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ABSTRACT

Aims. In previous simulations of collisionless 2D magnetic reconnection it was consistently found that the term in the generalised
Ohm’s law that breaks the frozen-in condition is the divergence of the electron pressure tensor’s non-gyrotropic components. The
motivation for this study is to investigate the effect of the variation of the guide-field on the reconnection mechanism in simulations
of X-point collapse, and the related changes in reconnection dynamics.
Methods. A fully relativistic particle-in-cell (PIC) code was used to modelX-point collapse with a guide-field in two and three spatial
dimensions.
Results. We show that in a 2DX-point collapse with a guide-field close to the strength of the in-plane field, the increased induced
shear flows along the diffusion region lead to a new reconnection regime in which electron inertial terms play a dominant role at the
X-point. This transition is marked by the emergence of a magnetic island – and hence a second reconnection site – as well as electron
flow vortices moving along the current sheet. The reconnection electric field at theX-point is shown to exceed all lower guide-field
cases for a brief period, indicating a strong burst in reconnection. By extending the simulation to three spatial dimensions it is shown
that the locations of vortices along the current sheet (visualised by theirQ-value) vary in the out-of-plane direction, producing tilted
vortex tubes. The vortex tubes on opposite sides of the diffusion region are tilted in opposite directions, similarly to bifurcated current
sheets in oblique tearing-mode reconnection. The tilt angles of vortex tubes were compared to a theoretical estimationand were found
to be a good match. Particle velocity distribution functions for different guide-field runs, for 2.5D and 3D simulations, are analysed
and compared.

1. Introduction

Magnetic reconnection is an important process in the study of
solar plasma physics; it allows energy stored in magnetic fields
to be converted into kinetic energy of super-thermal particles and
heat. Following Dungey’s original model of the open magneto-
sphere, where magnetic reconnection facilitates the interaction
of the Sun’s magnetic field and the Earth (Dungey 1953), numer-
ous models have been devised that use magnetic reconnection
to explain solar eruptions (Shibata & Magara 2011; Chen 2011),
coronal heating (Cranmer 2009; De Moortel & Browning 2015),
and other energetic processes within the heliosphere. While
no model of magnetic reconnection has currently been demon-
strated to comprehensively describe energetic phenomena,sev-
eral observational studies have found evidence for magnetic re-
connection, such as great energy conversions in the heliospheric
current-sheet, corresponding with fast reconnection models
(Gosling et al. 2007), and signatures of Hall-reconnectionin the
geo-magnetic tail of the Earth (Eastwood et al. 2007). Further-
more, a recent study using magnetohydrodynamic modelling
driven by solar magnetograms (Jiang et al. 2016) have found
substantial new results regarding the transition from pre-eruptive
to eruptive states in a magnetic flux-emerging region. A strong
case thus exists for the importance of magnetic reconnection in
solar processes; a thorough understanding of the magnetic re-
connection process is vital to the further understanding ofthe
dynamics within the heliosphere.

Dungey’s original analysis of magnetic energy conversion
in the Earth’s magnetosphere describes a reconnection model
now known as X-point collapse. Following reconnection mod-
els proposed by Sweet and Parker (Parker 1957) and later

by Petshek (Petschek 1964), reconnection set-ups of sheared
magnetic fields relying on the tearing-mode became the dom-
inant set-up in computational studies of magnetic reconnec-
tion. As established in Tsiklauri & Haruki (2007, 2008) particle-
in-cell (PIC) simulations of X-point collapse in the collision-
less regime exhibit many of the established features of tearing-
mode magnetic reconnection, e.g. the formation of a current
sheet, magnetic Hall field generation, and independence of sys-
tem size. However, simulations ofX-point collapse have also
uncovered several new features, such as initial oscillatory re-
connection and vortex formation in the high guide-field regime
(Graf von der Pahlen & Tsiklauri 2014a) and a distinct octupo-
lar out-of-plane magnetic field (Graf von der Pahlen & Tsiklauri
2014b, 2015), which makes this set-up a useful device for the
ongoing study of magnetic reconnection. In this study we extend
the results of Graf von der Pahlen & Tsiklauri (2014a) where
collisionlessX-point collapse with a magnetic guide-field was
investigated in a 2.5 PIC simulation. In particular, this study
analyses the reconnection mechanism (i.e. the term breaking the
frozen-in condition) and relevant plasma dynamics for increas-
ing guide-fields.

The reconnection rate in a 2D reconnection set-up can be
defined as the out-of-plane electric field where magnetic separa-
trices meet, i.e. at theX-point. The movement of magnetic field-
lines (representative of flux-tubes in 3D) in the xy-plane corre-
sponds to changes in the z-component of the magnetic vector
potential,Az, for a set gauge. Integrating out the in-plane mag-
netic field componentsBx andBy over a given area allows values
of Az to be determined. The equipotential lines on a contour plot
of Az represent the in-plane magnetic field-lines, as for example
in panels a) to c) of Fig. 1. When the magnetic field is frozen
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Fig. 1: Reconnection at anX-point in a 3D domain, showing the motion of two sets of magnetic field-lines. The perspectives on
the simulation domain are indicated for each row. In panel b)the direction of the reconnection electric field induced as the field-
lines pass theX-point is indicated. Thin arrows on panels c) and f) indicatethe direction of the electron current generated by the
reconnection electric field. As shown, the shape of the field-lines guides the accelerated particles such that there is a shear-flow in
thexy-plane.

