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Abstract

In this thesis I show how various theories and methodologies borrowed from complexity

science, organisation science, and network science can be suitably integrated to provide

a comprehensive and interdisciplinary approach to the study of innovation processes. I

study the network foundations of success in innovation ecosystems and I conduct several

empirical investigations to identify those network characteristics that are expected to cor-

relate with positive outcomes and success. I assess the extent to which the diversity and

the strength in the networks of relationships boost the performance and success of scien-

tists and early-stage firms. To this end I analyse two large-scale data sets about scientific

publishing and start-up firms by making use of already existing topological network mea-

sures and by proposing novel measures to characterise the degree of interdisciplinarity

and access to diverse pools of knowledge in scientific collaborations. Results provide

empirical support to the idea that collaboration sustains innovation and performance

by facilitating knowledge diffusion, acquisition and creation. First, results indicate that

the networks of interaction between start-ups have a strong impact on the firms’ long-

term success. Second I find that, while abandoning specialisation in favour of moderate

degrees of interdisciplinarity deteriorates scientific performance, very interdisciplinary

scientists tend to outperform specialised ones. Additionally, I address the computational

challenges related to the size of the data sets used and their time-varying nature. In

particular I focus on the scalability challenges of incremental graph algorithms. The

thesis contributes in this direction by proposing new efficient algorithms and data struc-
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tures to handle and to analyse large graphs whose nodes and edges change rapidly over

time. These efforts have been collected and made available to the public in the form of

a web platform (http://lab.startup-network.org/) and an open-source python package,

NetworkL (https://networkl.github.io/).
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Chapter 1

Introduction

What characterises extremely successful innovative companies? What makes researchers

able to produce scientific works with exceptional impact? The recently emerged fields

of computational social science and science of success offer new theoretical and method-

ological perspectives to tackle these questions. The abundance of digital data allows to

track the dynamics and performance of human-made systems at unprecedented level of

details and offers today the unique opportunity to investigate empirically the complex

dynamics responsible for the creation of innovation and new knowledge. In this thesis I

show that large-scale digital data and a social-network prospective make it exceptionally

easy to identify the early signals of success for innovative business and scientific activities.

The results of my empirical endeavour cast a new light on the current understanding

of innovation ecosystems and have the potential to transform the way institutions and

corporations monitor, control, and optimise innovation processes.

This work lies at the intersection between several disciplines: computer science, math-
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Chapter 1. Introduction 2

ematics, sociology, and creativity studies. On the one hand the thesis includes the first

empirical investigation of the largest available data sets about innovation and start-

up companies. On the other hand the methodology and analysis draw extensively on

hypotheses and theories from the social sciences. In recent years, encouraged by the

increasing availability of digital data, social sciences and computer science have con-

verged in the so-called computational social science: a discipline which attempts to model

and understand human behaviours and outcomes of socio-economic systems. Studies in

the context of computational social science have proliferated in recent years and have

covered a variety of domains. Among them, particular interest has been raised by the

so called science of success whose goal is the identification of patterns and regularities

which characterise and anticipate various forms of success and positive outcomes. Here,

I focus the attention on the success of innovation ecosystems and their actors: start-

up founders, investors, and scientists. To this end I conduct an empirical study of the

dynamics of innovation ecosystems (e.g., social interactions, collaboration, exchange of

ideas, creation of start-ups, production of research articles) which are responsible for the

generation of innovation, knowledge and societal advances. Institutions and large organ-

isations are currently devoting substantial attention to innovation. Governments are

keen to promote science, innovation and entrepreneurship because they are the drivers

for technological advances, job creation, economic growth, and societal transformations.

A recent review by the MIT Sloan School of Management has highlighted how established

organisations view innovation as critical to corporate success [1]. The review reports the

words by William Ford Jr., CEO of Ford Motor Co., announcing that “innovation will

be the compass by which the company sets its direction”, Jeffrey Immelt, CEO of General
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Electric Co., talking about the “Innovation Imperative, a belief that innovation is central

to the success of a company”, and Steve Ballmer, CEO of Microsoft Corp., stating that

“Innovation is the only way that Microsoft can keep customers happy and competitors at

bay”.

However, the push towards innovation does not come without a cost. The exploration of

unanticipated solutions entail great uncertainty, repeated failures, and sunk costs. After

all, the fields of science and business are ripe with stories of failures which have led to

accidental breakthroughs: penicillin, X-rays, microwave, graphene, to name only a few.

History suggests that great discoveries are inherently intertwined with chance and that

the success of ambitious researches or radically new business models is hardly predictable.

Mistakes in anticipating successful innovations abound in history. A remarkable exam-

ple, concerning the first attempts to develop jet engines, is reported in the Jane Jacobs’

book The Economy of Cities. The author writes: “...in 1937, when the jet airplane

engine had already been developed in Britain, a committee of distinguished aeronautical

experts in the United States, to whom this event was not yet known, having studied the

possibilities of jet propulsion, came to the conclusion that it was not practicable. It was

their recommendation that attempts to develop jet propulsion were dropped”. Similarly,

in the mid-1980s, McKinsey & Co. estimated that the overall worldwide potential for

the cellular-telephone market was 900,000 units, missing by several order of magnitudes

the current number of mobile-phone daily subscribers [2]. Given the important role that

innovation plays in our society and the hidden costs due to its inherent unpredictabil-

ity, a question then arise naturally: how can one mitigate failure and risk in innovation

processes? Scholars have investigated the process of innovation and knowledge creation
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for decades. Social scientists, urbanists, and economists have explored the multiple

facets of innovation and its determinants. A common theme, agreed by many, is that

innovation and new knowledge come from the exchange and recombination of already

existing knowledge and ideas [3–5]. Even though it is largely recognised that knowledge

exchanges primarily occur through social interactions, the lack of data about various

forms of human interaction and collaboration has given researchers little opportunity

to empirically investigate the social dimension of innovation. My overarching research

hypothesis is that the network of collaboration among scientists on the one hand, and

professional interactions among start-up companies on the other, are the conduits facil-

itating the knowledge and information transfer within innovation ecosystems. Access to

relevant knowledge and information is crucial for the achievement of research objectives

or business goals, and the access to resources and opportunities strongly depends on

the actor’s position in the network and on its immediate contacts [6, 7]. Therefore, the

research idea developed in this thesis is that, by directly analysing data on microscopic

social interactions, I will be able to unveil early signals of long-term performance of

both scientists and startups. In doing so I aim to define a practical tool to improve the

efficiency of innovation ecosystems, mitigate risk, and sustain the efforts of innovators

around the world. I will move towards this direction equipped with a combination of

approaches borrowed from network science, complexity theory, computer science, graph

theory, algorithms and social science. The computational challenges in analysing large-

scale and time-varying graphs also offer the opportunity to revise current approaches to

the manipulation and analysis of network data sets. I contribute in this direction by

proposing advanced computational strategies suitable for time-resolved graphs and by
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introducing the python package NetworkL which I have developed and made available

to the research community.

1.1 Outline of the thesis

Chapter 2 illustrates the general context in which the empirical analysis presented in

the thesis unfold. In the first section I review the literature on the science of success,

a recently emerged field of research aimed at exploring patterns that govern the path

to success. The second section is devoted to the description of different innovation

processes and practices (e.g., scientific, technological, product, and business innovations)

and the common mechanisms underlying the creation of innovation in the areas of science

and business. I will highlight the crucial role that knowledge flows, diversity, social

dynamics, and social networks have in fostering innovation in both areas. The anatomy

of innovation ecosystems and the role of their different actors (e.g., universities, start-

ups, venture fund, governments) are discussed. I will also highlight the recent shift from

closed innovation to open innovation and how big corporations are changing the way to

renovate their business models and maintain competitive advantage. The last section

illustrates the benefit of a network approach in mapping and describing the landscape

of innovation ecosystems, and finally in identifying the determinants of their success.

Chapter 3 highlights the role that science and start-up firms have in innovation pro-

cesses and sheds light on the intimate relationship between research activities and the life

in a technological start-up. I will present two case studies which will lead us to describe

in details the elementary processes occurring in innovation ecosystems (e.g., exchange
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and recombination of ideas, knowledge transfer, collaborations patterns) and to better

define the hypothesis at the root of the empirical analysis presented in Chapters 4 and

5.

Chapter 4 presents the results of various empirical investigations conducted on two data

sets about start-up companies. In the first two sections I provide a detailed description

of the data sets and the methodology used to construct the World Wide Start-up (WWS)

network. The third section illustrate a methodology to predict the success of start-ups

companies from the network of their interactions (the WWS network). The methodology,

the performances of the method, and robustness checks are discussed in this section while

additional analysis of confounding factors are presented in Appendix B. In Appendix B.2

I propose a methodology to characterise various start-up ecosystems at the level of cities,

and to outline their differences and similarities in a quantitative way. In particular the

analysis is focused on the subgraph of interactions between companies and people within

the same city. From each subgraph I construct the fingerprint of the local innovation

ecosystem and I then compare the fingerprints of various cities. Results show a clear

distinction in the patterns of interaction of European and US innovation communities.

Chapter 5 presents the results of various empirical investigations conducted on two

data sets about scientific publishing. In particular I propose a method to characterise

the degree of interdisciplinarity of a scientist (personal interdisciplinarity), as well as the

scientists’ exposure to variegate knowledge through his/her collaborators (social interdis-

ciplinarity). I then study the impact of this two types of interdisciplinarity on scientific

success. To measure success I use a sophisticated citation-based measures which account

for variations in: (i) patterns and volume of citations across sub-fields and disciplines;
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(ii) attractiveness of research topics over time; and (iii) the starting year and duration

of authors’ careers. Result show that both specialised and interdisciplinary scientists

can be successful; yet extreme interdisciplinarity provides competitive advantage over

extreme specialisation.

Chapter 6 describes NetworkL, a python package for the longitudinal analysis of time-

varying complex networks which I have developed. In the first section I present a brief

introduction to incremental graph problems, and a review of the relevant literature. The

second section illustrates the main contribution of the library, i.e., the sparse biconnected

geodesic matrix (SBGM). The third section describe the methods, functions, and vari-

ables implemented in the NetworkL package, and how to use them. The fourth section

present some benchmarking tests and show the potential of NetworkL to save up 70%

of memory on real-world network data sets. Last section is devoted to the future road

map.

Chapter 7 is devoted to conclusions, discussion, and directions for future work.



Chapter 2

Success in innovation ecosystems

This chapter illustrates the socio-economic context and the research field in which the

empirical analysis presented in the thesis unfolds. In the first section I shall present

an introduction to the science of success and an overview on the most recent literature

in this field. The second section is devoted to the description of different innovation

processes and practices (e.g., scientific, technological, product, and business innovations)

and the common mechanisms underlying the creation of innovation in the areas of science

and business. I will highlight the crucial role that knowledge flows, diversity, social

dynamics, and social networks have in fostering innovation in both areas. The anatomy

of innovation ecosystems and the role of their different actors (e.g., universities, start-

ups, venture fund, governments) are discussed. I will also highlight the recent shift from

closed to open innovation and how big corporation are changing the way to renovate

their business models and maintain competitive advantage. Section 2.3 discusses the

factors that drive success and failures in innovation processes and illustrates the main

8
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hypotheses tested later in the empirical analysis of Chapters 4 and 5. Lastly, Section 2.4

describes the benefit of a network approach in mapping and describing the landscape of

innovation ecosystems, and identifying the determinants of their success.

2.1 What is science of success?

“science of success” is a term recently emerged to refer to a broad field of research at

the intersection between social sciences, computer science, statistics, mathematics and

engineering which mainly concerns with the identification of patterns and regularities in

large-scale electronic data sets to characterise and anticipate various form of success and

positive outcomes. The scope of applicability is enormous: over the last few years scholars

is this field have covered a number of domains and have investigated the performances

and success of athletes [8–14], researchers and scientific articles [15–20], universities [21],

teams [22, 23], inventors and patents [24, 25], start-up companies [26], online petitioning

[27], crowd-funding campaigns [28], cultural objects such as movies, books, and music

[29], as well as the popularity of video on the Web, hash-tags on Twitter [30], the

effectiveness of viral marketing campaign [31], and many others.

In the domain of sports, scholars have investigated historical data about baseball

matches in the US [9], tested the effectiveness of training strategies in cycling by using

data collected through smart-phone apps [10]. Other works have drawn upon the great

level of details at which data on football matches is collected by new camera technologies

[11]. By analysing the ball’s trajectory and the players’ movements across the pitch,

authors have been able to characterise and distinguish quantitatively the various playing



Chapter 2. Success in innovation ecosystems 10

styles and strategies imposed by the coaches [11]. Interestingly, the method proposed

was able to distinguish the changes in a team’s overall playing after the replacement of

the coach across multiple football seasons and correlate the playing strategy with the

team performance. Additionally, digitalised data on tennis matches has allowed scientists

to device methodologies to anticipate the best tennis players one year in advance [32]

or untangle professional performances from fame and popularity [33]. The study of the

pattern of success in sport data is not only attractive for researchers and appealing for the

public. It also provides significative competitive advantage to betting companies which,

through the data, are able to optimise their odds. In general, virtually any business of

the new millennium can improve its performances by means of data-driven strategies.

Data is often regarded as the New Oil1, an extremely valuable asset thanks to which

companies can: improve efficiency, optimise supply chains, manage the availability of

products on shelves, understand the habits of current or potential customers, leverage

on social marketing, target advertising with extreme precisions, optimise transportation

and deliveries, improve dynamic pricing, know, track and improve the performance of

employees.

Marketing based on social influence and data-driven management of human resources

are two fields which have recently found equally intense interest both from academia and

industry. Aral has extensively investigated information diffusion on large-scale social

networks and its impact on social contagion in viral marketing campaigns [34, 34–37].

Pentland and collaborators at MIT’s Human Dynamics Laboratory have studied the

performance of teams in a variety of industries, and identified those aspects which account

1For instance, Ann Winblad, investor and senior partner at Hummer-Winblad Venture, mentioned the
sentence “Data is the new oil” during the CNBC TV-show denominated “The Pulse of Silicon Valley”.
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for the success and failure of team-based projects [22]. The researchers used wearable

electronic sensors that collected data on the social behaviour of team members. Results

showed that the most important predictor of a team’s success was its communication

pattern. It is worth noticing that both Aral’s and Pentland’s studies places a strong

emphasis on the social dimension of performance and success.

Researchers across several disciplines have focused on the study of scientific per-

formance by drawing on bibliometrics techniques and the large availability of data on

scholarly publications, in the context of what is called the “science of science” [16–19].

Since citations are often used as criterion to award grants, or rank applicants com-

peting for academic positions, virtually all the studies on academic performances are

based on some citations-based measures. Indeed, the number of citations received is

largely regarded as an indication of the relevance and quality of a paper as well as of

its authors prestige and scientific success. In [19] a study has been conducted on the

temporal profiles of the number of citations received by individual articles in different

domains and unveiled an universal dynamics in the citations patterns which can be used

to predict, at the early-stage, the ultimate impact of a given article. In [38] the role of

geography and movements of academics across institutions, and their relations to career

performances have been investigated. Uzzi et al. have highlighted the increasing dom-

inance of multi-authored articles and studied the advantage that larger collaborations

provide in terms of citations [39]. In [18] it has also been shown that scientific impact

increases when atypical combination of knowledge is injected into conventional combi-

nations of knowledge from prior works. Ma et. al. have used social network analysis

techniques to investigate the anatomy of funded research [21]. In particular, it has been



Chapter 2. Success in innovation ecosystems 12

highlighted the presence of cohesive and dense core in the network between universities

collaborating on funded research projects. Belongings to the network core appeared to

be crucial both for attracting additional financial resources and producing high quality

research. Funding bodies themselves have drawn on the abundance of digital data to

inform systematically their investment process. For instance, the EU commission has

recently adopted the Innovation Radar, a semi-automatic data-driven tool to identify

founded research project with high innovation potential. In [6] it has been shown how

certain collaboration patterns and positions occupied within the co-authorship networks

impact on scientists’ performances. The authors have investigated the extent to which

several centrality indices (degree, eigenvector, betweenness centrality [40], k-core [41–

43] ), measured on the network of collaboration between scientists, are able to predict

whether an article will be highly cited after publication.

Advances in science rarely arise from individual and isolated contributions [39]. Even

single-authored articles rely on the knowledge produced by others which can be gained by

reading articles, attending conferences, and interact with other researchers. As a result,

scientific activities, like other human activities, are not free from the influences of social

aspects. Social dynamics, e.g, trust, reciprocity, power and authority, social cognition

and social information filtering, shape the social dimension of the evolution of science

[44–46]. Social barriers such as distrust, envy, fear, prevent the free flow of information,

knowledge, discourage collaboration, consume individuals’ energy, and ultimately reduce

the opportunities for scientific advances and discoveries. By limiting the opportunity for

recombination of ideas, social barriers are expected to reduce the chances of achieving

not only scientific advances, but also, in general, all forms of innovation (technologies,
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inventions, business models). Indeed, the human dimension and the social interactions

have been placed at the core of Saxenian’s comparative analysis between the Boston and

the Silicon Valley areas [47], and are essential in Horowitt and Hwang’s explanation of

the great success achieved in Silicon Valley [48].

As data becomes ubiquitous, more accessible, and pervasive in our lives, we are now in

a better position to understand and predict the outcomes of virtually any human activity

(sports, science, collaboration, business). In this vein my work focuses on understanding

the success of innovative activities by combining approaches from the social sciences [49]

and network science [50] with large-scale longitudinal data sets on scientific production

and start-up firms.

To summarise, science of success is a modern interdisciplinary area of investigation

at the intersection between academia and industry. Nowadays, the abundance of dig-

ital data gives to decision makers within companies, institutions and funding bodies

the opportunity to radically change the way decisions are made and resources invested.

Insights from the data have the potential to help design better business strategies, pro-

mote positive behavioural and cultural changes and optimise investments. However,

without a robust and general methodological framework to predict, from the data, future

outcomes in a variety of different domains, the opportunity to accelerate societal advances

and growth remains unexpressed.
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2.2 Innovative activities: types, mechanisms and trajecto-

ries

Universities, research centres, R&D departments are traditionally regarded as the places

where innovation and novel ideas are generated. Our society would not have been

transformed by great technological inventions such as the transistor, the Internet, the

Web, without the passionate joint effort of researchers and scholars from industry and

academia. One of the greatest human achievements to date, the man landing on the

Moon surface, was the result of an exceptional allocation of resources, assembly of tal-

ents, and advances in technologies. In 1969 the “small step for [a] man, one giant leap

for mankind” has attracted the attention of about 600 million people on Earth and

indirectly transformed their lives (e.g., through the positive impact of space exploration

on satellite communication, navigation systems, whether forecast, and knowledge of the

universe). In comparison, in 2015 the platform Facebook, created by one single college

student with significantly fewer resources than was the case with NASA, has attracted

the attention of nearly 1.59 billion active users. Assessed against the world’s population

Facebook has achieved a penetration in humans’ lives 1.37 times greater than the one

achieved during the live-cast of the Apollo11 mission. Yet, the level of ambition of the

two enterprises remains disproportionate. These two opposite examples synthesise how

the anatomy of innovation processes has radically changed over the last half century:

from investments in long-term “Big Problems”, such as landing a man on the moon, to

short-term money-makers such as Facebook [51]. In what follows, I will illustrate this

shift from a more traditional form of technological innovation, based on the development
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of entirely new tools or materials, characterised by high complexity of knowledge and

specialised expertise, to more recent business-driven innovations processes, which draw

mainly on the recombination of existing technology, involve less complex and more acces-

sible knowledge, occur faster, are more disruptive, and sometimes emerge from collective

and distributed contributions.

The anatomy of modern innovation. The reason why innovation is commonly linked

to universities, research centres and laboratories is that it is typically associated with

scientific or technical discoveries which emerge from a delicate mix of highly complex

knowledge, expensive materials or tools, and specialised competence. To master the

intrinsic complexity of scientific or technical advances long-term training and substan-

tial fundings are required. These constitute a strong entry barrier and limit the number

of people that, at a given time, can contribute to a specific innovation process or ini-

tiative. Governmental policies or business visions guide significantly the trajectories

of innovation process by setting goals, directions, and of course by allocating funding

strategically. However, innovation processes in the technological domain have no pre-

determined duration and require continuos iteration over several steps (research, devel-

opment, demonstration, production and deployment). As a result significant societal

transformations usually happen after decades since the inception of a certain innovation

strategy 2.

Despite technology pervades modern society, highly complex technical advances do

not account for all forms of innovations. In fact, the most disruptive innovations of the

last decades are those that simply recombine already existing technologies and less com-

2As an example think about the ongoing research on quantum computation, and the notable funding
resources allocated by the European Commission.
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plex knowledge, into new form of tools, products, services or business models [51]. There

are two combined reasons for which innovation processes based only on the recombination

of existing resources occur faster and are more disruptive than other more conventional

types of innovation. First, the building blocks of technology are becoming more and

more available to a wider audience. As the cost to access the building blocks of technol-

ogy reduces, the number of people potentially available to contribute and collaborate in

defining the next innovations increases [4]. As an example, the use of electronic boards

and programming languages, once only in the hands of specialised engineers, are nowa-

days taught even at high-schools 3. This two pieces of technology constitute, alone,

the basis of announced forthcoming innovations, such as the Internet of Things (IOT).

Even the current most visionary scientific endeavour, the one occurring in Geneva at

the Conseil Européen pour la Recherche Nucléaire (CERN), can nowadays benefit from

the wide contribution of the collectivity. The very same Arduino boards adopted as

teaching tools in high-schools, are used at CERN to collect data from the Large Hadron

Collider (LHC), making even school kids potentially able to contribute to the research.

Moreover, machine-learning experts around the world have been given the opportunity

to contribute to the Higgs Boson hunting by joining an online challenge hosted on the

kaggle.com website. Secondly, lower cost and lower knowledge complexity means also

more chances to iterate the experimentation, development, and diffusion cycles. It is

well know that successful innovations are not the outcome of the very first attempt.

Trial-and-error iterations underlie most innovations, and the lower are the costs and the

complexity of each iteration, the more iterations can be performed with a given amount

of resources and time. As a result, the larger the number of iterations, the higher the

3see for example the Arduino electronic board, http://www.arduino.cc/ and the Scratch programming language
developed at MIT https://scratch.mit.edu/

http://www.arduino.cc/
https://scratch.mit.edu/
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chances that a successful result will be achieved before the resources and the motivation

of the innovators are used up.

