,α of bifundamentals Φab,α, na,β,k

of quarks Qa,β,k and n̄a,γ,k anti-quarks Q̄a,γ,k:

Z({xab,α}, {ta,β,k}, {t̄a,γ,k}) =
∑
{nab,α}

∑
{na,β,k}

∑
{n̄a,γ,k}

N ({nab,α}, {na,β,k}, {n̄a,γ,k})

×

∏
a,b,α

x
nab,α
ab,α

 ∏
a,β,k

t
na.β,k
a,β,k

 ∏
a,γ,k

t̄
n̄a,γ,k
a,γ,k

 (2.2.2)

The chemical potentials for the quark/antiquark matter content can be nicely encoded in

the unitary matrices Ta,β = diag(ta,β,1, ta,β,2, ..., ta,β,Fa,β ) and T̄a,γ = diag(t̄a,γ,1, t̄a,γ,2, ..., t̄a,γ,F̄a,γ )

respectively, so that

Z({xab,α},{Ta,β}, {T̄a,γ}) =

∫ (∏
a

dUa

) ∏
a

exp


∞∑
i=1

1

i

∑
b,α

xiab,α Tr(U †ia ) Tr(U ib)

+
∑
β

Tr(U †ia ) Tr(T ia,β) +
∑
γ

Tr(T̄ ia,γ) Tr(U ia)

 (2.2.3)

Using the shorthand notation
∫

(
∏
a dUa) ≡

∫
and expanding the exponential function we get

Z({xab,α}, {Ta,β}, {T̄a,γ})

=

∫ ∏
a


 ∑
{p(i)
ab,α}a

∏
b,α

x

∑
i ip

(i)
ab,α

ab,α∏
i p

(i)
ab,α!np

(i)
ab,α

∏
i

(TrU †ia )p
(i)
ab,α (TrU ib)

p
(i)
ab,α

 (2.2.4)

×

 ∑
{p(i)
a,β}a

∏
β

1∏
i p

(i)
a,β!np

(i)
a,β

∏
i

(TrU †ia )p
(i)
a,β (Tr T ia,β)p

(i)
a,β



×

 ∑
{p̄(i)
a,γ}a

∏
γ

1∏
i p̄

(i)
a,γ !np̄

(i)
a,γ

∏
i

(Tr T̄ ia,γ)p̄
(i)
a,γ (TrU ia)

p̄
(i)
a,γ




where
∑
{p(i)
ab,α}a

≡
∏
i,b,α

∑∞
p

(i)
ab,α=0

,
∑
{p(i)
a,β}a

≡
∏
β,i

∑
pa,β,i

and
∑
{p̄(i)
a,γ}a

≡
∏
γ,i

∑
pγ,i

. Rear-
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ranging sums and collecting like terms, we obtain

Z({xab,α}, {Ta,β}, {T̄a,γ})

=
∑
{p(i)
ab,α}

∑
{p(i)
a,β}

∑
{p̄(i)
a,γ}

∫ ∏
a,b,α

x

∑
i ip

(i)
ab,α

ab,α∏
i p

(i)
ab,α!np

(i)
ab,α


∏
a,β

1∏
i p

(i)
a,β! ip

(i)
a,β

 (∏
a,γ

1∏
i p̄

(i)
a,γ ! ip̄

(i)
a,γ

)

×

∏
a,i

(TrU †ia )
∑
b,α p

(i)
ab,α+

∑
β p

(i)
a,β (TrU ia)

∑
b,α p

(i)
ba,α+

∑
γ p̄

(i)
a,γ

 (2.2.5)

×
∏
a,i

∏
β

(Tr T ia,β)p
(i)
a,β

 [∏
γ

(Tr T̄ ia,γ)p̄
(i)
a,γ

]

We now collect powers of xab,α, Ta,β, T̄a,γ denoted nab,α, na,β, n̄a,γ , and introduce the quantities

~pab,α = ∪i{p(i)
ab,α}, ~pa,β = ∪i{p(i)

a,β}, ~̄pa,γ = ∪i{p̄ (i)
a,γ} (2.2.6)

These form partitions of nab,α, na,β, n̄a,γ , which can be interpreted as cycle lengths of permuta-

tions σab,α ∈ Snab,α , σa,β ∈ Sna,β and σ̄a,γ ∈ Sn̄a,γ respectively. These cycle structures determine

conjugacy classes denoted [σab,α], [σa,β], [σ̄a,γ ]. We have

∞∑
i=1

ip
(i)
ab,α = nab,α , |~pab,α| =

nab,α!∏
i p

(i)
ab,α! ip

(i)
ab,α

(2.2.7)

and similarly for ~pa,β and ~̄pa,γ . The second equation above gives the number of permutations

with the specified cycle structure. We also use the identity∏
i

(TrU i)[σ](i) =
∑
R`n

l(R)≤N

χR(σ)χR(U) , σ ∈ Sn , U ∈ U(N) (2.2.8)

which follows from Schur-Weyl duality (see e.g. [68]): here R is a partition of n and [σ](i) is the

number of cycles of length i in σ, which is a function of the conjugacy class [σ]. The Young

diagrams are constrained to have no more than N rows, which is expressed as l(R) ≤ N . This

encodes the constraints following from finiteness of the ranks Na. For na ≤ Na, these constraints

can be dropped, which is the origin of simplifications at large Na. Collecting powers of traces
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of U †a , this equation can be used to rewrite the traces in (2.2.5) as

∏
i

(TrU †ia )
∑
b,α p

(i)
ab,α+

∑
β p

(i)
a,β =

∑
Ra`na

l(Ra)≤Na

χRa(×b,ασab,α ×β σa,β)χRa(U †a) ,

na =
∑
b,α

nab,α +
∑
β

na,β (2.2.9)

and similarly for the other terms. The product of the permutations over b, α, β describes an

outer product of permutations acting on subsets of size nab,α, na,β of na. Using these definitions,

we can write

Z({xab,α}, {Ta,β}, {T̄a,γ}) =
∑
{nab,α}

∑
{na,β}
{n̄a,γ}

∑
{~pab,α}

∑
{~pa,β}

∑
{~̄pa,γ}

(2.2.10)

×
∫ ∏

a,b,α

x
nab,α
ab,α

nab,α!
|~pab,α|

 ∏
a,β

1

na,β!
|~pa,β|

 (∏
a,γ

1

n̄a,γ !
|~̄pa,γ |

)

×
∏
a


∑
Ra`na

l(Ra)≤Na

∑
Sa`na

l(Sa)≤Na

χRa(×b,ασab,α ×β σa,β)χSa(×b,ασba,α ×γ σ̄a,γ)χRa(U †a)χSa(Ua)



×
∏
a


∑

{
ra,β`na,β
l(ra,β)≤Fa,β

}
a

∏
β

χra,β (σa,β)χra,β (Ta,β)




∑
{

r̄a,γ`n̄a,γ
l(r̄a,γ )≤F̄a,γ

}
a

∏
γ

χr̄a,γ (σ̄a,γ)χr̄a,γ (T̄a,γ)


where σab,α, σa,β and σ̄a,γ are representatives of the conjugacy classes specified by ~pab,α, ~pa,β and

~̄pa,γ respectively. We can now cast the sums over these vectors into sums over the permutations

σab,α ∈ Snab,α , σa,β ∈ Sna,β and σ̄a,γ ∈ Sn̄a,γ . We also use the symmetric group character

expansion

χRa(×b,ασab,α ×β σa,β)

=
∑

∪b,α{rab,α`nab,α}
∪β{ra,β`na,β}

g(∪b,αrab,α ∪β ra,β;Ra)

∏
b,α

χrab,α(σab,α)

 ∏
β

χr,β (σa,β)

 (2.2.11)

and similarly for χSa(×b,ασba,α ×γ σ̄a,γ). In the formula above, g(∪b,αrab,α ∪β ra,β;Ra) is a

Littlewood-Richardson coefficient. This is the multiplicity of the representation ⊗b,αra,b,α⊗β ra,β
of the subgroup ×b,αSnab,α ×β Sna,β when the representation Ra of Sna is decomposed into

irreducibles of the product subgroup. Finally, using use the U(N) character orthogonality

36



CHAPTER 2. COUNTING FUNCTIONS AND THE CARTIER-FOATA MONOID

formula ∫
dU χR(U †)χS(U) = δR,S (2.2.12)

we obtain

Z({xab,α}, {Ta,β}, {T̄a,γ})

=
∑
{nab,α}

∑
{na,β}
{n̄a,γ}

∑
{σab,α}

∑
{σa,β}

∑
{σ̄a,γ}

∏
a,b,α

x
nab,α
ab,α

nab,α!

 ∏
a,β

1

na,β!

 (∏
a,γ

1

n̄a,γ !

)

×
∑

{
Ra`na

l(Ra)≤Na

}
∑

{rab,α`nab,α}
{sab,α`nab,α}

∑
{sa,β`na,β}
{s̄a,γ`n̄a,γ}

{∏
a

g(∪b,αrab,α ∪β sa,β;Ra) g(∪b,αsba,α ∪γ s̄a,γ ;Ra)

}

×

∏
a,b,α

χrab,α(σab,α)χsba,α(σba,α)

 ∏
a,β

χsa,β (σa,β)

 (∏
a,γ

χs̄,γ (σ̄a,γ)

)

×
∑

{ra,β`na,β}
{r̄a,γ`n̄a,γ}

∏
a,β

χra,β (σa,β)χra,β (Ta,β)


{∏
a,γ

χr̄a,γ (σ̄a,γ)χr̄a,γ (T̄a,γ)

}
(2.2.13)

Note that we dropped the l(ra,β) ≤ Fa,β constraint on the sum over quark representations, since

contributions coming from representations with l(ra,β) > Fa,β are automatically zero due to the

vanishing of χra,β (Ta,β) (similar comments hold for the sum over antiquark representations as

well).

Finally, using the orthogonality of the symmetric group characters
∑

σ∈Sn χr(σ)χs(σ) =

n!δr,s, we get the formula

Z({xab,α}, {Ta,β}, {T̄a,γ}) =
∑
{nab,α}

∑
{na,β}
{n̄a,γ}

∏
a,b,α

x
nab,α
ab,α

 ∑
{

Ra`na
l(Ra)≤Na

}
∑

{rab,α`nab,α}

∑
{ra,β`na,β}
{r̄a,γ`n̄a,γ}

(2.2.14)

∏
a

g(∪b,αrab,α ∪β ra,β;Ra) g(∪b,αrba,α ∪γ r̄a,γ ;Ra)

∏
β

χra,β (Ta,β)

(∏
γ

χr̄a,γ (T̄a,γ)

)

Note that setting Ta,β = ta,β 1a,β (T̄a,γ = t̄a,γ 1a,γ) gives an unrefined generating function, in

which we no longer distinguish quark (antiquark) states charged under different U(1) factors

in the maximal torus of U(Fa,β) (U(F̄a,γ)). This unrefinement is immediately obtained from
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(2.2.14) through the substitutions

χra,β (Ta,β)→ dimU(Fa,β)(ra,β) t
na,β
a,β , χr̄a,γ (T̄a,γ)→ dimU(F̄a,γ)(r̄a,γ) t̄

n̄a,γ
a,γ (2.2.15)

The dimU(F )(r) is the dimension of the representation r of U(F ).

For an F dimensional unitary matrix T with eigenvalues (t1, t2, ..., tF ) and a partition R of

n, we have

χR(T ) =
∑
σ∈Sn

χR(σ)

n!

∏
i

(Tr T i)[σ](i) =
∑
{nj}

g(∪j [nj ];R)
F∏
j=1

t
nj
j (2.2.16)

where n =
∑

j nj and [nj ] is the single-row totally symmetric representation of Snj . These

Littlewood-Richardson multiplicities for single-row representations and a general R are called

Kostka numbers [68]. Note also that the Littlewood-Richardson multiplicities satisfy [68,74]∑
s

g(r1, s;R)g(r2, r3; s) = g(r1, r2, r3;R) (2.2.17)

Using these identities, we can write the counting function N ({nab,α}, {na,β,k}, {n̄a,γ,k}) as

N ({nab,α}, {na,β,k}, {n̄a,γ,k}) (2.2.18)

=
∑

{
Ra`na

l(Ra)≤Na

}
∑

{rab,α`nab,α}

∏
a

g(∪b,αrab,α ∪β,k [na,β,k];Ra) g(∪b,αrba,α ∪γ,k [n̄a,γ,k];Ra)

where na =
∑

b,α nab,α +
∑

β,k na,β,k.

We can give a pictorial interpretation of the counting function (2.2.18) as follows.

i) Choose the set of integers ∪a,b,α{nab,α} ∪a,β,k {na,β,k} ∪a,γ,k {n̄a,γ,k}. These determine the

numbers of elementary fields of various types in the composite operators under consider-

ation.

ii) To all edges joining the gauge node a to the gauge node b, associate a representation rab,α

of the symmetric group Snab,α .

ii) Divide each gauge node a into two components, a+ and a−: the former collects all the

edges coming into the node a, while the latter collects all the edges leaving the node a.

Connect a+ to a− by adding a directed edge carrying a representation Ra of Sna , where

na =
∑

b,α nab,α +
∑

β,k na,β,k. The result is called split-node quiver.

iii) To each a− attach the Littlewood-Richardson coefficient g(∪b,αrab,α ∪β,k [na,β,k];Ra); to

each a+ attach the Littlewood-Richardson coefficient g(∪b,αrba,α ∪γ,k [n̄a,γ,k];Ra).

iv) Take the product of all the Littlewood-Richardson coefficients obtained in the previous step

and sum over all possible representations {Ra} and {rab,α}, imposing finite N constraints

l(Ra) ≤ Na at each gauge node a.
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As an example of the application of (2.2.14), consider an N = 2 SQCD with an adjoint

hypermultiplet. The N = 1 quiver diagram for this gauge theory and its corresponding split

node quiver are depicted in figure 9.

Figure 9: The N = 1 quiver and the corresponding split node diagram for a N = 2 SQCD with an
adjoint hypermultiplet.

The generating function for this model can then be readily obtained using (2.2.14):

Z(x1, x2, x3, T , T̄ ) =

∞∑
n1,n2,n3=0

∞∑
n,n̄=0

xn1
1 xn2

2 xn3
3 (2.2.19)

×
∑
R`m
l(R)≤N

∑
r1`n1
r2`n2
r3`n3

∑
r`n
r̄`n̄

g(r1, r2, r3, r;R) g(r1, r2, r3, r̄;R)χr(T )χr̄(T̄ )

with m = n1 + n2 + n3 + n = n1 + n2 + n3 + n̄. On the other hand, using (2.2.18) we can write

the counting function

N (n1, n2, n3, {nj}, {n̄k})

=
∑
R`m
l(R)≤N

∑
r1`n1
r2`n2
r3`n3

g(r1, r2, r3, [n1], [n2], · · · , [nF ];R) g(r1, r2, r3, [n̄1], [n̄2], · · · , [n̄F̄ ];R) (2.2.20)

so that

Z (x1, x2, x3, {tj}, {t̄k}) =
∑

n1,n2,n3

∑
{nj}

∑
{n̄k}

N (n1, n2, n3, {nj}, {n̄k})

× xn1
1 xn2

2 xn3
3

 F∏
j=1

t
nj
j

 F̄∏
k=1

t̄ n̄kk

 (2.2.21)

Let us now consider the flavoured conifold gauge theory [52, 53, 75, 76], whose quiver is

depicted in figure 10:
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Figure 10: The flavoured conifold quiver and its split node quiver.

Applying (2.2.14), we find that the generating function for the flavoured conifold is

Z(x12,1, x12,2, x21,1, x21,2, T1, T2, T̄1, T̄2)

=
∞∑

n12,1,n12,2=0

∞∑
n21,1,n21,2=0

x
n12,1

12,1 x
n12,2

12,2 x
n21,1

21,1 x
n21,2

21,2

∑
R1`m1
l(R1)≤N1

∑
R2`m2
l(R2)≤N2

∑
r12,1`n12,1
r12,2`n12,2

∑
r21,1`n21,1
r21,2`n21,2

∑
r1`n1
r̄1`n̄1

∑
r2`n2
r̄2`n̄2

× g(r12,1, r12,2, r1;R1) g(r21,1, r21,2, r̄1;R1)χr1(T1)χr̄1(T̄1)

× g(r21,1, r21,2, r2;R2) g(r12,1, r12,2, r̄2;R2)χr2(T2)χr̄2(T̄2) (2.2.22)

where m1 = n12,1 +n12,2 +n1 = n21,1 +n21,2 + n̄1 and m2 = n21,1 +n21,2 +n2 = n12,1 +n12,2 + n̄2.

As in the previous example, using (2.2.18) we get

N (n12,1, n12,2, n21,1, n21,2, {n1,j}, {n2,j}, {n̄1,k}, {n̄2,k}) =
∑
R1`m1
l(R1)≤N1

∑
R2`m2
l(R2)≤N2

∑
r12,1`n12,1
r12,2`n12,2

∑
r21,1`n21,1
r21,2`n21,2

× g(r12,1, r12,2, [n1,1], [n1,2], · · · , [n1,F1 ];R1) g(r21,1, r21,2, [n̄1,1], [n̄1,2], · · · , [n̄1,F̄1
];R1)

× g(r21,1, r21,2, [n2,1], [n2,2], · · · , [n2,F2 ];R2) g(r12,1, r12,2, [n̄2,1], [n̄2,2], · · · , [n̄2,F̄2
];R2)

(2.2.23)

so that

Z(x12,1, x12,2, x21,1, x21,2, {t1,j}, {t2,j}, {t̄1,k}, {t̄2,k})

=
∑
n12,1
n12,2

∑
n21,1
n21,2

∑
{n1,j}

∑
{n2,j}

∑
{n̄1,k}

∑
{n̄2,k}

N (n12,1, n12,2, n21,1, n21,2, {n1,j}, {n2,j}, {n̄1,k}, {n̄2,k})

× x
n12,1

12,1 x
n12,2

12,2 x
n21,1

21,1 x
n21,2

21,2

 F1∏
j=1

t
n1,j

1,j

  F2∏
j=1

t
n2,j

2,j

  F̄1∏
k=1

t̄
n̄1,k

1,k

  F̄2∏
k=1

t̄
n̄2,k

2,k


(2.2.24)

All of the previous formulae hold for any N . In the next section we will drop the l(Ra) ≤ Na
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constraints, ∀a, to focus on the large N case.

2.2.1 The generating function Z and the building block F [n]

Let us take the large N limit, for all the gauge groups of the theory. In appendix B.1.1 we show

that Z({xab,α}, {Ta,β}, {T̄a,γ}) can be written as the multiple sum

Z =
∑
ppp

∏
i

∏
a

∏
b,α

x
nab,α
ab,α

p
(i)
ab,α!

 ∏
β

(Tr Ta,β i) p
(i)
a,β

p
(i)
a,β!

 (∏
γ

(Tr T̄a,γ i) p̄
(i)
a,γ

p̄
(i)
a,γ !

)

×

(∑
b,α p

(i)
ab,α +

∑
β p

(i)
a,β

)
!

i
∑
β p

(i)
a,β

δa

∑
b,α

(p
(i)
ab,α − p

(i)
ba,α) +

∑
β

p
(i)
a,β −

∑
γ

p̄(i)
a,γ

 (2.2.25)

where ppp = ∪ab,α~pab,α ∪a,β ~pa,β ∪a,γ ~̄pa,γ , and the vectors ~pab,α, ~pa,β, ~̄pa,γ are defined in (2.2.6).

Crucially, we can now define the quantity

F [n]({xab}, {ta}, {t̄a}}) =
∑
~p

n∏
a=1

(
n∑
b=1

pba + p̄a

)
! δa

(
n∑
b=1

(pab − pba) + pa − p̄a

)

×

(
n∏
b=1

xpabab

pab!

) (
tpaa
pa!

) (
t̄ p̄aa
p̄a!

)
(2.2.26)

with ~p = ∪a,b{pab} ∪a {pa, p̄a}, such that

Z({xab,α}, {Ta,β}, {T̄a,γ})

=
∏
i

F [n]

{xab →∑
α

xiab,α

}
,

ta →∑
β

Tr(T i
a,β)

i

 ,

{
t̄a →

∑
γ

Tr(T̄ i
a,γ)

} (2.2.27)

From this equation we see that F [n] is the building block of Z. Note that the t coefficients in

the RHS of (2.2.27) are weighted by a i−1 coefficient, while the t̄ coefficients are not: in section

2.5 we will derive a more symmetric version of this formula, where the weighting for chemical

potentials of the quark and antiquark field is the same.

In appendix B.1.2 we derive an expression for F [n] in terms of contour integrals, namely

F [n]({xab}, {ta}, {t̄a}) =

(
n∏
a=1

∮
Ca

dza
2πi

)
n∏
a=1

Ia(~z; ~xa, ta, t̄a) , (2.2.28)

in which

~z = (z1, z2, ..., zn) , ~xa = (x1a, x2a, ..., xna) (2.2.29)
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and

Ia(~z; ~xa, ta, t̄a) =
exp (za ta)

za − (t̄a +
∑

b zb xba)
(2.2.30)

We also obtained a pole prescription for the computation of these contour integrals: in the

appendices B.1 and B.2 we explain that only the za pole coming from the Ia term in the

integrand has to be enclosed by Ca.
As a last remark, note that all the variables za, xab, ta, t̄a in eq. (2.2.28) are charged under

the
∏n
a=1 U(1)a ⊂

∏n
a=1 U(Na) subgroup of the theory as in table 2.

Variable Charge Subgroup of
∏
a U(1)a

xab (−1, 1) U(1)a × U(1)b

ta −1 U(1)a

t̄a 1 U(1)a

za 1 U(1)a

Table 2: U(1) charges of the variables appearing in F [n].

The charge for the xab coefficients comes from the fact that these variables are associated to

fields leaving node a and joining node b, thus transforming under (N̄a, Nb) in the original theory.

Similar comments holds for the charges of ta and t̄a, while the charge for za has been chosen in

such a way that the function F [n] is neutral under
∏
a U(1)a, as it should be.

For completeness, let us write down the contour integral formulation for Z, which can be

immediately obtained from (2.2.26) by means of (2.2.27), and reads

Z =
∏
i

(∏
a

∮
Ca,i

dza,i
2πiza,i

)∏
a

exp

(
za,i
∑

β Tr(Ta,β i)
i

)
1− z−1

a,i

(∑
γ Tr(T̄a,γ i) +

∑
b,α zb,i x

i
ba,α

) (2.2.31)

The simplification coming from using F [n] in place of the latter is evident.

2.3 The unflavoured case: contour integrals and paths on graphs

We now have to calculate the contour integral in F [n], that is, calculate residues. In an n-node

quiver, each za variable has n poles, but not all of them have to be included in the contour Ca.
The constraints from the convergence of the sums in appendix B.1.2 instruct us on which poles

to pick and which ones to discard. In appendix B.2 we show that they indeed give us a very

simple and intuitive prescription: for all a, only the za pole coming from the Ia integrand has to

be enclosed by Ca.
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We consider here the case in which we set ta = t̄a = 0 ∀ a in (2.2.28), to get the quantity

F [n]({xab}, 0, 0) ≡ F [n]
0 ({xab}) =

(∏
a

∮
Ca

dza
2πi

)∏
a

Ia(~z; ~xa) (2.3.1)

where

Ia(~z; ~xa) =
1

za −
∑

b zbxb,a
(2.3.2)

Recall that Ia(~z; ~xa) is a shorthand, which it will now be convenient to expand:

Ia(~z; ~xa) = Ia(z1, z2, ..., zn; ~xa) (2.3.3)

so that we can rewrite (2.3.1) as

F
[n]
0 ({xab}) =

(∏
a

∮
Ca

dza
2πi

)∏
a

Ia(z1, z2, ..., zn; ~xa) (2.3.4)

We want to compute contour integrals in eq. (2.3.4). Let us choose an ordering in which to com-

pute such integrals: we choose the simplest one, that is we integrate over z1, z2, ..., zi, zi+1, ..., zn

in this precise order. We will refer to this ordering as the ‘natural ordering’. With the pole pre-

scription discussed in appendix B.2, the za integration picks up the za pole in the Ia integrand

only. Then, after the first integral (the z1 integral with our ordering choice) has been computed,

eq. (2.3.4) becomes

F
[n]
0 ({xab}) = H1(~x)

(∏
a>1

∮
Ca

dza
2πi

)∏
a>1

Ia(z
∗
1 , z2, ..., zn; ~xa) (2.3.5)

where we introduced the H1 coefficient, outcome of the residue calculation, that depends only

on the x variables. After the integration has been done, z1 is replaced by its pole equation

z∗1 = z∗1(z2, z3, ..., zn; ~x) (2.3.6)

in all of the remaining integrands Ia (a > 1). The explicit form

z∗1(z2, z3, · · · zn; ~x) =
1

(1− x1,1)

n∑
b=2

zbxb,1 (2.3.7)

comes from solving I−1
1 (~z; ~x1) = 0 for z1. In the second step, we can solve I−1

2 (z1 → z∗1 , z2, z3 · · · , zn) =

0, which gives

z∗2 =
1

(1− x1,1)(1− x2,2)− x1,2x2,1

n∑
b=3

(
xb,2 +

xb,1x1,2

1− x1,1

)
(2.3.8)
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In the next step, we calculate I−1
3 (z1 → z∗1 , z2 → z∗2 , z3, z4 · · · , zn) and we solve I−1

3 = 0 to

calculate z∗3(z4, z5, · · · zn).

Generally, the explicit equation for each of the z∗j (1 ≤ j ≤ n) comes from solving for zj the

equation

I−1
j (z∗1 , z

∗
2 , ..., z

∗
j−1, zj , zj+1, ..., zn; ~xj) = 0 (2.3.9)

for each j. These pole equations are of the form

z∗j (zj+1, zj+2, ..., zn; ~x) =
∑
i>j

zi ai,j (2.3.10)

for some coefficients ai,j , which are functions of ~x. It is useful however to introduce a different

equation for the poles z∗j . Note that z∗j is a function of the set {zj+1, zj+2, ..., zn}. If r integrations

have already been done, then the z∗j pole equations, with j ≤ r, can be expressed in terms of

the remaining set of za, that is {zr+1, zr+2 · · · , zn}. The variables zk (j ≤ k ≤ r) appearing in

(2.3.10) can be substituted with their respective pole equations z∗k. We can thus write

z∗j
(
z∗j+1, z

∗
j+2, ..., z

∗
r , zr+1, ..., zn; ~x

)
=
∑
i>r

zi ai,j +

r∑
λ=j+1

z∗λ
(
z∗λ+1, z

∗
λ+2, ..., z

∗
r , zr+1, ..., zn; ~x

)
aλ,j (2.3.11)

Repeated substitutions to eliminate the variables z∗k in favour of z∗k′ , for k < k′ ≤ r, will lead to

an expression of the form

z
∗[r]
λ = z∗λ(zr+1, ..., zn; ~x) =

∑
i>r

zi â
[r]
i,λ , λ ≤ r (2.3.12)

for some new â[r] coefficients, functions of ~x, that we call pole coefficients. Inserting this equation

in (2.3.11) gives a recursive relation for â
[r]
i,j :

â
[r]
i,j = ai,j +

r∑
λ=j+1

â
[r]
i,λ aλ,j , i > r , j ≤ r ≤ n− 1 (2.3.13a)

There is no â[n] coefficient, as can be seen from (2.3.12). We will in fact observe that z∗n = 0.

Comparing (2.3.10) and (2.3.12) gives

â
[r]
i,r = ai,r , i > r (2.3.13b)
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and we will shortly derive

ai,r =

xi,r +

r−1∑
k=1

â
[r−1]
i,k xk,r

1−

(
xr,r +

r−1∑
k=1

â
[r−1]
r,k xk,r

) , i > r (2.3.14)

Now, for fixed r, all of the z
∗[r]
j equations (1 ≤ j ≤ r) in (2.3.12) will be functions of the same

set of za, that is {zk, r < k ≤ n}. With this notation, after r integrations have been done, F
[n]
0

will read

F
[n]
0 =

r∏
j=1

Hj(~x)

(
n∏
a>r

∮
Ca

dza
2πi

) ∏
a>r

Ia

(
z
∗[r]
1 , z

∗[r]
2 , ..., z∗[r]r , zr+1, zr+2, ..., zn; ~xa

)
(2.3.15)

where explicitly

Ia

(
z
∗[r]
1 , z

∗[r]
2 , ..., z∗[r]r , zr+1, zr+2, ..., zn; ~xa

)
=

1

za −

(∑
b>r

zb xb,a +
∑

i=1,..,r
z
∗[r]
i xi,a

) (2.3.16)

Going back to eq. (2.3.15), suppose we want now to calculate the zr+1 integral. Consider

then the equation

I−1
r+1

(
z
∗[r]
1 , z

∗[r]
2 , ..., z∗[r]r , zr+1, zr+2, ..., zn; ~xr+1

)
= zr+1 −

(∑
b>r

zb xb,r+1 +
r∑
i=1

z
∗[r]
i xi,r+1

)
= 0 (2.3.17)

and let us solve it for zr+1. We have

(1− xr+1,r+1)zr+1 =
∑
b>r+1

zb xb,r+1 +
r∑
i=1

z
∗[r]
i xi,r+1

=
∑
b>r+1

zb xb,r+1 +
r∑
i=1

∑
j>r

zj â
[r]
j,i xi,r+1

=
∑
j>r+1

zj

(
xj,r+1 +

r∑
i=1

â
[r]
j,i xi,r+1

)
+

r∑
i=1

zr+1 â
[r]
r+1,i xi,r+1 (2.3.18)
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Collecting terms we get(
1−

(
xr+1,r+1 +

r∑
i=1

â
[r]
r+1,i xi,r+1

))
zr+1 =

=
∑
j>r+1

zj

(
xj,r+1 +

r∑
i=1

â
[r]
j,i xi,r+1

)
(2.3.19)

so that we can finally write

z∗r+1 =
∑
j>r+1

zj

xj,r+1 +
r∑
i=1

â
[r]
j,i xi,r+1

1−

(
xr+1,r+1 +

r∑
i=1

â
[r]
r+1,i xi,r+1

) =
∑
j>r+1

zj aj,r+1 (2.3.20)

Recalling the definition of the pole coefficients â
[r]
i,λ from (2.3.12) and substituting r → r − 1,

this proves eq. (2.3.14). It also shows that z∗n = 0, as there is no zj with j > n to sum over.

Inserting this result in (2.3.15) we get

F
[n]
0 =

r∏
j=1

Hj(~x)

(
n∏
a>r

∮
Ca

dza
2πi

)

× 1(
1−

(
xr+1,r+1 +

r∑
i=1

â
[r]
r+1,i xi,r+1

))
zr+1 −

∑
j 6=1,..,r,r+1

zj

(
xj,r+1 +

r∑
i=1

â
[r]
j,i xi,r+1

)

×
∏

a>r+1

Ia(z
∗[r]
1 , z

∗[r]
2 , ..., z∗[r]r , zr+1, zr+2, ..., zn; ~xa)

=

r∏
j=1

Hj(~x)
1

1−

(
xr+1,r+1 +

r∑
i=1

â
[r]
r+1,i xi,r+1

) ∮
Cr+1

dzr+1

2πi

1

zr+1 − z∗r+1

×

(
n∏

a>r+1

∮
Ca

dza
2πi

) ∏
a>r+1

Ia(z
∗[r]
1 , z

∗[r]
2 , ..., z∗[r]r , zr+1, zr+2, ..., zn; ~xa)

≡
r+1∏
j=1

Hj(~x)

(
n∏

a>r+1

∮
Ca

dza
2πi

) ∏
a>r+1

Ia(z
∗[r+1]
1 , z

∗[r+1]
2 , ..., z∗[r+1]

r , z
∗[r+1]
r+1 , zr+2, ..., zn; ~xa)

(2.3.21)
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where we called, in agreement with our initial definitions,

Hr+1(~x) =

[
1−

(
xr+1,r+1 +

r∑
i=1

â
[r]
r+1,i xi,r+1

)]−1

(2.3.22)

It is clear now that once all the integration have been done, F
[n]
0 will simply be the product

F
[n]
0 =

n∏
i=1

Hi(~x) =
n∏
i=1

1− xi,i −
i−1∑
q=1

â
[i−1]
i,q xq,i

−1

(2.3.23)

In appendix B.3 we present an explicit example of the application of these formulae to a three

node unflavoured quiver. From the last equation we can see how the pole coefficients â
[i−1]
i,q play

a central role in the computation of F
[n]
0 . Our goal now is to rewrite them in a more compact

and appealing form. For notational purposes it is useful now to define G[n] as the inverse of

F
[n]
0 ; G[n] =

(
F

[n]
0

)−1
.

Choosing any 1 ≤ r < n, for all n ≥ p > r and 1 ≤ k ≤ r we find an expression which can

be interpreted in terms of paths on the complete n-node quiver:

G[r] â
[r]
p,k = G[r]\k xp,k +

r∑
i=1
i6=k

G[r]\{k,i}xp,ixi,k +
r∑

i,j=1
i 6=j 6=k

G[r]\{k,i,j}xp,ixi,jxj,k

+ ...+
r∑

i1,i2,..,it=1
i1 6=i2 6=...6=it 6=k

G[r]\{k,∪th=1ih}
xp,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k + ...

...+
r∑

i1,i2,..,ir−1=1

i1 6=i2 6=... 6=ir−1 6=k

xp,i1xi1,i2xi2,i3 · · ·xir−2,ir−1xir−1,k (2.3.24)

or, in a more compact form:

G[r] â
[r]
p,k =

r−1∑
t=0

 r∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[r]\{k,∪th=1ih}
xp,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k

 (2.3.25)

with the convention that G[0] = 1. We prove this formula in appendix B.4. For fixed r < n we

now describe the interpretation of each of the terms in the expansion of (2.3.25) as a path on

the complete n-node quiver. Each term is a product of two different pieces. The first one is the

G function of a quiver containing a certain subset [r] \ {k,∪th=1ih} of the first [r] = {1, 2, ..., r}
nodes. The second one is a string of xab variables, which can be interpreted as an oriented open

line on the quiver. It departs from a node p, which is not included in the set [r], passes through

some t intermediate nodes ih and arrives at node k, with i1, i2, ..., it, k ∈ [r].
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Figure 11: Pictorial interpretation of G[r] â
[r]
p,k. The starting point of the oriented open path, p, belongs

to the set {r + 1, r + 2, ..., n}.

From here we also explicitly see that the pole coefficient â
[r]
p,k is charged under the U(1)n

subgroup of the gauge group of the quiver. Since every G[r] has zero U(1)n charge, and the

product of xab coefficients xp,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k is charged under the p-th U(1) and the

k-th U(1) as (−1, 1) respectively, the whole quantity â
[r]
p,k will carry a (−1, 1) charge under

U(1)p×U(1)k, just like an xp,k variable would. These quantities are also helpful in writing down

a recursive formula for G[r]. Note that G[r+1] can be written as

G[r+1] = G[r]

(
1− xr+1,r+1 −

r∑
k=1

â
[r]
r+1,k xk,r+1

)

= G[r] (1− xr+1,r+1)−
r∑

k=1

G[r] â
[r]
r+1,k xk,r+1 (2.3.26)

The terms in the sum above are of the form (2.3.25), so that we can use it to bring G[r+1] into

the form

G[r+1] = G[r] (1− xr+1,r+1)

−
r∑

k=1

r−1∑
t=0

r∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[r]\{k,∪th=1ih}
xr+1,i1xi1,i2xi2,i3 · · ·xit−1,itxit,kxk,r+1

(2.3.27)
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and after relabelling some summation variables, we can write the this equation as

G[r+1] = G[r] −G[r]xr+1,r+1

−
r∑
t=1

r∑
i1,i2,..,it=1
i1 6=i2 6=... 6=it

G[r]\{∪th=1ih}
xr+1,i1xi1,i2xi2,i3 · · ·xit−1,itxit,r+1 (2.3.28)

and since the second term on the RHS of this identity is just the t = 0 term of the following

sum, we finally have

G[r+1] = G[r] −
r∑
t=0

r∑
i1,i2,..,it=1
i1 6=i2 6=...6=it

G[r]\{∪th=1ih}
xr+1,i1xi1,i2xi2,i3 · · ·xit−1,itxit,r+1 (2.3.29)

We can also give a similar formula for each of the Hl coefficients in the product (2.3.23). We

know that

Hl(~x) =

1− xl,l −
l−1∑
q=1

â
[l−1]
l,q xq,l

−1

(2.3.30)

and using F
[n]
0 = G−1

[n] we can write

Hl(~x) =

1− F [l−1]
0 G[l−1]xl,l − F

[l−1]
0

l−1∑
q=1

G[l−1] â
[l−1]
l,q xq,l

−1

=

1− F [l−1]
0

G[l−1]xl,l +
l−1∑
q=1

G[l−1] â
[l−1]
l,q xq,l

−1

(2.3.31)

We again have terms like G[l−1] â
[l−1]
l,q xq,l, which have the same structure of the ones encountered

in the derivation of eq. (2.3.29). We can just redo the same steps done previously to bring the

equation for the Hl(~x) coefficient into the form

Hl(~x) =

1− F [l−1]
0

l−1∑
t=0

l−1∑
i1,i2,..,it=1
i1 6=i2 6=...6=it

G[l−1]\{∪th=1ih}
xl,i1xi1,i2xi2,i3 · · ·xit−1,itxit,l


−1

= F
[l−1]
0

G[l−1] −
l−1∑
t=0

l−1∑
i1,i2,..,it=1
i1 6=i2 6=... 6=it

G[l−1]\{∪th=1ih}
xl,i1xi1,i2xi2,i3 · · ·xit−1,itxit,l


−1

=
G[l−1]

G[l]
(2.3.32)
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where in the last step we used eq. (2.3.29). We can then rewrite eq. (2.3.23) as

F
[n]
0 =

n∏
i=1

Hi(~x) =

n∏
i=1

G[i−1]

G[i]
(2.3.33)

with G[0] = 1.

2.3.1 F
[n]
0 and the sum over subsets

In this section we will prove the expression for
(
F

[n]
0

)−1
given in [26]

(
F

[n]
0

)−1
= 1 +

∑
V⊆Vn

∑
σ∈Sym(V)

(−1)Cσyσ({xab}) (2.3.34)

where V is any subset of the set of nodes Vn = {1, 2, ..., n} of the quiver but the empty set, and

Sym(V) is the group of all the permutations of elements in V. Cσ is the number of cycles in σ.

yσ({xab}) is a monomial built from the xab coefficients as

yσ({xab}) =
∏
i

yσ(i)({xab}) (2.3.35)

where the product runs over the cycles σ(i) of the permutation σ =
∏
i σ

(i), and for a single

cycle (i1, i2, · · · , ik)

y(i1,i2,...ik)({xab}) = xi1,i2xi2,i3 · · ·xik,i1 (2.3.36)

For example, when σ = (12)(3), the permutation which swaps 1 and 2 and leaves 3 fixed, then

y(12)(3)({xab}) = x12x21x33. This equation has thus an interpretation in terms of loops {yc} on a

complete quiver, where each loop yc corresponds to a cycle c = (i1, · · · , ik) as in (2.3.36). Since

these loops corresponds to cyclic permutations, they do not visit the same node more than once:

for this reason we call them simple loops, to distinguish them from more general closed paths.

In the following we will write the above formula as G̃[n] :

G̃[n] = 1 +
∑
V⊆Vn

∑
σ∈Sym(V)

(−1)Cσyσ({xab}) (2.3.37)

To prove the identity (2.3.34) we will show that the sequence G̃[n] obeys the same recursion

relation (2.3.29) satisfied by the G[n] coefficients obtained from the residue computations. We

have

G̃[n+1] = 1 +
∑

V⊂{1,··· ,n+1}

∑
σ∈Sym(V)

(−1)Cσyσ (2.3.38)

If the subset V of {1, · · · , n + 1} does not include n + 1, we have a sum which, together with

the leading 1, gives G[n]. The remaining terms involve subsets which include the {n+ 1} node.
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For such subsets, the permutation σ can either be of the product form σ′(n + 1), where σ′ is

a permutation of {1, · · · , n}, or alternatively it is of the form σ′(i1, i2, · · · , ik, n + 1), with σ′ a

permutation of {1, · · · , n} \ {i1, · · · , ik}. The first type of term gives

−G̃[n]yn+1 = −G̃[n]xn+1,n+1 (2.3.39)

The second type of term gives

−
n∑
k=1

n∑
i1 6=i2 6=···6=ik=1

G̃[n]\{i1,··· ,ik}yi1,··· ,ik,n+1 (2.3.40)

Collecting the terms we find

G̃[n+1] = G̃[n](1− xn+1,n+1)−
n∑
k=1

n∑
i1 6=i2 6=···ik=1

G̃[n]\{i1,··· ,ik}xi1i2xi2i3 · · ·xik,n+1xn+1,i1 (2.3.41)

This proves that the guessed formula G̃[n] satisfies the same recursion relation as G[n]. It is

evident that G[1] = G̃[1] = 1. This proves that G̃[n] = G[n], ∀n.

2.3.2 F
[n]
0 and determinants

Equation (2.3.34) can be used to recast F
[n]
0 ({xab}) as a determinant expression given by

F
[n]
0 ({xab}) =

1

det (1n −Xn)
(2.3.42)

where 1n is the n dimensional identity matrix and Xn is a n× n matrix defined by

Xn|ij = xij , 1 ≤ (i, j) ≤ n (2.3.43)

The following identity for the expansion of det(1n−Xn) in terms of sub-determinants of Xn, or

equivalently characters of Xn associated with single-column Young diagrams, is useful:

det (1n −Xn) =
n∑
k=0

(−1)kχ[1k](Xn)

=
n∑
k=0

(−1)k
n∑

i1,i2,...,ik=1

∑
σ∈Sk

(−1)σ

k!
xi1iσ(1)

xi2iσ(2)
· · ·xikiσ(k)

(2.3.44)

This expansion is organized according to the number of 1 valued entries picked up from the

matrix (1n −Xn) in calculating its determinant. When we pick n− k of these 1 valued entries,

we have the sum of the sub-determinants constructed from blocks of size k from the matrix Xn.

The sign (−1)σ is the parity of the permutation. Because of the antisymmetrisation
∑

σ(−1)σ,

the sum over i1, i2, ..., ik can be restricted to run over the set i1 6= i2 6= ... 6= ik, so that it can

be rewritten as a sum over subsets Vk of k different integers from {1, · · · , n}. For each choice
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of subset there is a factor of k! for the different ways of assigning i1, · · · , ik to the elements of

the subset. Hence

det (1n −Xn) =

n∑
k=0

(−1)k
∑
Vk

∑
σ∈Sym(Vk)

(−1)k−Cσyσ (2.3.45)

Sym(Vk) is the symmetric group of permutations of elements in Vk. Here we have used the

fact that the parity of a permutation σ can be written in terms of the number of cycles as

(−1)σ = (−1)k−Cσ and we also used the definition of yσ. The expression (2.3.34) now follows.

2.4 Word counting and the building block F
[n]
0

The generating function Z({xab;α}) for gauge invariant operators for unflavoured quiver theories

has been given as an infinite product built from a building block F
[n]
0 ({xab}). This has been

expressed in terms of a determinant of the matrix (1n −Xn), where (Xn)|ab = xab.

After expanding F
[n]
0 ({xab}) in a power series in the variables xab, it is natural to ask if the

coefficients in this series have a combinatoric interpretation as counting something. The answer

does not immediately follow from the combinatoric interpretation of Z({xab;α}) in terms of gauge

invariants, nevertheless, the coefficients in the expansion of F
[n]
0 ({xab}) are themselves positive.

This follows from the Cauchy-Littlewood formula for the expansion of the inverse determinant:

1

det(1n −Xn)
=

∞∑
k=0

1

k!

n∑
i1···ik=1

∑
σ∈Sk

xi1,iσ(1)
xi2,iσ(2)

· · ·xik,iσ(k)
(2.4.1)

This strongly suggests that there should be a combinatoric interpretation in terms of properties

of graphs. We will find that there are in fact two combinatoric interpretations: both in terms

of word counting related to the quiver with one directed edge for every specified start and

end-point. We will call the latter the complete n-node quiver. We will refer to these two as

the charge conserving open string word (COSW) counting problem and the closed string word

(CSW) counting problem. It turns out that the equivalence between these two word counting

problems is a known mathematical result! This gives a new connection between word counting

problems and gauge theory.

To motivate the CSW interpretation, let us take the simple case of n = 2, for which we have

F
[2]
0 (x11, x12, x21, x22) =

1

(1− x11 − x22 − x12x21 + x11x22)
(2.4.2)

The denominator depends on variables

y11 = x11 , y12 = x12x21 , y22 = x22 (2.4.3)

These variables are associated with closed loops in a graph with two nodes, and one edge for
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every pair of specified starting and end points. Let us first set y12 = 0: we have

1

(1− y11 − y22 + y11y22)
=

1

(1− y11)

1

(1− y22)
(2.4.4)

Expanding in powers of y11, y22, we see

1

(1− y11 − y22 + y11y22)
=

∞∑
m1=0

ym1
11

∞∑
m2=0

ym2
22 (2.4.5)

We describe the CSW interpretation in this simple case. Take the letters ŷ11, ŷ22 and consider

arbitrary strings of these, with the condition that

ŷ11ŷ22 = ŷ22ŷ11 (2.4.6)

A general word is characterized by the number m11 and m22 of ŷ11, ŷ22. With these numbers

specified, the commutation relation can be used to write any such word as

(ŷ11)m11(ŷ22)m22 (2.4.7)

There is thus, precisely one word with content (m11,m22). Thus the coefficient of ym11
11 ym22

22 is

equal to the number of words in a language made from letters ŷ11, ŷ22. The words are sequences

of these letters, with the commutation relation (2.4.6). Now set y11 = 0

F
[2]
0 (y11 = 0, y12, y22) =

1

(1− y12 − y22)
=

∞∑
m=0

(y12 + y22)m =

∞∑
m=0

m∑
m12=0

m!

m12!m22!
ym12

12 ym22
22

=
∞∑

m22=0

∞∑
m12=0

(m12 +m22)!

m12!m22!
ym12

12 ym22
22 (2.4.8)

In this case, we can consider letters ŷ12, ŷ22, without imposing the commutation condition. Then

a general word with specified numbers m12,m22 is the number of sequences we can write with

m12,m22 copies of ŷ12, ŷ22. Each word corresponds to one way of placing the m12 objects of one

kind and m22 objects of another kind in m12 + m22 positions. This shows that the number of

words is (m12+m22)!
m12!m22! in agreement with the coefficient above.

These simple examples illustrate a general interpretation of all the coefficients in the expan-

sion of F
[n]
0 , in terms of the cycle variables yc. Consider the complete n-node quiver. To each

simple closed loop c on the graph, associate a variable ŷc. If we label the nodes of the graph

{1, · · · , n}, every cyclic permutation of a subset of the nodes corresponds to a simple loop on

the graph. These simple loops visit each node no more than once. To define the CSWs, we

associate a letter to ŷc to every simple loop. We impose the relation

ŷcŷc′ = ŷc′ ŷc (2.4.9)
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for every pair of simple loops c, c′ that have no node in common. The letters which do share a

node are treated as non-commuting, while the letters that do not share a node are treated as

commutative. Then we consider strings containing mc copies of the letter ŷc. A simple guess,

based on the above examples, is that the coefficient of
∏
c y

mc
c in the expansion of F

[n]
0 is exactly

equal to the number of distinct words build from the letters ŷc with specified numbers mc for

each letter. This word counting interpretation is called closed string word counting since the

loops can be thought as closed strings made from open strings which are the edges extending

between nodes. The validity of this interpretation will be explained by using its equivalence to

an open string word counting.

Appendix B.5 gives more examples of direct checks of this connection between closed string

word counting and the building block function F
[n]
0 .

From the derivation of the generating function of gauge invariants we know that

F
[n]
0 ({xab}) =

1

det(1n −Xn)
=
∑
~p

n∏
a=1

(
n∑
b=1

pab

)
!

(
n∏
b=1

x pabab

pab!

)
δ

(
n∑
b=1

(pab − pba)

)
(2.4.10)

This gives another way to see that the coefficients in the expansion are positive, and in fact

integers. Consider the coefficient of
∏
a,b x

pab
ab , which is

∏
a

(
∑n

b=1 pab)!∏n
b=1 pab!

δ

(
n∑
b=1

(pab − pba)

)
(2.4.11)

This leads directly to the open string word counting. Consider letters x̂ab corresponding to

each directed edge, going from a to b in the complete n-node quiver. We will call these open

string bits. Then consider words which are sequences of these letters. These words will be called

open string words. We impose the commutation condition

x̂abx̂a′b′ = x̂a′b′ x̂ab (2.4.12)

for a 6= a′. So sequences which differ by such a swap are counted as the same word. Thus, string

bits which have different starting points do not commute. Two different string bits with the

same starting point do not commute. For each starting point a the factor

(
∑n

b=1 pab)!∏n
b=1 pab!

(2.4.13)

counts the number of sequences containing pab copies of x̂ab. Defining

pa =
∑
b

pab =
∑
b

pba (2.4.14)
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an open string word will take the form

wo = x̂1a1 x̂1a2 · · · x̂1ap1
x̂2ap1+1 x̂2ap1+2 · · · x̂2ap1+p2

· · · x̂nap1+···+pn−1+1 · · · x̂nap1+···+pn

(2.4.15)

The open string bits with different starting points commute, so we have used that commutativity

to place all the ones starting at 1 to the far left, the ones starting from 2 next, and so on. The

integers a1, · · · , a∑
i pi

will contain p1 copies of 1, p2 copies of 2 etc. This condition says that

the sequence of open string bits that appear in the expansion of F
[n]
0 contains as many bits with

starting point i as with end points as i. We will refer to this as charge conserving open string

words. So we have shown that the F
[n]
0 counts charge-conserving open string words. Remarkably,

Cartier and Foata proved that charge-conserving open string words are in 1-1 correspondence

with closed string words! This is theorem 3.5 in Cartier-Foata [64].

We refer the reader to [64] for the formal proof. Here we explain, with examples, the meaning

of this equivalence between the counting of charge-conserving open string words (COSW) and

closed string words (CSW). Given an a CSW, it is easy to write down a corresponding COSW.

Take for example

ŷ11 ŷ12 ŷ11 ŷ22 ŷ123 = ŷ11 ŷ12 ŷ22 ŷ11 ŷ123 (2.4.16)

Write these closed-string letters in terms of open string bits:

ŷ11 = x̂11 , ŷ22 = x̂22 , ŷ12 = x̂12x̂21 , ŷ123 = x̂12x̂23x̂31 (2.4.17)

The word of interest becomes

x̂11x̂12x̂21x̂11x̂22x̂12x̂23x̂31 = x̂11x̂12x̂11x̂12 x̂21x̂22x̂23 x̂31 (2.4.18)

We have used the commutativity to arrange as in (2.4.15). A CSW determines in this way a

unique COSW.

The reverse is also true. A COSW determines a unique CSW. The general proof is non-

trivial [64]. We just illustrate with some examples here. Consider some COSW with specified

numbers of starting (and end-) points of particular types, say three starting and ending at 1,

two at 2 and three at 3. These words are of the form

x̂1,τ(1)x̂1,τ(1)x̂1,τ(1) x̂2,τ(2)x̂2,τ(2) x̂3,τ(3)x̂3,τ(3)x̂3,τ(3) (2.4.19)

Here τ is a permutation in S8, which should be thought of as moving the integers {1, 2, 3} from

their initial positions (1, 1, 1, 2, 2, 3, 3, 3) to a new position. When τ is the identity we have the

COSW

x̂11x̂11x̂11 x̂22x̂22 x̂33x̂33x̂33 = ŷ11ŷ11ŷ11 ŷ22ŷ22 ŷ33ŷ33ŷ33 (2.4.20)
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Suppose now τ = (1, 2, 3, 4, 5, 6, 7, 8), a cyclic permutation. The COSW is

x̂13x̂11x̂11 x̂21x̂22 x̂32x̂33x̂33 (2.4.21)

If we map this to closed string words, this will involve two copies of ŷ11, two copies of ŷ33, and

ŷ132 = x̂13x̂32x̂21. The unique CSW is

ŷ132 ŷ11ŷ11 ŷ22 ŷ33ŷ33 (2.4.22)

In arriving at this, we did a re-arrangement which moves the x̂32 across the x̂22. This is allowed,

since the open string bits commute when they have different starting point. i.e. different first

index. The reader is encouraged to play with different choices of τ . It is easy to see that

permutations τ in S8 are a somewhat redundant way to parametrize the COSW. In fact it

is a coset of S8 by S3 × S2 × S3 that parametrizes the COSW. For any choice of τ , there is

always a CSW, i.e a list of ŷc for different cycles, arranged in a specific order (modulo the

commutation relations (2.4.9)), which agrees with the COSW after re-arrangements allowed by

the commutation (2.4.12). This is guaranteed by theorem 3.5 of [64].