into the plasma then

dAz

dt
= |V × B|z, (1)

whereV represents the plasma velocity andB is the magnetic
field. Thus, changes in the magnetic field are facilitated entirely
by advection rather than diffusion. In the case of magnetic recon-
nection, the frozen-in condition is broken and changes inAz by
definition result in the generation of an electric field, according
to

Ez = −
dAz

dt
. (2)

Since the topology of field-lines in 2D must change for recon-
nection to occur, field-lines must pass through a null-point, thus
making the out-of-plane electric field at theX-point a reliable
measure of the reconnection rate. This process is shown in pan-
els a) to c) in Figure 1, where panel b) shows the electric field
generated as field-lines break and change topology.

In the collisionless regime, the diffusion region is dominated
by electron dynamics. Therefore, a means of identifying there-
connection mechanism in collisionless 2.5D simulations isto
identify the terms in the generalised electron Ohm’s law that sus-
tain the out-of-plane electric field at theX-point, i.e.

E = −〈ve〉 × B − ∇ · Pe

nee
− me

e
∂〈ve〉
∂t
− me

e
(〈ve〉 · ∇)〈ve〉, (3)

where the terms on the right-hand side are, from left to right, the
advection term, the divergence of the electron pressure tensor,
the time derivative of the electron bulk inertia, and the convective
inertia (i.e. spatial derivative) term, and where〈ve〉 represents
the mean electron particle velocity at theX-point. As shown by
Hesse & Zenitani (2007) a relativistic version of this equation

can be derived from the relativistic Vlasov equation and is given
by

E = −〈ve〉 × B −
∇ · P′e

nee
− me

e
∂〈ue〉
∂t
− me

e
(〈ve〉 · ∇)〈ue〉, (4)

whereP′e =
∫

due((ueue/γ) f − ne〈ue/γ〉〈ue〉) and ue = γve,
whereγ is the Lorentz factor andf the electron velocity dis-
tribution function at theX-point. The reconnection mechanism
in tearing-mode reconnection set-ups has been investigated in
many computational studies (Hesse et al. 1999; Horiuchi & Sato
1997; Hesse et al. 2004; Pritchett 2001; Swisdak et al. 2005)
and was consistently found to be the divergence of the elec-
tron pressure tensor. A recent exception to this trend is found
in Melzani et al. (2014); the authors show that for tearing-mode
reconnection in relativistic conditions (i.e. where inflowmag-
netic energy exceeds plasma rest mass energy), convective iner-
tia can make an approximately equal contribution to the recon-
nection electric field as the pressure tensor divergence. A further
exception is found in Hesse & Zenitani (2007), where a sheared
magnetic field set-up was modelled with a relativistic electron-
positron plasma, and contributions from the time derivative of
the electron bulk inertia were observed. Swisdak et al. (2005)
and Hesse et al. (2002) show that for increasing values of guide-
field in a tearing-mode set-up, the convective inertial (spatial
derivative) terms start to make an increasingly large contribution
to the out-of-plane electric field adjacent to the current sheet.
However, the contribution to the reconnection electric field at the
X-point remained the divergence of the electron pressure tensor.
In this study it is shown that similar results emerge in an open-
boundaryX-point collapse set-up, with the notable difference
that for high enough guide fields the convective inertial terms
can become asymmetric across the current sheet and shift to the
X-point, becoming the dominant contribution to the reconnec-
tion electric field.

A 3D representation of reconnection at anX-point with an
out-of-plane magnetic guide-field is shown in panels d), e),
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and f) in Figure 1. As shown, reconnecting magnetic field-lines
now carry a vertical magnetic field component. As explained by
Schindler et al. (1988); Priest et al. (2003), flux-tubes in 3D do
not necessarily have to pass through anX-point/X-line in order
to undergo reconnection. In 2.5D simulations however, all re-
connecting field-lines must meet at theX-point, making this a
representative model of the relevant dynamics. As the vertical
components of the magnetic field are carried into theX-point,
shown in panels d), e) and f) in Figure 1, the out-of-plane elec-
tric field at theX-point is now partially parallel to the magnetic
field (see panel b)) and thus accelerated electrons are "guided"
along the field-lines. Panels c) and f) of Figure 1 show the result-
ing electron current. As shown in panel c) this electron current
represents a shear flow in thexy-plane. Kleva et al. (1995) dis-
cuss this effect and the resulting density asymmetry along the
across the current sheet.

An alternative possible modification to a 2D tearing-mode
reconnection set-up is the addition of a shear flow parallel
or anti-parallel to the in-plane magnetic field. This reconnec-
tion set-up has been studied by several authors (Mitchell & Kan
1978; Cassak & Otto 2011; Nakamura et al. 2008; Chacón et al.
2003) and is considered representative of reconnection andvor-
tex formation in the magneto-sheath (Otto & Fairfield 2000).
For shear flows where the shear velocity is below the Alfvén
speed, the reconnection rate is shown to be to be inhibited by
greater shear flows (Mitchell & Kan 1978; Cassak & Otto 2011).
However, for shear speeds greater than the Alfvén speed it has
been shown that the reconnection dynamics can be altered and
the reconnection rate increased. Two-dimensional simulation re-
sults by Nakamura et al. (2008) show that for large enough shear
flows, tearing-mode reconnection can be coupled with vortexre-
connection, and in Chacón et al. (2003) the parameters necessary
for the mixing of these two reconnection modes are mathemati-
cally established.