The outputs of innovations that carry potential economic value become rapidly linked

to business activities. Innovations find their way to market and impact on society often in

conjunction with customers’ needs and ambitious business visions. Innovations produced

by the digital Era (e.g., Google) are the greatest example of recombination-based inno-

vations that find rapidly a way to markets. In this categories we include smart-phone

or Web-based Apps that try to transform and facilitate every aspect of life: access

to information, communication, collaboration in working environments, entertainment,

transportation, friendship. The global connectivity gives entrepreneurs from any part

of the world the opportunity to reach rapidly a larger audience with new digital prod-

ucts and services. As an example, a modest investment of a few thousands euros has

allowed the young Italian start-up Ganiza to reach and acquire more that 50,000 users

for its social planning mobile application. The drop in the cost of customer acquisition

through the Web has important consequences. Newly born companies which provides

better products and services for the masses have more chances to overcome established

competitors with solid customer base and rip away their clients. Massive and rapid shifts

in the usage of online digital products are not unusual. The recent and sudden collapse

of the Microsoft’s MySpace platform in favour of other social network platforms shows

that the competitive advantage of first movers in the digital domain is not as crucial

as in other sectors. Given the low entry barriers, and the relatively simple knowledge

required for the realisation of digital products, virtually any computer science student

has attempted to emulate the Zuckerberg’s success of Facebook.
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However, not all disruptive innovations with a direct business opportunity have exclu-

sively a digital form. One example is the recent explosion of interest in drones and

quadcopters: small to medium-size robots with flying capabilities and equipped with

sensors, cameras, or even weapons, accordingly to their size and engine power. The

reason why their development and adoption have become so widespread only in the last

few years is linked to a series of contingent factors, not all widely known. First, and

more importantly, their autonomous flying capability relies heavily upon high-precision

accelerometers: those small electronic chips embedded in smart-phones which enable

the screen to rotate accordingly to the landscape/portrait orientation. Because of the

economies of scale associated with the huge production of smart-phones, high-precision

accelerometers have been made available on the market for ridiculous prices. Addition-

ally, the previously mentioned programmable electronic boards allow to connect easily

accelerometers to propellers of different sizes and powers, and provide the basic ground

for increasingly richer flight logics and capabilities. The result of such a variegate com-

bination of technologies is that almost anyone in the world is provided with a low-cost

access to all the tools necessary to explore the opportunities hidden behind autonomous

flying robots. The emergence of advanced flight capabilities has drawn deeply on the

collective aspect of modern innovation. The variety of solutions available today in the

drones market would not have been achievable if based on the effort of a few companies

only. Instead, numbers of developers and hobbyists all over the world have created and

shared a multitude of computer algorithms to track and follow a moving object in space,

navigate GPS tracks, optimise stabilisation, fly in closed environment, return to charging

bases and many others. Each feature can be linked to some specific applications: from
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entertainment and fun to surveillance, from 3D mapping of the world surface to futuristic

delivery services 4. Some applications translate so directly into business opportunities

that even venture funds dedicated exclusively to drones have emerged 5. One of the

sectors where quadcopters have had a breaking impact is the one of professional aerial

filming. Equipped with 6 propellers or more to sustain high-resolution cameras, they

make possible to realise professional aerial filming without the need of expensive heli-

copters and with the advantages of unique camera stabilisation and great control over

the shots perspective. A home-made filming quadcopter, carried in an small backpack,

serves faithfully independent film-makers even in the most remote and hostile shooting

conditions, and open them the doors to compete against the larger budgets of established

movie studios.

The above examples, from Moon landing to Facebook, research at CERN to school

kids, and from movie studios to independent film makers, can offer a better sense of

how innovation processes have undergone fundamental changes over the last century. To

summarise, the recombination of technologies and ideas has tremendously accelerated

over the last few decades thanks to a rapid drop in the cost of information exchange,

access to knowledge, and mobility of talents. Innovation has become a more open phe-

nomenon which involves the entire collectivity. The distinction between production and

consumption of innovation has become less pronounced. Indeed by consuming innova-

tions, individual can tap new opportunities to further innovate. Moreover, a number of

distinct contributions of many people around the world can be recombined more easily

into new products and services that can have rapid impact on the entire collectivity.

4Amazon is one of the companies which has announced experimental drones delivery http://www.amazon.

com/b?ie=UTF8&node=8037720011
5See https://angel.co/drone-vc

http://www.amazon.com/b?ie=UTF8&node=8037720011
http://www.amazon.com/b?ie=UTF8&node=8037720011
https://angel.co/drone-vc
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The personal computers of a few decades ago and the more recent smart-phones, mobile

Apps, 3D printers or programmable electronic boards make anyone capable of rethink-

ing and reshaping our technological future. Global connectivity fosters collaboration

and serendipity, and allows disruptive innovations to spring up everywhere in the world,

spread rapidly, and create new business opportunities.

Innovation and established organisations. As the pace at which innovation is gen-

erated increases, new challenges for established institution (i.e. mature corporations,

universities, research centres) arise. The multitude of people and small organisations

betting on innovative activities represent a threat to incumbents. In fact there is no

internal R&D spending that can compete with the global crowd of individuals and the

speed at which they moves, innovate and produce new products that can disrupt estab-

lished business. As a result, firms have started to, or have been forced to, open up their

boundaries and draw opportunities for innovation from the collectivity. One very illus-

trative example is concerned with the telecommunication domain. We see every day an

incremental and steady enhancement in mobile technologies. The speed of mobile inter-

net connectivity has rapidly moved from the GPRS to the 4G speed which allows mobile

users to get access to a great variety of contents. Yet, the investments in technology

supported by telecommunication companies is destined to capitalise less and less. The

more the network of communication opens up to the Internet the more telco companies

lose their advantage point and their control on the revenue and the value generated on

their infrastructures. It is well understood that the contents of the information gener-

ated and flowing on the tele-communication networks have more value than the value

of communication services itself. In other words the value of transferring 1MB of data
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is lower than the value of having access to, or controlling, the content of the data. The

giant telco companies have their original revenue model, based only on providing the

infrastructure on which communication occurs, at risk. Company such as WhatsApp

or Viber have shown how rapidly changing technological regimes can destroy almost

entirely large portions of revenue streams (i.e. those of short-message systems (SMS)).

Even simple technologies can have enormous impact and companies which do not fore-

seen technological transformations and timely incorporate them in their business model

faces substantial risks.

Large and established corporations have understood that, in order to remain compet-

itive, must outsource part of their innovation processes to the collectivity. The process

of harvesting ideas that lie beyond the formal boundaries of the company goes under

the name of open innovation [1, 2]. If on the one hand the implementation of open

innovation process brings considerable costs such us those arising from the resolution of

intellectual property ownership issues or the lack of trust between the parties, on the

other hand open innovation provides a company with access to a vast pool of ideas, much

greater then the one available internally. Evidence of the interest for open innovation is

the growing number of challenges, call for ideas, incubators and accelerators, promoted

by big companies such as Airbus6, Enel Energy7, Microsoft8, Samsung9, Google10, Tele-

com Italia11, and many others12. Public competitions are precisely meant to explore

the collective mind [52] provided by the community in search of new ideas, solutions

6
https://www.airbus-fyi.com/challenges

7
http://lab.enel.com/

8
https://www.imaginecup.com

9
https://developer.samsung.com/events/developer-challenge

10
http://www.google.org/global-impact-awards/challenge/

11
http://www.workingcapital.telecomitalia.it

12
http://spacex.com

https://www.airbus-fyi.com/challenges
http://lab.enel.com/
https://www.imaginecup.com
https://developer.samsung.com/events/developer-challenge
http://www.google.org/global-impact-awards/challenge/
http://www.workingcapital.telecomitalia.it
http://spacex.com
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and products. Sometimes new opportunities come from individuals, more often they

are enclosed in young companies such as start-ups. Large companies facilitate the birth

and growth of fragile ideas also with incubators spaces: shared offices where start-ups

can connect with mentors, advisors, customers, investors, but also other companies. As

stated by Bill Ford, CEO of the homonymous automobile manufacturer, during the 2015

Web Summit in Dublin:

“This [the start-up incubators] is all new for us but we HAVE to do it. If i think the

world we are about to enter into we are going to need partnership with today technology

companies and with start-ups [...] I do think partnership is going to be important. If you

think back to my great grandfather where the vision was to have a completely vertically

integrated company where they made everything except the tires [...] that model would

be very different in the future. It would be a series of partnership because one company

can’t and probably shouldn’t know it all, or do it all.”

Tons of start-ups, together with their patents and technologies, are acquired every day

by large corporations. In this way the corporation secures new assets, reduces opportu-

nities for competitors and lowers significantly the costs of R&D and internal innovation

processes. The collectivity can outperform R&D departments not because R&D teams

are less skilled than random individuals drawn from public competition, but simply

because outside of the firms boundaries there is an enormous, and nowadays more easily

accessible, pool of knowledge and solutions to draw from. Additionally, as stated earlier,

innovation that involves less complex knowledge entails smaller costs and may initiate
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faster transformation processes. Established corporations are therefore motivated to

support those processes, practises, and initiatives that can stimulate the generation of

start-ups.

2.3 What drives innovation, success and failure

The push towards innovation has intrigued scholars for years. Since the exploration of

unknown and unanticipated solutions entails great uncertainty and sunk costs, much

research has focused on the investigation of factors driving innovation processes, the

reason why some attempts at innovating fail, and the way in which the intrinsic risks

can be mitigated. Several traits of successful innovation mechanisms have been singled

out and are presented in what follows.

Creativity and recombination of ideas play a crucial role in innovation process. While

they are not sufficient, alone, to give birth to rapidly growing innovation clusters such

as the Silicon Valley, or to bring scientific discovery to life, it is largely recognised that

they constitute essential ingredients of innovation [3–5]. Therefore, scholars in the field

of innovation have devoted substantial effort to understand which mechanisms favour or

hinder creativity and successful recombination processes [7, 18, 25, 53–60]. Even though

the perfect recipe to build flourishing innovation ecosystems does not exist, a number

of studies have reached a fairly clear understanding of which aspects can stimulate the

generation of innovation [4, 61–63]. There are two main pillars on which the argument

unfolds:

• Recombination, creativity and the birth of novel ideas are processes which occur
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within an individual’s mind. However, the majority of the steps required in the

attempt to generate novel and successful ideas involve an intense interaction with

the outside world and other individuals. For this reason the locus of innovation

has often been identified in the interaction between individuals rather than within

the individual [64].

• The paths and the intermediate steps which lead to successful innovation are rarely

foreseeable. Innovation processes are often associated with randomness, fortuity,

coincidence, and serendipity [65]. Building innovation is a heuristic exploration of

unknown and unanticipated solutions and resembles more a trial-and-error process

than the execution of a predetermined plan [66–69].

Even though it is hard to engineer and directly control such processes, it is still possible

to adopt certain interventions to create a fertile soil on which these processes are expected

to occur at a high rate. In other words, where and when a novel and successful idea will

be created remains largely unpredictable. Nevertheless, the probability that a certain

innovation will emerge within a given time and space can be estimated and properly

adjusted through suitable interventions and policies. To understand how innovation

emerges I list below three main principles involved in the processes of recombination

and creativity.

1) Understanding the context. Innovators need the ability to understand the con-

text in which their work takes place. Analysing trends, expectations, customer needs,

or current research issues and challenges, is crucial for entrepreneurs, scientists, and

decision-makers in such a way that they can identify the right targets and concentrate
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their efforts on the right paths. Moreover a proper understanding of the economy, soci-

ety and science necessarily draws on the integration of multiple perspectives leading to

collectively held interpretations and meanings. People that fail to account for others’

perspectives are likely to be trapped in their biased personal picture of the world which

reflects reality only partially. Innovation attempts starting from fallacious premises and

biased assumptions are unlikely to be successful and to generate technological, scientific

or societal transformations.

2) Failing fast. As the first attempts are very likely to be unsuccessful, a good practice

is to invest resources on innovation strategies with a wider scope and with multiple

exit options. This allows to reuse the outputs, results, and experience from previous

efforts to sustain necessary deviations from unfruitful paths. A breadth-first exploration

of the innovation space, in which resources are allocated to different but interrelated

trials, is more sustainable that a deep-first exploration which allocates all resources to a

unique, well-defined and rigid long-term plan. Breadth-first exploration allows to fail and

disprove hypotheses at a rapid pace so as to leave resources available when a promising

path is eventually found.

3) Drawing on variegate knowledge. The ability to draw on a great amount and

variety of ideas, knowledge, and the ability to master it, substantially increase the oppor-

tunity to gather distinct pieces of information and pools of knowledge that can eventually

recombine in successful ways. However, since no single individual can hold all the knowl-

edge produced by the humanity, the process of accumulation of variegate knowledge

must be conducted strategically and socially. While innovators can benefit from a global

perspective over all knowledge domains, they should also have the ability to distinguish
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combination of pieces of knowledge that stick well together from those that do not.

In this discerning, collaborations with experts are crucial as they provide fast access

to knowledge details without the associated costs. In some sense collaboration further

reduces the cost of the breadth-first exploration of the innovation space as it provides a

deeper view on certain paths of exploration and can help foreseen unfruitful ones.

The two pillars and the three principles mentioned above depict innovation as a

socially-aided heuristic search process in which all goals are not the end of the search

but are themselves hypotheses which need to be supported or disproved [69–71]. The

knowledge gained at each intermediate goal is used to rule out unfruitful paths and to

start again the search with different and more clear directions. An important aspect

which emerges from my description is the social dimensions of innovation. In fact col-

laborators have a crucial role in reducing the efforts to search for, and access, relevant

knowledge, and to build a reliable context perspective. Additionally, the various pieces

of knowledge and materials put together in novel combinations by one single individual,

often are derived from external experiences and from the interactions with others.

The pillars and principles I have condensed and described in the previous paragraphs

offer ideas for research on innovation and can inspire a number of research hypotheses.

Steps 1) and 3) constitute the basis for the hypotheses tested in the empirical

investigations presented in Chapter 4 and Chapter 5. Here these hypotheses have

been presented at a conceptual level while, within chapters 4 and 5, they will be discussed

in more detail and turned into measurable quantities. In particular, in Chapter 4 I will

test whether the centrality in the network of interactions between firms increases their

chance of long term success. The network centrality can be indeed regarded as a proxy
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for the potential access to knowledge and opportunities through immediate contacts.

More central firms are expected to have greater and easier access to creative inputs

and diverse pools of knowledge. In Chapter 5 I will focus more directly on knowledge

categories and, to account for the principles 3), I will investigate whether or not pursuing

interdisciplinary research benefits scientists careers.

The social dimension of innovation Collaboration, being a social construct can be

affected by a number of social dynamics. The social network in which an individual is

embedded significantly determines the amount and variety of perspectives, knowledge,

and advice to sustain the trial-and-error process [54, 72]. Closer and denser social circles

are expected to provide the same information, advice and knowledge on a certain problem

or obstacle [62]. Resources from our closer peers are indeed likely to be redundant and, in

order to find novelty, innovators have to search far from their neighbours. However, this

process can be costly and unfruitful because, as we abandon our social circle, the level of

trust and openness to collaboration decreases. For this reason, cultural transformations

which promote collaboration among strangers for the sake of long-term mutual gain,

against short term selfishness, have been regarded as the very fundamental ingredients of

successful innovation ecosystems [48]. Two opposite aspects compete here. First, cultural

phenomena typically diffuse in society through peer-to-peer interactions, the emergence

of role models and practices, and the use of feedback mechanisms which discourage free-

riding and penalise bad behaviour [48, 73, 74]. The more people interact and are densely

connected, the easier is the diffusion of culture and the establishment of social norms

which foster long-term collaborations. However, as the intensity of the interaction and

collaboration increases the opportunity to access novelty decreases. Consequently, the
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probability that different and distant perspectives and ideas will meet and recombine by

chance reduces.

The trade-off between dense and sparse social interactions and their relative advan-

tage have intrigued scholars for decades [72, 74–80]. The natural way to investigate

quantitatively these aspects is to adopt a structural perspective and formalise interac-

tions as a graph (or network). Social network scientists have proposed several measures

(effective size, simmelian brokerage [73], efficiency [80], clustering [43]) to characterise

the structural position of an individual in the network and distinguish between brokerage

position (an actor interacting with mutually disconnected contacts) and cohesive struc-

tures (an actor interacting with mutually interconnected contacts). Various studies have

shown that brokerage position provide competitive advantages in terms of salaries for

managers [81], profit margin for companies [82], access to better job opportunities [83]

However, mainly because of the lack of data, two aspects have been overlooked in the

current literature: (i) the extent to which non-interacting contacts actually provide non-

overlapping information and (ii) the role of global connectivity. Firstly, even though the

absence of structural redundancy has been widely used as a proxy for non-redundancy

of information, there is not guarantee that non interacting contacts actually provide

diverse knowledge. In particular, since the creation of social connections is often driven

by homophily, it is likely that the contacts of an actor are indeed similar, draw on the

same sources of knowledge, or have similar backgrounds, even if they are not directly

linked in the network. It is therefore important to assess directly the similarity and

dissimilarity of actors in the network and the actual opportunities to access disparate

knowledge by looking directly at properties and characteristics of the actors. Second,
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looking only at the local connectivity, important information about the opportunity to

access information may be missed. Two individuals, identical with respect to local con-

nectivity patterns (e.g., same number of contacts and clustering coefficients) but located

in central and peripheral regions of the global network may have radically different access

to information. Overcoming this limitations is at the basis of the empirical analysis of

Chapters 4 and 5 where the data sets considered include several nodes’ properties and

cover the entire systems under study, allowing a reconstruction of the global network.

2.4 Innovation, complexity, and the network approach

In the previous section I have shown that the social dimension of innovation emerges nat-

urally from the dynamics that sustain knowledge recombination and creativity (sharing

of ideas and resources, collaboration, trust, structural position in the graph of social rela-

tionships). In my view innovation can be regarded as a complex collective phenomenon,

in which a multitude of agents jointly act to achieve goals and objectives (e.g., access,

recombine and create knowledge), but whose global dynamics and outcomes (i.e., when

and where a successful innovation will be generated) can be hardly explained and pre-

dicted simply in terms of individual agents’ decisions and actions. The study of such kind

of systems is precisely the scope of complexity science and network science, and in this

section I will illustrate how the approaches borrowed from these theories are particularly

suitable for the empirical investigations presented in Chapters 4 and 5. Additionally,

I will highlight the intimate relation between complexity and network science and the

reason at the basis of the growing popularity of graphs and networks for the description
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of socio-economic systems. This will lead me to regard the network approach as an

essential tool for the empirical investigation of the determinant of success in innovation

ecosystems.

While reductionist approaches restrict the focus on the characteristics and proper-

ties of the individual components of a system, complexity theory aims at understanding

a systems by investigating the relationships between its components [84]. Complexity

theory has proven to be extremely successful in describing how rich behaviours of many

biological, technological, and social systems, emerge from trivial dynamics of interrelated

individual elements. Phenomena such as the functioning of the human brain, collective

behaviour of flocks, congestions in transportation and communication systems, spread

of disease information and gossip have been described and modelled by coupling rela-

tively simple dynamics of elements with complex topologies of interactions. A extensive

description of the wide applicability of complexity theory would be out of the scope

of this thesis; comprehensive details can be found in the following books, reviews, and

articles [50, 85–88].

I begin my discussion of complex networks by using as an example one of the most

archetypal and intriguing complex systems studied: the human brain. The brain is

made of several billion of neurones and of intricate electrochemical inter-connections that

produce the most spectacular emerging phenomenon in nature: human consciousness.

It is indeed the particular pattern of interactions between the systems components that

gives rise to emerging dynamics which are almost impossible to be anticipated by looking

only at the dynamics and characteristics the of individual elements. Neurones, in fact,

posseses a fairly trivial behaviour (firing an electrical signal when the electrical voltages
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at the inputs overcome a certain threshold) and certainly a neuron, taken alone and

isolated from the rest of the brain, does not posses consciousness in itself. The complex

dynamics of the human brain has also inspired some of the most recent advances in

the domain of artificial intelligence. While the basic building blocks of neural networks

have remained almost unchanged since the first Adeline perceptron [89], the advances

in their capabilities are mostly due to novel and clever rewiring of an increasing number

or artificial neurones [90]. It is worth noticing that the main difference among free-

forward, associative, convolutional, and deep neural networks lies on the topologies of

interconnection between the elementary blocks.

Topology plays such a crucial role that an entire line of research, network theory, was

born with the precise goal to investigate the characteristics of the structures of relations in

natural and human-made complex systems. As a result of its wide scope of applicability

the interest for network science has seen an incredible growth over the last decades. The

language of network science is quite universal, easily overcome disciplinary boundaries,

and has taken the role of unifying framework to manage, investigate, and understand

a number of diverse systems. There are precise technical reasons for which network

science represents such a powerful and universally adopted tool. First, networks (or

graphs) constitute a flexible and human-friendly data model which can easily catch the

complexity in the data describing a number of variegate real-world systems. One of the

most important technical evolutions of the Facebook platform has been the introduction

of the so called OpenGraph, thanks to which all the data objects inside and outside the

Facebook platform are described, stored and retrieved by using the simple concept of

nodes and links. Also the company Google has put graph technology at the core of its
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ranking algorithm since the very beginning.

Leveraging the expressive power of graph-based storage systems has rapidly become

a mandatory requirement for modern companies. Alongside the giant of the Web an

increasing number of smaller companies are converting their storage systems to graph

technologies. Evidence of this are reported in market studies13 and demonstrated by

the proliferation of graph database solutions (e.g., NeoTechnology, OrientDB, TitanDB,

FlockDB). The interest from industry has combined with those from scholars, developers

and researchers, and over the last 15 years has prompted an exceptional development of

software libraries which allows to perform easily computation on graphs at medium-to-

large scale (FlockBD, Neo4j, Spark GraphX, GraphChi, networkx, graph-tool, igraph,

SNAP, Giraph, Pragel, TitanDB). The human-friendly representation of many real-world

systems as a network has made tools for graph computation attractive for data scientists

as much as the wide scope of applicability of complexity and network science has made

these theories popular among scholars from many disciplines.

2.5 Summary

The theoretical motivations for adopting a network approach to the description and

understanding of socio-economic systems, and in particular innovation ecosystems, are

even stronger than the technical ones. First above all, our society is intrinsically embed-

ded in a network of relationships which determine social equilibria and through which

information and resources are exchanged. Additionally, as transportation and communi-

13https://www.forrester.com/report/Market+Overview+Graph+Databases/-/E-RES121473

https://www.forrester.com/report/Market+Overview+Graph+Databases/-/E-RES121473
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cation technologies improve and reduce in costs, the ways people interact multiply, and

topologies rapidly rearrange. If, on the one hand, it is true that in the globalised world

interaction is less and less influenced by geographical distances and good ideas can spread

more rapidly then ever, on the other hand these processes will always be constrained by

the topology of interaction. Moreover topologies co-evolve with social dynamics and it

has been theorised and empirically tested [91] that particular network topologies sustain

or hinder two important aspects of innovation mentioned in Section 2.3: cooperation

and trust. Last but not least, comprehensive digital data on the network of interactions

within innovation ecosystems is nowadays largely available and allow to quantitatively

describe and understand the complex dynamics related to the creation of innovation and

new knowledge. Reductionist approaches which look only at the characteristics of indi-

vidual actors (e.g., scientists, entrepreneurs) will likely fail to understand and describe

the complexity of innovation processes as a whole as they ignore a fundamental concept

highlighted in this chapter: the locus of innovation is not in the individual but in the

interaction between individuals. This argument gives a clear justification for adopting a

network approach to the description of innovation ecosystems.



Chapter 3

Innovation ecosystems through

the network lens

In this work we embrace a network perspective to study in detail the impact of social

and professional relationships on the career of scientists and on the success of firms, in

particular early-stage start-ups. In this section I will highlight the role of science and

start-up businesses in innovation processes and shed light on the intimate relationship

between research activities and the life in a technological start-up. I will present two

case studies which will lead us to describe in details the elementary processes occurring

in innovation ecosystems (e.g., exchange and recombination of ideas, knowledge transfer,

collaborations patterns) and to better define the hypothesis at the root of the empirical

analysis presented in Chapters 4 and 5.