We have focused on the combinatoric interpretation of F
[n]
0 ({xab}), in terms of the complete

quiver graph. This basic building block generates the counting of gauge invariants at large N for

any quiver, after taking an infinite product with the substitutions in (2.1.1). If we are interested

in a quiver where there is no edge going from a to b, these substitutions involve setting xab → 0

for that pair of nodes. It is instructive to consider the quantity

F [n]
0 ({xab;α}) = F

[n]
0 ({xab →

∑
α

xab,α}) (2.4.23)

which is not an infinite product, but knows about the connectivity of any chosen quiver graph,

with general multiplicities (possibly zero) between any specified start and end-node. This quan-

tity has an interpretation in terms of word counting of open string words, as it follows immedi-

ately from (2.4.10):

F [n]
0 ({xab,α}) =

∑
~p

n∏
a=1

(
n∑
b=1

Mab∑
α=1

pab,α

)
!

(
n∏
b=1

Mab∏
α=1

x
pab,α
ab,α

pab,α!

)
δ

(
n∑
b=1

Mab∑
α=1

(pab,α − pba,α)

)
(2.4.24)

We again have the basic rule that different open string letters corresponding to string bits with

the same starting point do not commute. Again by invoking the Cartier-Foata theorem we see

that, for any quiver, it is possible to map the open word counting problem to a closed word

counting problem, in which string letters corresponding to simple loops which share a node do

not commute.

The building block F
[n]
0 ({xab}) gives the counting of gauge invariants at large N , by means

of a simple combinatoric operation involving an infinite product and elementary substitutions.

One of our motivations for developing a combinatorial interpretation for F
[n]
0 ({xab}), is that it

highlights an interesting analogy with a deformation of the counting problems considered here.
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We have focused on the counting of all holomorphic invariants made from chiral fields in an

N = 1 theory. In many of the N = 1 theories of interest in AdS/CFT, the general holomorphic

invariants form the chiral ring in the limit of zero superpotential, but beyond that, one wants to

impose super-potential relations. In these cases, the counting of chiral gauge invariant operators

leads to the N -fold symmetric product of the ring of functions on non-compact Calabi-Yau

spaces [77]. In the large N limit, the plethystic exponential gives the counting in terms of the

counting at N = 1. The N = 1 counting is a simple building block of the large N counting. It

has a physical interpretation as the ring of functions on the CY and the plethystic exponential

has an interpretation in terms of the bosonic statistics of many identical branes.

The procedure of taking an infinite product and making substitutions, that we have developed

for the N → ∞ counting at zero superpotential, can be viewed as an analog of the plethystic

exponential. In this analogy the function F
[n]
0 ({xab}) corresponds to the U(1) counting, which

is the same as counting holomorphic functions on a CY. The counting problems we have solved

also correspond to some large N geometries: namely the spaces of multiple matrices, subject

to gauge invariance constraints. There is no symmetric product structure in this geometry,

but there is nevertheless a simple analog of the plethystic exponential. There is no physical

interpretation of F
[n]
0 ({xab}) as a gauge theory partition function, but there is nevertheless an

interpretation in terms of string word counting partially commuting string letters. A deeper

understanding and interpretation of these analogies will undoubtedly be fascinating.

2.5 The flavoured case: from contour integrals to a determinant

expression

We now turn to the full picture, that is we allow for quarks and antiquarks. Take then eq.

(2.2.28):

F [n]({xab}, {ta}, {t̄a}) =

(∏
a

∮
Ca

dza
2πi

)∏
a

Ia(xab, ta, t̄a) (2.5.1)

where

Ia(~z; ~xa, ta, t̄a) =
exp (zata)

za −
(
t̄a +

n∑
b=1

zb xb,a

) (2.5.2)

Again we have to compute residues. First of all note that the numerator of (2.5.2) is regular in

za, so that the only poles may come from its denominator. We can simplify the next steps by

using a trick: let us rename t̄a ≡ x0,a and multiply it by a dummy variable, z0. Pictorially, this

would consist of taking all the open (fundamental matter) edges in the quiver and joining them

to a fictitious node, that we call ‘0 node’. For consistency, let us also rename ta ≡ xa,0 Using
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this notation we can rewrite eq. (2.5.2) as

Ia(~z; ~xa, ta, t̄a) =
exp (za xa,0)

za −
(
z0 x0,a +

n∑
b=1

zb xb,a

) =
exp (za xa,0)

za −
(

n∑
b=0

zb xb,a

) (2.5.3)

where it is understood that z0 will be set to 1 after the zi (1 ≤ i ≤ n) integrals have been done.

This means that the intermediate expressions arising from successive integrations will take the

same form as in the unflavoured case of Section 2.3. In particular the pole prescription still

holds unaltered.

With this formalism, eq. (2.3.12) becomes

z
∗[r]
j = z∗j (zr+1, ..., zn, z0; ~x) =

∑
i>r
∪{i=0}

zi â
[r]
i,j , (2.5.4)

and correspondingly eq. (2.3.19) gets modified as(
1−

(
xr+1,r+1 +

r∑
i=1

â
[r]
r+1,i xi,r+1

))
zr+1 =

=
∑
j>r+1
∪{j=0}

zj

(
xj,r+1 +

r∑
i=1

â
[r]
j,i xi,r+1

)
(2.5.5)

We can then proceed in the exact same fashion as in section 2.3. The only manifestly different

piece in the integrand are the numerators of (2.5.3). To highlight the similarity to the unflavoured

case, we write

Ĩa(~z; ~xa) =
1

za −

(
x0,a +

n∑
b=1

zb xb,a

) ≡ 1

za −
n∑
b=0

zb xb,a

(2.5.6)

such that

Ia(~z; ~xa, ta, t̄a) =
exp(zata)

za −
(
t̄a +

n∑
b=1

zb xb,a

) ≡ exp(za xa,0) Ĩa(~z; ~xa) (2.5.7)

For the flavoured case the equation corresponding to (2.3.15) would then be

F [n] =
r∏
j=1

Hj(~x)

(
n∏
a>r

∮
Ca

dza
2πi

) (
r∏

k=1

exp
(
z
∗[r]
k xk,0

))

×
∏
a>r

Ĩa(z
∗[r]
1 , z

∗[r]
2 , ..., z∗[r]r , zr+1, zr+2, ..., zn; ~xa) exp(zaxa,0) (2.5.8)
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where in exact analogy with (2.3.22)

Hj(~x) =

(
1−

(
xj,j +

j−1∑
i=1

â
[j−1]
j,i xi,j

))−1

(2.5.9)

Again, we see that the only addition in comparison to the unflavoured case is the product over

the exponential functions. After the n integrations have been done, using the definition in eq.

(2.5.4), we have

z
∗[n]
k = z∗k(z0; ~xk) =

∑
i>n
∪{i=0}

zi â
[n]
i,k ≡ z0 â

[n]
0,k (2.5.10)

At this point we set z0 = 1. Eq. (2.5.10) becomes

z
∗[n]
k = â

[n]
0,k , (2.5.11)

so that

n∏
k=1

exp
(
z
∗[n]
k xk,0

)
=

r∏
k=1

exp
(
â

[n]
0,k xk,0

)
(2.5.12)

We can then say that F is the product

F [n] =
n∏
j=1

Hj(~x) exp
(
z
∗[n]
j xj,0

)
=

n∏
j=1


exp

(
â

[n]
0,j xj,0

)
1− xj,j −

j−1∑
i=1

â
[j−1]
j,i xi,j

 (2.5.13)

where xp,0 = tp and x0,p = t̄p. As expected, by setting all the fundamental matter field chemical

potentials to zero we return to the unflavoured case.

In Appendix B.6 we show that the numerator of this formula has the form

exp

 n∑
j=1

â
[n]
0,jtj

 = exp

 n∑
p,q=1

tpt̄q
(−1)p+qMp,q

det(1n −Xn)

 (2.5.14)

where Mp,q is the (p, q) minor2 of the matrix (1n −Xn). We can then write

F [n] =
1

det(1n −Xn)
exp

 n∑
p,q=1

tpt̄q
(−1)p+qMp,q

det(1n −Xn)

 (2.5.15)

2We recall that the (p, q) minor Mp,q of a square matrix A is defined as the determinant of the matrix obtained
from removing the p-th row and q-th column from A.
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A second expression for the same quantity is also given in Appendix B.6, and it reads

F [n] = F
[n]
0 exp

(
tpt̄q ∂

p,q logF
[n]
0

)
(2.5.16)

where we used Einstein summation on p, q, and ∂p,q = ∂
∂xpq

.

Note that, as in the unflavoured case, we can write F [n] as a determinant of a suitable matrix,

which encodes all the information of the quiver under study. Since

(−1)p+qMp,q

det(1n −Xn)
= (1n −Xn)−1

∣∣∣
q,p

(2.5.17)

if we introduce the n× n matrices χn and Λn, defined by

χn|p,q = (1n −Xn)−1
∣∣
p,q

, Λn|p,q = tpt̄q (2.5.18)

then we can write

F [n]({xab}, {ta}, {t̄a}) = detχn exp [Tr (χn Λn)] (2.5.19)

Finally, the last equation can be put in the determinant form

F [n]({xab}, {ta}, {t̄a}) = det (χn exp [χn Λn]) (2.5.20)

The generating function Z is obtained from F using eq. (2.2.27). However, from e.g. eq. (2.5.20)

we see that ta, t̄b always appear pairwise, so that we can rewrite (2.2.27) in the more symmetric

form already anticipated in eq. (2.1.8), that is

Z({xab,α}, {Ta,β}, {T̄a,γ})

=
∏
i

F [n]

{xab →∑
α

xiab,α

}
,

ta →∑
β

Tr(T i
a,β)
√
i

 ,

{
t̄a →

∑
γ

Tr(T̄ i
a,γ)
√
i

} (2.5.21)

This is the final expression for our large N generating function.

2.6 A few examples

We will now present some simple applications of our counting formulae, for the large N limit.

2.6.1 One node quiver

Rewriting the chemical potentials of the fields as x11 → x, t1 → t, t̄1 → t̄, we have

χ1 =
1

1− x
, Λ1 = tt̄ , (2.6.1)
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so that

F [1] = det(χ1 exp[χ1Λ1]) = det(χ1) exp [Tr(χ1Λ1)] =
e

tt̄

1− x

1− x
(2.6.2)

The large N generating function is then

Z({xα}, {Tβ}, {T̄γ}) =
∏
i

exp

(∑
β,γ Tr(T iβ ) Tr(T̄ iγ )

i(1−
∑

α x
i
α)

)
1−

∑
α x

i
α

(2.6.3)

For the d = 4, N = 4 SYM theory with quiver shown in Figure 12

Figure 12: d = 4, N = 4 SYM quiver

the Z function is

ZSYM (x1, x2, x3) =
∏
i

1

1− xi1 − xi2 − xi3
(2.6.4)

For the SQCD model, described by the quiver in figure 13

Figure 13: d = 4 N = 1 SQCD quiver

the generating function is instead

ZSQCD(T , T̄ ) =
∏
i

exp

{
1

i
Tr(T i) Tr(T̄ i)

}
=

F∏
j=1

F̄∏
k=1

(1− tj t̄k)−1 , (2.6.5)

where we used

T = diag(t1, t2, ..., tF ) , T̄ = diag(t̄1, t̄2, ..., t̄F̄ ) (2.6.6)

Note that if in the last example we do not distinguish the U(1) ⊂ U(F ) charges of the quarks
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and the U(1) ⊂ U(F̄ ) charges of the antiquarks, that is we set T = t 1F and T̄ = t̄ 1F̄ , we get

ZSQCD(t 1F , t̄ 1F̄ ) = (1− tt̄ )−FF̄ (2.6.7)

which was already derived in [78], using different counting methods.

An interesting gauge theory can be obtained by adding a flavour symmetry to N = 4

SYM [49, 50]. This operation breaks half of the supersymmetries leaving an N = 2 theory,

which in turn we can describe with the N = 1 quiver [79] in figure 14.

Figure 14: N = 2 SQCD with and adjoint hypermultiplet.

The N = 2 theory has a vector multiplet V (1 complex scalar φ) and an hypermultiplet H
(two complex scalars H1, H2) both in the adjoint of U(N). A second hypermultiplet Q is in the

bifundamental U(N) × U(F ), where U(F ) is a global (non-dynamical) flavour symmetry (two

complex scalars Q, Q̄, transforming in opposite way under the symmetry group). The large N

generating function for this quiver, that we denote by ZN=2(x1, x2, x3, T , T̄ ), is given by

ZN=2(x1, x2, x3, T , T̄ ) =
∏
i

exp

[
Tr(T i) Tr(T̄ i)

i
(
1− xi1 − xi2 − xi3

)]
1− xi1 − xi2 − xi3

(2.6.8)

The first terms in the expansion of the unrefined ZN=2(x1, x2, x3, t 1F , t̄ 1F ) read

ZN=2(x1, x2, x3, t 1F , t̄ 1F ) = 1 + x1 + x2 + x3 + F 2tt̄+ 2x1x2 + 2x1x3 + 2x2x3 + 2F 2tt̄x1

+ 2F 2tt̄x2 + 2F 2tt̄x3 + 6x1x2x3 +
F 2

2

(
1 + F 2

)
t2t̄2 (2.6.9)

+ 6F 2tt̄x1x2 + 6F 2tt̄x1x3 + 6F 2tt̄x2x3 +
F 2

2

(
1 + 3F 2

)
t2t̄2x1 + ...

Let us now check explicitly the validity of our generating function for some of these coefficients,

in the large N limit. Let us start off by considering just one quark/antiquark pair and one

adjoint scalar, say H1. The Gauge Invariant Operators (GIOs) we can build out of these fields
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are

(φ)(Q̄Q)kl , (Q̄ φQ)kl (2.6.10)

where upper and lower indices belong to the fundamental and antifundamental of U(F ) and

U(F̄ ) respectively, and round brackets denote U(N) indices contraction. The total number of

GIOs for this given configuration is 2F 2. We see that this value is the same one of the coefficient

tt̄x1, so that we have a first test of the validity of (2.6.9). Consider now the situation in which

we only have two pairs of quarks/antiquarks. The only GIOs we can form are of the form

(Q̄Q)k1
l1

(Q̄Q)k2
l2

(2.6.11)

using the same convention of the example above for the flavour and gauge indices. This is just

a product of two matrix elements of the same F dimensional matrix (Q̄Q). The total number

of inequivalent GIOs is then 1
2F

2
(
1 + F 2

)
: once again this is the same coefficient of the term

(tt̄)2 in (2.6.9). As a last example, suppose added to the last configuration a single field φ. The

GIOs we can form would then be

(φ) (Q̄Q)k1
l1

(Q̄Q)k2
l2
, (Q̄ φQ)k1

l1
(Q̄Q)k2

l2
(2.6.12)

The one on the left consists brings a total of F 2

2

(
1 + F 2

)
GIOs, while the one on the right adds

another F 2 GIOs to the final quantity, which then reads

F 2

2

(
1 + F 2

)
+ F 2 =

F 2

2

(
1 + 3F 2

)
(2.6.13)

In agreement with the coefficient of (tt̄)2x1 in (2.6.9).

2.6.2 Two node quiver

We now present some two-node quiver examples. From the definitions in (2.1.5) we can imme-

diately write

χ2 = (12 −X2)−1 =
1

det (12 −X2)

(
1− x22 x12

x21 1− x11

)
, (2.6.14)

and

Λ2 =

(
t1t̄1 t1t̄2

t2t̄1 t2t̄2

)
; (2.6.15)
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so that, from (2.1.7):

F [2] = det(χ2 exp[χ2Λ2]) = det(χ2) exp[Tr(χ2Λ2)]

=

exp

(
t1t̄1(1− x22) + t1t̄2x21 + t2t̄1x12 + t2t̄2(1− x11)

1− x11 − x22 − x12x21 + x11x22

)
1− x11 − x22 − x12x21 + x11x22

(2.6.16)

Finally, recalling (2.1.8), we can get the large N generating function from F [2] by mapping

x11 →
M11∑
α=1

xi11,α , x12 →
M12∑
α=1

xi12,α , x21 →
M21∑
α=1

xi21,α , x22 →
M22∑
α=1

xi22,α , (2.6.17a)

tk → i−1/2
Mk∑
β=1

Tr(T ik,β) , k = 1, 2 , t̄k → i−1/2
M̄k∑
γ=1

Tr(T̄ ik,γ) , k = 1, 2 (2.6.17b)

and by taking the product over i from 1 to ∞.

The most famous two-node quiver is Klebanov and Witten’s conifold gauge theory, consisting

of the gauge group U(N)×U(N) and four bifundamental fields: two of them, A1 and A2, in the

representation (�̄, �) and the remaining two, B1 and B2, in the representation (�, �̄) of the

gauge group. Here we consider the deformation of such a model obtained by allowing flavour

symmetries, which is sometimes called ‘flavoured conifold’ [52, 53,75,76]

Figure 15: The quiver character diagram for the flavoured conifold gauge theory.

We now choose a different notation for the chemical potentials of the fields, to accord to

more standard conventions:

x12,1 → a1 , x12,2 → a2 , x21,1 → b1 , x21,2 → b2 ,

T1,1 → q1 , T2,1 → q2 , T̄1,1 → q̄1 , T̄2,1 → q̄2
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The first terms in the power expansion of ZFlavoured
Conifold

(a1, a2, b1, b2, q1, q2, q̄1, q̄2) in the large N limit

then read

ZFlavoured
Conifold

=1 + a1b1 + 2a2
1b

2
1 + 2a2

1b1b2 + 2a2a1b
2
1 + a1b2 + 2a2

2b
2
1 + a2b1 + a2b2 + TrF1(q1)TrF̄1

(q̄1)

+ 2a1b1TrF1(q1)TrF̄1
(q̄1) + 2a2b1TrF1(q1)TrF̄1

(q̄1) + 4a2
1b

2
1TrF1(q1)TrF̄1

(q̄1)

+ 6a1a2b
2
1TrF1(q1)TrF̄1

(q̄1) + a1TrF1(q1)TrF̄2
(q̄2) + 12a1a2b1b2TrF1(q1)TrF̄1

(q̄1) + ...

(2.6.18)

2.6.3 Three node quiver: dP0

The del Pezzo dP0 gauge theory (obtained from D3 branes on C3/Z3 orbifold singularities [80])

contains nine bifundamental fields charged under the U(N1) × U(N2) × U(N3) gauge group as

represented in figure 16, in which we also added flavour symmetry.

Figure 16: Flavoured dP0 gauge theory.

We refer to this theory as the flavoured dP0 theory. Using the convention for the chemical

potentials of the fields

x12,1 → a1 , x12,2 → a2 , x12,3 → a3 , T1,1 → q1 , T̄1,1 → q̄1 ,

x23,1 → b1 , x23,2 → b2 , x23,3 → b3 , T2,1 → q2 , T̄2,1 → q̄2 ,

x31,1 → c1 , x31,2 → c2 , x31,3 → c3 , T3,1 → q3 , T̄3,1 → q̄3

(2.6.19)
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we can write the generating function for the flavoured dP0 theory in the large N limit as:

ZdP0 Flav. =
∏
i

1

1−
3∑

j,k,l=1

(aj bk cl)i

× exp


TrF1(qi1)

(
TrF̄1

(q̄i1) + TrF̄3
(q̄i3)

3∑
p=1

aip + TrF̄2
(q̄i2)

3∑
p,q=1

cipa
i
q

)

i

(
1−

3∑
j,k,l=1

(aj bk cl)i

)

+

TrF2(qi2)

(
TrF̄2

(q̄i2) + TrF̄1
(q̄i1)

3∑
p=1

bip + TrF̄3
(q̄i3)

3∑
p,q=1

bipa
i
q

)

i

(
1−

3∑
j,k,l=1

(aj bk cl)i

)

+

TrF3(qi3)

(
TrF̄3

(q̄i3) + TrF̄2
(q̄i2)

3∑
p=1

cip + TrF̄1
(q̄i1)

3∑
p,q=1

bipc
i
q

)

i

(
1−

3∑
j,k,l=1

(aj bk cl)i

)
 (2.6.20)
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Chapter 3

Correlators in the Quiver Restricted

Polynomials Basis

In this chapter we will be focusing on the construction of a basis for the Hilbert space of

holomorphic matrix invariants for the class of quiver gauge theories described in section 1.4.

This basis is obtained in terms of Quiver Restricted Schur Polynomials OQ(LLL), that we define

in Section 3.2. These are a generalisation of the restricted Schur operators introduced in [22–

24,30,81]. In [26], the non-flavoured versions of these objects were called Generalised Restricted

Schur operators, constructed in terms of quiver characters χQ(LLL) where LLL is a collection of

representation theory labels. In this flavoured case, we will find generalisations of these quiver

characters, where the representation labels will include flavour states organised according to

irreducible representations of the flavour groups. The advantages of using this approach is

twofold. On the one hand, the Quiver Restricted Schur polynomials are orthogonal in the

free field metric, as we will show, even for flavoured gauge theories. This leads to the simple

expression for the two point function in eq. (3.3.1):〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (3.0.1)

In this equation fNa(Ra) represents the product of weights of the U(Na) representation Ra, where

a runs over the gauge nodes of the quiver. c~n is a constant depending on the matter content

of the matrix invariant OQ(LLL), given in (3.2.27). On the other hand, the Quiver Restricted

Schur polynomial formalism offers a simple way to capture the finite N constraints of matrix

invariants. This can be seen directly from (3.0.1): each fNa(Ra) vanishes if the length of the

first column of the Ra Young diagram exceeds Na.

In subsection 3.4 we give an N -exact expression for the three point function of matrix

invariants in the free limit. This computation is performed using the Quiver Restricted Schur

polynomial basis. Specifically, we will derive the GLLL(1),LLL(2),LLL(3) coefficients in〈
OQ(LLL(1))OQ(LLL(2))O†Q(LLL(3))

〉
= c~n(3) GLLL(1),LLL(2),LLL(3)

∏
a

fNa

(
R(3)
a

)
(3.0.2)

67



CHAPTER 3. CORRELATORS IN THE QUIVER RESTRICTED POLYNOMIALS BASIS

The analytical expression for GLLL(1),LLL(2),LLL(3) looks rather complicated, but it can be easily un-

derstood in terms of diagrams. Although the identities we need appear somewhat complex,

they all have a simple diagrammatic interpretation. Diagrammatics therefore play a central

role in this chapter: all the quantities we define and the calculational steps we perform can be

visualised in terms of networks involving symmetric group branching coefficients and Clebsch-

Gordan coefficients. Both these quantities are defined in Section 3.2. The quantity GLLL(1),LLL(2),LLL(3)

is actually found to be a product over the gauge groups: for each gauge group there is a network

of symmetric group branching coefficients and a single Clebsch-Gordan coefficient.

The organisation of the chapter is as follows. In Section 3.1 we describe a permutation based

approach to label matrix invariants of the flavoured gauge theories under study. A matrix invari-

ant will be constructed using a set of permutations (schematically σ) associated with gauge nodes

of the quiver, and by a collection of fundamental and antifundamental states (schematically s, s̄ )

of the flavour group, associated with external flavour nodes. In this section we highlight how the

simplicity of apparently complex formulae can be understood via diagrammatic techniques. We

describe equivalence relations, generated by the action of permutations associated with edges of

the quiver (schematically η), acting on the gauge node permutations and flavour states. Equiv-

alent data label the same matrix invariant. The equivalence is explained further and illustrated

in Appendix A.1. The equivalences η can be viewed as “permutation gauge symmetries”, while

the (σ, s, s̄) can be viewed as “matter fields” for these permutation gauge symmetries.

In Section 3.2 we give a basis of the matrix invariants using representation theory data,

LLL. This can be viewed as a dual basis where representation theory is used to perform a Fourier

transformation on the equivalence classes of the permutation description. We refer to these gauge

invariants, polynomial in the bi-fundamental and fundamental matter fields, as Quiver Restricted

Schur polynomials. In this section we introduce the two main mathematical ingredients needed

in this formalism. These are the symmetric group branching coefficients and the Clebsch-Gordan

coefficients. Their definition will be accompanied by a corresponding diagram.

In Section 3.3 we derive the results for the free field two and three point function of gauge

invariants. In subsection 3.3.1 we show that the two point function which couples holomorphic

and anti-holomorphic matrix invariants is diagonal in the basis of Quiver Restricted Schur poly-

nomials. In subsection 3.4 we give a diagrammatic description of the structure constants of the

ring of Holomorphic Gauge Invariant Operators (GIOs). In particular, we present a step by

step procedure to obtain such a diagram for the example of an N = 2 SQCD, starting from

its split-node diagram. Using these formulae, we identify four selection rules, all expressed in

terms of symmetric group representation theory data. The analytical calculations are reported

in Appendix A.3, and rely on the Quiver Restricted Schur polynomial technology introduced in

the previous section.

Finally, in Section 3.5, we give some examples of the matrix invariants we can build using

our method, for the case of an N = 2 SQCD.
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3.1 Gauge invariant operators and permutations

In this section we will present a systematic approach to list and label every holomorphic matrix

invariant in quiver gauge theories of the type discussed above. We also allow for a flavour

symmetry of the type discussed in Section 1.4. The operators we consider are polynomial in the

Φ, Q and Q̄ type fields that are invariant under gauge transformations. Therefore, all colour

indices are contracted to produce traces and products of traces of these fields. For example

(ΦabΦbc · · ·Φca) , (ΦabΦba) (Φcc) ,
(
Q̄kaQla

)
,
(
Q̄kaΦabΦbc · · ·ΦcdQdl

)
(3.1.1)

and products thereof are suitable matrix invariants. In these examples round brackets denote

contraction of gauge indices (i.e. traces), while k, l are flavour indices. The last two examples

belong to the class of GIOs that in the literature has been called ‘generalised mesons’ (see

e.g. [82]). In order to label these matrix polynomials, the first ingredient we need to specify is

the number of fundamental fields that they contain. Let nab,α be the number of copies of Φab,α

fields that are used to build the GIO. Similarly, let na,β (n̄a,γ) be the number of copies of Qa,β

quarks (Q̄a,γ antiquarks) used in the GIO. In other words, the polynomial is characterised by

degrees ~n given by

~n = ∪a {∪b,α nab,α;∪β na,β;∪γ n̄a,γ} (3.1.2)

For fixed degrees there is a large number of gauge invariant polynomials, differing in how the

gauge indices are contracted. To guarantee gauge invariance we have to impose that the GIO

does not have any free gauge indices. This condition implies the constraint on ~n na =
∑

b,α nab,α +
∑

β na,β =
∑

b,α nba,α +
∑

γ n̄a,γ ∀a

nα =
∑

a

∑
β na,β =

∑
a

∑
γ n̄a,γ

(3.1.3)

We now introduce a second vector-like quantity, ~s. It will store the information about the

states of the quarks and antiquarks in the matrix invariant. To do so, let us first define the

states

|sssa,β〉 ∈ V
⊗na,β
Fa,β

, 〈s̄a,γs̄a,γs̄a,γ | ∈ V̄
⊗n̄a,γ
F̄a,γ

(3.1.4)

Here VFa,β is the fundamental representation of U(Fa,β) and V̄F̄a,γ is the antifundamental rep-

resentation of U(F̄a,γ). Therefore, |sssa,β〉 is the tensor product of all the U(Fa,β) fundamental

representation states of the na,β quarks Qa,β. Similarly, 〈sssa,γ | is the tensor product of all the

U(F̄a,γ) antifundamental representation states of the n̄a,γ quarks Q̄a,γ . We define the vector ~s

as the collection of these state labels:

~s = ∪a {∪β sssa,β;∪γ s̄̄s̄sa,γ} (3.1.5)

In the framework that we are going to introduce in this section, the building blocks of any
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matrix invariant are the tensor products of the fundamental fields Φ
⊗nab,α
ab,α , Q

⊗na,β
a,β and Q̄

⊗n̄a,γ
a,γ .

Let us then introduce the states

|Iab,α〉 = |i1, ..., inab,α〉 ∈ V
⊗nab,α
Na

, |Ia,β〉 = |i1, ..., ina,β 〉 ∈ V
⊗na,β
Na

|Jab,α〉 = |j1, ..., jnab,α〉 ∈ V
⊗nab,α
Na

, |J̄a,γ〉 = |j̄1, ..., j̄n̄a,γ 〉 ∈ V
⊗n̄a,γ
Na

Using these definitions, together with eq. (3.1.4), we can write the matrix elements of every

Φ
⊗nab,α
ab,α tensor product as

(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

=
〈
Iab,α

∣∣∣Φ⊗nab,αab,α

∣∣∣ Jab,α〉 (3.1.6)

and similarly for Q
⊗na,β
a,β and Q̄

⊗n̄a,γ
a,γ :

(
Q
⊗na,β
a,β

)Ia,β
sssa,β

=
〈
Ia,β

∣∣∣Q⊗na,βa,β

∣∣∣sssa,β〉 , (
Q̄
⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
J̄a,γ

=
〈
s̄̄s̄sa,γ

∣∣∣Q̄⊗n̄a,γa,γ

∣∣∣ J̄a,γ〉 (3.1.7)

We will now present the first of the many diagrammatic techniques that we will use throughout

this chapter. We draw the matrix components of fundamental fields (Φab,α)ij , (Qa,β)is and
(
Q̄a,γ

)s̄
j

as in Fig. 17.

Figure 17: Diagrammatic description of the matrix elements of the fundamental fields Φ, Q and Q̄.

This diagrammatic notation is then naturally extended to the tensor products
(

Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

,(
Q
⊗na,β
a,β

)Ia,β
sssa,β

and
(
Q̄
⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
J̄a,γ

, defined in eqs. 3.1.6 and 3.1.7, as in Fig. 18.
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Figure 18: Diagrammatic description of the matrix elements of the tensor products of the fundamental
fields Φ, Q and Q̄.

Permutations act on a tensor product of states by rearranging the order in which the states

are tensored together. For example, given a permutation σ ∈ Sk and a tensor product of k states

|ia〉 (1 ≤ a ≤ k) belonging to some vector space V , we have

σ|i1, i2, ..., ik〉 = |iσ(1), iσ(2), ..., iσ(k)〉 (3.1.8)

Therefore, there is a natural permutation action on the states (3.1.4) and (3.1.6).

The gauge invariant polynomial is constructed by contracting the upper na indices of all the

fields incident at the node a with their lower na indices. We describe these gauge invariants as

follows. First we choose an ordering for all the fields with an upper U(Na) index. Then we fix a

set of labelled upper indices: this means that we have picked an embedding of subsets into the

set [na] ≡ {1, · · · , na}, i.e.

[na1,α=1] t [na1,α=2] t · · · t [na2,α=1] t [na2,α=2] t · · · t [na,β=1] t [na,β=2] t · · · → [na] (3.1.9)

which gives a set-partition of [na]. Similarly, there is an embedding into [na] corresponding to

the ordering of the lower U(Na) indices, namely

[n1a,α=1] t [n1a,α=2] t · · · t [n2a,α=1] t [n2a,α=2] t · · · t [n̄a,γ=1] t [n̄a,γ=2] t · · · → [na] (3.1.10)

Now we contract the upper indices of these fields with their lower indices, after a permutation

σa ∈ Sna of their labels. We will therefore be considering permutations σa ∈ Sna , where

na =
∑

b,α nab,α +
∑

β na,β =
∑

b,α nba,α +
∑

γ na,γ . Along the lines of eqs. (3.1.6) and (3.1.7)

we can define the matrix elements of σa as

(σa)
×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β =

(
⊗b,α〈Jba,α| ⊗γ〈J̄a,γ

∣∣)σa (⊗b,α|Iab,α〉 ⊗β|Ia,β〉 ) (3.1.11)
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where the product symbols appearing in the upper and lower indices of σa are ordered as in

(3.1.9) and (3.1.10). We depict these matrix elements as in Fig. 19.

Figure 19: Diagrammatic description of the matrix elements of the permutation σ.

Following the approach of [26], we can write any GIO OQ of a quiver gauge theory Q with

flavour symmetry as

OQ(~n; ~s; ~σ) =
∏
a

∏
b,α

(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

⊗
∏

β

(
Q
⊗na,β
a,β

)Ia,β
sssa,β

⊗ [∏
γ

(
Q̄
⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
J̄a,γ

]

×
∏
a

(σa)
×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β (3.1.12)

Here ~σ = ∪a{σa} is a collection of permutations σa ∈ Sna , where na =
∑

b,α nab,α+
∑

β na,β. The

purpose of ~σ is to contract all the gauge indices of the Φ, Q and Q̄ fields to make a proper GIO.

This formula looks rather complicated. However, it can be nicely interpreted in a diagrammatic

way. We will now give an example of such a diagrammatic approach. Consider an N = 2 SCQD

theory. The N = 1 quiver for this model is illustrated in Fig. 20.

Figure 20: The N = 1 quiver for an N = 2 SQCD model.

We labelled the fields of this quiver by φ, Q and Q̄, simplifying the notation given in table 1.

Consider now the GIO (Q̄φQ)s̄1s1 (Q̄Q)s̄2s2 . Here s1, s2 and s̄1, s̄2 are states of the fundamental and
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antifundamental representation of SU(F ) respectively, and the round brackets denotes U(N)

indices contraction. Figure 21 shows the diagrammatic interpretation of this GIO.

Figure 21: Diagrammatic description of the GIO (Q̄φQ)s̄1s1 (Q̄Q)s̄2s2 in an N = 2 SQCD. The horizontal
bars are to be identified.

For fixed ~n, the data ~σ,~s determines a gauge invariant. However changing ~σ,~s can produce

the same invariant. This fact can be described in terms of an equivalence relation generated by

the action of permutations, associated with edges of the quiver, on the data ~σ,~s. This has been

discussed for the case without flavour symmetry in [26] and we will extend the discussion to

flavours here. Continuing the example of the N = 2 SQCD introduced above, let us consider a

matrix invariant built with n adjoint fields φ and nq quarks and antiquarksQ and Q̄. We label the

tensor product of all the nq quark states |si〉 ∈ VSU(F ) with the shorthand notation |sss〉 = ⊗nqi=1|si〉.
Here VSU(F ) is the fundamental representation of SU(F ). Similarly, 〈s̄̄s̄s| = ⊗nqi=1〈s̄i| will be the

tensor product of all the antiquarks states 〈s̄i| ∈ V̄SU(F ), where V̄SU(F ) is the antifundamental

representation of SU(F ). In this model, a matrix invariant can be labelled by the triplet (σ,sss, s̄̄s̄s).

The redundancy discussed above is captured by the identification

(σ, sss, s̄̄s̄s) ∼
(
(η × ρ̄)σ(η−1 × ρ−1), ρ(sss), ρ̄(s̄̄s̄s)

)
(3.1.13)

where η ∈ Sn, ρ, ρ̄ ∈ Snq and ρ(sss) = (sρ(1), sρ(2), ..., sρ(nq)), ρ̄(s̄̄s̄s) = (s̄ρ̄(1), s̄ρ̄(2), ..., s̄ρ̄(nq)). The

last two equations are to be interpreted as the action of ρ and ρ̄−1 on the states |sss〉 and 〈s̄̄s̄s|:

ρ|sss〉 = |sρ(1), sρ(2), ..., sρ(nq)〉 , 〈s̄̄s̄s|ρ̄−1 = 〈s̄ρ̄(1), s̄ρ̄(2), ..., s̄ρ̄(nq)| (3.1.14)

We refer to Appendix A.1 for a diagrammatic interpretation of this equivalence.

For the general case of a gauge theory with flavour symmetry, the degeneracy is described
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by the identity

OQ(~n; ~s; ~σ) = OQ(~n; ~ρ (~s ); Adj~η×~ρ(~σ)) (3.1.15)

Here we introduced the permutations

~η = ∪a,b,α{ηab,α} , ηab,α ∈ Snab,α (3.1.16a)

~ρ = ∪a{∪β ρa,β; ∪γ ρ̄a,γ} , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (3.1.16b)

and we defined

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} , (3.1.17)

~ρ (~s) = ∪a{∪β ρa,β(sssa,β); ∪γ ρ̄a,γ(s̄̄s̄sa,γ)} (3.1.18)

In Appendix A.1 we will derive the constraint (3.1.15). This is essentially a set of equivalences

of the type (3.1.13), iterated over all the nodes and edges of the quiver. The permutations

ηab,α, ρa,β, ρ̄a,γ can be viewed as “permutation gauge symmetries”, associated with the edges of

the quiver. The permutations ~σ and state labels ~s can be viewed as “matter fields” for the

permutation gauge symmetries, associated with the nodes of the quiver. It is very intriguing

that, in terms of the original Lie group gauge symmetry, the round nodes were associated with

gauge groups U(Na), while the edges were matter. In this world of permutations, these roles are

reversed, with the edges being associated with gauge symmetries and the nodes with matter.

So far we have used a permutation basis approach to characterise the quiver matrix invariants.

This has offered a nice diagrammatic interpretation, but on the other hand it is subject to the

complicated constraint in eq. (3.1.15). In the following section we are going to introduce

a Fourier Transformation (FT) from this permutation description to its dual space, which is

described in terms of representation theory quantities. In other words, we are going to change

the way we label the matrix invariants: instead of using permutation data, we are going to use

representation theory data. The upshot of doing so is twofold. On one hand the new basis

will not be subject to any equivalence relation such as the one in (3.1.15). On the other hand,

as a consequence of the Schur-Weyl duality (see e.g. [68]), it offers a simple way to capture

the finite N constraints of the GIOs. Schematically, using this FT we trade the set of labels

{~n; ~s; ~σ} of any GIO for the new set {Ra, rab,α, ra,β, Sa,β, r̄a,γ , S̄a,γ , ν+
a , ν

−
a }, that we denote with

the shorthand notation LLL:

FT : {~n; ~s; ~σ} → LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ , S̄a,γ , ν+
a , ν

−
a } (3.1.19)

Each Ra is a representation of the symmetric group Sna , where na has been defined in (3.1.3).

rab,α, ra,β, r̄a,γ are partitions of nab,α, na,β, n̄a,γ respectively. Sa,β and S̄a,γ are U(Fa,β) and

U(F̄a,γ) states in the representation specified by the partitions ra,β and r̄a,γ respectively. The
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integers ν±a are symmetric group multiplicity labels, a pair for each node in the quiver. Their

meaning will be explained in the next section. Graphically, at each node a of the quiver we

change the description of any matrix invariant as in Fig. 22. The diagram on the right in this

figure is also called a split-node [26].

Figure 22: Pictorial representation of the Fourier transform discussed in the text. The multiplicity
labels of the fields are not displayed.

We call the Fourier transformed operators Quiver Restricted Schur polynomials, or quiver

Schurs for short. These are a generalisation of the Restricted Schur polynomials that first

appeared in the literature in [22–24,30,81]. In section 3.3.1 we will show how the quiver Schurs

form a basis for the Hilbert space of holomorphic operators.

3.2 The quiver restricted Schur polynomials

In this section we describe the FT introduced above. In other words, we will explicitly construct

the map

FT : OQ(~n;~s;~σ) → OQ(LLL) (3.2.1)

In order to do so, we need to introduce two main mathematical ingredients. These are the

symmetric group branching coefficients and the Clebsch-Gordan coefficients. For each of these

quantities we give both an analytic and a diagrammatic description: the latter will aid to make

notationally heavy formulae easier to understand.

We begin by focusing on the symmetric group branching coefficients. Consider the symmetric
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group restriction

×ki=1 Sni → Sn ,
k∑
i=1

ni = n (3.2.2)

For each representation V Sn
R of Sn, this restriction induces the representation branching

V Sn
R '

⊕
r1`n1
r2`n2···
rk`nk

(
k⊗
i=1

V
Sni
ri

)
⊗ V ~rR , ~r = (r1, r2, ..., rk) (3.2.3)

V ~rR is the multiplicity vector space, in case the representation ⊗iVri appears more than once

in the decomposition (3.2.3). The dimension of this space is dim(V ~rR) = g
(
∪ki=1ri;R

)
, where

g
(
∪ki=1ri;R

)
= g (r1, r2, ..., rk;R) are Littlewood-Richardson coefficients [68].

In the following, the vectors belonging to any vector space V will be denoted using a bra-ket

notation. The symbol 〈·|·〉 will indicate the inner product in V . Let then the set of vectors

{⊗ki=1|ri, li, ν〉} be an orthonormal basis for
⊕

~r

(⊗k
i=1 V

Sni
ri

)
⊗ V ~rR. Here li is a state in V

Sni
ri

and ν = 1, ..., g
(
∪ki=1ri;R

)
is a multiplicity label. We adopt the convention that ⊗ki=1|ri, li, ν〉 ≡

| ∪i ri,∪ili, ν〉. Similarly, let the set of vectors {|R, j〉 , j = 1, ...,dim(V Sn
R )} be an orthonormal

basis for V Sn
R . The branching coefficients BR→∪iri; ν

j→∪ili are the matrix entries of the linear invertible

operator B, mapping

B : V Sn
R −→

⊕
~r

(⊗k
i=1 V

Sni
ri

)
⊗ V ~rR (3.2.4)

so that

BR→∪krk; ν
j→∪klk |R, j〉 = | ∪i ri,∪ili, ν〉 (3.2.5)

The sum over repeated indices is understood. By acting with 〈S, i| on the left of both sides of

(3.2.5) we then have

BS→∪krk; ν
i→∪klk = 〈S, i| ∪i ri,∪ili, ν〉 (3.2.6)

Since B is an automorphism that maps an orthonormal basis to an orthonormal basis, it follows

that B is an unitary operator, B† = B−1. We can then write

∑
j

BR→∪iri; ν
j→∪ili (B†)∪isi;µ→R∪iqi→j =

(∏
i

δsi,ri δqi,li

)
δµ,ν (3.2.7)

However, since all the irreducible representations of any symmetric group can be chosen to

be real [83], there exists a convention in which the branching coefficients (3.2.6) are also real.

Therefore B† = BT , where BT is the transpose of the map (3.2.5). Using this last fact we can
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write the chain of equalities

〈S, i| ∪i ri,∪ili, ν〉 = BS→∪krk; ν
i→∪klk = (BT )∪krk; ν→S

∪klk→i = (B−1)∪krk; ν→S
∪klk→i = 〈∪iri,∪ili, ν|S, i〉 (3.2.8)

We draw the branching coefficients (3.2.6) as in Fig. 23. The orientation of the arrows can be

reversed because of the identities in (3.2.8).

Figure 23: Pictorial description of the symmetric group branching coefficients.

Consider now taking k irreducible representations V
U(N)
ri of the unitary group U(N), i =

1, 2, ..., k. For each V
U(N)
ri , ri is a partition of some integer ni. This partition is associated with

a Young diagram which is used to label the representation. If we tensor together all the V
U(N)
ri ’s,

we generally end up with a reducible representation, and we have the isomorphism (see e.g. [83])

k⊗
i=1

V U(N)
ri '

⊕
R`n

c1(R)≤N

V
U(N)
R ⊗ V ~rR , n =

k∑
i=1

ni , (3.2.9)

Here R is a partition of n =
∑

i ni. The direct sum on the RHS above is restricted to the Young

diagrams R whose first column length c1(R) does not exceed the rank N of the gauge group.

V ~rR, with ~r = (r1, r2, ..., rk), is the multiplicity vector space, satisfying dim(V ~rR) = g
(
∪ki=1ri;R

)
.

The g
(
∪ki=1ri;R

)
coefficients that appear in this formula are the same Littlewood-Richardson

coefficients that we used in the above description of the symmetric group branching coefficients.

Now let the set of vectors {|ri,Kj〉} be an orthonormal basis for V
U(N)
ri , for i = 1, 2, ..., k. Here Kj

is a state in V
U(N)
ri . Also let {|R,M ; ν〉} be an orthonormal basis for

⊕
R`n V

U(N)
R ⊗V ~rR. Here M

is a state in the U(N) representation V
U(N)
R and ν is a multiplicity index. The Clebsch-Gordan

coefficients CR;ν→∪iri
M→∪iKi are the matrix entries of the linear invertible operator C, mapping

C :
⊗k

i=1 V
U(N)
ri −→

⊕
R`n V

U(N)
R ⊗ V ~rR (3.2.10)

so that

CR;ν→∪iri
M→∪iKi |∪iri,∪iKi〉 = |R,M ; ν〉 (3.2.11)

The sum over repeated indices is understood. By acting on the left of both sides of (3.2.11)
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with 〈∪isi,∪iPi|, where Pi are states of the U(N) representations V
U(N)
si , we get

CR;ν→∪isi
M→∪iPi = 〈∪isi,∪iPi|R,M ; ν〉 (3.2.12)

From (3.2.11), we see that the automorphism C maps an orthonormal basis to an orthonormal

basis. This makes C an unitary operator, C† = C−1, and we can therefore write∑
~r, ~K

CR;ν→∪iri
M→∪iKi (C†)∪iri→S;µ

∪iKi→P = δS,R δP,M δµ,ν (3.2.13)

As with the branching coefficients, it is always possible to choose a consistent convention in

which all the U(N) Clebsch-Gordan coefficients (3.2.12) are real. If we choose to work with

such a convention, C becomes an orthogonal operator: CT = C−1. We then have, in the same

fashion of (3.2.8)

〈∪isi,∪iPi|R,M ; ν〉 = CR;ν→∪isi
M→∪iPi = (CT )∪isi→R;ν

∪iPi→M = (C−1)∪isi→R;ν
∪iPi→M = 〈R,M ; ν| ∪i si,∪iPi〉

(3.2.14)

We draw the Clebsch-Gordan coefficients as in Fig. 24. Again, the orientation of the arrows can

be reversed, due to (3.2.14).

Figure 24: Pictorial representation of the U(N) Clebsch-Gordan coefficient in eq. (3.2.12).

Consider now the particular case of (3.2.9) in which every representation V
U(N)
ri tensored on

the LHS coincides with the U(N) fundamental3 representation, that for simplicity we just call

V for the remainder of this section. This configuration allows us to use the Schur-Weyl duality

to write

k times︷ ︸︸ ︷
V ⊗ · · · ⊗ V = V ⊗k '

⊕
R`k

c1(R)≤N

V
U(N)
R ⊗ V Sk

R (3.2.15)

where V
U(N)
R and V Sk

R are irreducible representations of U(N) and Sk respectively. They cor-

respond to the Young diagrams specified by the partition R of k. By comparing (3.2.15) with

3We can get similar results by replacing the fundamental with the antifundamental representation of U(N).
The quantities we define here get modified accordingly.
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(3.2.9), we see that the representation V Sk
R has now taken the place of the generic multiplicity

vector space V ~rR. Since the Schur-Weyl decomposition will play a major role in this construction,

we are now going to introduce a more compact notation for its Clebsch-Gordan coefficients. Let

us consider the states

|sss〉 = ⊗kj=1|sj〉 ∈ V ⊗k , |sj〉 ∈ V , |R;M, i〉 = |R,M〉 ⊗ |R, i〉 ∈ V U(N)
R ⊗ V Sk

R (3.2.16)

where {|R,M〉 , M = 1, ...,dim(V
U(N)
R )} and {|R, i〉 , i = 1, ...,dim(V Sk

R )} are orthonormal bases

of V
U(N)
R and V Sk

R respectively. The equations (3.2.11) and (3.2.14) imply

CR,M,i
sss |sss〉 = |R,M, i〉 (3.2.17)

and

CR,M,i
ttt = 〈ttt|R,M, i〉 = 〈R,M, i|ttt〉 = CtttR,M,i (3.2.18)

respectively. We draw these quantities as in Fig. 25.

Figure 25: Pictorial representation of the U(N) Clebsch-Gordan coefficients (3.2.18) for the Schur-Weyl
duality (3.2.15).

3.2.1 The quiver characters

We now have all the tools necessary to introduce a key quantity, the quiver characters χQ(LLL,~s, ~σ).

Here LLL is the set of representation theory labels defined in (3.1.19). The quiver characters are

the expansion coefficients of the FT (3.2.1):

OQ(LLL) =
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n,~s, ~σ) (3.2.19)

We define them as

χQ(LLL,~s, ~σ) =cLLL
∑
{lab,α}

{la,β}, {l̄a,γ}

∏
a

∑
ia,ja

DRa
ia,ja

(σa) B
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

(3.2.20)
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where the coefficient cLLL is the normalisation constant

cLLL =
∏
a

(
d(Ra)

na!

) 1
2

∏
b,α

1

d(rab,α)

 1
2
∏

β

1

d(ra,β)

 1
2 (∏

γ

1

d(r̄a,γ)

) 1
2

(3.2.21)

Since we chose to work in the convention in which all symmetric group representations and

Clebsch-Gordan coefficients are real, then the quiver characters are real quantities as well:

χQ(LLL,~s, ~σ) = χ∗Q(LLL,~s, ~σ) (3.2.22)

This convention will be convenient when we compute the 2-point functions of holomorphic and

anti-holomorphic matrix invariants in section 3.3.1.

These quantities have a pictorial interpretation. We have already introduced a diagrammatic

notation for the branching and Clebsch-Gordan coefficients B and C in Fig. 23 and in Fig. 25

respectively. The pictorial notation for the i, j matrix element of the permutation σ in the

irreducible representation R, DR
i,j(σ), is displayed in Fig. 26. All the edges of these diagrams

are to be contracted together as per instructions of formula (3.2.20).

Figure 26: Pictorial description of the matrix element DR
i,j(σ) of the Sn symmetric group representation

R.

Let us give an example of the diagrammatic of the quiver character of a well-known flavoured

gauge theory. Consider the N = 1 quiver for the flavoured conifold [52,53,75,76] in Fig. 27.

Figure 27: N = 1 quiver for the flavoured conifold gauge theory.

The quiver character for this model is depicted in Fig. 28. This figure explicitly shows how

all the symmetric group matrix elements, the branching coefficients and the Clebsch-Gordan

coefficients are contracted together.
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Figure 28: The quiver character diagram for the flavoured conifold gauge theory.

For completeness we also give a diagram for the the most generic quiver character χQ(LLL,~s, ~σ).

This is done in Fig. 29. In this picture, we factored the quiver character into a product over

the gauge nodes a of the quiver. All the internal edges (that is, the ones that are not connected

to a Clebsch-Gordan coefficient) are contracted following the prescription of (3.2.20).

Figure 29: Pictorial description of the quiver characters χQ(LLL,~s, ~σ).

The quiver characters (3.2.20) satisfy the invariance relation

χQ(LLL,~s, ~σ) = χQ(LLL, ~ρ (~s ),Adj~η×~ρ(~σ)) (3.2.23)

where Adj~η×~ρ(~σ) has been defined in (3.1.17):

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (3.2.24)
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They also satisfy the two orthogonality relations∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L,~s, ~σ) = δLLL,L̃LL (3.2.25)

and ∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η×~ρ

δ
(
Adj~η×~ρ(~σ)~τ −1

)
δ~ρ(~s),~t (3.2.26)

where we introduced the normalisation constant

c~n =
∏
a

∏
b,α

nab,α!

∏
β

na,β!

(∏
γ

na,γ !

)
(3.2.27)

It is worthwhile to note that this quantity can be interpreted as the order of the permutation

gauge symmetry group. All of these equations are derived in Appendix A.2.

The set of operators (3.2.19) form the Quiver Restricted Schur polynomial basis. Using

(3.2.23) we can immediately check that such operators are invariant under the constraint (3.1.15).

We have

OQ(LLL) =
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n,~s, ~σ)

=
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n, ~ρ (~s ), Adj~η×~ρ(~σ))

=
∑
~s

∑
~σ

χQ(LLL, ~ρ (~s ),Adj~η×~ρ(~σ))OQ(~n, ~ρ (~s ), Adj~η×~ρ(~σ))

=
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n, ~s, ~σ) = OQ(LLL) (3.2.28)

were in the second line we used the constraint (3.1.15), in the third one the invariance of the

quiver characters (3.2.23) and in the fourth one we relabelled the dummy variables of the double

sum.