In this study, for an open-boundaryX-point collapse set-
up with a guide-field close to the strength of the in-plane
field, we show that electron shear flows are generated that are
strong enough to change the reconnection dynamics and alter
the term that breaks the frozen-in condition. It has previously
been demonstrated that a large enough guide-field can lead to
vortical electron flows and island formation in both tearing-
mode reconnection (Fermo et al. 2012) and inX-point collapse
(Graf von der Pahlen & Tsiklauri 2014a). Here we demonstrate
how these results can be enabled by the shear flow and the
resulting convectional inertia contribution to the reconnection
electric field, generated through guide-field reconnection. Fur-
thermore, by exploring the same reconnection set-up extended
into the third dimension, we investigate how electron and vortex
dynamics proceed in 3D. While there is no generally accepted
method of identifying vortices in a fluid (Cai et al. 2015), for
this particular type of investigation we promote the use of the
Q-value. The Q-value represents a Galilean-transformation in-
variant measure of vortical flow (Haller 2005; Chakraborty et al.
2005; Hunt et al. 1988), defined as the second invariant of the
velocity gradient tensor,∇v, given by

Q =(tr(∇v)2 − tr(∇v2))/2

=
dvx

dx
dvz

dz
+

dvx

dx

dvy

dy
+

dvz

dz

dvy

dy

− dvx

dy

dvy

dx
− dvx

dz
dvz

dx
−

dvy

dz
dvz

dy
. (5)

When positive at a given point in a domain it indicates the pres-
ence of a vortical flow at that location or, as originally stated in

Hunt et al. (1988), in “eddy zones” more than about 3/4 of the
area has Q-values greater than 1. In this study the Q-value is
used to show that vortical flows in 2.5D simulations correspond
to 3D vortex tubes with structures that are not apparent fromthe
2.5D simulations.

An additional possible feature, unique to 3D reconnection
with a guide-field, is the generation of oblique modes as demon-
strated in Liu et al. (2013); Baalrud et al. (2012) and Akçay et al.
(2016). In 2.5D simulations of magnetic reconnection, recon-
nection must occur at a magnetic X-point where it is possible
for field-lines to change in topology. In a symmetric set-up,this
means reconnection occurs at the centre of the diffusion region
(here along the x=0 line). However, in 3D reconnection with
a guide-field, a more generic requirement for reconnection ap-
plies: reconnection occurs on surfaces wherek × B = 0, where
k represents the wave vector of a perturbation associated with
reconnection and B the magnetic field. In the case of a sheared
magnetic field with a guide-field, extended over a 3D domain,
this implies that reconnection sites may exist adjacent to the mid-
plane of the diffusion region, generating current sheets at oblique
angles, relative to the z-direction, of

θ = ± arctan(kz/ky) = ± arctan(By/Bz). (6)

The angleθ does thus correspond to the inclination of the out-
of-plane magnetic field. In a sheared magnetic field reconnec-
tion set-up, the strength ofBy increases with distance from the
midplane of the diffusion region, meaning that reconnection sites
further from the centre should lead to greater obliqueness.While
the generation of oblique current sheets and flux-tubes has been
demonstrated in 3D PIC simulations with tearing-mode set-ups
(Liu et al. 2013; Akçay et al. 2016), this study similarly demon-
strates the oblique nature of vortex dynamics in 3D reconnection
in an alternative reconnection set-up, i.e. X-point collapse.

2. Simulation model

2.1. Stressed X-point collapse reconnection model

As in previous studies (see Graf von der Pahlen & Tsiklauri
2014a, Graf von der Pahlen & Tsiklauri 2014b, and
Graf von der Pahlen & Tsiklauri 2015) the set-up of the in-
plane magnetic field used in this study in known asX-point
collapse and it is mathematically described by the expressions

Bx =
B0

L
y, By =

B0

L
α2x, (7)

whereB0 is the characteristic magnetic field intensity,L is the
characteristic length-scale of reconnection, andα is the stress
parameter (see e.g. chapter 2.1 in Birn & Priest 2007). In this
set-up,Bx andBy lie in the xy-plane, while a uniform current,jz,
is imposed satisfying Ampere’s law, i.e.

jz =
B0

µ0L
(α2 − 1). (8)

In this scenario, for an initial stress parameter greater than
unity, the magnetic field leads to aJ × B force that pushes
the field-lines inwards along theX-direction. This serves to in-
crease the initial magnetic stress, which leads to an increase in jz,
which in turn increases the inwards force. Owing to the frozen-
in condition, this leads to a build up of plasma near theX-point.
Given that conditions for magnetic reconnection are met, mag-
netic pressure does not counter the inwards force but dissipates
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through reconnection and the field collapses. This is accompa-
nied by the formation of a current sheet.

As an additional modification, a uniform out-of-plane mag-
netic guide-field is imposed at the beginning of the simulation.
The strengths of the guide-field are chosen to be fractions ofthe
maximum field amplitude within the plane,BP, i.e.