Science and start-up businesses have a crucial role in our society and economy as they

34



Chapter 3. Innovation ecosystems through the network lens 35

are driving forces towards innovation, societal transformations and economic growth.

Science has the honour and burden to push the limits of human knowledge. By doing so,

scientists pave the way for unanticipated and previously unimaginable technologies, tools,

and applications. Even discoveries which may seem purely theoretical at first glance can

have later unforeseen impact on society. For instance, Einstein’s special relativity is

nowadays used to improve the precision of the satellite global positioning system (GPS).

Science deals with the hardest, riskiest, but also the most long-term oriented phase of

innovation. Knowledge often spills over from research centres and universities and finds

its way to affect unrelated business opportunities that did not bear the cost of producing

it.

While this process has been traditionally promoted with top-down approaches (e.g.,

departments of technology transfer looking for potential applications of the research out-

puts produced in their universities) in recent years bottom-up phenomena have emerged.

The great propensity of academics to start their own companies has also been docu-

mented in a recent article featured on the journal Science [92]. The interest in “starting

up” a business based on some research findings is promoted by at least two factors: (i)

the inclination of funding bodies to finance applied research projects, often in partnership

with industry, whose practical research outputs have more clear and direct applications

into markets than theoretical ones; (ii) the low cost associated with setting up a business

whose primary asset is the highly specialised knowledge of the scientists who carried

the research, rather then tangible production assets. Virtually all start-ups, being in

their essence knowledge-intensive activities, build on the knowledge and the results from

academia. For instance, the company Google has drawn deeply in its early stages on
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advances in graph theory and linear algebra, and has returned back those technologies

to process extremely large amount of data (e.g., Hadoop) which are now widely used in

the field of computational social science [49]. Start-ups often act as a bridge between

research and society, as they are able to rapidly convert the innovation potential of some

scientific advances into tangible economic growth and societal transformations.

Mainly for this reason, during the past decades, the interest in young and high-tech

companies has matured exponentially among individuals, organisations, and govern-

ments. Lots of today’s start-ups draw on the huge opportunities provided by the digital

Era: they re-think and re-design the everyday life filling it with services, tips, recom-

mendations, tools, advertisement, and offers. Less popular ones are focused on high-tech

products for the energy, health, transport, and food sectors. For corporations and ven-

ture capitalists the term “start-up” refers precisely to young companies with extremely

specialised and high technological profiles, equipped with business models and products

capable of disrupting the current markets or creating new ones, and aiming at global and

rapid scaling. Investors are tempted by the opportunity of the extremely high returns

that radical new innovations may offer, while large corporations rely on various forms of

external collaborations with newly established firms to outsource their innovation pro-

cess and stay abreast of technological breakthroughs. For governments and individuals

the term is more broadly used to refer to young entrepreneurship, including also compa-

nies which simply recombine already existing technologies into creative but relatively less

scalable businesses and products. If compared with established corporations, start-ups

still account for a small percentage of the richness produced by any country [93], how-

ever, from the prospective of governments, the most important element which justifies



Chapter 3. Innovation ecosystems through the network lens 37

the interest in start-ups is their role as job creators [94]. For instance, in [93] it has

been shown that without start-ups there would not have been net job growth in the U.S.

economy in almost every year between 1977 and 2005 1. This further explains why the

efforts to promote and sustain young entrepreneurship and the birth of new high-tech

companies are widespread in all regions of almost each modern country [94, 95].

3.1 Life in a start-up

The stories about the birth of companies such as Microsoft, Apple, Google or Facebook

have led to the idea that a garage and a good idea are enough to create a billion dollar

company. However, the reality in the start-up world is different from the collective imag-

ination. As the founder of Facebook, Mark Zuckerberg, pointed out about the movie

which tells the story of his company:

“The real story is a lot of hard work. If they were really making a movie (about the

origins of Facebook) it would be of me sitting there coding for two hours straight.”

The number of ideas turned into billion dollar companies is extremely small compared

to the number of garages around the world, and start-up mortality rates are extremely

high. The strategies and paths which can lead to those rare and exceptional successful

companies remains elusive. In this work I put forward the hypothesis that the network

of professional relationships in which the team of a company is embedded largely deter-

mines the success of a company, especially innovative ones. This hypothesis is rooted on

1as a reference Microsoft has been founded in 1975
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the arguments presented in Section 2.3, where we have highlighted the importance that

variegate knowledge and information have in the creation of innovation, and the role of

network structures in securing access to them. Previous works have investigated how

knowledge transfer influences firms’ performance by using data from patents citations,

inter-organizational collaborations, co-locations or proximity to universities as indirect

observations of information flow [26, 96–100]. Other works have used social network

analysis to study directly the microscopic level of interactions among individuals (e.g.,

inventors collaboration networks, or co-directors networks []) but have been limited to

specific industries, cross-sectional observations, or small geographic areas [101, 102]. Due

to the lack of data, the microscopic social dimension underlying the process of knowledge

transfer, and its impact on start-up success, have remained so far largely unexplored.

Before showing in Chapter 4 how large-scale digital data sets can transform our under-

standing of innovation ecosystems, I will describe in more details the role that professional

networks play in business activities, and in particular why networking is more crucial for

start-ups than for traditional business.

Here I refer to the network of a company as the collection of all relationships between

the company members (e.g., founders, CEO, employes, investors, board members) and

people in other organisations (other companies, governments, institutions, banks). Undoubt-

edly the network can have impact on the activity of any company, innovative or not.

Informal relationships, in particular, constitute a valuable yet intangible asset as they

facilitate the achievement of tasks, and goals. As an example, technical employees not

only carry their own experience but also may provide the company with access to know-

how and expertise of other organisations through their past collaborators and friends.
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Sales people can leverage on their own professional and informal networks to seek for mar-

ket opportunities, while human-resource departments can make use of social recruiting

2 to hire talents and facilitate their induction into the organisation. Lastly, experienced

advisors can help to promptly identify and avoid unfruitful growth strategies, or speed-

up the business development cycles during the quest for product/market fit, while board

members in contact with institutions can provide insights on policy directions, current

regulations, and negotiate on future ones by pushing towards the company interests.

To make these examples more tangible I report here two case studies concerning

Uber, and the two companies Facebook and Airbnb. The evidences of the two case

studies are mainly derived from the data set on start-up companies obtained from the

websites Crunchbase.com and Angel.co which I will present in Chapter 4 and additional

data collected from the Twitter and Linkedin platform, which has been explored only in

the contexts of the case studies. First, the Facebook-Airbnb case is an example of collab-

oration and knowledge transfer between companies which has a clear trace in digital data

available on the Web. The specific bit of knowledge we reefer to is a database technol-

ogy, called PrestoDB, created by the Facebook team. The Airbnb team used PrestoDB

in 2014 to create Airpal, a web-based query execution tool, which has rapidly become

integral part of the Airbnb internal infrastructure with more than 1/3 of all employees

issuing queries over the first year after release. 3 The more experienced Facebook team

has facilitated Airbnb in the adoption and integration of the database technology, as

reported in the Airbnb Web blog http://nerds.airbnb.com/airpal/:

2the process of recruiting people who are already in contact (e.g., friends of past collaborators) with
current members the organisation.

3source: http://nerds.airbnb.com/airpal/

http://nerds.airbnb.com/airpal/
http://nerds.airbnb.com/airpal/
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“Finally, we would be remiss if we did not mention the awesome direction that Face-

book provided as the original developers of Hive and the pioneers of building UI tools to

facilitate easy access to big data. We stood on the shoulders of giants to make this tool

[Airpal] and we appreciate the influence and input that the data infrastructure and data

tools teams at Facebook were able to provide.”

These interactions between the two teams, and the associated process of knowledge

transfers, have a tangible counterpart in online social networking platforms. Indeed, the

data from the Twitter social network reveals 123 reciprocated following/follower connec-

tions between the Facebook and Airbnb employees, which indicates an intense exchange

of information between the two groups 4. More specifically, data from Linkedin.com

reports that Mr. James Mayfield, author of the mentioned blogpost, was hired by Airbnb

in 2014 after 7 years of work at Facebook. Mr. Mayfield not only has brought his exper-

tise in his new team at Airbnb but, as we argued earlier in this section, he has also

facilitated access to knowledge owned by his past collaborators at Facebook. The role

that individuals play as mediators of information and knowledge exchange is at the core

of the empirical analysis presented in Chapter 4 and 5, and it provides justification for

the 1-mode projection technique used to build both the World Wide Start-up (WWS)

network and the co-authorship network among scientists. It is also worth stressing the

unprecedented resolution at which our empirical observations extend and the micro-

scopic level of detail at which processes of knowledge transfers between companies can

be observed using social-network data.

4We are only able to track those employees who have provided their twitter username on the platform
Crunchbase.com, namely 165 Twitter users among the Facebook employees and 72 Twitter users among
the Airbnb ones.
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The second case study concerns Uber, the company whose smartphone App allows

passengers to get in contact with private drivers. Uber has recently faced strong oppo-

sition from the main economic actor in the market of car rides: taxis. Opposition to

Uber’s technology has become so strong that certain countries have forbidden or are try-

ing to forbid the company to operate in their territories. In April 2014 a Belgian court

confirmed a ban on the ride-sharing App UberPOP, giving the company 21 days to close

operations in Brussels threatening massive penalties 5. Similar legal actions have been

promoted in France. In 2015 Transport for London (TfL) launched a public consultation

which could have resulted in a severe crackdown of Uber’s activity. Uber fought back

with a petition against the TfL consultation after which the transport authority decided

to drop a significative number of anti-Uber proposals. In September 2015 year a Califor-

nia judge ruled that a lawsuit brought by Uber drivers could go forward as class-action.

According to the magazine Fortune 6 it re-opened “the biggest question about the hottest

company in Unicornland: Is its business model legal? And if not, can Uber survive?”.

Despite the strong opposition, and the severe institutional and legal obstacles that

Uber’s business model is facing, the company seems well prepared to fight back opposition

in courts, and Uber’s attractiveness for investors has not declined despite the persistent

attacks from associations and institutions. The recent undisclosed Chinese investors

as well as Goldman Sachs who have invested in Uber respectively $2Billion 7 and $1.6

Billion 8 have surely appreciated the strategic presence of Mr. David Pluffe in the Uber’s

board member of directors. Mr. Pluffe is currently referred to as the “architect” of the

5Source: http://www.engadget.com/2014/04/15/belgian-uber-ban-10k-fines/
6Source: http://fortune.com/2015/09/17/ubernomics/
7Source: http://www.reuters.com/article/us-uber-china-idUSKCN0UR22J20160113
8Source: http://techcrunch.com/2015/01/21/uber-another-1-6b/

http://www.engadget.com/2014/04/15/belgian-uber-ban-10k-fines/
http://fortune.com/2015/09/17/ubernomics/
http://www.reuters.com/article/us-uber-china-idUSKCN0UR22J20160113
http://techcrunch.com/2015/01/21/uber-another-1-6b/
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president Obama’s presidential campaign and Obama himself referred to Pluffe as the

one “who built the best political campaign in the history of the United States of America”.

It is hard to believe that the link between Uber’s board and the presidential office will

not affect positively the future of the company.

These two examples show how wide and strong networks of relationships can be

reasonably expected to increase the chances of a company to access know-how on the

latest technology, or to plan strategies to disrupt current markets and yet find the favour

of governments and society. These networks, in turn, may increase the speed at which

the company can executes and adapt its business plan. In today’s knowledge-intensive

start-ups, such networks play a fundamental role as they act as the conduits of various

pools of knowledge that can be fruitfully recombined into successful innovation. As such

they can even impact the survival or death of a company.

The reason why the impact of a good9 network is so crucial for start-ups, when com-

pared to more traditional business, is rooted in the different environmental conditions

under which traditional firms and innovative start-ups operate. Often the market seg-

ments, the customers, the operations, and business models are well defined and can be

clearly assessed in traditional business plans. Moreover, extremely rapid scaling or global

impact are not critical requirements as in the case of start-ups. In traditional business

the speed of growth can be tuned and adapted to the company’s current capabilities and

managers can make informed decision (e.g., on pricing) by evaluating or imitating the

behaviour of competitors in the same market sector. The possibility to make reliable

forecasts also mitigates uncertainty and risk and facilitates the access to debt financing.

9a more rigorous and quantitative definition of good and bad networks will be provided in Chapter 4
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Being traditional rather then innovative does not mean being not profitable as demon-

strated by the recent acquisition of the pizza chain “Franco Manca” sold for £27 Million

in 2015 after 8 years of activity and 10 stores across London 10. Business operations

in a relatively stable market as the one of restaurants are radically different from the

activities, the decision-making process, and management of growth in a start-up such as

Uber. The pizza chain and the private-driver app have almost the same age but, in the

same 8 years of activity Uber raised a total of $9 Billion and expanded in more than 400

cities around the world. Additionally, in the last few years the company was also forced

to radically transform its technology, mobile application, and business models to meet

legal requirements in very short times.

The book “The RainForest” by Greg Horowitt describes traditional models of busi-

ness (those emerging from the Industrial Revolution) with an intriguing agricultural

metaphor. A company’s activity is compared to the harvesting of plantations where

productivity is increased by using the latest technical tools to finely control the system

(water supply, fertilisers, pesticides etc...). Once the soil quality and weather conditions

are assessed the outcome is quite predictable and refined techniques can only progres-

sively increase production, but are not likely to disrupt the production capacity or give

exceptional outcomes. Buying more land will lead to an increase in production, building

a faster assembly line will expand the production of cars, renting more shops will lead

to an higher number of pizzas sold.

Iqbal Quadir, in his June 2015 editorial in the journal Science, described entrepreneurs

as “gardeners who plant innovation in the economy”. In a similar vein, in the previously

10As a comparison the average amount of a start-up acquisition since 2007 was $150 Million.
Source: http://techcrunch.com/2013/12/14/crunchbase-reveals-the-average-successful-startup-raises-41m-exits-at-242-9m/.

http://techcrunch.com/2013/12/14/crunchbase-reveals-the-average-successful-startup-raises-41m-exits-at-242-9m/
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mentioned book, Greg Horowitt regards start-ups as plants in a rainforest where a vari-

ety of species continuously grow, interact and die. The great variety of species and the

interaction between them favour a process that is very unlikely to happen in mass pro-

duction crops: the recombination of genes and the creation of entirely new species (i.e.,

business ideas). Making innovative species grow in a rainforest is a task very different

from harvesting crops: the condition of the soil (e.g., the market condition) are hostile

and the availability of nutrients (e.g., funding) is irregular and unpredictable. Newly

born species are fragile, and it is hardly predictable if the novel combination of genes

will lead the plant to grow rapidly or die in the hostile condition of the rainforest.

The initial stages of a start-up business are indeed characterised by a great amount of

uncertainty, unverified hypothesis, and risk. The estimation of the number of potential

customers or the market volume are extremely unreliable in the early stages of truly

innovative businesses, especially when the goal is to create entirely new markets from

scratch. As an example, the company Facebook, originally designed to facilitate com-

munication among college students only, has attracted the attention of more than 700

Million users across a wider range of ages and occupations and, in doing so, has created

the entirely new market of social media. Another crucial risk factor is the tendency

of start-up founders to overestimate the importance and pervasiveness of a certain cus-

tomers’ need, and consequently the potential value of the solution they offer. In reality,

the actual value and the effective monetization strategies become clear only when the

business face the real market and when first customers are acquired. Often, when the

products hit the market, the planned strategies or even the entire business plan may

need to be radically changed (as happened to the UberPOP app). The more innovative
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and unanticipated the business is, the more irrelevant hypothesis and execution plans

are.

To overcome the intrinsic risk of innovative endeavours several systematic method-

ologies have been proposed. Among them the one which has attracted the most atten-

tion is the Lean Startup Methodology, first proposed in 2008 by Eric Ries [103]. Ries’

recommendation to start-ups is to adopt a combination of business-hypothesis-driven

experimentation, iterative product releases, and validated learning. The central concept

of the Lean Startup philosophy is to eliminate wasteful practices such as fund raising,

business plans writing, or complete specifications of final product. In contrast Lean

Startup promotes value-producing activities by focusing on continuous iterations of the

so-called minimum viable products (MVPs). Building a series of MVPs rather then the

final product has several advantages. Because of the mentioned uncertainty about cus-

tomers and markets, it is extremely risky for a start-up to rely exclusively on the success

of the first product launch, and consequently to invest all its resources on it. Instead,

by introducing on the market a not finalised but cheap MVP, the company can make

use of customer feedback to help further tailor the product to the specific needs emerged

from the market test [67, 103]. In this way MVPs help to subject the business model

to a rapid iterations of tests which allow to disprove business hypothesis and allocate

resources in the most profitable way. In this sense, the process of finding the market

fit matches the description of innovation as a heuristic search process (Section 2.3) in

which the specific characteristics of the targeted product are only fuzzily defined and are

subject to continuos revisions. For this reason, start-up teams are required to adopt a

smart and creative approach with the aim to minimise effort invested in each individual
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development cycle and favour instead the deployment of multiple products and market

experiments. Again, this approach resemble the breath-first strategy in the search for

innovative solutions mentioned in Section 2.3. Founders in particular need to understand

clearly the unwarranted hypothesis at the basis of their business, and need the ability to

design the right market experiments capable to test those hypothesis. Experience and

feedback gained from one experiment have to be used to design the next one until a

market needs are met, or new market are effectively created.

3.2 The similarities between activities in science and in

start-ups

To a great extent, the condition under which start-ups operate are very similar to those

of scientific research. It all starts from simple intuitions and uncertain hypotheses which

need to be tested by experiments. Experimental results may be inconclusive and need

to be interpreted heuristically to make new decisions about where to invest additional

efforts. Decisions are often not supported by complete information and instinct plays

an important role. Often the final results of research represent only a tiny fraction of

all activities performed (e.g., simulations, experiments), including a large amount of

intervening errors. Even though the process of ruling out wrong paths is, by definition,

an important stage of research activities, the try-and-error process cannot be iterated

indefinitely. Indeed, no funding bodies or investors are willing to support financially a

research or a business which keep failing to meet its stated goals. If the market fit or

recognition from research communities is not found within 2-3 years, the team’s energy



Chapter 3. Innovation ecosystems through the network lens 47

and motivation vanish away, no matter how promising the original idea was. Successful

innovative activities, either novel business models or the production of scientific articles,

are those which rapidly experience the greatest number of unsuccessful paths rather then

executing a fixed plan with predetermined final goals. During this frenetic try-and-error

process the access to knowledge, know-how, expertise, opportunities is crucial because

it reduces the chances to take unfruitful path. Scientific collaborators or members of the

same research group may share their experience and use their intuition to guide projects

towards more fruitful and promising activities. This is analogous to the benefits that a

start-up can gain from the experience of advisors and mentors in the decision-making

process and the phase of market experiments.

3.3 Life in academia

Just as knowledge flows could be mapped in the context of start-up firms, in a similar

way data enable us to track exchange of knowledge among individuals in the domain of

science. In their daily academic lives, scientists typically exchange expertise, discoveries,

techniques, and knowledge of the literature. These exchanges may occur in different

contexts such as conferences, workshops, meetings, or they may even occur as scientists

read one another’s articles or manuscripts. Thus, as stated in Section 2.1 and 2.3, all

these exchanges have a strong social connotation.

A great portion of the whole academic life (scientists’ research interests, prestige,

collaboration patterns) leave clear traces in digital data about scientific publishing. Since

scientific production has increased at a fast pace over the last few centuries, and since
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nobody can master or contribute to all topics at the same time, the scientific enterprise

has rapidly converged to a structure organised into disciplinary silos which is reflected

mainly by the subdivision of modern universities into academic departments. Having

defined boundaries makes it easier and more effective for scientists to draw deeply on

the knowledge accumulated over centuries, and collaborate with other researchers in

their chosen disciplinary silo. The life of scientists in modern academia is remarkably

different from that of, for instance, ancient Greek philosophers or great scientific minds

such as Leonardo Da Vinci, who were able to master the breadth and depth of the whole

disciplinary landscape. Even within a specific discipline, the amount of knowledge in

the various subfields is so vast that scientists are forced to specialise into narrower and

narrower research areas in order to able to provide their contribution. For instance,

Physics is broadly divided into electromagnetism, optics, acoustics, dynamics of fluids,

condensed matter, nuclear physics, elementary particles, atomic and molecular physics,

geophysics, astronomy, and astrophysics. However, grasping in full depth all knowledge

of a subfield is a challenge even for senior researchers.

Communication across the boundaries of disciplines and sub-fields can provide signif-

icant advantage as it offers more opportunities to recombine ideas, stimulate creativity,

and ultimately produce new knowledge and innovations. The comprehensive nature of

interdisciplinary research (IR) is also expected to enable scientists to solve complex global

issues which cannot be addressed by those who only embrace a specialised disciplinary

perspective. The journal Nature, in a recent special issue [104], has regarded interdis-

ciplinary researchers as the super-heros of science and considered IR essential “to solve

the grand greatest challenges facing society: energy, water, climate, food, health”. There
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have been all along history periodic efforts to promote collaboration and communication

across academic disciplines. Jacobs and Frickel [105] date the push towards interdisci-

plinary research back to the work of the Social Science Research Council of the U.S. in

the 1920s, and to the Rockefeller Foundation in the 1930s. Evidence of the most recent

push is found in the increasing number of interdisciplinary training programs, research

consortia, scholarships and funding opportunities provided by national research agencies.

The modern trend of interdisciplinary research has also generated intense debate and

several criticisms. Because of the absence of strong theoretical arguments and empir-

ical evidence, skepticisms have emerged on the assumptions advanced by advocates of

interdisciplinarity, and on the claimed superiority of interdisciplinarity over disciplinary

knowledge [105, 106] . Indeed, several costs and disadvantages may also arise from aban-

doning specialisation in favour of a more inclusive and integrative approach to research.

Large and heterogeneous research teams may experience coordination and communica-

tion obstacles that can outweigh the advantages of the diversity in backgrounds and

skills. If, on the one hand, diversity provides more opportunities for novel recombina-

tions of ideas, on the other hand it carries the extra costs of dealing with the different

research approaches, languages, techniques and style of thoughts, and past literature

of each discipline. The mentioned obstacles have often been used to justify a series

of empirical evidence supporting the idea that scientific achievements are obtained at

intermediate levels of interdisciplinarity and that highly interdisciplinary articles that

mix together disparate knowledge pools usually produce a lower scientific impact than

articles concentrated on fewer topics [18]. The most recent literature [18, 107, 108]

has mainly focused on providing measure of the degree of interdisciplinarity of scientific
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activities (e.g., production of articles and research projects). In these studies the concept

of interdisciplinarity has been operationalised in various and often not comparable ways,

mainly drawing on the list of references to construct interdisciplinarity scores. However,

the particular operationalisation of interdisciplinarity which draws on the reference list

disregards the actual breath of knowledge of individual authors and the intensity of the

knowledge exchange through scientific collaborations (e.g., through the co-authorship of

an article).

Even though numerous works have explored the comparative advantages of interdis-

ciplinary research in general, only a few works have focused attention on individuals and

studied interdisciplinarity across career trajectories [109–111]. The current literature

does not still clearly establish whether pursuing interdisciplinarity provides advantages

to an individual researcher. In particular there is no clear evidence on whether or not it

is more effective for researchers to specialise in narrow fields than to have broad scientific

interests. Additionally, as I stated in Section 2.3, innovation and novelty result from the

recombination of ideas draw from the network in which authors are embedded. Yet, few

works have investigated the role of the network in fostering interdisciplinarity and its

relation to authors’ scientific performances.