Finally, the FT (3.2.19) can be easily inverted. Starting from

OQ(LLL) =
∑
~t

∑
~τ

χQ(LLL,~t, ~τ)OQ(~n,~t, ~τ) (3.2.29)

we multiply both sides by χQ(LLL,~s, ~σ) and we take the sum over the set of labels in LLL to get

∑
LLL

χQ(LLL,~s, ~σ)OQ(LLL) =
∑
~t

∑
~τ

(∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ)

)
OQ(~n,~t, ~τ) (3.2.30)
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Using the orthogonality relation (3.2.26), the above equation becomes

∑
LLL

χQ(LLL,~s, ~σ)OQ(LLL) =
∑
~t

∑
~τ

 1

c~n

∑
~η×~ρ

δ
(
Adj~η×~ρ (~σ)~τ −1

)
δ~ρ(~s),~t

OQ(~n,~t, ~τ)

=
1

c~n

∑
~η×~ρ
OQ

(
~n, ~ρ(~s ),Adj~η×~ρ (~σ)

)
=

1

c~n

∑
~η×~ρ
OQ(~n,~s, ~σ) (3.2.31)

where in the last line we used the constraint (3.1.15). Now the sum over the permutations ~η, ~ρ

is trivial, and it just gives a factor of c~n. We then have that the inverse of the map (3.2.19) is

simply

OQ(~n,~s, ~σ) =
∑
LLL

χQ(LLL,~s, ~σ)OQ(LLL) (3.2.32)

3.3 Two and three point functions

In this section we will derive an expression for the two and three point function of matrix

invariants, using the free field metric. All the computations are done using the Quiver Restricted

Schur polynomials. The result for the two point function is rather compact, and offers a nice

way to describe the Hilbert space of holomorphic GIOs. On the other hand, the expression for

the three point function is still quite involved. We give a diagrammatic description of the answer

in section 3.4, leaving the analytical expression and its derivation in Appendix A.3.

3.3.1 Hilbert space of holomorphic gauge invariant operators

In the free field metric, the Quiver Restricted Schur polynomials (3.2.19) form an orthogonal

basis for the 2-point functions of holomorphic and anti-holomorphic matrix invariants. In this

section we are going to show that〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (3.3.1)

where c~n is given in (3.2.27). The quantity fNa(Ra) is the product of weights of the U(Na)

representation Ra, and it is defined as

fNa(Ra) =
∏
i,j

(Na − i+ j) (3.3.2)

Here i and j label the row and column of the Young diagram Ra. At finite Na, this quantity

vanishes if the length of the first column of its Young diagram exceeds Na, that is if c1(Ra) > Na.

This means that for a generic quiver Q the Hilbert space HQ of holomorphic GIOs can be

described by

HQ = Span {OQ(LLL)| LLL s.t. c1(Ra) ≤ Na, ∀a} (3.3.3)
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We can see how the finite Na constraints of any matrix invariant are captured by the simple

rule c1(Ra) ≤ Na. We are now going to give a step-by-step derivation of this result.

i) Compute the correlator in the permutation basis

In this step we will compute the permutation basis correlator
〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
. In

the free field metric, the only non-zero pairings are the ones that couple fields of the same kind

(e.g. Φab,α with Φ†ab,α):〈
(Φab,α)ij (Φ†ab,α)kl

〉
= δilδ

k
j ,

〈
(Qa,β)is (Q†a,β)pl

〉
= δilδ

p
s ,

〈(
Q̄a,γ

)s̄
j

(Q̄†a,γ)kp̄

〉
= δkj δ

s̄
p̄ (3.3.4)

It then follows that〈(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

(
Φ
† ⊗nab,α
ab,α

)J ′ab,α
I′ab,α

〉
=

∑
η∈Snab,α

δ
η(Iab,α)

I′ab,α
δ
J ′ab,α
η(Jab,α) (3.3.5)

where the sum over permutations represents all possible Wick contractions of the labels Iab,α =

{i1, ..., inab,α}, Jab,α = {j1, ..., jnab,α}. Using the identities

δ
η(Iab,α)

I′ab,α
=
(
η−1
)Iab,α
I′ab,α

= (η)
I′ab,α
Iab,α

= δ
η−1(I′ab,α)

Iab,α

δ
J ′ab,α
η(Jab,α) = (η)

J ′ab,α
Jab,α

=
(
η−1
)Jab,α
J ′ab,α

= δ
Jab,α
η−1(J ′ab,α)

(3.3.6)

it is immediate to write the correlators〈(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

(
Φ
† ⊗nab,α
ab,α

)J ′ab,α
I′ab,α

〉
=

∑
η∈Snab,α

(
η−1
)Iab,α
I′ab,α

(η)
J ′ab,α
Jab,α

(3.3.7a)

〈(
Q
⊗na,β
a,β

)Ia,β
sssa,β

(
Q
† ⊗na,β
a,β

)s′s′s′a,β
I′a,β

〉
=

∑
ρ∈Sna,β

(
ρ−1
)Ia,β
I′a,β

(ρ)
s′s′s′a,β
sssa,β =

∑
ρ∈Sna,β

(
ρ−1
)Ia,β
I′a,β

δ
s′s′s′a,β
ρ(sssa,β) (3.3.7b)

〈(
Q̄
⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
J̄a,γ

(
Q̄
† ⊗n̄a,γ
a,γ

)J̄ ′a,γ
s̄′̄s′̄s′a,γ

〉
=

∑
ρ̄∈Sn̄a,γ

(ρ̄−1)
s̄̄s̄sa,γ
s̄′̄s′̄s′a,γ

(
ρ̄
)J̄ ′a,γ
J̄a,γ

=
∑

ρ̄∈Sn̄a,γ

(
ρ̄
)J̄ ′a,γ
J̄a,γ

δ
ρ̄(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ
(3.3.7c)

We can now compute the pairing
〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
. We just need the Hermitean

conjugated version of the operator defined in (3.1.12), which is simply

O†Q(~n; ~s; ~σ) =
∏
a

∏
b,α

(
Φ
† ⊗nab,α
ab,α

)Jab,α
Iab,α

⊗
∏

β

(
Q
† ⊗na,β
a,β

)sssa,β
Ia,β

⊗ [∏
γ

(
Q̄
† ⊗n̄a,γ
a,γ

)J̄a,γ
s̄̄s̄sa,γ

]

×
∏
c

(
σ−1
c

)∪b,αIcb,α∪βIa,β
∪b,αJbc,α∪γ J̄a,γ

(3.3.8)
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where we used
(
σ
)j
i

=
(
σ−1

)i
j
. We then have

〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
=
∑
~η, ~ρ

∏
a

∏
b,α

(
η−1
ab,α

)Iab,α
I′ab,α

(ηab,α)
J ′ab,α
Jab,α

∏
β

(
ρ−1
a,β

)Ia,β
I′a,β

δ
ρa,β(sssa,β)

s′s′s′a,β


×

[∏
γ

(
ρ̄a,γ

)J̄ ′a,γ
J̄a,γ

δ
ρ̄a,γ(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ

] (
σa
)∪b,αJba,α∪γ J̄a,γ
∪b,αIab,α∪βIa,β

(
(σ′a)

−1
)∪b,αI′ab,α∪βI′a,β
∪b,αJ ′ba,α∪γ J̄ ′a,γ

=
∑
~η, ~ρ

∏
a

TrV ⊗naNa

[
(×b,αηba,α ×γ ρ̄a,γ)σa

(
×b,αη−1

ab,α ×β ρ
−1
a,β

)
(σ′a)

−1
]

×

∏
β

δ
ρa,β(sssa,β)

s′s′s′a,β

[∏
γ

δ
ρ̄a,γ(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ

]
(3.3.9)

where, as we defined in (3.1.16),

~η = ∪a,b,α{ηab,α} , ηab,α ∈ Snab,α (3.3.10a)

~ρ = ∪a{∪β ρa,β; ∪γ ρ̄a,γ} , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (3.3.10b)

The trace is taken over the product space V ⊗naNa
, VNa being the fundamental representation of

U(Na) and na =
∑

b,α nab,α +
∑

β na,β. Recalling the definition (3.1.17) and the identity

TrV ⊗nN
(σ) = NC[σ] (3.3.11)

where C[σ] is the number of cycles in the permutation σ, we finally get

〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
=
∑
~η, ~ρ

∏
a

∏
β

δ
ρa,β(sssa,β)

s′s′s′a,β

∏
γ

δ
ρ̄a,γ(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ

NC[Adj~η×~ρ(σa) (σ′a)−1]
a

(3.3.12)

ii) Fourier transform the permutation basis correlator

Using the definition of the Fourier transformed operator (3.2.19), we can immediately write〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s,~s ′

∑
~σ,~σ ′

χQ(LLL,~s, ~σ)χ†Q(LLL′, ~s ′, ~σ ′)
〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
(3.3.13)

=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s, ~σ)χQ(LLL′, ~ρ(~s), ~σ ′)
∏
a

N
C[Adj~η×~ρ(σa) (σ′a)−1]
a
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where we summed over ~s ′, used the Kronecker delta functions and used the reality of the quiver

characters. Now redefining the dummy variable ~s→ ~ρ −1(~s ) in (3.3.13) we further obtain〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL, ~ρ −1(~s ), ~σ)χQ(LLL′, ~s, ~σ ′)
∏
a

N
C[Adj~η×~ρ(σa) (σ′a)−1]
a

=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s,Adj~η×~ρ(~σ))χQ(LLL′, ~s, ~σ ′)
∏
a

N
C[Adj~η×~ρ(σa) (σ′a)−1]
a

=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s, ~σ)χQ(LLL′, ~s, ~σ ′)
∏
a

N
C[σa (σ′a)−1]
a (3.3.14)

To get the second equality we used the invariance relation (3.2.23), and in the third we relabelled

the dummy variable ~σ → Adj~ρ×~η(~σ). We then see that the dependence on the permutations ~η

and ~ρ drops out, so that their sums can be trivially computed to obtain〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s

∑
~σ,~σ ′

χQ(LLL,~s, ~σ)χQ(LLL′, ~s, ~σ ′)

×
∏
a

∏
b,α

nab,α!

∏
β

na,β!

(∏
γ

n̄a,γ !

)
N
C[σa (σ′a)−1]
a (3.3.15)

Now let us relabel σa → τa · σ′a and use the definition of c~n given in (3.2.27) to get〈
OQ(LLL)O†Q(L′L′L′)

〉
= c~n

∑
~s

∑
~τ,~σ ′

χQ(LLL,~s, ~τ · ~σ ′)χQ(LLL′, ~s, ~σ ′)
∏
a

NC[τa]
a (3.3.16)

The only dependence on ~σ′ and ~s is now inside the two quiver characters. We have therefore

reduced the problem of computing the holomorphic-antiholomorphic GIO pairing to the one of

computing the sum of a product of characters. This is done in the next step, and involves using

the quiver character orthogonality relations.
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iii) Use the quiver character orthogonality relations

We are now going to use the quiver character orthogonality relation eq. (A.2.15):∑
~s

∑
~σ ′

χQ(LLL,~s, ~τ · ~σ ′)χQ(L′L′L′, ~s, ~σ ′)

= cLLLcL′L′L′
∏
a

na!

d(Ra)
Tr
(
DRa(τa)P

ν+
a ,ν

+
a
′

Ra→∪b,αrba,α∪γ r̄a,γ

)
δRa,R′a

×

∏
b,α

δrab,α,r′ab,α

∏
β

d(ra,β)δra,β ,r′a,βδSa,β ,S
′
a,β

(∏
γ

δr̄a,γ ,r̄′a,γδS̄a,γ ,S̄′a,γ

)
δ
ν−a ,ν

−
a
′

(3.3.17)

to explicitly compute the pairing (3.3.16). We will also need to use the identity

∑
τa

Tr
(
DRa(τa)P

ν+
a ,ν

+
a
′

Ra→∪b,αrba,α∪γ r̄a,γ

)
N c[τa]
a = δ

ν+
a ,ν

+
a
′

∏
b,α

d(rba,α)

(∏
γ

d(r̄a,γ)

)
fNa(Ra)

(3.3.18)

a proof of which can be found in e.g. [83]. Inserting eqs. (3.3.17) and (3.3.18) in (3.3.16) we

finally get

〈
OQ(LLL)O†Q(L′L′L′)

〉
= c~n cLLLcLLL′

∏
a

na!

d(Ra)
δRa,R′aδν−a ,ν−a

′δ
ν+
a ,ν

+
a
′

∏
b,α

d(rab,α)δrab,α,r′ab,α



×

∏
β

d(ra,β)δra,β ,r′a,βδSa,β ,S
′
a,β

(∏
γ

d̄(r̄a,γ)δr̄a,γ ,r̄′a,γδS̄a,γ ,S̄′a,γ

)
fNa(Ra)

= δLLL,L′L′L′ c~n c
2
LLL

∏
a

na!

d(Ra)

∏
b,α

d(rab,α)

 ∏
β

d(ra,β)

(∏
γ

d̄(r̄a,γ)

)
fNa(Ra)

(3.3.19)

which, using the normalisation constant cLLL defined in (3.2.21), reduces to eq. (3.3.1):〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (3.3.20)

The orthogonality of the Fourier transformed operators is thus proven.
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3.4 Chiral ring structure constants and three point functions

In Appendix A.3 we derive an equation for the holomorphic GIO ring structure constants

GLLL(1),LLL(2),LLL(3) , defined as the coefficients of the operator product expansion

OQ(LLL(1))OQ(LLL(2)) =
∑
LLL(3)

GLLL(1),LLL(2),LLL(3) OQ(LLL(3)) (3.4.1)

Because of the orthogonality of the two point function (3.3.1), we also obtain an equation for

the three point function:〈
OQ(LLL(1))OQ(LLL(2))O†Q(LLL(3))

〉
= c~n(3) GLLL(1),LLL(2),LLL(3)

∏
a

fNa

(
R(3)
a

)
(3.4.2)

We only give here a pictorial interpretation of the equation we derived for GLLL(1),LLL(2),LLL(3) , leaving

the technicalities in Appendix A.3. In particular, eq. (A.3.45) gives the analytical formula for

the GLLL(1),LLL(2),LLL(3) coefficients.

Let us begin by considering an example. We will show how to draw the diagram for the

chiral ring structure constants for an N = 2 SCQD, through a step-by-step procedure. The

quiver for this theory is shown in Fig. 20. As we discussed in the previous section, for any given

model, a basis of GIOs is labelled by LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ , S̄a,γ , ν+
a , ν

−
a }. However, for

an N = 2 SQCD theory, many of these a, b, α, β, γ indices are redundant: for this reason we can

simplify LLL as

LLL = {R, r, rq, S, r̄q, S̄, ν+, ν−} (3.4.3)

Here r is the representation associated with the adjoint field φ; S denotes a state in the SU(F )

representation rq and S̄ denotes a state in the SU(F ) representation r̄q. R is the representation

associated with the gauge group, U(N). We therefore want to compute the three point function

(3.4.2), where all the LLL(i), i = 1, 2, 3, are of the form given in (3.4.3). We split this process into

five steps, that we now describe.

i) Create the split node quiver diagram. The first step is to create the split-node quiver

diagram from the N = 2 SCQD quiver of Fig. 20. This involves separating the gauge

node into two components, one that collects all the incoming edges and one from which

all the edges exit. The former is called a positive node of the split-node quiver, the latter

is called a negative node. These two are then joined by an edge, called a gauge edge,

directed from the positive to the negative node. We then decorate all the edges in the

split-node quiver with symmetric group representation labels. The positive and negative

nodes in the split-node diagram are points where the edges meet. Since the edges now

carry a symmetric group representation, we interpret them as representation branching

points, to which we associate a branching coefficient (3.2.4). To the positive node we

associate the branching multiplicity ν+, to the negative node we associate the branching

multiplicity ν−. Finally, we label the open endpoints of the quark and antiquark edges
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with U(F ) fundamental and antifundamental representation state labels, S and S̄. The

resulting diagram is shown on the left of Fig. 30. Notice that such a diagram contains all

the labels in LLL = {R, r, rq, S, r̄q, S̄, ν+, ν−}.

ii) Cut the edges in the split-node quiver. In this step we will cut all the edges in the

split-node diagram, as shown in the middle picture of Fig. 30. After all the cuts have

been performed, we are left with two trivalent vertices and two edges corresponding to

the quark and the antiquark fields. As previously stated, the trivalent vertices will be

interpreted as branching coefficients (see Fig. 23). We group these four object into two

pairs, depending whether their edges are connected to the positive or negative node of the

split-node diagram. This is shown in the rightmost picture of Fig. 30.

Figure 30: From left to right: the split-node quiver for the N = 2 SQCD, the same diagram with the
cut edges, and the two components of the negative and positive node of the split-node quiver.

iii) Merge the edges connected to the negative node. We consider the set of edges

connected to the negative node of the split-node quiver. In order to compute the three point

function (3.4.2), we need three copies of these sets, one for each field OQ(LLL(1)) ,OQ(LLL(2)),

O†Q(LLL(3)). These sets are shown in Fig. 31. The orientation of the edges in the last pair

is reversed: this is because the third field on the LHS of (3.4.2) is hermitian conjugate.

Figure 31: The three sets of trivalent vertices and edges needed to construct part of the N = 2 SQCD
three point function diagram.

We will now suitably merge the three trivalent vertices (branching coefficients) in Fig.

31, and join the three edges corresponding to the quark fields. The outcome of this
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fusing process is shown in Fig. 32. We introduced three new trivalent vertices, which

as usual we interpret as branching coefficients: the labels µ, νr and νq denote their

multiplicity. The fusing of the three quark edges has been achieved by introducing

a Clebsch-Gordan coefficient, see Fig. 24. We further impose that the label for the

multiplicity of the representation branching r
(1)
q ⊗ r

(2)
q → r

(3)
q is the same in both the

Clebsch-Gordan coefficient and the branching coefficient that appear in Fig. 31. In the

figure we also inserted a permutation λ− in the edge carrying the representation R(3).

The purpose of this permutation is to rearrange tensor factors given the two different

factorisation of R(3), that is from (r(1) ⊗ r(1)) ⊗ (r
(2)
q ⊗ r

(2)
q ) → r(3) ⊗ r

(3)
q → R(3) to

R(3) → R(1) ⊗R(2) → (r(1) ⊗ r(1)
q )⊗ (r(2) ⊗ r(2)

q ).

Figure 32: Merging of branching coefficients and quarks labels for the three sets in Fig. 31.

We thus obtained a closed network of branching coefficients, together with a single SU(F )

Clebsch-Gordan coefficient. All the edges involved into this process were the ones con-

nected to the negative node of the split-node diagram they belonged to.

iv) Merge the edges connected to the positive node. By repeating the fusing process

presented in point iii) for all the edges connected to the positive node of the split-node

quiver, we obtain a diagram very similar to the one in Fig. 32. The only rule that we

impose is that the multiplicity labels for representation branchings which appear in both

these diagrams have to be the same. In our example, the branching of R(3) into R(1) and

R(2) will appear in both diagrams. This is because the edge carrying the representation

label R is connected to both the positive and negative node of the split-node quiver, as it

can be seen from Fig. 30. Therefore these two branching coefficients will share the same

multiplicity label, µ. Similarly, the branching of r(1) and r(2) into r(3) will be present in

both diagrams too. Following the same rule, these two branching coefficients will then

have the same multiplicity label, νr.
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v) Combine the diagrams and sum over multiplicities. To obtain the final expression

for the three point function, we just need put together the two diagram we obtained in

the steps iv) and v) and sum over the multiplicities µ, νr, νq and ν̄q. This final diagram is

shown in Fig. 33.

Figure 33: The diagram of the three point function (3.4.2) for the N = 2 SQCD.

In Appendix 3.4.1 we give a purely diagrammatic derivation of this result. We can see how the

answer for the three point function factorises into two components: the former features only

edges connected to the negative node of the split-node diagram, the latter only involves edges

connected to its positive node. The same behaviour can be observed in the answer for the three

point function of matrix invariants of generic quivers. We are now going to present this general

result. The diagram for the three point function (3.4.2) is shown in Fig. 34.
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Figure 34: Pictorial description of the expression for the holomorphic GIO ring structure constants
GLLL(1),LLL(2),LLL(3) , corresponding to eq. (A.3.45).
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In drawing this picture we used the diagrammatic shorthand notation displayed in Fig. 35.

Figure 35: A shorthand notation for a collection of branching coefficients.

The λa− and λa+ in Fig. 34 are permutations of n
(3)
a elements, defined by the equations

(A.3.2) and (A.3.3). Figure 34 shows that the holomorphic GIO ring structure constants fac-

torise into a product over all the gauge nodes a of the quiver. Each one of these terms, whose

diagrammatic interpretation is drawn in the figure, further factorises into a product of two

components. They correspond to the positive and negative nodes of the split node a, with

a = 1, 2, ..., n (see also Fig. 22). Notice that the multiplicity labels µa, νab,α, νa,β and ν̄a,γ

always appear in pairs. For example, µa appears both in the upper and lower (disconnected)

parts of the split-node a diagram. In the same diagram, νa,β appears in both a symmetric group

branching coefficient and in a Clebsch-Gordan coefficient.

By inspecting Fig. 34 we can write four selection rules for the holomorphic GIO ring structure

constants:

i) upon the restriction S
n

(3)
a

∣∣∣
Ha

, where Ha = S
n

(1)
a
× S

n
(2)
a

, the S
n

(3)
a

representation R
(3)
a

becomes reducible. This reduction must contain the tensor product representation R
(1)
a ⊗

R
(2)
a , ∀ a. This implies the constraint g(R

(1)
a , R

(2)
a ;R

(3)
a ) 6= 0, ∀ a.

ii) upon the restriction S
n

(3)
ab,α

∣∣∣∣
Hab,α

, where Hab,α = S
n

(1)
ab,α

× S
n

(2)
ab,α

, the S
n

(3)
ab,α

representation

r
(3)
ab,α becomes reducible. This reduction must contain the tensor product representation

r
(1)
ab,α ⊗ r

(2)
ab,α, ∀ a, b, α. This implies the constraint g(r

(1)
ab,α, r

(2)
ab,α; r

(3)
ab,α) 6= 0, ∀ a, b, α.

iii) upon the restriction S
n

(3)
a,β

∣∣∣∣
Ha,β

, where Ha,β = S
n

(1)
a,β

× S
n

(2)
a,β

, the S
n

(3)
a,β

representation r
(3)
a,β

becomes reducible. This reduction must contain the tensor product representation r
(1)
a,β ⊗
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r
(2)
a,β, ∀ a, β. This implies the constraint g(r

(1)
a,β, r

(2)
a,β; r

(3)
a,β) 6= 0, ∀ a, β.

iv) upon the restriction S
n̄

(3)
a,γ

∣∣∣
Ha,γ

, where Ha,γ = S
n̄

(1)
a,γ
× S

n̄
(2)
a,γ

, the S
n̄

(3)
a,γ

representation r̄
(3)
a,γ

becomes reducible. This reduction must contain the tensor product representation r̄
(1)
a,γ ⊗

r̄
(2)
a,γ , ∀ a, γ. This implies the constraint g(r̄

(1)
a,γ , r̄

(2)
a,γ ; r̄

(3)
a,γ) 6= 0, ∀ a, γ.

All these rules are enforced by the branching coefficients networks in Fig. 34. Given two matrix

invariants labelled by LLL(1) and LLL(2) respectively, we conclude that GLLL(1),LLL(2),LLL(3) 6= 0 if and only

if LLL(3) satisfies the selection rules i) - iv) above.

3.4.1 Diagrammatic derivation for an N = 2 SQCD

We are now going to present a diagrammatic derivation of the chiral ring structure constants

for the example of an N = 2 SQCD, already discussed in the previous section 3.4. Our starting

point is the analytic expression (A.3.11), where each LLL(i) has been simplified as in eq. (3.4.3).

We can depict this quantity as in Fig. 36.

Figure 36: Diagrammatic representation of the chiral ring structure constants for an N = 2 SQCD,
corresponding to eq. (A.3.11).
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After using identity (A.3.14), which is represented in Fig. 44, the diagram is transformed to

the one in Fig. 37. We see that now the three disjoint diagrams of the previous Fig. 36 are now

joined into a single connected component.

Figure 37: The diagram for the chiral ring structure constants after using the identity (A.3.14). The
horizontal bars are to be identified.

Here we can see the relevance of the permutations λ− and λ+, which were previously obtained

in the explicit derivation. They allow the fusing of all the state indices of the three disjoint pieces

of Fig. 36. This can be understood by looking at Fig. 37. Let us follow the flow at the top of

the diagram from r(1) ⊗ r̄(1)
q ⊗ r(2) ⊗ r̄(2)

q to R(3). This corresponds to the embeddings

Sn(1) × S
n

(1)
q
× Sn(2) × S

n
(2)
q
→ S

n(1)+n
(1)
q
× S

n(2)+n
(2)
q
→ S

n(1)+n(2)+n
(1)
q +n

(2)
q

(3.4.4)

and

[n(1)] t [n(1)
q ] t [n(2)] t [n(2)

q ]→ [n(1) + n(1)
q ] t [n(2) + n(2)

q ]→ [n(1) + n(1)
q + n(2) + n(2)

q ] (3.4.5)
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The second embedding corresponds to the branching coefficient labelled by µ. In the branching

after the λ+ permutation, R(3) splits into r(3) and r
(3)
q . The relevant embedding is now

[n(1) + n(2)] t [n(1)
q + n(2)

q ]→ [n(1) + n(1)
q + n(2) + n(2)

q ] (3.4.6)

which comes naturally from the construction of O(LLL3). The purpose of λ+ is to allow the

transition from (3.4.5) to (3.4.6). A similar (but reversed) role is played by the permutation λ−.

Now we use the relation in Fig. 45 to separate the edges corresponding to the quark (and

antiquark) fields from the rest of the diagram. We thus obtain Fig. 38.

Figure 38: The outcome of inserting the identity described by Fig. 45 into Fig. 37. The horizontal bars
are to be identified.

The last step is to separate all the edges connected to the negative node of the split-node from

all the edges connected to its positive node. As explained in the derivation above, this operation

is achieved through the identity (A.3.43), which in this example takes the form depicted in Fig.

39.
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Figure 39: Diagrammatic description of eq. (A.3.43) for the N = 2 SQCD example.

Once this diagrammatic relation has been inserted into Fig. 38, we straightforwardly obtain

the final diagram for the chiral ring structure constants for an N = 2 SQCD, depicted in Fig.

33.

3.5 An example: quiver restricted Schur polynomials for an N =

2 SQCD

We will now present some explicit examples of quiver Schurs for an N = 2 SQCD, whose N = 1

quiver is depicted in Fig. 20. We will begin by listing all the matrix invariants in the permutation

basis (3.1.12) that it is possible to build using a fixed amount ~n of fundamental fields. We will

then Fourier transform these operators to the quiver Schurs basis using (3.2.19). The set of

representation theory labels needed to identify any matrix invariant in an N = 2 SQCD has

been explicitly given in (3.4.3). In the following we will continue to use such a convention.

The permutation basis is generated by

O(~n, ~s, σ) =
(
φ⊗n

)I
J
⊗
(
Q⊗nQ

)IQ
sss
⊗
(
Q̄⊗ n̄Q

)s̄ss
JQ

(σ)
J×JQ
I×IQ (3.5.1)

where ~n = {n, nQ, n̄Q} specifies the field content of the operator O, and ~s = (sss, s̄̄s̄s). As we

previously stated, we construct the quiver Schurs O(LLL) by using the Fourier transform (3.2.19):

O(LLL) =
∑
σ,~s

χ(LLL, ~s, σ)O(~n, ~s, σ) (3.5.2)

where LLL = {R, r, rq, S, r̄q, S̄, ν+, ν−} has been defined in eq. (3.4.3). In this formula χ(LLL, ~s, σ)
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is the N = 2 SQCD quiver character, which reads

χ(LLL, ~s, σ) = cLLLD
R
i,j(σ)

{
B
R→ r, rq ;ν−

j→ l, p C
rq , S, p
sss

} {
B
R→ r, r̄q ;ν+

i→ l, t C
r̄q , S̄, t
s̄̄s̄s

}
(3.5.3)

Figure 40 shows the diagram for this quantity.

Figure 40: Diagram for the N = 2 SQCD quiver character, corresponding to eq. (3.5.3).

We now focus on some fixed values of ~n.

- ~n = (2, 1, 1) field content

We start by listing the Fourier transformed holomorphic GIOs (3.2.19) that we can build with

the set of fields {φ, φ,Q, Q̄}, that is with the choice ~n = (2, 1, 1). In the permutation basis, these

operators read

O(~n , s, s̄ , (1)) = (φ)(φ)(Q̄Q)s̄s , O(~n , s, s̄ , (12)) = (φφ)(Q̄Q)s̄s ,

O(~n , s, s̄ , (13)) = (φ)(Q̄φQ)s̄s , O(~n , s, s̄ , (23)) = (φ)(Q̄φQ)s̄s ,

O(~n , s, s̄ , (123)) = (Q̄φφQ)s̄s , O(~n , s, s̄ , (132)) = (Q̄φφQ)s̄s

(3.5.4)

where the round brackets denote U(N) indices contraction. Notice that in this case ~s = (s, s̄).

We will now construct the Fourier transformed operators. For this field content we do not have

any branching multiplicity ν+, ν−: we can drop them from the set of labels LLL, which now reads

LLL = {R, r, rq, S, r̄q, S̄}. We then look for the operators O(LLLi), i = 1, 2, 3, 4, where

LLL1 = { , , , S , , S̄} , LLL2 =

{
, , , S , , S̄

}
, (3.5.5)

LLL3 =
{

, , , S , , S̄
}
, LLL4 =

{
, , , S , , S̄

}
We left the states S, S̄ of the fundamental and antifundamental representation of SU(F ) implicit.
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We first notice that, having one quark-antiquark pair only, the Clebsch-Gordan coefficients

simplify as

C
rq , S, p
sss = C , S, p

s ≡ δSs , C
r̄q , S̄, t
s̄̄s̄s = C

¯ , S̄, t
s̄ ≡ δS̄s̄ (3.5.6)

We can then easily compute χ(LLL1) and χ(LLL2). Both the symmetric group representation branch-

ing → ⊗ and → ⊗ describe the branching of a 1-dimensional space into itself: as

such their associate branching coefficients equal 1 identically. On the other hand, D (σ) = 1

∀ σ and D (σ) = sign(σ). We then have

χ(LLL1, s, s̄, σ) =
1√
3!
δSs δ

S̄
s̄ , χ(LLL1, s, s̄, σ) =

1√
3!

sign(σ) δSs δ
S̄
s̄ (3.5.7)

The S3 irrep is two dimensional, and we work in an orthonormal basis {e1, e2} in which

it reads4

D ((1)) =

(
1 0

0 1

)
, D ((12)) =

(
1 0

0 −1

)
, D ((13)) =

(
−1

2 −
√

3
2

−
√

3
2

1
2

)

D ((23)) =

(
−1

2

√
3

2√
3

2
1
2

)
, D ((123)) =

(
−1

2 −
√

3
2√

3
2 −1

2

)
, D ((132)) =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
(3.5.8)

If we restrict S3 to S2 × S1, the reduces as∣∣∣∣
S2×S1

= ⊗ ⊕ ⊗ (3.5.9)

The restricted group S3|S2×S1
only contains two elements: S3|S2×S1

= {(1), (12)}. The branch-

ing coefficients for this restriction are the matrix elements of the orthogonal operator B such

that

B−1D ((12))B = D ((12))⊗D ((1)) ⊕ D ((12))⊗D ((1)) = diag(1,−1) (3.5.10)

With our basis choice for such a decomposition is already manifest, as it is clear from the

matrix expression of the identity element and the (12) transposition in (3.5.8). Therefore, for

this particular configuration, B is just the two dimensional identity matrix: B = 12. If we label

f1 the only state in the of S2 and f2 the only state in the of S2, the branching coefficients

read

B → ,
j→1,1 = (ej , f1) = δj,1 , B → ,

j→1,1 = (ej , f2) = δj,2 (3.5.11)

4Note that this is not the convention used in the SageMath software.
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Inserting this result in (3.5.3) we obtain an expression for χ(LLL3) and χ(LLL4):

χ(LLL3, s, s̄, σ) =
1√
3

Tr
[
D (σ)P → ,

]
δSs δ

S̄
s̄ ,

χ(LLL4, s, s̄, σ) =
1√
3

Tr
[
D (σ)P → ,

]
δSs δ

S̄
s̄ (3.5.12)

Here P → , and P → , are the projection operators of the of S3 on the ⊗ of S2×S1

and the of S3 on the ⊗ of S2 × S1:

P → , =

(
1 0

0 0

)
, P → , =

(
0 0

0 1

)
(3.5.13)

We are now ready to write down the Fourier transformed operators. Using the definition (3.5.2)

and the results (3.5.7) and (3.5.12), we find that

O(LLL1) =
1√
3!

(
(φ)(φ)(Q̄Q)S̄S + (φφ)(Q̄Q)S̄S + 2(φ)(Q̄φQ)S̄S + 2(Q̄φφQ)S̄S

)
,

O(LLL2) =
1√
3!

(
(φ)(φ)(Q̄Q)S̄S − (φφ)(Q̄Q)S̄S − 2(φ)(Q̄φQ)S̄S + 2(Q̄φφQ)S̄S

)
, (3.5.14)

O(LLL3) =
1√
3

(
(φ)(φ)(Q̄Q)S̄S + (φφ)(Q̄Q)S̄S − (φ)(Q̄φQ)S̄S − (Q̄φφQ)S̄S

)
,

O(LLL4) =
1√
3

(
(φ)(φ)(Q̄Q)S̄S − (φφ)(Q̄Q)S̄S + (φ)(Q̄φQ)S̄S − (Q̄φφQ)S̄S

)
We can now perform some checks on this result. First of all, we expect to see the finite N

constraints to manifest themselves if the gauge group of the theory is either N = 1 or N = 2.

In the former case, only O(LLL1) should remain, and it is in fact easy to see that for N = 1 all the

other operators are identically zero. For the latter case, we expect O(LLL2) to vanish, as l( ) > 2,

and as such it violates the finite N constraints. Indeed, using the identity φ2 = (φ)φ−det(φ)12,

which follows from the Cayley-Hamilton theorem, one can verify that O(LLL2) = 0 for a U(2)

gauge group.

We also expect these operators to be orthogonal in the free field metric. According to eq.

(3.3.12), the two point function in the permutation basis is simply〈
O(~n , s, s̄ , σ)O†(~n , t, t̄ , τ)

〉
= δs,t δs̄,t̄

∑
η∈S2

NC[(η×1)σ (η×1)−1 τ−1] , ~n = (2, 1, 1) (3.5.15)

were C [σ] is the number of cycles in the permutation σ. With this equation we can check that
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all the states in (3.5.14) are orthogonal, and that〈
O(LLL1)O†(LLL1)

〉
= 2N(N + 1)(N + 2) ,

〈
O(LLL2)O†(LLL2)

〉
= 2N(N − 1)(N − 2) ,〈

O(LLL3)O†(LLL3)
〉

= 2N(N2 − 1) ,
〈
O(LLL4)O†(LLL4)

〉
= 2N(N2 − 1)

(3.5.16)

in agreement with (3.3.1).

- ~n = (1, 2, 2) field content

We now consider a different field content, that is {φ,Q,Q, Q̄, Q̄}. This choice corresponds to

~n = (1, 2, 2). In the permutation basis, the GIOs that we can form with these fields are

O(~n ,~s , (1)) = (φ) (Q̄Q)s̄1s1 (Q̄Q)s̄2s2 , O(~n ,~s , (12)) = (Q̄φQ)s̄1s1 (Q̄Q)s̄2s2 ,

O(~n ,~s , (13)) = (Q̄φQ)s̄2s2 (Q̄Q)s̄1s1 , O(~n ,~s , (23)) = (φ) (Q̄Q)s̄1s2 (Q̄Q)s̄2s1 ,

O(~n ,~s , (123)) = (Q̄φQ)s̄2s1 (Q̄Q)s̄1s2 , O(~n ,~s , (132)) = (Q̄φQ)s̄1s2 (Q̄Q)s̄2s1

(3.5.17)

Here ~s = (s1, s2 , s̄1, s̄2), and the round brackets denote U(N) indices contraction.

Let us now construct the Fourier transformed operators. As in the previous example, for this

fields content we do not have any branching multiplicity ν+, ν−, so that we will drop them from

the set of labels in LLL. We will now write the expression for the six operators O(LLLi), i = 1, 2, ..., 6,

with

LLL1 = { , , , S , , S̄} , LLL2 =
{

, , , S , , S̄
}
,

LLL3 =
{

, , , S , , S̄
}
, LLL4 =

{
, , , S , , S̄

}
,

LLL5 =
{

, , , S , , S̄
}
, LLL6 =

{
, , , S , , S̄

}
(3.5.18)

As in the previous example, we leave the SU(F ) states S, S̄ implicit.

The symmetric branching group coefficients are similar to the ones already introduced in

the previous example. Both the branchings → ⊕ and → ⊕ are trivial, as they

correspond to a branching of a 1-dimensional space into itself. These branching coefficients are

therefore equal to 1 identically:

B → ,
1→1,1 ≡ 1 , B → ,

1→1,1 ≡ 1 (3.5.19)

We now turn to the reduction ∣∣∣∣
S1×S2

= ⊗ ⊕ ⊗ (3.5.20)

As in the previous example, the group S3|S1×S2
only contains two elements, but this time they

are S3|S1×S2
= {(1), (23)}. This is because the (1) × (12) ∈ S1 × S2 has to be embedded into
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S3, where it corresponds to the transposition (23). The branching coefficients for the reduction

in (3.5.20) will be the matrix elements of the orthogonal operator B such that

B−1D ((23))B = D ((1))⊗D ((12)) ⊕ D ((1))⊗D ((12)) = diag(1,−1) (3.5.21)

We equip the of S3 with a basis {e1, e2}, in which the representation takes the explicit form

(3.5.8). We then choose f1 and f2 to be the basis vectors of the and the of S2 respectively.

In this basis the orthogonal matrix B must then take the form

B =

(
1
2 −

√
3

2√
3

2
1
2

)
(3.5.22)

We then have, by construction, Be1 = f1 and Be2 = f2. The branching coefficients for the

reduction (3.5.20) then read

B → ,
1→1,1 = (e1, f1) = 1

2 , B → ,
1→1,1 = (e1, f2) = −

√
3

2 ,

B → ,
2→1,1 = (e2, f1) =

√
3

2 , B → ,
2→1,1 = (e2, f2) = 1

2

(3.5.23)

It is useful to define the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 , P → ,

i,j = B → ,
i→1,1 B → ,

j→1,1 (3.5.24)

projecting the of S3 on the ⊗ and on the ⊗ of S1 × S2 respectively. We also define

the linear operator T through its matrix elements as

Ti,j = B → ,
i→1,1 B → ,

j→1,1 (3.5.25)

Explicitly, these matrices read

P → , =
1

4

(
1
√

3√
3 3

)
, P → , =

1

4

(
3 −

√
3

−
√

3 1

)
, T =

1

4

(
−
√

3 1

−3
√

3

)
(3.5.26)

We will use these quantities to compactly write the quiver characters.

We now turn to the Clebsch-Gordan coefficients, C
rq , S, p
s1, s2 and C

r̄q , S̄, t
s̄1, s̄2 , where rq and r̄q are

both either or . First of all notice that we can drop the symmetric group state labels p

and t, because all the irreducible representation of S2 are 1-dimensional. Let us call VF the the

fundamental representation of SU(F ), and let us choose an orthonormal basis ei, i = 1, 2, ..., F .

Consider now the VF ⊗VF vector space, equipped with the induced basis {ei,j = ei⊗ ej}ij . The

of SU(F ) is spanned by every symmetric permutation of the ei,j = ei ⊗ ej basis vectors of

VF ⊗ VF . We can label an orthonormal basis for this representation with the notation i j ,

102



CHAPTER 3. CORRELATORS IN THE QUIVER RESTRICTED POLYNOMIALS BASIS

where

i i = ei ⊗ ei , (3.5.27a)

i j =
1√
2

(ei ⊗ ej + ej ⊗ ei) , i 6= j (3.5.27b)

On the other hand, the of SU(F ) is spanned by every antisymmetric permutation of the

ei,j = ei⊗ej basis vectors of VF ⊗VF . We can label an orthonormal basis for this representation

with the notation i
j

, where

i
j

=
1√
2

(ei ⊗ ej − ej ⊗ ei) (3.5.28)

We can therefore easily compute the Clebsch-Gordan coefficients (3.2.18). To optimise the

notation, we use the Young tableaux i j and i
j

to label both the SU(F ) representations and

their states. The Clebsch-Gordan coefficients then read

C
i i

k,l = (ek,l, i i ) = (ek ⊗ el, ei ⊗ ei) = δk,i δl,i ,

C
i j

k,l = (ek,l, i j ) =
1√
2

(ek ⊗ el, ei ⊗ ej + ej ⊗ ei) =
1√
2

(δk,i δl,j + δk,j δl,i) , i 6= j ,

C
i
j

k,l = (ek,l,
i
j ) =

1√
2

(ek ⊗ el, ei ⊗ ej − ej ⊗ ei) =
1√
2

(δk,i δl,j − δk,j δl,i) (3.5.29)

A similar approach can be used to derive the Clebsch-Gordan coefficients for the decomposition

of the V̄F ⊗ V̄F representation of SU(F ), which gives similar results to the ones in (3.5.29).

We can now write the quiver characters for the six states (3.5.18). Denoting the generic

flavour state |S〉 ∈ V
SU(F )
rq as in (3.5.27) for rq = and as in (3.5.28) for rq = (and

similarly for |S̄〉 ∈ V SU(F )
r̄q ), the labels in (3.5.18) read now

LLL1 = { , , i j , p q } , LLL2 =

{
, , i

j
, p
q

}
,

LLL3 =
{

, , i j , p q

}
, LLL4 =

{
, , i

j
, p
q

}
,

LLL5 =

{
, , i j , p

q

}
, LLL6 =

{
, , i

j
, p q

}
(3.5.30)
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The quiver characters are

χ(LLL1, ~s, σ) =
1√
3!
C

i j

s1,s2 C
p q

s̄1,s̄2 ,

χ(LLL2, ~s, σ) =
1√
3!

sign(σ)C
i
j

s1,s2 C
p
q

s̄1,s̄2 ,

χ(LLL3, ~s, σ) =
1√
3

Tr
[
D (σ)P → ,

]
C

i j

s1,s2 C
p q

s̄1,s̄2 ,

χ(LLL4, ~s, σ) =
1√
3

Tr
[
D (σ)P → ,

]
C

i
j

s1,s2 C
p
q

s̄1,s̄2 ,

χ(LLL5, ~s, σ) =
1√
3

Tr
[
D (σ)T

]
C

i j

s1,s2 C
p
q

s̄1,s̄2 ,

χ(LLL6, ~s, σ) =
1√
3

Tr
[
D (σ)T t

]
C

i
j

s1,s2 C
p q

s̄1,s̄2 (3.5.31)

where T t denotes the transpose of the matrix T , defined in (3.5.26).

Defining the normalisation constants

fi,j =

{
1 if i 6= j

1√
2

if i = j
(3.5.32)

which keeps track of the different normalisation of the Clebsch-Gordan coefficients (3.5.27a) and

(3.5.27b), the Fourier transformed operators take the explicit form

O(LLL1) =
fi,j fp̄,q̄√

3!

(
(φ) (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) + 2(Q̄φQ)

(p̄
(i (Q̄Q)

q̄)
j)

)
,

O(LLL2) =
1√
3!

(
(φ) (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] − 2(Q̄φQ)

[p̄
[i (Q̄Q)

q̄]
j]

)
,

O(LLL3) =
fi,j fp̄,q̄√

3

(
(φ) (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) − (Q̄φQ)

(p̄
(i (Q̄Q)

q̄)
j)

)
, (3.5.33)

O(LLL4) =
1√
3

(
(φ) (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] + (Q̄φQ)

[p̄
[i (Q̄Q)

q̄]
j]

)
,

O(LLL5) = −fi,j (Q̄φQ)
[p̄
(i (Q̄Q)

q̄]
j) ,

O(LLL6) = −fp̄,q̄ (Q̄φQ)
(p̄
[i (Q̄Q)

q̄)
j]

Round brackets around the flavour indices denotes their symmetrisation, square brackets around

them denotes their antisymmetrisation.

As in the previous case, we now run some tests on this result. It is easily seen that if the
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rank of the gauge group is N = 1, then among these six operators only O(LLL1) is non-zero, in

agreement with our finite N constraints (3.3.3). Moreover, when N = 2, by explicitly writing

all the components of O(LLL2) it is possible to check that O(LLL2) = 0. This is a nontrivial result,

once again predicted by the finite N constraints. Let us now check the orthogonality of these

operators, in the free field metric. For this field content the two point function in the permutation

basis, eq. (3.3.12), reads〈
O(~n ,~s , σ)O†(~n ,~t , τ)

〉
=

∑
ρ1, ρ2∈S2

δρ1(sss),ttt δρ2(s̄̄s̄s),t̄̄t̄t N
C[(1×ρ2)σ (1×ρ1)−1 τ−1] , ~n = (1, 2, 2)

(3.5.34)

As in the previous example, C [σ] is the number of cycles in the permutation σ. Using this

equation we can verify that the states in (3.5.33) are indeed orthogonal. Similarly, their squared

norm are〈
O(LLL1)O†(LLL1)

〉
= 4N(N + 1)(N + 2) ,

〈
O(LLL2)O†(LLL2)

〉
= 4N(N − 1)(N − 2) ,〈

O(LLL3)O†(LLL3)
〉

= 4N(N2 − 1) ,
〈
O(LLL4)O†(LLL4)

〉
= 4N(N2 − 1) ,〈

O(LLL5)O†(LLL5)
〉

= 4N(N2 − 1) ,
〈
O(LLL6)O†(LLL6)

〉
= 4N(N2 − 1)

(3.5.35)

in agreement with our prediction (3.3.1).

- ~n = (2, 2, 2) field content

Consider now the field content {φ, φ,Q,Q, Q̄, Q̄}, that is ~n = (2, 2, 2). Using the same notation

of the previous examples, the quiver Schurs for this subspace can be labelled by the fourteen

sets

LLL1 =
{

, , i j , p q
}
, LLL2 =

{
, , i

j
, p
q

}
, (3.5.36)

LLL3 =
{

, , i j , p q

}
, LLL4 =

{
, , i j , p q

}
, (3.5.37)

LLL5 =

{
, , i

j
, p
q

}
, LLL6 =

{
, , i j , p

q

}
, (3.5.38)

LLL7 =
{

, , i
j
, p q

}
, LLL8 =

{
, , i

j
, p
q

}
, (3.5.39)

LLL9 =

{
, , i j , p q

}
, LLL10 =

{
, , i

j
, p
q

}
, (3.5.40)
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LLL11 =

{
, , i j , p

q

}
, LLL12 =

{
, , i

j
, p q

}
, (3.5.41)

LLL13 =
{

, , i j , p q

}
, LLL14 =

{
, , i

j
, p
q

}
(3.5.42)

As usual, we left the states i j and i
j

(with i, j = 1, 2, ..., F ) of the symmetric and antisymmetric

representation of SU(F ) unspecified.

The quiver Schurs explicitly read

O(LLL1) =
fi,j fp̄,q̄√

3!

(
2(Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄φQ)

(p̄
(i (Q̄φQ)

q̄)
j) +

1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

+
1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φφ) + 2(Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,

O(LLL2) =
1√
3!

(
2(Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄φQ)

[p̄
[i (Q̄φQ)

q̄]
j] +

1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

−1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φφ)− 2(Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
,

O(LLL3) =
fi,j fp̄,q̄

2
√

2

(
− 2(Q̄φQ)

(p̄
(i (Q̄φQ)

q̄)
j) + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2 + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φφ)

)
,

O(LLL4) =
fi,j fp̄,q̄

2
√

2

(
− 2(Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

−(Q̄Q)
(p̄
(i (Q̄Q)

q̄)
j) (φφ) + 2(Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,

O(LLL5) =
1

2
√

2

(
2(Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

+(Q̄Q)
[p̄
[i (Q̄Q)

q̄]
j] (φφ) + 2(Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
, (3.5.43)

O(LLL6) = −fi,j
(

(Q̄Q)
[p̄
(i (Q̄φφQ)

q̄]
j) + (Q̄Q)

[p̄
(i (Q̄φQ)

q̄]
j) (φ)

)
,

O(LLL7) = −fp̄,q̄
(

(Q̄Q)
(p̄
[i (Q̄φφQ)

q̄)
j] + (Q̄Q)

(p̄
[i (Q̄φQ)

q̄)
j] (φ)

)
,

O(LLL8) =
1

2
√

2

(
− 2(Q̄φQ)

[p̄
[i (Q̄φQ)

q̄]
j] + (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2 − (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φφ)

)
,

O(LLL9) =
fi,j fp̄,q̄

2
√

2

(
2(Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

−(Q̄Q)
(p̄
(i (Q̄Q)

q̄)
j) (φφ)− 2(Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,
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O(LLL10) =
1

2
√

2

(
− 2(Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

+(Q̄Q)
[p̄
[i (Q̄Q)

q̄]
j] (φφ)− 2(Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
,

O(LLL11) = −fi,j
(

(Q̄Q)
[p̄
(i (Q̄φφQ)

q̄]
j) − (Q̄Q)

[p̄
(i (Q̄φQ)

q̄]
j) (φ)

)
,

O(LLL12) = −fp̄,q̄
(

(Q̄Q)
(p̄
[i (Q̄φφQ)

q̄)
j] − (Q̄Q)

(p̄
[i (Q̄φQ)

q̄)
j] (φ)

)
,

O(LLL13) =
fi,j fp̄,q̄√

3

(
− (Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄φQ)

(p̄
(i (Q̄φQ)

q̄)
j) +

1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

+
1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φφ)− (Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,

O(LLL14) =
1√
3

(
− (Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄φQ)

[p̄
[i (Q̄φQ)

q̄]
j] +

1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

−1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φφ) + (Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
The convention for round and square brackets around flavour indices is the same as the one used

in the previous example. The computation that leads to this result is summarised in Appendix

A.4. Using Mathematica, we checked that all these operators are orthogonal in the free field

metric, that their norm satisfy (3.3.1), and that they obey the finite N constraints (3.3.3).
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Chapter 4

Permutation Centraliser Algebras

This chapter lays the grounds for a systematic understanding of the algebraic structures involved

in the resolution of the gauge invariant operator spectrum [54]. To be more precise, we will define

the notion of permutation centralizer algebras. A particular class of these, denoted as A(m,n),

will be our main focus. Many of the important formulae we will use have already appeared in the

physics literature. Nevertheless theA(m,n), as associative algebras with non-degenerate pairing,

have not been made fully explicit. This chapter, based on [2], proposes that these algebras are

interesting to study intrinsically, disentangled from the contingencies of being embedded in

a bigger symmetric group algebra, their simplicity hidden among the application to matrix

correlators for matrices of size N . Here we define the algebras A(m,n), study their structure,

and subsequently describe how they are relevant to matrix theory invariants. We expect that

a deeper study of this algebraic structure has the potential to give a lot of information about

correlators in free Yang-Mills theory, in the loop corrected theory, at all orders in the 1/N

expansion. This work is a step in this direction. Much as it is valuable to abstract Riemannian

geometry from the study of submanifolds of Euclidean spaces, abstracting a family of algebras

intrinsic to permutations hidden in the mathematics of matrix theory should be fruitful.

In section 4.1 we introduce the definition of permutation centralizer algebras. We consider

four key examples of these algebras, which are useful in the context of gauge-invariant operators.