Bz0 = (n/10)B0

√
1+ α2 = (n/10)BP, (9)

wheren is an integer ranging from 1 to 6. When extended into
the third dimension, this configuration was not altered, i.e. the
initial values of current, density, and magnetic field do notvary
with z.

2.2. PIC simulation set-up

Following Graf von der Pahlen & Tsiklauri (2014a),
Graf von der Pahlen & Tsiklauri (2014b), and
Graf von der Pahlen & Tsiklauri (2015), this study contin-
ues the investigation of X-point collapse using a relativistic
and fully electromagnetic PIC code. While in previous studies
the simulation runs were limited to 2.5D, in this study results
were extended into 3D. The PIC code was developed by the
EPOCH collaboration (Arber et al. 2015) and is based on the
original PSC code by Hartmut Ruhl (Ruhl 2006), employing the
Villasenor and Buneman scheme (Villasenor & Buneman 1992)
to update simulation parameters. It is a kinetic and relativistic
code and all the relevant physical quantities are represented,
allowing for the calculation of all the terms in the generalised
Ohm’s law (see Eq. 4). As with all PIC codes, a simulation
domain is initiated with a set of pseudo particles, representing
multiple physical particles of a specified temperature and
momentum. Furthermore, electric and magnetic fields are setup
over a discrete grid of cells. After initialisation the codecarries
out a leap-frog algorithm where in turn fields on grid cells are
updated by the particle motion and particle motion is updated
by fields defined on grid cells.

The parameters in the simulation were chosen such that tem-
perature, particle densities, and magnetic fields corresponded to
observed values for coronal flaring loops (Shibata & Yokoyama
1999; Aschwanden 2005). Observational studies have found flar-
ing temperatures to be in the range 106K to 108K, number
densities of electrons 1015m−3 to 1017m−3, and magnetic field
strengths of the order of 0.01 Tesla. While the corresponding
length-scales of flaring processes range from 106m to 108m, PIC
simulations using today’s technology do not have the capacity
to simulate plasma over such vast scales and a reduced area is
considered, focussed on the reconnection processes.

Accordingly in the simulationne = np = 1016m−2, Te =

Tp = 6.0× 107K, and the characteristic electron Alfvén speed as
vae0 = B0/

√
µ0neme = 0.1c, fixing the magnetic field parameter

as B0 = 0.03207 T, and satisfyingvTe = vae0, wherevTe is the
electron thermal velocity. In order to computationally afford to
run simulations with such particle densities, the mass of protons
was set as 100 times the electron mass, i.e.mp = 100me, to speed
up the code. The initial stress parameter is set asα = 1.2, corre-
sponding to a small initial compression of anX-point magnetic
field. In the 2.5D case, lengths of grid cells were set as the Debye
length, i.e.∆x = ∆y = λD = vte/ωpe, over a grid of 400× 400
cells, amounting to a system length of approximately four ion
inertial lengths, i.e. 4c/ωpi. While the system size does not ex-
tend to characteristic coronal lengths scales, it is large enough
to capture both particle species dynamics. Five hundred pseudo

particles per cell were used which was shown to be a suitable
number in convergence tests. When extended into 3D, the height
of the simulation box was set to half the simulation width, i.e.
Lz = 0.5L. The size of grid cells was set to 2 Debye lengths, i.e.
∆x = ∆y = ∆z = 2λD, making up a grid of 200× 200× 100 cells
using 200 particles per species per cell. While this is less com-
putationally reliable than the 2.5D simulation runs, it is shown
in this study that a strong correspondence exists between the two
set-ups.

In order to avoid energy losses or gains due to the finite grid
instability (Okuda 1972; Langdon 1970), the 2D and 3D simu-
lation runs both adhere to the established condition that the size
of grid cells,∆x, is of the order of the Debye length,λD. Also
using EPOCH, 2.5D simulation runs with a similar configura-
tion and closed boundary conditions, with grid cells of∆x = λD
and∆x = 2λD, were conducted and it was found that the to-
tal energy was conserved within an error of about 1 per cent
for the same simulation period (Graf von der Pahlen & Tsiklauri
2015). As with all PIC codes, particles are not subject to dis-
cretisation and momentum is conserved to machine precision. In
all simulation runs the simulation time step is predetermined by
the simulation code as∆t = λD

c
√

2
, wherec is the speed of light

in vacuum. This is sufficient to resolve the propagation of both
light and Langmuir waves, i.e.c∆t < ∆x andωpe∆t < 2.

2.3. Boundary conditions

The choice of boundary conditions in a pureX-point collapse
configuration is not trivial. Unlike in tearing-mode-type recon-
nection, it is not possible to apply periodic boundary conditions,
since field-lines at opposite boundaries are not equidirectional.
In Graf von der Pahlen & Tsiklauri (2014a) two types of bound-
ary conditions, open and closed, were used and compared. In
the closed case, particles are reflected and field-lines are kept
fixed at the boundary. The latter is ensured by imposing zero-
gradient boundary conditions on both the electric and magnetic
fields, forcing the tangential component of electric field tozero
and keeping the normal component of the magnetic field con-
stant. This ensures that no particle energy is lost and that no
flux can escape through the boundary. In open boundary con-
ditions, particles reaching the boundary are removed from the
system. Fields at the boundary are allowed to evolve freely,as
set out in (Ruhl 2006) chapter 2.4 (see radiating boundary condi-
tions), allowing electromagnetic waves to escape. The magnetic
field perpendicular to the boundary is kept fixed here. This cor-
responds to the initial simulation domain being embedded ina
largerX-point collapse set-up. In the open case it was demon-
strated that the system allowed for greater reconnection rates
and for a smoother system evolution when guide-fields were ap-
plied. Furthermore, in the open case, for guide-field strengths
close to the in-plane field, the reconnection dynamics signifi-
cantly changed. Magnetic islands and electron flow vorticesstart
to emerge. For these reasons the open boundary case was chosen
for this study. Also, while closed boundaries are more relevant to
laboratory reconnection experiments, open boundaries aremore
relevant to reconnection events in nature, e.g. reconnection in the
geomagnetic tail. When extending the 2D simulation into 3D,
the previously ignorable direction (z) now requires well-defined
boundaries. These were set as periodic.
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Fig. 2: Reconnection electric field at theX-point for 2.5D simu-
lation runs, with guide-field strengths as indicated.