Given the institutional pressure for interdisciplinary projects on the one hand, and the

risks associated to them on the other, it has become crucial for scientists to know which

are the most effective mechanisms, career paths and research strategies that nurture and

sustain scientific success in modern academia. Do researchers need to overcome disci-

plinary boundaries and abandon specialisation in favour of more inclusive perspectives to

amplify their scientific impact and recognition? To which extent does this attempt pay
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back the higher costs associated with interdisciplinary research? Can authors preserve

their specialised approaches while leveraging on heterogeneous expertise of collaborators

in order to pursuit IR and avoid knowledge overloads? How is a scientist’s personal

expertise influenced by the knowledge of the those with whom the scientist collaborates?

And which collaboration patterns are more effective in sustaining scientific performance?

I try to answer these questions in Chapter 5.

3.4 Summary

Science and start-ups have a crucial role in our society and economy as they are driving

forces towards innovation, societal transformations and economic growth. The process

through which scientists and entrepreneurs produce innovation are intimately related.

Their common denominators are: uncertainty of outcomes, trial-and-error processes,

access to complex, multi-faceted and often tacit knowledge, and the role of advisors,

mentors, and scientific collaborators in speeding up experimental phases. In this work I

embrace a network perspective to study the impact that social and professional networks

have on the performance of scientists and start-ups. The overall goal is to use digital

data to design methodologies to guide and support innovation processes systematically,

and reduce the intrinsic risk associated with innovation. To conduct this empirical

investigation I have collected, cleaned, and analysed some of the largest data sets publicly

available about innovative activities. In particular I have focused my attention on the

data available from the websites of the following organisations: Thomson Reuters’ Web

of Science (WOS), American Physical Society (APS), Cruchbase.com, Angelist.co. The
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next two Chapters present the empirical results based on these data sets.



Chapter 4

Empirical investigation I:

Predicting the success of start-ups

4.1 The Crunchbase data set

Data were collected from the Crunchbase.com Web API and are updated to December

2015. The data on the Crunchbase website are manually curated by several contributors

affiliated with the Crunchbase platform (e.g., incubators, venture funds, individuals)

and are enriched by automatic crawlers which scrape the Web, on a daily basis, search-

ing for news about initial public offers (IPOs), acquisitions, and funding rounds. To

date Crunchbase is widely considered the world’s most comprehensive open data set

about start-up companies. For each organisation in the Crunchbase data I extracted all

the people included in the team (e.g., founders, advisors, board member, employees),

and additional information such as foundation date, location of the firm headquarters,
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founding rounds, acquisitions, and IPOs. Organisations and people are uniquely identi-

fied by alphanumeric IDs. Organisations belong to four categories: companies, investors,

schools, groups. Among the schools I counted 383 universities, including top tier insti-

tution such as Stanford University, the Massachusetts Institute of Technology (MIT)

and many others. Hence, in addition to people’s business activity, the data track also

information about their education paths, and consequently the possibility to draw knowl-

edge from academia. All organisations have been considered in the analysis, but only

those belonging to the category “companies” have been included in the ranking method

illustrated in Section 4.3. All data are time-stamped and an accurate reconstruction of

historical events is made possible by the use of trust-codes, i.e., numerical codes pro-

vided by Crunchbase to indicate the reliability of a certain timestamp. The timestamps

indicate the dates of foundation, funding rounds, acquisitions, and IPOs. Raw data

were stored on a Neo4j graph database instance from which I constructed a bipartite

time-varying graph with 41, 830 nodes representing firms distributed across 117 countries

around the globe, 36, 278 nodes representing people, and 284, 460 links between people

and companies. The graph is time-varying because each node and each link have a time

associated, representing the time a person held a professional role in a company. Notice

that in the construction of the time-varying graph I retained only the timestamps whose

trust-code guarantees the reliability of year and month.

Additionally, I cleaned the data by solving and removing inconsistencies such as an

employee’s role starting at a date prior to the company’s foundation. In these cases I

retained the most reliable information according to the trust-code value. Inconsistencies

were removed by adopting a strong self-penalising cleaning strategy: I did not make any
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assumption on timestamps nor did I try to infer them and I did not retain in the graph

links whose timestamp could not be determined in a reliable way. This data cleaning

approach strengthens the validity of the results in Section 4.3 because it does not enable

companies to gain positions in the closeness centrality rank score thanks to connections

which were been forged at later time but were incorrectly or partially reported in the

data. In this way I avoid biases that can artificially inflate the success rate of the

method presented in Section 4.3. The cleaned data will be made available for public use

on http://maths.qmul.ac.uk/~mbonaventura.

Figure 4.1 illustrates the coverage of the Crunchbase data around the world. The

image shows the density of companies in each city of the world (close cities are aggregated

for layout purposes). Beyond the unsurprising predominance of the U.S. ecosystems, it

is possible to notice an higher density around the capitals of Europe, led by Germany

and the United Kingdom, as well as the Israeli innovation cluster. Few denser clusters

can be found also in Australia, East Asia and South America.

Figure 4.2 shows the Airbnb neighbourhood in the two-mode graph, and illustrates

the microscopic resolution at which the Crunchbase data enables one to track the poten-

tial flow of resources (e.g., knowledge and information) between companies. In 2013

Airbnb hired Mr. Thomas Arend (highlighted in the red square), who had previously

acted as a senior product manager in Google, as an international product leader in

Twitter, and as a product manager in Mozilla. The professional network thus reveals

the potential flow of knowledge between Airbnb and the three other companies in which

Mr. Arend had played a role.

http://maths.qmul.ac.uk/~mbonaventura
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Figure 4.1: Distribution of startup companies around the world in 2000.
Notice the higher density around the capitals of Europe, as well
as the Israeli innovation cluster.

Year Companies Links numConnecte
dComponents

LCC

1990 310 292 96 0.1612903226
1991 382 381 103 0.2015706806
1992 452 469 107 0.3783185841
1993 529 576 114 0.4366729679
1994 648 737 129 0.5154320988
1995 780 895 148 0.5461538462
1996 955 1163 164 0.5989528796
1997 1216 1599 200 0.6291118421
1998 1473 1980 238 0.6429056348
1999 1828 2562 258 0.6799781182
2000 2385 3489 322 0.6964360587
2001 3028 4552 395 0.7093791281
2002 3656 5746 469 0.7174507659
2003 4241 7021 515 0.7264796039
2004 4892 8490 558 0.7408013083
2005 5840 10675 646 0.745890411
2006 6898 13516 702 0.7641345317
2007 8230 17184 802 0.7739975699
2008 9956 22229 951 0.7766171153
2009 11954 28369 1097 0.7869332441
2010 14559 36128 1386 0.7802046844
2011 18286 48605 1814 0.7676364432
2012 22765 65329 2308 0.7629255436
2013 27981 84719 2933 0.7535470498
2014 33400 104069 3569 0.7464071856
2015 38788 123573 4086 0.7441218934
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Figure 4.2: The Airbnb neighbourhood of the two-mode graph in 2013. Mr.
Thomas Arend, highlighted in the red square, was hired in 2013
and secured the potential for knowledge flow from Google, Twitter,
and Mozilla where he previously acted as senior product manager.
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I have conducted two main empirical studies which make use of temporal data, geo-

graphic data and the underlying graph of relationships among people and companies:

the Success prediction method presented in Section 4.3 and the Start-up fingerprints of

cities presented in Section ??.

I have also integrated the Crunchbase.com data sets with data from the platform

Angel.co collected through their Web API. Since the two websites have stipulated a

partnership which allows them to import their respective data, the majority of the infor-

mation in the Angel.co platform are actually just a copy of the data included in the

Crunchbase one. However, while on Crunchbase the various professional roles are iden-

tified by free-text strings, and consequently may include misspellings, in the Angel data

set the roles are conveniently collected in 6 unique categories: founder, employee, advi-

sor, investor, mentor, and attorney. These unique identifiers are extremely convenient as

they enable us to carry out the analysis present in Section ??. Crunchbase data contains

more reliable information about funding rounds, IPOs and acquisitions, and more reli-

able timestamps which are crucial in the longitudinal analysis of the success prediction

method presented in Section 4.3.

4.2 The World Wide Start-up (WWS) network

I project the bipartite time-varying graph into a one-mode graph in which two compa-

nies are connected when they share at least one individual that plays or has played a

professional role in both companies. Such a graph comprises N = 41, 830 companies and

K = 135, 099 links among them, and has been named the World Wide Start-up (WWS)
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network. The projected graph is time-varying like the original bipartite graph: a link

between any two companies is forged as soon as one individual with a professional role

in one company takes on a role in the other company. Data cover an observation period

ranging from 1990 to 2015 at a monthly resolution. In this period, various communities

of start-ups around the globe have joined together to form the largest connected com-

ponent which in 2015 includes about 80% of the nodes of the WWS network. Moreover

the merging of various components over time has reduced the “degree of separation”

between any two companies in the WWS network to an average of 4.74. Figure 4.3(a)

highlights the countries in which start-ups have joined, over time, the largest connected

component of the WWS network. In Figure 4.3(b-c) I report, as a function of time, the

number of nodes and links in the WWS network and the fraction of nodes belonging

to the largest component of the graph. In particular Figure 4.3(b) indicates a steady

exponential growth in the number of companies over the last 25 years.

Figure 4.3: (a) Countries that, over time, joined the largest connected compo-
nent (LCC) of the worldwide start-up (WWS) network are high-
lighted in blue; (b) evolution of number of firms and links in the
WWS network; (c) fraction of nodes in the LCC over time.
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4.3 Predictions of success

4.3.1 Methods and measures

As new links are forged over time, the distance from a certain company to all other

firms in the WWS network reduces, which in turn enables the company to gain new

knowledge and tap business opportunities beyond its immediate local neighbourhood. It

is reasonable to expect that companies with a central position in the WWS network can

benefit from greater knowledge transfer and easier access to resources and opportunities.

The concept of centrality and network measures were introduced in the context of social

network analysis, and more recently have been applied to various other fields [43, 112]. To

capture potential exposure to knowledge, I have computed, for each month, the closeness

centrality of each node in the WWS network. The closeness centrality Ci(t) of a node

i, i = 1, 2, . . . ,N (t) quantifies the importance of a node in the graph by measuring its

mean distance from all other nodes and is defined as:

Ci(t) =
N (t)− 1∑
j dij(t)

, (4.1)

where N (t) is the number of nodes in the graph at time t, while dij(t) is the graph

distance between the two nodes i and j, measured as the number of links in a shortest

path between the two nodes. To account for multiple disconnected components I have

used a generalisation of the original closeness centrality as proposed in [113]. In each

month of the observation period, I ranked companies according to their values of closeness

centrality (i.e., top nodes are firms with the highest closeness). I refer to the ranked



Chapter 4. Empirical investigation I: Predicting the success of start-ups 60

list which include all companies as the full list. Figure 4.4 shows an example of the

Year Companies Links numConnecte
dComponents

LCC

1990 310 292 96 0.1612903226
1991 382 381 103 0.2015706806
1992 452 469 107 0.3783185841
1993 529 576 114 0.4366729679
1994 648 737 129 0.5154320988
1995 780 895 148 0.5461538462
1996 955 1163 164 0.5989528796
1997 1216 1599 200 0.6291118421
1998 1473 1980 238 0.6429056348
1999 1828 2562 258 0.6799781182
2000 2385 3489 322 0.6964360587
2001 3028 4552 395 0.7093791281
2002 3656 5746 469 0.7174507659
2003 4241 7021 515 0.7264796039
2004 4892 8490 558 0.7408013083
2005 5840 10675 646 0.745890411
2006 6898 13516 702 0.7641345317
2007 8230 17184 802 0.7739975699
2008 9956 22229 951 0.7766171153
2009 11954 28369 1097 0.7869332441
2010 14559 36128 1386 0.7802046844
2011 18286 48605 1814 0.7676364432
2012 22765 65329 2308 0.7629255436
2013 27981 84719 2933 0.7535470498
2014 33400 104069 3569 0.7464071856
2015 38788 123573 4086 0.7441218934
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Figure 4.4: Evolution of closeness centrality rank of five popular firms.

large variety of observed trajectories as companies moved towards higher or lower ranks,

i.e., they obtained a larger or smaller proximity to all other companies in the network.

For example, Apple has always been in the top 10 firms over the entire period, while

Microsoft exhibited an initial decline followed by a constant rise, moving the company

towards the central region of the network. The trajectories of younger start-ups, such as

Facebook, Airbnb, and Uber, are instead characterised by an abrupt and swift move to

the highest positions of the ranking soon after their foundation, possibly as a result of

the boost in activity that has characterised the venture capital industry in recent years.

For instance, the sudden jump at the beginning of the Uber trajectory is due to the first

1M U.S. dollars investment round joined by 17 distinct investors.

To investigate the interplay between the position of a company in the WWS network

and its long-term success I have used additional data on funding rounds, acquisitions,

and initial public offerings (IPOs) collected through the Crunchbase Web API. This

data have been coupled with the closeness centrality ranking to construct the prediction

method described in what follows.
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4.3.2 Predictions

For each month t, I constructed an ordered list of N(t) firms, ranked by closeness, that

can be classified as “open deals” for investors, i.e., they have not yet received funding,

have not yet been acquired, and have not yet been listed in the stock exchange market.

As an example, the company WhatsApp, which in June 2009 had not received any

investment and ranked 1060th in the full list, occupied the 15th position in the open-

deals list in the same month. Notice that, by assessing a firms network position prior

to any funding event or IPO, the analysis is not subject to possible biases arising from

the effects that the capital market might have upon the firms expected performance.

Figure 4.5 shows an illustrative example of the construction of the open deal lists (the

company names do not reflect the real data). The figure illustrates the two cases in

which a company is removed from the open-deal list: (i) the company receives funding,

and (ii) it is older than 2 years. I then identify which companies, within a time window

∆t = 7 years starting at month t, succeed in securing at least one of the following positive

outcomes: (i) the company makes an acquisition; (ii) it is acquired by another company;

or (iii) it undergoes an IPO. Company success is hence regarded as binary variable equal

to 1 if the company has achieved a positive outcome or 0 otherwise. While the fact that

a company is acquired or undergoes an IPO signals a potential and measurable economic

gain for the company shareholders, I have used the acquisition of other organisations as

indirect measure of the company’s economic success. Indeed, in the absence of data on

revenues, the acquisition of other organisations is the only event which can signal a solid

financial status and growth. More importantly, without this third indirect measure of

company success, we would have considered as unsuccessful companies with skyrocketing
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Figure 4.5: Illustrative example of the construction of the open-deals lists and
the prediction methods (company names do not reflect the real
data). In May 2004 Facebook has received funding while Cisco is
older then 2 years. Both companies are then removed from the
open deal list and the ranking is updated. In each month I check
whether or not a company has achieved a positive outcome within
7 years or, alternatively, ever in the future.

revenues such as Airbnb, Uber, and Deliveroo.

To asses the accuracy of the method in identifying successful companies, I check how

many of the Top 20 companies (n = 20) in the closeness-based ranking of open-deals have

obtained a positive outcome. In particular I have computed the success rate S(t) defined

as the ratiom(t)/n, wherem(t) is the number of firms with a positive outcome included in

the Top 20 (n = 20) of the open-deal list of month t. If the open-deal lists were randomly

ordered, the expected number mrand(t) of successful companies in the Top 20 would have

been given by the expected value of the hypergeometric distribution H(N(t),M(t), n),

where N(t) is the total number of companies in the open deal list, M(t) is the total num-

ber of companies which have achieved a positive outcome, and n = 20 is the length of the

Top list considered. In particular, in the case of random ordering, the expected success

rate Srand(t) is given by Srand(t) = M(t)/N(t). The statistical significance of the success
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rate is assessed by computing the hypergeometric p-values, which give the probability of

obtaining, by chance, a success rate greater than or equal to the one obtained empiri-

cally. Such probability can be written as p(t) =
∑M(t)

k=S(t)H(N(t),M(t), n, k), where H is

the probability mass function of the hypergeometric distribution.

4.3.3 Empirical findings

Figure 4.6(a) compares the actual success rate S(t) (blue curve) of the prediction method,

with the one expected by chance Srand(t) (black curve). The p-values in the top panel

of Figure 4.6(a) measure the probability of obtaining, by chance, a success rate larger

than S(t), with low values of p (highlighted regions) indicating the time periods where

the prediction is statistically significant. From mid-2001 to mid-2004, the success rate

(blue curve) is remarkably larger than the one based on random expectations (black

curve), and the p-value is always smaller than 0.01. The success rate exhibits also an

exceptional peak of ∼ 50% in June 2003 (p-value = 0.0001). In this month the ten

companies in the Top 20 of the open-deals list are: Mailfrontier, Proofpoint, Riverbed

Technology, Bluelane Technologies, Xfire, Loyalty Matrix, Verdisoft, Instore, Dupont

Photonics, Istante Software. From 2004 to 2007, the blue curve decreases, reaching a

local minimum at a time when a global financial crisis was triggered by the US housing

bubble. In this period (as well as during the collapse of the dot-com bubble in 1999-

2001), even though the success rate still exceeds random expectations, the high p-values

indicate that the discrepancy between S(t) and Srand(t) are not statistically significant.

Finally, after mid-2007, the performance of the prediction increases, and it stabilises

around 35% (p-value = 0.01).
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Figure 4.6(b) shows the success rate S̃I aggregated over all observed periods in the

following manner. The overall success rate S̃I takes into account the total number of

positive entries in the Top of all open-deal lists, regardless of the specific companies

which occupy those positions. In this way S̃I provides a measure of the overall goodness

of the ranking across months, but it does not provide information about the number of

unique companies correctly or wrongly identified as successful. As an example of the

computation of S̃I let us consider the period starting in January 2000 and ending in

December 2007, and the Top 20 (bottom-left plot in Figure 4.6). Such a period includes

δ = 96 months. The overall success rate S̃I is defined as:

S̃I =
m̃I

ñI

where ñI = 20 ∗ δ is the total number of entries in the Top 20 across the δ months,

while m̃I =
∑

tm(t), where the sum runs over all the months in the considered period.

If we randomly shuffle the entries within a month, i.e., we shuffle each open-deal list

independently, the expected total number of successful companies within all the Top 20s

is given by:

m̃rand
I =

∑
t

mrand(t)

and the corresponding variance is given by the sum of the variance in each month

V ar(m̃rand
I ) =

∑
t

V ar(mrand(t)).
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The expected overall success rate in the case of random ordering is then given by

S̃rand
I =

m̃rand
I

ñI

and its standard deviation σI is:

σI =

√
V ar(m̃rand

I )

ñI
.

Figure 4.6(b) reports the overall success rate empirically found S̃I (blue bars), the overall

success rate S̃rand
I expected by chance (black dots), and its standard deviation (black

error bars) for different numbers of recommended companies (i.e., Top 20,50,100).

4.3.4 Robustness

I checked the robustness of the prediction method by replicating the analysis based on

the n = 20, n = 50, and n = 100 firms with the largest closeness centrality, and two

different time windows, namely ∆t = 6 and ∆t = 8 years. The panels in Figure 4.8

report the evolution of the success rate and the p-values over time for ∆t = 6, 7, 8 and

n = 20, 50. The overall trend and the minima of the success rate during the periods of

market instabilities are confirmed for all time windows and values of n.
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Figure 4.6: (a) The success rate S(t) of the prediction method (blue curve) is

compared to the expected success rate Srand(t) of a random selec-
tion of the recommended companies (black curve). The success
rate reaches an exceptional peak of about 50% around June 2003,
and reduces significantly in correspondence of periods of financial
instability (dot-com and housing bubble). The statistical signifi-
cance of the discrepancy between S(t) and Srand(t) is quantified by
the computation of the associated p-values, shown in the top charts
of each panel. (b) The success rate S̃I aggregated over the entire
observation period. Notice the discrepancy between the actual
success rate of the prediction method and the random expecta-
tion. Increasing the length of the Top list considered (n from
20 to 100) the aggregate success rate decreases indicating that the
highest positions in the list are characterised by an overabundance
of successful companies compared to the number expected in case
of random ordering of the list.
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Figure 4.7: For robustness check I replicated the analysis of fig 4.6(a) for dif-
ferent time windows, ∆t = 6, 7, 8 years. The bottom-right panel
shows an additional analysis in which I remove the restriction on
the maximum time in which a company is allowed to achieve a
positive outcome, i.e., I set ∆t =∞.
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Figure 4.8: For robustness check I replicated the analysis of fig 4.6(a) for dif-
ferent lengths of the recommendations list, namely n = 20, 50,
and different time windows, ∆t = 6, 7, 8 years. The trend of the
blue curve is consistent across all the analyses and the local max-
ima and minima are not influenced by the particular choice of the
parameters.
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4.4 Discussion

In this chapter I have shown how today’s digital data allows to investigate and charac-

terise innovation processes at a global scale. I have presented an integrated approach to

collecting, analysing, and makings sense of data about start-up ecosystems. Based on

the hypotheses and methodological framework presented in Section 2.4 I have adopted

a network perspective and used the data to construct the WorldWide Startup (WWS)

network. Mapping the potential knowledge and information flow in terms of a network

has proven to be an extremely powerful approach. First, the network perspective has

allowed me to reveal differences and similarities between cities around the world and to

distinguish the various patterns of activity of different ecosystems. This study provides

ecosystem managers with a quantitative and synthetic way to monitor their local startup

communities and benchmark them against well-know successful clusters such as the Sil-

icon Valley. More importantly, I have shown a direct relation between the position of

a company in the WWS network and its long-term performance. In particular I have

shown that companies which occupy central positions in the global network, i.e., have

higher closeness centrality scores, have higher probability to be successful than compa-

nies with less central positions. The analysis and methodologies proposed have various

policy implication and significant societal and economic impact. The long-term vision

of these studies is to improve the way institutions timely gather and make sense of data

on innovation ecosystems, and to provide science-based methodological frameworks to

optimise the investments of governments and individuals into innovative activities. In

2014 the European Commission made a first step in this direction by commissioning

the platform Startuphubs.eu, whose scope remains limited to aggregating demographics
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and statistics on a few EU cities. My work contributes in this direction by integrat-

ing raw demographic data with the important layer of professional interactions, and by

proposing a multidisciplinary perspective which combines network theory, social science,

data science, and the science of success. The approaches and methodologies developed

in my research can help to understand, mitigate, and better manage the risk associated

with the investment in early-stage innovative activities. This can enable the managers

of investment funds to: (i) raise more capital and reduce the financial gap that divides

European countries from other, more risk-prone, countries such as the US; (ii) increase

the number and the amount of investments in early-stage companies that will shape

our technological future over the next years; (iii) increase the return on investment and

capitalisation of highly risky start-up firms.