In section 4.2, we focus on the algebras A(m,n) formed by equivalence classes of permutations in

Sm+n, with equivalence generated by conjugation with permutations in Sm×Sn. The dimension

of this algebra is

|A(m,n)| =
∑

R1`m,R2`n
R`m+n

g(R1, R2;R)2 (4.0.1)

where g(R1, R2;R) is the LR coefficient for the triplet of Young diagram (R1, R2, R) made

with (m,n,m + n) boxes respectively. We will show that this is an associative algebra with a

non-degenerate pairing. As a result, we know from the Wedderburn-Artin theorem that it is
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isomorphic to a direct sum of matrix algebras Mat [84, 85]:

A(m,n) =
⊕
a

Mata (4.0.2)

In eq. (4.2.5) we give a more precise version of this formula, where the index a is identified

with triplets (R1, R2, R) with non-vanishing LR coefficient g(R1, R2;R). The construction of

restricted Schur operators in gauge theory is used to give the Wedderburn-Artin decomposition

of A(m,n). Two sub-algebras will be of interest. The centre of the algebra Z(m,n) is the

subspace of the algebra which commutes with any element of A(m,n). The dimension of this

centre is equal to the number of triples (R1, R2, R) of Young diagrams, with numbers of boxes

equal to (m,n,m + n), for which the LR coefficient is non-zero. It is useful to develop some

formulae for the non-degenerate pairing on the centre, using characters of Sm+n, Sm, Sn. The

Wedderburn-Artin decomposition also highlights the importance of a maximally commuting

sub-algebra M(m,n). The dimension of this sub-algebra is the sum of Littlewood-Richardson

coefficients g(R1, R2;R). Appendix C.1 gives a multi-variable generating function for this sum

of LR coefficients. We explain the relevance of the this sub-algebra to the enhanced symmetry

charges studied in [54]. In particular we give a precise algebraic characterization (4.3.45) for

the minimal number of charges needed to identify all 2-matrix gauge-invariant operators. The

evaluation of this number is an open problem for the future.

In section 4.3, we explain some further physical implications of the permutation centralizer

algebras. The simplest of these algebras is the algebra of class sums of permutations. Given

the one-to-one correspondence between matrix operators and conjugacy classes of permutations

given in (1.2.9), this means that there is a corresponding product on half-BPS operators. This

is not the usual product obtained by multiplying the gauge invariant operator built from X

under which the dimension of the operator adds. The product on the class sums rather gives

a product for the BPS operators of fixed dimension, a product which is associative and admits

a non-degenerate pairing. We will refer to this as a star product for half-BPS operators. We

explain the relevance of this star product for the computation of correlators. Similarly the

product on the algebra A(m,n) gives a star product for gauge invariant polynomials in two

matrices, with degree m in the X’s and degree n in the Y ’s. In the physics application, there

is a closed associative star product on the space of quarter-BPS operators at zero Yang-Mills

coupling. Conversely the usual product of gauge invariants gives a product on A(∞,∞)

A(∞,∞) =
∞⊕

m,n=0

A(m,n) (4.0.3)

which is the direct sum over all m,n. Thus A(∞,∞) has two products one of which closes at

fixed m,n. This generalizes a structure seen in the study of symmetric polynomials.

In section 4.4, we show that the study of the structure of the algebra A(m,n) we developed

in section 4.2 is useful for the computation of correlators of 2-matrix gauge invariants. In

particular, we identify an efficiently computable sector of central gauge invariant operators
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whose correlators can be computed using the knowledge of characters of Sm+n, Sm, Sn. It does

not require the knowledge of more detailed data such as matrix elements DR
ij(σ) or branching

coefficients for Sm+n → Sm × Sn. To illustrate the simplicity of this central sector, we compute

the two-point function 〈
Tr(XmY n)Tr((X†)m(Y †)n)

〉
(4.0.4)

at finite N . The computation requires a calculation of Littlewood-Richardson coefficients

g(R1, R2;R) where R1, R2 are hook-shaped Young diagrams. This computation is given in

Appendix C.2. Further technical aspects of the computation are given in Appendix C.3. The

computation agrees with the one in [86] which was done with explicit Young-Yamanouchi sym-

bols which can be used to construct states in irreps R and describe their reduction to R1, R2.

4.1 Definitions and Key examples

When studying the representation theory of a group G, it is useful to introduce the algebra C[G]

which consists of formal linear combinations of group elements, equipped with the multiplication

inherited from the group. In the group algebra C[G], for each conjugacy class, we can form a sum

over all the elements in the conjugacy class of G. Such class sums commute with any element of

G and form the central sub-algebra of C[G], i.e. the sub-algebra which commutes with all C[G].

We will refer to Z[C[G]] as the centre of C[G]. Conjugacy classes are in 1-1 correspondence with

irreducible representations and there is a basis of the centre consisting of projectors of the form

PR =
dR
|G|

∑
g∈G

χR(g) g−1 (4.1.1)

Of primary interest to us is the group algebra of C[Sn] and its centre Z[C[Sn]]. The elements in

Z[C[Sn]] are formal sums of all the permutations belonging to a given conjugacy class t of Sn.

Therefore we have that ∑
σ∈t

σ ∈ Z[C[G]] (4.1.2)

Conversely, given any σ ∈ Sn, we can generate an element of this subalgebra by summing over

all γ ∈ Sn: ∑
γ∈Sn

γσγ−1 ∈ Z[C[G]] (4.1.3)

Some properties of group algebras and their centre can be found in [83, 84]. In the context of

AdS/CFT , group algebras C[Sn] and associated representation theory play a role in the half-BPS

sector of N = 4 SYM in 4D [17,18] and also in the symmetric orbifolds in AdS3/CFT2 [19,87].

Motivated by developments in AdS/CFT we will introduce a generalization of this construction.

Definition: Consider an associative algebra A containing a sub-algebra B = C[H], the group
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algebra of a finite group H. Now define the sub-space of A of elements which are invariant under

conjugation by H. This subspace will contain group averages of the form∑
γ∈H

γσγ−1 , σ ∈ A (4.1.4)

which commute with elements of B. It is easy to verify that these sub-spaces are sub-algebras.

We have ∑
γ1∈H

γ1σγ
−1
1

 ∑
γ2∈H

γ2σγ
−1
2

 =
∑
γ1∈H

γ1

∑
γ3∈H

σ1γ3σ2γ
−1
3

 γ−1
1 (4.1.5)

where we set γ3 = γ−1
1 γ2. This shows that the product of two group averages is still a group

average. This sub-algebra of A commuting with B, in cases where H is a permutation group,

will be called a permutation centralizer algebra.

Three cases of primary interest will be

• Example 1 The algebra A = C[Sn]. The algebra B = C[Sn]. The centralizer of B is

Z[C[Sn]] .

• Example 2 A = C[Sm+n] ; B = C[Sm × Sn]. We will call this algebra A(m,n).

• Example 3 A = BN (m,n) - the walled Brauer algebra ; B = C[Sm × Sn]. This algebra

is called BN (m,n).

• Example 4 A = C[Sn × Sn] ; B = C[Sn] where the latter is the Sn diagonally embedded

in the product group. This should be called K(n).

The case where A is itself a group algebra has been studied in mathematics, for example, in [88].

Our primary interest in this chapter will be in A(m,n) of example 2. Z[C[Sn]] of Exam-

ple 1 will be a useful guide and a source of analogies in our investigations. Fourier transfor-

mation on A(m,n) will be related to restricted Schur operators studied in AdS/CFT. These

are parametrised by representation theory data (R,R1, R2, i, j) consisting of Young diagrams

R1, R2, R with m,n,m + n boxes as well as multiplicity indices i, j. The latter take values

1 ≤ i, j ≤ g(R1, R2;R) where g(R1, R2;R) is the LR multiplicity for the triple of Young dia-

grams computed with the LR combinatoric rule (see for example [68]). Unlike Z[C[Sn]], the

algebra A(m,n) is not commutative. The central sub-algebra Z(m,n), consisting of the sub-

space Z(m,n) ⊂ A(m,n) which commutes with all of A(m,n) will play a predominant role.

Likewise the algebras BN (m,n) and K(n) in Examples 3 and 4 are non-commutative.

4.2 Structure of the A(m,n) algebra

The algebra A(m,n) is constructed by taking all the elements in C[Sm+n] which are invariant

under C[Sm × Sn]. Any element of σ ∈ C[Sm+n] can be mapped to a σ̄ ∈ A(m,n) by the group
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averaging

σ̄ =
∑

γ∈Sm×Sn

γ−1σγ (4.2.1)

The σ̄ are formal sums of permutations τ lying in the same orbit of σ under the Sm×Sn action.

Each τ has a stabiliser group, given by those γ ∈ Sm × Sn for which

γ−1τγ = τ (4.2.2)

The stabilisers of two permutations τ1, τ2 in the same orbit are generally different (they are

conjugate to each other), but they have the same dimension. By the Orbit-Stabiliser theorem,

σ̄ is then a sum of permutations weighted by the same coefficient:

σ̄ = |AutSm×Sn(σ)|
∑

τ∈Orbit(σ, Sm×Sn)

τ (4.2.3)

A(m,n) is a finite-dimensional associative algebra (the associativity follows from the asso-

ciativity of C[Sm+n]), which we can equip with the non-degenerate symmetric bilinear form

〈σ̄1, σ̄2〉 = δ(σ̄1σ̄2) , σ̄1,2 ∈ A(m,n) (4.2.4)

Here the delta function on the group algebra C[Sm+n] is a linear function which obeys δ(σ) = 1

for σ = 1 and δ(σ) = 0 otherwise.

The non-degeneracy of the bilinear form (4.2.4) implies that A(m,n) is semi-simple. Accord-

ing to the Wedderburn-Artin theorem, it can then be decomposed into a direct sum of matrix

algebras:

A(m,n) =
⊕

R`m+n
R1`m,R2`n

Span{QRR1,R2,i,j ; i, j} (4.2.5)

In this equation R, R1 and R2 are representations of Sm+n, Sm and Sn respectively. The integers

i, j run over the multiplicity g(R1, R2;R) of the branching R→ R1⊗R2: 0 ≤ i, j ≤ g(R1, R2;R).

An explicit expression for QRR1,R2,i,j
is given in terms of the restricted Schur characters [26,30,54],

defined as

χRR1,R2,i,j(σ) = DR
m,m′(σ) BR→R1,R2;i

m′→l1,l2 BR→R1,R2;j
m→l1,l2 (4.2.6)

These objects and have already been introduced in equation (1.2.39). Here DR
m,m′(σ) are the

matrix elements of σ in the irreducible representation R. BR→R1,R2;j
m→l1,l2 is the branching coefficient

for the representation branching R → R1 ⊗ R2, in the j-th copy of R1 ⊗ R2 ⊂ R. l1,2 are

states in R1,2. The restricted Schur characters χRR1,R2,i,j
(σ) are invariant under conjugation by
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C[Sm × Sn] elements. With these definitions we can write

QRR1,R2,i,j =
∑
σ

χRR1,R2,i,j(σ)σ (4.2.7)

which is manifestly invariant under the action of C[Sm × Sn]. It follows that

QRR1,R2,i,jQ
S
S1,S2,k,l = δR,S δR1,S1 δR2,S2(δjkQ

R
R1,R2,i,l) (4.2.8)

This is in accordance with the decomposition (4.2.5). Consequently it is useful to write QRR1,R2,i,j

as

QRR1,R2,i,j =
∑
m1,m2

|R→ R1, R2, m1,m2, i〉〈R→ R1, R2, m1,m2, j| (4.2.9)

Moreover, the basis
{
QRR1,R2,i,j

}
is complete as we now explain. The number of distinct

QRR1,R2,i,j
’s is equal to the number of restricted Schur characters, which is in turn equal to∑

R1,R2,R
g(R1, R2;R)2. On the other hand the dimension of A(m,n) is by definition equal to

the number of elements of C[Sm+n] invariant under the C[Sm × Sn] action. Using the Burnside

lemma, it is possible to show that this dimension |A(m,n)| is given as

|A(m,n)| =
∑

R1`m,R2`n
R`m+n

g(R1, R2, R)2 (4.2.10)

In each of the blocks in (4.2.5) there is a projector of the form PRR1,R2
=
∑

iQ
R
R1,R2,i,i

. Let

now PR, PR1 and PR2 be the projectors onto the irreps R,R1 and R2 of Sm+n, Sm and Sn

respectively. Since

〈
R→ R1, R2,m1,m2, i|PRPR1PR2 |R→ R1, R2,m

′
1,m

′
2, j
〉

(4.2.11)

=
〈
R→ R1, R2,m1,m2, i|PRR1,R2

|R→ R1, R2,m
′
1,m

′
2, j
〉

= δm1,m′1
δm2,m′2

δi,j

for all triplets R, R1, R2, we can write

PRR1,R2
= PRPR1PR2 (4.2.12)

so that the projectors PRR1,R2
are just products of ordinary Sm+n, Sm and Sn projectors. The

set {PRR1,R2
} forms a basis for the centre of A(m,n), which we call Z(m,n). Its dimension is

then given by the number of non vanishing LR coefficients g(R1, R2;R), or

|Z(m,n)| =
∑

R1`m,R2`n
R`m+n

(1− δ(g(R1, R2;R))) (4.2.13)

Here δ(g(R1, R2;R)) = 1 if g(R1, R2;R) = 0 and δ(g(R1, R2;R)) = 0 otherwise. The generating
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function for the dimension of the centre is [25]

Z(x, y) =
∏
i

1

(1− xi − yi)
(4.2.14)

We will now argue that the collection of the generators of the centres of C[Sm+n], C[Sm] and

C[Sn], that we denote as {T (m+n)
p }, {T (m)

q1 } and {T (n)
q2 } respectively, is a set of generators for

Z(m,n). Here p, q1 and q2 are integer partitions of m+n, m and n respectively. For example, for

the partition p = (p1, p2, ...) of m+ n, the operator T
(m+n)
p consists of a sum over permutations

belonging to the conjugacy class p = (p1, p2, ...):

T (m+n)
p =

∑
i1,··· ,ip1+p2+···∈[m+n]

(i1i2 · · · ip1)(ip1+1ip1+2 · · · ip1+p2) · · · (4.2.15)

T
(m+n)
p are sums of conjugates by elements of Sm+n, whereas T

(m)
q1 and T

(n)
q2 are sums over

Sm ⊂ Sm+n and Sn ⊂ Sm+n respectively. To show that {T (m+n)
p , T

(m)
q1 , T

(n)
q2 } generate the whole

centre Z(m,n) we can use the following argument. Using the Wedderburn-Artin decomposition

(4.2.5), we see that the centre of A(m,n) is the direct sum of the centres of the matrix algebras

Span{QRR1,R2,i,j
; i, j}. For each of these matrix blocks, that is for any fixed representations

R, R1, R2 for which g(R1, R2;R) 6= 0, the centre is one-dimensional, and is spanned by

PRR1,R2
=
∑
i=1

QRR1,R2,i,i (4.2.16)

Using the equation (4.2.8), it is immediate to check that

[PRR1,R2
, QRR1,R2,i,j ] = 0 , ∀ i, j (4.2.17)

We know that PRR1,R2
= PRPR1PR2 , with PR, PR1 and PR2 projectors on the representations R,

R1 and R2. Therefore every central element of A(m,n) can be generated with the collection of

projectors {PR, PR1 , PR2}. For an R irrep of Sn, the projector is

PR =
1

n!

∑
σ∈Sn

χR(σ)σ =
1

n!

∑
p∈Partitions(n)

χR(σp)T
(n)
p (4.2.18)

where σp is a representative permutation belonging to the conjugacy class p ` n. This means that

every projector PR can be written as a linear combination of the central elements {T (n)
p }. We

can then write the set {PR, PR1 , PR2} in terms of the central elements {T (m+n)
p , T

(m)
q1 , T

(n)
q2 }.

Since we know that the former generates the whole Z(m,n), we can now conclude that the

latter is a complete set of generators for the centre Z(m,n) as well. The basis thus obtained

will be useful in the following sections. However, it is important to point out that such a

basis is overcomplete. An easy way to see it is to note that, given (4.2.12), PR PR1PR2 = 0 if

g(R1, R2, R) = 0. Therefore, taking a triplet (R1, R2, R) for which g(R1, R2, R) = 0 we have,
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using (4.2.18):

1

(m+ n)!m!n!

∑
p`(m+n)
q1`m, q2`n

χR(σp)χR1(σq1)χR2(σq2)T (m+n)
p T (m)

q1 T (n)
q2 = 0 (4.2.19)

This shows that {T (m+n)
p , T

(m)
q1 , T

(n)
q2 } is indeed an overcomplete basis.

We can also argue that {T (m+n)
p , T

(m)
q1 , T

(n)
q2 } generate Z(m,n) just by using the Schur-Weyl

duality as in [54]. The T (m) elements are Schur-Weyl dual to U(N) Casimirs acting on the upper

m indices of X-type matrices. This action is generated by

(Ex)ij = (Dx)ij = Xi
l

∂

∂Xj
l

(4.2.20)

The T (n) elements are Schur-Weyl dual to U(N) Casimirs acting on the upper n indices of

Y -type matrices. We have

(Ey)
i
j = (Dy)

i
j = Y i

l

∂

∂Y j
l

(4.2.21)

Finally, the T (m+n) elements are Schur-Weyl dual to U(N) Casimirs acting on the upper n and

m indices of both X- and Y -type matrices, and the generator is

Eij = (Ex)ij + (Ey)
i
j (4.2.22)

We then have three distinct types of Casimirs:

C
(m+n)
k = Ei1i2E

i2
i3
· · ·Eiki1

C
(m)
k = (Ex)i1i2(Ex)i2i3 · · · (Ex)iki1

C
(n)
k = (Ey)

i1
i2

(Ey)
i2
i3
· · · (Ey)iki1 (4.2.23)

But the C
(m+n)
k , the C

(m)
k and the C

(n)
k operators measure respectively the R, R1 and R2

labels of the restricted Schurs χRR1,R2,i,j
. Therefore they can be used to isolate every subspace

R1 ⊗R2 ⊆ R, and to build all the correspondent projectors PRR1,R2
. Since we know that each of

these projectors is in a 1-1 correspondence with an element of Z(m,n), the whole centre Z(m,n)

is obtained.

On the other hand, non-central elements are needed to measure the multiplicity labels i, j.

This observation will be developed in section 4.3.
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4.2.1 Symmetric group characters and the pairing on the centre Z(m,n)

A central element Za ∈ Z(m,n) can be expanded in terms of the projectors PRR1,R2
as

Za =
∑

R,R1,R2

ZR,R1,R2
a PRR1,R2

(4.2.24)

We can then define

χRR1,R2;i,j(Za) =
∑
m1,m2

〈R→ R1, R2,m1,m2, i|Za|R→ R1, R2,m1,m2, j〉

= δij
∑

S,S1,S2

∑
m1,m2

ZS,S1,S2
a 〈R→ R1, R2,m1,m2, i|PSS1,S2

|R→ R1, R2,m1,m2, j〉

= δijZ
R,R1,R2
a dR1dR2 (4.2.25)

and

χRR1,R2
(Za) =

∑
i

χRR1,R2;i,i(Za) = ZR,R1,R2
a g(R1, R2, R)dR1dR2 (4.2.26)

From these equations it also follows that for any central element Za

χRR1,R2,i,j(Za) =
δi,j

g(R1, R2;R)
χRR1,R2

(Za) (4.2.27)

Another useful expansion is in terms of {T (m+n)
p }, {T (m)

q1 } and {T (n)
q2 }. Since these elements

generate the centre, we can write

Za = Zp,q1,q2a T (m,n)
p T (m)

q1 T (n)
q2 (4.2.28)

for some Zp,q1,q2a coefficients. However, since the basis generated by {T (m+n)
p , T

(m)
q1 , T

(n)
q2 } is

overcomplete, such coefficients are not unique. Using the expansion (4.2.28), we can write

χRR1,R2,i,j(Za) = δij Z
p,q1,q2
a

χR(T
(m+n)
p )

dR
χR1(T (m)

q1 )χR2(T (n)
q2 ) (4.2.29)

and

χRR1,R2
(Za) =

∑
i

χRR1,R2,i,i(Za) = Zp,q1,q2a g(R1, R2, R)
χR(T

(m+n)
p )

dR
χR1(T (m)

q1 )χR2(T (n)
q2 ) (4.2.30)

From these equations we see that all the restricted characters of central elements are determined

by characters of Sm+n, Sm, Sn. Just as the centre of Sn is generated by class sums, which are dual

to irreducible characters of Sn, the centre Z(m,n) of A(m,n) is dual to the characters χRR1,R2
,

which are nothing but products of symmetric group characters. Therefore, to compute restricted
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characters of elements in Z(m,n) we only need the ordinary symmetric group character theory.

We will now use some of the known equations for the character of symmetric group and use

them to compute restricted characters in Z(m,n). Our aim will be to compute the dual pairing

(4.2.4) for central elements. Equation (B.12) in [26] reads

(m+ n)!

m!n!

∑
γ∈Sm×Sn

δ(σγτγ−1) =
∑

R,R1,R2,i,j

dR
dR1dR2

χRR1,R2,i,j(σ)χRR1,R2,i,j(τ) (4.2.31)

By setting τ = 1 this equation simplifies to

(m+ n)!δ(σ) =
∑
R

dRχ
R
R1,R2,i,i(σ) (4.2.32)

where we used

χRR1,R2,i,j(1) = δijdR1dR2 (4.2.33)

We can immediately use this result to show that δ(QRR1,R2,i,j
) = δijdR1dR2 . This is because,

using (4.2.7)

δ
(
QRR1,R2,i,j

)
=
∑
σ

χRR1,R2,i,jδ (σ) = χRR1,R2,i,j(1) = δijdR1dR2 (4.2.34)

It is also worthwhile to notice that, for O ∈ A(m,n), Tr(O) = δ(O). Therefore we could have

obtained the same result by considering

Tr(QRR1,R2,i,j) =
∑

S,S1,S2

∑
m1,m2
m′1,m

′
2

∑
k

〈
S → S1, S2,m

′
1,m

′
2, k|R→ R1, R2, m1,m2, i〉

× 〈R→ R1, R2, m1,m2, j|S → S1, S2,m
′
1,m

′
2, k〉

= δijdR1dR2 (4.2.35)

where we used the definition (4.2.9).

Let us now go back to eq. (4.2.32). If we replace σ by a central element Za, using the

expansion (4.2.28) and eq. (4.2.30), we find

(m+ n)! δ(Za) =
∑

R,R1,R2

Zp,q1,q2a g(R1, R2, R)χR(T (m+n)
p )χR1(T (m)

q1 )χR2(T (n)
q2 ) (4.2.36)
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By further replacing σ → Za, τ → Zb in (4.2.31) we get, in a similar fashion

(m+ n)! δ(ZaZb) =
∑

R,R1,R2,i,j

dR
dR1dR2

χRR1,R2,i,j(Za)χ
R
R1,R2,i,j(Zb)

= Zp,q1,q2a Z
p′,q′1,q

′
2

b

∑
R,R1,R2

g(R1, R2, R)

dRdR1dR2

× (4.2.37)

× χR(T (m+n)
p )χR1(T (m)

q1 )χR2(T (n)
q2 )χR(T

(m+n)
p′ )χR1(T

(m)
q′1

)χR2(T
(n)
q′2

)

Comparing the LHS above with eq. (4.2.4) we find that for central elements Za, Zb

〈Za, Zb〉 =Zp,q1,q2a Z
p′,q′1,q

′
2

b

1

(m+ n)!

∑
R,R1,R2

g(R1, R2, R)

dRdR1dR2

× (4.2.38)

× χR(T (m+n)
p )χR1(T (m)

q1 )χR2(T (n)
q2 )χR(T

(m+n)
p′ )χR1(T

(m)
q′1

)χR2(T
(n)
q′2

)

Thus we have an explicit way of computing the dual paring on the centre Z(m,n) in terms of

ordinary Sn characters.

Similarly, there is a character expansion for δ(ZaZbZc). We begin by writing

(m+ n)! δ(ZaZbZc) =
∑

R,R1,R2,i,j

dR
dR1dR2

χRR1,R2,i,j(ZaZb)χ
R
R1,R2,i,j(Zc)

=
∑

R,R1,R2

dR
dR1dR2g(R1, R2;R)

χRR1,R2
(ZaZb)χ

R
R1,R2

(Zc) (4.2.39)

Since Za is central, Za = (ca)
R
R1,R2

1, where (ca)
R
R1,R2

is a constant. This constant can be obtained

by considering:

χRR1,R2,i,j(Za) = (ca)
R
R1,R2

χRR1,R2
(1) = (ca)

R
R1,R2

dR1 dR2g(R1, R2;R) (4.2.40)

We therefore have that

χRR1,R2
(ZaZb) =

χRR1,R2
(Za)χ

R
R1,R2

(Zb)

dR1 dR2 g(R1, R2;R)
(4.2.41)
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Using (4.2.41) in (4.2.39), and then exploiting (4.2.30), we obtain

(m+ n)! δ(ZaZbZc) =
∑

R,R1,R2

dR
d2
R1
d2
R2
g(R1, R2;R)2

χRR1,R2
(Za)χ

R
R1,R2

(Zb)χ
R
R1,R2

(Zc)

= Zp,q1,q2a Z
p′,q′1,q

′
2

b Z
p′′,q′′1 ,q

′′
2

c

∑
R,R1,R2

g(R1, R2;R)

d2
R d

2
R1
d2
R2

χR(T (m+n)
p )χR1(T (m)

q1 )χR2(T (n)
q2 )×

× χR(T
(m+n)
p′ )χR1(T

(m)
q′1

)χR2(T
(n)
q′2

)χR(T
(m+n)
p′′ )χR1(T

(m)
q′′1

)χR2(T
(n)
q′′2

) (4.2.42)

More generally, we can use (4.2.41) to compute the identity coefficient of an arbitrary large

products of central elements, δ(ZaZb · · ·Zk), just by using ordinary symmetric group characters.

4.2.2 Maximal commuting subalgebra

In this section we describe the Maximal commuting subalgebra M(m,n) of A(m,n):

Z(m,n) ⊆M(m,n) ⊆ A(m,n) (4.2.43)

We often refer toM(m,n) as the Cartan subalgebra ofA(m,n). M(m,n) is spanned by elements

of the form QRR1,R2,i,i
(no sum over i). For fixed R1, R2 and R, the total number of basis elements

is g(R1, R2;R), so that its dimension is

|M(m,n)| =
∑

R1`m,R2`n
R`m+n

g(R1, R2;R) (4.2.44)

In Appendix C.1 we derived the dimension formula

|M(m,n)| =
∑
p`m

∑
q`n
FpFqFp+q Sym(p+ q) (4.2.45)

where p, q are partitions of m and n, Fp, Fq, Fp+q are combinatorial quantities dependent only

on the partitions p, q and p+ q respectively, and Sym(p+ q) =
∏
i i
pi+qi(pi + qi)! is a symmetry

factor.

We now turn to the problem of constructing a basis forM(m,n). According to the definition

(4.2.9), to write the basis elements QRR1,R2,i,i
we first need to compute the branching coefficients

for the branching R→ R1⊗R2. These quantities are in general computationally hard to obtain
5, and require a choice of a basis in Sm+n representations adapted to Sm × Sn. However, using

the correspondence with matrix algebras given by the Wedderburn-Artin decomposition, we can

construct the Cartan by solving, in each block, the following equations for (g(R1, R2;R) − 1)

5see for example a discussion of the difficulty and the simplifications in a “distant corners approximation”
in [35]
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linearly independent elements QRR1,R2,a
∈ A(m,n)

PRR1,R2
QRR1,R2,a = QRR1,R2,a (4.2.46a)〈

PRR1,R2
, QRR1,R2,a

〉
= 0 (4.2.46b)[

QRR1,R2,a, Q
R
R1,R2,b

]
= 0 (4.2.46c)

In the second equation, we are using the pairing defined in (4.2.4).

4.3 Star product for composite operators

In the previous sections we discussed the algebra A(m,n) and its centre Z(m,n). We noted that

central elements are special, as all their properties only depend on ordinary symmetric group

character theory. An example of this is eq. (4.2.42). In this section we will take advantage of

this fact to compute physically relevant quantities, in particular two and three point functions

of BPS operators in N = 4 SYM. To do so, we will first start by discussing the one matrix

sector in N = 4 SYM, reviewing the permutation description of U(N) matrix invariants which

are Gauge Invariants Operators (GIOs) in the conformal field theory. We will stress that for this

case there is an underlying Z[C[Sn]] algebra. The one matrix problem will be used as a guide

to extend to the two matrix problem, that we treat in subsection 4.3.2. Here the underlying

algebra will be A(m,n).

4.3.1 One matrix problem

Let us consider a matrix invariant constructed with n copies of the same matrix Z. Any such

invariant can be written in terms of a contraction

Oσ(Z) = tr
(
Z⊗nσ

)
, σ ∈ Sn (4.3.1)

subject to the equivalence relation

Oσ(Z) = Oγ−1σγ(Z) , γ ∈ Sn (4.3.2)

Polynomials in Z like the one in (4.3.1) can be multiplied together. Set σ1 ∈ Sn1 , σ2 ∈ Sn2 .

By multiplying together Oσ1(Z) and Oσ2(Z) we get

Oσ1(Z)Oσ2(Z) = Oσ1◦σ2(Z) (4.3.3)

where σ1 ◦σ2 ∈ Sn1×Sn2 ⊂ Sn1+n2 . Therefore for the usual product of matrix invariants, σ1 ◦σ2

lives in the symmetric group of degree n1 + n2. We can define

C[S∞] =
⊕
n

C[Sn] (4.3.4)
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which is closed under the circle product

◦ : C[S∞]⊗ C[S∞]→ C[S∞] (4.3.5)

However, we can define another associative product, that we call star product, which closes on

the operators of fixed degree:

Oσ1(Z) ∗ Oσ2(Z) = Oσ1σ2(Z) , σ1,2 ∈ Sn (4.3.6)

It is immediate to see how this product is different from the ordinary GIO multiplication product

(4.3.3): σ1, σ2 and σ1σ2 are all permutations of n elements, and the star product is generally

non-commutative. Let [σ] be the conjugacy class of σ. We now define a map from the multi-trace

GIOs to the class-algebra

Oσ(Z)→ 1

size of [σ]

∑
τ∈[σ]

τ ≡ Tσ
|Tσ|

(4.3.7)

This map is 1-1 at large N . Let us focus on this case. We can expand the product of Ti, Tj ∈
Z[C[Sn]] as

TiTj = CkijTk (4.3.8)

Here the Ckij are the class algebra structure constants. By multiplying both sides above by Tl

and taking the coefficient of the identity we get

δ (TiTjTl) = Ckij δ (TkTl) = δk,lC
k
ij |Tl| = Ckij |Tk| (4.3.9)

Now we expand the star product Oσ1(Z) ∗ Oσ2(Z) as

Oσ1(Z) ∗ Oσ2(Z) =
∑
p

|Tσp |
|Tσ1 | |Tσ2 |

Cp[σ1][σ2]Oσp(Z) =
∑
p

δ(Tσ1Tσ2Tσp)

|Tσ1 | |Tσ2 |
Oσp(Z) (4.3.10)

where the sum is over the conjugacy classes p of Sn. σp is a representative element of the

conjugacy class p. This equation will lead to a new expression for the two point functions of

GIOs built from Z,Z† in N = 4 SYM. First observe that setting Z to the identity N×N matrix

Oσ(Z = 1N ) = NCσ (4.3.11)

where Cσ is the number of cycles in the permutation σ. Now consider taking the star product
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of Oσ1(Z), Oσ2(Z) and then setting Z = 1N . We have, according to (4.3.10)

Oσ1(Z) ∗ Oσ2(Z)
∣∣∣
Z=1N

=
1

|Tσ1 | |Tσ2 |
∑
p

δ(Tσ1Tσ2Tσp)Oσp(1N )

=
1

|Tσ1 | |Tσ2 |
∑
p

δ(Tσ1Tσ2Tσp)N
Cσp =

1

n!|Tσ1 | |Tσ2 |
∑
γ∈Sn

δ(γTσ1γ
−1Tσ2Ω) (4.3.12)

where we set Ω =
∑

p TσpN
Cσp . On the other hand the free field correlator, already discussed

at the end of Section 1.2.1, is known to be [17]〈
Oσ1(Z)O†σ2

(Z)
〉

=
1

|Tσ1 | |Tσ2 |
∑
γ∈Sn

δ(γTσ1γ
−1Tσ2Ω) (4.3.13)

so that 〈
Oσ1(Z)O†σ2

(Z)
〉

= n! Oσ1(Z) ∗ Oσ2(Z)
∣∣∣
Z=1N

(4.3.14)

The two point function
〈
Oσ1(Z)O†σ2(Z)

〉
is therefore proportional to the star product Oσ1(Z) ∗

Oσ2(Z) followed by the evaluation Z → 1N .

Similar considerations lead to the following expression for the extremal three point func-

tion. In this case, we find that
〈
Oσ1(Z)Oσ2(Z)O†σ3(Z)

〉
is proportional to the usual product

Oσ1(Z)Oσ2(Z), followed by the star product with Oσ3(Z), followed by the evaluation Z → 1N .

To see this, take σ1 ∈ Sn1 , σ2 ∈ Sn2 and consider

(Oσ1(Z)Oσ2(Z)) ∗ Oσ3(Z)
∣∣∣
Z=1N

=
1

|Tσ1◦σ2 | |Tσ3 |
δ (Tσ1◦σ2Tσ3Ω) (4.3.15)

where Tσ1◦σ2 ∈ Z[C[Sn1+n2 ]], Tσ3 ∈ Z[C[Sn1+n2 ]] and Ω =
∑

σ∈Sn1+n2
σNCσ . On the other hand

the correlator in N = 4 SYM [17] is

〈
Oσ1(Z)Oσ2(Z)O†σ3

(Z)
〉

=
∑

γ∈Sn1+n2

δ
(
γ(σ1 ◦ σ2)γ−1σ−1

3 Ω
)

=
(n1 + n2)!

|Tσ1◦σ2 | |Tσ3 |
δ (Tσ1◦σ2Tσ3Ω)

(4.3.16)

so that 〈
Oσ1(Z)Oσ2(Z)O†σ3

(Z)
〉

= (n1 + n2)! (Oσ1◦σ2(Z)) ∗ Oσ3(Z)
∣∣∣
Z=1N

(4.3.17)

Given that these correlators are neatly expressed in terms of the star product, it would be

interesting to give an interpretation of the latter in the dual AdS5 × S5 side.

We will now write similar equations for the two matrix problem.
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4.3.2 Two matrix problem

For the two matrix problem, the GIOs are polynomials in the X,Y matrices. Formally, we can

write them in terms of a permutation σ ∈ Sm+n as

Oσ(X,Y ) = Tr
(
X⊗m ⊗ Y ⊗n σ

)
(4.3.18)

As in the one matrix problem, there is an equivalence relation

Oσ(X,Y ) = Oγσγ−1(X,Y ) , γ ∈ Sm × Sn (4.3.19)

To each of these GIO Oσ we can associate a specific element Nσ of A(m,n) that we call a

necklace. We define a necklace Nσ as

Nσ =
1

|AutSm×Sn(σ)|
∑

γ∈Sm×Sn

γσγ−1 (4.3.20)

or equivalently as

Nσ =
∑

τ∈Orbit(σ, Sm×Sn)

τ (4.3.21)

where the sum is restricted to the permutations τ in the group orbit of σ under Sm × Sn. We

can think of the necklaces as the normalised version of the σ̄ elements defined in (4.2.3). The

set of necklaces form a basis for A(m,n). We associate a GIO to a necklace simply by mapping

Oσ(X,Y )→ 1

|Nσ|
Nσ (4.3.22)

For example, for the GIO corresponding to the permutation σ̃ = (1, 2, 4, 5)(3, 6) ∈ S6:

Oσ̃(X,Y ) = Tr(X2Y 2)Tr(XY ) (4.3.23)

we associate, through the map (4.3.22), the A(3, 3) element

Nσ̃ =
∑
S3×S3

γσ̃γ−1 =
∑

a1 6=a2 6=a3∈{1,2,3}
b̄1 6=b̄2 6=b̄3∈{4,5,6}

(a1, a2, b̄1, b̄2)(a3, b̄3) (4.3.24)

Similarly, for the GIO specified by σ̃ = (1, 2, 3) ∈ S6

Oσ̃(X,Y ) = Tr(X2Y )Tr(Y )3 (4.3.25)

we associate the A(2, 4) necklace

Nσ̃ =
∑

a1 6=a2∈{1,2}
b̄1∈{3,4,5,6}

(a1, a2, b̄1) (4.3.26)
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Notice that in the necklaces we do not explicitly write the single cycle permutations, but rather

we leave them implicit. In the last example, these single cycle permutations would account for

the multi-trace Tr(Y )3 component of Oσ̃ = Tr(X2Y )Tr(Y )3.

From these examples it is clear how these necklaces are built by taking products of cyclic

objects, which in turn are constructed using two different types of beads. Such cyclic objects are

well studied in Polya theory. They can be related to the single cycle permutations in Sm+n with

equivalences generated by Sm×Sn. These equivalence classes form the algebra A(m,n). We can

imagine having blue beads corresponding to integers [1, 2, ..m] and red beads corresponding to

integers [m+ 1,m+ 2, ...,m+n]. Therefore, we can pictorially depict the necklaces of examples

(4.3.24) and (4.3.26) as in figure 41. The same structure is present in the GIO Oσ corresponding

to the necklace Nσ. In this case the single-traces are the cyclic objects, and the role of the blue

and red beads is played by the X and Y type fields respectively.

Figure 41: Pictorial interpretations of the necklaces in the examples (4.3.24) and (4.3.26).

The map (4.3.22) is 1-1 at large N : as in the 1-matrix problem, we now focus on this

case. There is a natural product on the space of two matrix GIOs coming from multiplying the

multi-traces. For such a product, the degrees of the permutations add:

Oσ1(X,Y )Oσ2(X,Y ) = Oσ1◦σ2(X,Y ) (4.3.27)

Here σ1 ∈ Sm1+n1 is a representative of a class in A(m1, n1) and σ2 ∈ Sm2+n2 represents a

class in A(m2, n2), while σ1 ◦ σ2 ∈ Sm1+n1 × Sm2+n2 ⊂ Sm1+m2+n1+n2 represents a class in

A(m1 +m2, n1 + n2). Continuing the analogy with (4.3.4), we can define

A(∞,∞) =
⊕
m,n

A(m,n) (4.3.28)

and for σ̄1 ∈ A(m1, n1) and σ̄2 ∈ A(m2, n2) we have

◦ : A(∞,∞)⊗A(∞,∞)→ A(∞,∞) (4.3.29)

As in the one matrix case, there is however a second type of product of GIOs that we can
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construct. The product on A(m,n) can in fact be used to define a closed and associative star

product on the space of the multi-trace operators with fixed numbers (m,n) of (X,Y ), in the

same fashion as (4.3.6):

Oσ̄1(X,Y ) ∗ Oσ̄2(X,Y ) = Oσ̄1σ̄2(X,Y ) , σ̄1,2 ∈ A(m,n) (4.3.30)

Notice that here σ̄1, σ̄2 and σ̄1σ̄2 are all of the same degree, and that the star product is non-

commutative. We will use this star product to express the two point function of GIOs built from

X, Y .

Since the set of necklaces {Na} forms a basis for A(m,n), we can expand the product NaNb

as

NaNb = Cca,bNc (4.3.31)

for some structure constants Cca,b. Moreover, the necklaces are orthogonal in the metric (4.2.4):

〈Na, Nb〉 = δ(NaNb) = δa,b|Nb| (4.3.32)

Here |Na| is the number of permutations in the necklace Na. We can write

δ(NaNbNc) = |Nc|Cca,b (4.3.33)

Now use the map (4.3.22) to map the two matrix invariants Oa(X,Y ) and Ob(X,Y ) to the

necklaces Na and Nb respectively. Then

Oa(X,Y ) ∗ Ob(X,Y ) =
∑
c

Cca,b
|Nc|
|Na| |Nb|

Oc(X,Y ) =
∑
c

1

|Na| |Nb|
δ(NaNbNc)Oc(X,Y )

(4.3.34)

As for the one matrix problem case, by setting X = Y = 1N we get

Oa(X,Y ) ∗ Ob(X,Y )
∣∣∣
X=Y=1N

=
1

|Na| |Nb|
δ(NaNbΩ) (4.3.35)

where Ω =
∑

σ∈Sm+n
σNCσ . On the other hand the free field correlator [18,30] is

〈
Oa(X,Y )O†b(X,Y )

〉
=

∑
γ∈Sm×Sn

δ(γaγ−1b−1 Ω) =
1

|Na| |Nb|
∑

γ∈Sm×Sn

δ(γNaγ
−1Nb Ω)

=
m!n!

|Na| |Nb|
δ(NaNb Ω) (4.3.36)

Therefore, in analogy with (4.3.14) and (4.3.17), we can write the two point function as〈
Oa(X,Y )O†b(X,Y )

〉
= m!n! Oa(X,Y ) ∗ Ob(X,Y )

∣∣∣
X=Y=1N

(4.3.37)
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and the extremal three point function as〈
Oa(X,Y )Ob(X,Y )O†c(X,Y )

〉
= (m1 +m2)!(n1 + n2)! Oa◦b(X,Y ) ∗ Oc(X,Y )

∣∣∣
X=Y=1N

(4.3.38)

where a ∈ Sm1+n1 , b ∈ Sm2+n2 and c ∈ Sm1+n1+m2+n2 . Finally, notice that the pairing (4.2.4) is

proportional to the planar correlator [89–91] of BPS operators: given Oa(X,Y ) and Ob(X,Y ),

we have 〈
Oa(X,Y )O†b(X,Y )

〉
planar

= m!n! 〈a, b〉 (4.3.39)

where the pairing on the RHS is the one in eq. (4.2.4).

Let us now focus on the centre of A(m,n). In section 4.2 we argued that the centre is

generated by {T (m+n)
p , T

(m)
q1 , T

(n)
q2 }. We remind the reader that {T (m+n)

p }, {T (m)
q1 } and {T (n)

q2 }
are the generators of the centres of C[Sm+n], C[Sm] and C[Sn] respectively, and that p, q1 and

q2 are integer partitions of m + n, m and n. A GIO O
T

(m+n)
p

(X,Y ) can be understood as a

descendant of a single matrix 1/2 BPS state O
T

(m+n)
p

(X) under the U(2) internal symmetry

that mixes the X and Y fields. In fact, given (D−)ij = Y i
k

∂

∂Xj
k

: we can write

O
T

(m+n)
p

(X,Y ) ∼ (D−)nO
T

(m+n)
p

(X) (4.3.40)

This means that central elements (and their corresponding matrix gauge invariants), described in

terms of the over-complete basis {T (m,n)
p T

(m)
q1 T

(n)
q2 }, are formed from composites which employ

both the usual product and the star product :

[Descendant Operators] ∗ {(X-Operators ) (Y -Operators )} (4.3.41)

The descendant GIOs are associated to T
(m+n)
p elements, X- and Y - GIOs to T

(m)
q1 and T

(n)
q2

elements respectively. In terms of the permutations we are taking the product in A(m,n) along

with the circle product ◦ : A(m, 0)⊗A(0, n)→ A(m,n).

Single-trace symmetrised traces are U(2) descendants of single-trace operators built from a

single matrix. In terms of the permutation language, they correspond to single-cycle permu-

tations which are invariant under any reshuffling6. On the other hand, U(2) descendants of

multi-trace operators built from one matrix form a subspace of the space spanned by products

of symmetrised single-trace states. In other words, not all products of single-trace descendants

are themselves descendants. One way to see this explicitly is the following. Let STm,n be the

space of symmetrised traces with m copies of X and n copies of Y matrices. The generating

6Further details of symmetrised traces in terms of an operation on the permutations in the Oσ(X,Y ) can be
found in [91].
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function for the dimension Dim(STm,n) is

∏
i,j∈Ω

1

1− xiyj
=
∑
m,n

Dim(STm,n)xmyn (4.3.42)

where Ω = {0 ≤ i ≤ ∞} ∪ {0 ≤ j ≤ ∞} \ {i = j = 0}. Let STm+n be the space of symmetrised

traces with a total of m+ n matrices, with any number of X or Y . We have

Dim(STm+n) =

m+n∑
i=0

Dim(STi,m+n−i) (4.3.43)

On the other hand, the total number of U(2) descendants obtained from a multi-trace operator

with m+ n copies of X is

(m+ n+ 1) p(m+ n) (4.3.44)

p(m + n) is the number of partitions of m + n (the number of highest weight states), while

m+ n+ 1 is the number of descendants for a fixed highest weight. It can now be checked that

Dim(STm+n) > p(m+ n)(m+ n+ 1). This indeed proves our original claim.

4.3.3 Cartan subalgebra and the minimal set of charges

In [54], it was observed that, in the free limit, multi-matrix gauge theories have enhanced

symmetries including products of unitary groups. There are Noether charges for these enhanced

symmetries. Casimirs constructed from these charges have eigenvalues which can distinguish

all the labels R,R1, R2, i, j of restricted Schur operators. Because of Schur-Weyl duality, these

charges are also expressible in terms of permutations. Given the definitions in this chapter, this

action of permutations amounts to the action of A(m,n) on itself by the left or right regular

representation. We can now characterize more precisely what is a minimal set of charges which

can measure all the labels. In section 4.2.2 we introduced the Cartan subalgebra M(m,n), and

gave a prescription to build a basis for it. We need to find a subspace Cm,n of M(m,n) such

that polynomials in some basis elements ca ∈ Cm,n with coefficients taking values in the centre

Z(m,n) span M(m,n). In other words Cm,n contains a minimal set of generators for M(m,n)

as a polynomial algebra over Z(m,n). A minimal set of generators for Z(m,n), along with the

basis elements of the subspace Cm,n, provide a complete set of charges, which can measure all

the labels of the QRR1,R2,i,j
by left and right multiplication. Let Nmin(Z(m,n)) be the minimal

number of elements of Z(m,n) which generate Z(m,n) as a polynomial algebra. Also, let

Nmin
Z(m,n)(M(m,n)) be the minimal number of elements of M(m,n) which generate M(m,n)

as a polynomial algebra over Z(m,n). Left multiplication by these generators correspond to

enhanced symmetry charges which measure the multiplicity index i of restricted Schur operators.

Right multiplication by the same generators correspond to other enhanced symmetry charges

which measure the multiplicity index j of restricted Schur operators. Hence the minimal number
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of charges is

Nmin(Z(m,n)) + 2Nmin
Z(m,n)(M(m,n)) (4.3.45)

An important open problem is to determine this function of (m,n) in general. This will tell us

how many bits of information completely specify all the operators in a multi-matrix set-up.

The above discussion is complete for the case where m + n < N , which is adequate for

a treatment of the physics at all orders in the 1/N expansion. For finite N effects, where

we consider m + n > N , the charges given by the above still determine all the multi-matrix

invariants, but they are not a minimal set any more. The discussion can be easily adapted to

this case. Define

AnullN (m,n) =
⊕

R`m+n:c1(R)>N

⊕
R1`m,R2`n

Span{QRR1,R2,i,j ; i, j} (4.3.46)

The quotient

AN (m,n) = A(m,n)/AnullN (m,n) (4.3.47)

is a closed sub-algebra of blocks surviving the finite N cut. It has a centre ZN (m,n) and a

Cartan MN (m,n) which are simply related to Z(m,n) and M(m,n) by quotienting out the

parts belonging to AnullN (m,n). Let Nmin(ZN (m,n)) be the number of generators in a minimal

generating set for ZN (m,n) as a polynomial algebra. Let Nmin
ZN (m,n)(MN (m,n)) be the number

of generators in a minimal generating set forMN (m,n) as a polynomial algebra over ZN (m,n).

The minimal number of charges needed is

Nmin(ZN (m,n)) + 2Nmin
ZN (m,n)(MN (m,n)) (4.3.48)

We expect (4.3.45),(4.3.48) will have implications for information theoretic discussions of AdS/CFT

such as [92,93].

4.4 Computation of the finite N correlator

In this section we will derive a finite N generating function for the two point function of operators

of the form

O = Tr(XmY n) (4.4.1)

in the free field metric. Operators like the one in (4.4.1) correspond to A(m,n) elements

1

m!n!
T1̄,1T

(X)
[m] T

(Y )
[n] (4.4.2)
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where T1̄,1 = T
(X,Y )
2 − T (X)

2 − T (Y )
2 . Here T

(X,Y )
2 , T

(X)
2 and T

(Y )
2 are the sum of transpositions

in Sm+n, Sm and Sn respectively. T1̄,1 can be understood as a joining operator, merging the

(1 · · ·m) type cycles with the (m+ 1 · · ·m+ n) type cycles.

The two point function (4.3.36) therefore reads, with O = Tr(XmY n)

〈OO†〉 =
1

m!2n!2

∑
γ∈Sm×Sn

∑
σ∈Sm+n

δ
(
γ T1̄,1T

(X)
[m] T

(Y )
[n] γ−1 T1̄,1T

(X)
[m] T

(Y )
[n] σ

)
NCσ

=
1

m!n!
δ
(
T1̄,1T

(X)
[m] T

(Y )
[n] T1̄,1T

(X)
[m] T

(Y )
[n] Ω

)
(4.4.3)

where we set Ω =
∑

σ∈Sm+n
σNCσ . This quantity can be computed using only ordinary character

theory. Using eq. (4.2.42) and using the shorthand notation g = g(R1, R2;R) we write

〈OO†〉 =
1

(m+ n)!m!n!

∑
R1`m
R2`n

∑
R`m+n

dR
d2
R1
d2
R2
g2

(
χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

))2
χRR1,R2

(Ω) (4.4.4)

We now expand T1̄,1 = T
(X,Y )
2 − T (X)

2 − T (Y )
2 so that

T1̄,1T
(X)
[m] T

(Y )
[n] = T

(X,Y )
2 T

(X)
[m] T

(Y )
[n] − T

(X)
2 T

(X)
[m] T

(Y )
[n] − T

(X)
[m] T

(Y )
2 T

(Y )
[n] (4.4.5)

We also have (see e.g. [26])

χRR1,R2
(Ω) = χRR1,R2

 ∑
σ∈Sm+n

σNCσ

 =
g dR1dR2

dR
(n+m)! DimN (R) (4.4.6)

Eq. (4.4.4) simplifies then to

〈OO†〉 =
1

m!n!

∑
R1`m
R2`n

∑
R`m+n

1

dR1 dR2 g
DimN (R)

(
χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

))2
(4.4.7)

On the other hand, as shown in Appendix C.3

χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

)
=

=

 (−1)cR1
+cR2 g (m− 1)!(n− 1)!

[
χR(T

(X,Y )
2 )
dR

− χR1
(T

(X)
2 )

dR1
− χR2

(T
(Y )
2 )

dR2

]
; R1, R2 hooks

0 otherwise

Here cRi is the number of boxes in the first column of the Young diagram associated with the

representation Ri. This expression restricts the sums over representations R1 ` m, R2 ` n in

(4.4.7) to a sum over hook representations h1 ` m, h2 ` n.

We now need an equation for g(h1, h2;R), with h1 and h2 hook representations of Sm and

Sn respectively. We specify any representation R by the sequence of pairs of integers R =
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((a1, b1), (a2, b2), ...(ad, bd)). In a Young diagram interpretation, aj (1 ≤ j ≤ d) is the number

of boxes to the right of the j-th diagonal box, and bj is the number of boxes below the j-th

diagonal box. We refer to d as the ‘depth’ of the representation R. Let us write h1 = (k1, l1),

h2 = (k2, l2) and R = ((a1, b1), (a2, b2)). In Appendix C.2 we show that

g(h1, h2;R) = δk1+k2,a1 δl1+l2+1,b1 δ−1,a2 δ0,b2 + δk1+k2+1,a1 δl1+l2,b1 δ0,a2 δ−1,b2

+
1∑

ε1,ε2=0

min(k1−ε̄1ε̄2,k2−ε1ε2)∑
i=ε1ε̄2

min(l1−ε̄1ε̄2,l2−ε1ε2)∑
j=ε̄1ε2

δk1+k2−i+ε̄1ε2,a1 δl1+l2−j+ε1ε̄2,b1 δi−ε1ε̄2,a2 δj−ε̄1ε2,b2

(4.4.8)

where ε̄1,2 = 1− ε1,2. Using this identity, in Appendix C.3 we derive the formula

〈Tr(XmY n)Tr(XmY n)†〉 (4.4.9)

=

m∑
k1,l1=0

n∑
k2,l2=0

n+m∑
a1,b1=0
a2,b2=0

g δ(k1 + l1 + 1−m) δ(k2 + l2 + 1− n) F (a1, b1, a2, b2, k1, l1, k2, l2)

where we defined the function

F (a1, b1, a2, b2, k1, l1, k2, l2) =
k1!k2!l1!l2! (a1 − a2)(b1 − b2)

4(a1 + b2 + 1)(a2 + b1 + 1)(k1 + l1 + 1)(k2 + l2 + 1)

×
(
a1 + b1
b1

)(
a2 + b2
b2

)(
N + a1

a1 + b1 + 1

)(
N + a2

a2 + b2 + 1

)
×

× ((a1 + b1 + 1)(a1 − b1) + (a2 + b2 + 1)(a2 − b2)+

− (k1 + l1 + 1)(k1 − l1)− (k2 + l2 + 1)(k2 − l2))2 (4.4.10)

In [86] a closed form for the two point function has been given by using a different approach

based on Young-Yamanouchi symbols. We have checked agreement of (4.4.9) with that closed

form for up to n = m = 10. It is an interesting exercise to simplify (4.4.9) into the closed form

obtained in [86]. It will also be interesting to apply the present framework to obtain formulae

analogous to (4.4.9) for more general GIOs corresponding to central elements of A(m,n).