3. Reconnection mechanism and dynamics for
varying strengths of guide-field in 2.5D

Reconnection set-ups for guide-field strengths of up 0.6BP were
run until 500ωpe. In Graf von der Pahlen & Tsiklauri (2014a) it
was shown that peak reconnection was reached for all guide-
field cases within this time. Figure 2 shows the out-of-plane
electric field (Ez) at the X-point for 2.5D runs with different
values of guide-field, representing the reconnection rate accord-
ing to Eq. (2). As discussed in the previous work, a greater
guide-field leads to increasingly delayed onsets of reconnection.
Graf von der Pahlen & Tsiklauri (2014a) also addresses the ini-
tial periods of intense high-frequency oscillations, linked to os-
cillatory reconnection. In the 0.6BP guide-field case, a magnetic
island and thus a secondaryX-point emerge. Rather than plotting
both reconnection rates,Ez from theX-point with the greater re-
connection rate is used. As shown, the reconnection rate in the
0.6BP briefly exceeds the reconnection rate in all other cases.
This occurred shortly after the emergence of the secondX-point.
It should be noted that the locations of theX-point here were
tracked andEz was sampled at those locations, whereas in Fig. 4
of Graf von der Pahlen & Tsiklauri (2014a)Ez was simply sam-
pled at the centre of the simulation domain. Since theX-point
starts to move forBz0 = 0.6BP, tracking of theX-point location
becomes necessary to accurately measure the reconnection rate.

Changes in the shape of the current sheet and reconnection
region with increasing guide-field inX-point collapse are dis-
cussed by Graf von der Pahlen & Tsiklauri (2014a). However, it
was not investigated how these changes affected the reconnec-
tion mechanism, which is one of the goals of the present study.
Similarly to Swisdak et al. (2005), cuts were made through the
widths of the current sheet at theX-point to showEz at loca-
tions along the reconnection region. The terms in the generalised
Ohm’s law contributing toEz were calculated. Since for greater
guide field cases, electron speeds in the simulation reachedin-
creasingly relativistic speeds (see Sect. 5), the modified Ohm’s
law (see Eq. (4)) was used. For each guide-field case, cuts were
taken when peak reconnection was reached, as shown in Fig. 3.
This progression of plots shows that, for greater guide-fields, the
convective inertial contributions become increasingly asymmet-
rically distributed relative to theX-point. This can be interpreted
as shear-flows tilting the flow across the diffusion region but not
quite forming a vortex. The pressure tensor terms remain the
dominant contribution at theX-point up to guide-field strengths
of 0.4BP, but their area of influence gets increasingly narrow.

This can be understood in terms of the increased shear flow: As
the electron flow speed along the current sheet increases, elec-
trons that normally would have been undergoing meandering
motion in the diffusion region (i.e. adding to the pressure tensor
contribution) are now accelerated outwards and thus contribute
to the convective inertial term instead. This is in line withthe
theoretical prediction stated in Eqn. 4 in Tanaka (2001).

In the case of a guide-field of 0.6BP, a shift in the previously
observed dynamics occurs. After the formation of a magneticis-
land, and thus a secondaryX-point, a significant contribution to
the reconnection electric field is made up by the convective iner-
tia term. As shown in the final panel of Fig. 3, both the pressure
tensor and convective inertia contributions to the electric field are
now highly asymmetric across the current sheet along the lower
X-point (interestingly, this asymmetry is reversed at the upperX-
point). This change in dynamics is coupled with the emergence
of an electron flow vortex in the proximity of theX-point. Fig.
4 shows the time evolution of the relevant quantities duringthis
shift of dynamics. Closer analysis shows that the convective in-
ertial contribution to the reconnection electric field at theX-point
is mainly provided by the componentvex

duez

dx . Panels d), e), and f)
of Fig. 4 show the evolution of this term superimposed on the in-
plane magnetic field. As shown in panel d), which corresponds
to a time shortly before the reconnection peak, this contribution
initially plays a role only adjacent to the current sheet, similar to
the contributions of the convective inertia in panels a), b), and c)
in Fig. 3. However, as shown in panel e) of Fig. 4, this contribu-
tion shifts to the location of theX-point and also to the location
where the secondaryX-point is formed, thus playing a role at
both reconnection sites.