Chapter 5

Empirical investigation II: The

advantages of interdisciplinarity

in modern science

The dichotomy between specialisation and interdisciplinarity in modern science is a topic

of controversial and ongoing discussion. On the one hand, modern scientists are pushed

towards specialisation by the difficulty in mastering the huge amount of knowledge accu-

mulated over time and by the institutional consolidation of scientific domains. On the

other hand it is widely recognised that the recombination of knowledge from different

disciplines can allow to tackle complex problems [104], boost the generation of novel

ideas, and enhance scientists’ career. However, abandoning specialisation does not come

without risks. As already discussed in section 3.3 the difficulties in combining research

approaches, languages, techniques, and styles of thought of different disciplines can out-

71
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weigh the advantages of backgrounds and skills diversity. Which are, from the prospective

of individual researchers, the most effective and successful ways to overcome disciplinary

boundaries? The goal of the analysis presented in this chapter is to understand the

impact of interdisciplinarity on scientific success, and in particular to assess under which

condition performing interdisciplinary research has a positive effect on the number of

citations accumulated by an author or if, instead, scientists specialised on a specific sub-

ject have a higher probability of getting more citations than interdisciplinary ones. I

try to shed light on this matter by looking at the largest publicly available data sets on

scientific collaborations. I analyse the co-authorship network, citations and the informa-

tion on sub-field classification extracted from the bibliographic data set of all journals

included in the American Physical Society (APS) and Web of Science (WOS). To this

end I also propose two novel measures of interdisciplinarity: the background and social

interdisciplinarity.

5.1 The APS and WOS datasets

The analysis draws on two databases on scientific publishing: the American Physical

Society (APS), and the Web of Science (WOS). Table 5-A reports summary statistics on

the two data sets.

Data set Authors Articles Years Research categories

APS 136,871 380,913 1980 - 2014 10 / 1,154 (broad / fine-grained)

WOS 602,299 1,125,729 1945 - 2014 50

Table 5-A: Summary statistics on the APS and WOS data sets.

APS data set. The APS data set includes bibliographic information on all the articles
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appeared in the scientific journals published by the American Physical Society between

1893 and 2014 1. For each article, I extracted the title, the abstract, the research

subject(s), the name(s) and affiliation(s) of the author(s), the publication time, and the

number of citations received. Each article published after 1980 is associated with at

least one and up to four codes included in the Physics and Astronomy Classification

Scheme (PACS). PACS codes identify the sub-field(s) of physics to which each article

has contributed. The structure of the PACS codes is hierarchical, and consists of 10

top-level categories which split up into two further levels. For example, the PACS code

“87.14.ep” identifies articles in the sub-category “Membrane proteins”, which belongs to

the category “87.14 - Biomolecules: types”, which in turn belongs to the sub-field “87

- Interdisciplinary physics – Biological and medical physics”. PACS codes are chosen

by authors based on the list provided on the APS web site. Notice, however, that the

appropriateness of the choice of PACS codes is typically assessed by reviewers and the

editorial office during the revision process. In the analysis I considered only the first two

hierarchical levels of PACS codes, thus obtaining M = 1, 154 distinct PACS codes. I

restricted the analysis only to articles associated with PACS codes, i.e., published after

1980, and to authors whose careers started after 1980. I also filtered out all the articles

authored by more than 10 co-authors, typically resulting from large-scale experiments

in high-energy physics. Authors are identified by surname, and first and second names

(in some cases only the initials of first and second names were available). I employed

three different name disambiguation strategies that, respectively, take into account: (i)

the entire surname and name initial(s), (ii) the entire surname and the entire name,

(ii) the entire surname, the entire name or its initial, the affiliations, and collaboration

1https://publish.aps.org/datasets

https://publish.aps.org/datasets
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and citation networks. The analysis presented in this chapter was based on the third

disambiguation method. The resulting data set includes NP = 380.913 articles and

NA = 136.871 authors (i.e., 35% of the total unfiltered number of authors). The details

of the various disambiguation methods here used, and the robustness of the results

obtained through such methods are discussed in Appendix C.2.

WOS data set. From the WOS webpage2 I have manually collected bibliographic

information on the articles belonging to the 50 research categories listed in Table 5-B.

For each research category, I identified the top 5 scientific journals with the highest

impact factor. I then downloaded metadata on articles published in these journals.

For each journal, at least one of the following conditions was satisfied: (i) all articles

published in the journal were downloaded, or (ii) at least 20, 000 articles published in

the journal were downloaded, or (iii) at least all articles published in the journal over

the last 20 years were downloaded. The final data set includes NP = 1.125.729 articles

published between 1945 and 2014. For each article, the following information were

available: title, publication time, full name(s) of the author(s), and the total number

of citations received up to March 2015. Additionally, each article is associated with

one of the 50 research categories listed in Table 5-B. Because additional information,

such as records on institutional affiliation, could not be retrieved from the WOS, I were

able to employ only an initial-based name disambiguation strategy [114], thus obtaining

NA = 1.532.673 unique authors (i.e, 39% of the total unfiltered number of authors).

Since research categories in the WOS data set play the same role as PACS codes in

the APS data set, all measures introduced in Section 5.2 can be easily applied to the

2http://apps.webofknowledge.com

http://apps.webofknowledge.com
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Biology

biology
biochemistry molecular biology

biotechnology applied microbiology
biophysics
cell biology

cell tissue engineering
biochemical methods

Chemistry

chemistry analytical
chemistry applied

chemistry inorganic nuclear
chemistry medicinal

chemistry multidisciplinary
chemistry organic

Computer science

artificial intelligence
cybernetics

hardware architecture
information systems

interdisciplinary applications
software engineering

theory methods

Mathematics

mathematical computational biology
mathematics

mathematics applied
interdisciplinary applied

Physics

acoustics
applied

atomic molecular chemical
cond matter

fluids plasmas
mathematical

mechanics
multidisciplinary physics

nuclear
particles fields

astronomy astrophysics

Others

automation control systems
nanoscience nanotechnology

neuroimaging
neurosciences

nuclear sciences tech
operations research management science

optics
polymer science

robotics
sport sciences

statistics probability
telecommunications

thermodynamics
transportation science technology

zoology

Table 5-B: List of the 50 research categories retrieved from the WOS data set.
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WOS data set simply by replacing PACS codes with numeric codes associated with the

research categories listed in Table 5-B. The two datasets complement each other by

providing both broad and detailed information about scientific production respectively

at the macro level of natural sciences (WOS) and at the micro level of physics (APS).

5.1.1 Construction of the networks

Drawing on the two data sets, I constructed the co-authorship and the citation networks.

In the co-authorship network, each node is an author, and two authors are linked if they

published at least one article together. The network is described by the adjacency matrix

A = {aij}, where entry aij is equal to 1 if author i and author j have co-authored at

least one article, and is 0 otherwise. In the citation network, each article is a node,

and a directed link is established from article i to article j if article j appears in the

bibliography of article i. The citation network, combined with the information on the

authors of each article, allows to associate citations directly to authors, and to compute

the number of citations N cit
i (t) received by each author i over time.

5.2 Quantifying interdisciplinarity and success

Data about the subdivision in research categories and the number of citations obtained

by articles are very suitable to investigate the impact of interdisciplinary research on

author’s performances. In this section I operationalise the concept of interdisciplinar-

ity at the author’s level and I introduce and distinguish between the two concepts of

background interdisciplinarity, and the social interdisciplinarity. I illustrate a citation
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rescaling procedure introduced in [115] useful to compare authors with different career

lengths and to account for the various citation patterns that characterise distinct scien-

tific domains. The various measures here defined are then used in Section 5.4 to shed

light on the interplay between authors’ interdisciplinarity and scientific performance.

For each author i, I tracked over time the evolution of several measures: the background

entropy Bi(t) and the social entropy Si(t) at year t of author i’s career; the number of

published articles; the cumulative number of citations N cit
i (t) received up to year t; the

normalised number of citations Ñ cit
i (t).

5.2.1 Rescaling authors’ careers and citations

Since the data sets contain authors who started their careers at different years, results

may be affected by biases related to differences in career lengths. Indeed, authors who

started their careers near the end of the data set (i.e., 2014) may have a smaller degree

of interdisciplinarity and smaller number of citations than authors with longer careers

simply as a result of, respectively, the smaller number of articles they have published,

and the short time interval in which these articles could acquire citations. In order to

address these problems, I first rescaled all careers to a common starting time t0. In this

way, a senior professor and a young researcher can be compared by considering them at

the same time during their careers. I refer to the calendar time as τ ∈ [1945, 2014]. The

rescaled time t used in the analysis is then t = τ − τstart, where τstart is the calendar

time of an author’s first publication. Additionally, articles concerning with different

areas of research may obtain different number of citations, not only because of their

intrinsic impact and quality, but also as a result of the different citation practices and
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traditions of various fields. Indeed, Radicchi et. al. have shown in [115] that the

probability that an article obtain a certain number of citations has large variations

between different disciplines, and it is widely recognised that comparing bare citation

numbers is inappropriate. In order to compare adequately the performances of authors

with different career lengths, working in different research fields, and who have started

their career at different point in history I have adopted the rescaling procedure proposed

in [115]. This method allows to account for variations in: (i) patterns and volume of

citations across sub-fields and disciplines; (ii) attractiveness of research topics over time;

and (iii) the starting year and duration of authors’ careers. First, I computed the average

number of citations N cit
0 (τ, c) received up to 2014 by all articles published in a given year

τ and associated with a given PACS code or WOS research category c. For each article

a, I then divided the total number of citations N cit
a obtained by a up to 2014 by the

average number of citations N cit
0 (τ, c) obtained up to 2014 by all articles associated with

the same code or category c and published in the same year τ as article a:

Ñ cit
a =

N cit
a

N cit
0 (τ, c)

. (5.1)

Following [116], for each author i at each year t of career, I obtained the normalised

number of citations Ñ cit
i (t) as the sum of the normalised number of citations Ñ cit

a received

by each article a that author i published in each year up to t. So constructed, this

measure captures the success of an author as his/her relative performance in comparison

with other similar authors.
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5.2.2 Background entropy

I use the PACS codes and research categories (respectively, for the APS and WOS data

sets) associated to the articles of an author to identify the author’s research interests

and expertise. In order to measure author i’s interdisciplinarity [117], I construct the set

PCi(t) of personal codes or categories, defined as the collection of PACS codes extracted

from all the articles published by author i up to year t. The set PCi(t) thus reflects

the disciplinary areas to which author i has contributed, and can be used as a proxy

for i’s (cumulative) background knowledge [117, 118]. I measure author i’s background

interdisciplinarity through the background entropy defined as the Shannon entropy of

the set PCi(t) of the author’s personal PACS codes or research categories [119]:

Bi(t) = −
∑
α

p
[α]
i (t) log(p

[α]
i (t)), (5.2)

where the sum runs over all classes of codes in PCi(t), p
[α]
i (t) =

n
[α]
i (t)∑
β n

[β]
i (t)

is the prob-

ability of finding PACS code α in PCi(t), and n
[α]
i (t) is the number of times a given

PACS code α appears in PCi(t). Similar entropy-based measures have been used for

quantifying the heterogeneity of the citations made by an article [107, 108]. In general,

authors with a more heterogeneous background are characterised by higher values of B,

whilst smaller values are typically associated with authors whose research is focused on

a small number of scientific sub-fields or categories.
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5.2.3 Social entropy

By forging collaborations, scientists are exposed to various sources of knowledge, which

may not be entirely coextensive with their own personal background, and on which they

can rely to widen the scientific horizons of their research. To assess scientists’ exposure

to their collaborators’ knowledge, I propose a measure that is meant to directly capture

the social roots of interdisciplinarity. I first define the set SCi(t) of social codes or

categories of author i as the union of the sets of personal PACS codes associated with i’s

collaborators at the time of their last collaboration with i, from which I then removed

the personal PACS codes of author i. So constructed, this measure takes into account

only the PACS codes to which author i has been actually exposed during his career.

Indeed if two authors i and j had published an article at time t but after t did not work

together any longer, they would have not been reciprocally exposed to the PACS codes

included in the articles each of them published separately after t. If instead the two

authors had joined forces again and published a new article, for example after 5 years

since t, then their sets of social PACS codes would have been updated and would include

also the PACS codes associated with the articles they published independently during

the 5-year period. I then measure the social interdisciplinarity of author i through the

social entropy Si(t) defined as the Shannon entropy of the set SCi(t):

Si(t) = −
∑
α

q
[α]
i (t) log(q

[α]
i (t)), (5.3)

where the sum runs over all classes of PACS codes in SCi(t), q
[α]
i (t) =

m
[α]
i (t)∑

βm
[β]
i (t)

is the

fraction of PACS code α in SCi(t), and m
[α]
i (t) is the number of times PACS code α
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appears in SCi(t). A drawback of entropy-based measures is the degeneracy occurring

at values of entropy equal to zero, which may correspond to different configurations of

PACS codes or research categories. Indeed, a value of Shannon entropy equal to zero

may correspond to an arbitrary number of identical codes, and therefore it does not

distinguish between an author with many articles all associated with the same unique

code and an author with just one article and one code. A similar degeneracy is obtained

in the case of a perfect uniform distribution of codes which, however, never occurs in our

data sets. For this reason, only values of entropy equal to zero were excluded from the

analysis.

5.3 Empirical results

Figure 5.1 reports the normalised number of citations 〈Ñ cit
i (t)〉 averaged over authors

characterised by a certain value of background entropy at four career stages, namely

at t = 5, 10, 15, 20 years, in physics (APS data set, panels a-d) and in the natural

sciences (WOS data set, panels e-h). On average, authors with intermediate values of

background entropy (i.e., neither interdisciplinary nor specialised) are characterised by a

relatively low value of scientific performance. Interestingly, both in physics (Figure 5.1(a-

d)) and in the natural sciences (Figure 5.1(e-h)), scientific performance exhibits a U-

shaped trend, with a minimum located in the range Bi ∈ [0.2, 0.8], and two maxima

in correspondence of the right and left extremes of the curves. Interestingly, a similar

and relatively large number of citations can be obtained equally by highly specialised

and highly interdisciplinary authors. However, the asymmetry in the U-shaped trend
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indicates that, on average, scientists with the widest range of research interests (Bi & 1.2)

tend to outperform not only less interdisciplinary scientists, but also the most specialised

ones (Bi ' 0). Overall, these results suggest that, at the micro level of physics as well as

at the macro level of the natural sciences, both specialised and interdisciplinary scientists

can be successful; yet extreme interdisciplinarity provides competitive advantage over

extreme specialisation. While the U-shaped functional form is found already at the

fifth year of a scientist’s career, Figure 5.1 also suggests that the relationship between

interdisciplinarity and success is subject to a temporal drift. At the macro level of the

natural sciences (WOS data set), while the maximum normalised number of citations

accrued by the most interdisciplinary author i at the fifth year of career is, on average,

Ñ cit
i (5) ' 160, the largest value of Ñ cit

j (20) for an author j at the 20-th year of career is,

on average, Ñ cit
j (20) ' 250. Thus, an author i with, for instance, Bi ' 1.0 at the fifth

year of i ’s career will have, on average, 30 normalised citations, namely 0.40 times as

many citations as those accrued by the most specialised author j (i.e., with Bj ' 0), and

only 0.20 times as many citations as those of the best-performing author (i.e., with Bj '

1.40). At the 20-th year of his or her career, the same author i with Bi ' 1.0 would still be

able to accrue, on average, about 30 normalised citations. However, while i’s comparative

disadvantage over the most specialised author would remain unaltered, the disadvantage

over the most interdisciplinary one would further deteriorate. Author i would therefore

need to keep increasing background interdisciplinarity over time, lest by the 20-th year of

i’s career the total number of citations be, on average, only 0.12 times as large as the one

of the best-performing author. The effects of background interdisciplinarity on success

thus become more pronounced as scientists’ careers progress. Moreover, in the long
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American Physical Society

(e)                                  (f)                                   (g)                                 (h)

 Web of Science

(a)                                   (b)                                     (c)                                   (d)

t=5 t=10 t=15 t=20

t=5 t=10 t=15 t=20

Figure 5.1: Background interdisciplinarity and success at different
career stages. The normalised number of citations obtained by
authors at different career stages as a function of their background
entropy in physics (panels a-d) and the natural sciences (panels e-
h). The vignette illustrates how performance and interdisciplinar-
ity were measured. For each author i and a given year t of i’s
career, both performance and interdisciplinarity were measured at
t on all articles published by i since the beginning of i’s career up
to t. The citations accrued by each article up to t were normalised
through the method proposed in [116]. The U-shaped dependency
of 〈Ñ cit

i (t)〉 on background entropy, and the presence of a minimum
at intermediate values of B(t) characterise both young authors and
experienced ones, thus indicating that extreme interdisciplinarity
as well extreme specialisation are already beneficial at the very
beginning of a scientist’s career. However, the competitive advan-
tages of background interdisciplinarity become more pronounced
as careers progress towards their final stages when the difference
in performance between the most interdisciplinary and the most
specialised authors reaches its peak. Error bars represent the stan-
dard error of the mean.



Chapter 5. Empirical investigation II: The advantages of interdisciplinarity in modern
science 84

run, as careers approach their final stages, not only are highly interdisciplinary scientists

more successful than specialised ones, but the difference in performance between the

most interdisciplinary and the most specialised scientists reaches its peak.

Similarly, Figure 5.2 reports the normalised number of citations 〈Ñ cit
i (t)〉 averaged over

authors characterised by a certain value of social entropy at four career stages, namely

at t = 5, 10, 15, 20 years, in physics (APS data set, panels a-d) and in the natural sci-

ences (WOS data set, panels e-h). Results indicate that authors can amplify success as

their social interdisciplinarity increases and that the impact of social interdisciplinarity

is almost linear across all stages of a scientist’s career. An author with a more hetero-

geneous network (i.e., a higher value of social entropy S) will, on average, have a higher

performance than an author with a more homogeneous network (and lower S). Thus,

while specialisation can be a successful strategy (Figure 5.1), seeking collaborators with

few and overlapping specialities will be a hindrance. Scientists can instead enhance their

performance by selecting collaborators who are interdisciplinary or specialised in many

different areas of science. Robustness checks based on null models and based on different

measures of success are presented in the Appendix.
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Figure 5.2: Social interdisciplinarity and success at different career

stages. The normalised number of citations 〈Ñ cit
i (t)〉 obtained

by authors at different career stages as a function of their social
entropy in physics (panels a-d) and the natural sciences (panels
e-h). For each author i and a given year t of i’s career, both per-
formance and social interdisciplinarity were measured. The linear
and positive impact of the social entropy on the normalised num-
ber of citations characterises both young authors and experienced
ones, thus indicating that a network of collaborators which pro-
vides more heterogeneous knowledge is beneficial since the very
beginning of a scientist’s career.
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5.4 Path to interdisciplinarity

Given the advantages of interdisciplinarity, how do scientists widen their background over

time, and which collaboration strategies are associated with success? I identify three col-

laboration strategies through which authors can enrich their set of personal codes: the

solo, the absorptive and the synergistic strategy. First, I define the solo strategy as

the acquisition of new knowledge through the publication of a single-authored article in

the corresponding scientific area. With this strategy, scientists extend their background

interdisciplinarity through “in-breadth” learning; yet they do not amplify their social

exposure to new sources of knowledge. Second, the absorptive strategy is defined as the

acquisition of new knowledge through the publication of a multi-authored article with

at least one co-author who has already published in the corresponding area. Through

this strategy, scientists absorb knowledge from their collaborators as soon as they are

exposed to it, thus increasing their background interdisciplinarity (and possibly the het-

erogeneity of their collaboration networks). Finally, the synergistic strategy is defined as

the acquisition of new knowledge by an author through the publication of an article with

co-authors who have never published in the corresponding area. Through this strategy,

collaboration promotes cross-fertilisation of various disciplinary areas, and ultimately

intensifies all co-authors’ background interdisciplinarity through the acquisition of new

knowledge. An illustration of the three strategies is reported in Figure 5.3(a). In order to

track exchanges and acquisition of new knowledge I have used a finer level of the PACS

classification scheme, (i.e., the second hierarchical level). This choice is justified by the

fact that: (i) individual articles usually concern with a very specific piece of knowledge

and, (ii) during the joint production of an article authors can’t and absorb an entire
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discipline, but just the specific topic and problem addressed by the article as identified

by PACS codes. I denote by P solo
i , P abs

i and P syn
i the fraction of PACS codes acquired by

author i through, respectively, the solo, absorptive, and synergistic strategies, during i’s

entire career. To understand how authors with different performance vary in their usage

of the three strategies, in Figure 5.3(b) I show the average frequencies of solo, absorp-

tive, and synergistic strategies adopted by authors in the APS data set whose articles

accrued a total number of citations exceeding various thresholds. Remarkably, the over-

all frequency of the solo strategy is just about 4% at all levels of success, whilst the vast

majority of the new PACS codes (about 96%) originate from collaboration. In particu-

lar, not only are authors across all levels of performance more likely to embrace a new

sub-field through a synergistic strategy than an absorptive one, but also the difference

in usage frequencies between the two strategies widens as authors are more success-

ful (N cit ∼ 10, 000). Exposure to collaborators’ knowledge may broaden a scientist’s

background interdisciplinarity not only instantaneously through the absorptive strategy.

When engaged in a joint endeavour, scientists can, in principle, gain access to the entire

spectrum of knowledge offered by their collaborators [53]. A fraction of this knowledge

can indeed be absorbed as soon as collaboration occurs, through the absorptive strategy;

the remaining can be acquired at a subsequent stage, through a process here referred

to as postponed absorption. Diluting acquisition of new knowledge over time can have

various effects on scientific performance, depending on how much knowledge is acquired

and on the time separating acquisition from exposure. To study the degree to which

knowledge acquisition is affected by past collaborations, for each author I quantify the

propensity, once exposed to a new social PACS code α, to acquire it at some subsequent
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Figure 5.3: Path to interdisciplinarity (a) The three main strategies
through which authors can expand their knowledge into a new
field: (i) by publishing on their own in the new field (solo strat-
egy); (ii) by collaborating with others that have already published
in the field (absorptive strategy); and (iii) by collaborating with
others that have never published in the field (synergistic strat-
egy). (b) For authors in the APS data set whose articles obtained
more than a given number of citations, I measured the average fre-
quencies of solo, absorptive and synergistic strategies. Successful
authors are more prone to synergistic strategies than less success-
ful ones. Error bars represent the standard error of the mean. (c)
The average fraction of social PACS codes eventually acquired by
an author is positively correlated with the author’s success. (d)
The average time needed to acquire new PACS codes from collabo-
rators is negatively correlated with an author’s success. Successful
authors are more likely not only to acquire knowledge from their
collaboration network, but also to do so more quickly than less
successful ones.
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stage. Exposure to sub-field α occurs when author i, with no experience in α, for the first

time collaborates with someone who has already published in α. Postponed absorption of

α occurs when, for the first time after exposure, i appears as the solo author or co-author

of an article a in α. Notice that the co-authors of a are assumed not to have experience

in α (or else knowledge acquisition would be classified as instantaneous absorption). Of

the social PACS codes to which author i was exposed, I measure the fraction χi that

was eventually acquired by i. Lastly, for each author i I measure the mean interval of

time ξi separating postponed absorption from exposure. Figure 5.3(c) shows the average

fraction 〈χi〉 over all authors, and suggests that successful authors in the APS data set

are more likely to use up their collaboration networks to acquire new knowledge than less

successful ones. Moreover, Figure 5.3(d) shows the average interval of time 〈ξi〉 over all

authors, and suggests that the time separating exposure to new knowledge from acquisi-

tion tends to become shorter as authors’ performance increases. Not only do successful

scientists choose their collaborators carefully so as to secure exposure to new areas, but

they also prefer not to wait too long before they publish in those areas either on their

own (solo strategy) or with other collaborators (synergistic strategy).

5.5 Discussion

Empirical findings suggest that highly heterogeneous personal knowledge significantly

impact on authors’ performances, and on their ability to produce high-impact research.