In this section we have shown how to calculate a particular two point function of a central

operator, without explicitly constructing projectors. The result rather follows from knowing

how central operators of interest are generated via the star product of pure X gauge invariants,

pure Y gauge invariants and descendants of half-BPS operators.

The correlator computations above can be expressed in terms of ribbon graphs, equivalently

the usual double-line graphs of large N expansions, but with edges coming in two colors, as

explained for example in [15]. The graphs can be organised by the minimum genus of the

surface they can be embedded in and these graphs of a given genus contribute to a fixed power
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of N . For small m,n, we have checked with GAP that directly computing the permutation sums

for a given genus agree with the analytic result (4.4.9) we have derived.

4.5 Numerical checks, possible applications and other examples

4.5.1 Structure of the centre

A number of questions about A(n), A(m,n) and the centre A(m,n) can be explored experi-

mentally, with the help of group theory software, notably GAP. In particular, since Z(m,n) is

generated by the centre of Sm, the centre of Sn and that of Sn+m it is a useful first step to know

about these centres.

Since Sn is generated by transpositions, one might naively expect that the sum of permu-

tations T2 will generate A(n). This is actually not true. We know that T2 obeys a relation of

degree p(n)

∏
R`n

(
T2 −

χR(T2)

dR

)
= 0 (4.5.1)

If this is the only relation, then we know that T2 alone generates Z[C[Sn]]. However simpler

relations occur when there are coincidences in the normalized characters, e.g. two different irreps

have the same normalized character. In fact the the failure of T2 to generate centre is always

correctly predicted by the degeneracies of the normalized characters. If we take

∏
R

′
(
T2 −

χR(T2)

dR

)
= 0 (4.5.2)

where the product is taken over a maximal set of irreps with distinct normalized characters,

we are getting an element in C[Sn] which vanishes in all irreps. It is a central element, so

the matrix elements in any irrep are proportional to the identity. We conclude that the above

element vanishes. Given that the Peter-Weyl theorem gives an isomorphism between C[Sn] and

matrix elements of irreps, it follows that something which has vanishing matrix elements in all

irreps should be identically zero.

Even for large n, it is possible to check that the centre of C[Sn] is generated by a small

number of Tp’s. Using GAP we tested that T[2,1n−2] and T[3,1n−3] are enough to generate the

centre for C[Sn] up to n = 14. The procedure we used to perform these checks is the following.

We know that the set of projectors {PR}, with R integer partition of n, generate the centre of

Sn. We can compute the overlap of PR with the k-th power of Tp, that we simply write as T kp :

〈
T kp , PR

〉
= δ(T ap PR) =

1

n!

∑
S`n

χS(T kp )χS(PR) =
1

n!

∑
S`n

dS

(
χS(Tp)

dS

)k
χS(PR)

= dR

(
χR(Tp)

dR

)k
(4.5.3)
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Similarly, we can derive

〈
T kp T

l
q, PR

〉
= dR

(
χR(Tp)

dR

)k (χR(Tq)

dR

)l
(4.5.4)

Now we construct the AB × p(n) matrix M(A,B), whose matrix elements are the overlaps

(4.5.4):

M(A,B)|(k,l),R = dR

(
χR(Tp)

dR

)k (χR(Tq)

dR

)l
(4.5.5)

with 0 ≤ k < A and 0 ≤ l < B. By computing the rank of this matrix we obtain the number of

independent central elements in C[Sn] that are obtained by taking at most A− 1 powers of Tp

and B − 1 powers of Tq. This method can be easily generalised to obtain the number of central

elements generated by the string of operators T k1
p1
T k2
p2
· · ·T kNpN .

These studies on the centre of C[Sn] inspire a similar analysis for centre of A(m,n). The task

is to find a minimal set of generators for Z(m,n) as a polynomial algebra. The importance of this

problem is discussed in section 4.3.3. Concretely, we would like to determine Nmin(Z(m,n)).

There are many approaches one can take in this case, which would be interesting to investigate

in the future. For example, using GAP we checked that low powers of the sum of two- and

three-cycles permutations, T
(m+n)
2 and T

(m+n)
3 , together with the generators of the centres of

C[Sm] and C[Sn], generate the whole centre Z(m,n). We leave a more systematic discussion of

this problem for future work.

4.5.2 Construction of quarter-BPS operators beyond zero coupling and the

structure constants of A(m,n).

The centre of C[Sm+n] is denoted by Z[C[Sm+n]]. Z[C[Sm+n]] is a commutative sub-algebra of

A(m,n). The A(m,n) algebra is a module over Z[C[Sm+n]]. We can write

TpNi = C̃kpjNk (4.5.6)

for some coefficients C̃. The Tp are themselves linear combinations of necklaces:

Tp = T ipNi (4.5.7)

Hence

TpNi = T jpNjNi = T jpC
l
jkNl (4.5.8)

Another subspace in A(m,n) is the subspace of symmetrised traces. A symmetrised trace

Sv can be parametrised by a vector partition v of (m,n). We can expand Sv on the basis of
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necklaces {Nk} as

Sv = SkvNk (4.5.9)

Symmetrised traces and their products are quarter-BPS at weak coupling in the large N limit.

One can get the complete set of 1/N corrected BPS states at large N by acting on Sv with

Ω−1 which belongs to Z[C[Sm+n]] ⊗ C(1/N) [26, 28, 29, 90]. The coefficients of Tp are easily

computable. The expansion of Tp in terms of necklaces is also easily computable. The non-

trivial part of the calculation is the Ckij of the necklace algebra A(m,n). For any symmetrised

trace Sv, the corrected operator is

Ω−1
k Sv = Ω−1

p TpS
j
vNj = Ω−1

p SjvC̃
k
pjNk = Ω−1

p SjvT
l
pC

k
ljNk (4.5.10)

Central quarter BPS sector

A subspace of symmetrised trace elements is central. The symmetrised trace elements give

a subspace of A(m,n) and the central elements form another subspace. The intersection is

the space of central symmetrised traces. The dimension of this subspace can be computed for

small m,n using GAP. Suppose SC is an element in this subspace. Then elements Ω−1SC in

A(m,n) are very interesting. They are quarter-BPS beyond zero coupling and they are central,

so computations of their correlators have the simplicity of the centre. The computations can be

done using knowledge of the characters of Sm, Sn, Sm+n, without knowing branching coefficients.

From AdS/CFT this central quarter BPS sector should have a dual in the space-time theory, e.g.

some sub-class of states in the tensor product of super-graviton states. An interesting question

is to compute their correlators in space-time and verify the matching with the gauge theory

computations.

4.5.3 Non-commutative geometry and topological field theory

Studies in non-commutative geometry in string theory suggest that open strings can be associ-

ated to non-commutative algebras and the centre is related to closed strings [94]. If we apply

this thinking to A(m,n) and Z(m,n), how do we interpret these emergent open and closed

strings? The traditional view is that Yang-Mills theory is the open-string picture in AdS/CFT

with the closed string picture given by the AdS description, so this is an intriguing question.

Non-commutative algebras and their centre have also been discussed in non-commutative geom-

etry in [95]. The study of the pair {A(m,n),Z(m,n)} should form an interesting example of

this discussion. Additionally we have the Cartan M(m,n) here, with physical relevance in dis-

tinguishing the multiplicity labels. So a more complete picture of strings and non-commutative

geometry for the triple {A(m,n),M(m,n),Z(m,n)} looks desirable. Given that the infinite

direct sum A(∞,∞) comes up in connection with matrix invariants, it would also be interesting

to study the triple {A(∞,∞),M(∞,∞),Z(∞,∞)} from this point of view. Some relevant work

in this direction is in [41] (see also [96]).
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4.5.4 Other examples of permutation centralizer algebras and correlators

Based on our study of A(m,n), we outline some properties of the other examples of permutation

centralizer algebras given in section 4.1 and sketch the connection to correlators. We leave a

more detailed development for the future.

Consider BN (m,n), which is the subspace of the Brauer algebra BN (m,n) invariant under

C[Sm × Sn]. This is Example 3 in Section 4.1. Brauer algebras were used to construct gauge

invariant operators in [27] from tensor products of a complex matrix and its conjugate. For an

element b in the walled Brauer algebra BN (m,n), we use

trm,n
(
Z⊗m ⊗ Z̄⊗nb

)
(4.5.11)

where the trace is taken in V ⊗m⊗ V̄ ⊗n, a tensor product of fundamentals and anti-fundamentals

of U(N). We focus here on the case m+ n ≤ N . The number of gauge invariant operators is∑
γ,α,β

(Mγ
α,β)2 (4.5.12)

where γ labels an irrep of BN (m,n), while α, β are irreps of Sm and Sn respectively. Mγ
α,β is a

multiplicity with which (α, β) appears in the reduction of γ from BN (m,n) to its C[Sm×Sn] sub-

algebra. The sum of squared dimensions in (4.5.12) is the dimension of the algebra BN (m,n).

This is a non-commutative algebra. The dimension of its centre is the number of triples (γ, α, β)

for which Mγ
α,β is non-vanishing. There is a maximally commuting sub-algebra of dimension

equal to the sum ∑
γ,α,β

Mγ
α,β (4.5.13)

This follows since the (γ, α, β) give a Wedderburn-Artin decomposition of BN (m,n). A tractable

sector of correlators should be given by the centre of BN (m,n) and more detailed study of the

structure of this centre will be useful.

The next algebra of interest is the sub-algebra K(n) of C[Sn]×C[Sn] which is invariant under

conjugation by Diag(C[Sn]). Let us denote this as Adiag(n, n). We can generate elements in

this algebra by summing over the elements of the sub-group

σ1 ⊗ σ2 →
∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1 (4.5.14)

The dimension of this algebra is ∑
R,S,T

C(R,S, T )2 (4.5.15)

where C(R,S, T ) is the Kronecker coefficient, i.e. the number of times the irrep T of Sn appears

in the tensor product R⊗ S. The dimension of the centre is the number of triples (R,S, T ) for
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which the C(R,S, T ) is non-zero. A maximal commuting sub-algebra has dimension∑
R,S,T

C(R,S, T ) (4.5.16)

These properties follow from the fact the Wedderburn-Artin decomposition of the algebra K(n)

has blocks labelled by triples (R,S, T ) with non-vanishing C(R,S, T ). An explicit formula for

this decomposition is

QR,S,Tτ1,τ2 =
∑
σ1,σ2

∑
i1,i2,i3,j1,j2

SR,S,T,τ1i1,i2,i3
SR,S,T,τ2j1,j2,i3

DR
i1j1(σ1)DS

i2j2(σ2) σ1 ⊗ σ2 (4.5.17)

The D’s are representation matrices for Sn irreps. The S’s are Clebsch-Gordan coefficients. One

verifies, using equivariance properties of the Clebsch’s that these are invariant under conjugation

by the diagonal Sn.

There is another definition of K(n) which is more symmetric in (R,S, T ). C(R,S, T ) is also

the multiplicity of invariants of the diagonal Sn acting on R⊗S⊗T . K(n) can be defined as the

subalgebra of C[Sn] ⊗ C[Sn] ⊗ C[Sn] which is invariant under left action by the diagonal C[Sn]

and right action by the diagonal C[Sn]. These invariant elements can again be constructed by

averaging ∑
γ1,γ2

(γ1σ1γ2, γ1σ2γ2, γ1σ3γ2) (4.5.18)

A representation basis is given by

σ1 ⊗ σ2 ⊗ σ3D
R
i1,j1(σ1)DS

i2,j2(σ2)DT
i3,j3(σ3)SR,S,T,τ1i1,i2,i3

SR,S,T,τ2j1,j2,j3
(4.5.19)

labelled by R,S, T, τ1, τ2.

These triples of permutations (σ1, σ2, σ3), with equivalences given by left and right diagonal

action have appeared in the enumeration invariants for tensor models built from 3-index tensors

[97]. The simplification from a description in terms of permutation triples to one in terms of

permutation pairs was also described there, which lead to a connection between 3-index tensor

invariants and Belyi maps. By analogy with the discussion in this thesis, we expect that the

centre of K(n) will lead to a class of simpler correlators in tensor models. The discussion of

A(∞,∞) will analogously lead to

K(∞) =

∞⊕
n=0

K(n) (4.5.20)

This space will have two products: one related to the algebra structure of K(n) and one related to

the multiplication of tensor invariants. Somewhat related algebraic structures appear in [98] and

it would be useful to better understand these relations. As a last remark, consider the Kronecker

multiplicities C(R,R, T ), i.e. in the special case where R = S. These have also appeared in the
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construction of gauge-invariant multi-matrix operators in a basis which is covariant under the

global symmetries [28,29]. The structure of K(n) can thus also be expected to have implications

for multi-matrix correlators in the covariant basis.
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Chapter 5

Conclusions and Outlook

In this thesis we considered free quiver gauge theories with gauge group
∏n
a=1 U(Na) and flavour

group
∏n
a=1 U(Fa)× U(F̄a).

In Chapter 2, based on [1], we focused on the problem of counting of local holomorphic

operators in flavoured quiver gauge theories. We used Schur-Weyl duality relating the repre-

sentation theory of unitary groups to permutation groups in order to convert integrals over

the gauge unitary groups for the counting into permutation sums. The sums involved multiple

permutations with constraints. These constraints were expressed by introducing contour inte-

grals. This lead to an analogous infinite product formula for these flavoured quivers (2.1.8). For

any quiver with n gauge nodes, all the factors in the infinite product are obtained by substitu-

tions in one function F [n]({xab}, {ta}, {t̄a}), with a, b ranging over the n nodes. The building

block F [n]({xab}, {ta}, {t̄a}) was found to be closely related to F
[n]
0 ({xab}). The determinant

and cofactors of the matrix (1n −Xn) played a prominent role in these formulae. We also ob-

tained results for the counting of local operators at finite N in terms of Young diagrams and

Littlewood-Richardson coefficients.

The flavoured counting at large N is determined by F [n], which is closely related to F
[n]
0 ,

which in turn we have related to word counting problems associated to the complete n-node

quiver. One formulation of the word counting problem was in terms of words made from letters

corresponding to simple closed loops on the quiver. The letters do not commute if they share a

node, otherwise they commute. In another formulation, the letters correspond to edges of the

quiver. Distinct letters do not commute if they share a starting point. These open string bits

form words, a subset of which obey a charge conservation condition. A non-trivial combinatoric

equivalence between the open string and closed string counting problems is given by the Cartier-

Foata theorem. We have come across these string-word-counting problems in connection with

the counting formula for gauge invariants. It is natural to ask if such words, and their monoidal

structure, are relevant beyond the counting of gauge theory invariants. One often finds that

mathematical structures relevant to counting a class of objects are also relevant in the under-

standing of the interactions of such objects (see e.g. [35, 74] for a concrete application of this

idea). Do the string-words found here play a role in interactions, namely in the computation

of correlators of gauge-invariant operators in the free field limit and at weak coupling? Since
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the work of Cartier-Foata has subsequently been related to statistical physics models [72, 99],

this underlying mathematical structure could reveal new connections between four dimensional

gauge theory and statistical physics.

In the context of AdS/CFT, comparisons between the counting of a class of local gauge-

invariant operators and the spectrum of brane fluctuations was initiated in [49–51]. These

papers considered the simplest quiver gauge theory, namely N = 4 SYM, and the additional

fundamental matter corresponds to the addition of 7-branes in the dual AdS5×S5 background.

The results presented in Chapter 2 of this thesis should be useful for generalizations of these

results, such as increasing the number of 7-branes, and more substantially, going beyond the

N = 4 SYM as starting point to more general quiver theories. The finite N aspects of counting,

where operators are labelled by Young diagrams, should be related to giant gravitons. This will

require the investigation of 3-brane giant gravitons in AdS5 × S5, in the presence of the probe

7-branes. Some discussion of such configurations is initiated in the conclusions of [100]. Such

detailed comparisons for the general class of flavoured quiver theories we considered here would

undoubtedly deepen our understanding of AdS/CFT.

In the absence of a superpotential, holomorphic GIOs form the space of chiral operators in

the theory. When we turn on a superpotential, equivalence classes related by setting to zero the

derivatives of the super-potential, form the chiral ring [101,102]. This jump in the spectrum of

chiral primaries has been discussed in the context of AdS/CFT in [103]. An important future

direction is to understand this jump in quantitative detail. We have found that the quiver

diagram defining a theory contains powerful information on the counting of operators in the

theory, and the weighted adjacency matrix played a key role in giving a general form for the

generating functions at large N . It would be interesting to look for analogous general formulae,

involving the weighted adjacency matrix, along with the superpotential data, for the case of

chiral rings at non-zero superpotential. In a similar vein we may ask if indices in superconformal

theories, for general quivers, can be expressed in terms of the weighted adjacency matrix. It will

be interesting to investigate this theme in existing examples of index computations for quivers

(e.g. [104–106]). Beyond counting questions, the transition to non-zero superpotential poses the

question of the exact form of BPS operators. In cases where the 1-loop dilatation operator is

known, such as N = 4 SYM, we can find the BPS operators by solving for the null eigenstates

among the holomorphic operators. Partial results at large N as well as finite N , building on

the knowledge of free field bases of operators, are available in [28, 29, 35, 55, 74, 90, 91, 107]. A

similar treatment should be possible for orbifolds of N = 4. The counting of chiral operators

with and without superpotential is of interest in studying the Hilbert series of moduli spaces

arising from super-symmetric gauge-theories [78, 108, 109]. These moduli spaces often have an

interpretation in terms of branes. Quiver gauge theories, with and without fundamental matter,

have been studied in this context. The formulae obtained here, for finite N as well as large N ,

will be expected to have applications in the study of these moduli spaces. Another potential

application of the present counting techniques is in the thermodynamics of AdS/CFT or toy

models thereof, e.g. [110].
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For quiver gauge theories with bi-fundamental matter (no fundamental matter), the counting

and correlators of gauge invariant operators can be expressed in terms of defect observables in two

dimensional topological field theories (TFT2). These theories are based on lattice gauge theory

where permutation groups play the role of gauge groups [26]. The relevant two dimensional

surfaces were obtained by a process of thickening the quiver. This leads us to expect that the

counting and correlators for the present case can be expressed in terms of defect observables in

TFT2 on Riemann surfaces with boundary. It will be very interesting to elaborate on this in

the future. Another interesting future direction is the relation of gauge invariant correlators to

the counting of branched covers. This has been discussed for the case of a single gauge group

and one or more adjoint fields [90, 111–115]. The equation (3.3.12) giving the formula for the

2-point function in the permutation basis would be a good starting point. By tracing the flavour

indices, we expect to see that powers of the flavour rank are related to the counting of covering

surfaces with boundaries (see for example [116]).

In Chapter 3, based on [3], we found that the basis of Quiver Restricted Schur polynomials

(3.2.19) diagonalises the two point function (3.3.1). Relying on diagrammatic methods, we

also provided an analytical finite N expression for the three point function of holomorphic

matrix invariants. The relevant diagram is shown in Fig. 34. An interesting future direction

is the relation of gauge invariant correlators to the counting of branched covers. This has been

discussed for the case of a single gauge group and one or more adjoint fields [90, 111–115]. The

equation (3.3.12) giving the formula for the 2-point function in the permutation basis would be

a good starting point. By tracing the flavour indices, we expect to see that powers of the flavour

rank are related to the counting of covering surfaces with boundaries (see for example [116]).

Another interesting line of research would be to study the action of the one-loop dilatation

operator on the basis of matrix invariants (3.2.19) for flavoured theories, possibly in some simple

subsector. The action of the one-loop dilatation operator on the Schur basis for N = 4 SYM

has already been studied [35, 117]. For example, in the giant graviton sector of N = 4 SYM,

the explicit action of the one-loop dilatation operator corresponds to moving a single box in the

Young diagram that parametrises the giant graviton. It is an open problem to find analogous

results in flavoured theories: an interesting starting point would be N = 2 SQCD with gauge

group SU(N) and flavour symmetry SU(2N), which is a conformal theory. An explicit basis for

its matrix invariants is given in (3.5.2).

Chapter 4 is based on the results of [2]. We initiated a systematic study of Permutation

Centralizer Algebras (PCAs), in connection with gauge invariant operators. We focused our

attention on the algebras A(m,n) which are related to restricted Schur operators studied in the

context of giant gravitons in AdS/CFT. Other closely related algebras are related to the Brauer

basis for multi-matrix invariants, the covariant basis and to tensor models.

While many of the key formulae we have used were already understood in the literature on

giant gravitons, we have emphasized the intrinsic structure of A(m,n) as an associative algebra

with a non-degenerate pairing. This means that it has a Wedderburn-Artin decomposition,

which gives a basis for the algebra in terms of matrix-like linear combinations. The construction
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of these matrix-units in terms of representation theory data from Sm+n, Sm, Sn has already been

extensively used in the context of giant gravitons, although the link to the Wedderburn-Artin

decomposition has not been made explicit before. In addition to explicating this link, the new

emphasis in 4 has been on the structure of the centre Z(m,n) and the maximally commuting

sub-algebra M(m,n).

We have used the structure ofM(m,n) as a polynomial algebra over Z(m,n) to characterize

the minimal number of charges needed to identify any 2-matrix gauge invariant (section 4.3.3).

It will be interesting to generalize this discussion to gauge invariants for more general gauge

groups.

Two key structural facts about A(m,n) have played a role in the computation of correla-

tors in Section 4.4. The first is that (xm) ∗ (yn) = (xmyn) and the second is that (xmyn) is

part of Z(m,n). The non-degenerate pairing on A(m,n), when restricted to elements in the

centre, can be expressed in terms of characters of Sn, Sm, Sn+m without requiring more detailed

representation theory data such as matrix elements and branching coefficients. These are in

general computationally hard to calculate, although there has been progress in the context of

“perturbations of half-BPS giants”. This makes it very interesting to understand the structure

of the centre A(m,n). A special case is Z[C[Sn]], which is the algebra of class sums in Sn.

For the case of a single gauge group but multi-matrices (quiver with one node and multiple

edges), a complete set of charges measuring the group theoretic labels of orthogonal bases for

gauge invariant operators were given in [54]. They were constructed from Noether charges for

enhanced symmetries in the zero coupling limit. We have shown that a minimal set of charges

can be characterised by using properties of PCAs. We expect similar applications of PCAs to

gauge invariant operators in general quiver theories (without fundamental matter) to proceed in

a fairly similar manner. For the case of quivers with fundamental matter, we may expect that

appropriate PCAs along with modules over these algebras will play a role. There are in fact two

ways one might associate a PCA to quiver with fundamentals. One is to excise the flavour legs

of the quiver to be left with a quiver with bi-fundamentals only. Putting back the legs might

correspond to going from algebra to a broader construction involving modules over the algebra.

The other way is to tie all the incoming and outgoing legs to a single new node, preserving their

orientation. This latter procedure was useful in consideration of the counting of gauge invariant

operators [1].

The broad summary of this thesis is that the quiver, combined with its corresponding permu-

tation algebras and topological field theories, can be a powerful device in constructing correlators

of gauge invariant observables and in exposing their hidden geometrical structures.
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Appendix A

Quiver Characters and Correlators:

Proofs

A.1 Operator invariance

In this appendix we will derive the identity (3.1.15). Let us consider a matrix Φ in the bi-

fundamental ( , ) representation of U(Na) × U(Nb), and a permutation η ∈ Sn. Eq. (3.1.15)

arises from the equivalence

η−1
(
Φ⊗n

)
η = Φ⊗n ⇒

[
Φ⊗n, η

]
= 0 (A.1.1)

which follows from the identities

〈ei1 , ei2 , · · · , ein |Φ⊗n|ej1 , ej2 , · · · , ejn〉 = (Φ⊗n)i1,i2,...inj1,j2,...,jn
= Φi1

j1
Φi2
j2
· · ·Φin

jn
= Φ

iη(1)

jη(1)
Φ
iη(2)

jη(2)
· · ·Φiη(n)

jη(n)

= (Φ⊗n)
iη(1),iη(2),...iη(n)

jη(1),jη(2),...,jη(n)
= 〈eiη(1) , eiη(2) , · · · , eiη(n) |Φ⊗n|ejη(1)

, ejη(2)
, · · · , ejη(n)

〉

= 〈ei1 , ei2 , · · · , ein |η−1Φ⊗nη|ej1 , ej2 , · · · , ejn〉 , η ∈ Sn (A.1.2)

Here |ej1 , ej2 , · · · , ejn〉 ∈ V ⊗nNa
and 〈ej1 , ej2 , · · · , ejn | ∈ V̄ ⊗nNb

, VNa and V̄Nb being the fundamental

and antifundamental representations of U(Na) and U(Nb) respectively. In the following, we will

need the two identities

(
Q⊗nρ

)I
sss

= 〈ei1 , ei2 , · · · , ein |Q⊗nρ|es1 , es2 , · · · , esn〉

= 〈ei1 , ei2 , · · · , ein |Q⊗n|esρ(1)
, esρ(2)

, · · · , esρ(n)
〉 =

(
Q⊗n

)I
ρ(sss)

(A.1.3)
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and

(
ρ̄−1Q̄⊗n

)s̄̄s̄s
J

= 〈es̄1 , es̄2 , · · · , es̄n |ρ̄−1Q̄⊗n|ej1 , ej2 , · · · , ejn〉

= 〈es̄ρ̄(1) , es̄ρ̄(2) , · · · , es̄ρ̄(n) |Q̄⊗n|ej1 , ej2, · · · , ejn〉 =
(
Q̄⊗n

)ρ̄(s̄̄s̄s)

J
(A.1.4)

Now let us consider a generic GIO OQ(~n; ~s; ~σ), built with nab,α type Φab,α fields, na,β type

Qa,β fields and n̄a,γ type Q̄a,γ fields. We also introduce the permutations

~η = ∪a,b,α{ηab,α} , ηab,α ∈ Snab,α (A.1.5a)

~ρ = ∪a{∪β ρa,β; ∪γ ρ̄a,γ} , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (A.1.5b)

From (A.1.1), we then have the equivalences

η−1
ab,α

(
Φ
⊗nab,α
ab,α

)
ηab,α = Φ

⊗nab,α
ab,α , ρ−1

a,β

(
Q
⊗na,β
a,β

)
ρa,β = Q

⊗na,β
a,β , ρ̄−1

a,γ

(
Q̄
⊗n̄a,γ
a,γ

)
ρ̄a,γ = Q̄

⊗n̄a,γ
a,γ

(A.1.6)

for every a, b, α, β, γ. Inserting these identities in (3.1.12) gives

OQ(~n; ~s; ~σ) =
∏
a

∏
b,α

(
η−1
ab,α

(
Φ
⊗nab,α
ab,α

)
ηab,α

)Iab,α
Jab,α

⊗
∏

β

(
ρ−1
a,β

(
Q
⊗na,β
a,β

)
ρa,β

)Ia,β
sssa,β


⊗

[∏
γ

(
ρ̄−1
a,γ

(
Q̄
⊗n̄a,γ
a,γ

)
ρ̄a,γ

)s̄̄s̄sa,γ
J̄a,γ

]
(σa)

×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β

=
∏
a

∏
b,α

(
Φ
⊗nab,α
ab,α

)Kab,α
Lab,α

⊗
∏

β

(
Q
⊗na,β
a,β ρa,β

)Ka,β
sssa,β

⊗ [∏
γ

(
ρ̄−1
a,γQ̄

⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
L̄a,γ

]

×

∏
b,α

(ηab,α)
Lab,α
Jab,α

[∏
γ

(ρ̄a,γ)
L̄a,γ
J̄a,γ

]
(σa)

×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β

∏
b,α

(
η−1
ab,α

)Iab,α
Kab,α

∏
β

(
ρ−1
a,β

)Ia,β
Ka,β


(A.1.7)

Now we use the equations (A.1.3) and (A.1.4) to obtain

OQ(~n; ~s; ~σ) =
∏
a

∏
b,α

(
Φ
⊗nab,α
ab,α

)Kab,α
Lab,α

⊗
∏

β

(
Q
⊗na,β
a,β

)Ka,β
ρa,β(sssa,β)

⊗ [∏
γ

(
Q̄
⊗n̄a,γ
a,γ

)ρ̄a,γ(s̄̄s̄sa,γ)

L̄a,γ

]

×
(

(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)
)×b,αLba,α×γ L̄a,γ
×b,αKab,α×βKa,β

= OQ(~n; ~ρ (~s ); Adj~η×~ρ(~σ)) (A.1.8)
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where we also used the definition of Adj~η×~ρ(~σ), eq. (3.1.17):

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (A.1.9)

We thus have explicitly shown the equivalence (3.1.15).

As it usually is the case when working in this framework, (3.1.15) has a pictorial interpre-

tation. We now give an example of this diagrammatic interpretation, for the simple case of an

N = 2 SQCD. The N = 1 quiver for this model is the one depicted in Fig. 20. Let us then

consider an N = 2 SQCD GIO built with n adjoint fields φ and nq quarks Q and antiquarks Q̄.

Each quark comes with a fixed state si state belonging to the fundamental representation of the

flavour group SU(F ). We label the collection of these nq states as sss = (s1, s2, ..., snq). Similarly,

s̄̄s̄s = (s̄1, s̄2, ..., s̄nq) is the collection of the SU(F ) antifundamental states of the antiquarks Q̄.

The generic GIO OQ(n, nq; sss, s̄̄s̄s; σ) can be drawn as in Fig. 42.

Figure 42: Diagram corresponding to a generic N = 2 SQCD GIO.

The horizontal bars denotes the identification of the indices. Specialising eq. (3.1.15) to this

case, we have the identity

O(n, nq; sss, s̄̄s̄s; σ) = O(n, nq; ρ(sss), ρ̄(s̄̄s̄s); Adjη×ρ(σ)) (A.1.10)

for σ ∈ Sn+nq , η ∈ Sn and ρ ρ̄ ∈ Snq . This equivalence is described in diagrammatic terms in

Fig. 43.
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Figure 43: Diagrammatic interpretation of the identity (A.1.10).

A.2 Quiver character identities

In this appendix we will derive equations (3.2.23), (3.2.25) and (3.2.26). Many of the symmetric

group identities that we will use in this appendix were already introduced and discussed in

Appendix A of [26].

A.2.1 Invariance Relation

In this section we will prove formula (3.2.23):

χQ(LLL,~s, ~σ) = χQ(LLL, ~ρ (~s ),Adj~ρ×~η(~σ)) (A.2.1)

Using the definition of Adj~ρ×~η(~σ) given in (3.1.17)

Adj~ρ×~η(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (A.2.2)
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we start by writing

χQ(LLL,~s,Adj~ρ×~η(~σ)) = cLLL
∏
a

∑
ia,ja

∑
lab,α

la,β,l̄a,γ

DRa
ia,ja

((×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β))

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

 B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

(∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

)

=cLLL
∏
a

∑
ia,ja

∑
lab,α

la,β,l̄a,γ

DRa
ia,i′a

(×b,αηba,α ×γ ρ̄a,γ)DRa
i′a,j
′
a
(σa)D

Ra
j′a,ja

(×b,αη−1
ab,α ×β ρ

−1
a,β)

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

 B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

(∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

)
(A.2.3)

To ease the notation, for the remainder of this section we will drop the summation symbol in

our equations. The sum over repeated symmetric group state indices will therefore be implicit.

Notice however that there is no summation over the repeated representation labels rab,α, ra,β,

r̄a,γ . Using the equivariance property of the branching coefficients [83]

DR
k,j(×aγa)B

R→∪ara;νa
j→∪ala =

(∏
a

Dra
l′a,la

(γa)

)
BR→∪ara;νa
k→∪al′a

(A.2.4)

we can write

DRa
j′a,ja

(×b,αη−1
ab,α ×β ρ

−1
a,β)B

Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

=

∏
b,α

D
rab,α
l′ab,α,lab,α

(η−1
ab,α)

∏
β

D
ra,β
l′a,β ,la,β

(ρ−1
a,β)

B
Ra→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

(A.2.5)

and

DRa
ia,i′a

(×b,αηba,α ×γ ρ̄a,γ)B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
(A.2.6)

=

∏
b,α

D
rba,α
lba,α,lba,α′′

(ηba,α)
∏
γ

D
r̄a,γ
l̄a,γ ,l̄a,γ ′′

(ρ̄a,γ)

B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αlba,α′′∪γ la,γ ′′
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Inserting the last two equations in (A.2.3) gives

χQ(LLL,~s,Adj~ρ×~η(~σ)) =cLLL
∏
a

DRa
i′a,j
′
a
(σa)

∏
b,α

D
rab,α
l′ab,α,lab,α

(η−1
ab,α)D

rba,α
lba,α,lba,α′′

(ηba,α)


×BRa→∪b,αrab,α∪βra,β ,ν−a

j′a→∪b,αl′ab,α∪β l
′
a,β

∏
β

D
ra,β
la,β ,l

′
a,β

(ρa,β)C
ra,β ,Sa,β ,la,β
sssa,β


×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αlba,α′′∪γ la,γ ′′

{∏
γ

D
r̄a,γ
l̄a,γ ,l̄a,γ ′′

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

}
(A.2.7)

A first simplification comes from noticing that∏
a,b,α

D
rab,α
l′ab,α,lab,α

(η−1
ab,α)D

rba,α
lba,α,lba,α′′

(ηba,α) =
∏
a,b,α

δl′ab,α,lab,α′′ (A.2.8)

We now focus on the Clebsch-Gordan coefficients. Let us first consider the chain of equalities

DR
i,i′(σ)CR,M,i

sss = DR
i,i′(σ)〈sss|R,M, i〉 = 〈sss|D(σ)|R,M, i′〉

= 〈D(σ)−1sss|R,M, i′〉 = 〈σ−1(sss)|R,M, i′〉 = CR,M,i′

σ−1(sss)
(A.2.9)

We can use this identity to write

D
ra,β
la,β ,l

′
a,β

(ρa,β)C
ra,β ,Sa,β ,la,β
sssa,β = C

ra,β ,Sa,β ,l
′
a,β

ρ−1
a,β(sssa,β)

(A.2.10)

and

D
r̄a,γ
l̄a,γ ,l̄a,γ ′′

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

= C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄a,γ ,S̄a,γ ,l̄a,γ ′′
(A.2.11)

Using these results in (A.2.7) we then get

χQ(LLL,~s,Adj~ρ×~η(~σ)) =cLLL
∏
a

DRa
i′a,j
′
a
(σa)

∏
b,α

δl′ab,α,lab,α′′



×BRa→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

∏
β

C
ra,β ,Sa,β ,l

′
a,β

ρ−1
a,β(sssa,β)


×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αlba,α′′∪γ la,γ ′′

{∏
γ

C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄a,γ ,S̄a,γ ,l̄a,γ ′′

}
(A.2.12)
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=cLLL
∏
a

DRa
i′a,j
′
a
(σa)B

Ra→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

∏
β

C
ra,β ,Sa,β ,l

′
a,β

ρ−1
a,β(sssa,β)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

i′a→∪b,αl′ba,α∪γ la,γ ′′
∏
γ

C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄a,γ ,S̄a,γ ,l̄a,γ ′′
= χQ(LLL, ~ρ −1 (~s), ~σ)

Substituting ~s→ ~ρ (~s), we finally get

χQ(LLL,~s, ~σ) = χQ(LLL, ~ρ (~s ),Adj~ρ×~η(~σ)) (A.2.13)

Our proposition is thus proven.

A.2.2 Orthogonality relations

In this section we will prove the quiver character orthogonality equations (3.2.25) and (3.2.26).

Orthogonality in LLL

Let us start with eq. (3.2.25):∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L,~s, ~σ) = δLLL,L̃LL (A.2.14)

This formula is actually a particular case of the more general identity∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L,~s, ~σ) (A.2.15)

= cLLL cL̃̃L̃L

∏
a

na!

d(Ra)
Tr
(
DRa(σ′a)P

ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
δRa,R̃a

×

∏
b,α

δrab,α,r̃ab,α

∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
δν−a ,ν̃−a

Here P ν
+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ is a linear operator whose matrix elements are

P ν
+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

∣∣∣̃
ia,ia

= B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
(A.2.16)
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Let us prove eq. (A.2.15). As a first step we expanding its LHS to get∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L,~s, ~σ)

= cLLL cL̃̃L̃L

∑
~s

∑
~σ

∏
a

DRa
ia,ja

(σ′a · σa)D
R̃a
ĩa,j̃a

(σa)

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β B

R̃a→∪b,αr̃ab,α∪β r̃a,β ;ν̃−a

j̃a→∪b,α l̃ab,α∪β l̃a,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β C

r̃a,β ,S̃a,β ,l̃a,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
R̃a→∪b,αr̃ba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,α l̃ba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
(A.2.17)

The next step is to rewrite the known relation

∑
σ∈Sn

DR
i,j(σ)DR′

p,q(σ) =
n!

d(R)
δR,R′δi,pδj,q (A.2.18)

into the form ∑
σa

DRa
ia,ja

(σ′a · σa)D
R̃a
ĩa,j̃a

(σa) =
∑
ka

DRa
ia,ka

(σ′a)
na!

d(Ra)
δRa,R̃aδka ,̃iaδja,j̃a

= DRa
ia ,̃ia

(σ′a)
na!

d(Ra)
δRa,R̃aδja,j̃a (A.2.19)

This identity can be inserted into eq. (A.2.17) to get∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L,~s, ~σ)

= cLLL cL̃̃L̃L

∑
~s

∏
a

na!

d(Ra)
δRa,R̃a D

Ra
ia ,̃ia

(σ′a)

× δja,j̃aB
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β B

Ra→∪b,αr̃ab,α∪β r̃a,β ;ν̃−a

j̃a→∪b,α l̃ab,α∪β l̃a,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β C

r̃a,β ,S̃a,β ,l̃a,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αr̃ba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,α l̃ba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
(A.2.20)

Now using the orthogonality relation (3.2.7) in eq. (A.2.20), we further obtain∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L,~s, ~σ)

= cLLL cL̃̃L̃L

∑
~s

∏
a

na!

d(Ra)
δRa,R̃a

∏
b,α

δrab,α,r̃ab,αδlab,α,l̃ab,α

 δν−a ,ν̃−a D
Ra
ia ,̃ia

(σ′a)
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×

∏
β

δra,β ,r̃a,βδla,β ,l̃a,βC
ra,β ,Sa,β ,la,β
sssa,β C

r̃a,β ,S̃a,β ,l̃a,β
sssa,β


×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αr̃ba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,α l̃ba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ

= cLLL cL̃̃L̃L

∑
~s

∏
a

na!

d(Ra)
δRa,R̃a

∏
b,α

δrab,α,r̃ab,α

∏
β

δra,β ,r̃a,β

 δν−a ,ν̃−a D
Ra
ia ,̃ia

(σ′a)

×
∏
β

C
ra,β ,Sa,β ,la,β
sssa,β C

ra,β ,S̃a,β ,la,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
(A.2.21)

Let us focus on the pair of Clebsch-Gordan coefficients C
ra,β ,Sa,β ,la,β
sssa,β C

ra,β ,S̃a,β ,la,β
sssa,β in this formula.

It is immediate to verify that, for a U(F ) Clebsch-Gordan coefficient Cr,S,isss

∑
sss

Cr,S,isss Cr
′,S′,i′
sss =

∑
sss

〈r, S, i|sss〉
〈
r′, S′, i′|sss

〉
= 〈r, S, i|

(∑
sss

|sss〉 〈sss|

)
|r′, S′, i′〉

= 〈r, S, i|1|r′, S′, i′〉 = δr,r′ δS,S′ δi,i′ (A.2.22)

Therefore we can write∑
la,β

∑
sssa,β

C
ra,β ,Sa,β ,la,β
sssa,β C

ra,β ,S̃a,β ,la,β
sssa,β =

∑
la,β

δSa,β ,S̃a,β = d(ra,β) δSa,β ,S̃a,β (A.2.23)

Inserting this in (A.2.21) we obtain∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L,~s, ~σ)

= cLLL cL̃̃L̃L

∏
a

na!

d(Ra)
δRa,R̃a

∏
b,α

δrab,α,r̃ab,α

∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

 δν−a ,ν̃−a D
Ra
ia ,̃ia

(σ′a)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ ˜̄la,γ

∏
γ

∑
s̄̄s̄sa,γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ

= cLLL cL̃̃L̃L

∏
a

na!

d(Ra)
δRa,R̃a

∏
b,α

δrab,α,r̃ab,α

∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

 δν−a ,ν̃−a D
Ra
ia ,̃ia

(σ′a)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ ˜̄la,γ

(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ
δ
l̄a,γ ,

˜̄la,γ

)
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= cLLL cL̃̃L̃L

∏
a

na!

d(Ra)
δRa,R̃a

∏
b,α

δrab,α,r̃ab,α

∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β


×

(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
δν−a ,ν̃−a DRa

ia ,̃ia
(σ′a)B

Ra→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ l̄a,γ

(A.2.24)

In the second equality above we again used (A.2.22):∑
s̄̄s̄sa,γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
= δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

δ
l̄a,γ ,

˜̄la,γ
(A.2.25)

We now define the projector-like operator P ν
+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ , whose matrix elements are

P ν
+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

∣∣∣̃
ia,ia

= B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
(A.2.26)

For ν+
a = ν̃+

a the operator P ν
+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ is the projector on the (∪b,αrba,α ∪γ r̄a,γ , ν+
a )

subspace of Ra, but when ν+
a 6= ν̃+

a it is rather an intertwining operator mapping the copies ν+
a

and ν̃+
a of the same subspace ∪b,αrba,α ∪γ r̄a,γ ⊂ Ra one to another. With this definition, we can

finally write∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L,~s, ~σ)

= cLLL cL̃̃L̃L

∏
a

na!

d(Ra)
Tr
(
DRa(σ′a)P

ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
δRa,R̃a

×

∏
b,α

δrab,α,r̃ab,α

∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
δν−a ,ν̃−a

(A.2.27)

which is eq. (A.2.15). Consider now the case in which ~σ′ = ~1. Then

Tr
(
DRa(1)P ν

+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
= Tr

(
P ν

+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
=
∑
lba,α
l̄a,γ

(∑
ia

B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

)
(A.2.28)

= δν+
a ,ν̃

+
a

∑
lba,α
l̄a,γ

∏
b,α

δlba,α,lba,α

(∏
γ

δl̄a,γ ,l̄a,γ

)
= δν+

a ,ν̃
+
a

∏
b,α

d(rba,α)

(∏
γ

d(r̄a,γ)

)
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where the third equality follows from the orthogonality relation (3.2.7). Using this identity in

(A.2.15) we get∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L,~s, ~σ)

= cLLL cL̃̃L̃L

∏
a

na!

d(Ra)
δRa,R̃aδν−a ,ν̃−a δν+

a ,ν̃
+
a

∏
b,α

d(rab,α)δrab,α,r̃ab,α



×

∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

(∏
γ

d(r̄a,γ)δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
(A.2.29)

Recalling the definition of the set of labels LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ , S̄a,γ , ν+
a , ν

−
a }, we can

thus write∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L,~s, ~σ)

= δLLL,L̃LL cLLL cL̃̃L̃L

∏
a

na!

d(Ra)

∏
b,α

d(rab,α)

∏
β

d(ra,β)

(∏
γ

d(r̄a,γ)

)
= δLLL,L̃LL (A.2.30)

The identity (A.2.14) is proven.

Orthogonality in ~s, ~σ

In this section we are going to prove (3.2.26):

∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η×~ρ

δ
(
Adj~η×~ρ(~σ)~τ −1

)
δ~ρ(~s),~t (A.2.31)

We start by writing two useful identities, which will allow us to connect state indices appearing

in the first quiver character with state indices appearing in the second quiver character. Consider

contracting both sides of the equation [83]

∑
σ∈Sn

Dr
i,j(σ)Dr′

k,l(σ) =
n!

d(r)
δr,r′δi,kδj,l (A.2.32)

with BR→r,··· ;ν−
I→i,··· BR→r,··· ;ν+

J→j,··· BR→r′,··· ;ν+

K→k,··· BR→r′,··· ;ν−
L→l,··· and then summing over the representation

r′ ` n. By doing so, we get the identity

BR→r,··· ;ν−
I→i,··· BR→r,··· ;ν+

K→i,··· BR→r,··· ;ν−
L→l,··· BR→r,··· ;ν+

J→l,··· (A.2.33)

=
d(r)

n!

∑
σ∈Sn

∑
r′`n

BR→r,··· ;ν−
I→i,··· BR→r,··· ;ν+

J→j,··· BR→r′,··· ;ν+

K→k,··· BR→r′,··· ;ν−
L→l,··· Dr

i,j(σ)Dr′
k,l(σ)
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Alternatively, contracting both sides of (A.2.32) with Cr
′,S,k
sss Cr

′,S,l
ttt and summing over the rep-

resentations r′ ` n, we obtain

Cr,S,isss Cr,S,jttt =
d(r)

n!

∑
σ∈Sn

Dr
i,j(σ)

(∑
r′`n

Dr′
k,l(σ)Cr

′,S,k
sss Cr

′,S,l
ttt

)
(A.2.34)

This is the second identity we are going to need.

Let us then consider the product

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) = c2
LLL

∏
a

DRa
ia,ja

(σa)D
Ra
i′a,j
′
a
(τa)

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

(∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

)

×BRa→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

∏
β

C
ra,β ,Sa,β ,l

′
a,β

ttta,β

B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αl′ba,α∪γ l̄′a,γ

(∏
γ

C
t̄̄t̄ta,γ
r̄a,γ ,S̄a,γ ,l̄′a,γ

)
(A.2.35)

Using (A.2.33) and (A.2.34) in (A.2.35) we find

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) = c2
LLL

∑
~η, ~ρ

∑
{r′ab,α}

∑
{r′a,β}

∑
{r̄′a,γ}

×
∏
a

∏
b,α

d(rab,α)

nab,α!

∏
β

d(ra,β)

na,β!

(∏
γ

d(r̄a,γ)

n̄a,γ !

)
DRa
ia,ja

(σa)D
Ra
i′a,j
′
a
(τa)

×

∏
b,α

D
rab,α
pab,α,p

′
ab,α

(ηab,α)

∏
β

D
ra,β
pa,β ,p

′
a,β

(ρa,β)

B
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αpab,α∪βpa,β



×

∏
β

D
r′a,β
qa,β ,q

′
a,β

(ρa,β)C
r′a,β ,Sa,β ,qa,β
sssa,β C

r′a,β ,Sa,β ,q
′
a,β

ttta,β



×

∏
b,α

D
r′ba,α
qba,α,q

′
ba,α

(ηba,α)

(∏
γ

D
r̄a,γ
p̄a,γ ,p̄′a,γ

(ρ̄a,γ)

)
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αqba,α∪γ p̄a,γ


×

(∏
γ

D
r̄′a,γ
q̄a,γ ,q̄′a,γ

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ

C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄

′
a,γ

)

×BRa→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αp′ab,α∪βp

′
a,β

B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αq′ba,α∪γ p̄′a,γ
(A.2.36)

where {r′ab,α}, {r′a,β} and {r̄′a,γ} are shorthands for ∪a,b,α{r′ab,α}, ∪a,β{r′a,β} and ∪a,γ{r̄′a,γ} re-
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spectively. We now use the equivariance property of the branching coefficients (eq. (A.2.4)) to

rewrite the terms in the square brackets above as∏
b,α

D
rab,α
pab,α,p

′
ab,α

(ηab,α)

∏
β

D
ra,β
pa,β ,p

′
a,β

(ρa,β)

B
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αpab,α∪βpa,β

= DRa
ja,la

(×b,αηab,α ×β ρa,β)B
Ra→∪b,αrab,α∪βra,β ;ν−a
la→∪b,αp′ab,α∪βp

′
a,β

(A.2.37)

and ∏
b,α

D
r′ba,α
qba,α,q

′
ba,α

(ηba,α)

(∏
γ

D
r̄a,γ
p̄a,γ ,p̄′a,γ

(ρ̄a,γ)

)
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αqba,α∪γ p̄a,γ

= DRa
ia,l′a

(×b,αηba,α ×γ ρa,γ)B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

l′a→∪b,αq′ba,α∪γ p̄′a,γ
(A.2.38)

On the other hand, we can use eqs. (A.2.10) and (A.2.11) to write the Clebsch-Gordan coefficient

terms as∏
β

D
r′a,β
qa,β ,q

′
a,β

(ρa,β)C
r′a,β ,Sa,β ,qa,β
sssa,β C

r′a,β ,Sa,β ,q
′
a,β

ttta,β
=
∏
β

C
r′a,β ,Sa,β ,q

′
a,β

ρ−1
a,β(sssa,β)

C
r′a,β ,Sa,β ,q

′
a,β

ttta,β
(A.2.39)

(there is no sum over the ra,β and Sa,β labels) and

∏
γ

D
r̄′a,γ
q̄a,γ ,q̄′a,γ

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ

C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄

′
a,γ

=
∏
γ

C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄′a,γ ,S̄a,γ ,q̄
′
a,γ
C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄

′
a,γ

(A.2.40)

(again no sum over the r̄a,γ and S̄a,γ labels).

Inserting the last four equations in (A.2.36), taking the transpose of the matrix element on

the RHS of (A.2.38) and relabelling the dummy permutation variables as ~η → ~η −1, ~ρ → ~ρ −1

gives

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η, ~ρ

∑
{sab,α}

∑
{sa,β}

∑
{s̄a,γ}

∏
a

d(Ra)

na!

×DRa
l′a,ia

(×b,αηba,α ×γ ρa,γ)DRa
ia,ja

(σa)D
Ra
ja,la

(
×b,αη−1

ab,α ×β ρ
−1
a,β

)
DRa
i′a,j
′
a
(τa)

×
[
B
Ra→∪b,αrab,α∪βra,β ;ν−a
la→∪b,αp′ab,α∪βp

′
a,β

B
Ra→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αp′ab,α∪βp

′
a,β

]

×
[
B
Ra→∪b,αsba,α∪γ r̄a,γ ;ν+

a

l′a→∪b,αq′ba,α∪γ p̄′a,γ
B
Ra→∪b,αsba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αq′ba,α∪γ p̄′a,γ

]

×

∏
β

C
sa,β ,Sa,β ,qa,β
ρa,β(sssa,β) C

sa,β ,Sa,β ,qa,β
ttta,β

 (∏
γ

C
ρ̄a,γ(s̄̄s̄sa,γ)

s̄a,γ ,S̄a,γ ,q̄a,γ
C
t̄̄t̄ta,γ
s̄a,γ ,S̄a,γ ,q̄a,γ

)
(A.2.41)
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where we also used the definitions of cLLL and c~n given in (3.2.21) and (3.2.27). Now, from eq.