Panels a), b), and c) in Fig. 4 show the evolution of the out-
of-plane electron current density (jz) and the in-plane magnetic
field. After the formation of the magnetic island, a strong cur-
rent starts to develop at its centre. This can be attributed to the
compression of the magnetic field, and thus increased curl ofthe
magnetic field, owing to the continued reconnection at the two
X-points, as explained by Huang et al. (2013). Panels g), h), and
i) of Fig. 4 show the electron motion at the same time steps, as
contour plot of theQ-value. This value represents a Galilean-
transformation invariant measure of vortical flow (Haller 2005;
Chakraborty et al. 2005; Hunt et al. 1988), defined as the second
invariant of the velocity gradient tensor,∇v, given by equation
5. When greater than zero, theQ-value indicates the existence
of a vortex. In panel g) there is only a shear flow, as predicted
by the nature of guide-field reconnection, while in panel e) it
can be clearly seen that a vortical flow emerges in the vicinity
of the X-point. The vortex visible in the velocity field and the
Q-value show good correspondence. Thus, panels b), e), and h)
demonstrate that in this reconnection simulation, an increased
reconnection rate and the emergence of a secondaryX-point are
brought on by a convective inertial contribution to the reconnec-
tion electric field, which is coupled to the emergence of an elec-
tron flow vortex. This strongly suggests that the vortex reconnec-
tion mode (described in Nakamura et al. 2008 and Chacón et al.
2003) rather than onlyX-point collapse facilitates the reconnec-
tion process. As shown by the arrows on the panels, electron
flow speeds exceed the electron Alfvén speed ( 0.1c), as is re-
quired for an increase in reconnection rate due to vortex interac-
tion to occur (Mitchell & Kan 1978; Cassak & Otto 2011). Pan-
els f) and i) show the state of the convective inertia contribution
and electron motion shortly after peak reconnection. As shown,
multiple vortices have formed spreading in a somewhat chaotic
fashion along the current sheet. The 3D equivalent of this out-
come is investigated in section 4.
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Fig. 3: Plots of the contributions of different
terms in the generalised Ohm’s law to the out-
of-plane electric field along cuts through the
current sheet along thex-axis through theX-
point. The vertical line in each plot marks the
horizontal position of theX-point, as deter-
mined by tracking the magnetic null. The solid
black lines show the out-of-plane electric field
(not including the advective electric field com-
ponent), dashed lines the contribution of the
divergence of the pressure tensor, dash-dotted
lines the contribution of the convective inertia,
and dotted lines the contribution from the rate
of change of bulk inertia. The solid grey line
represents the sum of the contributing terms.

4. Reconnection dynamics in 3D

As described in the previous section, the reconnection dynam-
ics of a standardX-point collapse simulation are significantly al-
tered by the inclusion of an out-of-plane guide-field of a strength
close to the in-plane field, i.e.Bz = 0.6BP. The formation of a
vortex and magnetic island occurred in a straightforward fashion
when the system reached peak reconnection rate, but shortlyaf-
ter the system developed into a chaotic state. To see what these
dynamics may correspond to in a real reconnection event, the
ignorable direction z was extended out-of-plane to make a 3D
reconnection set-up. While an analysis of the term breakingthe
frozen-in condition was not possible here, because no universally
agreed definition of 3D reconnection rate exists, finding similar
dynamics to the 2.5D case would represent strong evidence that
a similar shift fromX-point collapse to vortex induced reconnec-
tion occurred.

Fig. 5 shows the time progression of electron current density
and theQ-value representing electron flow vortices. The snap-
shots for the panels in Fig. 5 were taken to show the progression
of island and vortex formation, which occurred slightly earlier
than in the 2.5D case. The electron current density is represented
by an isosurface (i.e. a surface where the current density has a
constant value); the chosen isosurface values are approximately
two-thirds of the maximum current density at each snapshot.As
shown in panel a), at first the current density has the shape ofa
standard current sheet, as would be the case for zero guide-field.

However, in panel c) the current sheet starts to fragment, eventu-
ally leading to a tubular structure as shown in panel e). Similarly
to the 2D case, the locations of elevated current density corre-
spond to the centre of the flux-tubes, which have been shown
to be the 3D equivalent of magnetic islands (Karimabadi et al.
1999) where magnetic fields are compressed and currents are in-
creased (Huang et al. 2013). Interestingly, while the initial frag-
mentation in panel c) appears to be random, the final isosurface
shows a distinct tubular structure. Furthermore, rather than con-
necting back on itself, as would be the 3D equivalent of panelc)
in Fig. 5, the current density is tilted along they-axis, similarly to
studies of 3D reconnection with a guide-field in a tearing-mode
set-up (Liu et al. 2013).