However, scientists bear opportunity costs as they begin to diversify their background, at

least until they become highly interdisciplinary. I also found that scientists benefit from
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heterogeneous collaboration networks, corroborating the hypothesis in Section 2.3. The

findings are also in agreement with previous work which has suggested that an individuals

performance is attributable not only to competence, but also to the network in which the

individual is embedded [6, 62]. Cognitively diverse networks that offer opportunities of

knowledge recombination have been found to sustain innovation and knowledge creation

[54, 55, 63]. In a similar vein, our conception of interdisciplinarity extends beyond the

boundaries of the scientists background to also include their collaboration networks. I

suggested that scientists can integrate and extend in-breadth learning by widening the

breadth of their social network. Scientists with groups of collaborators spanning many

different areas are more successful than those with collaborators focused on one or few

overlapping areas. These results are in agreement with the idea of scientific innovation

as socially-aided heuristic search process presented in Section 2.3. In particular, the

empirical finding confirms the importance of the interaction and exposure to others’

knowledge and perspectives. Finally I have also identified the most effective strategies

used by scientist to acquire access to and absorb variegate knowledge while avoiding the

cost of cognitive overload.



Chapter 6

NetworkL: a python package for

the longitudinal analysis of

complex networks

Over the last 20 years a number of real-world complex systems, such as communication,

transportation, biological and technological systems, have been studied from a network

perspective, i.e., by regarding the system as a graph in which the nodes are the sys-

tem components whereas the edges represent the interaction between them. Real-world

processes, such as spreading of diseases [120–122], traffic congestions [123, 124], human

mobility and behaviour [125, 126], information routing [127, 128], have been extensively

investigated by using network metrics already available on the market (e.g., centrality

measures) or by proposing new ones [40, 113, 129]. More recently, a great effort has been

devoted to the study of time-varying graphs [130], i.e., graphs in which nodes and edges
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are created and deleted over time, and several new network metrics have been proposed in

order to investigate and characterise appropriately the temporal nature of modern data

sets [131, 132]. The analysis in chapter 4 and 5 of this thesis, and in general the Science

of Success, make extensive use of the time dimension available in today’s data sets. The

importance of network analysis techniques in empirical investigation has stimulated the

birth of a number of open-source software libraries for the manipulation, analysis and

visualisation of networks. Among others, the most popular libraries for graph compu-

tation (widely adopted across many fields and outside the academia) are igraph [133],

NetworkX [134], SNAP [135], and graph-tools [136]. To cope with the increasing size of

electronic data sets some libraries and algorithms have been specifically designed to take

advantage of modern multi-core processors or distributed hardware infrastructure [136].

For instance, the computational frameworks Giraph, GraphX, and Pragel, respectively

by Facebook, Apache, and Google, have pushed graph analysis to the scale of billion

of nodes and edges. However, in the era dominated by massive data sets and appar-

ently unlimited computational power it is often mistakenly assumed that Big Graph

requires Big Data approaches or extreme computational power. While the analysis of

large amount of texts, images, videos requires, at least, massive and expensive storage

solutions, the graph of one of the largest social network (Facebook, 1.55 billion active

users in Q3-2015) could easily fit into a single commodity hard-drive when represented as

an edgelist. Additionally, in a recent work [137], Kyrola et. al. have shown that extreme

computational infrastructure may be unnecessary and overused in the domain of large

graphs. In particular, in [137] it has been shown that careful improvements of exist-

ing approaches make it possible to use commodity hardware to perform computations



Chapter 6. NetworkL: a python package for the longitudinal analysis of complex
networks 93

previously performed only on large-scale distributed hardware. If on the one hand such

advances in graph algorithms make it possible to study graphs made of millions nodes

on modern laptops, on the other hand new computational challenges are just around the

corner. In recent years digital data are not just increasing in volume (e.g., number of

nodes and edges in a graph) but are also extremely dynamic. The temporal dimension

is ubiquitous in today’s data sets from road traffic and public transport data, to the

interaction on social and gaming platforms [138]. Additionally, temporal data are often

available at a very fine-grained temporal resolution. As an example the Twitter graph

(120 million users) changes in time at exceptional speed with thousands of follower rela-

tions created each second. By the time a simple PageRank [139] analysis is completed

the Twitter graph has changed dramatically and the result of the computation would be

out-of-date. If the analysis involves the computation of graph distances, as in the case

of betweenness or the closeness centrality (used in Chapter 4), a real-time update of the

results is beyond the capabilities of any existing library.

These computational limitations substantially prevent the exploration and exploita-

tion of longitudinal data sets at the finest temporal resolution and have become today

a concrete obstacle in the daily activity of both network researchers and businesses

operating in the domain of data science. In particular, all works that involve the re-

computations of certain network metrics over time need to trade-off computational speed

against time resolution. In order to save computation time, data available at daily reso-

lution may get aggregated to monthly or yearly snapshots, losing information hidden at

smaller timescales. In this Chapter I introduce NetworkL, a Python package precisely

devoted to help researchers and data scientists to unlock information hidden at smaller



Chapter 6. NetworkL: a python package for the longitudinal analysis of complex
networks 94

timescale, using commodity hardware even for large graphs.

NetworkL manipulates dynamic graphs at the smallest time scale possible, i.e., the

single-edge addition/removal, and dramatically facilitates the computation over time

of distance-based network metrics by implementing and building-on incremental graph

algorithms for shortest paths. The package primarily deals with the problem of contin-

uously updating the values of all shortest path lengths upon the arrival of new edges

over time. Such problem is encountered in the dynamic computation of several network

measures such as global efficiency [140], closeness [141], betweenness [40, 142], and infor-

mation centrality [129]. In particular it finds direct application in the re-computation of

the closeness centrality in the WorldWide Startup network presented in Chapter 4.

Incremental graph algorithms date back as far as 1991 [143] when highly dynamic

data sets such as the Twitter or the Facebook graph did not yet exist. Surprisingly, little

or no slipover into the domain of network science has happened so far, as proven by the

absence of any dynamic computation in the most popular software libraries [133–136].

A reason that may have limited the wide adoption of dynamic computation on graph is

the fact that some incremental graph algorithms can be memory voracious. The greater

speed at which computation is performed and results updated comes at the price of

larger amount of memory required. As an example a static algorithm for computing

the closeness centrality takes only the graph (e.g., adjacency list) as input and gives a

N -dimensional vector as output. Notice that each entry of the geodesic matrix D is

directly computed during the execution, but only the aggregation of its rows or columns

is required to be stored in memory. Contrarily, an incremental approach to the same

problem would take as input not only the original graph and the changes (i.e., the edges to
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be added or removed), but also additional information about the solution at the previous

time step, i.e., the geodesic matrix D. During the execution of the incremental algorithm

each individual entry of the matrix D can be subjected to changes and consequently the

full matrix needs to be available in memory adding a O(N2) space complexity. Such space

complexity affects distance-based metric such as closeness of betweenness centrality and

is the main reason why some recent implementations [144–147] heavy relied on large

distributed hardware.

A novel contribution of my work is the introduction of a memory efficient strategy,

based on what I call Sparse Biconnected Geodesic Matrix (SBGM), tailored for incre-

mental computation, and able to save from 50% to 80% of the memory required by

previous approaches in the case of real-word graphs. NetworkL and the SBGM approach

make it possible to take advantage from incremental graph algorithm without the need to

deal with the complexity of distributed hardware. The possibility to perform incremen-

tal computation on commodity hardware with limited memory is likely to widened the

scope of empirical investigations to highly dynamic temporal networks. The success and

improvement of tools such as NetworkL are definitely determined by the contribution of

the developers and the network researches communities. My aim is to provide with this

contribution a good starting point to facilitate empirical investigation and longitudinal

analysis of graphs. Contributions to the definition of the future roadmap as well as code

contributions on the GitHub project page http://github.com/networkl/ are welcome.

This chapter is organised as follows. Section 6.1 provides a quick overview on incremental

graph problems, on the relevant literature, and on the most recent advancements in large

scale graph computation. Section 6.2 introduces the SBGM and presents performance

http://github.com/networkl/
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testing on real-world network data sets. Section 6.3 describe the methods, functions

and structure currently implemented in NetworkL and how to use them. Section 6.5 is

devoted to conclusions, limitations, and the future roadmap.

6.1 Incremental graph problems

Generally speaking an algorithm can be described as a function f which, given an input

g produces the output (the solution) f(g). As an example, the computation of PageRank

takes as input a graph g with N vertices and the function f mainly involves the inversion

of an appropriate matrix obtained from the adjacency matrix provided as input. The

output f(g) is a vector of size N whose entries are the PageRank scores. In this example

the algorithm can regarded as “static” because, once the graph is subjected to a change

in the structure, the computation has to be performed entirely from scratch by applying

f to the new modified input. However, if the modified input g′ is not very different from

the original graph g it may happen that the solution f(g′) is close to f(g) and it can

be computed without the need to apply again the function f . The simplest example of

this fact is the re-computation of topological distances in a unweighted graph after the

addition of a new node connected only by one new edge which is illustrated in Fig. 6.1. It

is straightforward to notice that the new node i will inherit the distances to all the other

nodes from its neighbour j and there is no need to apply the Dijkstra algorithm [148] to

obtain the update solution. In particular, if dgjk is the topological distance between node

j and a node k in the graph g, then the distance between i and k in the updated graph g′

can be easily written as dg
′

ik = dgjk+1. Notice that, in order to obtain the updated solution



Chapter 6. NetworkL: a python package for the longitudinal analysis of complex
networks 97

Figure 6.1: Example graph to illustrate the key concept of incremental graph
problems.

f(g′), we have not used the steps encoded in the function f which describes the Dijkstra

algorithm. An incremental algorithm can be described as a function φ which takes as

input only the original input g, the output f(g) and possibly auxiliary information about

the changes ∆g = g′ − g, and provides the output φ(g, f(g),∆g) = f(g′). The crucial

point here is that f and φ can be in general very different and, more importantly, the

computational complexity of φ may be smaller than f .

The characterisation of incremental problems, both in the domain of graph compu-

tation and not, has intrigued scholars for decades [145, 146, 149–154] and studies goes

well beyond the illustrative example reported in Fig. 6.1. One important contribution

in this field is the article by Ramalingam and Reps [143] in which a novel approach to

assess and compare the computation complexity of incremental algorithms is proposed.

In the article authors highlight the fact that expressing the cost of the computation as

a function of the size of the input (e.g., the number of nodes in a graph) is not very

informative in the case of incremental algorithms and one should instead characterise

the complexity with respect to the amount of changes in the input ∆g and in the output

∆f = f(g′)− f(g). From this angle, the authors study the problem of updating shortest

path distances on graphs and propose an incremental algorithm which is still largely
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adopted in recent software implementation [155].

More recently, several works have proposed alternative strategies for the incremen-

tal computation of shortest distances [154, 156] as well as the incremental computation

of network metrics such as betweenness centrality [155], closeness centrality [145], and

PageRank scores [157, 158] in dynamic graphs. Often these recent software implementa-

tion rely on large-distributed computational infrastructure. When dealing with tens of

Terabytes of data, distributed computational frameworks such as Hadoop 1 are extremely

useful to speed up data-mining tasks (counting, aggregation, clustering, machine learn-

ing) which fit the parallelization and map-reduce paradigm. However, in the area of

graphs several drawbacks are hidden in distributed computing. Among these is the need

of passing information across the vertices of the graph and consequently across nodes

in the computational cluster. The problem of minimising the message passing across

the cluster relates to the problem of partitioning the graph and find efficient graph

cuts, which is a hard problem [159]. Moreover, since the computation complexity of

many graph algorithms is not linear and the growth rate of modern data is exponential,

improving computational speed by scaling the hardware seems not a sustainable solu-

tion both economically and environmentally. My contribution embraces the recent trend

towards the improvement of the computational efficiency on single machine [137] rather

than increasing execution time of existing algorithms through the hardware scaling.

1http://hadoop.apache.org/

http://hadoop.apache.org/


Chapter 6. NetworkL: a python package for the longitudinal analysis of complex
networks 99

6.2 Sparse Biconnected Geodesic Matrix

As mentioned in the previous section the main drawback of the incremental computa-

tion of distance-based network metrics is the need to store in memory the full geodesic

matrix D. Maintaining in memory the topological distances between all pairs of nodes

is inefficient, unfeasible on commodity hardware in the case of medium-sized networks

(∼ 106 nodes), and in general is not a scalable solution as it requires O(N2) space. Nev-

ertheless a large body of literature overlooks this problems and overcomes the technical

limitations by relying on large distributed memory resources. I present here the three

strategies used in NetworkL to reduce drastically the amount of memory needed during

incremental computation of shortest path distances. The common underlying idea is to

drop unnecessary or redundant entries stored in the full geodesic matrix D while main-

taining efficient and fast access to the value of the distance between all nodes pairs. I

use the example network in Fig. 6.2 to briefly illustrate the strategies. Panel (a) shows

the full geodesic matrix D while panels (b-d) show the different matrices obtained by

removing redundant entries. The empty white areas in the three matrices in panels (b-d)

provide also a visual representation of the amount of memory saved by each of the three

strategies.

Sparse Geodesic Matrix. In the first strategy the matrix D is replaced by a sparse

matrix, the Sparse Geodesic Matrix (SGM), in which the entries equal to the most

frequent value of distance are dropped from memory. The most frequent distance in the

example network is d = 1 (see Fig. 6.2(a)) and the corresponding entries are dropped

in the SGM as indicate by the empty white areas in Fig. 6.2(b). The value d = 1 is
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Figure 6.2: (panel a) Example network and its corresponding full geodesic
matrix D. The three bi-connected components are highlighted by
coloured circles in the graph and by rectangles respectively with
the same colour in the matrix D. (panel b) The SGM saves the
memory required to store the most frequent distance d∗ = 1 found
in the full matrix D. In the SGM implementation this value is
stored only once in a separate variable which is returned when a
missing entry (e.g., d12) is required by the code execution. (panel
c) The BGM stores only distances between nodes belonging to
the same bi-component. Additionally a block-cut tree is stored in
memory to assist the retrieval of the value of the distances between
nodes in different components (i.e., the missing entries). (panel
d) The two approaches combine in the BSGM in which several
independent variables d∗ are stored, one for each bi-component
separately.
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stored only once into a single scalar variable d∗ instead of saving it multiple times in

the matrix D. The SGM strategy achieves a significant memory reduction on real-world

networks as they are often characterised by small diameters and picked distribution of

nodes distances as show in Fig. 6.3. As an example the pick at dij = 3 in the Wiki-vote

network [160] reveals that more than 50% of the entries of the geodesic matrix have the

same value. The SGM associated with the wiki-Vote network thus occupies half of the

memory required by the full geodesic matrix as shown in the comparison chart in Fig.

6.4. The current version of NetworkL (v.0.1) implements the SGM as a python object

containing the following instance variables: (i) an integer d-star which is set equal to the

value d∗, and (ii) a 2-levels nested python dictionary in which the keys correspond to

the nodes in the network. At the fist level the dictionary contains as many keys as the

number of nodes in the network, while at the second level the nested dictionaries include

only those keys whose values differ from d∗. If a certain pair of dictionary-keys (i, j)

does not exist then the value stored in the variable d-star is returned. Notice that all

the diagonal elements dij need to be store explicitly even if they are all equal to zero by

definition. In general the SGM can be implemented by using any existing sparse matrix

representation and by considering the matrix D′ = D − d∗. The correct node distances

can be subsequently retrieved as dij = d′ij + d∗.

Biconnected Geodesic Matrix. The second strategy is based on the decomposition

of the graph into bi-connected components (bi-components). Such decomposition has

been recently used [161] to speed up the (static) computation of betweenness centrality.

Notably, the partitioning of a graph into bi-connected components can be obtained in

linear time with existing algorithms [162, 163] and does not affect significantly the com-
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Figure 6.3: Distribution of node distances in several real-world networks.
Notice that the number of entries in the geodesic matrix which are
equal to the most frequent distance goes from a minimum of 25%
in the ca-HepTh network to a maximum of 50% in the wiki-Vote
network. This percentage corresponds to the amount of memory
saved by the SGM strategy as shown in Fig. 6.4

Figure 6.4: Comparison of memory reduction achieved by the three strategies.

putation performance. A biconnected component is a maximal biconnected subgraph,

i.e., a subgraph which can not be broken into disconnected components by removing one

vertex only. The example network in Fig. 6.2(a) contains 3 bi-components identified

respectively by three coloured circles. Nodes 5,6,7,8 form a bi-component because it is
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not possible to make any two of them unreachable by removing only one of the nodes.

On the contrary, the removal of node 4 (or 5) splits the graph into two disconnected

components. Any connected graph decomposes into a tree of biconnected components

called the block-cut tree of the graph (see Fig. 6.2(c)). The blocks are attached to

each other at shared vertices called cut vertices or articulation points (i.e., the nodes

4 and 5). The removal of an articulation point splits the original graph into multiple

disconnected components. The block-cut tree shown in Fig. 6.2(c) makes it clear that all

shortest paths between the nodes in adjacent bi-components must cross the associated

articulation point. For instance in order to go from node 1 to node 5 it is necessary to

cross the articulation point {4} which connects the two blocks. Additionally, the path

between node 1 and node 8 can be built as a combination of the paths from node 1 to the

articulation point 4, from node 4 to node 5, and from the articulation point 5 to node 8.

For this reason it is unnecessary to store all the entries dij of the geodesic matrix whose

nodes i and j belongs to different components. In this way the geodesic matrix can be

reduced into a ”sort of“ block diagonal matrix, the Biconnected Geodesic Matrix (BGM)

in which each block corresponds to a biconnected component and two blocks overlap in

correspondence of the articulation points. Notice also that the BGM approach can be

used on weighted graph without modifications of the procedures.

Figure 6.2(c) shows the BGM obtained for the example network. As before the empty

white areas indicate the regions of the matrix which are not actually stored in memory.

One advantage of the BGM is that when a new edge is added between nodes belonging to

the same bi-component (e.g., between nodes 5 and 8) only the shortest paths within the

same bi-component can be affected, while the entries in other blocks remain unchanged.
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More importantly, while the new edge (5, 8) effectively reduces the distance from node 8

to nodes {1, 2, 3, 4, 5} and requires to decrease 10 entries in the full matrix D, the same

edge addition induces the decrease of only 2 entries in the BGM, namely dBGM
58 and dBGM

85 ,

because all other distances will continue to be inherited from the articulation points. The

absence of entries in the off-diagonal regions of the BGM provides a huge saving in terms

of number of reading/writing operations from/to memory when the size of the graph and

the number of bi-components increase. These advantages do not come without some

limitations. First, BGM does not provide direct memory access to all entries as in the

case of the SGM. The inter-blocks distances (e.g., d18) require the computation of one

single-source/single-target shortest path on the block-cut tree which, however, can be

performed efficiently because of the absence of loops and which has a computational cost

that can still compete with the cost of messages passing and graph partitioning across

distributed computational clusters. Second, the BGM strategy makes necessary to store

additionally the block-cut tree, which in the worst case requires O(L) memory, and a

one-to-one mapping between nodes an bi-components, which requires O(N) memory.

Lastly, the addition and removal of edges during the dynamic computation may alter

the structure of the bi-connected decomposition and consequently the block-cut tree. An

edge added between nodes in two adjacent bi-components creates a new bi-components

which contains all nodes in the two original bi-components. As a result, the respective

bi-component blocks in the BGM matrix need to be merged into one single block and

some off-diagonal entries have to be added. If the new edge connects bi-components

which are far apart in the block-cut tree then the new edge is introducing a loop in the

tree and all blocks included in this loop must be merged into a single block. In the case
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of an edge removal (not braking connectivity of the entire graph) the only effect can

be a split of a bi-component into two distinct bi-components. This process has little

impact on the block-cut tree structure, and allows to free additional memory, namely

all the entries dij such that i and j are in the newly created bi-components. However,

to the best of my knowledge, there are no algorithms to check the bi-connectivity of a

subgraph in an incremental fashion after an edge removal, and any potential split has

to be identified by the standard decomposition algorithm applied from scratch to the

modified subgraph.

Figure 6.4 reports the huge saving that can be achieved by BGM on real-world net-

works. BGM outperform SGM in several data sets going from a minimum of about

20% memory saving (Facebook network) to a maximum of about 60% memory saving

(ca-GrQc network). In the current version of NetworkL (v.0.1) the BGM is implemented

as a python class containing the three following instance variables: (i) the block-cut tree

implemented as a NetworkX object, (ii) a dictionary mapping the components IDs to

which a node belongs, (iii) a 2-level nested dictionary representing the BGM and contain-

ing as many first-level keys as the number of nodes. The value of the latter dictionary

are special python objects implemented by the BiconnectedDict class which inherit from

the standard Dict class. When a second-level key is missing (e.g., the entry d18) the

BiconnectedDict object call a method in the BGM class which performs the shortest

path computation on the block-cut tree and return the value of distance as the sum of

intermediate values at the articulation points (e.g., d18 = d14 + d45 + d58). This compu-

tation is performed transparently and the user can retrieve all distance values with the

unique usual expression for python matrices: d[1][8].
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Sparse Biconnected Geodesic Matrix. The two strategies can be combined together

to achieve additional memory saving. The Sparse Biconnected Geodesic Matrix (SBGM)

is a block matrix similar to the BGM in which each block is independently regarded as a

sparse geodesic matrix. The network is first decomposed into bi-connected components

and then we identify the most frequent distance value in each bi-component. As occurs

with the SGM, the SBGM does not store in memory these frequent distances which are

stored only once in as many variables d∗I , d
∗
II, d

∗
III, ... as the number of bi-components. In

the example reported in Fig. 6.2(d) the most frequent values in each component happen

to be the same (d∗I = d∗II = d∗III = 1) for all blocks but in general the value of d∗ may

differ across bi-components. The visual representation of the SBGM in Fig. 6.2(d) shows

that only 8 diagonal elements plus 4 inter-blocks entries need to be stored. Additionally,

three d∗ variables plus eight integers representing the edge-list of the block-cut tree need

to be saved. The grand total sum up to 23 integers which is around 1/3 of the 64 integers

stored in the full matrix D. Implementation details of the SGM and BGM are transferred

directly to the SBGM which inherits strengths and limitations of both approaches while

providing significantly better memory performances. SBGM achieves an astonishing 75%

reduction of memory for the Wiki-vote network and does not go below 50% reduction in

all other data sets studied (see Fig. 6.4).

6.3 Using NetworkL

NetworkL source code is released under GNU V3 license. It can be downloaded for free

from the github project page http://networkl.github.io/, and the package can be

http://networkl.github.io/
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installed through the popular package manager pip by typing pip install networkl. The

package has been primarily developed with the aim to perform incremental computation

and rapidly test the ideas and potential of the sparse geodesic and the bi-connected

geodesic matrices (SGM,BGM). For this reason extreme optimisation and performance

were not the foremost concern. Pure python after all is not the primary choice for fast

computation and the future roadmap already includes a C++ implementation. Never-

theless, the code has reached a level of maturity which makes it useful and preferable

to static computations in many scenarios. In this section I briefly illustrate the code

structure, the classes, functions and methods implemented and I provide example of

usage.