(A.2.16) we have[
B
Ra→∪b,αrab,α∪βra,β ;ν−a
la→∪b,αp′ab,α∪βp

′
a,β

B
Ra→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αp′ab,α∪βp

′
a,β

]
= P ν

−
a ,ν
−
a

Ra→∪b,αrab,α∪βra,β

∣∣∣
la,j′a

(A.2.42)

[
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

l′a→∪b,αq′ba,α∪γ p̄′a,γ
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αq′ba,α∪γ p̄′a,γ

]
= P ν

+
a ,ν

+
a

Ra→∪b,αr′ba,α∪γ r̄a,γ

∣∣∣
l′a,i
′
a

(A.2.43)

so that we can write

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η, ~ρ

∑
{r′ab,α}

∏
a

d(Ra)

na!
DRa
l′a,la

(
Adj~η×~ρ(σa)

)
DRa
i′a,j
′
a
(τa)

× P ν
−
a ,ν
−
a

Ra→∪b,αrab,α∪βra,β

∣∣∣
la,j′a

P ν
+
a ,ν

+
a

Ra→∪b,αr′ba,α∪γ r̄a,γ

∣∣∣
l′a,i
′
a

(A.2.44)

×

 ∑
{r′a,β}

∏
β

C
r′a,β ,Sa,β ,qa,β

ρa,β(sssa,β) C
r′a,β ,Sa,β ,qa,β
ttta,β

  ∑
{r̄′a,γ}

∏
γ

C
ρ̄a,γ(s̄̄s̄sa,γ)

r̄′a,γ ,S̄a,γ ,q̄a,γ
C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ


where we defined

Adj~η×~ρ(σa) = (×b,αηba,α ×γ ρa,γ)(σa)(×b,αη−1
ab,α ×β ρ

−1
a,β) (A.2.45)

Now we can proceed to sum overLLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ , S̄a,γ , ν+
a , ν

−
a }. This introduces,

among others, a summation over the flavour states Sa,β and S̄a,γ . Consider then a pair of Clebsch-

Gordan coefficients like the ones appearing in the last line of eq. (A.2.44). It is easy to write

the relation

∑
r,S,i

Cr,S,iρ(sss) C
r,S,i
ttt = 〈ρ(sss)|

∑
r,S,i

|r, S, i〉〈r, S, i|

 |ttt〉 = 〈ρ(sss)|1|ttt〉 = δρ(sss),ttt (A.2.46)

We then have the identity∑
r′a,β , Sa,β , qa,β

C
r′a,β ,Sa,β ,qa,β

ρa,β(sssa,β) C
r′a,β ,Sa,β ,qa,β
ttta,β

= δρa,β(sssa,β),ttta,β (A.2.47)

and similarly ∑
r̄′a,γ , S̄a,γ , q̄a,γ

C
ρ̄a,γ(s̄̄s̄sa,γ)

r̄′a,γ ,S̄a,γ ,q̄a,γ
C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ

= δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ (A.2.48)
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Inserting this result in eq. (A.2.44) we obtain∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ)

=
1

c~n

∑
~η, ~ρ

∏
a

∑
Ra

d(Ra)

na!
DRa
l′a,la

(
Adj~η×~ρ(σa)

)
DRa
i′a,j
′
a
(τa)

×
∑

∪b,α{rab,α}

∑
∪β{ra,β}

ν−a

P ν
−
a ,ν
−
a

Ra→∪b,αrab,α∪βra,β

∣∣∣
la,j′a

∑
∪b,α{r′ba,α}

∑
∪γ{r̄a,γ}

ν+
a

P ν
+
a ,ν

+
a

Ra→∪b,αr′ba,α∪γ r̄a,γ

∣∣∣
l′a,i
′
a

×

∏
β

δρa,β(sssa,β),ttta,β

 (∏
γ

δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ

)
(A.2.49)

Now using the projector identity ∑
∪i{ri}, ν

P ν,νR→∪iri

∣∣∣
k,l

= δk,l (A.2.50)

we further get

∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η, ~ρ

∏
a

∑
Ra

d(Ra)

na!
χRa

(
Adj~η×~ρ(σa) τ

−1
a

)

×

∏
β

δρa,β(sssa,β),ttta,β

 (∏
γ

δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ

)
(A.2.51)

Finally, through the identity

∑
R`n

d(R)

n!
χR(σ) = δ(σ) (A.2.52)

we can rewrite (A.2.51) as∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =

=
1

c~n

∑
~η, ~ρ

∏
a

δ
(
Adj~η×~ρ(σa) τ

−1
a

) ∏
β

δρa,β(sssa,β),ttta,β

 (∏
γ

δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ

)

=
1

c~n

∑
~η, ~ρ

δ
(
Adj~η×~ρ (~σ)~τ −1

)
δ~ρ(~s),~t (A.2.53)

This last equation is exactly (3.2.26).
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A.3 Deriving the holomorphic gauge invariant operator ring

structure constants

In this appendix we will derive the analytical expression for the holomorphic GIO ring structure

constants GLLL(1),LLL(2),LLL(3) , corresponding to the diagram given in Fig. 34. We will divide the

computation into five main steps, for improved clarity. In the following subsection 3.4.1 we will

explicitly derive the chiral ring structure constants for an N = 2 SQCD, by using diagrammatic

techniques alone.

1) The permutation basis product

In this first step we are going to rewrite the product of two operators in the permutation

basis, OQ(~n1, ~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2)), as a single operator OQ(~n3, ~s
(3), ~σ(3)), specified by

appropriate labels ~n3, ~s
(3) and ~σ(3). We use the defining equation (3.1.12) for OQ(~n,~s, ~σ) to

write this product as

OQ(~n1, ~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2))

=
∏
a

∏
b,α

(
Φ
⊗n(1)

ab,α

ab,α

)I(1)
ab,α

J
(1)
ab,α

⊗
∏

β

(
Q
⊗n(1)

a,β

a,β

)I(1)
a,β

sss
(1)
a,β

⊗
∏

γ

(
Q̄
⊗n̄(1)

a,γ
a,γ

)s̄̄s̄s(1)
a,γ

J̄
(1)
a,γ

(σ(1)
a

)×b,αJ(1)
ba,α×γ J̄

(1)
a,γ

×b,αI
(1)
ab,α×βI

(1)
a,β

×
∏
a

∏
b,α

(
Φ
⊗n(2)

ab,α

ab,α

)I(2)
ab,α

J
(2)
ab,α

⊗
∏

β

(
Q
⊗n(2)

a,β

a,β

)I(2)
a,β

sss
(2)
a,β

⊗
∏

γ

(
Q̄
⊗n̄(2)

a,γ
a,γ

)s̄̄s̄s(2)
a,γ

J̄
(2)
a,γ

(σ(2)
a

)×b,αJ(2)
ba,α×γ J̄

(2)
a,γ

×b,αI
(2)
ab,α×βI

(2)
a,β

=
∏
a

∏
b,α

(
Φ
⊗
(
n

(1)
ab,α+n

(2)
ab,α

)
ab,α

)I(1)
ab,α×I

(2)
ab,α

J
(1)
ab,α×J

(2)
ab,α


∏

β

(
Q
⊗
(
n

(1)
a,β+n

(2)
a,β

)
a,β

)I(1)
a,β×I

(2)
a,β

sss
(1)
a,β×sss

(2)
a,β



⊗

∏
γ

(
Q̄
⊗
(
n̄

(1)
a,γ+n̄

(1)
a,γ

)
a,γ

)s̄̄s̄s(1)
a,γ×s̄̄s̄s

(2)
a,γ

J̄
(1)
a,γ×J̄

(2)
a,γ

 (σ(1)
a × σ(2)

a

)×b,αJ(1)
ba,α×γ J̄

(1)
a,γ×b,αJ

(2)
ba,α×γ J̄

(2)
a,γ

×b,αI
(1)
ab,α×βI

(1)
a,β×b,αI

(2)
ab,α×βI

(2)
a,β

(A.3.1)

In the following we will continue to use the shorthand notation

|ei1 , ei2 , ..., ein〉 = |I〉 , I = (i1, i2, ..., in) ,

〈ej1 , ej2 , ..., ejn | = 〈J | , J = (j1, j2, ..., jn)

which was already introduced in the previous sections. For each gauge node a, let us now define

the λa− and λa+ permutations such that

λa−

∣∣∣×b,αI(1)
ab,α ×β I

(1)
a,β ×b,α I

(2)
ab,α ×β I

(2)
a,β

〉
=
∣∣∣×b,α (I(1)

ab,α × I
(2)
ab,α

)
×β
(
I

(1)
a,β × I

(2)
a,β

)〉
(A.3.2)
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and

λ−1
a+

∣∣∣×b,αJ (1)
ba,α ×γ J̄

(1)
a,γ ×b,α J

(2)
ba,α ×γ J̄

(2)
a,γ

〉
=
∣∣∣×b,α (J (1)

ba,α × J
(2)
ba,α

)
×γ
(
J̄ (1)
a,γ × J̄ (2)

a,γ

)〉
(A.3.3)

These permutations have been chosen such that, when suitably acting on the σ
(1)
a × σ(2)

a com-

ponent of (A.3.1), the resulting term has the right index structure to match the index structure

of the associated field component,∏
b,α

Φ
⊗
(
n

(1)
ab,α+n

(2)
ab,α

)
ab,α

∏
β

Q
⊗
(
n

(1)
a,β+n

(2)
a,β

)
a,β

[∏
γ

Q̄
⊗
(
n̄

(1)
a,γ+n̄

(1)
a,γ

)
a,γ

]×b,α(I(1)
ab,α×I

(2)
ab,α

)
×β
(
I

(1)
a,β×I

(2)
a,β

)

×b,α
(
J

(1)
ba,α×J

(2)
ba,α

)
×γ
(
J̄

(1)
a,γ×J̄

(2)
a,γ

)
(A.3.4)

We have in fact

(
σ(1)
a × σ(2)

a

)×b,αJ(1)
ba,α×γ J̄

(1)
a,γ×b,αJ

(2)
ba,α×γ J̄

(2)
a,γ

×b,αI
(1)
ab,α×βI

(1)
a,β×b,αI

(2)
ab,α×βI

(2)
a,β

=
(
λ−1
a+

(
σ(1)
a × σ(2)

a

)
λ−1
a−

)×b,α(J(1)
ba,α×J

(2)
ba,α

)
×γ
(
J̄

(1)
a,γ×J̄

(2)
a,γ

)
×b,α

(
I

(1)
ab,α×I

(2)
ab,α

)
×β
(
I

(1)
a,β×I

(2)
a,β

)
(A.3.5)

The purpose of λa− and λa+ is therefore to change the embedding into [na] corresponding to

the ordering of the upper (lower) U(Na) indices of the fields coming into (departing from) node

a, eq. (3.1.9) (eq. (3.1.10)). It can be seen that the index structure of the RHS of (A.3.5) now

matches the one in (A.3.4). Inserting (A.3.5) into (A.3.1), we then obtain

OQ(~n1,~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2)) = OQ(~n1+2, ~s
(1) ∪ ~s (2), ~λ−1

+

(
~σ(1) × ~σ(2)

)
~λ−1
− ) (A.3.6)

where

~n1+2 = ∪a
{
∪b,α {n

(1)
ab,α, n

(2)
ab,α};∪β {n

(1)
a,β, n

(2)
a,β};∪γ {n̄

(1)
a,γ , n̄

(2)
a,γ}

}
,

~s (1) ∪ ~s (2) = ∪a{∪β{sss
(1)
a,β, sss

(2)
a,β} ; ∪γ{s̄̄s̄s(1)

a,γ , s̄̄s̄s
(2)
a,γ}} , (A.3.7)

~λ−1
+

(
~σ(1) × ~σ(2)

)
~λ−1
− = ∪a{λ−1

a+

(
σ(1)
a × σ(2)

a

)
λ−1
a− }

2) Using the inversion formula

In this step we are going to use eq. (A.3.6) to write a first expression for the GLLL(1),LLL(2),LLL(3)

coefficients. Let us start form the product OQ(LLL(1))OQ(LLL(2)), that we expand as

OQ(LLL(1))OQ(LLL(2))

=
∑

~s (1),~s (2)

∑
~σ(1),~σ(2)

χQ(LLL(1), ~s (1), ~σ(1))χQ(LLL(2), ~s (2), ~σ(2))OQ(~n1, ~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2))

(A.3.8)

157



APPENDIX A. QUIVER CHARACTERS AND CORRELATORS: PROOFS

Plugging eq. (A.3.6) into this equation we get

OQ(LLL(1))OQ(LLL(2)) =
∑

~s (1),~s (2)

∑
~σ(1),~σ(2)

χQ(LLL(1), ~s (1), ~σ(1))χQ(LLL(2), ~s (2), ~σ(2))

×OQ(~n1+2, ~s
(1) ∪ ~s (2), ~λ−1

+

(
~σ(1) × ~σ(2)

)
~λ−1
− )

(A.3.9)

We now use the inversion formula (3.2.32) to get

OQ(LLL(1))OQ(LLL(2)) =
∑
LLL(3)

 ∑
~s (1),~s (2)

∑
~σ(1),~σ(2)

χQ(LLL(1), ~s (1), ~σ(1))χQ(LLL(2), ~s (2), ~σ(2))

× χQ(LLL(3), ~s (1) ∪ ~s (2), ~λ−1
+

(
~σ(1) × ~σ(2)

)
~λ−1
− )

}
OQ(LLL(3))

(A.3.10)

from which we obtain an expression for GLLL(1),LLL(2),LLL(3) :

GLLL(1),LLL(2),LLL(3)

=
∑

~s (1),~s (2)

∑
~σ (1),~σ (2)

χQ(LLL(1), ~s (1), ~σ (1))χQ(LLL(2), ~s (2), ~σ (2))χQ(LLL(3), ~s (1) ∪ ~s (2), ~λ−1
+

(
~σ (1) × ~σ (2)

)
~λ−1
− )

= cLLL(1) cLLL(2) cLLL(3)

∑
~s (1),~s (2)

∑
~σ(1),~σ(2)

∏
a

DR
(1)
a

i
(1)
a ,j

(1)
a

(σ(1)
a )DR

(2)
a

i
(2)
a ,j

(2)
a

(σ(2)
a )DR

(3)
a

i
(3)
a ,j

(3)
a

(λ−1
a+

(
σ(1)
a × σ(2)

a

)
λ−1
a− )

×

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

B
R

(p)
a →∪b,αr

(p)
ba,α∪γ r̄

(p)
a,γ ;ν

+(p)
a

i
(p)
a →∪b,αl

(p)
ba,α∪γ l̄

(p)
a,γ

 (A.3.11)

×

∏
β

C
r
(1)
a,β ,S

(1)
a,β ,l

(1)
a,β

sss
(1)
a,β

C
r
(2)
a,β ,S

(2)
a,β ,l

(2)
a,β

sss
(2)
a,β

C
r
(3)
a,β ,S

(3)
a,β ,l

(3)
a,β

sss
(1)
a,β∪sss

(2)
a,β

(∏
γ

C
s̄̄s̄s

(1)
a,γ

r̄
(1)
a,γ ,S̄

(1)
a,γ ,l̄

(1)
a,γ

C
s̄̄s̄s

(2)
a,γ

r̄
(2)
a,γ ,S̄

(2)
a,γ ,l̄

(2)
a,γ

C
s̄̄s̄s

(1)
a,γ∪s̄̄s̄s

(2)
a,γ

r̄
(3)
a,γ ,S̄

(3)
a,γ ,l̄

(3)
a,γ

)

3) Fusing of gauge edges

At this stage the chiral ring structure constants are given as a product of three definite quantities,

i.e. three quiver characters. We now proceed to fuse together their gauge edges, by using

standard representation theory identities. Let us then focus on the permutation dependent
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piece of eq. (A.3.11), namely

∑
~σ(1),~σ(2)

∏
a

DR
(1)
a

i
(1)
a ,j

(1)
a

(σ(1)
a )DR

(2)
a

i
(2)
a ,j

(2)
a

(σ(2)
a )DR

(3)
a

i
(3)
a ,j

(3)
a

(λ−1
a+

(
σ(1)
a × σ(2)

a

)
λ−1
a− )

=
∑

~σ(1),~σ(2)

∏
a

DR
(1)
a

i
(1)
a ,j

(1)
a

(σ(1)
a )DR

(2)
a

i
(2)
a ,j

(2)
a

(σ(2)
a )DR

(3)
a

i
(3)
a ,h

(3)
a

(λ−1
a+)DR

(3)
a

h
(3)
a ,g

(3)
a

(σ(1)
a × σ(2)

a )DR
(3)
a

g
(3)
a ,j

(3)
a

(λ−1
a− )

(A.3.12)

Using the identity

DR
ij(σ

(1) × σ(2)) =
∑

r1,r2, µ

BR→r1,r2;µ
i→l1,l2 BR→r1,r2;µ

j→k1,k2
Dr1
l1,k1

(σ(1))Dr2
l2,k2

(σ(2)) (A.3.13)

we can write∑
~σ(1),~σ(2)

∏
a

DR
(1)
a

i
(1)
a ,j

(1)
a

(σ(1)
a )DR

(2)
a

i
(2)
a ,j

(2)
a

(σ(2)
a )DR

(3)
a

i
(3)
a ,h

(3)
a

(λ−1
a+)DR

(3)
a

h
(3)
a ,g

(3)
a

(σ(1)
a × σ(2)

a )DR
(3)
a

g
(3)
a ,j

(3)
a

(λ−1
a− )

=
∑

~σ(1),~σ(2)

∏
a

DR
(1)
a

i
(1)
a ,j

(1)
a

(σ(1)
a )DR

(2)
a

i
(2)
a ,j

(2)
a

(σ(2)
a )DR

(3)
a

i
(3)
a ,h

(3)
a

(λ−1
a+)DR

(3)
a

g
(3)
a ,j

(3)
a

(λ−1
a− )

×

 ∑
S

(1)
a ,S

(2)
a , µa

BR
(3)
a →S

(1)
a ,S

(2)
a ;µa

h
(3)
a →l

(1)
a ,l

(2)
a

BR
(3)
a →S

(1)
a ,S

(2)
a ;µa

g
(3)
a →k

(1)
a ,k

(2)
a

DS
(1)
a

l
(1)
a ,k

(1)
a

(σ(1)
a )DS

(2)
a

l
(2)
a ,k

(2)
a

(σ(2)
a )


=
∏
a

n
(1)
a !n

(2)
a !

d(R
(1)
a ) d(R

(2)
a )

DR
(3)
a

i
(3)
a ,h

(3)
a

(λ−1
a+)DR

(3)
a

g
(3)
a ,j

(3)
a

(λ−1
a− ) (A.3.14)

×
∑

S
(1)
a ,S

(2)
a , µa

BR
(3)
a →S

(1)
a ,S

(2)
a ;µa

h
(3)
a →l

(1)
a ,l

(2)
a

BR
(3)
a →S

(1)
a ,S

(2)
a ;µa

g
(3)
a →k

(1)
a ,k

(2)
a

2∏
q=1

δ
R

(q)
a ,S

(q)
a
δ
i
(q)
a ,l

(q)
a
δ
j
(q)
a ,k

(q)
a

=
∏
a

n
(1)
a !n

(2)
a !

d(R
(1)
a ) d(R

(2)
a )

×
∑
µa

(
DR

(3)
a

i
(3)
a ,h

(3)
a

(λ−1
a+)BR

(3)
a →R

(1)
a ,R

(2)
a ;µa

h
(3)
a →i

(1)
a ,i

(2)
a

)(
DR

(3)
a

j
(3)
a ,g

(3)
a

(λa−)BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

)

where in the second equality we used

∑
σ∈Sn

DR
ij(σ)DS

kl(σ) =
n!

d(R)
δR,S δi,k δj,l (A.3.15)

It is important to stress that all the steps that we will be describing in this appendix can be also

interpreted diagrammatically. For example, (A.3.14) can be understood trough the diagram in

Fig. 44.
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Figure 44: Diagrammatic interpretation of eq. (A.3.14).

Similar pictures can be drawn for all the following steps. In equation (A.3.14) (or equivalently,

in Fig. 44) we see the emergence of the first of the selection rules already anticipated in section

3.4. This selection rule is expressed by the terms

BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

h
(3)
a →i

(1)
a ,i

(2)
a

, BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

(A.3.16)

These coefficients are non-zero only if the restriction of the Sn1+n2 representation R
(3)
a to Sn1 ×

Sn2 contains the representation R
(1)
a ⊗R(2)

a , ∀ a.

4) Fusing of the quark/antiquark edges

In this step we will perform the fusing of the edges corresponding to the fundamental/anti-

fundamental matter fields. This involves summing over the quark/antiquark states sss
(1,2)
a,β and

s̄̄s̄s
(1,2)
a,γ . Let us then turn to the Clebsch-Gordan parts of equation (A.3.11), that is

∑
sss

(1)
a,β , sss

(2)
a,β

C
r
(1)
a,β ,S

(1)
a,β ,l

(1)
a,β

sss
(1)
a,β

C
r
(2)
a,β ,S

(2)
a,β ,l

(2)
a,β

sss
(2)
a,β

C
r
(3)
a,β ,S

(3)
a,β ,l

(3)
a,β

sss
(1)
a,β∪sss

(2)
a,β

(A.3.17)

and ∑
s̄̄s̄s

(1)
a,γ , s̄̄s̄s

(2)
a,γ

C
s̄̄s̄s

(1)
a,γ

r̄
(1)
a,γ ,S̄

(1)
a,γ ,l̄

(1)
a,γ

C
s̄̄s̄s

(2)
a,γ

r̄
(2)
a,γ ,S̄

(2)
a,γ ,l̄

(2)
a,γ

C
s̄̄s̄s

(1)
a,γ∪s̄̄s̄s

(2)
a,γ

r̄
(3)
a,γ ,S̄

(3)
a,γ ,l̄

(3)
a,γ

(A.3.18)

Consider for example the former. Aiming at simplifying notation, we rewrite it here dropping

the a, β labels: ∑
sss(1), sss(2)

Cr
(1),S(1),l(1)

sss(1) Cr
(2),S(2),l(2)

sss(2) Cr
(3),S(3),l(3)

sss(1)∪sss(2) (A.3.19)
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We can expand this quantity as∑
sss(1), sss(2)

Cr
(1),S(1),l(1)

sss(1) Cr
(2),S(2),l(2)

sss(2) Cr
(3),S(3),l(3)

sss(1)∪sss(2)

=
∑

sss(1), sss(2)

〈r(1), S(1), l(1)|sss(1)〉 〈r(2), S(2), l(2)|sss(2)〉 〈r(3), S(3), l(3)|sss(1) ∪ sss(2)〉

=
∑

sss(1), sss(2)

(
〈r(1), S(1), l(1)| ⊗ 〈r(2), S(2), l(2)|

) (
|sss(1)〉 ⊗ |sss(2)〉

)
〈r(3), S(3), l(3)|sss(1) ∪ sss(2)〉

= 〈r(1), S(1), l(1)| ⊗ 〈r(2), S(2), l(2)|

 ∑
sss(1), sss(2)

|sss(1)〉 ⊗ |sss(2)〉 〈sss(1)| ⊗ 〈sss(2)|

 |r(3), S(3), l(3)〉

=
(
〈r(1), S(1), l(1)| ⊗ 〈r(2), S(2), l(2)|

)
|r(3), S(3), l(3)〉

= 〈{r(1), r(2)}, {S(1), S(2)}, {l(1), l(2)}|r(3), S(3), l(3)〉 (A.3.20)

Since the generic state |r, S, l〉 ∈ V Sn
r ⊗ V

U(F )
r is by definition the tensor product |r, S, l〉 =

|r, S〉 ⊗ |r, l〉, we may separately decompose the two states |r(3), S(3), l(3)〉 and |{r(1), r(2)},
{S(1), S(2)}, {l(1), l(2)}〉 as follows. We factorise the former according to the decomposition

(3.2.3), which in this case reads

V
S
n(3)

r(3) =
⊕

u(1)`n(1)

⊕
u(2)`n(2)

(
V
S
n(1)

u(1) ⊗ V
S
n(2)

u(2)

)
⊗ V u(1),u(2)

r(3) (A.3.21)

We then write∣∣∣r(3), S(3), l(3)
〉

=
∣∣∣r(3), S(3)

〉
⊗
∣∣∣r(3), l(3)

〉
=

∑
u(1), u(2)

∑
p(1), p(2)

∑
ν

Br(3)→u(1),u(2);ν

l(3)→p(1),p(2)

∣∣∣r(3), S(3)
〉
⊗
∣∣∣{u(1), u(2)}, {p(1), p(2)}; ν

〉

=
∑

u(1), u(2)

∑
p(1), p(2)

∑
ν

Br(3)→u(1),u(2);ν

l(3)→p(1),p(2)

∣∣∣{u(1), u(2), r(3)}, {p(1), p(2)}, S(3) ; ν
〉

(A.3.22)

For the latter we use instead the the unitary group decomposition (3.2.9), which in this case

takes the explicit form

V
U(F )

r(1) ⊗ V U(F )

r(2) =
⊕

u(3)`n(3)

V
U(F )

u(3) ⊗ V
r(1),r(2)

u(3) , n(3) = n(1) + n(2) (A.3.23)
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We therefore have∣∣∣{r(1), r(2)}, {S(1), S(2)}, {l(1), l(2)}
〉

=
∣∣∣{r(1), r(2)}, {S(1), S(2)}

〉
⊗
∣∣∣{r(1), r(2)}, {l(1), l(2)}

〉
=
∑
u(3)

∑
P (3)

∑
ν̃

Cu
(3);ν̃→r(1),r(2)

P (3)→S(1),S(2)

∣∣∣u(3), P (3) ; ν̃
〉
⊗
∣∣∣{r(1), r(2)}, {l(1), l(2)}

〉

=
∑
u(3)

∑
P (3)

∑
ν̃

Cu
(3);ν̃→r(1),r(2)

P (3)→S(1),S(2)

∣∣∣{r(1), r(2), u(3)}, {l(1), l(2)}, P (3) ; ν̃
〉

(A.3.24)

The vector spaces V u(1),u(2)

r(3) in (A.3.21) and V r(1),r(2)

u(3) in (A.3.23) are both multiplicity vector

spaces. We recall that dim(V r(1),r(2)

r(3) ) = g(r(1), r(2); r(3)), where g is the Littlewood-Richardson

coefficient. Notice that both the states on the far RHSs of (A.3.22) and (A.3.24) live in the

tensor space W, where

W = V
S
n(1)

r(1) ⊗ V
S
n(2)

r(2) ⊗ V U(F )

r(3) ⊗ V r(1),r(2)

r(3) (A.3.25)

Taking the scalar product of (A.3.22) and (A.3.23) then gives

〈{r(1), r(2)}, {S(1), S(2)}, {l(1), l(2)}|r(3), S(3), l(3)〉

=

 3∏
k=1

∑
u(k)

  2∏
q=1

∑
p(q)

 ∑
P (3)

∑
ν, ν̃

Br(3)→u(1),u(2);ν

l(3)→p(1),p(2) Cu
(3);ν̃→r(1),r(2)

P (3)→S(1),S(2)

×

(
3∏

k=1

δr(k), u(k)

) 2∏
q=1

δl(q), p(q)

 δS(3), P (3) δν, ν̃

=
∑
ν

Br(3)→r(1),r(2);ν

l(3)→l(1),l(2) Cr
(3);ν→r(1),r(2)

S(3)→S(1),S(2) (A.3.26)

We conclude that∑
sss(1), sss(2)

Cr
(1),S(1),l(1)

sss(1) Cr
(2),S(2),l(2)

sss(2) Cr
(3),S(3),l(3)

sss(1)∪sss(2) =
∑
ν

Br(3)→r(1),r(2);ν

l(3)→l(1),l(2) Cr
(3);ν→r(1),r(2)

S(3)→S(1),S(2) (A.3.27)

The diagrammatic interpretation of eq. (A.3.27) is drawn in Fig. 45.
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Figure 45: Diagrammatic interpretation of eq. (A.3.27).

Reintroducing the a, β notation, we then obtain

∑
sss

(1)
a,β , sss

(2)
a,β

C
r
(1)
a,β ,S

(1)
a,β ,l

(1)
a,β

sss
(1)
a,β

C
r
(2)
a,β ,S

(2)
a,β ,l

(2)
a,β

sss
(2)
a,β

C
r
(3)
a,β ,S

(3)
a,β ,l

(3)
a,β

sss
(1)
a,β∪sss

(2)
a,β

=
∑
νa,β

B
r
(3)
a,β→r

(1)
a,β ,r

(2)
a,β ;νa,β

l
(3)
a,β→l

(1)
a,β ,l

(2)
a,β

C
r
(3)
a,β ;νa,β→r

(1)
a,β ,r

(2)
a,β

S
(3)
a,β→S

(1)
a,β ,S

(2)
a,β

(A.3.28)

Similarly, we can show that for (A.3.18)

∑
s̄̄s̄s

(1)
a,γ , s̄̄s̄s

(2)
a,γ

C
s̄̄s̄s

(1)
a,γ

r̄
(1)
a,γ ,S̄

(1)
a,γ ,l̄

(1)
a,γ

C
s̄̄s̄s

(2)
a,γ

r̄
(2)
a,γ ,S̄

(2)
a,γ ,l̄

(2)
a,γ

C
s̄̄s̄s

(1)
a,γ∪s̄̄s̄s

(2)
a,γ

r̄
(3)
a,γ ,S̄

(3)
a,γ ,l̄

(3)
a,γ

=
∑
ν̄a,γ

B
r̄
(3)
a,γ→r̄

(1)
a,γ ,r̄

(2)
a,γ ;ν̄a,γ

l̄
(3)
a,γ→l̄

(1)
a,γ ,l̄

(2)
a,γ

C
r̄
(3)
a,γ ;ν̄a,γ→r̄(1)

a,γ ,r̄
(2)
a,γ

S̄
(3)
a,γ→S̄

(1)
a,γ ,S̄

(2)
a,γ

(A.3.29)

From eq. (A.3.28) and (A.3.29) (or equivalently by considering Fig. 45) one can see the manifes-

tation of another selection rule for the holomorphic GIO ring structure constants. In particular,

the coefficients B
r
(3)
a,β→r

(1)
a,β ,r

(2)
a,β ;νa,β

l
(3)
a,β→l

(1)
a,β ,l

(2)
a,β

are identically zero if the restriction of the S
n

(1)
a,β+n

(2)
a,β

represen-

tation r
(3)
a,β to S

n
(1)
a,β

× S
n

(2)
a,β

does not contain the representation r
(1)
a,β ⊗ r

(2)
a,β. A similar condition

holds for the coefficients B
r̄
(3)
a,γ→r̄

(1)
a,γ ,r̄

(2)
a,γ ;ν̄a,γ

l̄
(3)
a,γ→l̄

(1)
a,γ ,l̄

(2)
a,γ

.

Inserting eqs. (A.3.14), (A.3.28) and (A.3.29) into (A.3.11) we then get

GLLL(1),LLL(2),LLL(3) = cLLL(1) cLLL(2) cLLL(3)

∏
a

n
(1)
a !n

(2)
a !

d(R
(1)
a ) d(R

(2)
a )

×
∑
µa

(
DR

(3)
a

i
(3)
a ,h

(3)
a

(λ−1
a+)BR

(3)
a →R

(1)
a ,R

(2)
a ;µa

h
(3)
a →i

(1)
a ,i

(2)
a

)(
DR

(3)
a

j
(3)
a ,g

(3)
a

(λa−)BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

)

×

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

B
R

(p)
a →∪b,αr

(p)
ba,α∪γ r̄

(p)
a,γ ;ν

+(p)
a

i
(p)
a →∪b,αl

(p)
ba,α∪γ l̄

(p)
a,γ


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×

∏
β

∑
νa,β

B
r
(3)
a,β→r

(1)
a,β ,r

(2)
a,β ;νa,β

l
(3)
a,β→l

(1)
a,β ,l

(2)
a,β

C
r
(3)
a,β ;νa,β→r

(1)
a,β ,r

(2)
a,β

S
(3)
a,β→S

(1)
a,β ,S

(2)
a,β



×

∏
γ

∑
ν̄a,γ

B
r̄
(3)
a,γ→r̄

(1)
a,γ ,r̄

(2)
a,γ ;ν̄a,γ

l̄
(3)
a,γ→l̄

(1)
a,γ ,l̄

(2)
a,γ

C
r̄
(3)
a,γ ;ν̄a,γ→r̄(1)

a,γ ,r̄
(2)
a,γ

S̄
(3)
a,γ→S̄

(1)
a,γ ,S̄

(2)
a,γ

 (A.3.30)

5) Fusing the bi-fundamental edges and factorising the ± nodes

The two tasks of this last step are to fuse the edges corresponding to the bi-fundamental fields

and to factorise the positive and negative node of the split-node quiver. We start by considering

the product

DR
(3)
a

j
(3)
a ,g

(3)
a

(λa−)BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

 (A.3.31)

which appears in eq. (A.3.30). We want to decompose this term into a product of branching

coefficients of the form B
r
(3)
ab,α→r

(1)
ab,α,r

(2)
ab,α

l
(3)
ab,α→l

(1)
ab,α,l

(2)
ab,α

.

First we notice that the equivariance property of the branching coefficients

DR
k,j(×aγa)B

R→∪ara;νa
j→∪ala =

(∏
a

Dra
l′a,la

(γa)

)
BR→∪ara;νa
k→∪al′a

(A.3.32)

also implies

BR→∪ara;νa
i→∪ala = DR

i,k(×aγa)

(∏
a

Dra
la,l′a

(γa)

)
BR→∪ara;νa
k→∪al′a

(A.3.33)

for a collection of permutations ∪a{γa ∈ Sna}, where each ra is a partition of the integer na.

We can use this identity to write (A.3.31) as

DR
(3)
a

j
(3)
a ,g

(3)
a

(λa−)BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β


=

(
DR

(1)
a

j
(1)
a ,k

(1)
a

(×b,αη
(1)
ab,α × 1)DR

(2)
a

j
(2)
a ,k

(2)
a

(×b,αη
(2)
ab,α × 1)

× DR
(3)
a

j
(3)
a ,k

(3)
a

(
λa−

(
×b,αη

(1)
ab,α × 1×b,α η

(2)
ab,α × 1

))
BR

(3)
a →R

(1)
a ,R

(2)
a ;µa

k
(3)
a →k

(1)
a ,k

(2)
a

)

×

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

 (A.3.34)

where (×b,αη
(p)
ab,α × 1) ∈ S

n
(p)
a

and η
(p)
ab,α ∈ Sn(p)

ab,α

, for p = 1, 2.
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Let us now go back to the equation defining the λa− permutations, (A.3.2). It is easy to see

that

λa−

(
×b,αη

(1)
ab,α ×β ρ

(1)
a,β ×b,α η

(2)
ab,α ×β ρ

(2)
a,β

)
=
[
×b,α

(
η

(1)
ab,α × η

(2)
ab,α

)
×β
(
ρ

(1)
a,β × ρ

(2)
a,β

)]
λa−

(A.3.35)

We can use this identity in (A.3.34) to get

DR
(3)
a

j
(3)
a ,g

(3)
a

(λa−)BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β


=

(
DR

(1)
a

j
(1)
a ,k

(1)
a

(×b,αη
(1)
ab,α × 1)DR

(2)
a

j
(2)
a ,k

(2)
a

(×b,αη
(2)
ab,α × 1)

× DR
(3)
a

j
(3)
a ,k

(3)
a

((
×b,α

(
η

(1)
ab,α × η

(2)
ab,α

)
× 1
)
λa−

)
BR

(3)
a →R

(1)
a ,R

(2)
a ;µa

k
(3)
a →k

(1)
a ,k

(2)
a

)

×

 3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

 (A.3.36)

Next we use the identity (A.3.32) in eq. (A.3.36) as follows, for p = 1, 2:

DR
(p)
a

j
(p)
a ,k

(p)
a

(×b,αη
(p)
ab,α × 1)B

R
(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

=

∏
b,α

D
r
(p)
ab,α

l
(p)
ab,α,q

(p)
ab,α

(
η

(p)
ab,α

) ∏
β

δ
l
(p)
a,β ,q

(p)
a,β

B
R

(p)
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(p)
ab,α∪βr

(p)
a,β ;ν
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a
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a →∪b,αq
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D
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η
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) B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

k
(p)
a →∪b,αq

(p)
ab,α∪β l
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a,β

(A.3.37)

Similarly, we use (A.3.32) also for the term

DR
(3)
a

j
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a ,k

(3)
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×b,α

(
η

(1)
ab,α × η

(2)
ab,α
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B
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ab,α∪βr

(3)
a,β ;ν

−(3)
a

j
(3)
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(A.3.38)
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Putting these last equations together, we get to
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(A.3.39)

Notice that the quantity on the LHS above is independent of the permutations η. We can

then sum over all possible permutations η on the RHS, provided we divide by the number of

permutations themselves: we thus obtain
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(A.3.40)

The quantity inside the curvy brackets above has the same structure of the far LHS of eq.

(A.3.14). Performing similar steps to the ones presented in that equation we obtain, dropping

the a, b, α notation for improved clarity∑
η(1), η(2)

Dr(1)

l(1),q(1)

(
η(1)
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q(3)→q(1),q(2) (A.3.41)
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Inserting this identity in (A.3.40) we get
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(A.3.42)

Using the substitutions k
(3)
a → t

(3)
a and g

(3)
a → k

(3)
a we can then write
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(A.3.43)

We see here the manifestation of the last selection rule, enforced by the branching coefficients
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contains the representation r
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With the identity (A.3.43) we have achieved a factorisation of the branching coefficients over

all the nodes of the quiver. Moreover, the positive and negative node of every split-node a

are now disentangled. There are no symmetric group states q
(i)
ab,α (i = 1, 2, 3), associated with

the negative node of the split-node a, that mix with symmetric group states l
(i)
ab,α (i = 1, 2, 3),

associated with its positive node.

167



APPENDIX A. QUIVER CHARACTERS AND CORRELATORS: PROOFS

Plugging eq. (A.3.43) into (A.3.30), we get
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The latter equation can be finally rewritten as
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(A.3.45)

The last equation shows that, at each node a in the quiver, the holomorphic GIO ring structure

constant factorises into two components, one associated with the positive node and one asso-
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ciated with the negative node of the corresponding split node a. Figure 34 shows a pictorial

interpretation of this formula.

A.4 Quiver restricted Schur polynomials for an N = 2 SQCD:

~n = (2, 2, 2) field content

In this appendix we will summarise the main steps which led to the expression of the operators in

(3.5.43). In particular we will derive all the fourteen different quiver characters, corresponding

to the set of labels LLLi described in (3.5.36), i = 1, 2, ..., 14. The operators (3.5.43) are then

readily obtained by using the definition (3.2.19).

We start from O(LLL1) and O(LLL2). Their quiver characters can be immediately computed to

be respectively

χ(LLL1, ~s, σ) =
1√
4!
C

i j

s1,s2 C
p q

s̄1,s̄2 , χ(LLL2, ~s, σ) =
1√
4!

sign(σ)C
i
j

s1,s2 C
p
q

s̄1,s̄2 (A.4.1)

Here we used the Clebsch-Gordan coefficients already derived in (3.5.29). We will keep using

this notation for the rest of this appendix.

Let us now turn to the three dimensional representation of S4. We choose a basis

{e1, e2, e3} in which the three Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) of S4

have the eigenvalues in table 3.

(12) (13) + (23) (14) + (24) + (34)

e1 1 -1 2

e2 -1 1 2

e3 1 2 -1

Table 3: Eigenvalues of the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) on our chosen
basis {e1, e2, e3} for the standard representation of S4.

Alternatively, we can specify our basis choice with the standard Young tableaux

e1 ∼ 1 2 4
3

, e2 ∼ 1 3 4
2

, e3 ∼ 1 2 3
4

(A.4.2)

We now consider the group restriction S4|S2×S2
= {(1), (12), (34), (12)(34)}. Under this restric-

tion, the decomposes as∣∣∣∣
S2×S2

= ⊗ ⊕ ⊗ ⊕ ⊗ (A.4.3)

The branching coefficients for this group reduction will then be the matrix elements of the
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orthogonal operator B such that

B−1D ( (1) )B =

 1 0 0

0 1 0

0 0 1

 , B−1D ( (12) )B =

 1 0 0

0 −1 0

0 0 1

 ,

B−1D ( (34) )B =

 1 0 0

0 1 0

0 0 −1

 , B−1D ( (12)(34) )B =

 1 0 0

0 −1 0

0 0 −1


(A.4.4)

In our basis choice (A.4.2) the matrix B reads

B =
1√
3


√

2 0 −1

0
√

3 0

1 0
√

2

 (A.4.5)

The branching coefficient for (A.4.3) are then

B → ,
1→1,1 =

√
2
3 , B → ,

1→1,1 = 0 , B → ,
1→1,1 = − 1√

3
,

B → ,
2→1,1 = 0 , B → ,

2→1,1 = 1 , B → ,
2→1,1 = 0 ,

B → ,
3→1,1 = 1 , B → ,

3→1,1 = 0 , B → ,
3→1,1 =

√
2
3

(A.4.6)

We now define the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 , P → ,

i,j = B → ,
i→1,1 B → ,

j→1,1 ,

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 (A.4.7)

which project the of S4 on the ⊗ , on the ⊗ and on the ⊗ of S2 × S2

respectively. We also define a fourth operator, that we label T , as

Ti,j = B → ,
i→1,1 B → ,

j→1,1 (A.4.8)
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These matrices explicitly read

P → , = 1
3

 2 0
√

2

0 0 0√
2 0 1

 , P → , =

 0 0 0

0 1 0
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 ,

P → , = 1
3

 1 0 −
√

2

0 0 0

−
√

2 0 2

 , T = 1
3

 −
√

2 0 2

0 0 0

−1 0
√

2


(A.4.9)

The quiver character for O(LLL3), O(LLL4), O(LLL5), O(LLL6), O(LLL7) are then

χ(LLL3, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i j

s1,s2 C
p q

s̄1,s̄2 ,

χ(LLL4, ~s, σ) =
1

2
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2
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[
D (σ)P → ,

]
C

i j

s1,s2 C
p q

s̄1,s̄2 ,
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[
D (σ)P → ,
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s1,s2 C
p
q

s̄1,s̄2 , (A.4.10)

χ(LLL6, ~s, σ) =
1

2
√

2
Tr
[
D (σ)T

]
C

i j

s1,s2 C
p
q

s̄1,s̄2 ,
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2
√

2
Tr
[
D (σ)T t

]
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p q
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Here T t is the transpose of the matrix T in (A.4.8).

We now focus on the representation of S4. This representation can be obtained by

tensoring together the standard and the sign representation of S4:

= ⊗ (A.4.11)

In the following, we will continue to use (A.4.2) as our basis choice for the standard representation

. Under the group restriction S4|S2×S2
= {(1), (12), (34), (12)(34)}, the decomposes as

∣∣∣∣∣∣
S2×S2

= ⊗ ⊕ ⊗ ⊕ ⊗ (A.4.12)

As in the previous instance, the branching coefficients for this group reduction are the matrix
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elements of the orthogonal operator B, such that

B−1D ( (1) )B =

 1 0 0

0 1 0

0 0 1

 , B−1D ( (12) )B =

 1 0 0

0 −1 0

0 0 −1

 ,

B−1D ( (34) )B =

 −1 0 0

0 1 0

0 0 −1

 , B−1D ( (12)(34) )B =

 −1 0 0

0 −1 0

0 0 1


(A.4.13)

In our basis choice, the matrix B reads

B =
1√
3

 0 −1
√

2√
3 0 0

0
√

2 1

 (A.4.14)

The branching coefficient for (A.4.12) are thus

B → ,
1→1,1 = 0 , B → ,

1→1,1 = − 1√
3
, B → ,

1→1,1 =
√

2
3 ,

B → ,
2→1,1 = 1 , B → ,

2→1,1 = 0 , B → ,
2→1,1 = 0 ,

B → ,
3→1,1 = 0 , B → ,

3→1,1 =
√

2
3 , B → ,

3→1,1 = 1√
3

(A.4.15)

Closely following the procedure of the previous paragraph, we define the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 , P → ,

i,j = B → ,
i→1,1 B → ,

j→1,1 ,

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 (A.4.16)

These operators project the of S4 on the ⊗ , on the ⊗ and on the ⊗ of S2×S2

respectively. We also introduce the operator V :

Vi,j = B → ,
i→1,1 B → ,

j→1,1 (A.4.17)
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These matrices explicitly read

P → , =

 0 0 0

0 1 0

0 0 0

 , P → , = 1
3

 1 0 −
√

2

0 0 0

−
√

2 0 2

 ,

P → , = 1
3

 2 0
√

2

0 0 0

−
√

2 0 1

 , V = 1
3

 −
√

2 0 −1

0 0 0

2 0
√

2


(A.4.18)

Notice that V = T t, where T is the matrix defined in (A.4.9). The quiver character for O(LLL8),

O(LLL9), O(LLL10), O(LLL11), O(LLL12) are therefore

χ(LLL8, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2 C
p
q

s̄1,s̄2 ,

χ(LLL9, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i j

s1,s2 C
p q

s̄1,s̄2 , (A.4.19)

χ(LLL10, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2 C
p
q

s̄1,s̄2 ,

χ(LLL11, ~s, σ) =
1

2
√

2
Tr
[
D (σ)V

]
C

i j

s1,s2 C
p
q

s̄1,s̄2 ,

χ(LLL12, ~s, σ) =
1

2
√

2
Tr
[
D (σ)V t

]
C

i
j

s1,s2 C
p q

s̄1,s̄2

Two operators still remain. They can be obtained by considering the S4 representation

branching ∣∣∣∣
S2×S2

= ⊗ ⊕ ⊗ (A.4.20)

The representation of S4 is really a representation of the quotient group S4/{(1),

(12)(34), (13)(24), (14)(23)}, which in turn is isomorphic to S3. This representation is thus

just the standard representation of S3 pulled back to S4 via this quotient [68]. We choose a

basis {e1, e2} in which the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) of S4

have the eigenvalues in table 4.

173



APPENDIX A. QUIVER CHARACTERS AND CORRELATORS: PROOFS

(12) (13) + (23) (14) + (24) + (34)

e1 1 -1 0

e2 -1 1 0

Table 4: Eigenvalues of the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) on our chosen
basis {e1, e2} for the two-dimensional representation of S4.

The standard Young tableaux labelling of this basis is

e1 ∼ 1 2
3 4

, e2 ∼ 1 3
2 4

(A.4.21)

An explicit representation of is therefore obtained by considering the set of matrices

D ( (1) ) = D ( (12)(34) ) = D ( (13)(24) ) = D ( (14)(23) ) =

(
1 0

0 1

)
,

D ( (12) ) = D ( (34) ) = D ( (1324) ) = D ( (1423) ) =

(
1 0

0 −1

)
,

D ( (13) ) = D ( (24) ) = D ( (1234) ) = D ( (1432) ) =

(
−1

2 −
√

3
2

−
√

3
2

1
2

)
,

D ( (23) ) = D ( (14) ) = D ( (1342) ) = D ( (1243) ) =

(
−1

2

√
3

2√
3

2
1
2

)
,

D ( (123) ) = D ( (243) ) = D ( (142) ) = D ( (134) ) =

(
−1

2 −
√

3
2√

3
2 −1

2

)
,

D ( (132) ) = D ( (143) ) = D ( (234) ) = D ( (124) ) =

(
−1

2

√
3

2

−
√

3
2 −1

2

)

(A.4.22)

With this basis choice, under the group restriction S4|S2×S2
= {(1), (12), (34), (12)(34)}, we have

D ( (1) ) =

(
1 0

0 1

)
, D ( (12) ) =

(
1 0

0 −1

)
,

D ( (34) ) =

(
1 0

0 −1

)
, D ( (12)(34) ) =

(
1 0

0 1

) (A.4.23)

The decomposition (A.4.20) is already manifest. The branching coefficients for this reduction

are then

B → ,
j→1,1 = δj,1 , B → ,

j→1,1 = δj,2 , j = 1, 2 (A.4.24)
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We can now write the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 −→ P → , =

(
1 0

0 0

)
,

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 −→ P → , =

(
0 0

0 1

) (A.4.25)

projecting the of S4 on the ⊗ and on the ⊗ of S2 × S2 respectively. The quiver

characters for the remaining two operators, O(LLL13) and O(LLL14), are then

χ(LLL13, ~s, σ) =
1

2
√

3
Tr
[
D (σ)P → ,

]
C

i j

s1,s2 C
p q

s̄1,s̄2 ,

χ(LLL14, ~s, σ) =
1

2
√

3
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2 C
p
q

s̄1,s̄2 (A.4.26)
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Appendix B

Proofs and Derivation of the

Counting Formulae

B.1 Generating function

B.1.1 Derivation of the generating function

In this appendix we will derive eq. (2.2.25). Our starting point will be eq. (2.2.14):

Z({xab,α}, {Ta,β}, {T̄a,γ}) =
∑
{nab,α}

∑
{na,β}
{n̄a,γ}

∏
a,b,α

x
nab,α
ab,α

 ∑
{

Ra`na
l(Ra)≤Na

}
∑

{rab,α`nab,α}

∑
{ra,β`na,β}
{r̄a,γ`n̄a,γ}

(B.1.1)

∏
a

g(∪b,αrab,α ∪β ra,β;Ra) g(∪b,αrba,α ∪γ r̄a,γ ;Ra)

∏
β

χra,β (Ta,β)

(∏
γ

χr̄a,γ (T̄a,γ)

)

in which we will take the large N limit, in such a way that we will be allowed to drop the

constraints on the sums over Ra. The derivation will involve well known symmetric group

identities. In particular, we will use the equation

χR(U) =
∑
σ∈Sn

χR(σ)

n!

∏
i

(TrU i)[σ](i) , U ∈ U(F ) (B.1.2a)

where R is a partition of n, [σ](i) is the number of cycles of length i in the conjugacy class [σ]

of the permutation σ ∈ Sn and Tr(U) is the trace taken in the fundamental representation of

U(F ). We will also use the formulae∑
R`n

χR(σ)χR(τ) =
∑
γ∈Sn

δ(γσγ−1τ−1) , (B.1.2b)
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and

g(∪ara;R) =

(∏
a

∑
σa

)
χR(×aσa)

∏
a

χra(σa)

na!
(B.1.2c)

Here ra are partitions of na and δ(σ) is the symmetric group delta function, which equals one

iff σ is the identity permutation. With these relations we can rewrite Z in (B.1.1) as

Z =
∑
~n

∑
~σ, ~σ′

∏
a

∏
b,α

∑
rab,α

x
∑
i i[σab,α](i)

ab,α

(nab,α!)2
χrab,α(σab,α)χrab,α(σ′ab,α)



×

∏
β

∑
ra,β

∏
i(Tr T i

a,β)[σa,β ](i)

(na,β!)2
χra,β (σa,β)χra,β (σ′a,β)



×

∏
γ

∑
ra,γ

∏
i(Tr T̄ i

a,γ)[σ̄a,γ ](i)

(n̄a,γ !)2
χr̄a,γ (σ̄a,γ)χr̄a,γ (σ̄′a,γ)


×
∑
Ra

χRa(×b,ασab,α ×β σ′a,β)χRa(×b,ασ′ba,α ×γ σ̄′a,γ) (B.1.3)

where we defined

~σ = ∪a,b,α{σab,α} ∪a,β {σa,β} ∪a,γ {σ̄a,γ} ,

σab,α ∈ Snab,α , σa,β ∈ Sna,β , σ̄a,γ ∈ Sn̄a,γ (B.1.4)

and similarly

~n = ∪a,b,α{nab,α} ∪a,β {na,β} ∪a,γ {n̄a,γ} (B.1.5)

Summing over the representations Ra, rab,α, ra,β, r̄a,γ then gives, using (B.1.2b)

Z =
∑
~n

∑
~σ, ~σ′

∑
~ρ

∏
a

∏
b,α

x
∑
i i[σab,α](i)

ab,α

(nab,α!)2
δ
(
ρab,α σab,α ρ

−1
ab,α σ

′ −1
ab,α

)

×

∏
β

∏
i(Tr T i

a,β)[σa,β ](i)

(na,β!)2
δ
(
ρa,β σa,β ρ

−1
a,β σ

′ −1
a,β

)

×

(∏
γ

∏
i(Tr T̄ i

a,γ)[σ̄a,γ ](i)

(n̄a,γ !)2
δ
(
ρ̄a,γ σ̄a,γ ρ̄

−1
a,γ σ̄

′ −1
a,γ

))

×
∑
Γa

δ
(

Γa(×b,ασab,α ×β σ′a,β)Γ−1
a (×b,ασ′ba,α ×γ σ̄′a,γ)

−1
)

(B.1.6)
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with

~ρ = ∪a,b,α{ρab,α} ∪a,β {ρa,β} ∪a,γ {ρ̄a,γ} ,

ρab,α ∈ Snab,α , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (B.1.7)

If we now sum over the ~σ′ permutations we get, redefining the dummy Γa permutations as

Γa → (×b,αρba,α ×γ ρ̄a,γ)−1 Γa (×b,α1×β ρa,β):

Z =
∑
~n

∑
~σ, ~ρ

∏
a

∏
b,α

x
∑
i i[σab,α](i)

ab,α

(nab,α!)2

∏
β

∏
i(Tr T i

a,β)[σa,β ](i)

(na,β!)2

(∏
γ

∏
i(Tr T̄ i

a,γ)[σ̄a,γ ](i)

(n̄a,γ !)2

)

×
∑
Γa

δ
(

Γa(×b,ασab,α ×β σa,β)Γ−1
a (×b,ασba,α ×γ σ̄a,γ)−1

)
(B.1.8)

Finally, by summing over the now trivial ~ρ permutations we obtain

Z =
∑
~n

∑
~σ

∏
a

∏
b,α

x
∑
i i[σab,α](i)

ab,α

nab,α!