Another difference in the 3D results can be seen in the evolu-
tion of theQ-value, as shown in Fig. 5, panels b), d), and f). Each
snapshot shows two isosurfaces where theQ-value exceeds zero.
Yellow shows the isosurfaces for positiveQ-value on the right-
hand side of the diffusion region (i.e. right of the x=0 line), while
the blue isosurfaces correspond to positiveQ-values on the left-
hand side of the diffusion region. This distinct colour scheme
was chosen to represent the arrangement of vortical flows clearly
throughout the simulation domain. Panel b) represents the initial
instance of vorticity and, as for the current density, thereinitially
appears to be no distinct structure. However, as seen in panel f),
eventually two sets of distinct vortex tubes emerge on each side
of the diffusion region, tilted in opposite directions. Again, this
represents a structure that could not be adequately represented
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Fig. 4: From top to bottom: Time progressions of the current density; the dominant component of the convective inertia,vex
duez

dx ; and
theQ-value. Superimposed on all plots is the in-plane magnetic field, and panels g), h), and i) also show electron velocities as well
as coloured areas where the Q-value is greater than zero, indicating the existence of a vortex. The lengths of the arrows next to the
plots represent the greatest speeds reached, in each panel approximately 0.22c, i.e. 2.2vae0. The simulation times, indicated at the
top of each panel, were chosen around the occurrence of island and vortex formation.
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Fig. 5: In the vertical direction, panels a),
c), and e) show the time evolution of the
3D out-of-plane current density (jez) at t =
337ωpe, t = 362ωpe, andt = 387ωpe. Current
density is represented as an isosurface of 2/3
the maximum current density at the respective
time. Again, in the vertical direction, panels
b), d), and f) show isosurfaces of theQ-value
(see Eq. (5)) at the same times in the simula-
tion. For clarity, isosurfaces left of the current
sheet are shown in blue and isosurfaces right
of the current sheet are in yellow. In all pan-
els, in-plane magnetic field-lines are super-
imposed on flux-tubes, showing the magnetic
field at several horizontal slices through the
simulation box. The simulation times shown
were chosen around the time of island/vortex
formation, which occurred slightly earlier in
the 3D case.

in a 2.5D simulation, and only the 3D simulation reveals the or-
derly, realistic dynamics. This gives new insight into panel i)
of Fig. 4, as this apparently disordered arrangement of vortical
flows actually corresponds to a well-defined structure in 3D.The
motion of the vortex tubes in the plane appears to be in the oppo-
site direction of the in-plane shear flow along the current sheet,
which seems to contradict basic theoretical considerations of the
motions of vortex tubes in shear flows (Kuo 1969). However, this
is in fact a misconception as the vortex tubes move downwards,
along with the bulk electron current flow. Owing to their inclina-
tion relative to the z-axis, the illusion of motion in thexy-plane
is created.

Following the analysis of tilted (oblique) current sheets in
Baalrud et al. (2012), panel a) of Fig. 6 shows vortex tubes as
they appear in the xz-plane. Dashed lines on plots signify the
locations of vortex tubes, which are shown to be left and right

of the centre of the domain. By taking the mean value of the
strengths of the sheared magnetic field,By, and the magnetic
guide-field,Bz, at these locations, a prediction for the angle of
the oblique modes, according to Eqn. 6, is found to beθ = ±16◦.
Panel b) of Fig. 6 shows vortex tubes as they appear in the yz-
plane. Here, dashed lines on the plot are inclined at the calcu-
lated value ofθ, effectively representing the inclination of the
out-of-plane magnetic field. As shown, there is a clear corre-
spondence between the tilt of the vortex tubes andθ. Unlike in
Baalrud et al. (2012); Liu et al. (2013) and Akçay et al. (2016)
where a tearing-mode set-up is used, it is not possible inX-point
collapse to relate the locations of oblique structures to initial
simulation parameters sinceX-point collpase is inherently time
variant and the width and shape of the diffusion region is not
fixed by the set-up. Furthermore, as there is no asymptotic mag-
netic field, there is no limit on the angle of obliqueness. How-
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Fig. 6: As in Fig. 5 panel f), showing vorti-
cal flows in 3D simulation runs with a guide-
field of 0.6BP according to the Q-value at
t = 387ωpe. Panels use perspectives as indi-
cated by axes. In panel a), the dashed lines sig-
nify the distance of vortex tubes from the cen-
tre of the domain and thus from the centre of
the diffusion region. Dashed lines in panel b)
are inclined at the calculated value ofθ, based
on Eq. 6, and show a strong correspondence
with the inclination of vortex tubes.

ever, by taking theBy profile across the diffusion region during
vortex formation to be of the formB′0x/λ, whereλ is the half
width of the diffusion region, and noting thatBz across the dif-
fusion region is approximately constant, whileBy ≈ Bz at the
diffusion region edge, we arrive at a distance relation similar to
Baalrud et al. (2012) given byxs = λ tan(θ). This gives the dis-
tance of the oblique vortex tubes from the centre of the domain as
xs = ±0.3λ. In physical distance, this equates to approximately
xs = ±0.03m, based on the measured width of the diffusion re-
gion, and is a good match as is shown in panel a) of Fig. 6.

5. Particle distribution function dynamics

Fig. 7 shows the distribution functions for electron particle ve-
locities in the 2.5D simulation runs for different guide-field
cases. Electrons and ions initially have opposite velocities in the
z direction and are oppositely accelerated by the reconnection
electric field. In each case, the three lines on the plot show ve-
locity distributions at the start of the simulation, at peakrecon-
nection, and at the end of the simulation.

It can be seen that for greater guide-field cases, increased
out-of-plane electron acceleration is observed. In the 0.6BP
guide-field case a bump-on-tail distribution invez emerged at
peak reconnection, stretching into the relativistic regime, and
subsequently flattened out again. A similar effect was observed
in simulations in Tsiklauri & Haruki (2008), Fig. 6, when an in-
creased stress parameter ofα = 2.24 was used in a 2.5D sim-
ulation of closed boundaryX-point collapse. This indicates that
there is an equivalence to using greater initial guide-fields and
greater initial stress in the in-plane magnetic field.