Code structure is modular and includes 3 classes which implement the three matrices

SGM, BGM, and SBGM, and the function update-distance-matrix() which implements

the Ramalingam Reps algorithm for shortest path updating [143]. In the current released

version (v0.1) only SGM is implemented, while BGM and SBGM are still in a local

development branch. The function update-distance-matrix() takes 4 objects as input:

the graph G (a NetworkX object), a geodesic matrix (alternatively full matrix D, SGM,

BGM, or SBGM), an edge (i, j) and a string equal to ”add“ or ”remove“ with straight-

forward meaning. The graph G is modified in place meaning that during the execution

of update-distance-matrix() also the graph object will be modified by adding (or remov-

ing) the edge (i, j). The updated geodesic matrix can be used subsequently to compute

some distance based network metrics such as closeness centrality, graph efficiency [140],

information centrality [129]. Future roadmap includes the possibility to compute incre-

mentally these metrics by using a specific function, e.g., update-closenness-centrality()
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which takes the old metrics scores as additional input.

The SGM is implemented in the SparseGeoMatrix python class which includes the

d∗ value and the sparse geodesic matrix as instance variables as well as an optimize-

dstar() method which can be invoked opportunistically to identify the most frequent

value of distance and modify the matrix accordingly. In the current version of NetworkL

the SparseGeoMatrix class still lacks an automated and efficient strategy to invoke the

optimisation of d∗ which is left to future development. At the user level NetworkL

provides also two more functions useful to take advantage of the SGM strategy. The

function geodesic-to-sparse-geodesic(D,G) converts the full geodesic matrix D into a SGM

(only if the graph G is connected). The function sparse-distance-matrix(G) takes a

graph H as input and produces a SGM as output. This computation is still performed

by constructing first a full geodesic matrix D and invoking then the geodesic-to-sparse-

geodesic(D,G) function.

The BGM is implemented in the BiconnectedGeoMatrix python class (development

branch) which includes as instance variables: the block-cut tree (a NetworkX Graph

object), the mapping between nodes and bi-components, a nested dictionary represent-

ing the BGM, a pointer to the graph G. When a new BiconnectedGeoMatrix object is

created the bi-connected decomposition algorithm is performed and the block-cut tree,

the matrix and the mapping are initialised with the computed values. All-pairs shortest

paths computations are then performed for each bi-component separately. Each value of

the matrix instance variable contains a BiconnectedDict class which behaves as a stan-

dard python dict class with the only difference that if a certainentry is missing (e.g., the

entry d18 in Fig. 6.2) then the get-inter-block-distance() method from the Biconnected-
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GeoMatrix class is called to reconstruct the required value as the sum of intermediate

distance values at the articulation points (e.g., d18 = d14 + d45 + d58 in Fig. 6.2). Merg-

ing and splitting of components are still in development. The SBGM class will inherit

from the BiconnectedGeoMatrix python class. The only difference is that each block will

be treated as a sparse geodesic matrix. Implementation of the SBGM class is still in

development.

6.4 Performance and testing

I have conducted a number of benchmarking tests to assess the computational speed

of the update-distance-matrix() function. The aim of these tests is primarily to provide

NetworkL users with a general idea of the typical computational time required for each

edge addition/removal on real data sets. The aim is not yet to provide a faster tool for

incremental computation (for which a C implementation would be more appropriate)

but to test the performances of SGM and BGM during incremental computation and

comparing them with the baseline of static computation already provided by NetworkX

(v1.10). The improvement obtained on the python baseline suggests that also faster

languages (C,C++) can benefit from the SGM and BGM approaches. The tests have

been conducted on the seven network data sets reported in Fig. 6.4.

In the first test I start from a minimum spanning tree of the network and I add all

remaining edges one by one until I obtain the original graph. After each edge addition
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Figure 6.5: Frequency plot of the time τ needed to update the SGM after each
individual edge addition for several network data sets. Remarkably
the time needed to update the entries of the SGM is on average
below 0.1 seconds for all data sets.

I invoke the update-distance-matrix() function giving as input the SGM, and I take

record of its running time. In Fig. 6.5 I plot the distribution of updates times for the

various networks. The figure shows that the distributions are usually picked around

one or two values and that the average update time is below 0.1 sec. for all data sets

studied. Table 6-A reports a comparison between the time needed to compute all-pairs

shortest path from scratch with the Stanford SNAP library [135] and the maximum

update time per edge addition obtained with the NetworkL library during the execution

of the benchmarking tests. For almost all data sets the computation time from scratch

is comparable with the maximum time needed by NetworkL to update all distances in

the SGM. Moreover, the most frequent time needed to update the entire SGM is, on

average, below 0.1 seconds (see Fig. 6.5) which is significantly smaller than the time
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Data set NetworkL SNAP library [135]
max update time (sec.) all-pairs shortest path time (sec.)

Facebook 37 47
ca-GrQc 21 14
wiki-Vote 613 117
ca-HepTh 63 64

p2p-Gnutella 174 125
ca-HepPh 311 240

ca-AstroPh 1245 713

Table 6-A: Comparison between the maximum update time per edge addi-
tion (NetworkL library) and the time needed to compute all-pairs
shortest path from scratch with the SNAP library. For almost all
data sets the computation time from scratch is comparable with
the maximum time needed by NetworkL to update all distances in
the SGM. Moreover, the average and most frequent time needed to
update the entire SGM is below 0.1 seconds (see Fig. 6.5) which
is significantly smaller than the static computation.

required by the from scratch computation.

I also tested the correctness of our implementation of the Ramalingam and Reps update

algorithm. At the end of the each addition/removal of an edge I compare the entries

of the updated SGM with the entries of the full geodesic matrix computed with the

NetworkX (v1.10) function shortest-path-length(). About a total of 7× 108 entries have

been compared across the various data sets and no mismatch was found.

6.5 Conclusion and future development

In this Chapter I have introduced NetworkL, an python package for the dynamic com-

putation of graph metrics on time-varying networks. NetworkL implements incremental

algorithms for shortest path recomputation originally proposed by Ramalingam and Reps

[143]. After the addition or removal of an edge in the graph the algorithm perform the
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minimum set of operation to update the shortest path length without the needs to recom-

pute those paths not affected by the edge change. The size of today’s network data sets,

made of tens of thousands of nodes and edges, poses significant challenges to maintain

updated in memory all entries of the geodesic matrix required by the incremental com-

putation. To overcome this limitation I propose three novel strategies which reduce the

amount of memory from 50% to 75% on real-world data sets and reduce the number of

reading/writing operation from/to memory. These improvements open up the possibil-

ity to perform computation of distance-based network metrics on dynamic network at

the fine-grained level of single edge addition/removal even on common hardware. Notice

that for medium-sized network (N ∼ 105 nodes) the amount of memory required to store

NxN integer entries (1 byte each) is ∼10 GB which is close to the current limit of com-

modity hardware. The worst memory reduction of the SBGM approach experimentally

found on real-world networks is about 50% (see Fig. 6.4) which reduces the previous

number to 5GB, commonly available on standard hardware. The strategies proposed are

based on the common underlying idea to drop unnecessary or redundant entries stored in

the full geodesic matrix D. As a side result, the BGM approach provides a more efficient

way to compute all-pairs shortest paths also on static networks. The larger problem

of computing distances between all pairs of nodes in the graph is decomposed into the

smaller problems of computing all-pairs distances within a single bi-component. Even

if not all entries are explicitly computed the BGM still provides access to the value of

distance between al pairs of nodes which can be used to construct important network

metrics such as closeness centrality, global efficiency, information centrality.

Even though NetworkL has been primarily developed to test the SGM, BGM, and
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SBGM approaches the code has reached a level of maturity which makes it suitable for

computation in real-world scenarios. I have performed careful testing and validation by

comparing more than 7 × 108 entries of the geodesic matrix produced by the library

against those computed by Dijkstra algorithms implemented in NetworkX [134]. The

future development roadmap includes the implementation of additional methods for the

dynamic update of the BGM, the implementation of the combined SBGM approach,

the manipulation of disconnected graphs, and the porting on C language. Contribution

and feedback form developers and researchers are encouraged on the project page http:

//github.com/networkl/.

http://github.com/networkl/
http://github.com/networkl/


Chapter 7

Conclusions and future work

This thesis proposes a novel methodology for the study of innovation ecosystems and

the prediction of various forms of success. From a theoretical perspective, I have con-

ducted an extensive review of the most recent literature in the domains of complexity

science, science of success, social and management science, and I have highlighted their

link to the study of innovation processes. I have shown how the various theories and

methodologies offered by these fields can be suitably integrated to provide a comprehen-

sive and interdisciplinary approach to the study of innovation processes. In particular,

I have outlined how the fundamental nature of innovation has changed over the last

few decades, from a traditional form of technological innovation, characterised highly

complex knowledge and specialised expertise, to a modern form of innovation stemming

from recombinations of already existing technologies, involving less complex knowledge,

and emerging from collective contributions of interacting individuals or firms. This rad-

ical shift prompts the need to revise the current understanding of innovation processes
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and offers the opportunity to test old versus new hypotheses about the determinants of

success in innovation practices. In my view, modern innovation is regarded as a socially-

aided heuristic search process and a complex collective phenomena whose outcomes can

not be explained simply in terms of individual agents’ actions. It is indeed argued by

many that the process of innovation cannot be well understood without paying attention

to the social interactions among all actors involved (e.g., inventors, scientists, start-ups

founders) [64, 164–166]. In this sense, social networks play a crucial role in the creation

and diffusion of knowledge because they provide the structural foundations through

which ideas can flow among individuals and can be integrated into novel recombinations

[24]. For these reasons, in the section “Innovation ecosystems through the network lens”

of Chapter 3, I have adopted approaches and methodologies borrowed from complex-

ity science and social-network science to conceptualise potential indicators of success

in innovation ecosystems. From the methodological point of view, these indicators have

been operationalised in a set of network-based measures to characterise the various forms

of access and exposure to knowledge. First, in Chapter 4, I have shown that the central-

ity score of a start-up firm in the WWS network is strongly correlated with the firm’s

long-term success. Remarkably, the method proposed is able to predict the exceptional

success of the company WhatsApp only after 6 months since its foundation date and

prior to the very first financial investment by Sequoia Capital. Results provide empir-

ical support to the idea that networks of interaction between start-ups’ members have

a strong impact on the firm’s performance and success. Second, in Chapter 5, I have

investigated the extent to which an author’s personal interdisciplinarity and exposure to

others’ knowledge impact upon the author’s scientific performance. My results indicate



Chapter 7. Conclusions and future work 116

that scientists bear opportunity costs as they begin to diversify their background, at least

until they become highly interdisciplinary. Moreover, scientists with groups of collabo-

rators spanning many different areas are more successful than those with collaborators

focused on one or few overlapping areas.

Key contributions.

The novel contributions in this thesis can be summarised as follows:

1. I have proposed a novel perspective for an interdisciplinary and comprehensive

study of innovation processes in today’s fast-changing society and economy. The

main assumption on which this prospective rests is the idea that innovation lies

within social relationships rather than in individual minds;

2. I have proposed a set of hypotheses based on this idea and tested them in two

empirical domains: scientific production and the ecosystem of start-ups;

3. To account for sociality in scientific production, I have introduced the distinction

between personal interdisciplinarity and social interdisciplinarity and have inves-

tigated empirically their relationship with an author’s scientific performance. I

have also studied the research strategies through which authors rely on their col-

laboration networks to amplify their personal interdisciplinarity over time. To my

knowledge, this is the first study that complements research on interdisciplinarity

by explicitly accounting for: (i) authors’ time-varying collaboration networks; (ii)

variations in authors’ research strategies and performance over their entire careers;

and (iii) various levels of granularity in the analysis (e.g., specialty, discipline).

4. To account for sociality in the start-up ecosystem, I have proposed and tested a
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method for the prediction of long-term success of start-up companies based on

formal affiliations and the network of professional connections. To my knowledge,

my work offers the first study of the topological determinants of success of start-ups

at a worldwide scale.

5. I have conducted an extensive data collection and cleaning process of the Crunch-

base.com data resulting in the WWS network which will be soon made publicly

available to the research community on the page http://maths.qmul.ac.uk/

~mbonaventura;

6. To aid my empirical studies, I have implemented an incremental graph algorithm

for the dynamic update of shortest paths. NetworkL is the first public python

package which allows researchers and data scientists to re-compute shortest paths

with incremental strategies. I have also proposed and formalised the concepts of

sparse geodesic matrix (SGM) and sparse biconnected geodesic matrix (SBGM).

7.1 Implications for research and practice

My work has various implications for research. First, the new perspective proposed

in this thesis can assist researchers in designing empirical investigations of innovation

ecosystems. This new perspective arises from the combination of techniques and the-

ories derived from complex network science and social sciences, and it offers several

hypotheses about the determinants of success in modern innovation. Second, the empir-

ical study of authors’ interdisciplinarity has profound implications for current research

in bibliometrics. Recent work on interdisciplinarity has focused mainly on the bene-

http://maths.qmul.ac.uk/~mbonaventura
http://maths.qmul.ac.uk/~mbonaventura
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fits and disadvantages associated with authors’ diversity of knowledge and background

[39, 111, 167]. However, research on social capital and innovation has also suggested

that performance is enhanced by the opportunities to gain and recombine knowledge

offered by the network in which individuals are embedded [6, 54, 62, 63, 168]. In my

study, I have integrated the individual and social perspectives, and proposed a conception

of interdisciplinarity that extends beyond the boundaries of the scientists’ background

to also include their collaboration networks. I extended previous work by uncovering

the competitive advantages of collaborative strategies for sustaining knowledge diffusion

and acquisition. Third, my work on start-up firms is the first one in which innovation

dynamics are observed at the fine-grained resolution of human interaction. It is also the

first study to shed light on the impact of network structures on firms’ performance at a

global scale. Previous work has investigated how knowledge transfer impacts upon the

performance of start-ups by using data on patents, inter-organisational collaborations,

and co-location of firms to infer information flows and exchange [26, 96–100]. Other

studies have analysed social networks (e.g., inventor collaboration networks) to unveil

the microscopic level of interactions among individuals [169]; yet their scope has been

limited mostly to specific industries or small geographic areas and observation periods

[101, 102]. Owing to lack of data, the role of the global network that underpins knowledge

exchange in the worldwide innovation ecosystem has been largely overlooked. Equally,

the competitive advantage of differential information-rich network positions and their

role in opening up, expediting, or obstructing pathways to firms’ long-term success have

been left largely unexplored. My contribution significantly overcomes these limitations

and paves the way for more comprehensive studies of innovation processes.



Chapter 7. Conclusions and future work 119

Policy implications for scientific production. My empirical study on interdisci-

plinarity has far-reaching implications for research practice and policy. Opening up the

black box of the scientist’s knowledge to also account for collaboration networks paves

the way for more integrated approaches to scientific production that borrow insights

from bibliometrics and citation analysis, complex networks, cognitive science and the

sociology of science. My findings can also inspire individual scientists to shape and

sustain successful careers, research institutions to strengthen their scientific reputation

and profile through effective recruitment policies and internal evaluations systems, and

funding bodies to award research grants to projects with the highest potential impact.

Policy implication for start-up ecosystems.. In Her speech on the 18th May 2016,

Queen Elizabeth II announced The Digital Economy Bill, later introduced in the House

of Commons in July 2016. The Bill includes a range of measures to “make the United

Kingdom a world leader in the digital economy” and to support new digital industries.

Similarly, in 2010 the President of the United States Barack Obama launched the Startup

America program, while the European Commission launched the Startup Europe pro-

gram. Modern innovation is strongly driven by distributed efforts of thousands of digital

innovators and start-ups. As an example, the digital tech industries are growing 32%

faster than the rest of the UK economy, and those digital tech industries are creating

employment opportunities accounting for 1.56M jobs across the UK. However, if on the

one hand the net impact of start-ups on employment and wealth is positive, on the other

hand the mortality rate of newly born creative businesses remains quite high. With a

startup success rate of about 10%, the full potential of digital ecosystems is far from been

unleashed, and there is still great room for improving the way innovation is managed and
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monitored at the government’s level. My work can help to build data-driven methodolo-

gies for informing policy decisions and maximising the potential of digital ecosystems.

These methodologies are indeed crucial for governments that want to play a leading role

in the digital market. The prediction method can help stakeholders devise and fine-tune

a number of effective strategies, simply based on the underlying social network. Being

able to estimate objectively the future potential of start-up companies will allow, on the

one hand, investors to identify more quickly promising start-ups currently off the radar

and, on the other hand, promising teams to stand out of the crowd, gain access to risk

capital, and realise their potential more promptly.

7.2 Future work

The thesis suggests a number of new directions for future investigation. First, even

though the main hypotheses proposed in Section 2.3 have been tested in two empiri-

cal domains, room is left for a more detailed study of each individual hypothesis. For

instance, I have proposed that projects that have produced successful innovation are

those which have gone through a fast-paced series of unsuccessful attempts. This con-

cept suggests that, instead of measuring success directly, one could try to estimate the

likelihood of future performance based on the number and characteristics of previous

unsuccessful attempts. In practice, this could be tested by taking into account the num-

ber of unsuccessful companies founded by a person or the number of low-cited articles

of a scientist. The study of scientists’ interdisciplinarity can be extended in multiples

ways. For instance, the role of global connectivity can be directly assessed by propos-
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ing a different measure of interdisciplinarity that goes beyond the author’s immediate

local neighbourhood. The importance of accessing variegated pools of knowledge has

been explicitly tested in chapter 5. A similar approach could be employed in the study

of start-up ecosystems by decomposing the WWS network into a multilayer network

in which the layers are the various professional roles. In this way one can study how

access to various forms of information (e.g., know-how through employees, and business

opportunities through mentors, advisors, and board members) impacts on performance.

Additionally, one can investigate the extent to which other centrality measures, such

as harmonic closeness, betweenness centrality, and PageRank, impact upon a start-up’s

long-term performance. It would also be worth investigating to which extent the method

I have proposed to predict the success of start-ups can be used to predict economic per-

formance of traditional businesses or the fluctuation in value of firms listed in the stock

exchange markets. Lastly, the datasets I have collected are rich in other metadata which

have not been fully exploited. A text-based analysis of article titles can prompt a dif-

ferent and more refined approach to the identification of the article topics. Moreover,

data about skills, locations, and market sectors can further improve the study of start-

up ecosystems. I have already undertaken some preliminary work in these directions in

connection with the development of NetworkL.
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Appendix of Chapter 4

B.1 Robustness and confounding factors

I have tested robustness of results against potential confounding factors such as location

of the start-up, number of team members, and increase in the number of team members.

Other factors such as the age of the founders, or age of the team members, can be in

principle tested using the Crunchbase data set. However, since the date of birth is not one

of the mandatory fields on the Crunchbase website, the disproportion between number

of people reporting their date of birth and the ones that do not is very high (restricted to

the US territory 292,684 people’s records do not report age, and only 26,417 have age).

I have tested the performance of the prediction method by only selecting from the

monthly open-deal lists from the start-ups based on a given location. Indeed, when the

ranked list contains start-ups from any region of the world one can hypothesise that the

top of the list would be dominated by firms which are based in notoriously prosperous
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regions (e.g., Silicon Valley). In this case the higher concentration of successful start-ups

at the top of the open-deal list could be a result of the location effect only and the

centrality in the WWS network only reflects the location. I have assessed this problem

directly by restricting the analysis to specific regions, including California (US). As I will

show in a few paragraphs later, the results obtained at a worldwide scale are confirmed

at the level of single regions. This indicates that start-ups that are better connected

in the WWS network (i.e., that have higher network centrality) have an advantage over

other start-ups that, being located in the same region, have potential access to the same

set of opportunities (funding, business partners, access to talent, fiscal regulation, cost

of running the business). The downside of splitting the open-deal lists by location is that

the size of the list reduces significantly. For instance, in the UK, the number of start-ups

belonging to the WWS network and included in the open-deal list prior to January 2004

is smaller than 20. In such cases analysing the success rate of the Top 20 is meaningless.

As the sample size decreases the results became noisy. To improve the ratio signal/noise

I have selected the top five regions per number of start-ups: the 3 US states of California

(10,105 start-ups), New YorK (3,553), and Texas (1,140), United Kingdom (2,413), and

Israel (592). For the California region it is still possible to analyse the success rate of the

Top 100 while for all other regions I studied the evolution of the Top 10. All results are

reported in Fig B.1.1. In almost all locations the success rate is higher than the random

expectation for most of the observed period.
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Figure B.1.1: Monthly success rate in the top five regions per number of start-
ups.
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In the case of the UK, the method performs badly up to 2009, after which the

success rate raise to 3 times the random expectation and it is statistical significative

(i.e., low p-values). It is worth noticing that 2010 is an important year for start-ups

in general and for the ones based in London in particular. Indeed 2010 is the year of

the launch of Obama’s Startup America program and the year in which Google sets the

basis for the London’s start-up ecosystems by opening the Google Campus co-working

space. In general the random expectation sits around the value 10% − 15% which is

comparable with the industry standard of popular accelerator and investment firms.

For example, the famous accelerator 500-Startups has an overall success rate of 10%

with 1,054 investments and only 120 companies acquired or publicly traded1. In this

sense the results confirm that the proposed methodology can provide effective ways

to improve investment practices. Moreover, the success rate for the California region

is always greater than the random expectation and greater than the above mentioned

industry standards. It is also worth noticing that the temporal trend is significantly

different from the one obtained at the worldwide scale. While in Fig. 4.6(a) the peak

occurs around mid-2003, in the California region the best performance is achieved in 2006

with a rate of 26% and it is followed by a stabilisation around 20%. This suggests that,

while California is the leading region in terms of the number of start-ups, it’s impact

on the results at a global scale is limited and the plot in Fig 4.6(a) is not dominated by

this leading region. Lastly, the plot reveals that the financial crisis had a small impact

on the success rate in the California region, compared to other regions. In Fig. 4.6(a)

the financial crisis drop occurs around year 2008 while in the same period California’s

trend seems stable around 20%. I have also computed the number of team members per

1source: Crunchbase.com
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start-up in each month, their monthly increase, and studied the extent to which these

indicators can be used to predict performance. Fig. B.1.2 shows the distribution of the

maximum number of team members for all start-ups included in the open-deal lists. Since

all firms have at least one team member when they join the lists, the figure implies also

that the increase in the number of team members during the open-deal period is equal to

zero for the large majority of the companies. Notice that the plot has a logarithmic scale

and that the number of companies with more than 1 team member is only 596 across the

whole observation period. Given the particular shape of the distribution it is very hard

Figure B.1.2: Distribution of the maximum number of team members for all
start-ups included in the open-deal list.

to obtain unambiguous ranking by using the number of people in the team as a success

predictor (indeed nearly all start-ups will occupy the same position in the ranking as the

majority of them have only 1 team member during the period in which they qualify to

be part of the open-deal list). The analysis of groups of companies with an equal number
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of team members has similar shortcomings. Indeed the group containing start-ups with

1 team member is likely to provide the same results as the one obtained by using the

closeness centrality as a success predictor. Groups containing more then 1 team member

have instead a negligible number of start-ups and are unlikely to provide any meaningful

signal. Despite these various shortcomings, I have computed the success rate by using

the monthly number of team members as a ranking metric. Fig. B.1.3 confirms that

ranking based on the number of team members provides a success rate that is comparable

with the one obtained by chance (the high variability in the success rate is due to the

high number of companies with exactly one team member). An almost equal result is

obtained for the monthly increase in number of team members. Fig. B.1.4 shows the

success rate obtained for companies that have exactly one team member and confirms

that the results are qualitatively similar to the one obtained for the complete open-deal

list.