∏
β

1

na,β!

(∏
γ

1

n̄a,γ !

)

× Ha({σab,α}, {σa,β}, {σ̄a,γ}; {Ta,β}, {T̄a,γ}) (B.1.9)

where we defined

Ha({σab,α}, {σa,β},{σ̄a,γ}; {Ta,β}, {T̄a,γ}) =

∏
β,i

(Tr T i
a,β)[σa,β ](i)

∏
γ,i

(Tr T̄ i
a,γ)[σ̄a,γ ](i)


×
∑
Γa

δ
(

Γa(×b,ασab,α ×β σa,β)Γ−1
a (×b,ασba,α ×γ σ̄a,γ)−1

)
(B.1.10)

Eq. (B.1.9) is a function of the conjugacy class of the permutations σ, rather than of the

permutations themselves. Exploiting this fact we can rewrite it as follows. Let us introduce

the vectors of integers ~pab,α = ∪i{p(i)
ab,α}, ~pa,β = ∪i{p(i)

a,β} and ~̄pa,γ = ∪i{p̄ (i)
a,γ}. Here p

(i)
ab,α is the

number of cycles of length i in the permutation σab,α, while p
(i)
a,β and p̄

(i)
a,γ are the number of

cycles of length i in the permutations σa,β and σ̄a,γ respectively. In accordance with eq. (B.1.4)

we have

∞∑
i=1

ip
(i)
ab,α = nab,α , |~pab,α| =

nab,α!∏
i p

(i)
ab,α! ip

(i)
ab,α

, (B.1.11)

and similarly for ~pa,β and ~̄pa,γ . For notational purposes, it will be convenient to introduce the

compact shorthand ppp = ∪ab,α~pab,α ∪a,β ~pa,β ∪a,γ ~̄pa,γ . With this notation we can rewrite (B.1.9)
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as

Z =
∑
~n

∑
ppp

∏
a

∏
b,α

|~pab,α|
nab,α!

x

∑
i ip

(i)
ab,α

ab,α

∏
β

|~pa,β|)
na,β!

(∏
γ

|~̄pa,γ |
n̄a,γ !

)

×Ha({~pab,α}, {~pa,β}, {~̄pa,γ}; {Ta,β}, {T̄a,γ}) (B.1.12)

where now Ha({~pab,α}, {~pa,β}, {~̄pa,γ}; {Ta,β}, {T̄a,γ}) reads, after summing over the Γa permuta-

tions

Ha({~pab,α}, {~pa,β}, {~̄pa,γ}; {Ta,β}, {T̄a,γ}) =
∏
i

∏
β

(Tr T i
a,β)p

(i)
a,β

(∏
γ

(Tr T̄ i
a,γ)[p̄

(i)
a,γ

)

× δa

∑
b,α

(p
(i)
ab,α − p

(i)
ba,α) +

∑
β

p
(i)
a,β −

∑
γ

p̄(i)
a,γ

 i

∑
b,α

p
(i)
ba,α+

∑
γ
p̄

(i)
a,γ

∑
b,α

p
(i)
ba,α +

∑
γ

p̄(i)
a,γ

!

(B.1.13)

Using (B.1.13) and (B.1.11) in (B.1.12) gives then

Z =
∑
ppp

∏
i

∏
a

(∑
b,α p

(i)
ba,α +

∑
γ p̄

(i)
a,γ

)
!

i
∑
β p

(i)
a,β

∏
b,α

x
ip

(i)
ab,α

ab,α

p
(i)
ab,α!


∏

β

(Tr T i
a,β)p

(i)
a,β

p
(i)
a,β!



×

∏
γ

(Tr T̄ i
a,γ)p̄

(i)
a,γ

p̄
(i)
a,γ !

 δa

∑
b,α

(p
(i)
ab,α − p

(i)
ba,α) +

∑
β

p
(i)
a,β −

∑
γ

p̄(i)
a,γ

 (B.1.14)

which is eq. (2.2.25).

Note that if we define the function F [n]({xab}, {ta}, {t̄a}) as

F [n]({xab}, {ta}, {t̄a}}) =
∑
~p

n∏
a=1

(
p̄a +

n∑
b=1

pba

)
! δa

(
pa − p̄a +

n∑
b=1

(pab − pba)

)

×

(
n∏
b=1

xpabab

pab!

) (
tpaa
pa!

) (
t̄ p̄aa
p̄a!

)
(B.1.15)

where now ~p ≡ ∪a,b{pab} ∪a {pa, p̄a}, we can immediately obtain the generating function Z
(B.1.14) through the relation

Z({xab,α}, {Ta,β}, {T̄a,γ})

=
∏
i

F [n]

{xab →∑
α

xiab,α

}
,

ta →∑
β

Tr(T i
a,β)

i

 ,

{
t̄a →

∑
γ

Tr(T̄ i
a,γ)

} (B.1.16)
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In fact, the RHS of (B.1.16) reads

∏
i

∑
~p

∏
a

(
p̄a +

∑
c

pca

)
! δa

(
pa − p̄a +

∑
c

(pac − pca)

)

×

∏
b

(∑
α x

i
ab,α

)pab
pab!



(∑

β

Tr(T ia,β)

i

)pa
pa!



(∑

γ Tr(T̄ i
a,γ)
) p̄a

p̄a!

 (B.1.17)

and through the identity(
n∑
a=1

za

)k
=
∑
~p

δ

(
k −

n∑
a=1

pa

)
k!

n∏
a=1

zpaa
pa!

, ~p = (p1, p2, ..., pn) (B.1.18)

we can write (B.1.17) as

∏
i

∑
~p

∏
a

(
p̄a +

∑
b

pba

)
! δa

(
pa − p̄a +

∑
b

(pab − pba)

)

×

∑
~p

(i)
ab

δ

(
pab −

∑
α

p
(i)
ab,α

) ∏
b,α

x
ip

(i)
ab,α

ab,α

p
(i)
ab,α!

 (B.1.19)

×

∑
~ρ

(i)
a

δ

pa −∑
β

p
(i)
a,β

 ∏
β

(Tr T i
a,β)p

(i)
a,β

ip
(i)
a,β p

(i)
a,β!


∑
~̄ρ

(i)
a

δ

(
p̄a −

∑
γ

p̄ (i)
a,γ

) ∏
γ

(Tr T̄ i
a,γ)p̄

(i)
a,γ

p̄
(i)
a,γ !


where ~p

(i)
a = ∪b,α{p

(i)
ab,α}, ~ρ

(i)
a = ∪β{p

(i)
a,β} and ~̄ρ

(i)
a = ∪γ{p̄ (i)

a,γ}. Summing over ~p gives, exploiting
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the second, third and fourth Kronecker deltas in the expression above

∏
i

∏
a

∑
~p

(i)
ab

∑
~ρ

(i)
a

∑
~̄ρ

(i)
a

∑
b,α

p
(i)
ba,α +

∑
γ

p̄ (i)
a,γ

! δa

∑
b,α

(p
(i)
ab,α − p

(i)
ba,α) +

∑
β

p
(i)
a,β −

∑
γ

p̄ (i)
a,γ



×

∏
b,α

x
ip

(i)
ab,α

ab,α

p
(i)
ab,α!


∏

β

(Tr T i
a,β)p

(i)
a,β

ip
(i)
a,β p

(i)
a,β!

 ∏
γ

(Tr T̄ i
a,γ)p̄

(i)
a,γ

p̄
(i)
a,γ !



=
∑
ppp

∏
i

∏
a

(∑
b,α p

(i)
ba,α +

∑
γ p̄

(i)
a,γ

)
!

i
∑
β p

(i)
a,β

∏
b,α

x
ip

(i)
ab,α

ab,α

p
(i)
ab,α!


∏

β

(Tr T i
a,β)p

(i)
a,β

p
(i)
a,β!



×

∏
γ

(Tr T̄ i
a,γ)p̄

(i)
a,γ

p̄
(i)
a,γ !

 δa

∑
b,α

(p
(i)
ab,α − p

(i)
ba,α) +

∑
β

p
(i)
a,β −

∑
γ

p̄ (i)
a,γ

 = Z (B.1.20)

where in the second equality we used ppp ≡ ∪ab,α~pab,α ∪a,β ~pa,β ∪a,γ ~̄pa,γ and the third one follows

from (B.1.14). We can now appreciate how every property of Z is determined by the F [n]

function, which will play the role of fundamental building block of the generating function.

In the following we will then focus mainly on the latter, which will improve the clarity of the

exposition: the generating function Z can be obtained at any time through the relation (B.1.16).

B.1.2 A contour integral formulation for F [n]

All of the Kronecker deltas δa in eq. (B.1.15) ensure that, at each node a in the quiver, there

are as many fields flowing in as there are flowing out, ensuring the balance of the incoming and

outgoing edge variables pab, pa, p̄a. Using the contour integral resolution of the Kronecker delta

δa =

∮
C

dz

2πiz
za , (B.1.21)

where C is a closed path that encloses the origin, we can write a contour integral formulation

for F [n], and thus for Z. Let us then use (B.1.21) in (B.1.15), to get

F [n] =
∑
~p

∏
a

(
p̄a +

∑
c

pca

)
!

(∏
b

xpabab

pab!

)(
tpaa
pa!

)(
t̄ p̄aa
p̄a!

) ∮
Ca

dza
2πiza

z
pa−p̄a+

∑
b(pab−pba)

a (B.1.22)
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or, conveniently rearranging the integrands above,

F [n] =
∑
~p

(∏
a

∮
Ca

dza
2πiza

)∏
a

(∏
b

(
zbxbaz

−1
a

)pba
pba!

)(
(zata)

pa

pa!

)

×

(
p̄a +

∑
c

pca

)
!

( (
z−1
a t̄a

)p̄a
p̄a!

)
(B.1.23)

Summing over the pa s gives the exponentials

∑
pa

(zata)
pa

pa!
= exp (zata) (B.1.24)

while it is a little bit trickier to sum over the p̄a s. Using the identity(
p̄a +

∑
c

pca

)
! =

(∑
c

pca

)
!

(
1 +

∑
c

pca

)
(p̄a)

(B.1.25)

where (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol, we can rewrite (B.1.23) as

F [n] =

∏
a

∑
~pa, p̄a

∮
Ca

dza
2πiza

∏
a

(∑
c

pca

)
!

(∏
b

(
zbxbaz

−1
a

)pba
pba!

)

× exp (zata)

(
1 +

∑
c

pca

)
(p̄a)

( (
z−1
a t̄a

)p̄a
p̄a!

)
(B.1.26)

where we also used (B.1.24). In the following section B.1.2 we show that

∑
p̄a

(
1 +

∑
c

pca

)
(p̄a)

( (
z−1
a t̄a

)p̄a
p̄a!

)
=

(
1

1− z−1
a t̄a

)1+
∑
c
pca

(B.1.27)

We impose absolute convergence of the sums on the LHS, which ensures that we can swap the

sum and integral symbols in (B.1.26). Using (B.1.27) in (B.1.26), we can write F [n] as

F [n] =

∏
a

∑
~pa

∮
Ca

dza
2πiza

∏
a

exp (zata)

1− z−1
a,i t̄a

(∑
c

pca

)
!
∏
b

1

pba!

(
zbxbaz

−1
a

1− z−1
a t̄a

)pba
(B.1.28)

Now we just have to compute the pab sums. In section B.1.2 we show that(∏
b

∑
pba

)(∑
b

pba

)
!
∏
b

1

pba!

(
zbxbaz

−1
a

1− z−1
a t̄a

)pba
=

1− z−1
a t̄a

1− z−1
a (t̄a +

∑
b zb xba)

(B.1.29)
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where again we impose the absolute convergence of all the sums on the LHS, for the same reason

just discussed. Eq. (B.1.28) has now become

F [n]({xab}, {ta}, {t̄a}) =

(∏
a

∮
Ca

dza
2πiza

)∏
a

exp (zata)

1− z−1
a (t̄a +

∑
b zb xba)

(B.1.30)

We can rewrite the latter equation more compactly as

F [n]({xab}, {ta}, {t̄a}) =

(∏
a

∮
Ca

dza
2πi

)∏
a

Ia(~z; ~xa, ta, t̄a) (B.1.31)

where ~z = (z1, z2, ..., zn), n being the number of nodes of the quiver, ~xa = ∪b{xba} and

Ia(~z; ~xa, ta, t̄a) =
exp (zata)

za − (t̄a +
∑

b zb xba)
(B.1.32)

Eq. (2.2.28) is thus obtained.

Summing over p̄a

We want to prove eq (B.1.27)

∑
p̄a

(
1 +

∑
c

pca

)
(p̄a)

( (
z−1
a t̄a

)p̄a
p̄a!

)
=

(
1

1− z−1
a t̄a

)1+
∑
c
pca

(B.1.33)

for any node a of the quiver. We also have to take care about the convergence of all the sums

on the LHS of this equation. These za variables will eventually be integrated over closed curves

Ca in the complex plane, which we will use to compute the contour integrals in (B.1.26) through

residues theorem. As discussed in the previous section, we require absolute convergence of the

sums on the LHS,

∑
p̄a

(
1 +

∑
c

pca

)
(p̄a)

∣∣∣∣∣
(
z−1
a t̄a

)p̄a
p̄a!

∣∣∣∣∣ <∞ (B.1.34)

Throughout this section we will therefore restrict to the za that satisfy this constraint. With

the mappings

x→ 1 +
∑
c

pca (B.1.35)

z → z−1
a t̄a (B.1.36)
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the equality (B.1.33) reads

∑
p

(x)(p)
zp

p!
=

1

(1− z)x
(B.1.37)

This is a known identity, and can be derived with the chain of equalities

1

(1− z)x
=
∞∑
p=0

(
p+ x− 1

p

)
zp =

∞∑
p=0

(p+ x− 1)!

(x− 1)! p!
zp =

∞∑
p=0

(x)(p)

p!
zp (B.1.38)

The first step above holds only when |z| < 1. Our proposition is thus proven.

Summing over pab

We want now to prove (B.1.29), for each node a of the quiver:(∏
b

∑
pba

)(∑
b

pba

)
!
∏
b

1

pba!

(
zbxbaz

−1
a

1− z−1
a t̄a

)pba
=

1− z−1
a t̄a

1− z−1
a (t̄a +

∑
b zb xba)

(B.1.39)

As in the previous section, we work in a region of the ∪a{za} variables where the sums converge

absolutely: (∏
b

∑
pba

)(∑
b

pba

)
!
∏
b

1

pba!

∣∣∣∣ zbxbaz−1
a

1− z−1
a t̄a

∣∣∣∣pba <∞ (B.1.40)

and we will restrict our computation to the set of ∪a{za} that satisfy such a constraint.

Let us then prove the simpler identity

∑
~p

(∑
b

pb

)
!
∏
b

1

pb!

(
zb

1− y

)pb
=

1− y

1−
(
y +

∑
b

zb

) (B.1.41)

with ~p = ∪b{pb}, which turns into (B.1.39) through the mappings

zb → zbxba z
−1
a , y → z−1

a t̄a , pb → pba (B.1.42)

Similarly, the condition for absolute convergence (B.1.40) becomes

∑
~p

(∑
b

pb

)
!
∏
b

1

pb!

∣∣∣∣ zb
1− y

∣∣∣∣pb <∞ (B.1.43)

We will prove (B.1.41) twice, starting from its right hand side, by choosing two different
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ways of factorising the ratio

1− y

1−
(
y +

∑
b

zb

) =
1− y

(1− za)−

(
y +

∑
b 6=a

zb

) (B.1.44)

In the first one we will factor out the term (1 − y)/(1 − za) and in the second one the term

(1 − y)/(1 − (y +
∑

b 6=c zb)). We will then expand in power series the remaining part of each

expression, to obtain two different power expansions. The upshot is that we will obtain two

different sets of constraints for the convergence of the power series. Both sets of constraints will

hold in the region of absolute convergence (B.1.40), and they will determine the pole prescription

for the contour integrals in (2.2.28).

First factorisation

We start from the RHS of eq. (B.1.41). We are going to factor out the term (1 − y)/(1 − za)
and expand in a power series the remaining part of the expression. Let us then write

1− y

1−
(
y +

∑
b

zb

) =
1− y
1− za

1

1−

(
y +

∑
b6=a zb

1− za

) (B.1.45)

and let us expand the second factor on the RHS above to get

1− y

1−
(
y +

∑
b

zb

) =
1− y
1− za

∞∑
n=0

(
y +

∑
b6=a zb

1− za

)n
(B.1.46)

with the constraint ∣∣∣∣∣y +
∑

b 6=a zb

1− za

∣∣∣∣∣ < 1 (B.1.47)

We now rewrite eq. (B.1.46) as

1− y

1−
(
y +

∑
b

zb

) = (1− y)

∞∑
n=0

y +
∑
b 6=a

zb

n

1

(1− za)n+1 (B.1.48)

in order to expand the two terms
(
y +

∑
b 6=a zb

)n
and (1− za)−(n+1) separately. For the first

one we gety +
∑
b 6=a

zb

n

=

∏
b 6=a

∞∑
pb=0

 ∞∑
py=0

ypy

py!
n! δ

n− py −∑
b 6=a

pb

∏
b6=a

zpbb
pb!

(B.1.49)
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while for the second one, using eq. (B.1.38), we obtain

1

(1− za)n+1 =

∞∑
pa=0

(pa + n)!

n!

zpaa
pa!

(B.1.50)

The last equality is valid for |za| < 1. Inserting eqs. (B.1.49) and (B.1.50) into eq. (B.1.48),

and rearranging the order of the sums7 to let the sum over n act first we get

1− y

1−
(
y +

∑
b

zb

) = (1− y)

∞∑
n=0

∑
~p

∞∑
py=0

ypy

py!
δ

n− py −∑
b 6=a

pb

 (pa + n)!
∏
b

zpbb
pb!

= (1− y)
∑
~p

∞∑
py=0

ypy

py!

(
py +

∑
b

pb

)
!
∏
b

zpbb
pb!

(B.1.51)

Now, since

∞∑
n=0

(a+ n)!

n!
yn = a!

1

(1− y)1+a
, |y| < 1 (B.1.52)

we can sum over py in the last line of eq. (B.1.51) to obtain

1− y

1−
(
y +

∑
b

zb

) = (1− y)
∑
~p

(
∑

b pb)!

(1− y)1+
∑
b pb

∏
b

zpbb
pb!

=
∑
~p

(
∑

b pb)!∏
b(1− y)pb

∏
b

zpbb
pb!

=
∑
~p

(∑
b

pb

)
!
∏
b

1

pb!

(
zb

1− y

)pb
(B.1.53)

together with the constraint

|y| < 1 (B.1.54)

Eq. (B.1.53) is exactly eq. (B.1.41), which becomes our initial proposition (B.1.39) through the

substitutions (B.1.42). In the steps presented above, we got three constraints:{∣∣∣∣∣y +
∑

b 6=a zb

1− za

∣∣∣∣∣ < 1

}
, {|za| < 1} , {|y| < 1} (B.1.55)

7Since we are only considering {za} variables that satisfy absolute convergence condition (B.1.43), this is a
legitimate operation.
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The first one becomes, through the substitutions (B.1.42),
∣∣∣∣∣∣∣∣
z−1
a t̄a +

∑
b6=a

zbxba z
−1
a

1− xaa

∣∣∣∣∣∣∣∣ < 1

 (B.1.56)

which we can also write as the set K+
a

K+
a =

za ∈ C s.t. |za| >

∣∣∣∣∣∣∣∣
t̄a +

∑
b 6=a

zbxba

1− xaa

∣∣∣∣∣∣∣∣
 (B.1.57)

We stress that the set of ∪a{za} that satisfy the latter constraint includes the set of ∪a{za} that

makes the sums in (B.1.41) absolutely convergent, to which we restricted our computation. On

the other hand, imposing (B.1.55) alone would not be enough to guarantee the validity of all

the steps presented in this section.

Second factorisation

We will now show (B.1.39) in a different way, again starting from the RHS of eq. (B.1.41).

This time we factor out the term (1 − y)/(1 − (y +
∑

b6=c zb)), to expand in a power series the

remaining part of the expression. Let us then begin by writing

1− y

1−
(
y +

∑
b

zb

) =
1− y(

1−

(
y +

∑
b 6=c

zb

))
− zc

=
1− y

1−

(
y +

∑
b6=c

zb

) 1

1−
zc

1−

(
y +

∑
b 6=c

zb

) (B.1.58)

Now we expand the second term in the line above in power series, to get

1− y

1−
(
y +

∑
b

zb

) =
1− y

1−

(
y +

∑
b 6=c

zb

) ∞∑
n=0

 zc

1−

(
y +

∑
b6=c

zb

)

n

(B.1.59)
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along with the constraint ∣∣∣∣∣∣∣∣∣∣
zc

1−

(
y +

∑
b6=c

zb

)
∣∣∣∣∣∣∣∣∣∣
< 1 (B.1.60)

All these steps are similar to the ones in eqs. (B.1.41)-(B.1.47). Proceeding in the same fashion

we first write

1− y

1−
(
y +

∑
b

zb

) = (1− y)

∞∑
n=0

znc
1(

1−

(
y +

∑
b6=c

zb

))n+1 (B.1.61)

Then we expand the rational part of the RHS in power series, rearranging the order of the sums

in such a way that the sum over k acts first, to get

1(
1−

(
y +

∑
b 6=c

zb

))n+1 =
∞∑
k=0

(k + n)!

k!n!

y +
∑
b 6=c

zb

k

=
∞∑
k=0

(k + n)!

k!n!

∏
b 6=c

∞∑
pb=0

 ∞∑
py=0

ypy

py!
δ

k − py −∑
b6=c

pb

 k!
∏
b6=c

zpbb
pb!

=

∏
b 6=c

∞∑
pb=0

 ∞∑
py=0

ypy

py!

(
n+ py +

∑
b 6=c pb

)
!

n!

∏
b 6=c

zpbb
pb!

(B.1.62)

together with the constraint (coming from the first equality)∣∣∣∣∣∣y +
∑
b 6=c

zb

∣∣∣∣∣∣ < 1 (B.1.63)

Using eq. (B.1.62) in (B.1.61) we get

1− y

1−
(
y +

∑
b

zb

) = (1− y)

∞∑
n=0

∑
~p

∞∑
py=0

ypy

py!
δ(pc − n)

n+ py +
∑
b 6=c

pb

!
∏
b

zpbb
pb!

= (1− y)
∑
~p

∞∑
py=0

ypy

py!

(
py +

∑
b

pb

)
!
∏
b

zpbb
pb!

(B.1.64)
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where we again rearranged the order of the sums to let the sum over n act first. Now this

equation is identical to eq. (B.1.51), and we know that if we impose the constraint

|y| < 1 (B.1.65)

(B.1.64) is enough to prove (B.1.39). Our initial proposition is again proven.

In the derivation we got, among others, the constraint

∣∣∣∣∣∣∣∣∣∣
zc

1−

(
y +

∑
b6=c

zb

)
∣∣∣∣∣∣∣∣∣∣
< 1

 (B.1.66)

which with the substitutions (B.1.42) becomes

∣∣∣∣∣∣∣∣∣∣
zcxca z

−1
a

1−

(
z−1
a t̄a +

∑
b 6=c

zbxba z
−1
a

)
∣∣∣∣∣∣∣∣∣∣
< 1

 (B.1.67)

The same quantity can also be described in terms of the set k−c,a, defined as

k−c,a =

zc ∈ C s.t. |zc| <

∣∣∣∣∣∣∣∣∣∣
za −

(
t̄a +

∑
b 6=c

zbxba

)
xca

∣∣∣∣∣∣∣∣∣∣

 (B.1.68)

This constraint has to be interpreted in the same manner as the one in (B.1.57): k−c,a includes

the set of ∪a{za} that makes (B.1.41) absolutely convergent.

Fixing node a, the derivation above holds for any c 6= a. This means that we can obtain

constraints like the one in (B.1.66) for all the nodes c 6= a of the quiver, that we can impose all

at the same time. We can then define the set

K−a =
⋂
c6=a

k−c,a =
⋂
c 6=a

zc ∈ C s.t. |zc| <

∣∣∣∣∣∣∣∣∣∣
zc −

(
t̄a +

∑
b 6=c

zbxba

)
xca

∣∣∣∣∣∣∣∣∣∣

 (B.1.69)

Just like K+
a (eq. (B.1.57)), this constraint will be of central importance when we will compute
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the integrals in (2.2.28): the set Ka, defined as

Ka = K+
a ∩ K−a

=

za ∈ C s.t. |za| >

∣∣∣∣∣∣∣∣
t̄a +

∑
b 6=a

zbxba

1− xaa

∣∣∣∣∣∣∣∣


⋂
c 6=a

zc ∈ C s.t. |zc| <

∣∣∣∣∣∣∣∣∣∣
zc −

(
t̄a +

∑
b 6=c

zbxba

)
xca

∣∣∣∣∣∣∣∣∣∣

 (B.1.70)

will in fact determine which poles are to be included by the contour Ca.

B.2 Residues and constraints

In this appendix we will present the rule for including/excluding poles when calculating the

contour integrals in eq. (2.2.28), that is

F [n]({xab}, {ta}, {t̄a}) =

(∏
a

∮
Ca

dza
2πi

)∏
a

Ia(~z; ~xa, ta, t̄a) (B.2.1)

We recall that the integrands Ia are defined by

Ia(~z; ~xa, ta, t̄a) =
exp (za ta)

za − (t̄a +
∑

b zb xba)
(B.2.2)

The prescription is that we have to pick only the za pole coming from the Ia factor in the

integrand of (B.2.1), for each a. Let us show how this rule arises.

If the quiver under study has n nodes, each Ia will have n poles, one for each z variable.

Explicitly

z∗a =

t̄a +
∑
b6=a

zbxba

1− xaa
, z∗c =

za −

(
t̄a +

∑
b 6=c

zbxba

)
xca

, ∀c 6= a (B.2.3)

From appendix B.1.2 we know however that we have to restrict to the set of ∪a{za} that belongs
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to the intersection of the set (B.1.70)

Ka =

za ∈ C s.t. |za| >

∣∣∣∣∣∣∣∣
t̄a +

∑
b6=a

zbxba

1− xaa

∣∣∣∣∣∣∣∣


⋂
c 6=a

zc ∈ C s.t. |zc| <

∣∣∣∣∣∣∣∣∣∣
za −

(
t̄a +

∑
b6=c

zbxba

)
xca

∣∣∣∣∣∣∣∣∣∣


= {za ∈ C s.t. |za| > |z∗a| }

⋂
c6=a
{zc ∈ C s.t. |zc| < |z∗c |} (B.2.4)

with the set of ∪a{za} satisfying the condition of absolute convergence (B.1.40):(∏
b

∑
pba

)(∑
b

pba

)
!
∏
b

1

pba!

∣∣∣∣ zbxbaz−1
a

1− z−1
a t̄a

∣∣∣∣pba <∞ (B.2.5)

In the same appendix, we also argued that the former constraint (B.2.4) includes the latter

(B.2.5): this means that if we impose (B.2.5), then (B.2.4) is also valid. But this is telling us

that for any Ia we only have to pick up the pole relative to the za variable, and discard all the

others. However this is a prescription which holds only before we perform any integration: after

we do so, the poles for each of the remaining z variables will have a different equation. This

problem is anyway easily overcome: the constraint in (B.2.4) comes from the sums in (B.1.28)

that contribute to the Ia piece of the integrand (B.2.1) alone. So in principle we could have

chosen any a in (B.1.28), performed the sums over ∪bpba only, got the Ia term together with the

constraint above, inferred from the previous discussion that only the za pole has to be picked

up and finally compute the za integration (all the other za appearing in (B.1.28) are regular and

have no pole). Let us then imagine to be in such a situation, and for concreteness say that we

have chosen to integrate over z1. After the z1 integration has been done, we are left with n− 1

sums (n being the number of nodes in the quiver) of the form already discussed in appendix

B.1.2, that is(∏
b

∑
pba

)(∑
b

pba

)
!
∏
b

1

pba!

(
zbxbaz

−1
a

1− z−1
a t̄a

)pba
=

1− z−1
a t̄a

1− z−1
a (t̄a +

∑
b zb xba)

, a 6= 1 (B.2.6)

where now every z1 has to be substituted with its pole equation, which will be of the form

z1 → z∗1(z2, z3, ..., zn; ~x) =
∑
c>1

zc ac (B.2.7)

for some coefficients ac. As usual, we impose absolute convergence of the sums on the LHS
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of (B.2.6). Adapting the notation of appendix B.1.2 to the present case, let us work with the

simpler identity ∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)
(z∗1)p1

p1!
=

1

1−
∑
b>1

zb − z∗1
(B.2.8)

which becomes (B.2.6) through the substitutions

zb →
zbxba z

−1
a

1− z−1
a (t̄a)

, pb → pba (B.2.9)

Note that now we have

z∗1 →
z∗1 x1a z

−1
a

1− z−1
a t̄a

=
∑
c>1

zc ac x1a z
−1
a

1− z−1
a t̄a

=
∑
c>1

zc x̃ca z
−1
a

1− z−1
a t̄a

=
∑
c>1

z̃c (B.2.10)

in which we defined

x̃ca = ac x1a , z̃c =
zc x̃ca z

−1
a

1− z−1
a t̄a

(B.2.11)

Consider now the LHS of (B.2.8) and write it as∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)
(z∗1)p1

p1!
=

∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)
1

p1!

(∑
c>1

z̃c

)p1

=

∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)∏
c>1

∞∑
qc=0

 δ

(
p1 −

∑
c>1

qc

) ∏
c>1

z̃qcc
qc!

(B.2.12)

After summing over p1 we obtain∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)
(z∗1)p1

p1!

=

∏
b>1

∞∑
pb=0
qb=0

 (∑
b>1

pb +
∑
c>1

qc

)
!

(∏
b>1

zpbb
pb!

) ∏
c>1

z̃qcc
qc!

=

∏
b>1

∞∑
pb=0
qb=0

 (∑
b>1

(pb + qb)

)
!

(∏
b>1

zpbb
pb!

z̃qbb
qb!

)
(B.2.13)

where the last equality follows from noticing that the b and c labels in the products and sums

run over the same set of variables. Now multiplying the far right hand side of the above equation
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by
∏
b>1

(pb+qb)!
(pb+qb)!

= 1 and inserting the identity

∏
b>1

∞∑
λb=0

δ (λb − pb − qb) = 1 , (B.2.14)

we get, exploiting the support of the delta function∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)
(z∗1)p1

p1!

=

∏
b>1

∞∑
pb=0
qb=0

∞∑
λb=0

 (∑
b>1

λb

)
!

(∏
b>1

1

λb!

) ∏
b>1

δ (λb − pb − qb)
λb!

pb! qb!
zpbb z̃qbb

=

∏
b>1

∞∑
λb=0

 (∑
b>1

λb

)
!
∏
b>1

1

λb!

 ∞∑
pb=0
qb=0

δ (λb − pb − qb)
λb!

pb! qb!
zpbb z̃qbb

 (B.2.15)

The quantity inside the square bracket is of the form

∞∑
k1,k2=0

δ (n− k1 − k2)
n!

k1! k2!
ak1 bk2 = (a+ b)n , (B.2.16)

so that we eventually have, relabelling λb → pb∏
b

∞∑
pb=0

 (∑
b

pb

)
!

(∏
b>1

zpbb
pb!

)
(z∗1)p1

p1!
=

∏
b>1

∞∑
pb=0

 (∑
b>1

pb

)
!
∏
b>1

(zb + z̃b)
pb

pb!
(B.2.17)

for the LHS of eq. (B.2.8).

Consider now the RHS of the same formula: it reads

1

1−
∑
b>1

zb − z∗1
=

1

1−
∑
b>1

zb −
∑
c>1

z̃c
=

1

1−
∑
b>1

(zb + z̃b)
(B.2.18)

Equating the right hand sides of the last two equations we then get∏
b>1

∞∑
pb=0

 (∑
b>1

pb

)
!
∏
b>1

(zb + z̃b)
pb

pb!
=

1

1−
∑
b>1

(zb + z̃b)
(B.2.19)

Using the substitutions in (B.2.9) and defining the new quantity x̂ba ≡ xba+ x̃ba we immediately

obtain

zb + z̃b →
zbxba z

−1
a

1− z−1
a t̄a

+
zb x̃ba z

−1
a

1− z−1
a t̄a

=
zb (xba + x̃ba) z

−1
a

1− z−1
a t̄a

≡ zb x̂ba z
−1
a

1− z−1
a t̄a

(B.2.20)
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so that eq. (B.2.19) becomes∏
b>1

∞∑
pba=0

 (∑
b>1

pba

)
!
∏
b>1

1

pba!

(
zb x̂ba z

−1
a

1− z−1
a t̄a

)pba

=
1− z−1

a t̄a

1− z−1
a

(
t̄a +

∑
b>1

zb x̂ba

) , a 6= 1 (B.2.21)

This is exactly the equation in (B.1.39) with the substitution xba → x̂ba and the removal of

the first node. We have already proven such an equality in appendix B.1.2, where we have also

obtained the set of constraints in (B.2.4). This means that the constraints coming from the

convergence of the sums on the LHS of (B.2.21) can be described by the intersection of the set

K̂a =

za ∈ C s.t. |za| >

∣∣∣∣∣∣∣∣
t̄a +

∑
b6=a,1

zbx̂ba

1− x̂aa

∣∣∣∣∣∣∣∣


⋂
c 6=a

zc ∈ C s.t. |zc| <

∣∣∣∣∣∣∣∣∣∣
zc −

(
t̄a +

∑
b 6=c,1

zbx̂ba

)
x̂ca

∣∣∣∣∣∣∣∣∣∣

 , a 6= 1 (B.2.22)

with the set of ∪a>1{za} satisfying the absolute convergence condition∏
b>1

∞∑
pba=0

 (∑
b>1

pba

)
!
∏
b>1

1

pba!

∣∣∣∣ zb x̂ba z−1
a

1− z−1
a t̄a

∣∣∣∣pba <∞ , a 6= 1 (B.2.23)

We stress once again that the former includes the latter. Such an intersection gives us a

prescription on which poles to include/exclude after one integration has been done: in complete

analogy to the situation discussed at the beginning of this section, we find that only the za

pole coming from the Ia term in the integrand of (B.2.1) has to be picked up, ∀a 6= 1. The

steps presented here are trivially generalisable, and they can be redone in the exact same way

integration after integration. We can then say that, at any level of integration, only the za pole

in the Ia factor has to be enclosed by Ca in (B.2.1). This is our pole prescription to perform

integrals.

B.3 Three node unflavoured quiver example

In this section we will provide an explicit example of application of the formulae presented in

section 2.3 to the three node unflavoured case. Let us start by writing z∗1 , z∗2 and z∗3 . According

194



APPENDIX B. PROOFS AND DERIVATION OF THE COUNTING FORMULAE

to eq. (2.3.9), the equation for z∗1(z2, z3; ~x) is obtained by solving for z1 the equation

I−1
1 (z1, z2, z3; ~x) = z1 −

3∑
b=1

zb xb,1 = 0 (B.3.1)

that gives

z∗1(z2, z3; ~x) =
∑
i>1

zi
xi,1

1− x1,1
(B.3.2)

From (2.3.10) we then have

ai,1 =
xi,1

1− x1,1
(B.3.3)

We now turn to z∗2(z3; ~x), which is obtained by solving for z2 the equation

I−1
2 (z∗1 , z2, z3) = z2 −

3∑
b>1

zb xb,2 − z∗1x1,2 = 0 (B.3.4)

Using (B.3.2) we get

z∗2(z3; ~x) =
∑
i>2

zi
(xi,1x1,2 + xi,2(1− x1,1))

(1− x1,1)(1− x2,2)− x1,2x2,1
(B.3.5)

so that

ai,2 =
(xi,1x1,2 + xi,2(1− x1,1))

(1− x1,1)(1− x2,2)− x1,2x2,1
(B.3.6)

Finally, I−1
3 (z∗1 , z

∗
2 , z3) = 0 is solved by z∗3 = 0. We can now write down the pole coefficients â

[r]
i,p,

which we will need in computing F
[3]
0 . Following the definition given in (2.3.13), we have

â
[0]
i,p = 0 , (B.3.7)

â
[1]
i,p = ai,p +

1∑
λ=p+1

a
[1]
i,λ aλ,p = ai,p (B.3.8)

and

â
[2]
i,p = ai,p +

2∑
λ=p+1

a
[2]
i,λ aλ,p =

 ai,1 + â
[2]
i,2a2,1 = ai,1 + ai,2 a2,1 if p = 1

ai,p if p > 1
(B.3.9)

Using eqs. (B.3.3) and (B.3.6), and noting that

1− x1,1 = G[1] , (1− x1,1)(1− x2,2)− x1,2x2,1 = G[2] (B.3.10)
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we can also write

â
[2]
i,p =

 ai,1 +
ai,2 x2,1

G[1]
=
xi,2x2,1 + xi,1(1− x2,2)

G[2]
if p = 1

ai,p if p > 1

(B.3.11)

By using eq. (2.3.12),

z
∗[r]
j = z∗j (zr+1, ..., zn; ~x) =

∑
i>r

zi â
[r]
i,j , 1 ≤ j ≤ r (B.3.12)

we then obtain

z
∗[1]
1 (z2, z3, ~x) =

3∑
i>1

zi â
[1]
i,1 =

∑
i=2,3

zi xi,1
G[1]

(B.3.13)

and similarly

z
∗[2]
1 (z3, ~x) =

3∑
i>2

zi â
[2]
i,1 = z3

x3,2x2,1 + x3,1(1− x2,2)

G[2]
, (B.3.14)

z
∗[2]
2 (z3, ~x) =

3∑
i>2

zi â
[2]
i,2 = z3

x3,1x1,2 + x3,2(1− x1,1)

G[2]
(B.3.15)

Finally, we can compute F
[3]
0 using formula (2.3.23). We have

F
[3]
0 =

3∏
i=1

Hi(~x) =
3∏
i=1

1− xi,i −
i−1∑
q=1

â
[i−1]
i,q xq,i

−1

(B.3.16)

= (1− x1,1)−1
(

1− x2,2 − â[1]
2,1x1,2

)−1 (
1− x3,3 − â[2]

3,1x1,3 − â[2]
3,2x2,3

)−1

= (1− x1,1)−1 (1− x2,2 − a2,1x1,2)−1

(
1− x3,3 − a3,1x1,3 − a3,2

(
x2,1x1,3

1− x1,1
+ x2,3

))−1
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Using the equations for a2,1 and a3,1 defined in (B.3.3) and a3,2 defined in (B.3.6), we get

F
[3]
0 = ((1− x1,1)(1− x2,2)− x1,2x2,1)−1

(
1− x3,3 −

x1,3x3,1

1− x1,1

− x3,1x1,2 + x3,2(1− x1,1)

(1− x1,1)(1− x2,2)− x1,2x2,1

(
x2,1x1,3

1− x11
+ x23

))−1

=

(
((1− x1,1)(1− x2,2)− x1,2x2,1)

(
1− x3,3 −

x1,3x3,1

1− x1,1

)

−(x3,1x1,2 + x3,2(1− x1,1))

(
x2,1x1,3

1− x1,1
+ x2,3

))−1

= (1− x1,1 − x2,2 − x3,3 − x1,2x2,1 + x1,1x2,2 − x1,3x3,1 + x1,1x3,3 − x2,3x3,2 + x2,2x3,3

−x1,1x2,2x3,3 + x1,1x2,3x3,2 + x2,2x1,3x3,1 + x3,3x1,2x2,1 − x1,2x2,3x3,1 − x1,3x3,2x2,1)−1

(B.3.17)

which concludes our computation.

B.3.1 Permutation formula

Let us now give an example of the application of formula (2.3.34) in this simple case of a three

node unflavoured quiver. We have already computed the correct answer F
[3]
0 in the previous

section, so we can explicitly check that (2.3.34) indeed reproduces the correct result. Let us call

the three nodes of the quiver simply 1, 2 and 3. We can immediately write the simple loops

yσ(i)({xab}) using eq. (2.3.36):

y(1)({xab}) = x11 , y(2)({xab}) = x22 , y(3)({xab}) = x33 ,

y(12)({xab}) = x12x21 , y(13)({xab}) = x13x31 , y(23)({xab}) = x23x32 ,

y(123)({xab}) = x12x23x31 y(132)({xab}) = x13x32x21

(B.3.18)

From these quantities we can construct yσ({xab}), for every σ, by using the definition in eq.

(2.3.35):

yσ({xab}) = (−1)cσ
∏
i

yσ(i)({xab}) (B.3.19)

For example, if we had σ = (12)(3), then

y(12)(3)({xab}) = (−1)2 y(12)({xab}) y(3)({xab}) = x12x21 x33 (B.3.20)

the power 2 in the −1 comes from the fact that σ = (12)(3) is a product of two cycles. Getting

back to our three node quiver example, there are 7 non empty subsets that we can form out of
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the set {1, 2, 3}, namely {1}, {2}, {3}, {12}, {13}, {23}, {123}. According to eq. (2.3.35) we

then have∑
σ∈Sym({1})

yσ({xab}) = y(1)({xab}) = −x1,1 , (B.3.21a)

∑
σ∈Sym({2})

yσ({xab}) = y(2)({xab}) = −x2,2 , (B.3.21b)

∑
σ∈Sym({3})

yσ({xab}) = y(3)({xab}) = −x3,3 , (B.3.21c)

∑
σ∈Sym({12})

yσ({xab}) = y(1)(2)({xab}) + y(12)({xab}) = x1,1x2,2 − x1,2x2,1 , (B.3.21d)

∑
σ∈Sym({13})

yσ({xab})) = y(1)(3)({xab}) + y(13)({xab}) = x1,1x3,3 − x1,3x3,1 , (B.3.21e)

∑
σ∈Sym({23})

yσ({xab})) = y(2)(3)({xab}) + y(23)({xab}) = x2,2x3,3 − x2,3x3,2 , (B.3.21f)

∑
σ∈Sym({123})

yσ({xab}) = y(1)(2)(3)({xab}) + y(12)(3)({xab}) + y(13)(2)({xab})

+ y(23)(1)({xab}) + y(123)({xab}) + y(132)({xab})

= −x1,1x2,2x3,3 + x1,2x2,1x3,3 + x1,3x3,1x2,2

+ x2,3x3,2x1,1 − x1,2x2,3x3,1 − x1,3x3,2x2,1 (B.3.21g)

Summing all of the terms above we get

F
[3]
0 = (1− x1,1 − x2,2 − x3,3 − x1,2x2,1 + x1,1x2,2 − x1,3x3,1 + x1,1x3,3 − x2,3x3,2 + x2,2x3,3

−x1,1x2,2x3,3 + x1,1x2,3x3,2 + x2,2x1,3x3,1 + x3,3x1,2x2,1 − x1,2x2,3x3,1 − x1,3x3,2x2,1)−1

(B.3.22)

in perfect agreement with (B.3.17).

B.3.2 Determinant formula

To conclude this section we now calculate F
[3]
0 yet another time, using the determinant formula:

F
[n]
0 =

1

det (1n −Xn)
, Xn|ij = xij , 1 ≤ (i, j) ≤ n (B.3.23)

198



APPENDIX B. PROOFS AND DERIVATION OF THE COUNTING FORMULAE

This is the simplest way to calculate F
[3]
0 . Since

X3 =

 x11 x12 x13

x21 x22 x23

x31 x32 x33

 (B.3.24)

we have

F
[3]
0 = det −1(13 −X3) = det −1

 1− x11 −x12 −x13

−x21 1− x22 −x23

−x31 −x32 1− x33

 (B.3.25)

and so we immediately get

F
[3]
0 = (1− x1,1 − x2,2 − x3,3 − x1,2x2,1 + x1,1x2,2 − x1,3x3,1 + x1,1x3,3 − x2,3x3,2 + x2,2x3,3

−x1,1x2,2x3,3 + x1,1x2,3x3,2 + x2,2x1,3x3,1 + x3,3x1,2x2,1 − x1,2x2,3x3,1 − x1,3x3,2x2,1)−1

(B.3.26)

This is the same result we obtained using other computational methods earlier in this section.

B.4 An equation for the pole coefficients in term of paths

In this section we will prove eq. (2.3.25):

G[r] â
[r]
p,q =

r−1∑
t=0

 r∑
i1,i2,..,it=1

i1 6=i2 6=...6=it 6=q

G[r]\{q,∪th=1ih}
xp,i1xi1,i2xi2,i3 · · ·xit−1,itxit,q

 (B.4.1)

In the case q = r this identity becomes particularly easy to prove, so let us start with this one.

From the definitions (2.3.13b) and (2.3.14) we get

â
[r]
i,r = ai,r =

xi,r +
r−1∑
λ=1

â
[r−1]
i,λ xλ,r

1−
(
xr,r +

r−1∑
λ=1

â
[r−1]
r,λ xλ,r

) (B.4.2)

Now let us multiply and divide the far RHS above by G[r−1]: recalling eqs. (2.3.30) and (2.3.32)

we have

G[r−1]

[
1−

(
xr,r +

r−1∑
λ=1

â
[r−1]
r,λ xλ,r

)]
= G[r−1]

G[r]

G[r−1]
= G[r] (B.4.3)

199



APPENDIX B. PROOFS AND DERIVATION OF THE COUNTING FORMULAE

so that we can write eq. (B.4.2) as

G[r] â
[r]
i,r = G[r−1] xi,r +

∑
λ∈[r−1]

G[r−1] â
[r−1]
i,λ xλ,r (B.4.4)

Using the last equation we can prove eq. (B.4.1), for the q = r case, by induction. The identity

is trivial for 1 point: it just reads

G[1] â
[1]
i,1 = G[1]\{1} xi,1 = G[0] xi,1 (B.4.5)

for any i > 1, and since

G[0] = 1 , G[1] = 1− x1,1 , â
[1]
i,1 = ai,1 =

xi,1
1− x1,1

(B.4.6)

eq. (B.4.5) is trivially satisfied. Let us now assume (B.4.1) is true for r − 1 points and let us

show that it holds for r points too. We can then use (B.4.1) in the terms G[r−1] â
[r−1]
i,λ of (B.4.4),

to obtain

G[r] â
[r]
i,r = G[r−1] xi,r

+
r−1∑
λ=1

r−2∑
t=0

r−1∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=λ

G[r−1]\{λ,∪th=1ih}
xi,i1xi1,i2xi2,i3 · · ·xit−1,itxit,λ xλ,r (B.4.7)

The next step is just a relabelling of the summation variables: first relabel λ → it+1 and then

t→ t′ = t+ 1 to get (dropping the prime symbol on t)

G[r] â
[r]
i,r = G[r−1] xi,r

+

r−1∑
t=1

r−1∑
i1,i2,..,it=1
i1 6=i2 6=... 6=it

G[r−1]\{∪th=1ih}
xi,i1xi1,i2xi2,i3 · · ·xit−1,it xit,r (B.4.8)

Note that the first term on the RHS of the above equation is just the t = 0 component of the

sum following it, so that

G[r] â
[r]
i,r =

r−1∑
t=0

r−1∑
i1,i2,..,it=1
i1 6=i2 6=...6=it

G[r−1]\{∪th=1ih}
xi,i1xi1,i2xi2,i3 · · ·xit−1,it xit,r (B.4.9)

which using G[r−1] = G[r]\{r} we can write as

G[r] â
[r]
i,r =

r−1∑
t=0

 r∑
i1,i2,..,it=1

i1 6=i2 6=...6=it 6=r

G[r]\{r,∪th=1ih}
xi,i1xi1,i2xi2,i3 · · ·xit−1,it xit,r

 (B.4.10)
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which is exactly eq. (B.4.1) for the case q = r. This observation concludes the first part of our

proof.

The case q 6= r could be potentially difficult to analyse, but we can overcome this complica-

tion using a trick: loosely speaking we will change the order of integration in (2.3.1), in such a

way that the zq variable, corresponding to the q node, will be integrated last. This will allow us

to use the same induction process mentioned above, with trivial modifications. To begin with,

we will argue that the order of integration does not affect the expression for the â
[r]
i,j coefficients

defined in (2.3.12) and (2.3.13).

Consider again eq. (2.3.12):

z
∗[r]
j = z∗j (zr+1, ..., zn; ~x) =

∑
i>r

zi â
[r]
i,j (B.4.11)

These are the equations for the poles of the zj (1 ≤ j ≤ r) variables after we have integrated

over z1, z2, ..., zr in this order, which in section 2.3 we called ‘natural ordering’. We labelled

this ordered set as {z1, z2, ..., zr} ≡ [r]. Now consider integrating over the same set of variables

z1, z2, ..., zr, but in a different order, which we call {zσ(1), zσ(2), ..., zσ(r)} ≡ [r]σ. We then have,

analogously to eq. (B.4.11),

z
∗[r]σ
σ(j) = z∗σ(j)(zr+1, ..., zn; ~x) =

∑
i>r

zi â
[r]σ
i,σ(j) (B.4.12)

The key observation is that equations (B.4.11) and (B.4.12) have to contain the same set of

equations. To see this, suppose that we want to calculate the zr+1 pole equation. Following

section 2.3 we would have

(1− xr+1,r+1)zr+1 =
∑
b>r+1

zb xb,r+1 +
∑

i=1,..,r

z
∗[r]
i xi,r+1 , (B.4.13)

if we use the [r] set (the natural ordering), and

(1− xr+1,r+1)zr+1 =
∑
b>r+1

zb xb,r+1 +
∑

i=1,..,r

z
∗[r]σ
σ(i) xσ(i),r+1

≡
∑
b>r+1

zb xb,r+1 +
∑

i=1,..,r

z
∗[r]σ
i xi,r+1 (B.4.14)

if we use the [r]σ set. Now take the difference of the two equations above to get

0 =
∑

i=1,..,r

(
z
∗[r]
i − z∗[r]σi

)
xi,r+1 (B.4.15)

Since xi,r+1 does not appear inside z
∗[r]
i or z

∗[r]σ
i , for any i, the only way that the RHS of (B.4.15)
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can be zero is that each term in the sum vanish on its own, so that

z
∗[r]
i = z

∗[r]σ
i ∀i ∈ {1, 2, ..., r} (B.4.16)

This indeed shows that (B.4.11) and (B.4.12) do contain the same set of equations. More

precisely, since eq. (B.4.16) does not depend on a particular σ, we see that the order in which we

compute integrals does not matter: after r integrations, whatever the order, the pole equations

will be described by (B.4.11). Eq. (B.4.16) also implies that

â
[r]
i,q = â

[r]σ
i,q (B.4.17)

if [r] and [r]σ differ only by the order of their elements. This is what we need to prove the

identity (B.4.1) for generic q. The proof will be based upon a comparison between â coefficients

computed in two different orderings.