While electrons in the zero guide-field case experience less
acceleration in the z-direction, the acceleration of ions is in fact
greater, leading to a slight bump inviz. However, the acceleration
of ions in the y-direction in the 0.6BP guide-field case greatly ex-
ceeds that in the zero guide-field case. This implies that ions are
moved out of the diffusion region faster in the 0.6BP guide-field
case and thus experience less out-of-plane acceleration bythe
reconnection electric field, which explains the reduced accelera-
tion in the z-direction.

Equivalent results for 3D simulation runs are shown in Fig.
8. While it was not possible to determine the time of peak recon-
nection in this case, intermediate time steps for the distribution
function were chosen to be the points when the reconnection cur-
rent reached a peak value, which was shown to approximately
correspond to peak reconnection rates in 2.5D simulations of
X-point collapse (Graf von der Pahlen & Tsiklauri 2014a). For

high guide-fields, peak current was reached sooner in the 3D
case than in the 2.5D case, which is consistent with the ear-
lier onset of vortex formation. Although timescales of processes
were affected, the resulting distribution functions are notably
similar, including features such as the bump-on-tail distribution
in the out-of-plane electron velocity in the high guide-field case.
While different dynamical features can emerge in the 3D case,
this result shows that a high degree of correspondence exists in
the bulk particle acceleration.

There are some differences in the plots, although they appear
to be the result of a mismatch in the simulation times of snap-
shots considered. For example,viz in the low guide-field case
andvez in the high guide-field case seem to vary only in the in-
termediate distribution function, while the initial and final distri-
butions mostly take on the same shape. They thus show the same
progression shifted in time. Forvex in the high guide-field case
two distinct bumps appear in the final snapshot of the 2.5D sim-
ulation, while in the 3D case they have already thermalised by
the time of the final snapshot, again showing that reconnection
proceeds slightly faster in 3D.

6. Conclusions

By studyingX-point collapse with open boundary conditions and
an out-of-plane guide-field close to the strength of the in-plane
field, new insights have been gained into the specifics of recon-
nection dynamics. Using 2.5D simulations it was shown that re-
connection dynamics were significantly altered by the increased
induced shear flow. It was shown that, while the increased guide-
field initially suppressed the reconnection rate, later in the sim-
ulation a brief period of peak reconnection was attained where
the reconnection electric field exceeded that of lower guide-field
cases. The reconnection electric field at this point was substan-
tially supported by the convective inertia term in the generalised
Ohm’s law rather than the divergence of the pressure tensor
(see Fig. 3). This stands in stark contrast to previous studies of
tearing-mode reconnection with a guide-field, where no change
in the reconnection mechanism was observed. The shift in re-
connection mechanism during peak reconnection coincided with
the formation of a secondaryX-point and with an electron flow
vortex (see Fig. 4). We conclude that owing to the induced shear-
flow along the current sheet, vortex-induced reconnection takes
effect, which allows for the change in reconnection dynamics.

While particle velocity distribution functions show that bulk
particle acceleration proceeds in a similar fashion in 2.5Dand
3D simulations (see Section 5), in the high guide-field case 3D
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Fig. 7: Electron and ion particle velocity distribution functions for guide-field cases of 0BP and 0.6BP in the 2.5D simulation runs.
Black lines show the distribution functions at the beginning of the respective simulation. The dark grey lines show the distribution
functions at peak reconnection, i.e.t = 250/ωpe for zero guide-field and 425/ωpe for the 0.6BP guide-field case. The light grey lines
show distribution functions at the end of the simulation, i.e. t = 500/ωpe. The particles included in the plots were chosen from an
area around the diffusion region, i.e. (−2c/ωpe) < x < (2c/ωpe) and (−8c/ωpe) < y < (8c/ωpe).

structures emerged that are not present in the 2.5 simulation. At
later simulation times in the 2.5D simulation the vortical flows
took on an apparently chaotic shape. However, when the simula-
tion set-up was extended into 3D geometry, vortical flows were
shown to self-assemble into oblique 3D tubes and to take on a
distinct structure that cannot be represented in a 2.5D simula-
tion (see panel (f) of Fig. 5). Similarly, magnetic flux-tubes (i.e.
magnetic islands in 2D ) and tubular regions of elevated cur-
rent density appeared to be sheared along thez-direction. It was
shown that the tilt angles of the vortex tubes correspond well
with predictions for tilts due to oblique modes, as discussed in
Liu et al. (2013) (see Fig. 6). As oblique modes are suppressed in
2.5D simulations, this further shows that the emergent structure
observed is unique to the 3D case.

Since purely 2D reconnection set-ups are an unlikely occur-
rence in nature, guide-field reconnection set-ups and theirin-
duced shear flows are important aspects of the study of magnetic
reconnection and are likely to be needed to accurately modelre-
connection scenarios in the solar corona and the Earth’s magne-
tosphere. As discussed in Otto & Fairfield (2000), vortex forma-
tion due to shear flow have already been observed in the Earth’s
magnetosheath. We hope the results of this study may further
the progress in this field and other studies of reconnection where

guide-fields could lead to large shear flows. We hope to inspire
the further investigation of vortical flows in in situ observations
to see if there may be correspondence to the 3D structures found
in this study.
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