Figure B.1.3: Monthly success rate computed using the number of team mem-
bers as ranking method.
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Figure B.1.4: Monthly success rate for companies with exactly one team mem-
ber computed using the closeness centrality as ranking method.
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To summarise, the results obtained by using closeness centrality as a ranking metric

have proven to be robust against potential location biases or other confounding factors.

While the number of team members is largely used in current venture capital practices

to identify growth of more mature organisations, in the case of very early-stage start-ups

the number of team members is hardly a distinguishing feature. Centrality measures

in the WWS network have proven to be valuable indicators for investors that want to

discover the best opportunities within the multitude of small innovative firms.
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B.2 Fingerprints of start-up cities

The city is a convenient unit of analysis as it imposes a physical boundary to the local

communities. Indeed, we expect to find a denser network of interactions within the

same city (community) than across different cities. For simplicity we use the term

start-up ecosystem to identify the subgraph whose nodes (companies and people) are

associated with a certain city. I propose here a methodology to characterise various

start-up ecosystems and to outline their differences and similarities in a quantitative

way. In this analysis I have considered only the subset of cities which have at least 100

start-ups. First, for each ecosystem, I count the professional roles associated with all the

links between a start-up and an individual. An example of the normalised distributions

of roles in four US cities is reported in Figure B.2.5. Contrary to what one might

8

0

0.1

0.3

0.4

0.5

San Francisco New York London Boston Chicago Austin Palo Alto Washington Seattle Paris

USA / Europe - Fingerprints of top 10 locations

Founder Investor Mentor Employee Group Member Attorney

0

0.2

0.3

0.5

0.6

Palo Alto Menlo Park Phoenix Fort Lauderdale

Cities with the most similar fingerprints

Founder Investor Mentor Employee Group Member Attorney

FIG. 8: Dendogram of herarchical clustering and fingerprints of most similar cities. The color of the clusters is identified by the
rule 0.7∗max(cluster distances). The fingerprints of Fort Lauderdale and Phoenix match between them and with the fingerprint
representing the cluster to which the two cities belongs, i.e. cluster n.189 (#22) (Fig. 9).

Figure B.2.5: Normalised distributions of roles in four US cities. Each his-
togram represents the fingerprint of the start-up ecosystem.
The figure reports the two pairs of cities with the most similar
fingerprints. The similarity is measured as Euclidean distance
between two 6-dimensional vectors each associated with a city
(see main text).
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instinctively think, the histograms do not reflect the number of people with a certain

role. Indeed the same person may have multiple roles in different start-ups, and all

his/her roles contribute to the counting. In other words, we are considering the property

role associated with each edge, rather than a property associated with the person. In

this way we are able to associate an ecosystem, and its network, with a fingerprint which

reflects its unique pattern of start-up activity. In some cities the founders’ activity may

be more pronounced (e.g., the blue pick of Fort Lauderdale and Phoenix) while other

cities may display a more balanced distribution of roles (e.g., Palo Alto and Menlo Park).

The various fingerprints may reflect several underlying processes. For example, start-

ups that receive substantial funding are more prone to quickly hire employees than others

in which the founders, during the early stages of the company, take also the responsibility

of project development (and do not consider themselves as employees). Some ecosystems,

such as the one in the U.S., are more risk prone and display a greater fraction of investor

roles then European ones. In order to study similarities and differences among the various

ecosystems I computed the Euclidean distance between the 6-dimensional vectors (i.e.,

the normalised histograms) associated with each city. In particular, Figure B.2.5 shows

the two pairs of cities with the most similar profiles. I then used the distance matrix

between all pairs of cities to perform hierarchical clustering analysis. The clustering

method used is complete linkage, and the associated dendrogram is shown in Figure

B.2.6. Five main clusters are identified by the Elbow criterion. The fact that the

majority of the clusters merge at a very small distance threshold (∼ 0.05, i.e., bottom

part of the dendrogram in Fig. B.2.6) indicates that cities within the same cluster are

similar to each other, while there is a significant distance between the fingerprints of
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Figure B.2.6: Dendrogram resulting from the hierarchical clustering analysis.

cities belonging to different clusters.

In addition, I have found that some clusters have high degree of overlap with the

geographic location (EU or US) of the cities included in the cluster. Figure B.2.7 shows

the percentage of EU and US cities within each cluster and the representative fingerprint

of each cluster, i.e., the 6-d vector constructed as the average (component by component)

across all vectors belonging to the same cluster. The representative fingerprints reveal

a distinct signature for European and US cities. While European cities are dominated

by founders and mentors roles, the US ones are rich in employees and investors roles.
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We conjecture that this result reflects the different attitude and approach of U.S. and

EU citizens in the creation of new innovative activities. European citizens are prone to

initiate new business activities, thus linking ownership and control (e.g., by founding a

company) or to help others do so (e.g., by mentoring other companies). By contrast,

U.S. people tend to focus more on either the financial aspect of the business or the exe-

cution stages, and their activities are therefore mainly devoted to providing the funding

(investors) and to executing the business plan (employees).
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FIG. 9: Fingerprints of cluster representatives computed as the by averaging the fingerprints of all cities within a certain cluster.
Figure B.2.7: The percentage of EU and U.S. cities within each cluster and

the representative fingerprint of each cluster, constructed as the
average across all 6-dimensional vectors belonging to the same
cluster. The number in parenthesis (#X) indicates the num-
ber of cities within each cluster. Going from left to right, i.e.,
from EU-based to U.S.-based clusters, we notice a decrease of
the fraction of founders roles and an increase of the fraction of
investors and employees roles

I have also performed a similar analysis at a greater degree of detail by considering the
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combination of all pairs of roles of the same person. An individual that holds two roles in

two distinct companies acts as bridge between the two companies [80]. The interaction

between the two companies can have a different nature and impact, depending on the

specific roles of the bridging person. As already illustrated in Section 3.1, an employee

moving from a company to another can mediate exchange of knowledge and know-how;

a common investor can facilitate access to business opportunities and partnerships; a

successful entrepreneur can speed growth up, and help newly born companies to avoid

mistakes by acting as a mentor. The combinations of 6 professional roles give 21 different

types of potential interactions between companies, labeled as follows: FF, FI, FM, FE,

FG, FA, II, IM, IE, IG, IA, MM, ME, MG, MA, EE, EG, EA, GG, GA, AA. For

instance, the FI interaction identifies the potential exchange of information between

two companies mediated by a person which has acted as founder in the first and as

investor in the second. For simplicity in this analysis the time ordering of the roles is

disregarded, i.e., I do not distinguish if the founding event occurred before of after the

investment one. Using the labels listed above it is possible to construct a 21-dimension

fingerprint for each city. Figure B.2.8 shows three pairs of cities with the most similar

fingerprints. Figure B.2.9 shows that the typical 21-d fingerprint of European cities

has a predominance of FF links, indicating that the interaction between start-ups in

the associated city subgraph is mainly mediated by founders. In agreement with the

result of the 6-dimensions analysis, the same figure also confirms that investors play

a crucial role for the interaction between start-ups in U.S. ecosystems. The analysis

based on the 21-d fingerprints is not only technically more refined but has also a more

meaningful interpretation than the 6 dimensions analysis. While the latter provides
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Figure B.2.8: Three pairs of cities with the most similar 21-d fingerprints.

0

0.2

0.4

0.6

0.8

Cluster1 (#4) Cluster2 (#37) Cluster3 (#13) Cluster4 (#32) Cluster5 (#15)

USA / Europe - Fingerprints of clusters

I-I I-M A-A M-M E-E F-I F-F E-I F-E F-M

25%

75%

Chart 11

59%
41%

Cluster 2

54% 46%

Cluster 3

75%

25%

Cluster 4

73%

27%

Cluster 5

Europe USA
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the representative 21-d fingerprint of each cluster, constructed
as the average across all 21-dimensional vectors belonging to
the same cluster. The number in parenthesis (#X) indicates
the number of cities within each cluster.
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only information about the volume of the individuals’ activity or propensity to take on

certain roles, the former takes into account more deeply the structure of the network, the

peculiarities of the links between companies and, in doing so, it captures the nature of

exchanges between companies. Even though the 21-dimension analysis is limited to the

local level of the network, it has the potential to shed light on the microscopic dynamics

of interaction between companies, and to characterise with great detail the flow of ideas,

knowledge, expertise, and opportunities as described in Chapter 3. Exploration of the

interplay between the fingerprint of a city and the success of its startup ecosystem is left

as future work.



Appendix C

Appendix of Chapter 5

C.1 Alternative measures of success

Average number of citations per article. I studied the relationship between inter-

disciplinarity and scientific performance by using the average number of citations per

article over time as an alternative measure of success. The average number of citations

of an author i at year t of his or her career is defined as:

〈N cit〉i(t) =
N cit
i (t)

Na
i (t)

, (C.1)

where Na
i (t) is the number of articles published by author i up to year t. The results

from this additional analysis are reported in Fig.C.1.1. So constructed, this measure

alleviate the differences in productivity of different authors and is more appropriate in

the context of the second null model presented in section C.3.2.

138
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Figure C.1.1: Mean number of citations per article accrued by each author i,
〈N cit〉i(t), averaged across all authors in the APS data set at
different years t of their careers. The analysis is performed at
two levels in the PACS code hierarchy: (i) the micro level (right-
hand panel), which includes all 6 digits in the PACS codes, and
(ii) the meso level (left-hand panel), which includes only the
first 4 digits.

C.2 Disambiguation methods

In order to control for possible biases resulting from homonymous scientists, I replicated

the analysis based on the APS data set employing three different strategies for name

disambiguation. The first two strategies are variations of a standard method for initial-

based name disambiguation, while the third one, adopted for producing all results in

Chapter 5, relies upon a refined and comprehensive disambiguation method based on

records about institutional affiliation, the collaboration network, and the citation net-

work. In all strategies, first I removed all special characters from the records of each

author’s surname, given name, and middle name. I also filtered out surnames shorter

than three characters to further reduce the risk of conflating two different homonymous

authors within the same name. A given article was excluded entirely from the analysis
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only if none of its co-authors complied with the chosen disambiguation criterion.

First name disambiguation strategy. The first disambiguation strategy considers

only authors for whom both the full given name and the initial of the middle name are

given. I then created each author’s stringID by combining full surname and both initials

(e.g., h.e.stanley). If the initial of either the given name or the middle name was missing,

the author was filtered out and excluded from the analysis. The APS data set cleaned

through this first strategy includes a total of NP = 302, 104 articles and NA = 96, 516

unique authors.

Second name disambiguation strategy. The second strategy requires at least the

given name be included in each author’s records. In this case, the middle name is option-

ally included in the author’s stringID. The APS data set cleaned through this second

name disambiguation strategy includes a total NP = 380, 695 articles and NA = 117, 613

unique authors. The results obtained with the first two disambiguation strategies are

quantitatively similar to those obtained with the third disambiguation method pre-

sented in the following. The third strategy for name disambiguation, inspired by the

one described in [38], directly relies on authors’ institutional affiliations. Therefore, in

what follows I shall first outline how I conducted a preliminary analysis of all affiliation

records included in the entire APS data set.

C.2.1 Disambiguation of institutional affiliations

Institutional affiliations are included in the APS data set as free-text string records

associated with one or more authors in each article. A condition of strict equality of

affiliation strings is not suitable owing to the presence of small differences between strings
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representing the same institution (e.g., punctuation, spaces, street addresses). First, I

extracted the entire list of unique affiliation strings, and I filtered them by removing the

common stop-words and common symbols listed in Table 3-A.

stop-words and symbols
“university” - “ of ” - “P.O. Box”

“P.O.B.” - “ and ” - “ di ”
“PO” - “P.O.”’ - “,” - “;” - “#”

Table 3-A: Stop-words and common symbols used for disambiguating institu-
tional affiliations.

To check whether two affiliation strings represent the same institution, I performed

a similarity test based on the Jaccard index. I split the strings into a list of words by

using white spaces as separators, and computed the Jaccard index between the two sets.

The APS data set contains Naff = 361, 838 unique affiliation records, which results

into N2
aff = 130.926.738.244 computationally demanding pairwise comparisons between

strings. The distribution of values of the Jaccard index for all affiliation pairs is shown

in Fig. C.2.2.
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Figure C.2.2: Distribution of the values of the Jaccard index for all possible
pairs of affiliation records. The threshold value was set at 0.6

Two affiliation records were conflated and assumed to be associated with the same insti-
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tution if the Jaccard index was greater than a specific threshold value. As acceptance

criterion, I chose a threshold value of 0.6. That is, two affiliation strings with a Jac-

card index greater than 0.6 were conflated into the same institution, while two affiliation

strings were associated with two distinct institutions if the index was lower than 0.6.

There is no unique and objectively defined way for setting the threshold. In our case,

the value of 0.6 was chosen based on: (i) the total number of unique institutions result-

ing from the disambiguation process, and (ii) a number of tests manually performed on

various subsets of affiliations. As an example, during the disambiguation process the

following four different strings were identified as similar, and thus referring to the same

institution:

(a) “Department of Applied Mathematics, Queen Mary College, London E1 4NS,

United Kingdom”

(b) “Department of Applied Mathematics, Queen Mary College, University of London,

London E1 4NS, England”

(c) “Department of Applied Mathematics, Queen Mary College, University of London,

London E1 4NS, United Kingdom”

(d) “Department of Applied Mathematics, Queen Mary College, University of London,

London, England”
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C.2.2 Third name disambiguation strategy

The previous criterion for disambiguating affiliations is fed into a third, more conservative

method for the disambiguation of authors’ names [38]. To speed up the computation,

first I grouped authors with equal surnames (as this field is always included in the data)

into distinct subsets, and I kept record of the articles they published. Then I checked

all possible pairs of articles within each subset. In so doing, only authors with equal

surnames were compared in the following way. For each pair of articles, and for each

author i in article a1 and author j in article a2, I checked whether author i and author j

passed a number of similarity tests. Specifically, I checked if the given names and middle

names, where available, were compatible. If the full given name or the middle name was

available, the comparison was performed by taking into account the entire string and

potential misspellings. In particular, two string names were assumed to be compatible if

they had a Hamming distance smaller than two. If given names and middle names were

not compatible, then the corresponding authors were assigned to two distinct numeric

IDs. On the contrary, authors were merged into a single identity if given names (and

middle names) were compatible, and if at least one of the following conditions applied

[38]:

• the corresponding institutional affiliations are similar (as outlined in the previous

subsection C.2.1);

• the two articles share at least one similar co-author (string comparison);

• there is a citation between the two articles.
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C.3 Null models

C.3.1 Reshuffling PACS codes and research categories

I compared the results shown in Fig. 5.1 and Fig. 5.2 with those obtained through

a null model in which PACS codes (in the APS data set) and research category codes

(in the WOS data set) were randomly shuffled. Codes were shuffled only across articles

published in the same year. This choice enabled us to construct a null model that

properly takes into account variations in interest and popularity of some disciplines as

well as the appearance of new scientific fields over time. Once PACS codes or research

categories are shuffled across articles, the newly computed values of background and

social entropy do not reflect any longer an author’s inclination towards specialised or

interdisciplinary research. By contrast, the background entropy computed on a randomly

reshuffled list of codes is expected to correlate only with the size of such list, i.e., with

the number of codes, and, in turn, with the number of articles an author has published.

I averaged the results (namely, the average number of citations obtained by authors

with various values of entropy) over 1, 000 independent realisations of the null model,

and I compared the results with the ones obtained with the real data. In the top

panels of Fig. C.3.3 I plot the relation between background entropy and citations in

the two data sets and in the null model. It is interesting to notice that the null model

fails to reproduce the U-shaped relation between interdisciplinarity and success, since it

predicts a monotonically increasing dependence of success on background entropy. Notice

that the minimum values of background entropy obtained in the realisations of the null

model are consistently higher than the minimum values observed in the two data sets, in
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agreement with the fact that the random assignment of PACS codes and categories does

not allow authors to remain focused on a topic. Moreover, the predicted average number

of citations per author in the null model is consistently smaller than that observed in the

data, especially in APS where the difference is of about one order of magnitude. In the

bottom panels of Fig. C.3.3 I also report the relation between social entropy and success

in the data and in the null model. It is also important to note that, by reshuffling PACS

codes and research categories, this null model destroys the existing patterns of authors

interdisciplinarity. In Fig. C.3.4 I show the distributions of author background entropy

in the APS data set (top panels) and in the null model (bottom panels) for authors with

different numbers of published articles (respectively, 5, 10, 20, 50, and more than 70,

proceeding from the leftmost to the rightmost panel in each row). It is evident that the

typical distribution of background entropy for authors with a certain number of articles

is relatively wide and negatively skewed. Conversely, for the same number of published

articles, the null model grossly overestimates the interdisciplinarity of each author, and

the corresponding distribution of background entropy is symmetric and tightly peaked

around a typical value.
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Figure C.3.3: Average number of citations in real data and in the first null
model as a function of author background entropy (top pan-
els) and author social entropy (bottom panels). The rela-
tion between background entropy and citation is monotonically
increasing in the null model, while in the data set I observe a
U-shape. Moreover, the random distribution of PACS and cat-
egory codes forbids small values of background entropy, which
are instead observed both in the APS and in the WoS data set.
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Figure C.3.4: Distributions of personal entropy in the APS data set (top pan-
els) and in the first null model (bottom panels) for authors hav-
ing published, 5, 10, 20, 50, and 70, respectively from left to
right. The distributions of personal entropy observed in the
real data set are very different from those expected if the PACS
were chosen at random, and in particular are less peaked and
centred around smaller values of background entropy.
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C.3.2 Reshuffling the citation graph

I considered a null model aiming at assessing whether the U-shaped dependence between

success and interdisciplinarity, shown in Fig. 5.1 and Fig. 5.2 of the main text, was

simply due to the heterogeneity in the number of articles published by each author

and to the differences in the length of their careers. This null model is constructed by

reshuffling the network of citations among articles, while keeping fixed the association

of authors and research categories to articles, and the length of the reference list of

each article (namely, the out-degree of each node in the citation graph). In particular,

each of the outgoing links of article a was randomly reassigned to one of the articles

published before a. We notice that by doing so the number of citations received by a

paper depends only on the age of the paper, and the total number of citations accrued

by an author depends heavily on the number of published articles. However, in this

null model the value of background entropy of each author (i.e., the x-coordinate of the

author in the entropy/success plane) is identical to that observed in the data sets, since

the associations of authors and PACS codes to articles is preserved. The comparison

between the data (blue line) and the null model (green line) is reported in Fig. C.3.5,

where I used as a measure of success of author i the average number of citations received

by each article authored by i given by Eq. (C.1). It is evident from the figure that the

null model is not able to reproduce the U-shaped relation between interdisciplinarity and

success, since it predicts that the average number of citations per article would remain

practically constant over the whole range of background entropy values.
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Figure C.3.5: Comparison between the average number of citations per article
for each author in the APS data set (blue line), and the cor-
responding value observed in the null model where the citation
network among articles is reshuffled but the background entropy
of each author is kept constant (green line). It is evident that
this null model is not able to reproduce the U-shaped relation
between interdisciplinarity and success, allowing us to rule out
the possibility that the U-shape is simply due to the heterogene-
ity in the number of articles published by each author and in
the career length of different authors.
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C.4 Distribution of citations within different ranges of authors’

background entropy

In this section, I study the frequency distributions of the number of citations received by

all authors falling within the same bins of background entropy. It is evident that each

of the probability mass functions shown in Fig. C.4.6 is characterised by a peak around

a typical value of citations. Contrary to the number of citations per author in the whole

dataset, which have a power-law distribution, the distributions of citations restricted

to given bins of background entropy are not broad. Indeed the presence of a peak in

the frequency distribution indicates that a group of authors characterised by the same

value of interdisciplinarity have a mean number of citations that is representative of the

entire group. For instance, the distributions of citations accrued by authors with values

of background entropy B lying within the ranges [0, 0.05] and [1.2, 1.25] (i.e., highly

focused and highly interdisciplinary authors, respectively corresponding to the red line

and yellow line in Fig. C.4.6) are both peaked around a value of log(N cit) ∼ 3, while the

distributions of citations for authors with background entropy ranging within [0.3, 0.35],

[0.6, 0.65], and [0.9, 0.95] (i.e., ranges of values that correspond to the local minima of

the U-shaped curve) are all peaked around lower values of citations (log(N cit) ∼ 1.0 in

APS, and log(N cit) ∼ 2.25 in WOS).

I have also assessed the statistical significance of the differences between these dis-

tributions of citations by performing the Kolmogorov-Smirnov (KS) test between each

pair of distributions obtained within different bins. Fig. C.4.7 shows which pairs of

distributions satisfy the KS test at the p = 0.01 significance level. Findings suggest that
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Figure C.4.6: Cumulative distributions of the number of citations received by
authors within the same bins of background entropy

pairs of groups of authors associated with ranges of background entropy corresponding

one to a local maximum and the other to the minimum of the U-shaped curve were sam-

pled from populations with different frequency distributions of citations. By contrast,

pairs of distributions corresponding to the two local maxima of the U-shaped curve are

statistically significantly similar.

Figure C.4.7: Kolmogorov-Smirnov (KS) test for all pairs of cumulative fre-
quency distributions of citations obtained by authors charac-
terised by values of background entropy lying within different
bins. Each bin is identified by the value of background entropy
at the centre of the bin (e.g., the value 0.025 on the x-axis indi-
cates the bin B ∈ [0, 0.05]). Each point in the matrix is a pair
of distributions of citations shown in Fig. C.4.6. Black squares
indicate pairs of distributions that pass the KS test, while white
squares indicate pairs that do not pass the test.
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In Fig. C.4.8 I show the distributions of citations centred around the mean for all

bins of background entropy. I have fitted each of these distributions against a power-

law, a lognormal, and an exponential distribution and assessed the goodness of the fit.

The goodness of the fit is computed as loglikelihood ratio R between the two candidate

distributions [170] and its statistical significance is provided by the associated p-values1.

All pairs of R and p-values are reported in Fig. C.4.9. The negative values of R indicate

that the second distribution (exponential) fits the data best than the power-law one.

Instead, in the case of the lognormal distribution, the p-values are high indicating that

none of the two distributions provide a better description of the data than the other.

Overall this suggests that the exponential distribution is a valid description of the data

and that, consequently, the contribution of ”extreme” authors to the mean values of the

U-shape is negligible.

Figure C.4.8: Distributions of citations in various bins of background entropy
centred around the mean. The various distributions exponential
shape also confirmed by the statistical test.

1loglikelihood and pvalues are computed using the package powerlaw presented in [171]
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Figure C.4.9: Loglikelihood ratios R and p-values for an exponential and
power-law fit of the citations distributions in figure C.4.8. Nega-
tive values of R and small pvalues indicate that the exponential
distribution should be preferred to the power-law one in most
cases.
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C.5 Historical trend

To asses whether the success of interdisciplinary studies is modern phenomenon only or

if authors have benefited from interdisciplinarity also in the past, I have repeated the

analyses by dividing the sample in two groups: authors whose career has ended before

the year 2000, and those who have started their career after the year 2000. Notably the

U-shaped trend is confirmed in both groups despite the advantage of interdisciplinarity

and specialisation seem more pronounced in the most recent group (i.e., the number of

rescaled citations for interdisciplinary and specialised authors is higher in more recent

years).

Figure C.5.10: Relation between citations and background entropy in two non-
overlapping historical periods (before and after year 2000).
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