Let us then choose the ordering [r]σq = {z1, z2, ..., zq−1, zq+1, ..., zr, zq}, which we will just

call [r]q for notational purposes. From (B.4.17) we have then

â
[r]
i,q = â

[r]q
i,q =

xi,q +
∑

λ∈[r−1]q

â
[r−1]q
i,λ xλ,q

1−

(
xq,q +

∑
λ∈[r−1]q

â
[r−1]q
q,λ xλ,q

) (B.4.18)

in which the last equality follows from (2.3.14): with the ordering [r]q, zq is in fact the last vari-

able to be integrated over, so that it plays the role of the starting point (2.3.13b) in the recursion

relation (2.3.13a). We are therefore in the same configuration discussed at the beginning of this

section, where the right lower index of â corresponds to the last one in the ordering [r]q: we can

therefore redo the steps (B.4.2) - (B.4.10), with trivial modifications, to obtain

G[r]â
[r]
i,q = G[r]â

[r]q
i,q =

r−1∑
t=0

 r∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=q

G[r]\{q,∪th=1ih}
xi,i1xi1,i2xi2,i3 · · ·xit−1,itxit,q

 (B.4.19)

Eq. (B.4.1) is then proved.

B.5 The building block F
[n]
0 and closed string word counting:

Examples

Let us consider the 2-node case. We will verify that the coefficients in the expansion of F
[2]
0

count words made from letters corresponding to simple loops in the 2-node quiver, with one edge

for every specified start and end point. Thus there are letters ŷ1, ŷ2, ŷ12. We require that letters

corresponding to loops which do not share a node commute. Thus here we have ŷ1ŷ2 = ŷ2ŷ1. It
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is useful to define

y1 ≡ x11 , y2 ≡ x22 , y12 ≡ x12x21 (B.5.1)

together with

F
[2]
0 =

1

1− y1 − y2 − y12 + y1y2
=

1

(1− y1)(1− y2)− y12

=
1

(1− y1)(1− y2)

1

1− y12

(1− y1)(1− y2)

(B.5.2)

Expanding this we get

F
[2]
0 =

∞∑
n1,n2=0

yn1
1 yn2

2

∞∑
m=0

(
y12

(1− y1)(1− y2)

)m

=
∞∑

n1,n2=0

∑
m=0

∑
k1,k2=0

yn1
1 yn2

2 ymyk1
1 y

k2
2

(m+ k1 − 1)!

k1!(m− 1)!

(m+ k2 − 1)!

k2!(m− 1)!
(B.5.3)

and defining N1 = n1 + k1 and N2 = n2 + k2 we can write

F
[2]
0 =

∞∑
N1,N2,m=0

yN1
1 yN2

2 ym
N1∑
k1=0

N2∑
k2=0

(m+ k1 − 1)!

k1!(m− 1)!

(m+ k2 − 1)!

k2!(m− 1)!
(B.5.4)

Finally, using the identity

N1∑
k1=0

(m+ k1 − 1)!

k1!(m− 1)!
=

(m+N1)!

m!N1!
=

N1∑
k1=0

(m)k1

k1!
(B.5.5)

the expansion of F
[2]
0 reads

F
[2]
0 =

∞∑
N1,N2,m=0

yN1
1 yN2

2 ym12

(m+N1)!

m!N1!

(m+N2)!

m!N2!
(B.5.6)

The coefficient counts the number of words made from letters ŷ1, ŷ2, ŷ12, with the condition

that ŷ1ŷ2 = ŷ2ŷ1. The words containing m copies of ŷ12 can be built by writing the ŷ12 letters

out in a line, with spaces between them, and then inserting the N1 ŷ1 letters in any of the

m + 1 slots. Now build a sequence of N1 numbers, recording which slot the first ŷ1 goes into,

which the second goes into and so on. Each number in the sequence is something between 1 and

m+ 1. Such a sequence can be mapped to a state ea1 ⊗ ea2 . . . ...eaN1
. Sequences related by the

symmetrization procedure of shuffling around the N1 factors correspond to same word, because

what matters is what goes in the m+ 1 slots, not the order in which the N1 copies of x11 were

put there. Thus the sequences are in one-one correspondence with a basis for the symmetric
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tensors Sym(V ⊗N1
m+1 ). The dimension of this space is precisely

dim
(
Sym(V ⊗N1

m+1 )
)

=
(m+N1)!

m!N1!
(B.5.7)

Then we can insert the ŷ2 in the m + 1 slots and we get the other factor. This proves that, in

the 2-node case, the words in the language we defined are counted by the F
[2]
0 -function.

Let us now turn to the three node case. Let us define

yi ≡ xii , yij ≡ xijxji , yijk ≡ xijxjkxki (B.5.8)

In this case

F
[3]
0 = (1− y1)−1(1− y2)−1(1− y3)−1

[
1− y12

(1− y1)(1− y2)
− y13

(1− y1)(1− y3)

− y23

(1− y2)(1− y3)
− y123

(1− y1)(1− y2)(1− y3)
− y132

(1− y1)(1− y2)(1− y3)

]−1

=

∞∑
m1,m2,m3=0

∞∑
p1,··· ,p5=0

ym1
1 ym2

2 ym3
3 yp1

12 y
p2
13 y

p3
23 y

p4
123 y

p5
132

× (p1 + p2 + · · ·+ p5)!

p1!p2!p3!p4!p5!

1

(1− y1)p1+p2+p4+p5(1− y2)p1+p3+p4+p5(1− y3)p2+p3+p4+p5

=
∞∑

m1,m2,m3=0

∞∑
p1,··· ,p5=0

ym1
1 ym2

2 ym3
3 yp1

12 y
p2
13 y

p3
23 y

p4
123 y

p5
132

(p1 + p2 + · · ·+ p5)!

p1!p2!p3!p4!p5!

×
∞∑

l1,l2,l3=0

(p1 + p2 + p4 + p5)l1
l1!

(p1 + p3 + p4 + p5)l2
l2!

(p2 + p3 + p4 + p5)l3
l3!

yl11 y
l2
2 y

l3
3

=

∞∑
n1,n2,n3=0

∞∑
p1,··· ,p5=0

yn1
1 yn2

2 yn3
3 yp1

12 y
p2
13 y

p3
23 y

p4
123 y

p5
132

(p1 + p2 + · · ·+ p5)!

p1!p2!p3!p4!p5!
(B.5.9)

×
n1∑
l1=0

n2∑
l2=0

n3∑
l3=0

(p1 + p2 + p4 + p5)l1
l1!

(p1 + p3 + p4 + p5)l2
l2!

(p2 + p3 + p4 + p5)l3
l3!

yl11 y
l2
2 y

l3
3

Finally we use the identity (B.5.5) above three times, to get

F
[3]
0 =

∞∑
n1,n2,n3=0

∞∑
p1,··· ,p5=0

yn1
1 yn2

2 yn3
3 yp1

12 y
p2
13 y

p3
23 y

p4
123 y

p5
132

(p1 + p2 + · · ·+ p5)!

p1!p2!p3!p4!p5!
(B.5.10)

×
(
p1 + p2 + p4 + p5 + n1

n1

)(
p1 + p3 + p4 + p5 + n2

n2

)(
p2 + p3 + p4 + p5

n3

)
For the closed string words in this case, there are letters ŷi, ŷij , ŷijk. The five letters ŷ12, ŷ13, ŷ23,
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ŷ123, ŷ132 do not commute with each other. ŷ1, ŷ2, ŷ3 commute with each other. ŷ1 commutes

with ŷ23. ŷ2 commutes with ŷ13, and ŷ3 commutes with ŷ12. We can build an arbitrary word by

first fixing the numbers p1, p2, ..., p5 of the letters from the set {ŷij , ŷijk}. Then choose an order

of these. The first multinomial factor

(p1 + · · ·+ p5)!

p1! · · · p5!
(B.5.11)

gives the number of choices of this order. For each fixed order of these, we can insert the ŷi.

Consider the insertion of the ŷ1 and choose the number n1 of them. We have (p1+p2+p4+p5+1)

slots which specify where, relative to ŷ12, ŷ13, ŷ123, ŷ132, we are inserting these. As in the 2-node

case, this is the dimension of Symn1(Vp1+p2+p4+p5+1) which is given by(
p1 + p2 + p4 + p5 + n1

n1

)
(B.5.12)

The position relative to ŷ23 is immaterial in the word counting because ŷ1 commutes with

this. Hence p3 does not appear in the above formula. In the same way, the insertion of the

ŷ2 and ŷ3 account for the additional binomial factors. Since the ŷi commute with each other,

the insertion of the ŷ2 is insensitive to the previous insertion of the ŷ1. Likewise the insertion

of the ŷ3 is insensitive to the positions of the ŷ1, ŷ2. Hence the word counting for specified

p1, · · · , p5, n1, n2, n3 has separate factors corresponding to insertions of ŷ1, ŷ2, ŷ3 among the

mutually non-commuting set {ŷij , ŷijk}.
These examples illustrate the general fact that the function F

[n]
0 ({xab}) counts words made

from letters corresponding to simple loops in the complete n-node quiver, with the condition

that letters corresponding to loops without a shared node commute.

B.6 Deriving the flavoured F [n] function

In this section we will prove eq. (2.5.16):

F [n] = F
[n]
0 exp

(
tpt̄q ∂

p,q logF
[n]
0

)
(B.6.1)

We will start from eq. (2.5.13):

F [n] =
n∏
j=1


exp

(
â

[n]
0,j tj

)
1− xj,j −

j−1∑
i=1

â
[j−1]
j,i xi,j

 (B.6.2)
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We already know that the denominatorof (B.6.2) is

n∏
l=1

1− xl,l −
l−1∑
q=1

â
[l−1]
l,q xq,l

 =

n∏
l=1

G[l]

G[l−1]
= G[n] (B.6.3)

so that we only need to work on its numerator, which is the exponentiation of the sum
n∑
k=1

â
[n]
0,k tk.

As we did in section 2.5, let us now set t̄p = x0,p and tp = xp,0. We can multiply and divide

(B.6.3) by G[n] to get

n∑
k=1

â
[n]
0,k xk,0 =

1

G[n]

n∑
k=1

G[n] â
[n]
0,k xk,0 (B.6.4)

Using eq. (2.3.25) on each of the terms G[n] â
[n]
0,k in the sum above gives

n∑
k=1

â
[n]
0,k xk,0 =

1

G[n]

n∑
k=1

xk,0

n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[n]\{k,∪th=1ih}
x0,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k

=
1

G[n]

n∑
k=1

n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[n]\{k,∪th=1ih}
x0,i1xi1,i2xi2,i3 · · ·xit−1,itxit,kxk,0 (B.6.5)

Consider the product of xab coefficients in the equation above,

x0,i1xi1,i2xi2,i3 · · ·xit−1,itxit,kxk,0 (B.6.6)

This can be interpreted as a path on the quiver starting from node 0, passing through t interme-

diate nodes ih, 1 ≤ h ≤ t, reaching node k and returning back at node 0. Crucially, since all the

ih nodes in this term do not ever take the value k (because of the summation ranges in (B.6.5)),

such a path never intersects itself. Our aim now is to factor out the 0 node from such a term,

rewriting it as a path starting from node k, passing through the same t intermediate nodes ih

and ending at node k again. We can achieve this goal by letting an appropriate derivative act

on the string of xab coefficients in (B.6.6). Consider the identity

x0,i1xi1,i2xi2,i3 · · ·xit−1,itxit,kxk,0

= xk,0

(
x0,i1

∂

∂xk,i1
+ x0,k

∂

∂xk,k

)
xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k (B.6.7)

(no sum on k or i1), where we added the term(
x0,i1

∂

∂xk,i1
+ x0,k

∂

∂xk,k

)
xk,i1 = x0,i1 , i1 6= k (B.6.8)
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The ∂/∂xk,k derivative has been added in order to account for the t = 0 case (the one in which

there are no intermediate steps in the path (B.6.6), which would just read x0,kxk,0): in this

situation we would trivially get

x0,kxk,0 = xk,0

(
0 + x0,k

∂

∂xk,k

)
xk,k = x0,kxk,0 (B.6.9)

so that the identity (B.6.7) holds for any t ≥ 0. Note also that we can rewrite the same equation

as

x0,i1xi1,i2xi2,i3 · · ·xit−1,itxit,kxk,0 =

= xk,0

 n∑
p=1
p6=k

x0,p
∂

∂xk,p
+ x0,k

∂

∂xk,k

xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k (B.6.10)

where the values that p can take ({1, 2, ..., n} \ {k}) are the same ones on which i1 runs in the

sum in (B.6.5): all the i1, i2, ..., it indices never take the value k, leaving xk,i1 as the only variable

on which the ∂/∂xk,p derivative can act with nonzero result. We can then rewrite the identity

(B.6.10) as

x0,i1xi1,i2xi2,i3 · · ·xit−1,itxit,kxk,0

= xk,0

 n∑
p=1

x0,p
∂

∂xk,p

xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k

=

n∑
p=1

tk t̄p ∂
k,p xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k (B.6.11)

where in the last line we set ∂
∂xk,q

= ∂k,q and used the original notation xk,0 = tk, x0,k = t̄k. At

this stage, we successfully rewrote a our initial path (0, i1, i2, ..., it, k, 0) in terms of a suitable

differential operator acting on a new path (k, i1, i2, ..., it, k).

Inserting eq. (B.6.11) into (B.6.5) gives

n∑
k=1

â
[n]
0,k xk,0 = (B.6.12)

=
1

G[n]

n∑
k=1

n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[n]\{k,∪th=1ih}

n∑
p=1

ykȳp ∂
k,p xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k

Note that ∂k,p can pass through G[n]\{k,∪th=1ih}
, since the latter does not contain the k-th point
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(by construction). We can then write

n∑
k=1

â
[n]
0,k xk,0

=
1

G[n]

n∑
k,p=1

tk t̄p ∂
k,p

n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[n]\{k,∪th=1ih}
xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k (B.6.13)

=
1

G[n]

n∑
k,p=1

tk t̄p ∂
k,p

n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=k

G[n]\{k,∪th=1ih}
xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k −G[n]\{k}


where in the last line we added G[n]\{k} under the derivative action: indeed ∂k,pG[n]\{k} = 0,

since G[n]\{k} does not contain the k-th point, and thus any xk,p ∀p. Note that the term in the

round brackets of the equation above is just −G[n]. The definition of G[n] we gave in eq. (2.3.29)

reads

G[n] = G[n−1] −
n−1∑
t=0

n−1∑
i1,i2,..,it=1
i1 6=i2 6=... 6=it

G[n−1]\{∪th=1ih}
xn,i1xi1,i2xi2,i3 · · ·xit−1,itxit,n

= G[n]\{n} −
n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=... 6=it 6=n

G[n]\{n,∪th=1ih}
xn,i1xi1,i2xi2,i3 · · ·xit−1,itxit,n (B.6.14)

but the same equation holds if, instead of n, we remove any integer 1 ≤ k ≤ n from the set [n]:

G[n] = G[n]\{k} −
n−1∑
t=0

n∑
i1,i2,..,it=1

i1 6=i2 6=...6=it 6=k

G[n]\{k,∪th=1ih}
xk,i1xi1,i2xi2,i3 · · ·xit−1,itxit,k (B.6.15)

Using (B.6.15) in (B.6.13) gives then

n∑
k=1

xk,0 â
[n]
0,k = − 1

G[n]

n∑
k,p=1

tk t̄p ∂
k,pG[n] = −

n∑
k,p=1

tk t̄p ∂
k,p logG[n] (B.6.16)

so that we can write, for the numerator of F in (B.6.2)

n∏
k=1

exp
(
â

[n]
0,k xk,0

)
= exp

(
n∑
k=1

â
[n]
0,k xk,0

)
= exp

− n∑
k,p=1

tk t̄p ∂
k,p logG[n]

 (B.6.17)
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This means that F [n] can be written as

F [n] =

exp

(
−

n∑
k,p=1

tk t̄p ∂
k,p logG[n]

)
G[n]

(B.6.18)

or, using Einstein summation

F [n] =
exp

(
−tk t̄p ∂k,p logG[n]

)
G[n]

(B.6.19)

Recalling that F
[n]
0 = G[n]

−1, where F0 is the generating function for the unflavoured case, we

also have

F [n] = F
[n]
0 exp

(
tk t̄p ∂

k,p logF
[n]
0

)
(B.6.20)

Furthermore, considering the chain of equalities

(−1)p+qMp,q

det(1n −Xn)
= − 1

det(1n −Xn)
∂p,q det(1n −Xn) = ∂p,q log

(
1

det(1n −Xn)

)
(B.6.21)

we finally get to

F [n] = F
[n]
0 exp

 n∑
p,q=1

tpt̄q
(−1)p+qMp,q

det(1n −Xn)

 (B.6.22)

The latter is exactly (2.5.15).

209



Appendix C

Useful Formulae for the Permutation

Centraliser Algebras

C.1 Analytic formula for the dimension of M(m,n)

In this section we derive a formula for the dimension of M(m,n). This dimension is equal to

the sum of Littlewood-Richardson coefficients

Dim M(m,n) =
∑

R1`m,R2`n

∑
R`m+n

g(R1, R2, R) (C.1.1)

The sum of squares of the Littlewood-Richardson coefficients is the dimension of A(m,n) and

has a simple 2-variable generating function. It is natural to ask if we can write a nice generating

function for the dimension of M(m,n). While we have not been able to derive something of

comparable simplicity, we will derive two interesting expressions (C.1.11) and (C.1.28) in terms

of multi-variable polynomials.

Let Tp denote a conjugacy class of permutations with cycle structure determined by a vector

(p1, p2, · · · ), i.e. permutations with pi cycles of length i. Let now σp be an element in Tp. For

σp ∈ Tp, it is known that [118]

∑
R

χR(σp) =
∏
i

Coeff

(
fi(ti),

tpii
pi!

)
(C.1.2)

where

fi(ti) = e
(1−(−1)i)

2
ti+

it2i
2 (C.1.3)

We can define

F (t1, t2, · · · ) =
∏
i

fi(ti) (C.1.4)
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and write

∑
R

χR(σp) = Coeff

(
F (t1, t2, · · · ),

∏
i

tpii
pi!

)
(C.1.5)

It is also useful to define

f̃i(ti) = fi

(
ti
i

)
F̃ (t1, t2, · · · ) = F

(
t1,

t2
2
,
t3
3
· · ·
)

= F

(
{ ti
i
}
)

=
∏
i:odd

e
ti
i

∞∏
i=1

e
it2i
2i (C.1.6)

We can write the LR coefficients in terms of Tp’s as

g(R1, R2, R) =
1

m!n!

∑
σ1∈Sm

∑
σ2∈Sn

χR1(σ1)χR2(σ2)χR(σ1 ◦ σ2)

=
∑
p`m

∑
q`n

χR1(Tp)χR2(Tq)χR(Tp ◦ Tq)
∏
i

1

ipi+qipi!qi!

(C.1.7)

This uses the fact that the number of permutations in the class Tp is n!/
∏
i i
pipi!. Now use the

above formula for
∑

R χR(Tp), to obtain∑
R1,R2,R

g(R1, R2, R)

=
∑
p`m

∑
q`n

∏
i

Coeff(f̃i(si), t
pi
i ) Coeff (f̃i(ti), t

qi
i ) Coeff (fi(ui), u

pi+qi
i )(pi + qi)!

=
∑
p`m

∑
q`n

Coeff (F̃ (~s)F̃ (~t)F (~u),
∏
i

spii t
qi
i u

pi+qi
i (pi + qi)!

−1)

=
∑
p`m

∑
q`n

Coeff (F̃ (~s)F̃ (~t)F̃ (~u),
∏
i

spii t
qi
i u

pi+qi
i )ipi+qi(pi + qi)! (C.1.8)

It is useful to make the substitutions si → sizi, ti → tizi, ui → z̄i and to introduce a pairing 8

〈zkj , z̄li〉 = δij δkl k! ik (C.1.9)

With these substitutions define

F(zi, s) = F̃ (ti → sizi) (C.1.10)

8 Alternatively we can think about expectation values in a Fock space with zi → ai, z̄i → a†i . This would allow
us to write the subsequent formulae in terms of quantities in a 2D field theory. This perspective could be fruitful,
but we will leave its exploration for the future
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Then we can write

Dim (M(m,n)) = 〈 Coeff (F(zi, s)F(zi, t)F(zi, u = 1), smtn)〉 (C.1.11)

This has been checked for very simple cases, e.g. up to (m,n) = (3, 3)

C.1.1 Multi-variable polynomials

It is useful to isolate the multi-variable polynomials in the zi variables at each order in the s, t

variables. Let us introduce the quantities

A(~z, s) =
∏
i

exp

[
s2iz2

i

2i

]
B(~z, s) =

∏
i=1,3,..

exp

[
sizi
i

]
(C.1.12)

It follows from previous formulae (C.1.6) and (C.1.10) that

F(~z, s) = A(~z, s)B(~z, s) (C.1.13)

Introducing polynomials Fm(~z) for each order in s we can rewrite the latter quantity as

F(~z, s) =
∑
m=0

Fm(~z)sm (C.1.14)

We will now write formulae for the coefficients of sm in A and B. For A(~z, s) we derive

A(~z, s) =

∞∑
m=0

A2m(~z)s2m =

∞∑
p1,p2,···=0

∞∏
i=1

s2ipiz2ipi
i

(2i)pipi!
(C.1.15)

so that

A2m(~z) =
∑
p`m

z2ipi
i

(2i)pipi!
(C.1.16)

We can also define Am(~z) to be zero for odd m and equal to the above for the even values. It

is useful to define the coefficients of z2p1
1 z4p2

2 . . . z2ipi
i in the A(~z, s = 1) as

A[p] = A[p1,p2··· ] =
∏
i

1

pi!(2i)pi
(C.1.17)

so that we may write

A2m =
∑
p`m
A[p]

∞∏
i=1

z2ipi
i (C.1.18)
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Similarly, for B(~z, s) we obtain

B(~z, s) =
∞∏
i=0

exp

[
s(2i+1)z2i+1

(2i+ 1)

]
(C.1.19)

and

Bm(~z) =
∑

{p1,p3··· }`m

∏
i odd

zipii
(i)pipi!

(C.1.20)

Therefore it is natural to define

B[p1,p3,··· ] =
∏
i

1

ipipi!

Bm(~z) =
∑
p`m
B[p1,p3,··· ]

∏
i odd

zipii (C.1.21)

Going back to (C.1.14) we get, using the formulae just derived

Fm(~z) =
m∑
k=0

Ak(~z)Bm−k(~z) =

bm
2
c∑

k=0

A2k(~z)Bm−2k(~z)

=

bm
2
c∑

k=0

∑
r`k

∑
q`m−2k
q odd

A[r]B[q]

∏
i

z
i(2ri+qi)
i (C.1.22)

Grouping terms with the same power of zi we obtain

F(~z, s = 1) =
∑

[p1,p2...]

F[p1,p2...]

∏
i

zipii (C.1.23)

with

F[p] =
∑

[r1,r2,...]

∑
[q1,q2··· ]

A[r1,r2··· ]B[q1,q2,··· ]
∏
i even

δ(pi, 2ri)
∏
i odd

δ(pi, 2ri + qi) (C.1.24)

Note that the function F(~z, s) is closely related to the generating function for the cycle

indices of Sn which is

Z(~z, t) = exp

[ ∞∑
i=1

tizi
i

]
Ã(~z, s) =

(
Z(zi → z2

i , s→ s2)
)1/2

B̃(~z, s) = (Z(z2i+1 → z2i+1, z2i → 0))1/2 (C.1.25)
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We can work with the same function if we change the pairing. With the pairing〈
zkii , z

kj
j

〉
= δi,jδki,kjki! i

ki (C.1.26)

we can write the above formulae as

Dim(M(m,n)) = 〈Fm(~z)Fn(~z),Fm+n(~z)〉 (C.1.27)

or, equivalently,

Dim(M(m,n)) =
∑
p`m

∑
q`n
Fp1,p2···Fq1,q2,···Fp1+p2,q1+q2,···

∏
i

ipi+qi(pi + qi)!

=
∑
p`m

∑
q`n
FpFqFp+qSym(p+ q) (C.1.28)

This is eq. (4.2.45).

C.2 LR rule for hook representations

Here we derive the LR decomposition rule for the tensor product of two hook representations.

Let us consider three representations R, R1 and R2 of Sm+n, Sm and Sn respectively. The LR

coefficient g(R1, R2;R) gives the multiplicity with which the representation R1 ⊗ R2 appear in

the representation R upon its restriction to Sm×Sn. There is a systematic procedure to obtain

such coefficients [68], that we now briefly review. We take the Young diagrams corresponding

to R1 and R2, and we start by decorating the latter as follows. We write ‘1’ in all the boxes of

the first row, ‘2’ in all the boxes of the second row and so on in a similar fashion until the last

row. Then we proceed to move all the ‘1’ boxes from R2 to R1, ensuring that that we produce

legal Young diagrams and no two copies of ‘1’ appear in the same column. We then move the

‘2’ boxes following the same rules, and so on. In doing so, we also require a reading condition.

At any step, reading from right lo left along the first row and then subsequent rows, the number

of ‘1’ boxes must be greater or equal to the number of ‘2’ boxes. Similarly, the number of ‘2’

boxes must be greater or equal to the number of ‘3’ boxes, and so on.

At the end of this procedure we are left with a collection of Young diagrams, made with m+n

boxes. If two or more of the resulting diagrams are identical (that is, the not only match in shape

but also in the numbering of their boxes), we only retain one of them. Otherwise, if k diagrams

R appear with the same shape but different numbering, we can say that g(R1, R2;R) = k. These

will be the prescriptions that we will follow to derive our LR formula.

We specify any representation R by the sequence of pairs of integers R = ((a1, b1), (a2, b2),

...(ad, bd)). In a Young diagram interpretation, aj (1 ≤ j ≤ d) is the number of boxes to the

right of the j-th diagonal box, and bj is the number of boxes below the j-th diagonal box. We

refer to d as the ‘depth’ of the representation R. Hooks therefore are representations of depth
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1. Schematically, in this appendix we will obtain the RHS of

(k1, l1)⊗ (k2, l2) =
⊕

((a1, b1), (a2, b2)) (C.2.1)

In our derivation we imagine to keep the first hook fixed, and to add to it boxes coming from

the second diagram. In doing so we are careful to follow the LR prescription. The boxes of the

second diagram are decorated by a ‘1’ or a ‘v’, depending whether they come from the first row

of the diagram or not. The tensor product (k1, l1) ⊗ (k2, l2) will decompose into a direct sum

of a varying number of depth 2 representation and precisely two hooks (regardless of the actual

value of k1,2, l1,2). These hooks are

Hook 1: (k1 + k2 + 1, l1 + l2)

Hook 2: (k1 + k2, l1 + l2 + 1) (C.2.2)

Notice that we can rewrite them using the notation we use for the depth two diagram as

Hook 1: ((k1 + k2 + 1, l1 + l2), (0,−1)) (C.2.3)

Hook 2: ((k1 + k2, l1 + l2 + 1), (−1, 0)) (C.2.4)

This notation will be helpful at a later stage.

We now turn to the depth two representations. We proceed systematically, grouping them

into four categories according to the two yes/no questions:

1) Is there a 1 in the first column of the resulting diagram?

2) Is there a v in the first row of the inner hook of the resulting diagram?

We now analyse these four possibilities.

C.2.1 (Y,Y) case

The diagrams in this class are of the form

Figure 46: (Y,Y) case
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They can be described by the expression

(Y, Y ) : ((k1 + k2 − i, l1 + l2 − j), (i, j)) (C.2.5)

where i and j are constrained by the boundaries

0 ≤ i ≤ min(k1, k2 − 1)

0 ≤ j ≤ min(l1, l2 − 1) (C.2.6)

The upper bound on i is min(k1, k2 − 1) because, if k1 ≥ k2, we cannot remove all the k2 1

type boxes from the first row. This has to be avoided since by construction the rightmost box

in the second row has to be a v type box. A diagram with no 1 type boxes on the first row

and a v type box at the end of the second row would violate the LR reading condition.

C.2.2 (Y,N) case

The diagrams in this class are of the form

Figure 47: (Y,N) case

They can be described by the expression

(Y,N) : ((k1 + k2 − i, l1 + l2 − j + 1), (i− 1, j)) (C.2.7)

with the boundaries

1 ≤ i ≤ min(k1, k2)

0 ≤ j ≤ min(l1, l2) (C.2.8)
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C.2.3 (N,N) case

The depth two diagrams in this class are of the form

Figure 48: (N,N) case

They can be described by the expression

(N,N) : ((k1 + k2 − i, l1 + l2 − j), (i, j)) (C.2.9)

with the boundaries

0 ≤ i ≤ min(k1 − 1, k2)

0 ≤ j ≤ min(l1 − 1, l2) (C.2.10)

C.2.4 (N,Y) case

The diagrams in this class are of the form

Figure 49: (N,Y) case

These can be described by the equation

(N,Y ) : ((k1 + k2 − i+ 1, l1 + l2 − j), (i, j − 1)) (C.2.11)
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The boundary for i is

0 ≤ i ≤ min(k1, k2) (C.2.12)

The upper bound is k2 and not k2 + 1 because we cannot remove all the 1 from the first row,

as the rightmost box in the second row has to be a v type box. In this way, we are enforcing

the LR reading condition. On the other hand, the boundary for j is

1 ≤ j ≤ min(l1, l2) (C.2.13)

The lower bound is a 1 as by construction there has to be a v box in the first row of the inner

hook.

C.2.5 A summary

These four cases comprise all possible valid depth two diagrams. Summarising our result, we

have

• (Y, Y ) case: ((k1 + k2 − i, l1 + l2 − j), (i, j))

0 ≤ i ≤ min(k1, k2 − 1)

0 ≤ j ≤ min(l1, l2 − 1) (C.2.14)

• (Y,N) case: ((k1 + k2 − i, l1 + l2 − j + 1), (i− 1, j))

1 ≤ i ≤ min(k1, k2)

0 ≤ j ≤ min(l1, l2) (C.2.15)

• (N,N) case: ((k1 + k2 − i, l1 + l2 − j), (i, j))

0 ≤ i ≤ min(k1 − 1, k2)

0 ≤ j ≤ min(l1 − 1, l2) (C.2.16)
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• (N,Y ) case: ((k1 + k2 − i+ 1, l1 + l2 − j), (i, j − 1))

0 ≤ i ≤ min(k1, k2)

1 ≤ j ≤ min(l1, l2) (C.2.17)

We now introduce the boolean parameters

ε1 =

{
0 If the answer to the first question is no

1 If the answer to the first question is yes
(C.2.18)

and

ε2 =

{
0 If the answer to the second question is no

1 If the answer to the second question is yes
(C.2.19)

With this notation we can compactly rewrite (C.2.14) - (C.2.17) as

((k1 + k2 − i+ ε̄1ε2, l1 + l2 − j + ε1ε̄2), (i− ε1ε̄2, j − ε̄1ε2)) (C.2.20)

where the sign¯denotes the logical negation of a boolean variable, so that ε̄1,2 = 1− ε1,2. In this

notation, i and j have the boundaries

ε1ε̄2 ≤ i ≤ min(k1 − ε̄1ε̄2, k2 − ε1ε2)

ε̄1ε2 ≤ j ≤ min(l1 − ε̄1ε̄2, l2 − ε1ε2) (C.2.21)

By denoting h1 = (k1, l1) and h2 = (k2, l2), together with R = ((a1, b1), (a2, b2)) we can then

write

g(h1, h2;R) = δk1+k2,a1 δl1+l2+1,b1 δ−1,a2 δ0,b2 + δk1+k2+1,a1 δl1+l2,b1 δ0,a2 δ−1,b2

+
1∑

ε1,ε2=0

min(k1−ε̄1ε̄2,k2−ε1ε2)∑
i=ε1ε̄2

min(l1−ε̄1ε̄2,l2−ε1ε2)∑
j=ε̄1ε2

δk1+k2−i+ε̄1ε2,a1 δl1+l2−j+ε1ε̄2,b1 δi−ε1ε̄2,a2 δj−ε̄1ε2,b2

(C.2.22)

where we also added the two hooks in the depth two notation, (C.2.3) and (C.2.4). Explicitly,

summing over the ε1,2 parameters, we get the lengthier expression
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g(h1, h2;R) =

= δk1+k2,a1 δl1+l2+1,b1 δ−1,a2 δ0,b2 +

min(k1,k2)∑
i=1

min(l1,l2)∑
j=0

δk1+k2−i,a1 δl1+l2−j+1,b1 δi−1,a2 δj,b2

+ δk1+k2+1,a1 δl1+l2,b1 δ0,a2 δ−1,b2 +

min(k1,k2)∑
i=0

min(l1,l2)∑
j=1

δk1+k2−i+1,a1 δl1+l2−j,b1 δi,a2 δj−1,b2

+

min(k1,k2−1)∑
i=0

min(l1,l2−1)∑
j=0

+

min(k1−1,k2)∑
i=0

min(l1−1,l2)∑
j=0

 δk1+k2−i,a1 δl1+l2−j,b1 δi,a2 δj,b2 (C.2.23)

From this equation it is clear that g(h1, h2;R) can be either 0, 1 or 2. In particular, g(h1, h2;R) =

2 only if R = ((k1 + k2 − i, l1 + l2 − j), (i, j)) and 0 ≤ i < min(k1, k2), 0 ≤ j < min(l1, l2).

C.3 Deriving the two point correlator

In this Appendix we will derive eq. (4.4.9) from eq. (4.4.7). Let us start by considering the

quantity

χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

)
(C.3.1)

where we remind the reader that R1, R2 and R are irreps of Sm, Sn and Sm+n respectively. Let

us define T
(X,Y )
2 , T

(X)
2 and T

(Y )
2 as the sum of transpositions in Sm+n, Sm and Sn respectively.

We can expand (C.3.1) as

χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

)
= χRR1,R2

(
T

(X,Y )
2 T

(X)
[m] T

(Y )
[n]

)
− χRR1,R2

(
T

(X)
2 T

(X)
[m] T

(Y )
[n]

)
− χRR1,R2

(
T

(X)
[m] T

(Y )
2 T

(Y )
[n]

)
= g

χR(T
(X,Y )
2 )

dR
χR1(T

(X)
[m] )χR2(T

(Y )
[n] )− 1

g dR1dR2

χRR1,R2
(T

(X)
2 )χRR1,R2

(
T

(X)
[m] T

(Y )
[n]

)
+

− 1

g dR1dR2

χRR1,R2
(T

(Y )
2 )χRR1,R2

(
T

(X)
[m] T

(Y )
[n]

)

= g
χR(T

(X,Y )
2 )

dR
χR1(T

(X)
[m] )χR2(T

(Y )
[n] )− χR1(T

(X)
2 )

dR1

χRR1,R2
(T

(X)
[m] T

(Y )
[n] )+

− χR2(T
(Y )
2 )

dR2

χRR1,R2
(T

(X)
[m] T

(Y )
[n] )
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= g χR1(T
(X)
[m] )χR2(T

(Y )
[n] )

[
χR(T

(X,Y )
2 )

dR
− χR1(T

(X)
2 )

dR1

− χR2(T
(Y )
2 )

dR2

]
(C.3.2)

But now

χR1(T[m]) =

{
(−1)cR1

+1 (m− 1)! if R1 is a hook representation

0 otherwise
(C.3.3)

where cR1 is the number of boxes in the firs column of the Young diagram associated with the

representation R1. A similar equation holds for χR2(T[n]). We then have

χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

)
=

=

 (−1)cR1
+cR2 g (m− 1)!(n− 1)!

[
χR(T

(X,Y )
2 )
dR

− χR1
(T

(X)
2 )

dR1
− χR2

(T
(Y )
2 )

dR2

]
; R1, R2 hooks

0 otherwise

(C.3.4)

this is eq. (4.4.8). Let us now restrict to the case in which both R1, R2 are hooks representations.

We will denote there representations as h1 = R1 = (k1, l1) and h2 = R2 = (k2, l2). This also

forces the representation R to be at most of depth two, as we derived in Appendix C.2. We

now consider such a representation. With the notation given at the beginning of this section,

R = ((a1, b1), (a2, b2)), it is immediate to write an equation for the normalised character χR(T2)
dR

χR(T2)

dR
=

1

2

∑
i

ri(ri − 2i+ 1) = a1(a1 + 1) + (a2 + 2)(a2 − 1)+ (C.3.5)

+ 2

b2+2∑
i=3

(3− 2i) + 2

b1+1∑
i=b2+3

(1− i)

=
1

2
(a2

1 + a2
2 + a1 + a2)− 1

2
(b21 + b22 + b1 + b2)

=
1

2
(a1 + b1 + 1)(a1 − b1) +

1

2
(a2 + b2 + 1)(a2 − b2) (C.3.6)

We now need the equivalent of this formula for the depth one representations h1 and h2, i.e.

the hooks. Such an equation can be directly obtained by setting (a2, b2) = (−1, 0) or (a2, b2) =

(0,−1) in (C.3.5). We can then write (C.3.4) as

χRh1,h2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

)
=

(−1)ch1
+ch2

2
g (m− 1)!(n− 1)!×

×
[
(a1 + b1 + 1)(a1 − b1) + (a2 + b2 + 1)(a2 − b2)+ (C.3.7)

− (k1 + l1 + 1)(k1 − l1)− (k2 + l2 + 1)(k2 − l2)
]

where R = ((a1, b1), (a2, b2)) and h1 = (k1, l1), h2 = (k2, l2).

The last piece we need is an equation for the U(N) dimension of a depth two representation
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R = ((a1, b1), (a2, b2)). It is straightforward to write

DimN (R) =
(a1 − a2)(b1 − b2)

(a1 + b2 + 1)(a2 + b1 + 1)

(
a1 + b1
b1

)(
a2 + b2
b2

)(
N + a1

a1 + b1 + 1

)(
N + a2

a2 + b2 + 1

)
(C.3.8)

This equation reduces to its depth 1 equivalent by imposing (a2, b2) = (−1, 0) or (a2, b2) =

(0,−1). It is also helpful to recall the dimension formula for a Sl+k+1 hook representation (k, l):

dR =

(
k + l

k

)
(C.3.9)

Let us now consider eq. (4.4.7):

〈OO†〉 =
1

m!n!

∑
R1`m
R2`n

∑
R`m+n

1

dR1 dR2 g
DimN (R)

(
χRR1,R2

(
T1̄,1T

(X)
[m] T

(Y )
[n]

))2
(C.3.10)

Inserting eq. (C.3.7), (C.3.8) and (C.3.9) into the above equation gives

〈Tr(XmY n)Tr(XmY n)†〉

=

m∑
k1,l1=0

n∑
k2,l2=0

n+m∑
a1,b1=0
a2,b2=0

g δ(k1 + l1 + 1−m) δ(k2 + l2 + 1− n) F (a1, b1, a2, b2, k1, l1, k2, l2)

(C.3.11)

where we defined the function

F (a1, b1, a2, b2, k1, l1, k2, l2) =
k1!k2!l1!l2! (a1 − a2)(b1 − b2)

4(a1 + b2 + 1)(a2 + b1 + 1)(k1 + l1 + 1)(k2 + l2 + 1)

×
(
a1 + b1
b1

)(
a2 + b2
b2

)(
N + a1

a1 + b1 + 1

)(
N + a2

a2 + b2 + 1

)
×

× ((a1 + b1 + 1)(a1 − b1) + (a2 + b2 + 1)(a2 − b2)+

− (k1 + l1 + 1)(k1 − l1)− (k2 + l2 + 1)(k2 − l2))2 (C.3.12)

222



Bibliography

[1] P. Mattioli and S. Ramgoolam, Quivers, Words and Fundamentals, JHEP 03 (2015) 105,

[arXiv:1412.5991].

[2] P. Mattioli and S. Ramgoolam, Permutation Centralizer Algebras and Multi-Matrix

Invariants, Phys. Rev. D93 (2016), no. 6 065040, [arXiv:1601.0608].

[3] P. Mattioli and S. Ramgoolam, Gauge Invariants and Correlators in Flavoured Quiver

Gauge Theories, arXiv:1603.0436.

[4] G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude for

linearly rising trajectories, Nuovo Cim. A57 (1968) 190–197.

[5] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 Gauge

Theory and Superstring Theory, Phys. Lett. B149 (1984) 117–122.

[6] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995)

85–126, [hep-th/9503124].

[7] J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995)

4724–4727, [hep-th/9510017].

[8] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200]. [Adv. Theor. Math.

Phys.2,231(1998)].

[9] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)

253–291, [hep-th/9802150].

[10] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from

noncritical string theory, Phys. Lett. B428 (1998) 105–114, [hep-th/9802109].

[11] V. Balasubramanian, D. Berenstein, B. Feng, and M.-x. Huang, D-branes in Yang-Mills

theory and emergent gauge symmetry, JHEP 03 (2005) 006, [hep-th/0411205].

[12] D. E. Berenstein, J. M. Maldacena, and H. S. Nastase, Strings in flat space and pp waves

from N=4 superYang-Mills, JHEP 04 (2002) 013, [hep-th/0202021].

223

http://xxx.lanl.gov/abs/1412.5991
http://xxx.lanl.gov/abs/1601.0608
http://xxx.lanl.gov/abs/1603.0436
http://xxx.lanl.gov/abs/hep-th/9503124
http://xxx.lanl.gov/abs/hep-th/9510017
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/0411205
http://xxx.lanl.gov/abs/hep-th/0202021


BIBLIOGRAPHY

[13] J. McGreevy, L. Susskind, and N. Toumbas, Invasion of the giant gravitons from Anti-de

Sitter space, JHEP 06 (2000) 008, [hep-th/0003075].

[14] R. C. Myers, Dielectric branes, JHEP 12 (1999) 022, [hep-th/9910053].

[15] R. d. M. Koch and S. Ramgoolam, From Matrix Models and Quantum Fields to Hurwitz

Space and the absolute Galois Group, arXiv:1002.1634.

[16] V. Balasubramanian, M. Berkooz, A. Naqvi, and M. J. Strassler, Giant gravitons in

conformal field theory, JHEP 04 (2002) 034, [hep-th/0107119].

[17] S. Corley, A. Jevicki, and S. Ramgoolam, Exact correlators of giant gravitons from dual

N=4 SYM theory, Adv.Theor.Math.Phys. 5 (2002) 809–839, [hep-th/0111222].

[18] S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS

correlators in N=4 SYM theory, Nucl.Phys. B641 (2002) 131–187, [hep-th/0205221].

[19] J. M. Maldacena and A. Strominger, AdS(3) black holes and a stringy exclusion

principle, JHEP 12 (1998) 005, [hep-th/9804085].

[20] I. Bena and D. J. Smith, Towards the solution to the giant graviton puzzle, Phys. Rev.

D71 (2005) 025005, [hep-th/0401173].

[21] V. Balasubramanian, M.-x. Huang, T. S. Levi, and A. Naqvi, Open strings from N=4

superYang-Mills, JHEP 08 (2002) 037, [hep-th/0204196].

[22] R. de Mello Koch, J. Smolic, and M. Smolic, Giant Gravitons - with Strings Attached (I),

JHEP 06 (2007) 074, [hep-th/0701066].

[23] R. de Mello Koch, J. Smolic, and M. Smolic, Giant Gravitons - with Strings Attached

(II), JHEP 09 (2007) 049, [hep-th/0701067].

[24] D. Bekker, R. de Mello Koch, and M. Stephanou, Giant Gravitons - with Strings

Attached. III., JHEP 02 (2008) 029, [arXiv:0710.5372].

[25] M. Bianchi, F. A. Dolan, P. J. Heslop, and H. Osborn, N=4 superconformal characters

and partition functions, Nucl. Phys. B767 (2007) 163–226, [hep-th/0609179].

[26] J. Pasukonis and S. Ramgoolam, Quivers as Calculators: Counting, Correlators and

Riemann Surfaces, JHEP 04 (2013) 094, [arXiv:1301.1980].

[27] Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity

duality, JHEP 0711 (2007) 078, [arXiv:0709.2158].

[28] T. W. Brown, P. Heslop, and S. Ramgoolam, Diagonal multi-matrix correlators and BPS

operators in N=4 SYM, JHEP 0802 (2008) 030, [arXiv:0711.0176].

[29] T. W. Brown, P. Heslop, and S. Ramgoolam, Diagonal free field matrix correlators,

global symmetries and giant gravitons, JHEP 0904 (2009) 089, [arXiv:0806.1911].

224

http://xxx.lanl.gov/abs/hep-th/0003075
http://xxx.lanl.gov/abs/hep-th/9910053
http://xxx.lanl.gov/abs/1002.1634
http://xxx.lanl.gov/abs/hep-th/0107119
http://xxx.lanl.gov/abs/hep-th/0111222
http://xxx.lanl.gov/abs/hep-th/0205221
http://xxx.lanl.gov/abs/hep-th/9804085
http://xxx.lanl.gov/abs/hep-th/0401173
http://xxx.lanl.gov/abs/hep-th/0204196
http://xxx.lanl.gov/abs/hep-th/0701066
http://xxx.lanl.gov/abs/hep-th/0701067
http://xxx.lanl.gov/abs/0710.5372
http://xxx.lanl.gov/abs/hep-th/0609179
http://xxx.lanl.gov/abs/1301.1980
http://xxx.lanl.gov/abs/0709.2158
http://xxx.lanl.gov/abs/0711.0176
http://xxx.lanl.gov/abs/0806.1911


BIBLIOGRAPHY

[30] R. Bhattacharyya, S. Collins, and R. d. M. Koch, Exact Multi-Matrix Correlators, JHEP

0803 (2008) 044, [arXiv:0801.2061].

[31] S. Collins, Restricted Schur Polynomials and Finite N Counting, Phys.Rev. D79 (2009)

026002, [arXiv:0810.4217].

[32] R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in

AdS/CFT, JHEP 06 (2012) 083, [arXiv:1204.2153].

[33] W. Carlson, R. d. M. Koch, and H. Lin, Nonplanar Integrability, JHEP 03 (2011) 105,

[arXiv:1101.5404].

[34] R. d. M. Koch, B. A. E. Mohammed, and S. Smith, Nonplanar Integrability: Beyond the

SU(2) Sector, Int. J. Mod. Phys. A26 (2011) 4553–4583, [arXiv:1106.2483].

[35] R. d. M. Koch, M. Dessein, D. Giataganas, and C. Mathwin, Giant Graviton Oscillators,

JHEP 10 (2011) 009, [arXiv:1108.2761].

[36] R. de Mello Koch, R. Kreyfelt, and N. Nokwara, Finite N Quiver Gauge Theory, Phys.

Rev. D89 (2014), no. 12 126004, [arXiv:1403.7592].

[37] P. Caputa, R. d. M. Koch, and P. Diaz, Operators, Correlators and Free Fermions for

SO(N) and Sp(N), JHEP 06 (2013) 018, [arXiv:1303.7252].

[38] R. de Mello Koch, B. A. E. Mohammed, J. Murugan, and A. Prinsloo, Beyond the

Planar Limit in ABJM, JHEP 05 (2012) 037, [arXiv:1202.4925].

[39] J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N=4

SYM, JHEP 02 (2011) 078, [arXiv:1010.1683].

[40] D. Berenstein, Extremal chiral ring states in the AdS/CFT correspondence are described

by free fermions for a generalized oscillator algebra, Phys. Rev. D92 (2015), no. 4

046006, [arXiv:1504.0538].

[41] Y. Kimura, Multi-matrix models and Noncommutative Frobenius algebras obtained from

symmetric groups and Brauer algebras, Commun. Math. Phys. 337 (2015), no. 1 1–40,

[arXiv:1403.6572].

[42] J. McGrane, S. Ramgoolam, and B. Wecht, Chiral Ring Generating Functions &

Branches of Moduli Space, arXiv:1507.0848.

[43] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091,

[arXiv:0806.1218].

[44] T. K. Dey, Exact Large R-charge Correlators in ABJM Theory, JHEP 1108 (2011) 066,

[arXiv:1105.0218].

225

http://xxx.lanl.gov/abs/0801.2061
http://xxx.lanl.gov/abs/0810.4217
http://xxx.lanl.gov/abs/1204.2153
http://xxx.lanl.gov/abs/1101.5404
http://xxx.lanl.gov/abs/1106.2483
http://xxx.lanl.gov/abs/1108.2761
http://xxx.lanl.gov/abs/1403.7592
http://xxx.lanl.gov/abs/1303.7252
http://xxx.lanl.gov/abs/1202.4925
http://xxx.lanl.gov/abs/1010.1683
http://xxx.lanl.gov/abs/1504.0538
http://xxx.lanl.gov/abs/1403.6572
http://xxx.lanl.gov/abs/1507.0848
http://xxx.lanl.gov/abs/0806.1218
http://xxx.lanl.gov/abs/1105.0218


BIBLIOGRAPHY

[45] R. de Mello Koch, B. A. E. Mohammed, J. Murugan, and A. Prinsloo, Beyond the

Planar Limit in ABJM, JHEP 1205 (2012) 037, [arXiv:1202.4925].

[46] B. A. E. Mohammed, Nonplanar Integrability and Parity in ABJ Theory,

Int.J.Mod.Phys. A28 (2013) 1350043, [arXiv:1207.6948].

[47] P. Caputa and B. A. E. Mohammed, From Schurs to Giants in ABJ(M), JHEP 1301

(2013) 055, [arXiv:1210.7705].

[48] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons,

hep-th/9603167.

[49] A. Karch and E. Katz, Adding flavor to AdS / CFT, JHEP 0206 (2002) 043,

[hep-th/0205236].

[50] J. Erdmenger and V. Filev, Mesons from global Anti-de Sitter space, JHEP 1101 (2011)

119, [arXiv:1012.0496].

[51] D. Arnaudov, V. Filev, and R. Rashkov, Flavours in global Klebanov-Witten background,

JHEP 1403 (2014) 023, [arXiv:1312.7224].

[52] P. Ouyang, Holomorphic D7 branes and flavored N=1 gauge theories, Nucl.Phys. B699

(2004) 207–225, [hep-th/0311084].

[53] T. S. Levi and P. Ouyang, Mesons and flavor on the conifold, Phys.Rev. D76 (2007)

105022, [hep-th/0506021].

[54] Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the

spectrum of local operators, Phys.Rev. D78 (2008) 126003, [arXiv:0807.3696].

[55] Y. Kimura, Correlation functions and representation bases in free N=4 Super

Yang-Mills, Nucl. Phys. B865 (2012) 568–594, [arXiv:1206.4844].

[56] R. de Mello Koch, B. A. E. Mohammed, J. Murugan, and A. Prinsloo, Beyond the

Planar Limit in ABJM, JHEP 05 (2012) 037, [arXiv:1202.4925].

[57] B. A. E. Mohammed, Nonplanar Integrability and Parity in ABJ Theory, Int. J. Mod.

Phys. A28 (2013) 1350043, [arXiv:1207.6948].

[58] P. Caputa and B. A. E. Mohammed, From Schurs to Giants in ABJ(M), JHEP 01

(2013) 055, [arXiv:1210.7705].

[59] D. Berenstein, Extremal chiral ring states in the AdS/CFT correspondence are described

by free fermions for a generalized oscillator algebra, Phys. Rev. D92 (2015), no. 4

046006, [arXiv:1504.0538].

[60] R. de Mello Koch, R. Kreyfelt, and S. Smith, Heavy Operators in Superconformal

Chern-Simons Theory, Phys. Rev. D90 (2014), no. 12 126009, [arXiv:1410.0874].

226

http://xxx.lanl.gov/abs/1202.4925
http://xxx.lanl.gov/abs/1207.6948
http://xxx.lanl.gov/abs/1210.7705
http://xxx.lanl.gov/abs/hep-th/9603167
http://xxx.lanl.gov/abs/hep-th/0205236
http://xxx.lanl.gov/abs/1012.0496
http://xxx.lanl.gov/abs/1312.7224
http://xxx.lanl.gov/abs/hep-th/0311084
http://xxx.lanl.gov/abs/hep-th/0506021
http://xxx.lanl.gov/abs/0807.3696
http://xxx.lanl.gov/abs/1206.4844
http://xxx.lanl.gov/abs/1202.4925
http://xxx.lanl.gov/abs/1207.6948
http://xxx.lanl.gov/abs/1210.7705
http://xxx.lanl.gov/abs/1504.0538
http://xxx.lanl.gov/abs/1410.0874


BIBLIOGRAPHY

[61] R. de Mello Koch, R. Kreyfelt, and N. Nokwara, Finite N Quiver Gauge Theory, Phys.

Rev. D89 (2014), no. 12 126004, [arXiv:1403.7592].

[62] Y. Lozano, J. Murugan, and A. Prinsloo, A giant graviton genealogy, JHEP 08 (2013)

109, [arXiv:1305.6932].

[63] P. Diaz, Novel charges in CFT‘s, JHEP 09 (2014) 031, [arXiv:1406.7671].
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